Picard Groups of Some Local Categories

By

Yousuke KAMIYA* and Katsumi SHIMOMURA**

Abstract

For each *p*-local spectrum E, \mathcal{L}_E denotes the full subcategory consisting of Elocal spectra of the category of *p*-local spectra. The Picard group $\operatorname{Pic}(\mathcal{L}_E)$ is the collection of isomorphism classes of invertible spectra in \mathcal{L}_E . If this is a set, it is a group with multiplication defined by the smash product. We show that if a spectrum E satisfies a relation $\langle E \rangle \geq \langle H \mathbf{Z} / p \rangle$ of the Bousfield classes, then $\operatorname{Pic}(\mathcal{L}_E) = \mathbf{Z}$. In particular, $\operatorname{Pic}(\mathcal{L}_E) = \mathbf{Z}$ if E is connective.

§1. Introduction

Throughout this paper, we work in the homotopy category S_p of *p*-local spectra for a fixed prime number *p*. For a spectrum $E \in S_p$, a spectrum $X \in S_p$ is called *E*-acyclic if $X \wedge E = pt$, and called *E*-local if $[C, X]_* = 0$ for any *E*acyclic spectrum *C*. Let \mathcal{L}_E denote the full subcategory of S_p consisting of *E*-local spectra. Then we have the Bousfield localization functor $L_E: S_p \to \mathcal{L}_E$ [1]. We call a spectrum $X \in \mathcal{L}_E$ invertible if there is a spectrum *Y* such that $L_E(X \wedge Y) = L_E S^0$. Let $\operatorname{Pic}(\mathcal{L}_E)$ denote the collection of the isomorphism classes of invertible spectra. If $\operatorname{Pic}(\mathcal{L}_E)$ is a set, then it is a group whose multiplication is given by $[X] \cdot [Y] = [L_E(X \wedge Y)]$ and the unit element is $[L_E S^0]$. Here [X] denotes the isomorphism class of *X*. In the following, we

e-mail: kamiya_yousuke@ybb.ne.jp

Communicated by K. Saito. Received August 29, 2001. Revised March 13, 2002, February 17, 2003, July 15, 2004, January 16, 2006, June 8, 2006.

²⁰⁰⁰ Mathematics Subject Classification(s): Primary 55Q99; Secondary 55P60.

Key words: Picard Group, Stable homotopy category, E-local category.

 $^{^{\}ast}101$ Sejour Nishinomiya-Imazu, 2-17, Imazuyama-Naka, Nishinomiya, Hyogo 663-8211, Japan.

^{**}Department of Mathematics, Faculty of Science, Kochi University, Kochi 780-8520, Japan.

e-mail: katsumi@math.kochi-u.ac.jp

^{© 2007} Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

write $X \in \operatorname{Pic}(\mathcal{L}_E)$ instead of $[X] \in \operatorname{Pic}(\mathcal{L}_E)$. It is well known that $\operatorname{Pic}(\mathcal{L}_{S^0}) =$ $\operatorname{Pic}(\mathcal{S}_p) = \{S^n \mid n \in \mathbb{Z}\} \cong \mathbb{Z}$. Consider the Morava K-theories K(n) and the Johnson-Wilson spectra E(n). In [5], Hopkins, Mahowald and Sadofsky showed that the Picard group $\operatorname{Pic}(\mathcal{L}_{K(n)})$ for each K(n) contains \mathbb{Z}_p and determined it for n < 2. Note that $\operatorname{Pic}(\mathcal{L}_{K(n)})$ is often written by Pic_n . For E(n), Hovey and Sadofsky showed $\operatorname{Pic}(\mathcal{L}_{E(n)}) = \mathbb{Z}$ in [9] if $2p - 2 > n^2 + n$. In [9], they also determined $\operatorname{Pic}(\mathcal{L}_{E(1)})$ at the prime 2, which is the direct sum of \mathbb{Z} and $\mathbb{Z}/2$. In [12], we gave an estimate of $\operatorname{Pic}(\mathcal{L}_{E(n)})$ by using E_r -term of the E(n)-based Adams spectral sequence converging to $\pi_*(L_{E(n)}S^0)$, and showed that $\operatorname{Pic}(\mathcal{L}_{E(2)})$ at the prime 3 is isomorphic to one of $\mathbb{Z} \oplus \mathbb{Z}/3$ and $\mathbb{Z} \oplus \mathbb{Z}/3 \oplus \mathbb{Z}/3$.

Recall that the Bousfield class $\langle E \rangle$ denotes the collection of *E*-acyclic spectra, and we write $\langle F \rangle \geq \langle E \rangle$ if $\langle F \rangle \subset \langle E \rangle$. Let *HG* denote the Eilenberg-MacLane spectrum for a group *G*. Then one of our results is the following:

Theorem 1.1. If $\langle E \rangle \geq \langle H \mathbf{Z} / p \rangle$, then $\operatorname{Pic}(\mathcal{L}_E) = \mathbf{Z}$.

