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Integration over Compact Quantum Groups
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Teodor Banica
∗ and Benôıt Collins

∗∗,†

Abstract

We find a combinatorial formula for the Haar functional of the orthogonal and
unitary quantum groups. As an application, we consider diagonal coefficients of the
fundamental representation, and we investigate their spectral measures.

Introduction

A basic question in functional analysis is to find axioms for quantum
groups, which ensure the existence of a Haar measure. In the compact case,
this was solved by Woronowicz in the late eighties ([22]). The Haar functional
is constructed starting from an arbitrary faithful positive unital linear form ϕ,
by taking a Cesaro limit with respect to convolution:∫

= lim
n→∞

1
n

n∑
k=1

ϕ∗k.

The explicit computation of the Haar functional is a representation theory
problem. There are basically two ideas here:

I. For a classical group the integrals can be computed by using inversion
of matrices and non-crossing partitions. The idea goes back to Weingarten’s
work [20], and explicit formulae are found in [7], [8].
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II. For a free quantum group the integrals of characters can be computed
by using tensor categories and diagrams. The idea goes back to Woronowicz’s
work [23], and several examples are studied in [1], [3].

In this paper we find an explicit formula for the Haar functional of free
quantum groups. For this purpose, we use a combination of I and II.

As an application, we consider diagonal coefficients of the fundamental
representation, and we investigate their spectral measures. For instance in the
orthogonal case we find a formula of type∫

(u11 + · · ·+ uss)2k = Tr(G−1
knGks)

where Gkn is a certain Gram matrix of Temperley-Lieb diagrams. This enables
us to find several partial results regarding the law of u11.

The interest here is that knowledge of the law of u11 would be the first step
towards finding a model for the orthogonal quantum group. That is, searching
for an explicit operator U11 doing what the abstract operator u11 does would
be much easier once we know its law.

As a conclusion, we can state some precise problems. In the orthogonal
case the question is to find the real measure µ satisfying∫

x2k dµ(x) = Tr(G−1
knGks)

and we have a similar statement in the unitary case.
An answer to these questions would no doubt bring new information about

free quantum groups. But this requires a good knowledge of combinatorics of
Gram matrices, that we don’t have so far.

The whole thing is probably related to questions considered by Di Francesco,
Golinelli and Guitter, in connection with the meander problem. In [9], [10] they
find a formula for the determinant of Gkn, but we don’t know yet how to apply
their techniques to our situation.

Finally, let us mention that techniques in this paper apply as well to the
quantum symmetric group and its versions, whose corresponding Hom spaces
are known to be described by Temperley-Lieb diagrams ([3], [19]). This will be
discussed in a series of papers, the first of which is in preparation ([4]).

The paper is organised as follows. 1, 2, 3 are preliminary sections on the
orthogonal quantum group. In 4, 5, 6, 7, 8 we establish the orthogonal integra-
tion formula, then we apply it to diagonal coefficients, and then to coefficients
of type u11, with a separate discussion of the case n = 2. In 9 we find similar
results for the unitary quantum group.
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§1. The Orthogonal Quantum Group

In this section we present a few basic facts regarding the universal algebra
Ao(n). This algebra appears in Wang’s thesis (see [18]).

For a square matrix u = uij having coefficients in a C∗-algebra, we use the
notations ū = u∗

ij , ut = uji and u∗ = u∗
ji.

A matrix u is called orthogonal if u = ū and ut = u−1.

Definition 1.1. Ao(n) is the C∗-algebra generated by n2 elements uij ,
with relations making u = uij an orthogonal matrix.

In other words, we have the following universal property. For any pair
(B, v) consisting of a C∗-algebra B and an orthogonal matrix v ∈Mn(B), there
is a unique morphism of C∗-algebras

Ao(n)→ B

mapping uij → vij for any i, j. The existence and uniqueness of such a universal
pair (Ao(n), u) follow from standard C∗-algebra results.

Proposition 1.1. Ao(n) is a Hopf C∗-algebra, with comultiplication,
counit and antipode given by the formulae

∆(uij) =
n∑

k=1

uik ⊗ ukj

ε(uij) = δij

S(uij) = uji

which express the fact that u is a n-dimensional corepresentation.

These maps are constructed by using the universal property of Ao(n), and
verification of Woronowicz’s axioms in [22] is straightforward. As an example,
the counit ε : Ao(n) → C is constructed by using the fact that 1n = δij is an
orthogonal matrix over the algebra C.

Observe that the square of the antipode is the identity:

S2 = id.

The motivating fact about Ao(n) is a certain analogy with C(O(n)). The
coefficients vij of the fundamental representation of O(n) form an orthogonal
matrix, and we have the following presentation result.
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Proposition 1.2. C(O(n)) is the commutative C∗-algebra generated by
n2 elements vij, with relations making v = vij an orthogonal matrix.

