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Irrational Rotation of the Circle and the Binary
Odometer are Finitarily Orbit Equivalent

By

Mrinal Kanti Roychowdhury∗

Abstract

Two invertible dynamical systems (X, A, µ, T ) and (Y, B, ν, S) where X, Y are
metrizable spaces and T , S are homeomorphisms on X and Y , are said to be finitarily
orbit equivalent if there exists an invertible measure preserving mapping φ from a
subset M of X of measure one to a subset of Y of full measure such that

(i) φ|M is continuous in the relative topology on M and φ−1|φ(M) is continuous
in the relative topology on φ(M),

(ii) φ(OrbT (x)) = OrbSφ(x) for µ-a.e. x ∈ X.
In this article a finitary orbit equivalence mapping has been constructed between an
irrational rotation of the circle and the binary odometer.

§1. Introduction

The theory of orbit equivalence originated in the late 1950’s. H. Dye
pioneered the early development of the theory in his article [D] “On groups
of measure preserving transformations I”. In this work he proved one of the
most fundamental theorems in ergodic theory, that any two invertible ergodic
measure preserving transformations acting on non-atomic Lebesgue probabil-
ity spaces are orbit equivalent, i.e. there is a measure isomorphism between
the spaces taking complete orbits to complete orbits, modulo the underlying
probability measures. This result is usually [HO] proved by taking the binary
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odometer, whose ergodic structure is well understood, as one of the transfor-
mations.

There has been considerable interest in orbit equivalence theory since Dye’s
original article, and many other aspects of orbit equivalence have been stud-
ied. In particular the broad study of finitary orbit equivalence were begun by
Hamachi and Keane [HK].

Two invertible dynamical systems (X,A, µ, T ) and (Y,B, ν, S) where X, Y
are metrizable spaces and T , S are homeomorphisms on X and Y , are said to
be finitarily orbit equivalent if there exists an invertible measure preserving
mapping φ from a subset M ofX of measure one to a subset of Y of full measure
such that

(i) φ|M is continuous in the relative topology on M and φ−1|φ(M) is con-
tinuous in the relative topology on φ(M),

(ii) φ(OrbT (x)) = OrbSφ(x) for µ-a.e. x ∈ X.
It remains an open problem as to whether any two orbit equivalent sys-

tems are finitarily orbit equivalent. In 2003, in the article [HK] Hamachi and
Keane constructed the first finitary orbit equivalence mapping between the bi-
nary odometer and the ternary odometer. In this article we prove the theorem:

Main Theorem. Irrational rotation of the circle and the binary odome-
ter are finitarily orbit equivalent.

The finitary theory began in the study of isomorphism and this background
can be found in [KS1], [KS2]. Background for the methods used in the finitary
orbit equivalence theory are in [HK], [HKR]. Particularly note the result in [R]
that any two odometers are finitarily orbit equivalent. This work is closest to
what we do here.

The paper is arranged as follows. In Section 2 we discuss the theory of
irrational rotation of the circle in order to define the basic notions of cylinders
and tower partitions and establish for them the basic theorems from [HK], [R].
For completeness Section 3 does the same for the binary odometer. Section 4
discusses tower maps and Section 5 completes the finitary construction.

§2. Irrational Rotation of the Circle

In this section we state the required definitions and some preliminary re-
sults concerning an irrational rotation of the circle.
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§2.1. Irrational rotation of the circle, canonical cylinders, iterated cylinders

Let α ∈ (0, 1) be irrational. Let X = [0, 1) = R/Z. Then X is endowed
with the metric d, given by

d(x, y) = min {|x− y|, 1− |x− y|}
for x, y ∈ X. This metric generates a topology on X. Let A be the Borel
σ-algebra generated by the topology on X and µ be the Lebesgue measure on
(X,A). Under the addition modulo 1, X is a compact topological group and µ
is the normalized Haar measure on X. Moreover, since the subgroup generated
by α is dense, X is monothetic.

The invertible ergodic measure preserving transformation T : X → X

given by Tx = x+ α (mod 1) is called the irrational rotation of the circle
by α. Note that T is a homeomorphism, since it is the translation by the
element α of the group.