It is shown in [1, Lemma 3.2] that if E is connective, then $\langle E \rangle \geq \langle H \mathbf{Z}/p \rangle$ or $\langle E \rangle = \langle H \mathbf{Q} \rangle$. It is well known (*cf.* [5]) that $\operatorname{Pic}(\mathcal{L}_{HQ}) = \mathbf{Z}$.

Corollary 1.2. If E is connective, then $\operatorname{Pic}(\mathcal{L}_E) = \mathbf{Z}$.

Let I denote the Brown-Comenetz dual of S^0 . In [8] and [10], it is shown that $L_E S^0 = S^0$ or $S \mathbb{Z}_p$ if $\langle E \rangle \geq \langle I \rangle$. Then the above theorem follows from

Theorem 1.3. If $\langle F \rangle \geq \langle E \rangle \geq \langle I \rangle$, then $\operatorname{Pic}(\mathcal{L}_F) \subset \operatorname{Pic}(\mathcal{L}_E) \subset \operatorname{Pic}(\mathcal{L}_I)$.

Note that if $\operatorname{Pic}(\mathcal{L}_I) = \mathbf{Z}$, then $\operatorname{Pic}(\mathcal{L}_F) = \operatorname{Pic}(\mathcal{L}_E) = \mathbf{Z}$, though the assumption $\operatorname{Pic}(\mathcal{L}_I) = \mathbf{Z}$ seems strong.

In the next section, we study basic relations between the Bousfield classes and Picard groups, and then we consider the Picard groups for spectra with a finite local and prove Theorem 1.3 in the following section. In Section 4, we show $\operatorname{Pic}(\mathcal{L}_{HZ/p}) = \mathbb{Z}$, which together with results given in the previous section proves Theorem 1.1. We describe a filtration of $\operatorname{Pic}(\mathcal{L}_I)$ in the last section as well as the proofs of some facts. For instance, we prove that the only invertible spectrum which is also a ring spectrum is the *E*-local sphere $L_E S^0$. We also discuss there the small objects in some local stable homotopy categories.

304

§2. Relations between Picard Groups

The function spectrum $\mathbf{F}(X, Y)$ is defined to be a spectrum such that $[W \land X, Y]_* = [W, \mathbf{F}(X, Y)]_*$ for any spectra W. We define the Spanier-Whitehead dual $D_E(X)$ of X in \mathcal{L}_E by $D_E(X) = \mathbf{F}(X, L_E S^0)$. In particular, we write $D(X) = D_{S^0}(X)$ for the ordinary Spanier-Whitehead dual. It is shown in [11, Proposition A.2.8] that if $X \in \mathcal{L}_E$ is invertible, then $D_E(X)$ is the inverse of it, that is, $L_E(X \land D_E(X)) = L_E S^0$.

Lemma 2.1. For any spectrum $X \in S_p$, the Spanier-Whitehead dual $D_E(X)$ is E-local.

Proof. Since $C \wedge X$ is *E*-acyclic if so is C, $[C, D_E(X)]_* = [C \wedge X, L_E S^0]_* = 0.$

Note that there is a relation $L_E(L_E(X) \wedge L_E(Y)) = L_E(X \wedge Y)$ of *E*-localization, which we often use. For example, we have $L_E(X \wedge L_E S^0) = X$ for an *E*-local spectrum *X*. By definition, if $\langle F \rangle \geq \langle E \rangle$, then $L_E L_F X = L_E X$.

Lemma 2.2. Suppose that $\langle F \rangle \geq \langle E \rangle$. The localization functor L_E induces a correspondence $l: \operatorname{Pic}(\mathcal{L}_F) \to \operatorname{Pic}(\mathcal{L}_E)$.

Proof. Define $l(X) = L_E X$. Then we see that $l(X) \in \operatorname{Pic}(\mathcal{L}_E)$. In fact, $L_E(l(X) \wedge l(D_F(X))) = L_E(X \wedge D_F(X)) = L_E(L_F(X \wedge D_F(X))) = L_E L_F S^0 = L_E S^0$, since $D_F(X)$ is the inverse of X in \mathcal{L}_F .

We call a spectrum X strongly dualizable in \mathcal{L}_E if $L_E(\mathbf{F}(X, L_ES^0) \wedge Y) = \mathbf{F}(X, Y)$ for any $Y \in \mathcal{L}_E$. In [13, Chapter III], Lewis, May and Steinberger studied properties of strongly dualizable spectra. Among them, we have isomorphisms

(2.3) $X = D_E(D_E(X)) \text{ and } L_E(D_E(X) \land D_E(Y)) = D_E(X \land Y)$

for a strongly dualizable spectrum X and a spectrum Y.

(2.4) ([11, Proposition A.2.8]) $X \in \text{Pic}(\mathcal{L}_E)$ is strongly dualizable.

