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§1. Introduction

Let P = P (z, d/dz) be a linear ordinary differential operator with holo-
morphic coefficients defined on a neighbourhood X of the origin O in C.

In this paper, we consider the local solvability condition to the inhomoge-
neous equations P (z, d/dz)u(z) = f(z) in the space ÔX,O of formal power series
at O. It is known that straightforward method based on inditial polynomial
computation provides only an unsatisfactory answer to this problem, because
it does not reveal structure of the equation itself and as a result, for some cases,
brute force computations are needed in this direct approach. We propose in
this paper an alternative approach with an intention to establish a new effec-
tive method to determine the local solvability conditions. For this purpose, we
adopt a duality method used by H. Komatsu ([7, 8]) and by H. Komatsu and
T. Kawai ([9]) in the study of index theorems and hyperfunction solutions of
an ordinary differential equation. We develop a complex variable version of the
duality method to show that the local solvability condition can be written in
terms of residues. Then upon using the concept of local cohomology and the
theory of D-modules of one variable, we derive, in a constructive manner, a
regular singular holonomic system of ordinary differential equations supported
at the origin that completely describes the local solvability condition.
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In section two, we consider local cohomology solutions of the adjoint equa-
tion for studying local solvability conditions. We apply the local duality to show
in particular that the necessary and sufficient condition for the given function f

to be in the space Im(P,OX,O) (resp. Im(P, ÔX,O)) can be described in terms
of residues, where Im(P,OX,O) (resp. Im(P, ÔX,O)) denotes the image space
of the map P : OX,O −→ OX,O (resp. P : ÔX,O −→ ÔX,O) and OX,O (resp.
ÔX,O) is the space of convergent power series (resp. formal power series) at
the origin O.

In section three, we exploit indicial polynomials and develop an effective
method for treating algebraic local cohomology solutions of the formal adjoint
equation P ∗σ = 0 associated to P . In section four, we apply results given in
preceding sections to prove the main results. We first associate to the operator
P a regular singular holonomic system of ordinary differential equations sup-
ported at the origin that keeps all the necessary information for treating the
algebraic local cohomology solutions of the formal adjoint equation P ∗σ = 0.

We emphasize the regular singularity of the resulting system, since the use of
the regular singularity is the key point in this approach.

Then we prove, using results of Briançon and Maisonobe ([1]) on D-
modules of one variable and the duality theorem presented in section two,
the main result of this paper which says that local solvability condition in the
space ÔX,O of Pu = f can be completely described in terms of the standard
basis associated to the regular singular holonomic system.

Some results of this paper have been announced in [14], [15] and [16].

§2. Local Cohomologies and Residues

We start by recalling some classical results relevant to a local duality ([9],
[10], [12]). Let C be the complex plane with coordinate z, X a neighbourhood
of the origin O. Let OX be the sheaf on X of germs of holomorphic functions,
H1

{O}(OX) the local cohomology group with support at the origin, which is
naturally endowed with a structure of Fréchet-Schwartz topological vector space
([6]). Let H1

[O](OX) denote the algebraic local cohomology group, i.e.,

H1
[O](OX) = lim

k→∞
Ext1OX

(OX/〈zk〉,OX).

The vector space H1
[O](OX) has a structure of dual Fréchet-Schwartz topological

vector space. Topological vector spaces H1
{O}(OX) and OX,O (resp. H1

[O](OX)

and ÔX,O) are mutually strong dual vector spaces via local residue pairings,
where OX,O denotes the space of germs of convergent power series (resp. ÔX,O

the space of formal power series) ([4], [5], [9]).
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Let
ResO〈 , 〉 : OX,O ×H1

{O}(OX) −→ C

denote the residue pairing defined by the local residue

ResO〈h, η〉 =
1

2πi

∮
h(z)η(z)dz,

where h(z) ∈ OX,O and η(z) ∈ H1
{O}(OX). Let

ResO〈 , 〉 : ÔX,O ×H1
[O](OX) −→ C

also denote the residue pairing between ÔX,O and H1
[O](OX).