Since α is an irrational number between 0 and 1, we can write it in an
infinite continued fraction expansion as

α =
1

a1 + 1
a2+

1
a3+···

where a1, a2, a3, · · · are positive integers. Let

α0 = α

α1 = 1− a1α0

αk+1 = αk−1 − ak+1αk (k ≥ 1).

We now consider the two sequences {t(n)
1 : n ∈ N} and {t(n)

2 : n ∈ N} given
by

[
t
(n)
1 t

(n)
2

]
=

[
a1 1

] [
a2 1
1 0

] [
a3 1
1 0

]
· · ·

[
an 1
1 0

]
(n ≥ 1)(1)

For example if n = 1, [
t
(1)
1 t

(1)
2

]
=

[
a1 1

]
i.e. t(1)1 = a1, t

(1)
2 = 1.

If n = 2,

[
t
(2)
1 t

(2)
2

]
=

[
a1 1

] [
a2 1
1 0

]
=

[
a1a2 + 1 a1

]
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i.e. t(2)1 = a1a2 + 1, t(2)2 = a1 and so on for n = 3, 4, 5, . . . .

Note. That (1) implies:

[
t
(m+1)
1 t

(m+1)
2

]
=

[
t
(m)
1 t

(m)
2

] [
am+1 1

1 0

]
=

[
am+1t

(m)
1 + t

(m)
2 t

(m)
1

]
.

Hence
t
(m+1)
1 = am+1t

(m)
1 + t

(m)
2 and t(m+1)

2 = t
(m)
1 for m ≥ 1.

Let us write
t(n) = t

(n)
1 + t

(n)
2 (n ≥ 1),

and consider the sets,

S0 = {0}
S1 = {0, T0, T 20, . . . , T t

(1)−10}
S2 = {0, T0, T 20, . . . , T t

(1)−10, T t
(1)

0, . . . , T t
(2)−10}

S3 = {0, T0, T 20, . . . , T t
(1)−10, T t

(1)
0, . . . , T t

(2)−10, T t
(2)

0, . . . , T t
(3)−10}

...

Sk = {0, T0, T 20, T 30, . . . , T t
(k)−10}

...

After ordering each set Sk (k ≥ 1), we write Sk = {p(k)
0 , p

(k)
1 , . . . , p

(k)

t(k)−1
}

where 0 = p
(k)
0 < p

(k)
1 < · · · < p

(k)

t(k)−1
< 1 = p

(k)

t(k) .

For 0 ≤ j < t(k), each interval [p(k)
j , p

(k)
j+1) is called a k-canonical cylin-

der or just a canonical cylinder in X and each point p(k)
j is called a k-

canonical point. A finite or countable union of canonical cylinders is called
a cylinder in X. Clearly each cylinder is a Borel subset of X.

A set of cylinders {C1, C2, . . . , Cn} is said to be iterated if there exists
some Cj (1 ≤ j ≤ n) such that the set of cylinders {C1, C2, . . . , Cn} is the same
as the set of cylinders {Cj , TCj , T 2Cj , . . . , T

n−1Cj}.
Note that the cylinders belonging to an iterated set of cylinders have the

same length.

§2.2. Some basic results concerning the canonical cylinders. These facts
either are standard or follow easily from standard facts about continued frac-
tions.
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(i)
T t

(k)
2 0 = αk−1

T t
(k)
1 0 = 1− αk

}
if k is odd

T t
(k)
1 0 = αk

T t
(k)
2 0 = 1− αk−1

}
if k is even

(ii) If k is even, then [0, T t
(k)
1 0) has length αk and [T t

(k)
2 0, 1) has length αk−1.

If k is odd, then [0, T t
(k)
2 0) has length αk−1 and [T t

(k)
1 0, 1) has length αk.

Note. If a k-canonical cylinder has length αk−1 we call it a long k-
canonical cylinder, if it has length αk we call it a short k-canonical cylin-
der.

(iii) If k is even there are t(k)2 short k-canonical cylinders T j([0, T t
(k)
1 0)) for 0 ≤

j < t
(k)
2 and t(k)1 long k-canonical cylinders T j([T t

(k)
2 0, 1)) for 0 ≤ j < t

(k)
1 .

