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Picard Groups of Some Local Categories

By

Yousuke Kamiya∗ and Katsumi Shimomura∗∗

Abstract

For each p-local spectrum E, LE denotes the full subcategory consisting of E-
local spectra of the category of p-local spectra. The Picard group Pic(LE) is the
collection of isomorphism classes of invertible spectra in LE . If this is a set, it is a
group with multiplication defined by the smash product. We show that if a spectrum
E satisfies a relation 〈E〉 ≥ 〈HZ/p〉 of the Bousfield classes, then Pic(LE) = Z. In
particular, Pic(LE) = Z if E is connective.

§1. Introduction

Throughout this paper, we work in the homotopy category Sp of p-local
spectra for a fixed prime number p. For a spectrum E ∈ Sp, a spectrum X ∈ Sp

is called E-acyclic if X ∧ E = pt, and called E-local if [C, X]∗ = 0 for any E-
acyclic spectrum C. Let LE denote the full subcategory of Sp consisting of
E-local spectra. Then we have the Bousfield localization functor LE :Sp → LE

[1]. We call a spectrum X ∈ LE invertible if there is a spectrum Y such that
LE(X ∧ Y ) = LES0. Let Pic(LE) denote the collection of the isomorphism
classes of invertible spectra. If Pic(LE) is a set, then it is a group whose
multiplication is given by [X] · [Y ] = [LE(X ∧ Y )] and the unit element is
[LES0]. Here [X] denotes the isomorphism class of X. In the following, we
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write X ∈ Pic(LE) instead of [X] ∈ Pic(LE). It is well known that Pic(LS0) =
Pic(Sp) = {Sn | n ∈ Z} ∼= Z. Consider the Morava K-theories K(n) and the
Johnson-Wilson spectra E(n). In [5], Hopkins, Mahowald and Sadofsky showed
that the Picard group Pic(LK(n)) for each K(n) contains Zp and determined
it for n < 2. Note that Pic(LK(n)) is often written by Picn. For E(n), Hovey
and Sadofsky showed Pic(LE(n)) = Z in [9] if 2p − 2 > n2 + n. In [9], they
also determined Pic(LE(1)) at the prime 2, which is the direct sum of Z and
Z/2. In [12], we gave an estimate of Pic(LE(n)) by using Er-term of the E(n)-
based Adams spectral sequence converging to π∗(LE(n)S

0), and showed that
Pic(LE(2)) at the prime 3 is isomorphic to one of Z⊕Z/3 and Z⊕Z/3⊕Z/3.

Recall that the Bousfield class 〈E〉 denotes the collection of E-acyclic spec-
tra, and we write 〈F 〉 ≥ 〈E〉 if 〈F 〉 ⊂ 〈E〉. Let HG denote the Eilenberg-
MacLane spectrum for a group G. Then one of our results is the following:

Theorem 1.1. If 〈E〉 ≥ 〈HZ/p〉, then Pic(LE) = Z.

It is shown in [1, Lemma 3.2] that if E is connective, then 〈E〉 ≥ 〈HZ/p〉
or 〈E〉 = 〈HQ〉. It is well known (cf. [5]) that Pic(LHQ) = Z.

Corollary 1.2. If E is connective, then Pic(LE) = Z.

Let I denote the Brown-Comenetz dual of S0. In [8] and [10], it is shown
that LES0 = S0 or SZp if 〈E〉 ≥ 〈I〉. Then the above theorem follows from

Theorem 1.3. If 〈F 〉 ≥ 〈E〉 ≥ 〈I〉, then Pic(LF ) ⊂ Pic(LE) ⊂ Pic(LI).

Note that if Pic(LI) = Z, then Pic(LF ) = Pic(LE) = Z, though the
assumption Pic(LI) = Z seems strong.

In the next section, we study basic relations between the Bousfield classes
and Picard groups, and then we consider the Picard groups for spectra with a
finite local and prove Theorem 1.3 in the following section. In Section 4, we
show Pic(LHZ/p) = Z, which together with results given in the previous section
proves Theorem 1.1. We describe a filtration of Pic(LI) in the last section as
well as the proofs of some facts. For instance, we prove that the only invertible
spectrum which is also a ring spectrum is the E-local sphere LES0. We also
discuss there the small objects in some local stable homotopy categories.
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§2. Relations between Picard Groups

The function spectrum F (X, Y ) is defined to be a spectrum such that [W ∧
X, Y ]∗ = [W, F (X, Y )]∗ for any spectra W . We define the Spanier-Whitehead
dual DE(X) of X in LE by DE(X) = F (X, LES0). In particular, we write
D(X) = DS0(X) for the ordinary Spanier-Whitehead dual. It is shown in [11,
Proposition A.2.8] that if X ∈ LE is invertible, then DE(X) is the inverse of
it, that is, LE(X ∧DE(X)) = LES0.