Let P be a linear differential operator P = P (z, d/dz) ∈ DX,O, where
DX,O is the stalk at the origin of the sheaf DX of rings of linear differential
operators. The vector spaces H1

{O}(OX) and H1
[O](OX) have a structure of left

DX,O-module.
Let Im(P,OX,O) denote the image of the map P : OX,O −→ OX,O and

Im(P, ÔX,O) the image of the map P : ÔX,O −→ ÔX,O.

Let Ker(P ∗, H1
{O}(OX)) denote the kernel of the mapping

P ∗ : H1
{O}(OX)→ H1

{O}(OX),

and Ker(P ∗, H1
[O](OX)) that of the mapping

P ∗ : H1
[O](OX)→ H1

[O](OX),

respectively where P ∗ is the formal adjoint operator of P .
Then, we have the following result on the local solvability condition which

involves the notion of residues.

Theorem 2.1 ([14]). Let P be a linear differential operator with holo-
morphic coefficients defined in a neighbourhood of the origin, P ∗ the formal
adjoint of P .

(i) Let f be a germ at the origin O of holomorphic function. Then, f ∈
Im(P,OX,O), i.e., the inhomogeneous differential equation Pu = f has a solu-
tion u in OX,O, if and only if f ∈ OX,O satisfies the following condition:

ResO〈f, σ〉 = 0, ∀σ ∈ Ker(P ∗, H1
{O}(OX)).

(ii) Let f be a formal power series at the origin. Then, f ∈ Im(P, ÔX,O), i.e.,
the inhomogeneous equation Pu = f has a formal solution u in ÔX,O, if and
only if f ∈ ÔX,O satisfies the following condition:

ResO〈f, σ〉 = 0, ∀σ ∈ Ker(P ∗, H1
[O](OX)).
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Proof. Consider the two complexes

0→ OX,O
P−→ OX,O → 0,

0←H1
{O}(OX) P ∗←−H1

{O}(OX)← 0.

The kernel spaces and the cokernel spaces associated to these complexes are
finite dimensional vector spaces. A standard duality argument, due to [9] and
[10], also yields that the vector space Ker(P ∗, H1

{O}(OX)) is the dual space of
Coker(P,OX,O) = OX,O/Im(P,OX,O). Furthermore, since the duality between
OX,O and H1

{O}(OX) is defined by the residue pairing which is compatible with
the action of differential operators ([11]), we have the following non-degenerate
pairing (cf. [7])

(2.1) ResO〈 , 〉 : Coker(P,OX,O)×Ker(P ∗, H1
{O}(OX))→ C.

Now, let us consider, for a given f ∈ OX,O, the inhomogeneous equation Pu =
f . Then the non-degeneracy of the pairing implies that f lies in Im(P,OX,O),
i.e. f = 0 in Coker(P,OX,O), if and only if f satisfies the following condition:

ResO〈f, σ〉 = 0, ∀σ ∈ Ker(P ∗, H1
{O}(OX)),

which completes the proof of (i). Similarly, the non-degeneracy of the pairing
(cf. [5])

(2.2) ResO〈 , 〉 : Coker(P, ÔX,O)×Ker(P ∗, H1
[O](OX))→ C

yields the second assertion (ii).

Note that the duality theorem for holonomic D-modules of partial differ-
ential operators has been established by Kashiwara and Kawai ([4], [5]) in a
quit general setting i.e., in the context of derived categories, and the notion of
residue of several variables has been implicitly utilized. The result above which
is an interpretation of the duality for one variable case can also be deduced
from Kashiwara-Kawai duality mentioned above. In this paper, we prefer to
adopt the duality argument due to Komatsu which is more accessible. Note
also that in the statement above, we describe the local solvability condition in
terms of residues, because, this is essential for a clear understanding and this
important point does not seem to be stated explicitly in the literature. Reader
will see that the use of residues provides with us a new effective method for
computing the solvability condition.

We give some simple examples for illustration.
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Example 1. Let P = 3z2 d2

dz2
+ 4z

d

dz
− 4. The origin is a regular sin-

gular point of P . The homogeneous equation P ∗g = 0 for the formal adjoint
operator

P ∗ = 3z2 d2

dz2
+ 8z

d

dz
− 2

has two linearly independent classical solutions z
1
3 and

1
z2

. Hence we have

Ker(P ∗, H1
{O}(OX)) = Ker(P ∗, H1

[O](OX)) = Span
{[

1
z2

]}
.