If k is odd there are t(k)1 long k-canonical cylinders T j([0, T t
(k)
2 0)) for 0 ≤

j < t
(k)
1 and t(k)2 short k-canonical cylinders T j([T t

(k)
1 0, 1)) for 0 ≤ j < t

(k)
2 .

(iv) A short k-canonical cylinder is equal to a long (k + 1)-canonical cylinder
and a long k-canonical cylinder is split into (ak+1 + 1) (k + 1)-canonical
cylinders among which ak+1 are long and one is short.

§2.3. Cylinder partition

A cylinder partition of X is a set C of pairwise disjoint cylinders s.t.∑
c∈C

µ(c) = 1.

§2.4. Canonical cylinder partition

We have seen that there are t(k) k-canonical cylinders [p(k)
j , p

(k)
j+1) for

0 ≤ j < t(k). Since 0 = p
(k)
0 < p

(k)
1 < · · · < p

(k)

t(k)−1
< 1 = p

(k)

t(k) , the k-canonical
cylinders are pairwise disjoint and the sum of their µ-measures is 1. So the k-
canonical cylinders (k ≥ 1) form a cylinder partition. Such a cylinder partition
is called the canonical cylinder partition of X.

§2.5. Tower partition

A tower partition is a cylinder partition C endowed with an equivalence
relation in which each equivalence class consists of canonical cylinders having
the same measure (or length).
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For any two canonical cylinders c1, c2 with µ(c1) = µ(c2) there is a unique
t ∈ Z with T t(c1) = c2. We endow each equivalence class of a tower partition
with the order inherited from the value t, i.e. c1 < c2 if and only if T t(c1) = c2
and t > 0.

Each equivalence class C of the tower partition C is called a tower or a
column of C. The number of elements in C is called the height of the tower
C.

By the support of C we mean

Supp(C) = ∪c∈Cc.

§2.6. Canonical tower partition Pk (k ≥ 1)

Each canonical cylinder partition {[p(k)
j , p

(k)
j+1) : 0 ≤ j < t(k)} (k ≥ 1)

consists of two equivalence classes, one equivalence class is of height t(k)1 and
it consists of t(k)1 iterated canonical cylinders all having the same µ-measure
αk−1 and the other equivalence class is of height t(k)2 and it consists of t(k)2

iterated canonical cylinders all having the same µ-measure αk and endowed
with increasing order up the towers as induced by the action of T . This tower
partition is called the canonical tower partition and we denote it by Pk.

§2.7. Common extension

Let C = {c0, Tn1c0, T
n2c0, . . . , T

nkc0} be an ordered column of a tower
partition C and c′0 ⊆ c0 be a canonical cylinder. Then we call the ordered set
{c′0, Tn1c′0, T

n2c′0, . . . , T
nkc′0} a common extension of C by c′0.

A tower partition Ĉ is said to be a common extension of a tower partition
C if each column of Ĉ is a common extension of a column of C.

§2.8. Tower refinement

Let C be a tower partition and Ĉ be a common extension of C. Then a
tower partition C′ is a refinement of C if each column of C′ is a union of columns
of Ĉ and the order on C′ extends the order on Ĉ.

Note that if C′ is a tower refinement of C, then each c′ ∈ C′ is contained
in a unique c ∈ C, yielding a map π : C′ → C which preserves the measure µ.
Note also that the set Ĉ is identical with the set C′, but that its equivalence
relation is finer (equivalence classes of the former are subsets of the equivalence
classes of the latter). For any c′ ∈ C′ by [c′] we denote the equivalence class in
C′ containing c′ and by [[c′]] we denote the equivalence class in Ĉ containing c′.
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§2.9. (1− ε) Pk-invariance

Let 0 < ε < 1 and k ≥ 1. Then a tower partition C of X is called (1−ε) Pk-
invariant if there exists a common extension P ′

k of Pk such that∑
D

∑
c∈D

µ(c) ≥ 1− ε,

where the sum
∑

D is taken over all columns D in P ′
k such that all cylinders

c ∈ D are C-equivalent.
The set of all such columns D in P ′

k in the above inequality is called the
major portion of C and is denoted by Major(C).

Remark. This definition is more generally defined in terms of measured
Bratteli diagram in [HKR].