Observe in particular that we have a morphism of C∗-algebras

Ao(n)→ C(O(n))

mapping uij → vij for any i, j. The above formulae of ∆, ε, S show that this is
a Hopf algebra morphism. We get an isomorphism

Ao(n)/I = C(O(n))

where I is the following ideal:

I = 〈[uij , ukl] = 0 | i, j, k, l〉.
This is usually called commutator ideal, because the quotient by it is the

biggest commutative quotient.
This result is actually not very relevant, because Ao(n) has many other

quotients. Consider for instance the group Z2 = {1, g}. The equality g = g−1

translates into the equality
g = g∗ = g−1

at the level of the group algebra C∗(Z2), which tells us that the 1× 1 matrix g

is orthogonal.
Now by taking n free copies of Z2, we get the following result.

Proposition 1.3. C∗(Z∗n
2 ) is the C∗-algebra generated by n elements gi,

with relations making g = diag(g1, . . . , gn) an orthogonal matrix.

In particular we have a morphism of C∗-algebras

Ao(n)→ C∗(Z∗n
2 )

mapping uij → gij for any i, j. The above formulae of ∆, ε, S show that this is
a Hopf algebra morphism. We get an isomorphism

Ao(n)/J = C∗(Z∗n
2 )

where J is the following ideal:

J = 〈uij = 0 | i �= j〉.
This can be probably called cocommutator ideal, because the quotient by

it is the biggest cocommutative quotient.
As a conclusion here, best is to draw a diagram.
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Theorem 1.1. We have surjective morphisms of Hopf C∗-algebras
Ao(n)

↙ ↘
C(O(n)) C∗(Z∗n

2 )

obtained from the universal property of Ao(n).

This diagram is to remind us that Ao(n) is at the same time a non-
commutative version of C(O(n)), and a non-cocommutative version of C∗(Z∗n

2 ).
We say that it is a free version of both.

§2. Analogy with SU(2)

The study of Ao(n) is based on a certain similarity with C(SU(2)). The
fundamental corepresentation of C(SU(2)) is given by

w =

(
a b

−b̄ ā

)

with |a|2 + |b|2 = 1. This is of course a unitary matrix, which is not orthogonal.
However, w and w̄ are related by the formula(

a b

−b̄ ā

)(
0 1
−1 0

)
=

(
0 1
−1 0

)(
ā b̄

−b a

)

which is a twisted self-conjugation condition of type

w = rw̄r−1

where r is the following matrix:

r =

(
0 1
−1 0

)
.

One can show that unitarity plus this condition are in fact the only ones,
in the sense that we have the following presentation result.

Proposition 2.1. C(SU(2)) is the C∗-algebra generated by 4 elements
wij, with the relations w = rw̄r−1 = unitary, where w = wij.

This is to be compared with the definition of Ao(n), which can be written
in the following way.

Ao(n) = C∗ {(uij)ij=1,...,n | u = ū = unitary} .
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We see that what makes the difference between the two matrices v1 = u

and v2 = w is possibly their size, plus the value of a scalar matrix r intertwining
v and v̄.

This leads to the conclusion that Ao(n) should be a kind of deformation
of C(SU(2)). Here is a precise result in this sense.

Theorem 2.1. We have an isomorphism

Ao(2) = C(SU(2))−1

where the algebra on the right is the specialisation at µ = −1 of the algebra
C(SU(2))µ constructed by Woronowicz in [21].

This result, pointed out in [1], is clear from definitions.
We should mention here that the parameter µ ∈ R−{0} used by Woronow-

icz in [21] is not a particular case of the parameter q ∈ C − {0} used in the
quantum group literature. In fact, we have the formula

µ = τq2

where q > 0 is the usual deformation parameter, and where τ = ±1 is the twist,
constructed by Kazhdan and Wenzl in [12]. In particular the value µ = −1
corresponds to the values q = 1 and τ = −1.

Finally, let us mention that Theorem 2.1 follows via a change of variables
from the general formula

Ao

(
0 1
−µ−1 0

)
= C(SU(2))µ

where the algebra on the left is constructed in the following way:

Ao(r) = C∗ {(uij)ij=1,...,n | u = rūr−1 = unitary
}

.

See [6] for more on parametrisation of algebras of type Ao(r).

§3. Diagrams

The main feature of the fundamental representation of SU(2) is that com-
mutants of its tensor powers are Temperley-Lieb algebras:

End(w⊗k) = TL(k).

This equality is known to hold in fact for the fundamental corepresentation
of any C(SU(2))µ, as shown by Woronowicz in [21].
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The same happens for Ao(n), as pointed out in [1]. We present now a proof
of this fact, a bit more enlightening than the original one. For yet another proof,
see Yamagami ([24], [25]).

Definition 3.1. The set of Temperley-Lieb diagrams D(k, l) consists of
diagrams formed by an upper row of k points, a lower row of l points, and of
(k + l)/2 non-crossing strings joining pairs of points.