Lemma 2.1. For any spectrum X ∈ Sp, the Spanier-Whitehead dual
DE(X) is E-local.

Proof. Since C∧X is E-acyclic if so is C, [C, DE(X)]∗ = [C∧X, LES0]∗ =
0. �

Note that there is a relation LE(LE(X) ∧ LE(Y )) = LE(X ∧ Y ) of E-
localization, which we often use. For example, we have LE(X ∧LES0) = X for
an E-local spectrum X. By definition, if 〈F 〉 ≥ 〈E〉, then LELF X = LEX.

Lemma 2.2. Suppose that 〈F 〉 ≥ 〈E〉. The localization functor LE in-
duces a correspondence l: Pic(LF )→ Pic(LE).

Proof. Define l(X) = LEX. Then we see that l(X) ∈ Pic(LE). In fact,
LE(l(X)∧l(DF (X))) = LE(X∧DF (X)) = LE(LF (X∧DF (X))) = LELF S0 =
LES0, since DF (X) is the inverse of X in LF . �

We call a spectrum X strongly dualizable in LE if LE(F (X, LES0)∧Y ) =
F (X, Y ) for any Y ∈ LE. In [13, Chapter III], Lewis, May and Steinberger
studied properties of strongly dualizable spectra. Among them, we have iso-
morphisms

(2.3) X = DE(DE(X)) and LE(DE(X) ∧DE(Y )) = DE(X ∧ Y )

for a strongly dualizable spectrum X and a spectrum Y .

(2.4) ([11, Proposition A.2.8]) X ∈ Pic(LE) is strongly dualizable.

Lemma 2.5. If 〈F 〉 ≥ 〈E〉 and LF S0 = LES0, then Pic(LF ) ⊂ Pic(LE).

Proof. Take any spectrum X in Pic(LF ). Then X = DF (DF (X)) by
(2.4) and (2.3), which is isomorphic to DE(DE(X)), since DE(−) = DF (−) by
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the assumption LF S0 = LES0. Thus, X is E-local by Lemma 2.1. Further-
more, LE(X ∧DE(X)) = LELF (X ∧DF (X)) = LELF S0 = LES0, and hence
X ∈ Pic(LE). �

§3. On Spectra with a Finite Local

We say that a spectrum E has a finite local if there exists a non-trivial
finite spectrum X such that LEX = X. It is shown in [8, Proposition 7.2]
that E has a finite local if and only if 〈E〉 ≥ 〈I〉. Here I denotes the Brown-
Comenetz dual of the sphere spectrum. Since 〈I〉 = 〈I ∧X〉 for any non-trivial
finite spectrum X by [8, Proposition 7.1 (e)], we see that

(3.1) If E has a finite local, then so does E∧X for a non-trivial finite spectrum
X.

It is shown in [10, Theorem B.6(a)] that if E has a finite local and LEHQ 
= pt

(resp. LEHQ = pt), then LES0 = S0 (resp. LES0 = SZp) (cf. [7, Theorem
3.6]). Hereafter, SG for a group G denotes the Moore spectrum with HZ∗(SG)
= G. If 〈F 〉 ≥ 〈E〉 ≥ 〈I〉, then there are two cases:

1) LF S0 = LES0

2) LF S0 = S0 and LES0 = SZp

In the first case, Lemma 2.5 shows that Pic(LF ) ⊂ Pic(LE). We study the
second case. Put E/pi = E ∧ SZ/pi.

Lemma 3.2. Let E have a finite local and suppose LEHQ = pt. Then
〈E/p〉 = 〈E〉.

Proof. By [14, Lemma 1.34], we see that 〈E〉 = 〈E ∧ SQ〉 ∨ 〈E/p〉. Since
E ∧ SQ = E ∧ LESQ = E ∧ LEHQ = pt by assumption, we have the lemma.

Lemma 3.3. If X is E-local, then LE/pX = LSZ/pX.

Proof. Consider the cofiber sequence X
η→ LE/pX → CE/pX of the local-

ization. Then SZ/p∧CE/pX = pt, since CE/pX is E-local and SZ/p∧CE/pX
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is E-acyclic. Applying now LSZ/p to the cofiber sequence, we see that LSZ/pη

is the desired isomorphism since CE/pX is SZ/p-acyclic.