Thus, according to Theorem 2.1, if we put f(z) = c0 + c1z + c2z
2 + · · · ,

the solvability condition to the inhomogeneous equation Pu = f is given by

ResO

〈
f,

[
1
z2

]〉
= c1 = 0.

Example 2. Let P = (3z−1)z3 d2

dz2
+ (1− 4z + 12z2)z

d

dz
−2+4z. The

formal adjoint is

P ∗ = (3z − 1)z3 d2

dz2
+ (−1− 2z + 12z2)z

d

dz
− 3 + 6z.

It follows directly from the index theorem due to Komatsu [8] and Malgrange
[10] that the indices

χP := dim Ker(P,OX,O)− dim Coker(P,OX,O)

and
χ̂P := dim Ker(P, ÔX,O)− dim Coker(P, ÔX,O)

of the operator P are equal to −1 and 0 respectively. Since

Ker(P,OX,O) = Ker(P, ÔX,O) = Span{z2},

we find by virtue of the index formula that

dim Coker(P,OX,O) = 2, dim Coker(P, ÔX,O) = 1.

In fact, by direct computation we have

Ker(P ∗, H1
{O}(OX)) = Span{σ1, σ2},

and
Ker(P ∗, H1

[O](OX)) = Span{σ1},
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where σ1 =
1
z3

mod OX,O and σ2 = exp(
1
z
) mod OX,O.

Let f = c0 +c1z +c2z
2 + · · · be a convergent power series. Then according

to Theorem 2.1, the inhomogeneous equation Pu = f has a solution u in OX,O

if and only if
ResO〈f, σ1〉 = ResO〈f, σ2〉 = 0.

Likewise, the solvability condition to the inhomogeneous equation Pu = f in
the space ÔX,O is given by ResO〈f, σ1〉 = 0.

Corollary 2.1 ([14]). Let σ1, σ2, . . . , σs be a basis of the local cohomol-
ogy solution space Ker(P ∗, H1

{O}(OX)) of the formal adjoint equation. Assume
that σi has the form

σi =
∑
j>ji

ci,j

zj
mod OX,0

with ci,ji+1 �= 0, i = 1, 2, . . . , s, and j1 < j2 < · · · < js. Then, {zj1 , zj2 , . . . , zjs}
constitutes a basis of the vector space Coker(P,OX,O).

Example 3. Let

P = (2−z−2z2)z5 d2

dz2
+(−4+3z2−10z4)z2 d

dz
+4+10z−6z2−z3 +6z4−6z5.

Put

σ1 =
1
z3

exp
(

1
z2

)
mod OX,O and σ2 =

1
z5

exp
(

1
z

)
mod OX,O.

Then, σ1 and σ2 constitute a basis of the local cohomology solution space
Ker(P ∗, H1

{O}(OX)). Therefore, {z2, z4} gives rise to a basis of the space
Coker(P,OX,O).

§3. Algebraic Local Cohomology Solutions

In this section, we consider the algebraic local cohomology solutions of the
adjoint equation.

Let P =
n∑

i=0

ai(z)
di

dzi
be a linear differential operator with holomorphic

coefficients. Put
eP = max

0≤i≤n
{i− vO(ai)},

where vO(ai) is the valuation at the origin of ai(z).
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If we put ai(z) =
∑

j ai,jz
j ∈ OX,O with ai,j ∈ C, then, the initial part

in(P ) of the operator P is defined by

in(P ) =
∑

i−j=eP

ai,jz
j di

dzi
.

Recall also that the indicial polynomial bP (λ) ∈ C[λ] of P is defined by

in(P )zλ = bP (λ)zλ−eP .

Lemma 3.1. Let P ∗ be the formal adjoint of P and bP ∗(λ) the indicial
polynomial of P ∗. Then,

(i) eP ∗ = eP ,

(ii) in(P ∗) = in(P )∗,

(iii) bP ∗(λ) = bP (−λ− 1 + eP ).