In this definition, for k + l odd we have D(k, l) = ∅. Also, diagrams are
taken of course up to planar isotopy.

It is convenient to summarize this definition as

D(k, l) =



· · · ← k points
W ← (k + l)/2 strings
· · · · · ← l points




where capital letters denote diagrams formed by non-crossing strings.

Definition 3.2. The operation on diagrams given by

· · ·
W

||
A

· · · · ·

→
�

A M

· · · · · · · ·

is an identification D(k, l) � D(0, k + l), called Frobenius isomorphism.

Observe in particular the identification at k = l, namely

D(k, k) � D(0, 2k)

where at left we have usual Temperley-Lieb diagrams,

D(k) =



· · · ← k points
W ← k strings
· · · · · ← k points




and at right we have non-crossing partitions of 1, . . . , 2k:

NC(2k) =

{
W ← k strings
· · · · · ← 2k points

}
.

It is convenient to reformulate the above Frobenius isomorphism by using
these notations, and to use it as an equality.
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Definition 3.3. We use the Frobenius identification

D(k) = NC(2k)

between usual Temperley-Lieb diagrams and non-crossing partitions.

Consider now the vector space where v acts, namely

V = C
n

and denote by e1, . . . , en its standard basis. Each diagram p ∈ D(k, l) acts on
tensors according to the formula

p(ei1 ⊗ · · · ⊗ eik
) =

∑
j1...jl


i1 . . . ik

p

j1 . . . jl


 ej1 ⊗ · · · ⊗ ejl

where the middle symbol is 1 if all strings of p join pairs of equal indices, and
is 0 if not. Linear maps corresponding to different diagrams can be shown to
be linearly independent provided that n ≥ 2, and this gives an embedding

TL(k, l) ⊂ Hom(V ⊗k, V ⊗l)

where TL(k, l) is the abstract vector space spanned by D(k, l). This is easy to
check by using positivity of the trace, see for instance [3].

Theorem 3.1. We have an equality of vector spaces

Hom(u⊗k, u⊗l) = TL(k, l)

where Hom(u⊗k, u⊗l) is the subalgebra of Hom(V ⊗k, V ⊗l) of Ao(n)-equivariant
endomorphisms.

Proof. We use tensor categories with suitable positivity properties, as
axiomatized by Woronowicz in [23].

The starting remark is that for a unitary matrix u, the fact that u is
orthogonal is equivalent to the fact that the vector

ξ =
∑

k

ek ⊗ ek

is fixed by u⊗2., in the sense that we have the following equality:

u⊗2(ξ ⊗ 1) = ξ ⊗ 1.
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This follows by writing down relations for both conditions on u. Now in
terms of the linear map E : C→ V ⊗2 given by

E(1) = ξ

we have the following equivalent condition:

E ∈ Hom(1, u⊗2).

On the other hand, E is nothing but the operator corresponding to the
semicircle in D(0, 2):

E = ∩.

Summing up, Ao(n) is the universal C∗-algebra generated by entries of a
unitary n× n matrix u, satisfying the following condition:

∩ ∈ Hom(1, u⊗2).

In terms of tensor categories, this gives the equality

〈∩〉 = {Hom(u⊗k, u⊗l) | k, l}

where the category on the left is the one generated by ∩, meaning the smallest
one satisfying Woronowicz’s axioms in [23], and containing ∩.

Woronowicz’s operations are the composition, tensor product and conjuga-
tion. At level of Temperley-Lieb diagrams, these are easily seen to correspond
to horizontal concatenation, vertical concatenation and upside-down turning of
diagrams. Since all Temperley-Lieb diagrams can be obtained from ∩ via these
operations, we get the equality

〈∩〉 = {TL(k, l) | k, l}

which together with the above equality gives the result.

Observe that the ingredients of this proof are Woronowicz’s Tannakian
duality, plus basic facts concerning Temperley-Lieb diagrams. For a more de-
tailed application of Tannakian duality, in a similar situation, see [3]. As for
Temperley-Lieb diagrams, what we use here is the tensor planar algebra, con-
structed by Jones in [11].
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§4. Integration Formula

In this section we find a formula for the Haar functional of Ao(n). This is
a certain linear form, denoted here as an integral∫

: Ao(n)→ C

and whose fundamental property is the following one.

Definition 4.1. The Haar functional of Ao(n) is the positive linear uni-
tal form satisfying the bi-invariance condition(

id⊗
∫ )

∆(a) =
(∫
⊗id

)
∆(a) =

∫
a

whose existence and uniqueness is shown by Woronowicz in [22].