Lemma 3.4. Let E be a spectrum with a finite local. Then the corre-
spondence l: Pic(LE)→ Pic(LE/p) given in Lemma 2.2 is an injection.

Proof. If LEHQ = pt, then LES0 = LE/pS
0 by Lemma 3.6, and the

lemma follows from Lemma 2.5. Suppose that LEHQ 
= pt. Then LES0 = S0

and so DE(−) = D(−). Let X ∈ Pic(LE) be an element such that l(X) =
LE/pS

0. Since l satisfies l([X] · [Y ]) = l([X]) · l([Y ]), it suffices to show that
X = S0.

Consider the cofiber sequence X ∧ D(X)
η→ LE(X ∧ D(X)) → CE(X ∧

D(X)) of the localization, which is

(3.5) X ∧D(X)
η−→ S0 −→ C

for C = CE(X ∧ D(X)). Since LEHQ 
= pt, 〈E〉 ≥ 〈E〉 ∧ 〈HQ〉 = 〈HQ〉 by
[14, Theorem 2.1(h)]. Therefore, C is HQ-acyclic.

Note that D(X) is E-local by Lemma 2.1 and that LSZ/pX = LE/pX =
LSZ/pS

0 by Lemma 3.3 and the assumption on X. Then, SZ/p∧X = SZ/p∧
LSZ/pX = SZ/p ∧ LSZ/pS

0 = SZ/p and SZ/p ∧D(X) = ΣD(SZ/p ∧X) =
SZ/p by (2.3), since D(SZ/p) = Σ−1SZ/p. Smashing SZ/p with the cofiber
sequence (3.5) yields the cofiber sequence

SZ/p
η−→ SZ/p −→ SZ/p ∧ C.

Applying LE to this cofiber sequence, we have a commutative diagram with
horizontal cofiber sequences:

SZ/p SZ/p SZ/p ∧ C

LE(SZ/p) LE(SZ/p) LE(SZ/p ∧ C) = pt.

�

η

�

∼=

�

�

∼=
�

�

LE(η)
�

Here, the left and the middle vertical arrows are equivalences since LE(S0) =
S0, and so is the right vertical arrow. Thus, SZ/p ∧ C = LE(SZ/p ∧ C) =
SZ/p ∧ LE(C) = SZ/p ∧ pt = pt, which shows C is SZ/p-acyclic.

These show that C = pt by [14, Theorem 2.1(i)] and η: X ∧D(X) = S0.
Therefore, X ∈ Pic(LS0), that is, X is a suspension of S0. Since SZ/p ∧X =
SZ/p, we see that X = S0 as desired.
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Corollary 3.6. Suppose that E has a finite local and 〈F 〉 ≥ 〈E〉. Then
Pic(LF ) ⊂ Pic(LE). In particular, if Pic(LE) = Z, then Pic(LF ) = Z.

Proof. If LF S0 = LES0, then the corollary follows from Lemma 2.5. If
LF S0 = S0 and LES0 = SZp, then 〈F 〉 ≥ 〈F/p〉 ≥ 〈E/p〉 = 〈E〉 by Lemma
3.2. Therefore, Lemmas 2.5 and 3.4 imply the corollary.

Corollary 3.7. If E has a finite local, then Pic(LE) ⊂ Pic(LI).

§4. The Picard Group of LHZ/p

Put Dp(X) = F (X, SZp) = DHZ/p(X). Then, for X ∈ Pic(LHZ/p),
LHZ/p(X∧Dp(X)) = LHZ/pS

0 by [11, Proposition A.2.8], and so HZ/p∗(X) =
Z/p. Let Pic(LHZ/p)0 denote the subcollection consisting of isomorphism
classes X ∈ Pic(LHZ/p) such that (HZ/p)0(X) = Z/p. Then any element of
Pic(LHZ/p) is a suspension of an element of Pic(LHZ/p)0. Furthermore, note
the relation DpDp(X) = X by (2.3). We also consider the cofiber sequence

(4.1) SZ/p
pr

−→ SZ/pr+1 jr−→ SZ/pr δr−→ ΣSZ/p.

Lemma 4.2. Let X ∈ Pic(LHZ/p)0. Then we have an equivalence
LHZ(X ∧ SZ/pr) �→ SZ/pr for each r > 0 such that the diagram

LHZ(X ∧ SZ/pr+1) LHZ(X ∧ SZ/pr)

SZ/pr+1 SZ/pr
�

�

�

1∧jr

�

�

�

jr

commutes for the map jr of (4.1).