Let Hk = {η ∈ H1
[O](OX) | zkη = 0} for a positive integer k and let

Hk = {0} for a non-positive integer k.

Lemma 3.2. Let σ be an algebraic local cohomology solution of the ad-
joint equation P ∗σ = 0. Assume σ ∈ Hk−Hk−1 (i.e., zkσ = 0 and zk−1σ �= 0)
and k + eP > 0. Then,

bP (k − 1 + eP ) = 0.

Proof. Since k + eP > 0, we have

in(P ∗)
[

1
zk

]
= bP ∗(−k)

[
1

zk+eP

]
,

which is equal to bP (k − 1 + eP )[
1

zk+eP
] by Lemma 3.1. Since the assumption

P ∗σ = 0 implies in(P )[ 1
zk ] = 0, we have bP (k − 1 + eP ) = 0.

Let

BP = {j ∈ Z | bP (j) = 0, j ≥ max(eP , 0)},
ΛP = {l ∈ Z | bP ∗(−l) = 0, l ≥ max(1, 1− eP )},

and let ϑ : BP −→ ΛP denote the map defined by ϑ(j) = j + 1 − eP . Since ϑ

is a bijection, we have ΛP = ϑ(BP ).

Definition 3.1.

Γ = {k ∈ Z | ∃ σ ∈ Hk −Hk−1, s.t. P ∗σ = 0}.
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Put dP = −eP if eP < 0.

Theorem 3.1. Let P ∗ be the formal adjoint operator of a linear dif-
ferential operator P.

(i) If eP ≥ 0, then Γ ⊂ ΛP .

(ii) If eP < 0, then {1, 2, . . . , dP } ⊂ Γ ⊂ {1, 2, . . . , dP } ∪ ΛP .

Proof. Since eP ∗ = eP , we have P ∗(Hk) ⊂ Hk+eP
. Thus, in particular,

HdP
⊂ Ker(P ∗, H1

[O](OX)),

i.e., {1, 2, . . . , dP } ⊂ Γ holds if eP < 0.

To prove the theorem, it is sufficient to show that k ∈ ΛP provided that
k ∈ Γ and k+eP > 0. Now let k ∈ Γ. Suppose k+eP > 0. Then, by Lemma 3.2,
we have bP ∗(−k) = bP (k − 1 + eP ) = 0, which means k ∈ ΛP . This completes
the proof.

Corollary 3.1. Let P ∗ be the formal adjoint of P. Assume that BP =
∅.
(i) If eP ≥ 0, then, Ker(P ∗, H1

[O](OX)) = {0}.
(ii) If eP < 0, then Ker(P ∗, H1

[O](OX)) = HdP
, where dP = −eP .

We consider the case BP �= ∅. Put λP = max(ΛP ) and nP = �BP .

Corollary 3.2. Let P ∗ be the formal adjoint of P. Assume that BP �= ∅.
Then,

Ker(P ∗, H1
[O](OX)) ⊂ HλP

holds. Furthermore, the following holds.

(i) If eP ≥ 0, then dim Ker(P ∗, H1
[O](OX)) ≤ nP .

(ii) If eP < 0, then dim Ker(P ∗, H1
[O](OX)) ≤ nP + dP ,

Example 4. Let P = z
d3

dz3
− 2

d2

dz2
. Then, eP = 2, bP (λ) = λ(λ −

1)(λ − 4) and BP = {4}. We have ΛP = {3}. In fact, for the formal adjoint

P ∗ = −z
d3

dz3
− 5

d2

dz2
, we have eP ∗ = 2, bP ∗(λ) = −λ(λ − 1)(λ + 3), which is

equal to bP (−λ+1). Actually, one can easily verify by direct computation that

Ker(P ∗, H1
[O](OX)) = Span

([
1
z3

])
.
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Example 5. Let P = z4 d

dz
− z3. Then, eP = −3, bP (λ) = λ − 1 and

BP = {1}. We have ΛP = {5} and {1, 2, 3} ⊂ Γ ⊂ {1, 2, 3, 5}. In fact, we find

Ker(P ∗, H1
[O](OX)) = H3 + Span

([
1
z5

])
.

The following result immediately follows from Theorem 2.1 and Corollary
3.1.