For the purposes of this paper, we just need the following property: for a
unitary corepresentation r ∈ End(H)⊗Ao(n), the operator

P =
(

id⊗
∫ )

r

is the orthogonal projection onto the space of fixed points of r. This space is
in turn defined as

Hom(1, r) = {x ∈ H | r(x) = x⊗ 1}

and the whole assertion is proved in [22].
The integration formula involves scalar matrices Gkn and Wkn, introduced

in the following way.

Definition 4.2. The Gram and Weingarten matrices are given by

Gkn(p, q) = nl(p,q)

Wkn = G−1
kn

where l(p, q) is the number of loops obtained by closing the composed diagram
p∗q for p, q ∈ D(k).

The fact that Gkn is indeed a Gram matrix comes from the equality

Gkn(p, q) = 〈p, q〉
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where p, q are regarded as operators on the Hilbert space V ⊗k, with V = C
n,

and where the scalar product on V is the usual one. Alternatively, 〈p, q〉 can
be understood as the value of the Markov trace of p∗q in the Temperley-Lieb
algebra.

As for Wkn, we will see that this is a quantum analogue of the matrix
constructed by Weingarten in [20].

For a diagram p ∈ D(k) and a multi-index i = (i1 . . . i2k) we use the
notation

δpi =


i2k . . . ik+1

p

i1 . . . ik




where, as usual, the symbol on the right is 1 if all strings of p join pairs of equal
indices, and 0 if not. This is the same as the notation

δpi =

(
p

i1 . . . i2k

)

where p is regarded now as a non-crossing partition, via the Frobenius identi-
fication in Definition 3.3.

Theorem 4.1. The Haar functional of Ao(n) is given by∫
ui1j1 . . . ui2kj2k

=
∑
pq

δpiδqjWkn(p, q)

∫
ui1j1 . . . ui2k+1j2k+1 = 0

where the sum is over all pairs of diagrams p, q ∈ D(k).

Proof. We have to compute the linear maps

E(ei1 ⊗ · · · ⊗ eil
) =

∑
j1...jl

ej1 ⊗ · · · ⊗ ejl

∫
ui1j1 . . . uiljl

which encode all integrals in the statement.
In case l = 2k is even we use the fact that E is the orthogonal projection

onto End(u⊗k). With the notation

Φ(x) =
∑

p

〈x, p〉p



288 Teodor Banica and Benôıt Collins

we have E = WΦ, where W is the inverse on TL(k) of the restriction of Φ. But
this restriction is the linear map given by Gkn, so W is the linear map given
by Wkn. This gives the first formula.

In case l is odd we use the automorphism uij → −uij of Ao(n). From
E = (−1)lE we get E = 0, which proves the second formula.

§5. Diagonal Coefficients

The law of a self-adjoint element a ∈ Ao(n) is the real probability measure
µ given by ∫

ϕ(x) dµ(x) =
∫

ϕ(a)

for any continuous function ϕ : R → C. As for any bounded probability
measure, µ is uniquely determined by its moments. These are the numbers∫

xk dµ(x) =
∫

ak

with k = 1, 2, 3, . . ., also called moments of a.
We are particularly interested in the following choice of a.

Definition 5.1. The osn variable is given by

osn = u11 + · · ·+ uss

where u is the fundamental corepresentation of Ao(n).

The motivating fact here is that all coefficients uii have the same law. This
is easily seen by using automorphisms of Ao(n) of type

σ : u→ pup−1

where p is a permutation matrix. This common law, whose knowledge might
be the first step towards finding an explicit model for Ao(n), is the law of o1n.

The idea of regarding o1n as a specialisation of osn comes from the fact
that onn is a well-known variable, namely the semicircular one. This is known
from [1], and is deduced here from the following result.

Theorem 5.1. The even moments of the osn variable are given by∫
o2k

sn = Tr(G−1
knGks)

and the odd moments are all equal to 0.
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Proof. The first assertion follows from Theorem 4.1,∫
o2k

sn =
∫

(u11 + · · ·+ uss)2k

=
s∑

a1=1

. . .
s∑

a2k=1

∫
ua1a1 . . . ua2ka2k

=
s∑

a1=1

. . .
s∑

a2k=1

∑
p,q∈D(k)

δpaδqaWkn(p, q)

=
∑

p,q∈D(k)

Wkn(p, q)
s∑

a1=1

. . .

s∑
a2k=1

δpaδqa

=
∑

p,q∈D(k)

Wkn(p, q)Gks(q, p)

= Tr(WknGks)

and from the equality Wkn = G−1
kn . As for the assertion about odd moments,

this follows as well from Theorem 4.1.

As a first application, we get another proof for the fact that onn is semi-
circular. The semicircle law has density

dµ(x) =
1
2π

√
4− x2 dx

on [−2, 2], and 0 elsewhere. A variable having this law is called semicircular.
The even moments of µ are the Catalan numbers

Ck =
1

k + 1

(
2k

k

)

and the odd moments are all equal to 0. See [17].

Corollary 5.1. The variable onn is semicircular.