Proof. Put Y = X ∧ SZ/p and let g be a generator of (HZ)0(Y ) =
(HZ/p)0(X) = Z/p. Since HZ/p is a ring spectrum, g: S0 → HZ ∧ Y ex-
tends to a homotopy equivalence g̃: HZ/p → HZ ∧ Y . Then we have a map

f : Y ι∧1−→ HZ∧Y
eg← HZ/p for the unit map ι of HZ. Note that [Y, ΣkHZ/p]0
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= (HZ/p)k(Y ) = Hom((HZ/p)k(Y ), Z/p) = Hom((HZ/p)k(SZ/p), Z/p) =
(HZ/p)k(SZ/p) = 0 unless k = 0, 1. Consider the Postnikov tower of SZ/p:

HZ/p X1 X2 · · · ←− SZ/p

Σ2Hπ1(SZ/p) Σ3Hπ2(SZ/p) Σ4Hπ3(SZ/p)
�

�

�

�

�

�

Since [Y, ΣkHπk−1SZ/p]0 = Hk(Y ; πk−1(SZ/p)) = 0 for k > 1, the map
f : Y → HZ/p is lifted up to an HZ/p-equivalence f̃ : Y → SZ/p. The Spanier-
Whitehead dual yields an HZ/p-equivalence Dp(f̃): Σ−1SZ/p → Dp(Y ) =
Dp(X)∧Σ−1SZ/p. We do this for Dp(X) instead of X, and obtain an HZ/p-
equivalence f ′: SZ/p → Y since DpDp(X) = X. Since f̃f ′: SZ/p → SZ/p is
an HZ/p-equivalence, it is an equivalence. Therefore, we have a decomposition
Y

�→ SZ/p ∨ A for some spectrum A. Since (HZ)∗(Y ) = Z/p, we have
HZ∗(A) = 0 and so LHZY

�→ SZ/p.
Inductively suppose that we have the equivalences of the lemma up to r.

Since δr ∈ [SZ/pr, SZ/p]−1 = Z/p is a generator, so is 1 ∧ δr ∈ [LHZ(X ∧
SZ/pr), LHZ(X ∧ SZ/p)]−1. Here [LHZ(X ∧ SZ/pr), LHZ(X ∧ SZ/p)]−1 is
isomorphic to [SZ/pr, SZ/p]−1 = Z/p, since X is HZ/p-invertible. Then the
composite δ′r: SZ/pr �← LHZ(X∧SZ/pr) 1∧δr−→ LHZ(X∧SZ/p) �→ SZ/p is not
zero and so δ′r = kδr for some k 
= 0 ∈ Z/p. Then we obtain the commutative
diagram:

LHZ(X ∧ SZ/p) LHZX ∧ SZ/pr+1 LHZ(X ∧ SZ/pr) ΣLHZX ∧ SZ/p

SZ/p Wr SZ/pr ΣSZ/p

SZ/p SZ/pr+1 SZ/pr ΣSZ/p

�

1∧pr

�

�

�

1∧jr

�

�

1∧δr

�

�
�

�

�

�

k−1

�

�

�

δ′r

�

=
�

k−1

�

pr

�

jr
�

δr

Here Wr denotes a fiber of δ′r. Now the dotted arrows give the desired equiva-
lence.

Theorem 4.3. Pic(LHZ/p) = Z.

Proof. Let X ∈ Pic(LHZ/p)0. Then by [7, Corollary 2.2] with n = 1
and E = HZ, we see that X = limr(LHZX ∧ SZ/pr), which is equivalent to
limr SZ/pr = SZp by Lemma 4.2. Since any element X of Pic(LHZ/p) is a
suspension of an element of X ∈ Pic(LHZ/p)0, X = ΣtSZp for some t ∈ Z.
Therefore, Pic(LHZ/p) = Z whose generator is ΣSZp. �
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Proof of Theorem 1.1. Since 〈HZ/p〉 > 〈I〉, any spectrum E with 〈E〉 ≥
〈HZ/p〉 has a finite local. Theorem 1.1 is now a corollary of Corollary 3.6 and
Theorem 4.3. �

§5. Some Remarks

Let K(n) denote the n-th Morava K spectrum and consider the spectrum
Hn =

∨
i≥n K(i). Then H0-local (resp. H0-acyclic) spectrum is called har-

monic (resp. dissonant). A finite spectrum X is called a type n spectrum if
K(n − 1)∗(X) = 0 and K(n)∗(X) 
= 0. By [6] and [4], we have a finite ring
spectrum MJn such that BP∗(MJn) = BP∗/Jn for an invariant ideal Jn =
(pe0 , ve1

1 , . . . , v
en−1
n−1 ) of BP∗. The spectrum MJn is a type n spectrum, that is

K(i) ∧MJn = pt for i < n. Therefore, H0 ∧MJn =
∨

i≥0 K(i) ∧MJn = Hn.