Theorem 3.2. Let P be a linear differential operator. Suppose that
BP = ∅.
(i) If eP ≥ 0, then Im(P, ÔX,O) = ÔX,O i.e., for any f ∈ ÔX.O the inhomoge-
neous equation Pu = f has a solution u ∈ ÔX,O.

(ii) If eP < 0, then Im(P, ÔX,O) = {f ∈ ÔX,O | vO(f) ≥ dP }, i.e., the
inhomogeneous equation Pu = f has a solution u ∈ ÔX,O if and only if vO(f) ≥
dP , where dP = −eP .

§4. Regular Singular Holonomic Systems

In this section, we consider the case where BP �= ∅ and investigate the
local solvability condition from the viewpoint of algebraic analysis. The key
ingredient is the concept of standard bases or Gröbner bases of ideals over the
ring of ordinary differential operators ([1], [2], [3]). The use of standard bases
allows us to handle, in an explicit way, a regular singular system of the ordinary
differential equation itself in question. We refer the reader to [1], [2] for the
theory of standard bases in the ring of differential operators.

We define JP ∗,k to be the left ideal in DX,O generated by P ∗ and zk;

JP ∗,k = DX,OP ∗ +DX,Ozk, k = 1, 2, . . . ,

where zk is regarded as a multiplication operator, i.e., a linear differential
operator of order zero. Since zk is a regular singular operator, the left DX,O-
module DX,O/JP ∗,k is a regular singular holonomic system supported at the
origin O.

It follows directly from the definition that

HomDX,O
(DX,O/JP ∗,k, H1

[O](OX)) = {η ∈ Hk | P ∗η = 0}.

We consider the case where BP �= ∅. Let λP = max(BP ) + 1 − eP and J =
JP ∗,λP

, i.e., J = DX,OP ∗ + DX,OzλP . The ideal J extracts all the necessary
information from P ∗ to treat algebraic local cohomology solutions.
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Indeed, we have the following result, which leads a new effective method
of handling algebraic local cohomology solutions to the homogeneous equation
P ∗σ = 0.

Lemma 4.1 ([14]). The algebraic local cohomology solution space to the
regular singular holonomic system DX,O/J is equal to that of the homogeneous
equation P ∗σ = 0, i.e.,

HomDX,O
(DX,O/J , H1

[O](OX)) = Ker(P ∗, H1
[O](OX)).

Proof. Since HomDX,O
(DX,O/JP ∗,k, H1

[O](OX)) = {η ∈ Hk | P ∗η = 0},
Corollary 3.2 yields the result.

Note that, for any integer k ≥ λP we have JP ∗,k = J and DX,O/JP ∗,k =
DX,O/J .

Remark. For the case where BP = ∅, we define the ideal J to be
DX,OP ∗ +DX,OzλP by setting λP = max(0,−eP ). Thus, J = DX,O if eP ≥ 0.

We also have J = DX,OzdP if eP < 0. Indeed, it is easy to see from the defini-
tion of eP that if eP < 0, the formal adjoint P ∗ belongs to the ideal DX,OzdP .

Therefore, Lemma 4.1 also holds for this case.

Let us start by considering the simple case where the ideal J is generated
over DX,0 by a multiplication operator zr0 . We have the following.

Theorem 4.1. Let P be a differential operator. Suppose that the left
ideal J is generated by a multiplication operator zr0 . Let f ∈ ÔX,O. Then the
inhomogeneous equation Pu = f has a solution u ∈ ÔX,O i.e., f ∈ Im(P, ÔX,O)
if and only if vO(f) ≥ r0.

Proof. Since

HomDX,O
(DX,O/DX,0z

r0 , H1
[O](OX)) = Span

{[
1
z

]
,

[
1
z2

]
, . . . ,

[
1

zr0

]}
,

Theorem 2.1 and Lemma 4.1 yield the result.

Example 6. Let P = z2 d

dz
− z2. Then, eP = −1, BP = {1}, ΛP =

{2} and thus the ideal J is defined to be DX,OP ∗ + DX,Oz2. Since P ∗ =

−z2 d

dz
− 2z − z2 is in DX,Oz2, we have J = DX,Oz2.
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Now we address the general case with the help of standard bases that can
reveal the structure of the ideal J in question.