Lemma 2.5. If $\langle F \rangle \geq \langle E \rangle$ and $L_F S^0 = L_E S^0$, then $\operatorname{Pic}(\mathcal{L}_F) \subset \operatorname{Pic}(\mathcal{L}_E)$.

Proof. Take any spectrum X in $\operatorname{Pic}(\mathcal{L}_F)$. Then $X = D_F(D_F(X))$ by (2.4) and (2.3), which is isomorphic to $D_E(D_E(X))$, since $D_E(-) = D_F(-)$ by

the assumption $L_F S^0 = L_E S^0$. Thus, X is E-local by Lemma 2.1. Furthermore, $L_E(X \wedge D_E(X)) = L_E L_F(X \wedge D_F(X)) = L_E L_F S^0 = L_E S^0$, and hence $X \in \operatorname{Pic}(\mathcal{L}_E)$.

§3. On Spectra with a Finite Local

We say that a spectrum E has a finite local if there exists a non-trivial finite spectrum X such that $L_E X = X$. It is shown in [8, Proposition 7.2] that E has a finite local if and only if $\langle E \rangle \geq \langle I \rangle$. Here I denotes the Brown-Comenetz dual of the sphere spectrum. Since $\langle I \rangle = \langle I \wedge X \rangle$ for any non-trivial finite spectrum X by [8, Proposition 7.1 (e)], we see that

(3.1) If E has a finite local, then so does $E \wedge X$ for a non-trivial finite spectrum X.

It is shown in [10, Theorem B.6(a)] that if E has a finite local and $L_E H \mathbf{Q} \neq pt$ (resp. $L_E H \mathbf{Q} = pt$), then $L_E S^0 = S^0$ (resp. $L_E S^0 = S \mathbf{Z}_p$) (cf. [7, Theorem 3.6]). Hereafter, SG for a group G denotes the Moore spectrum with $H \mathbf{Z}_*(SG) = G$. If $\langle F \rangle \geq \langle E \rangle \geq \langle I \rangle$, then there are two cases:

1)
$$L_F S^0 = L_E S^0$$

2) $L_F S^0 = S^0$ and $L_E S^0 = S \boldsymbol{Z}_p$

In the first case, Lemma 2.5 shows that $\operatorname{Pic}(\mathcal{L}_F) \subset \operatorname{Pic}(\mathcal{L}_E)$. We study the second case. Put $E/p^i = E \wedge S\mathbf{Z}/p^i$.

Lemma 3.2. Let *E* have a finite local and suppose $L_E H \mathbf{Q} = pt$. Then $\langle E/p \rangle = \langle E \rangle$.

Proof. By [14, Lemma 1.34], we see that $\langle E \rangle = \langle E \wedge SQ \rangle \lor \langle E/p \rangle$. Since $E \wedge SQ = E \wedge L_E SQ = E \wedge L_E HQ = pt$ by assumption, we have the lemma.

Lemma 3.3. If X is E-local, then $L_{E/p}X = L_{SZ/p}X$.

Proof. Consider the cofiber sequence $X \xrightarrow{\eta} L_{E/p}X \to C_{E/p}X$ of the localization. Then $S\mathbb{Z}/p \wedge C_{E/p}X = pt$, since $C_{E/p}X$ is E-local and $S\mathbb{Z}/p \wedge C_{E/p}X$ is *E*-acyclic. Applying now $L_{SZ/p}$ to the cofiber sequence, we see that $L_{SZ/p}\eta$ is the desired isomorphism since $C_{E/p}X$ is SZ/p-acyclic.

Lemma 3.4. Let *E* be a spectrum with a finite local. Then the correspondence $l: \operatorname{Pic}(\mathcal{L}_E) \to \operatorname{Pic}(\mathcal{L}_{E/p})$ given in Lemma 2.2 is an injection.

Proof. If $L_E H \mathbf{Q} = pt$, then $L_E S^0 = L_{E/p} S^0$ by Lemma 3.6, and the lemma follows from Lemma 2.5. Suppose that $L_E H \mathbf{Q} \neq pt$. Then $L_E S^0 = S^0$ and so $D_E(-) = D(-)$. Let $X \in \operatorname{Pic}(\mathcal{L}_E)$ be an element such that $l(X) = L_{E/p} S^0$. Since l satisfies $l([X] \cdot [Y]) = l([X]) \cdot l([Y])$, it suffices to show that $X = S^0$.

Consider the cofiber sequence $X \wedge D(X) \xrightarrow{\eta} L_E(X \wedge D(X)) \to C_E(X \wedge D(X))$ of the localization, which is

$$(3.5) X \wedge D(X) \xrightarrow{\eta} S^0 \longrightarrow C$$

for $C = C_E(X \wedge D(X))$. Since $L_E H \mathbf{Q} \neq pt$, $\langle E \rangle \geq \langle E \rangle \wedge \langle H \mathbf{Q} \rangle = \langle H \mathbf{Q} \rangle$ by [14, Theorem 2.1(h)]. Therefore, C is $H \mathbf{Q}$ -acyclic.