Proof. The even moments of onn are the Catalan numbers∫
o2k

nn = Tr(G−1
knGkn)

= Tr(1)
= #D(k)
= Ck

hence are equal to the even moments of the semicircle law. As for odd moments,
they are 0 for both onn and for the semicircle law.

The second application brings some new information about Ao(n).
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Corollary 5.2. The variable (n/s)1/2 osn is asymptotically semicircular
as n→∞.

Proof. We have Gkn(p, q) = nk for p = q, and Gkn(p, q) ≤ nk−1 for p �= q.
Thus with n→∞ we have Gkn ∼ nk1, which gives∫

o2k
sn = Tr(G−1

knGks)

∼ Tr((nk1)−1Gks)
= n−kTr(Gks)
= n−ksk#D(k)
= n−kskCk

which gives the convergence in the statement, for even moments. As for odd
ones, they are all 0, so we have convergence here as well.

§6. Asymptotic Freeness

We know from Corollary 5.2 that the variable n1/2o1n is asymptotically
semicircular. Together with the observation after Definition 5.1, this shows
that the normalised generators

{n1/2uij}i,j=1,...,n

of Ao(n) become asymptotically semicircular as n→∞. Here we assume that
i, j are fixed, say i, j ≤ s and the limit is over n ≥ s.

This result might be useful when looking for explicit models for Ao(n).
Here is a more precise statement in this sense.

Theorem 6.1. The elements (n1/2uij)i,j=1,...,s of Ao(n) with n ≥ s

become asymptotically free and semicircular as n→∞.

Proof. The joint moments of a free family of semicircular elements are
computed by using the fact that the second order free cumulant is one, and
the other ones are zero. Therefore for a free family of semicircular variables
x1, . . . , xk, an integral of type ∫

xi1 . . . xil

is zero if l is odd, and is the sum of matching non-crossing pair partitions if l

is even. This is a free version of Wick theorem; see Speicher ([14]) for details.
Now when computing

nk

∫
ui1j1 . . . ui2kj2k
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by using Theorem 4.1, observe that

nkWkn(p, p)→ 1

nkWkn(p, q)→ 0

as n→∞, whenever p �= q. This completes the proof.

Observe that Theorem 6.1 is indeed stronger than Corollary 5.2: it is
known that, with suitable normalisations, a sum of free semicircular variables
is semicircular. See [17].

§7. Second Order Results

A basic problem regarding the algebra Ao(n) is to find the law of coeffi-
cients uij . This is the law of the variable o1n, as defined in previous section,
with moments given by ∫

o2k
1n =

∑
p,q∈D(k)

Wkn(p, q).

We know from Corollary 5.2 that, under a suitable normalisation, these
moments converge with n → ∞ to those of the semicircle law. In this section
we find a power series expansion of Wkn, which can be used for finding higher
order results about the law of o1n.

Observe first that the integer-valued function

d(p, q) = k − l(p, q)

is a distance on the space D(k). Indeed, it can be shown by induction that if
p �= q, d(p, q) is the minimal number l such that there exists p1, . . . , pl satisfying
p1 = p, pl = q, and for each pair {pi, pi+1}, pi, pi+1 have all strings identical
except two of them. We call this distance “loop distance”.

Proposition 7.1. The Gram matrix is given by

n−kGkn(p, q) = n−d(p,q)

where d is the loop distance on D(k).

Proof. This is clear from definitions.
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In other words, the matrix n−kGkn is an entry-wise exponential of the
distance matrix of D(k). This exponential can be inverted by using paths on
D(k). Such a path is a sequence of elements of the form:

p0 �= p1 �= · · · �= pl−1 �= pl.

We call this sequence path from p0 to pl.

Definition 7.1. The distance along a path P = p0, . . . , pl is the number

d(P ) = d(p0, p1) + · · ·+ d(pl−1, pl)

and the length of such a path is the number l(P ) = l.

Observe that a length 0 path is just a point, and the distance along such
a path is 0.

With these definitions, we have a power series expansion in n−1 for the
Weingarten matrix.

Proposition 7.2. The Weingarten matrix is given by

nkWkn(p, q) =
∑
P

(−1)l(P )n−d(P )

where the sum is over all paths from p to q.

Proof. For n large enough we have the following computation.

nkWkn = (n−kGkn)−1

= (1− (1− n−kGkn))−1

= 1 +
∞∑

l=1

(1− n−kGkn)l.

We know that Gkn has nk on its diagonal, so 1 − n−kGkn has 0 on the
diagonal, and its l-th power is given by

(1− n−kGkn)l(p, q) =
∑
P

l∏
i=1

(1− n−kGkn)(pi−1, pi)

=
∑
P

l∏
i=1

−n−d(pi−1,pi)

= (−1)l
∑
P

n−d(P )
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with P = p0, . . . , pl ranging over all length l paths from p0 = p to pl = q.
Together with the first formula, this gives

nkWkn(p, q) = δpq +
∑
P

(−1)l(P )n−d(P )

where the sum is over all paths between p and q, having length l ≥ 1. But the
leading term δpq can be added to the sum, by enlarging it to length 0 paths,
and we get the formula in the statement.