Let vO(S) denote the valuation at the origin O of an ordinary differential
operator S which is defined to be the valuation at O of the coefficient function
of the highest order term of S. We define ρ ∈ Z by

ρ = min{vO(S) | S ∈ J , S �= 0},

which is the multiplicity at the origin of the holonomic system DX,O/J .
Now, let {R0, R1, . . . , Rt} denote the standard basis of the ideal J =

DX,OP ∗ +DX,OzλP in the ring DX,O of differential operators ([1]). Note that
since the ideal J contains a regular singular differential operator zλP , the stan-
dard basis {R0, R1, . . . , Rt} consists of regular singular differential operators.
We assume that these operators are arranged in such a way that

0 = ord(R0) < ord(R1) < · · · < ord(Rt),

where R0 stands for a multiplication operator. If we denote by ri the valuation
vO(Ri) at the origin of the differential operator Ri, we have

λP ≥ r0 > r1 > · · · > rt,

and ρ = r0 for the case t = 0 and ρ = rt for the case t ≥ 1.

In [1], Briançon and Maisonobe proved the following result (cf. [13]).

Lemma 4.2 ([1]). Let {R0, R1, . . . , Rt} be the standard basis of the ideal
J = DX,OP ∗ +DX,OzλP . Then, J = DX,OR0 +DX,ORt.

Let R denote Rt and let bR(λ) denote the indicial polynomial of the oper-
ator R. Let

KR = {k ∈ Z | bR(−k) = 0}
= {k1, k2, . . . , km},

where m = ord(R) and k1 < k2 < · · · < km. Since the differential operator
R is a member of the standard basis of the ideal J that defines a regular
singular holonomic system supported at the origin, ki, i = 1, 2, . . . , m are pos-
itive integers belonging to ΛP , that is, KR ⊂ ΛP . We define κ to be km, i.e.,
κ = maxKR. It is easy to see that, for each k ∈ KR, there exists an algebraic
local cohomology solution

σ ∈ Ker(R, H1
[O](OX))
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s.t. σ ∈ Hk −Hk−1 (see [1]).
Now we define Σ to be a set of algebraic local cohomology solutions corre-

sponding to KR, i.e.,
Σ = {σ1, σ2, . . . , σm},

where Rσi = 0 with σi ∈ Hki
−Hki−1.

Let dR = −eR. Since the differential operator R is a regular singular
operator, we have dR = ρ−m. Note that dR ≥ dP .

Proposition 4.1. The following holds.

(i) If dR = 0, then Ker(R, H1
[O](OX)) = SpanΣ.

(ii) If dR > 0, then Ker(R, H1
[O](OX)) = HdR

+ SpanΣ.

Proof. Since σ1, . . . , σm are linearly independent, SpanΣ is a k dimen-
sional vector subspace of the solution space Ker(R, H1

[O](OX)). Now suppose,
dR = 0. Then dim Ker(R, H1

[O](OX)) = m, which implies Ker(R, H1
[O](OX)) =

SpanΣ.

Let us consider the case where dR > 0. Then, min KR > dR holds. Hence,
for the subspace HdR

⊂ Ker(R, H1
[O](OX)), we have HdR

∩ SpanΣ = {0}. The
equality dim Ker(R, H1

[O](OX)) = m + dR implies the assertion.

We are ready to prove the following result which gives an explicit descrip-
tion of the algebraic local cohomology solutions to the homogeneous formal
adjoint equation P ∗σ = 0.

Theorem 4.2. Let KR = {k1, k2, . . . , km} and Σ a set of algebraic local
cohomology solutions corresponding to KR. Then, the following holds.

(i) Suppose that dR = 0. Then,

Γ = KR and Ker(P ∗, H1
[O](OX)) = SpanΣ.

(ii) Suppose that dR > 0. Then,

Γ = {1, 2, . . . , dR} ∪KR and Ker(P ∗, H1
[O](OX)) = HdR

+ SpanΣ.