Note that D(X) is *E*-local by Lemma 2.1 and that $L_{SZ/p}X = L_{E/p}X = L_{SZ/p}S^0$ by Lemma 3.3 and the assumption on *X*. Then, $SZ/p \wedge X = SZ/p \wedge L_{SZ/p}X = SZ/p \wedge L_{SZ/p}S^0 = SZ/p$ and $SZ/p \wedge D(X) = \Sigma D(SZ/p \wedge X) = SZ/p$ by (2.3), since $D(SZ/p) = \Sigma^{-1}SZ/p$. Smashing SZ/p with the cofiber sequence (3.5) yields the cofiber sequence

$$SZ/p \xrightarrow{\eta} SZ/p \longrightarrow SZ/p \wedge C.$$

Applying L_E to this cofiber sequence, we have a commutative diagram with horizontal cofiber sequences:

Here, the left and the middle vertical arrows are equivalences since $L_E(S^0) = S^0$, and so is the right vertical arrow. Thus, $S\mathbf{Z}/p \wedge C = L_E(S\mathbf{Z}/p \wedge C) = S\mathbf{Z}/p \wedge L_E(C) = S\mathbf{Z}/p \wedge pt = pt$, which shows C is $S\mathbf{Z}/p$ -acyclic.

These show that C = pt by [14, Theorem 2.1(i)] and $\eta: X \wedge D(X) = S^0$. Therefore, $X \in \text{Pic}(\mathcal{L}_{S^0})$, that is, X is a suspension of S^0 . Since $S\mathbb{Z}/p \wedge X = S\mathbb{Z}/p$, we see that $X = S^0$ as desired. **Corollary 3.6.** Suppose that E has a finite local and $\langle F \rangle \geq \langle E \rangle$. Then $\operatorname{Pic}(\mathcal{L}_F) \subset \operatorname{Pic}(\mathcal{L}_E)$. In particular, if $\operatorname{Pic}(\mathcal{L}_E) = \mathbb{Z}$, then $\operatorname{Pic}(\mathcal{L}_F) = \mathbb{Z}$.

Proof. If $L_F S^0 = L_E S^0$, then the corollary follows from Lemma 2.5. If $L_F S^0 = S^0$ and $L_E S^0 = S \mathbb{Z}_p$, then $\langle F \rangle \ge \langle F/p \rangle \ge \langle E/p \rangle = \langle E \rangle$ by Lemma 3.2. Therefore, Lemmas 2.5 and 3.4 imply the corollary.

Corollary 3.7. If *E* has a finite local, then $\operatorname{Pic}(\mathcal{L}_E) \subset \operatorname{Pic}(\mathcal{L}_I)$.

§4. The Picard Group of $\mathcal{L}_{HZ/p}$

Put $D_p(X) = \mathbf{F}(X, S\mathbf{Z}_p) = D_{HZ/p}(X)$. Then, for $X \in \operatorname{Pic}(\mathcal{L}_{HZ/p})$, $L_{HZ/p}(X \wedge D_p(X)) = L_{HZ/p}S^0$ by [11, Proposition A.2.8], and so $H\mathbf{Z}/p_*(X) = \mathbf{Z}/p$. Let $\operatorname{Pic}(\mathcal{L}_{HZ/p})^0$ denote the subcollection consisting of isomorphism classes $X \in \operatorname{Pic}(\mathcal{L}_{HZ/p})$ such that $(H\mathbf{Z}/p)_0(X) = \mathbf{Z}/p$. Then any element of $\operatorname{Pic}(\mathcal{L}_{HZ/p})$ is a suspension of an element of $\operatorname{Pic}(\mathcal{L}_{HZ/p})^0$. Furthermore, note the relation $D_p D_p(X) = X$ by (2.3). We also consider the cofiber sequence

(4.1)
$$SZ/p \xrightarrow{p^r} SZ/p^{r+1} \xrightarrow{j_r} SZ/p^r \xrightarrow{\delta_r} \Sigma SZ/p.$$

Lemma 4.2. Let $X \in \operatorname{Pic}(\mathcal{L}_{HZ/p})^0$. Then we have an equivalence $L_{HZ}(X \wedge SZ/p^r) \xrightarrow{\simeq} SZ/p^r$ for each r > 0 such that the diagram

commutes for the map j_r of (4.1).