In terms of moments of o1n, we get the following power series expansion
in n−1.

Proposition 7.3. The moments of n1/2o1n are given by∫ (
n1/2o1n

)2k

=
∞∑

d=0

(Ek
d −Ok

d)n−d

where Ek
d , Ok

d count even and odd length paths of D(k) of distance d.

Proof. From Theorem 5.1 and Proposition 7.2 we get

nk

∫
o2k
1n =

∑
P

(−1)l(P )n−d(P )

where the sum is over all paths in D(k). This is a series in n−1, whose d-th
coefficient is the sum of numbers (−1)l(P ), given by Ek

d −Ok
d .

We have now all ingredients for computing the second order term of the
law of n1/2o1n. Consider the formula∫

1
1− z(n1/2o1n)

=
∞∑

k=0

zk

∫
(n1/2o1n)k

valid for z small complex number, or for z formal variable. The left term is
the Stieltjes transform of the law of n1/2o1n, and we have the following power
series expansion of it, when z is formal.

Theorem 7.1. We have the formal estimate
∞∑

k=0

zk

∫
(n1/2o1n)k =

2
1 +
√

1− 4z2

+ n−1 32z4

(1 +
√

1− 4z2)4
√

1− 4z2

+ O(n−2)

where O(n−2) should be understood coefficient-wise.
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Proof. We use Proposition 7.3. Since paths of distance 0 are of length 0
and correspond to points of D(k), the leading terms of the series of moments
of n1/2o1n are the Catalan numbers

Ek
0 −Ok

0 = Ek
0 = #D(k) = Ck

which are the moments of the semicircle law.
The next terms come from paths of distance 1. Such a path must be of

the form P = p, q with d(p, q) = 1, and has length 1. It follows that the second
terms we are interested in are given by

Ek
1 −Ok

1 = −Ok
1 = −Nk

where Nk counts neighbors in D(k), meaning pairs of diagrams (p, q) at
distance 1. This situation happens when all blocks of p and q are the same,
except for two blocks of p and two blocks of q, which do not match with
corresponding blocks of q and p. In such a situation, these four blocks yield a
circle.

Consider the generating series of numbers Ck and Nk:

C(z) =
∞∑

k=0

Ckz2k

N(z) =
∞∑

k=0

Nkz2k.

In order to make an effective enumeration of Nk using power series tools,
we need to make some observations:

1. The circle given by non-matching blocks of p and q intersects in four
points the set of 2k points on which elements of D(k) are drawn. For each
choice of four such points there are two possible circles, explaining the 2 factor
appearing in the functional equation below.

2. There is a symmetry by circular permutation in the enumeration prob-
lem of Nk.

These observations give the following equation:

N(z) = 2z4C(z)3
(

C(z) + z
d

dz
C(z)

)
.

On the other hand, the generating series of Catalan numbers is

C(z) =
2

1 +
√

1− 4z2
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where the square root is defined as analytic continuation on C − R− of the
positive function t→ √t on R∗

+. We get

N(z) =
32z4

(1 +
√

1− 4z2)4
√

1− 4z2

which completes the proof.

§8. The Case n = 2

We end the study of o1n with a complete computation for n = 2. The
formula in this section is probably known to specialists, because Ao(2) is one
of the much studied deformations of C(SU(2)), but we were unable to find the
right bibliographical reference for it.

Lemma 8.1. We have the equalities

u2
11 + u2

12 = 1

[u12, u
2
11] = 0

where v is the fundamental corepresentation of Ao(2).

Proof. The first equality comes from the fact that u is orthogonal. The
second one comes from the computation

u12u
2
11 − u2

11u12 = u12(1− u2
12)− (1− u2

12)u12

= u12 − u3
12 − u12 + u3

12

= 0

where we use twice the first equality.

Theorem 8.1. For the generators uij of the algebra Ao(2), the law of
each u2

ij is the uniform measure on [0, 1].

Proof. As explained after Definition 5.1, we may assume i = j = 1. Let
D = D(k). We use the partition

D = D1 � · · · �Dk

where Di is the set of of diagrams such that a string joins 1 with 2i.
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By applying twice Theorem 4.1, then by using several times Lemma 8.1,
we have the following computation.∫

u2k
11 =

∑
p,q∈D

Wk2(p, q)

=
k∑

l=1

∑
p∈D

∑
q∈Dl

Wk2(p, q)

=
k∑

l=1

∫
u12u

2l−2
11 u12u

2k−2l
11

=
k∑

l=1

∫
u2

12u
2k−2
11

=
k∑

l=1

∫
(1− u2

11)u
2k−2
11

= k

∫
u2k−2

11 − k

∫
u2k

11 .