Proof. Since r0 = κ, Lemma 4.2 yields

Ker(R, H1
[O](OX)) = HomDX,O

(DX,O/J , H1
[O](OX)),

which is equal to Ker(P ∗, H1
[O](OX)) by Lemma 4.1. Hence, Proposition 4.1

implies the result.
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Corollary 4.1.

dim Ker(P ∗, H1
[O](OX)) = m + dR.

Example 7. Put P = (3 + z3)z2 d2

dz2
+ (−12 + 5z3)z

d

dz
+ 12 + 4z3.

Then, eP = 0. Since the indicial equation of P at the origin is (λ−1)(λ−4) = 0,
we have ΛP = {2, 5}. The standard basis of the ideal J = DX,OP ∗ + DX,Oz5

is given by {z2, z
d

dz
+ 2}. Solving Rσ = 0, with R = z

d

dz
+ 2, we find

Ker(R, H1
[O](OX)) = Span

{[
1
z2

]}
.

Note that the homogeneous equation P ∗g = 0 has two linearly independent

classical solutions
1
z2

and
1
z2

log z − 1
z5

, whereas, by Theorem 4.2 we have

Ker(P ∗, H1
[O](OX)) = Span

{[
1
z2

]}
.

Example 8. Let P be a second order linear ordinary differential oper-
ator of the form

(3− 5z2 − 4z7 + 2z9)z2 d2

dz2
+ (−12− 10z2 − 68z7 + 49z9)z

d

dz

+ 12 + 30z2 − 240z7 + 240z9.

Then, eP = 0. The largest non-negative root of the indicial equation λ2− 5λ +
4 = 0 is equal to 4. We set J = DX,OP ∗ +DX,Oz5. The standard basis of the
ideal J is {R0, R1, R2}, where

R0 = z5, R1 = z3 d

dz
+ 5z2, R2 = z2 d2

dz2
+ 8z

d

dz
+ 10.

Thus KR = {2, 5}. By direct computation, we have Ker(R, H1
[O](OX)) =

Span{[ 1
z2

], [
1
z5

]}. Therefore, according to Theorem 4.2, we have

Ker(P ∗, H1
[O](OX)) = Span

{[
1
z2

]
,

[
1
z5

]}
.

Note that we have used the computer algebra system kan/sm1 ([17]) for
algebraic analysis developed by N. Takayama to compute standard bases.
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Now we return to the main subject of this paper and consider the local
solvability condition of the inhomogeneous ordinary differential equation Pu =
f , where f, u ∈ ÔX,O. Let {R0, R1, . . . , Rt} be the standard basis of the ideal
J . We assume that t ≥ 1. Let R = Rt, KR = {k1, k2, . . . , km} with k1 < k2 <

· · · < km and Σ = {σ1, σ2, . . . , σm} ⊂ Ker(P ∗, H1
[O](OX)) , where

σi ∈ Ker(Rt, H
1
[O](OX))

s.t. σi ∈ Hki
−Hki−1, i = 1, 2, . . . , m.

We have the following.

Theorem 4.3. Let P be a linear differential operator with holomorphic
coefficients defined in a neighbourhood of the origin. Assume that BP �= 0. Let
f be a formal power series at the origin.

(i) Assume that dR = 0. Then, f ∈ Im(P, ÔX,O), i.e., the inhomogeneous
equation Pu = f has a solution u ∈ ÔX,O if and only if

ResO〈f, σi〉 = 0, i = 1, 2, . . . , m.

(ii) Assume that dR > 0. Then, f ∈ Im(P, ÔX,O), if and only if

vO(f) ≥ dR and ResO〈f, σi〉 = 0, i = 1, 2, . . . , m.

Proof. Theorem 2.1 and Theorem 4.2 yield the result.

The result above implies in particular that the computation of the solv-
ability conditions can be reduced to that of the standard basis of the ideal J
in DX,O.

Example 9. Let

P = (8 + 2z3 − z5)z2 d2

dz2
+ (−48 + 12z3 − 9z6)z

d

dz
+ 96− 3z6.

Then, eP = 0, bP (λ) = 8(λ2 − 7λ + 12), BP = {3, 4} and thus λP = 5. It is

easy to verify that {z5, 2z2 d2

dz2
+ (20z − 3z3)

d

dz
+ 40− 12x3} is the standard

basis of J = DX,OP ∗ +DX,Oz5. We have

Σ =
{[

1
z4

]
,

[
4
z5

]
−

[
1
z2

]}
.