The following lemma is useful in proving the Proposition 4.2.
For γ ∈ (0, 1], we define inductively

γ1 = γ

nk = min{n ≥ 1 : 2αn−1 ≤ γk} (k ≥ 1)

γk+1 = γk − αnk−1 (k ≥ 1).

Then 1 ≤ n1 ≤ n2 ≤ · · · and {γk} is a monotone decreasing sequence of
real numbers and bounded below by 0, and hence γk → 0 as k →∞, and so

γ =
∞∑
k=1

αnk−1.

We say that n = (n1, n2, . . .) is the γ-universal sequence.

Lemma 2.10. Let 0 < γ ≤ 1. Then any subinterval of the unit interval
of length γ can be written as a disjoint union of long nk-canonical cylinders,
one cylinder for each k ≥ 1, where n = (n1, n2, . . .) is the γ-universal sequence.

Proof. As 2αn1−1 ≤ γ1, the given interval must contain a long n1-
canonical cylinder. Remove it, leaving two intervals each with at least one
n1-canonical end point. One of these intervals has length at least γ2

2 , and thus
contains at one end a long n2-canonical cylinder. Remove it and proceed by
induction.
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Proposition 2.11. Let C be a tower partition of X and let 0 < ε < 1.
Then for all sufficiently large k there exists a (1− ε) Pk-invariant tower refine-
ment C′ of C.

Proof. Let C1, C2, C3, · · · be the columns in C. Choose k0 such that

k0∑
i=1

µ(Supp (Ci)) ≥ 1− ε.

Let k ≥ k0 be arbitrary. We want to construct a tower refinement C′ of
C and a common extension P ′

k of Pk such that there exists many columns P ′

of P ′
k with P ′ ⊆ some C′-column and the total µ-measure of the supports of

these P ′ ≥ 1− ε. For any l ≥ k we can construct a tower refinement C′l of C as
follows:

Cylinders in each Ci are ji-canonical cylinders for some ji. If ji ≤ l take
all possible common extensions of Ci so that the cylinders in each common
extension become l-canonical cylinders. If ji > l leave it alone. Let Cl be the
union of all the common extensions which contain only the long l-canonical
cylinders and C ′

l be the union of all the common extensions which contain only
the short l-canonical cylinders, both endowed with an order which extends the
order on C. These two columns and the remaining columns which were left
alone form the tower refinement C′l of C.

Let δl be the sum of the µ-measures of the cylinders in C′l which do not
belong to the column Cl or C ′

l . Choose l so large that

δl <
ε

t
(k)
1

.

Let P ′
k be the common extension of Pk such that columns in P ′

k are formed
by l-canonical cylinders. Mark all l-canonical cylinders in P ′

k which do not
belong to the column Cl or C ′

l in C′l . Clearly such l-canonical cylinders not
belonging to the column Cl or C ′

l has total µ-measure δl. Let FP be the
collection of all the columns in P ′

k which contain at least one of these marked
cylinders. Then ∑

CP ∈FP

µ(Supp (CP )) ≤ t(k)1 δl < t
(k)
1

ε

t
(k)
1

= ε.

Therefore, the cylinders in all other columns D in P ′
k are C′l-equivalent and∑

D

∑
c∈D

µ(c) ≥ 1− ε.
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This C′l is a (1− ε) Pk-invariant tower refinement C′ of C. Since k ≥ k0 is
arbitrary, so the proposition is true for all sufficiently large k.

Remark. This proposition is more generally proved in terms of ergodic
measured Bratteli diagram in [HKR].

§3. Binary Odometer

In this section we discuss the basic definitions, lemmas and proposition
concerning the binary odometer. For this section we are indebted to Hamachi
and Keane [HK].

§3.1. Odometer, cylinder and dyadic interval

Let Y =
{
0, 1

}N
. Then Y is a product topological space arising from the

discrete topology on each of its coordinate space {0, 1}. Y is metrizable. The
metric

d(y, y′) = 2−l where l = min{ |i| : yi �= y′i }
generates the product topology on Y . The open balls in the product topology
are

B(y, 2−l) = { y′ = (y′n) ∈ Y : yi = y′i, 0 ≤ i ≤ l }.(2)

Let
W = {0, 1}∗ = ∪l∈N{0, 1}l

denotes the set of all binary words. If d ∈ W then |d| denotes its length; the
empty word ∅ has length 0. Each word d ∈W gives rise to the subset

{y ∈ Y | y begins with d}

of Y , which we call a cylinder in Y and also denote by the same letter d. If
y ∈ d then by (2) we have

d = B(y, 2−|d|).