Proof. Put $Y = X \wedge S\mathbf{Z}/p$ and let g be a generator of $(H\mathbf{Z})_0(Y) = (H\mathbf{Z}/p)_0(X) = \mathbf{Z}/p$. Since $H\mathbf{Z}/p$ is a ring spectrum, $g: S^0 \to H\mathbf{Z} \wedge Y$ extends to a homotopy equivalence $\tilde{g}: H\mathbf{Z}/p \to H\mathbf{Z} \wedge Y$. Then we have a map $f: Y \xrightarrow{\iota \wedge 1} H\mathbf{Z} \wedge Y \xleftarrow{\tilde{g}} H\mathbf{Z}/p$ for the unit map ι of $H\mathbf{Z}$. Note that $[Y, \Sigma^k H\mathbf{Z}/p]_0$

 $= (H\mathbf{Z}/p)^{k}(Y) = \operatorname{Hom}((H\mathbf{Z}/p)_{k}(Y), \mathbf{Z}/p) = \operatorname{Hom}((H\mathbf{Z}/p)_{k}(S\mathbf{Z}/p), \mathbf{Z}/p) = (H\mathbf{Z}/p)^{k}(S\mathbf{Z}/p) = 0 \text{ unless } k = 0, 1. \text{ Consider the Postnikov tower of } S\mathbf{Z}/p:$

Since $[Y, \Sigma^k H \pi_{k-1} S \mathbb{Z}/p]_0 = H^k(Y; \pi_{k-1}(S\mathbb{Z}/p)) = 0$ for k > 1, the map $f: Y \to H\mathbb{Z}/p$ is lifted up to an $H\mathbb{Z}/p$ -equivalence $\tilde{f}: Y \to S\mathbb{Z}/p$. The Spanier-Whitehead dual yields an $H\mathbb{Z}/p$ -equivalence $D_p(\tilde{f}): \Sigma^{-1}S\mathbb{Z}/p \to D_p(Y) = D_p(X) \wedge \Sigma^{-1}S\mathbb{Z}/p$. We do this for $D_p(X)$ instead of X, and obtain an $H\mathbb{Z}/p$ -equivalence $f': S\mathbb{Z}/p \to Y$ since $D_pD_p(X) = X$. Since $\tilde{f}f': S\mathbb{Z}/p \to S\mathbb{Z}/p$ is an $H\mathbb{Z}/p$ -equivalence, it is an equivalence. Therefore, we have a decomposition $Y \xrightarrow{\simeq} S\mathbb{Z}/p \lor A$ for some spectrum A. Since $(H\mathbb{Z})_*(Y) = \mathbb{Z}/p$, we have $H\mathbb{Z}_*(A) = 0$ and so $L_{H\mathbb{Z}}Y \xrightarrow{\simeq} S\mathbb{Z}/p$.

 $\begin{aligned} HZ_*(A) &= 0 \text{ and so } L_{HZ}Y \xrightarrow{\simeq} SZ/p. \\ \text{Inductively suppose that we have the equivalences of the lemma up to } r. \\ \text{Since } \delta_r &\in [SZ/p^r, SZ/p]_{-1} = Z/p \text{ is a generator, so is } 1 \land \delta_r \in [L_{HZ}(X \land SZ/p^r), L_{HZ}(X \land SZ/p)]_{-1}. \\ \text{Here } [L_{HZ}(X \land SZ/p^r), L_{HZ}(X \land SZ/p)]_{-1} \text{ is isomorphic to } [SZ/p^r, SZ/p]_{-1} = Z/p, \text{ since } X \text{ is } HZ/p\text{-invertible. Then the composite } \delta'_r: SZ/p^r \stackrel{\sim}{\leftarrow} L_{HZ}(X \land SZ/p^r) \xrightarrow{1 \land \delta_r} L_{HZ}(X \land SZ/p) \stackrel{\simeq}{\to} SZ/p \text{ is not zero and so } \delta'_r = k\delta_r \text{ for some } k \neq 0 \in Z/p. \\ \text{Then we obtain the commutative diagram:} \end{aligned}$

Here W_r denotes a fiber of δ'_r . Now the dotted arrows give the desired equivalence.

Theorem 4.3. $\operatorname{Pic}(\mathcal{L}_{HZ/p}) = \mathbf{Z}.$

Proof. Let $X \in \operatorname{Pic}(\mathcal{L}_{HZ/p})^0$. Then by [7, Corollary 2.2] with n = 1and E = HZ, we see that $X = \lim_r (L_{HZ}X \wedge SZ/p^r)$, which is equivalent to $\lim_r SZ/p^r = SZ_p$ by Lemma 4.2. Since any element X of $\operatorname{Pic}(\mathcal{L}_{HZ/p})$ is a suspension of an element of $X \in \operatorname{Pic}(\mathcal{L}_{HZ/p})^0$, $X = \Sigma^t SZ_p$ for some $t \in Z$. Therefore, $\operatorname{Pic}(\mathcal{L}_{HZ/p}) = Z$ whose generator is ΣSZ_p . Proof of Theorem 1.1. Since $\langle H\mathbf{Z}/p \rangle > \langle I \rangle$, any spectrum E with $\langle E \rangle \ge \langle H\mathbf{Z}/p \rangle$ has a finite local. Theorem 1.1 is now a corollary of Corollary 3.6 and Theorem 4.3.