Rearranging terms gives the formula

(k + 1)
∫

u2k
11 = k

∫
u2k−2

11

and we get by induction on k the value of all moments of u2
11:∫

u2k
11 =

1
k + 1

.

But these numbers are known to be the moments of the uniform measure
on [0, 1], and we are done.

§9. The Unitary Quantum Group

In this section we study the Haar functional of the universal algebra Au(n).
This algebra appears in Wang’s thesis (see [18]).

Definition 9.1. Au(n) is the C∗-algebra generated by n2 elements vij ,
with relations making v = vij and vt = vji unitary matrices.

It follows from definitions that Au(n) is a Hopf C∗-algebra. The comulti-
plication, counit and antipode are given by the formulae

∆(vij) =
n∑

i=1

vik ⊗ vkj
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ε(vij) = δij

S(vij) = v∗ji

which express the fact that v is an n-dimensional corepresentation.
The motivating fact about Au(n) is an analogue of Theorem 1.1, involving

the unitary group U(n) and the free group Fn.

Au(n)
↙ ↘

C(U(n)) C∗(Fn).

We already know that this kind of result might not be very relevant. This is
indeed the case, so we switch to computation of commutants. For this purpose,
here is the key observation.

Proposition 9.1. We have an isomorphism

Au(n)/J = Ao(n)

where J is the ideal generated by the relations vij = v∗ij .

Proof. This is clear from definitions of Ao(n) and Au(n).

Let F be the set of words on two letters α, β. For a ∈ F we denote by v⊗a

the corresponding tensor product of v = v⊗α and v̄ = v⊗β .
We denote as usual by u the fundamental corepresentation of Ao(n). Since

morphisms increase Hom spaces, we have inclusions

Hom(va, vb) ⊂ Hom(u⊗l(a), u⊗l(b))

where l is the length of words. These can be combined with equalities in
Theorem 3.1. We get in this way inclusions

Hom(va, vb) ⊂ TL(l(a), l(b)).

Definition 9.2. For a, b ∈ F we consider the subset

D(a, b) ⊂ D(l(a), l(b))

consisting of diagrams p such that when putting a, b on points of p, each string
joins an α letter to a β letter.
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In other words, the set D(a, b) can be described as

D(a, b) =



· · · ← word a

W ← uncolorable strings
· · · · · ← word b




where capital letters denote diagrams formed by non-crossing strings, which
cannot be colored α or β, as to match colors of endpoints.

Consider also the subspace

TL(a, b) ⊂ TL(l(a), l(b))

generated by diagrams in D(a, b).

Theorem 9.1. We have an equality of vector spaces

Hom(v⊗a, v⊗b) = TL(a, b)

where TL(a, b) is identified with its image in Hom(V ⊗l(a), V ⊗l(b)).

Proof. We follow the proof of Theorem 3.1, with notations from there.
The starting remark is that for a unitary matrix v, the fact that vt is unitary
is equivalent to the fact that ξ is fixed by both v⊗ v̄ and v̄⊗ v. In other words,
we have the following two conditions:

E ∈ Hom(1, v ⊗ v̄)

E ∈ Hom(1, v̄ ⊗ v).

Now since E is the semicircle in D(0, 2), these conditions are

∩1 ∈ Hom(1, v⊗αβ)

∩2 ∈ Hom(1, v⊗βα)

where ∩1 is the semicircle having endpoints α, β, and ∩2 is the semicircle having
endpoints β, α. As in proof of Theorem 3.1, this gives

〈∩1,∩2〉 = {Hom(v⊗a, v⊗b) | a, b}

where tensor categories have this time F as monoid of objects. On the other
hand, pictures show that we have the equality

〈∩1,∩2〉 = {TL(a, b) | a, b}
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which together with the above equality gives the result.

Observe that what changed with respect to proof of Theorem 3.1 is the
fact that the Temperley-Lieb algebra is replaced with a kind of free version of
it. The whole combinatorics is worked out in detail in [1].

We get another proof of a main result in [1], a bit more enlightening than
the original one. For two other proofs, probably even more enlightening, but
relying on quite technical notions, see [2] and [5].

Theorem 9.2. We have an embedding of reduced Hopf algebras

Au(n)red ⊂ C
∗(Z) ∗red Ao(n)red

given by v = zu, where z is the generator of Z.

Proof. Since u and ut are unitaries, so are the matrices

w = zu

wt = zut

so we get a morphism from left to right:

f : Au(n)→ C
∗(Z) ∗Ao(n).

As for any morphism, f increases spaces of fixed points:

Hom(1, v⊗a) ⊂ Hom(1, w⊗a).