The clopen sets of Y are the finite unions of cylinders. Let us now define,

B : = the Borel σ-algebra of Y generated by the cylinders in Y ,

ν : =
(

1
2
,

1
2

)N

= the product measure on (Y,B).
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Under the coordinatewise addition modulo 2 with right carry 1, Y is a com-
pact topological group and ν is the normalized Haar measure on Y . Moreover,
since the subgroup generated by 1 is dense, Y is monothetic.

The invertible ergodic measure preserving transformation S : Y → Y de-
fined by Sy = y+1, where 1 = (1, 0, 0, · · · ) is called the binary odometer or
the binary adding machine on (Y,B, ν). Note that S is a homeomorphism of
the compact group Y , since it is the translation by the element 1 = (1, 0, 0, · · · )
of this group.

A dyadic interval of level k or a k-dyadic interval is defined as an
interval [

l

2k
,
l + 1
2k

)

with 0 ≤ l < 2k; these are just cylinders d ∈ W with |d| = k in another guise.
By a canonical cylinder in Y we just mean a dyadic interval in Y of some
level k ≥ 0.

§3.2. Cylinder partition, Tower partition, Support, Strict extension,
Tower refinement

These definitions for the binary odometer are exactly same as it is done
for the irrational rotation of the circle. But in this case a tower partition is
denoted by D and a cylinder by d.

§3.3. (1− ε)-cyclic

A tower partition D of Y is called (1− ε)-cyclic if it has a column D such
that

ν(Supp(D)) ≥ 1− ε.
The following simple lemma about base 2 expansion is useful in proving

the Proposition 4.1.
For δ ∈ (0, 1], we define inductively

δ1 = δ

nk = min
{
n ≥ 1 :

2
2n
≤ δk

}
(k ≥ 1)

δk+1 = δk − 1
2nk

(k ≥ 1).

Then 1 ≤ n1 ≤ n2 ≤ · · · and δ =
∑∞
k=1

1
2nk

. We say that n = (n1, n2, · · · ) is
the δ-universal sequence.
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Lemma 3.4. Let 0 < δ ≤ 1. Then any subinterval of the unit interval
of length δ can be written as a disjoint union of nk-dyadic intervals, one interval
for each k ≥ 1, where n = (n1, n2, · · · ) is the δ-universal sequence. �

Proposition 3.5. Let D be a tower partition of Y and let 0 < ε < 1.
Then there exists a (1− ε)-cyclic tower refinement D′ of D.

Proof. Select a finite set of columns from D with total ν-measure of their
supports is at least (1 − ε). Let l be the minimum of the ν-measures of the
canonical cylinders belonging to the selected columns. Take all possible com-
mon extensions of the selected columns so that all the cylinders in the common
extensions have the same ν-measure l. Let D′ be the union of these common
extensions endowed with an order which extends the order on D.

Let us now form D′ by taking D′ as a column and the remaining columns
of D′ are the remaining columns of D which were not selected before. Then D′

is a (1− ε)-cyclic tower refinement of D.

§4. Tower Maps

The concept of tower maps is central to our construction.
Let C and D be tower partitions of X and Y. A tower map is a mapping

φ : C → D
taking each C-equivalence class bijectively to a D -equivalence class, and taking
µ to ν :

ν(d) =
∑

{ c∈C : φ(c)=d }
µ(c) (d ∈ D).

Tower maps in the other direction are defined in an analogous manner.

The following two propositions we need in constructing the tower refine-
ments. In a similar way as Proposition 2 in [HK], these two propositions will
be obtained and proven.

Proposition 4.1. Let φ : C → D be a tower map, and let C′ be a tower
refinement of C. Then there exists a tower refinement D′ of D and a tower
map ψ : D′ → C′ such that the diagram

C φ−−−−→ D
π

� �π
C′ ψ←−−−− D′
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commutes, i.e. φ ◦ π ◦ ψ = π, and such that ψ is also a tower map from D̂ to
Ĉ, where Ĉ(D̂) are the tower extensions corresponding to C′(D′).