§5. Some Remarks

Let K(n) denote the *n*-th Morava K spectrum and consider the spectrum $H_n = \bigvee_{i\geq n} K(i)$. Then H_0 -local (resp. H_0 -acyclic) spectrum is called harmonic (resp. dissonant). A finite spectrum X is called a type n spectrum if $K(n-1)_*(X) = 0$ and $K(n)_*(X) \neq 0$. By [6] and [4], we have a finite ring spectrum MJ_n such that $BP_*(MJ_n) = BP_*/J_n$ for an invariant ideal $J_n = (p^{e_0}, v_1^{e_1}, \ldots, v_{n-1}^{e_{n-1}})$ of BP_* . The spectrum MJ_n is a type n spectrum, that is $K(i) \wedge MJ_n = pt$ for i < n. Therefore, $H_0 \wedge MJ_n = \bigvee_{i>0} K(i) \wedge MJ_n = H_n$.

Lemma 5.1. For $n \ge 0$, $\langle H_n \rangle = \langle H_0 \land MJ_n \rangle$ for any MJ_n .

Proposition 5.2. H_n for $n \ge 0$ has a finite local.

Proof. Since a finite spectrum is harmonic [14, Corollary 4.5], H_0 has a finite local. Therefore, H_n for n > 0 has a finite local by Lemma 5.1 and (3.1). \Box

Let F(n) denote a finite spectrum of type n. Then it admits a self map $f: F(n) \to F(n)$ that induces the multiplication of v_n^a on BP_* -homology for some integer a > 0 by [6]. The cofiber of f yields F(n + 1), and so $\langle F(n) \rangle \geq \langle F(n + 1) \rangle$ (cf. the class invariance theorem [15]). Furthermore, we denote a spectrum $f^{-1}F(n)$ as Tel(n). Note that the Bousfield class of Tel(n) depends only on n (cf. [7, Lemma 1.3]). Then the Bousfield class of $H_n^f = \bigvee_{i \geq n} \text{Tel}(i)$ also depends only on n. Since $K(n) \wedge \text{Tel}(n) \neq pt$, we see that $\langle \text{Tel}(n) \rangle \geq \langle K(n) \rangle$ by [14, Theorem 2.1(h)], and so $\langle H_0^f \rangle \geq \langle E(n) \rangle$ for each $n \geq 0$. Indeed, $\langle E(n) \rangle = \langle \bigvee_{0 \leq i \leq n} K(i) \rangle$.

These yield relations of Bousfield classes of spectra.

$$\langle S^0 \rangle \ge \langle F(1) \rangle \ge \langle F(2) \rangle \ge \dots \ge \langle H\mathbf{Z}/p \rangle \ge \langle I \rangle$$

$$\langle S^0 \rangle \ge \langle X(1) \rangle \ge \langle X(2) \rangle \ge \dots \ge \langle BP \rangle \ge \langle H\mathbf{Z} \rangle \ge \langle H\mathbf{Z}/p \rangle \ge \langle I \rangle$$

$$\langle S^0 \rangle \ge \langle H_0^f \rangle \ge \langle H_1^f \rangle \ge \dots \ge \langle I \rangle$$

$$\langle BP \rangle \ge \langle H_0 \rangle \ge \langle H_1 \rangle \ge \dots \ge \langle I \rangle$$

$$\langle BP \rangle \ge \langle H_0 \rangle \ge \langle I \lor E(n) \rangle \ge \langle I \lor E(n-1) \rangle \ge \dots$$

$$\dots \ge \langle I \lor E(0) \rangle = \langle I \lor H\mathbf{Q} \rangle \ge \langle I \rangle$$

$$\langle H\mathbf{Z}/p \rangle \ge \langle IBP \rangle \ge \dots \ge \langle IX(n) \rangle \ge \dots \ge \langle IX(1) \rangle \ge \langle I \rangle$$

Here X(i) is the spectrum given in [14], and IY is the Brown-Comenetz dual of Y. The second sequence is given in [14, p. 369] and the bottom sequence is given in [8, Theorem 8.4]. The Picard groups of the spectra appearing in the first two sequences except for I are all isomorphic to Z by Corollary 3.6 and Theorem 4.3. The other sequences yield the filtrations of $Pic(\mathcal{L}_I)$