Now let f ∈ ÔX,O. Then, f ∈ Im(P, ÔX,O) if and only if

ResO

〈
f,

[
1
z4

]〉
= ResO

〈
f,

[
4
z5

]
−

[
1
z2

]〉
= 0.
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Corollary 4.2. Let f ∈ ÔX,O. If vO(f) ≥ κ, then f ∈ Im(P, ÔX,O).

Corollary 4.3. Let P be a linear differential operator with holomorphic
coefficients defined in a neighbourhood of the origin. Let KR = {k1, k2, . . . , km}.
(i) Assume that dR = 0. Then, zk1−1, zk2−1, . . . , zkm−1 constitute a basis of
Coker(P, ÔX,O).

(ii) Assume that dR > 0. Then, 1, z1, . . . , zdR−1, zk1−1, zk2−1, . . . , zkm−1 con-
stitute a basis of Coker(P, ÔX,O).

Since, the multiplicity ρ at the origin of the holonomic system DX,O/J
defined to be

ρ = min{vO(S) | S ∈ J , S �= 0}
is equal to dR + m by Proposition 4.1, we have the following.

Corollary 4.4.
dim Coker(P, ÔX,O) = ρ.

Proof. Since dim Coker(P, ÔX,O) = dim Ker(P ∗, H1
[O](OX)), which is equal

to dim Ker(R, H1
[O](OX)), the equality ρ = dR + m implies the result.

Let us denote by L the formal adjoint of the operator R and consider the
image of the map:

L : ÔX,O −→ ÔX,O.

We have the following.

Proposition 4.2.

Im(P, ÔX,O) = Im(L, ÔX,O)

Proof. Let f ∈ ÔX,O. Since L∗ = R, f ∈ Im(L, ÔX,O) if and only if

ResO〈f, σ〉 = 0, ∀σ ∈ Ker(R, H1
[O](OX)),

or, equivalently,

ResO〈f, σ〉 = 0, ∀σ ∈ Ker(P ∗, H1
[O](OX)).

Hence, f ∈ Im(L, ÔX,O) if and only if f ∈ Im(P, ÔX,O), by Theorem 4.1.

Let Vk denote the space

Vk = {g ∈ ÔX,O | vO(g) ≥ k}.
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Note that, from dL = dR, we have L(Vk) ⊂ Vk+dR
.

It is easy to see that the set BL associated to the operator L is given by

BL = {j ∈ Z | j + 1 + dR ∈ KR}.

Let I = {i ∈ Z | 0 ≤ i < κ− dR, i �∈ BL}, where κ = max KR.

Lemma 4.3.

(i) Lzi, i ∈ I are linearly independent.

(ii) Lzi /∈ Vκ for i ∈ I.

Then we arrive at the following result.

Theorem 4.4. Let P be a linear differential operator. Then,

Im(P, ÔX,O) = Span{Lzi | i ∈ I}+ Vr0 .

Proof. Put W = Span{Lzi | i ∈ I} + Vr0 . We have W ⊂ Im(L, ÔX,O).
Since #I = κ − dR −m and κ = r0, we have dim ÔX,O/W = dR + m, which
is equal to dim Coker(L, ÔX,O). Hence, we have W = Im(L, ÔX,O). Therefore,
Proposition 4.2 completes the proof.

Example 10. Let P = (3 + z3)z2 d2

dz2
+ (−12 + 5z3)z

d

dz
+ 12 + 4z3 as

in Example 7. Then, {z2, z
d

dz
+ 2} is the standard basis of J . Thus, dR =

0, KR = {2} with R = z
d

dz
+ 2. Hence, L = −z

d

dz
+ 1, BL = {1} and I = {0}.

Since L1 = 1, Theorem 4.4 implies

Im(P, ÔX,O) = Span{1}+ V2.
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able, Enseign. Math. (2) 30 (1984), no. 1-2, 7–38.

[2] F. Castro, Calculs effectifs pour les idéaux d’opérateurs différentiels, in Géométrie
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