Proof. It will be convenient to identify cylinders in Y with dyadic in-
tervals. First choose from each D-equivalence class one representative d and
identify it with its dyadic interval of length 1

2|d| = ν(d). Then

∑
{ c′∈C′ : φ(π(c′))=d }

µ(c′) = ν(d),

so that we can choose for each such c′ a subinterval I(d, c′) of d such that
ν(I(d, c′)) = µ(c′) and which together cover d. We make and fix this choice in
some manner. Now by Lemma 3.4, to each such subinterval I(d, c′) of d there
exists a sequence {Ink

(d, c′)}k≥1 of disjoint nk-dyadic intervals such that

Ink
(d, c′) ⊂ I(d, c′) and ∪k≥1 Ink

(d, c′) = I(d, c′)

where n = (n1, n2, n3, · · · ) is the δ-universal sequence, δ being the length of
I(d, c′). Note that by using the lemma we are guaranteed the same lengths 1

2nk

of Ink
(d, c′) for all c′ having the same length.

For each k ≥ 1 and each equivalence class
[
[c′]

]
of Ĉ take the set of cylinders

{ Ink
(d̃, c̃′) : φ(π(c̃′)) = d̃, c̃′ ∼ c′ and c̃′ ∈ [

[c′]
] },

in which we preserve the same order inherited from D. These sets define a
tower partition of Y which we denote by D̂. Now we take for each k ≥ 1 and
each equivalence class [c′] of C′ the set of cylinders

{ Ink
(d̃, c̃′) : φ(π(c̃′)) = d̃, c̃′ ∼ c′ and c̃′ ∈ [c′] }

endowed with an order which extends the order on D. These sets define a tower
partition of Y which we denote by D′. Clearly D̂ is a tower extension of D,
where D′ is a tower refinement of D. Put

ψ(Ink
(d, c′)) = c′, Ink

(d, c′) ∈ D′.

Then ψ is a tower map from D′ to C′, and a tower map from D̂ to Ĉ. The
commutativity φ ◦ π ◦ ψ = π follows from

(φ ◦ π ◦ ψ)(Ink
(d, c′)) = φ(π(c′)) = d = π(Ink

(d, c′))

and the proof is finished.
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Proposition 4.2. Let ψ : D → C be a tower map, and let D′ be a tower
refinement of D. Then there exists a tower refinement C′ of C and a tower map
φ : C′ → D′ such that the diagram

C ψ←−−−− D
π

� �π
C′ φ−−−−→ D′

commutes, i.e. ψ ◦ π ◦ φ = π, and such that φ is also a tower map from Ĉ to
D̂, where Ĉ(D̂) are the tower extensions corresponding to C′(D′).

Proof. First choose from each C-equivalence class one representative c.
Then ∑

{ d′∈D′ : ψ(π(d′))=c }
ν(d′) = µ(c),

so that we can choose for each such d′ a subinterval I(c, d′) of c of length 1
2|d′|

which together cover c. We make and fix this choice in some manner. Now
by Lemma 2.10, to each such subinterval I(c, d′) of c there exists a sequence
{Ink

(c, d′)}k≥1 of disjoint long nk-canonical cylinders in X such that

Ink
(c, d′) ⊂ I(c, d′) and ∪k≥1 Ink

(c, d′) = I(c, d′)

where n = (n1, n2, n3, · · · ) is the γ-universal sequence, γ being the length of
I(c, d′). Note that by using the lemma we are guaranteed the same lengths
αnk−1 of Ink

(c, d′) for all d′ having the same length.
For each k ≥ 1 and each equivalence class

[
[d′]

]
of D̂ take the set of

cylinders

{ Ink
(c̃, d̃′) : ψ(π(d̃′)) = c̃, d̃′ ∼ d′ and d̃′ ∈ [

[d′]
] },

in which we preserve the same order inherited from C. These sets define a tower
partition of X which we denote by Ĉ. Now we take for each k ≥ 1 and each
equivalence class [d′] of D′ the set of cylinders

{ Ink
(c̃, d̃′) : ψ(π(d̃′)) = c̃, d̃′ ∼ d′ and d̃′ ∈ [d′] }

endowed with an order which extends the order on C. These sets define a tower
partition of X which we denote by C′. Clearly Ĉ is a tower extension of C,
where C′ is a tower refinement of C. Put

φ(Ink
(c, d′)) = d′, Ink

(c, d′) ∈ C′.
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Then φ is a tower map from C′ to D′, and a tower map from Ĉ to D̂. The
commutativity ψ ◦ π ◦ φ = π follows from

(ψ ◦ π ◦ φ)(Ink
(c, d′)) = ψ(π(d′)) = c = π(Ink

(c, d′))

and the proof is finished.