$$\begin{aligned} \boldsymbol{Z} &= \operatorname{Pic}(\mathcal{L}_{S^0}) \subset \operatorname{Pic}(\mathcal{L}_{H_0^f}) \subset \operatorname{Pic}(\mathcal{L}_{H_1^f}) \subset \cdots \subset \operatorname{Pic}(\mathcal{L}_I) \\ \boldsymbol{Z} &= \operatorname{Pic}(\mathcal{L}_{BP}) \subset \operatorname{Pic}(\mathcal{L}_{H_0}) \subset \operatorname{Pic}(\mathcal{L}_{H_1}) \subset \cdots \subset \operatorname{Pic}(\mathcal{L}_I) \\ \boldsymbol{Z} &= \operatorname{Pic}(\mathcal{L}_{BP}) \subset \operatorname{Pic}(\mathcal{L}_{H_0}) \subset \cdots \subset \operatorname{Pic}(\mathcal{L}_{I \lor E(n)}) \subset \operatorname{Pic}(\mathcal{L}_{I \lor E(n-1)}) \subset \cdots \\ & \cdots \subset \operatorname{Pic}(\mathcal{L}_{I \lor E(0)}) \subset \operatorname{Pic}(\mathcal{L}_I) \\ \boldsymbol{Z} &= \operatorname{Pic}(\mathcal{L}_{HZ/p}) \subset \operatorname{Pic}(\mathcal{L}_{IBP}) \subset \cdots \subset \operatorname{Pic}(\mathcal{L}_{IX(n)}) \subset \cdots \\ & \cdots \subset \operatorname{Pic}(\mathcal{L}_{IX(1)}) \subset \operatorname{Pic}(\mathcal{L}_I) \end{aligned}$$

by Corollary 3.6. We have a problem

Problem. Is $\operatorname{Pic}(\mathcal{L}_I) = \mathbf{Z}$?

If this has an affirmative answer, then for all spectra E with a finite local, $\operatorname{Pic}(\mathcal{L}_E) = \mathbb{Z}$ by Corollary 3.6. For each $X \in \operatorname{Pic}(\mathcal{L}_I)$, put $W_X = X \wedge D_p(X)$ and let F_X be the fiber of the localization map $W_X \to L_I W_X = S\mathbb{Z}_p$. For a spectrum E, let aE denote the spectrum given by Bousfield in [1, Lemma 1.13] (see also [2] for its proof). Then, we have $\langle aE \rangle \geq \langle C \rangle$ for any E-acyclic spectrum C.

Proposition 5.3. The collection of $X \in \text{Pic}(\mathcal{L}_I)$ such that $\text{Pic}(\mathcal{L}_{aF_X}) = \mathbb{Z}$ consists of suspensions of $S\mathbb{Z}_p$. In particular, if $\text{Pic}(\mathcal{L}_{aF_X}) = \mathbb{Z}$ for each $X \in \text{Pic}(\mathcal{L}_I)$, then $\text{Pic}(\mathcal{L}_I) = \mathbb{Z}$.

Proof. By definition, F_X is *I*-acyclic, which implies that $\langle aF_X \rangle \geq \langle I \rangle$. Since F_X is also aF_X -acyclic, it follows that $L_{aF_X}W_X = SZ_p$. Therefore, $X \in \operatorname{Pic}(\mathcal{L}_{aF_X}) = \mathbb{Z}$ and so X is a suspension of SZ_p .

Since $\langle C \rangle \leq \langle aE \rangle$ for an *E*-acyclic spectrum *C* as noted above, we see that $H\mathbb{Z}/p \wedge F_X = pt$ implies $\langle aF_X \rangle \geq \langle H\mathbb{Z}/p \rangle$, and so $\operatorname{Pic}(\mathcal{L}_{aF_X}) = \mathbb{Z}$ by Theorem 1.1.

Corollary 5.4. Let X be an element of $\operatorname{Pic}(\mathcal{L}_I)$. If $(H\mathbb{Z}/p)_*(F_X) = 0$, then X is a suspension of $S\mathbb{Z}_p$.

To study the filtration of $Pic(\mathcal{L}_I)$, the next problem seems interesting.

Problem. Determine $\operatorname{Pic}(\mathcal{L}_{I \lor K(n)})$.

Next we consider an invertible spectrum that is also a ring spectrum. We deduce the following by the similar argument given in the previous sections.

Proposition 5.5. An invertible ring spectrum is the sphere spectrum in \mathcal{L}_E for any E.

Proof. Let X be an invertible ring spectrum in \mathcal{L}_E . Then $X \wedge X = X \vee (X \wedge \overline{X})$ for a cofiber \overline{X} of the unit map $S^0 \to X$. Let D_E denote the Spanier-Whitehead dual functor on \mathcal{L}_E . Since $D_E(X)$ is an inverse of X, we see that

$$X = L_E(D_E(X) \land X \land X) = L_E(D_E(X) \land X) \lor L_E(D_E(X) \land X \land \overline{X})$$
$$= L_E S^0 \lor L_E \overline{X}.$$

Thus $[S^0, L_E S^0]_*$ is a direct summand of $[X, X]_*$. On the other hand, $[X, X]_*$ is isomorphic to $[S^0, L_E S^0]_*$ under the map assigning $f: X \to X$ to $f \land 1: L_E(X \land D_E(X)) \to L_E(X \land D_E(X))$. Since the isomorphism is the one of $[S^0, L_E S^0]_*$ modules and it sends the identity to identity, the other direct summands of $[X, X]_*$ are zero. In particular, we obtain $L_E \overline{X} = pt$ as desired. \Box