By standard results in [23], generalising Peter-Weyl theory, f is an isomor-
phism at level of reduced algebras if and only if all inclusions are equalities. See
e.g. [1]. Now all fixed point spaces being finite dimensional, this is the same as
asking for equalities of dimensions:

dim(Hom(1, v⊗a)) = dim(Hom(1, w⊗a)).

In terms of characters, we have to prove the formula∫
χ(v)a =

∫
χ(w)a

where exponentials xa are obtained as corresponding products of terms xα = x

and xβ = x∗. The term on the right is the a-th moment of

χ(w) = χ(zu) = zχ(u)
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which by Voiculescu’s polar decomposition result in [16] is a circular variable.
As for the term on the left, this is given by∫

χ(v)a = dim(Hom(1, v⊗a)) = #D(a)

which by results of Speicher ([14]) and Nica-Speicher ([13]) is also the a-th
moment of the circular variable.

Definition 9.3. The usn variable is given by

usn = v11 + · · ·+ vss

where v is the fundamental corepresentation of Au(n).

This notation looks a bit confusing, because uij was so far reserved for the
fundamental corepresentation of Ao(n). However, this corepresentation will no
longer appear, and there is no confusion.

The properties of usn can be deduced from corresponding properties of osn

by using standard free probability tools.

Theorem 9.3. The usn variable has the following properties.
(1) We have usn = zosn, where z is a Haar-unitary free from osn.
(2) The variable unn is circular.
(3) The variable (n/s)1/2usn with n→∞ is circular.

Proof. The first assertion follows from Theorem 9.2. The other ones
follow from (1) and from Corollaries 5.1 and 5.2, by using Voiculescu’s result
on the polar decomposition of circular variables ([16]).

Theorem 9.4. The elements (n1/2vij)i,j=1,...,s of Au(n) with n ≥ s

become asymptotically free and circular as n→∞.

Proof. This follows along the same lines as Theorem 6.1.

Finally, it is possible to derive from Theorem 9.1 a general integration
formula for Au(n), in the same way as Theorem 4.1 is derived from Theorem
3.1. For this purpose, we first extend Definition 4.2.

Definition 9.4. For a ∈ F , the Gram and Weingarten matrices are

Gan(p, q) = nl(p,q)

Wan = G−1
an

where both indices p, q are diagrams in D(a).
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It is convenient at this point to remove the tensor sign in our notations
v = v⊗α and v̄ = v⊗β . That is, we use the following notations:

v = vα

v̄ = vβ .

As in case of Ao(n), we get that integrals are either 0, or equal to certain
sums of entries of the Weingarten matrix.

Theorem 9.5. The Haar functional of Au(n) is given by∫
va1

i1j1
. . . va2k

i2kj2k
=
∑
pq

δpiδqjWan(p, q)

∫
va1

i1j1
. . . val

iljl
= 0

where a = a1a2 . . . is a word in F , which in the first formula contains as many
α as many β, and in the second formula, doesn’t.

Proof. This proof is done along the same lines as the proof of Theorem
4.1.

Theorem 9.5 has its own interest; however, it is not really needed for study
of usn, where the procedure to follow is explained in Theorem 9.3 and its proof:
find results about osn, then make a free convolution by a Haar-unitary. This
kind of convolution operation is standard in free probability, see for instance
Nica and Speicher ([13]).
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[8] B. Collins and P. Śniady, Integration with respect to the Haar measure on unitary,
orthogonal and symplectic group, Comm. Math. Phys. 264 (2006), no. 3, 773–795.

[9] P. Di Francesco, Meander determinants, Comm. Math. Phys. 191 (1998), no. 3, 543–583.
[10] P. Di Francesco, O. Golinelli and E. Guitter, Meanders and the Temperley-Lieb algebra,

Comm. Math. Phys. 186 (1997), no. 1, 1–59.
[11] V. F. R. Jones, Planar algebras I, arxiv:math.QA/9909027.
[12] D. Kazhdan and H. Wenzl, Reconstructing monoidal categories, in I. M. Gel ′fand Sem-

inar, 111–136, Amer. Math. Soc., Providence, RI.
[13] A. Nica and R. Speicher, R-diagonal pairs—a common approach to Haar unitaries and

circular elements, in Free probability theory (Waterloo, ON, 1995 ), 149–188, Amer.
Math. Soc., Providence, RI.

[14] R. Speicher, Multiplicative functions on the lattice of noncrossing partitions and free
convolution, Math. Ann. 298 (1994), no. 4, 611–628.

[15] S. Vaes and R. Vergnioux, The boundary of universal discrete quantum groups, exactness
and factoriality, arxiv:math.OA/0509706.

[16] D. V. Voiculescu, Circular and semicircular systems and free product factors, in Opera-
tor algebras, unitary representations, enveloping algebras, and invariant theory (Paris,
1989 ), 45–60, Progr. Math., 92, Birkhäuser, Boston, Boston, MA.
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