Lemma 5.1. For n ≥ 0, 〈Hn〉 = 〈H0 ∧MJn〉 for any MJn.

Proposition 5.2. Hn for n ≥ 0 has a finite local.

Proof. Since a finite spectrum is harmonic [14, Corollary 4.5], H0 has a fi-
nite local. Therefore, Hn for n > 0 has a finite local by Lemma 5.1 and (3.1). �

Let F (n) denote a finite spectrum of type n. Then it admits a self map
f : F (n) → F (n) that induces the multiplication of va

n on BP∗-homology for
some integer a > 0 by [6]. The cofiber of f yields F (n + 1), and so 〈F (n)〉 ≥
〈F (n + 1)〉 (cf. the class invariance theorem [15]). Furthermore, we denote a
spectrum f−1F (n) as Tel(n). Note that the Bousfield class of Tel(n) depends
only on n (cf. [7, Lemma 1.3]). Then the Bousfield class of Hf

n =
∨

i≥n Tel(i)
also depends only on n. Since K(n)∧Tel(n) 
= pt, we see that 〈Tel(n)〉 ≥ 〈K(n)〉
by [14, Theorem 2.1(h)], and so 〈Hf

0 〉 ≥ 〈E(n)〉 for each n ≥ 0. Indeed,
〈E(n)〉 = 〈∨0≤i≤n K(i)〉.

These yield relations of Bousfield classes of spectra.

〈S0〉 ≥ 〈F (1)〉 ≥ 〈F (2)〉 ≥ · · · ≥ 〈HZ/p〉 ≥ 〈I〉
〈S0〉 ≥ 〈X(1)〉 ≥ 〈X(2)〉 ≥ · · · ≥ 〈BP 〉 ≥ 〈HZ〉 ≥ 〈HZ/p〉 ≥ 〈I〉

〈S0〉 ≥ 〈Hf
0 〉 ≥ 〈Hf

1 〉 ≥ · · · ≥ 〈I〉
〈BP 〉 ≥ 〈H0〉 ≥ 〈H1〉 ≥ · · · ≥ 〈I〉

〈BP 〉 ≥ 〈H0〉 ≥ · · · ≥ 〈I ∨ E(n)〉 ≥ 〈I ∨ E(n− 1)〉 ≥ · · ·
· · · ≥ 〈I ∨ E(0)〉 = 〈I ∨HQ〉 ≥ 〈I〉

〈HZ/p〉 ≥ 〈IBP 〉 ≥ · · · ≥ 〈IX(n)〉 ≥ · · · ≥ 〈IX(1)〉 ≥ 〈I〉
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Here X(i) is the spectrum given in [14], and IY is the Brown-Comenetz dual
of Y . The second sequence is given in [14, p. 369] and the bottom sequence is
given in [8, Theorem 8.4]. The Picard groups of the spectra appearing in the
first two sequences except for I are all isomorphic to Z by Corollary 3.6 and
Theorem 4.3. The other sequences yield the filtrations of Pic(LI)

Z = Pic(LS0) ⊂ Pic(LHf
0
) ⊂ Pic(LHf

1
) ⊂ · · · ⊂ Pic(LI)

Z = Pic(LBP ) ⊂ Pic(LH0) ⊂ Pic(LH1) ⊂ · · · ⊂ Pic(LI)
Z = Pic(LBP ) ⊂ Pic(LH0) ⊂ · · · ⊂ Pic(LI∨E(n)) ⊂ Pic(LI∨E(n−1)) ⊂ · · ·

· · · ⊂ Pic(LI∨E(0)) ⊂ Pic(LI)
Z = Pic(LHZ/p) ⊂ Pic(LIBP ) ⊂ · · · ⊂ Pic(LIX(n)) ⊂ · · ·

· · · ⊂ Pic(LIX(1)) ⊂ Pic(LI)

by Corollary 3.6. We have a problem

Problem. Is Pic(LI) = Z?