In the category \mathcal{L}_E , a spectrum A is small if $[A, L_E(\bigvee_{\alpha} X_{\alpha})]_* = \bigoplus_{\alpha} [A, X_{\alpha}]_*$ for any wedge sum $L_E(\bigvee_{\alpha} X_{\alpha})$ in \mathcal{L}_E . In [10, Appendix B], Hovey and Strickland showed that if E has a finite local and is *I*-acyclic, then the category \mathcal{L}_E does not have non-zero small objects, and that $BP, H_0, HZ, HZ/p$ and I are examples for E and F(n) is not. Here, we give other examples. Since I and K(n) are *I*-acyclic, we see the following:

Proposition 5.6. For $n \ge 0$, \mathcal{L}_{H_n} , $\mathcal{L}_{I \lor E(n)}$ and $\mathcal{L}_{I \lor K(n)}$ do not have non-zero small objects.

Since the sphere spectrum S^0 has a finite local, so does the finite spectrum F(n) by (3.1). Furthermore, we see $\text{Tel}(n) \wedge F(n+1) = pt$ by definition. Thus Tel(n) is F(n+1)-acyclic, and so is *I*-acyclic. Thus we have the following:

Proposition 5.7. For $n \ge 0$, $\mathcal{L}_{H_n^f}$ does not have non-zero small objects.

This proof indicates the following fact on spectra with a finite acyclic. Here a spectrum E has a finite acyclic if there is a finite spectrum $X \neq pt$ such that $L_E X = pt$.

312

Proposition 5.8. If E has a finite acyclic, then E is I-acyclic.

This follows from

Proposition 5.9. If E admits an E-acyclic spectrum that has a finite local, then E is I-acyclic.

Proof. Let X denote the E-acyclic spectrum of the proposition. Then $E \wedge X = pt$. Since $\langle X \rangle \geq \langle I \rangle$, we obtain $E \wedge I = pt$.

Proposition 5.10. Neither $\mathcal{L}_{X(n)}$ nor $\mathcal{L}_{IX(n)}$ has non-zero small objects.

Proof. By [8, Theorem 8.4], $\langle I \rangle \leq \langle IX(n) \rangle \leq \langle X(n) \rangle$, and so both of X(n) and IX(n) have finite locals. It is also shown in [8, Lemma 7.1] that X(n) is *I*-acyclic, and so is IX(n).

References

- A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257–281.
- [2] _____, Correction to: "The Boolean algebra of spectra, Comment. Math. Helv. 54 (1979), no. 3, 368–377", Comment. Math. Helv. 58 (1983), 599–600.
- [3] E. H. Brown, Jr. and M. Comenetz, Pontrjagin duality for generalized homology and cohomology theories, Amer. J. Math. 98 (1976), no. 1, 1–27.
- [4] E. S. Devinatz, Small ring spectra, J. Pure Appl. Algebra 81 (1992), no. 1, 11-16.
- [5] M. J. Hopkins, M. E. Mahowald and H. Sadofsky, Constructions of elements in Picard group, in *Topology and representation theory (Evanston, IL, 1992)*, 89–126, Contemp. Math., 158, Amer. Math. Soc., Providence, RI.
- [6] M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory. II, Ann. of Math. (2) 148 (1998), no. 1, 1–49.
- [7] M. Hovey, Bousfield localization functors and Hopkins' chromatic splitting conjecture, in the Čech centennial (Boston, MA, 1993), 225–250, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995.
- [8] M. Hovey and J. H. Palmieri, The structure of the Bousfield lattice, in *Homotopy invariant algebraic structures (Baltimore, MD, 1998)*, 175–196, Contemp. Math., 239, Amer. Math. Soc., Providence, RI.
- M. Hovey and H. Sadofsky, Invertible spectra in the E(n)-local stable homotopy category, J. London Math. Soc. (2) 60 (1999), no. 1, 284–302.
- [10] M. Hovey and N. P. Strickland, Morava K-theories and localisation, Mem. Amer. Math. Soc. 139 (1999), no. 666, viii+100 pp.
- [11] M. Hovey, J. H. Palmieri and N. P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997), no. 610, x+114 pp.

- [12] Y. Kamiya and K. Shimomura, A relation between the Picard group of the E(n)-local homotopy category and E(n)-based Adams spectral sequence, in Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, 321–333, Contemp. Math., 346, Amer. Math. Soc., Providence, RI.
- [13] L. G. Lewis, Jr., J. P. May and M. Steinberger, Equivariant stable homotopy theory. With contributions by J. E. McClure, Lecture Notes in Mathematics, 1213, Berlin. Springer-Verlag, 1986. x+538 pp.
- [14] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no. 2, 351–414.
- [15] _____, Nilpotence and periodicity in stable homotopy theory, Princeton Univ. Press, Princeton, NJ, 1992. xiv+209 pp.