§5. The Finitary Construction

Two points are in the same column, by this it is meant, the canonical
cylinders containing them are in the same column.

The following proposition will play an important role in the finitary con-
struction.

Proposition 5.1. For a sequence Cn (n ≥ 0) of tower partitions of X
with Cn+1 is a tower refinement of Cn, if x and x̃ be two points in X and they
are in the same column of Cn for all sufficiently large n, then they are in the
same orbit under the irrational rotation T .

Proof. Let x ∈ cn(x) ∈ Cn and x̃ ∈ cn(x̃) ∈ Cn.
By the given condition ∃ n0 ∈ N s.t. ∀n ≥ n0

cn(x) ∼ cn(x̃),

and so ∃ an integer k s.t.

cn(x̃) = T k(cn(x)) ∀n ≥ n0.(3)

Since c0(x)
π←− c1(x) π←− c2(x)← · · · is a chain,

∴ lim
n→∞ cn(x) =

⋂
n≥0

cn(x) = {x}.

Similarly,
lim
n→∞ cn(x̃) =

⋂
n≥0

cn(x̃) = {x̃}.

Since T is continuous from (3) we have,

{x̃} = lim
n→∞ cn(x̃) = lim

n→∞T k(cn(x)) = T k( lim
n→∞ cn(x)) = T k({x}).

∴ x̃ = T k(x).

Hence x and x̃ are in the same orbit under T .
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Remark. Analogous proposition is also true for the binary odometer.

Proof of Main Theorem. Choose a sequence {εn} with 0 < εn < 1 and

∞∑
n=1

εn <∞.

Using Propositions 2.11, 3.5, 4.1 and 4.2 inductively, produce the diagram

C0 φ0

−−−−→ D0

π

� �π
C1 ψ1

←−−−− D1

π

� �π
C2 φ2

−−−−→ D2

π

� �π
· · ·

in which C0 = {∅}, D0 = {∅}, C2n+1 is (1− ε2n+1) Pm2n+1 -invariant, where the
sequence {mn} is increasing (n ≥ 0); D2n is (1 − ε2n)-cyclic (n ≥ 1) and the
maps “commute”.

Let
Nk = X −

⋃
c∈Ck

c (k ≥ 0).

Since
∑
c∈Ck µ(c) = 1, so µ(Nk) = 0. Let N =

⋃
k≥0Nk. Then µ(N) = 0.

By the definition of cylinder partition every x ∈ (X − N) belongs to
exactly one cylinder c ∈ Cn for each n ≥ 0. Let us call this cylinder cn(x).
So x ∈ cn(x) ∈ Cn ∀ n ≥ 0. Similarly ∃ a ν-null subset N ′ of Y such that
every y ∈ (Y −N ′) belongs to a cylinder dn(y) ∈ Dn for each n ≥ 0.

Moreover, if d0
π←− d1

π←− d2 ← · · · is a chain, then⋂
n≥0

dn

is a singleton in Y . Therefore, we can define a function Φ : (X−N)→ (Y −N ′)
given by Φ(x) = y such that for each n ≥ 0,

φ2n(c2n(x)) = d2n(y).
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Analogously (or by “commutativity”) there exists a function Ψ : (Y − N ′) →
(X −N) given by Ψ(y) = x such that for each n ≥ 0,

ψ2n+1(d2n+1(y)) = c2n+1(x),

proving that Φ and Ψ are inverses of each other.
Since for any d ∈ D2n (n ≥ 0),

Φ−1(d) = (φ2n)−1(d) =
⋃

{c∈C2n : φ2n(c)=d}
c ∈ C2n

and φ2n being a tower map,

µ
(
Φ−1(d)

)
= µ

(
(φ2n)−1(d)

)
= µ


 ⋃

{c∈C2n : φ2n(c)=d}
c


 =

∑
{c∈C2n : φ2n(c)=d}

µ(c) = ν(d),

Φ is measurable and measure preserving.
Again each canonical cylinder is an open set up to a set of measure zero.