If this has an affirmative answer, then for all spectra E with a finite local,
Pic(LE) = Z by Corollary 3.6. For each X ∈ Pic(LI), put WX = X ∧Dp(X)
and let FX be the fiber of the localization map WX → LIWX = SZp. For
a spectrum E, let aE denote the spectrum given by Bousfield in [1, Lemma
1.13] (see also [2] for its proof). Then, we have 〈aE〉 ≥ 〈C〉 for any E-acyclic
spectrum C.

Proposition 5.3. The collection of X ∈ Pic(LI) such that Pic(LaFX
) =

Z consists of suspensions of SZp. In particular, if Pic(LaFX
) = Z for each

X ∈ Pic(LI), then Pic(LI) = Z.

Proof. By definition, FX is I-acyclic, which implies that 〈aFX〉 ≥ 〈I〉.
Since FX is also aFX-acyclic, it follows that LaFX

WX = SZp. Therefore,
X ∈ Pic(LaFX

) = Z and so X is a suspension of SZp. �

Since 〈C〉 ≤ 〈aE〉 for an E-acyclic spectrum C as noted above, we see that
HZ/p∧FX = pt implies 〈aFX〉 ≥ 〈HZ/p〉, and so Pic(LaFX

) = Z by Theorem
1.1.

Corollary 5.4. Let X be an element of Pic(LI). If (HZ/p)∗(FX) = 0,
then X is a suspension of SZp.

To study the filtration of Pic(LI), the next problem seems interesting.
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Problem. Determine Pic(LI∨K(n)).

Next we consider an invertible spectrum that is also a ring spectrum. We
deduce the following by the similar argument given in the previous sections.

Proposition 5.5. An invertible ring spectrum is the sphere spectrum in
LE for any E.

Proof. Let X be an invertible ring spectrum in LE. Then X ∧ X =
X ∨ (X ∧ X) for a cofiber X of the unit map S0 → X. Let DE denote the
Spanier-Whitehead dual functor on LE . Since DE(X) is an inverse of X, we
see that

X = LE(DE(X) ∧X ∧X) = LE(DE(X) ∧X) ∨ LE(DE(X) ∧X ∧X)
= LES0 ∨ LEX.

Thus [S0, LES0]∗ is a direct summand of [X, X]∗. On the other hand, [X, X]∗ is
isomorphic to [S0, LES0]∗ under the map assigning f : X → X to f ∧1: LE(X ∧
DE(X))→ LE(X ∧DE(X)). Since the isomorphism is the one of [S0, LES0]∗-
modules and it sends the identity to identity, the other direct summands of
[X, X]∗ are zero. In particular, we obtain LEX = pt as desired.

In the category LE, a spectrum A is small if [A, LE(
∨

α Xα)]∗ =
⊕

α[A, Xα]∗
for any wedge sum LE(

∨
α Xα) in LE . In [10, Appendix B], Hovey and Strick-

land showed that if E has a finite local and is I-acyclic, then the category LE

does not have non-zero small objects, and that BP , H0, HZ, HZ/p and I are
examples for E and F (n) is not. Here, we give other examples. Since I and
K(n) are I-acyclic, we see the following:

Proposition 5.6. For n ≥ 0, LHn
, LI∨E(n) and LI∨K(n) do not have

non-zero small objects.

Since the sphere spectrum S0 has a finite local, so does the finite spectrum
F (n) by (3.1). Furthermore, we see Tel(n)∧F (n + 1) = pt by definition. Thus
Tel(n) is F (n + 1)-acyclic, and so is I-acyclic. Thus we have the following:

Proposition 5.7. For n ≥ 0, LHf
n

does not have non-zero small objects.

This proof indicates the following fact on spectra with a finite acyclic. Here
a spectrum E has a finite acyclic if there is a finite spectrum X 
= pt such that
LEX = pt.
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Proposition 5.8. If E has a finite acyclic, then E is I-acyclic.

This follows from

Proposition 5.9. If E admits an E-acyclic spectrum that has a finite
local, then E is I-acyclic.

Proof. Let X denote the E-acyclic spectrum of the proposition. Then
E ∧X = pt. Since 〈X〉 ≥ 〈I〉, we obtain E ∧ I = pt.

Proposition 5.10. Neither LX(n) nor LIX(n) has non-zero small ob-
jects.

Proof. By [8, Theorem 8.4], 〈I〉 ≤ 〈IX(n)〉 ≤ 〈X(n)〉, and so both of
X(n) and IX(n) have finite locals. It is also shown in [8, Lemma 7.1] that
X(n) is I-acyclic, and so is IX(n).
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