Therefore, Φ is continuous after restriction to sets of measure one and so Φ
is a finitary homomorphism. Similarly Ψ : (Y − N ′) → (X − N) is a finitary
homomorphism and hence Φ is a finitary isomorphism.

Finally to show S and T are orbit equivalent under the mapping Φ, let x
and x̃ be two points of X belonging to the same orbit under the irrational circle
rotation T . Let us take x̃ = T kx for some k ∈ N. Then by (1− ε2n+1) Pm2n+1-
invariance and the Borel-Cantelli lemma µ-almost every such x belongs to a
canonical cylinder c2n+1(x) contained in a column in the major portion of C2n+1

for all sufficiently large n.
Let for n ≥ 0, E2n+1 be the union of all k canonical cylinders taken from

the top and also from the bottom of each columns in the major portion of
C2n+1. Then

µ(E2n+1) ≤ 2k (αm2n+1−1 + αm2n+1) ≤ 4k αm2n+1−1 ≤ 4k α2n ≤ 4k
1

22n
,

and therefore
∞∑
n=0

µ(E2n+1) <∞.

We can apply the Borel-Cantelli lemma again to say that for µ-almost
every x and for all sufficiently large n, x is not only in a canonical cylinder
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contained in a column in the major portion of C2n+1 but also in

⋃
c∈D

D∈Major(C2n+1)

c− E2n+1.

This means that x̃ = T kx and x are in the same common extension of
Pm2n+1 for all sufficiently large n. In other words x and x̃ are in the same
column of C2n+1 for all sufficiently large n, that is the canonical cylinders
c2n+1(x) and c2n+1(x̃) are in the same column of C2n+1 for all sufficiently large
n.

By the definition of Tower maps, φ2n+2 takes a C2n+2-column to a D2n+2-
column. Hence the corresponding canonical cylinders d2n+2(Φ(x)) = φ2n+2

(c2n+2(x)) and d2n+2(Φ(x̃)) = φ2n+2(c2n+2(x̃)) are in the same column of
D2n+2 for all sufficiently large n. In other words, y = Φ(x) and ỹ = Φ(x̃)
are in the same column of Dn for all sufficiently large n. Hence by the remark
of Proposition 5.1, we have y = Φ(x) and ỹ = Φ(x̃) are in the same orbit under
the binary odometer S.

Now let y and ỹ be two points of Y belonging to the same orbit under the
binary odometer S and suppose that this is not the orbit of 1. Then it is well
known that y and ỹ agree in all but a finite number of coordinates. By (1−ε2n)-
cyclicity and the Borel-Cantelli lemma ν-almost every such y and ỹ belong to
the cylinders in the “large” equivalence class of D2n for all sufficiently large
n, that is the canonical cylinders d2n(y) and d2n(ỹ) are in the same column of
D2n for all sufficiently large n.

By the definition of tower maps, ψ2n+1 takes a D2n+1-column to a C2n+1-
column. Hence the corresponding canonical cylinders c2n+1(Ψ(y)) = ψ2n+1

(d2n+1(y)) and c2n+1(Ψ(ỹ)) = ψ2n+1(d2n+1(ỹ)) are in the same column of
C2n+1 for all sufficiently large n. In other words, x = Ψ(y) and x̃ = Ψ(ỹ) are in
the same column of Cn for all sufficiently large n. Hence by Proposition 5.1, we
have x = Ψ(y) and x̃ = Ψ(ỹ) are in the same orbit under the irrational circle
rotation T .

Hence S and T are orbit equivalent under the mapping Φ.
Thus we have constructed an invertible measure preserving mapping Φ

from a subset of X of measure one to a subset of Y of full measure such that
Φ(OrbitT (x)) = OrbitS(Φ(x)) for µ a.e. x ∈ X and both Φ and its inverse are
continuous after restriction to sets of measure one. This proves the theorem.
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