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Remarks on Framed Bordism Classes of
Classical Lie Groups

By

Haruo MiNamr*

Introduction

We write (G, R) for a compact connected Lie group G of dimension d > 0
regarded as a framed manifold with the right invariant framing R and de-
note by [G, R] its bordism class determined in wg via the Thom-Pontrjagin
construction. For this it is known [7] that 72[G,R] = 0 and more previ-
ously in [2] it is conjectured that [G,R] = 0 if rankG > 10 or so. We have
[SO(2n),R] = 0 (n > 2) already in [3] and so we are interested in such a
conjecture for the cases G = SO(n), SU(n) or Sp(n).

In this note we consider a slight modification of Proposition 5.3 of [1] which
describes the behavior of framings of G and using this we show the following
partial results:

[SO(8n+1),R] =0, [SO(32n+3),R] =0, [Sp(8n),R] =0 and
[SU@Bn+1),R]=0 forn>1

And also we give a direct proof of the result of [6] about the 3-component of
[SO(2n + 1), R] and so of [Sp(n), R]. In particular, two third parts of it follow
immediately from this modification.

81. A Formula for Null Bordism Classes

In this section we will reconsider a result of Proposition 5.3 of [1] and give
a proof of it in order to grope for a little improvement. Let G be a compact
connected Lie group and H C G a closed subgroup isomorphic to S® where
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s =1 or 3. Let us assume that H is identified with S° and denote by o the
usual inclusion H < SO(s + 1).

Let 1 be the vector bundle associated via o with the principal H-bundle
7w : G — G/H and denote by p : D(n) — G/H its disk bundle. Here G/H
means the space of right cosets of H in G as usual. Putting W = D(n) its
tangent bundle T (W) can be decomposed as

(1.1) T(W)=p"(T(G/H) & n)

as vector bundles over W where T(G/H) denotes the tangent bundle of G/H
(see [2] and also [4]). Clearly the associated sphere bundle S(n) — G/H of n
is isomorphic to the principal H-bundle 7 : G — G/H. Therefore we see that
the restriction of the equation of (1.1) to S(n) becomes an isomorphism

T(G) e (Gx R)2n*(T(G/H))®7*(n)

of vector bundles over G where T(G) denotes the tangent bundle of G. Note
that 7*(n) has a natural cross-section so that it can be decomposed as 7* (1) =
1o ® (G x R). Here 1y coincides with the bundle Ty (G) consisting of tangents
along the fibres of the principal H-bundle = : G — G/H. This has a natural

right action of H. So we have an isomorphism
(1.2) TGE®(GxR) 27" (T(G/H)® Ty (G)/H)® (G x R)

of vector bundles over G.
Analogously as in (1.1) we have a decomposition

(1.3) T(G) = o*(T(G/H) & Ty (G)/H).

It is easily checked that the equation of (1.2) is just a stabilization of this
isomorphism. Now dividing the equation of (1.3) by the right action of H
yields an isomorphism

T(G)/H=T(G/H)® Tu(G)/H

of vector bundles over G/H. Denote by Adg (resp. Ady) the adjoint repre-
sentation of G (resp. H). Then the restriction of Adg to H is decomposed
as

Adg|H = Ad(G,H) @® Adgy

since Adg|H contains Ady as a subrepresentation. Let H act via Adg|H
on the tangent space T,(G) at the identity element e of G. Then T.(G) is
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also decomposed as T.(G) =V @ T.(H) corresponding to the decomosition of
Adg|H mentioned above. Consider the isomorphism L : T(G) — G x T.(G)
of vector bundles given by L(v) = (g,Ls-1_(v)) for v € T,(G) where L,
denotes left multiplication by ¢~! and T}, (G) the tangent space at g € G. Since
this isomorphism becomes compatible with the right action of H, we have
T(G)/H = G xg T.(G). Similarly we obtain Ty (G)/H = G x g T.(H) so that
we can deduce from the equation following (1.3)

(1.4) T(G/H) = G xy V.

Let us identify the preceding two isomorphisms and write g x ;u for the element
of GxgyV (resp. GxyT.(H)) represented by (g,u) € GXV (resp. GxT.(H)).
If furthermore an element v € T, (G) is decomposed as

v =y + vy

where v, € V and vy € T.(H), then we see that the isomorphism of vector
bundles of (1.3) is given by the assignment

(1.5) Ly, (v) — (9 ¥ v)+ (g X vf).

Here we recall the definition of framings of tangent bundles. Identifying
R? with T.(G) in a orientation preserving way, the right invariant framing
R:T(G) — G x R of T(G) is given by R(v) = (g, Ry-1,(v)) for v € T,(G)
where R,-1 denotes right multiplication by g~'. We note here that the left
invariant framing L defined above and this one are transformed into each other
with the change of orientation by (—1)? in degree under the map t : G — G
given by t(g) = g~! for g € G, i.e. it holds that [G, R] = (—1)?[G, L].

Given a map ¢ : G — SO(n), we have an automorphism of the trivial
bundle G x R" given by (g,w) — (g,¢(g) " (w)). Then the twisted framing
R? of R by ¢ is defined as a direct sum of R and this automorphism. It is easy
to see that the determination of [G, R?] depends essentially on the element 3(ip)
of I?é_l(G+) represented by ¢ where G denotes the G adjoined a disjoint
base point. In fact by definition ([10], Proposition 8.14) we see that [G, R¥] can
be represented as a Kronecker product of J(8(p)) € 7%(GT) and the homotopy
fundamental class o(G, R) € 5 (G*) of (G, R), i.e.

(1.6) (G, R?] = (J(B(¢)),0(G, R))

— 1
where J denotes the J-map KO (GT) — 72(GT). Henceforth we assume
that ¢ is identified with 3(yp). Also we abbreviate (G, R¥) to (G, ¢) and write
[G, R¥] = [G, ¢] so that we have [G, 0] = [G, R].
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We turn now to the equation of (1.1). Suppose that there is a real repre-
sentation f of G such that

fIH = Ad(G,H) Godl

where the integer ¢ denotes the ¢-dimensional trivial representation. Applying
f to the equation of (1.1) in the usual fashion under the identification of (1.4)
yields an isomorphism

F:T(W)® (W x RY) - W x R

of vector bundles over W, so that W becomes a framed manifold with F' as
a framing. And further considering the assignment of (1.5) we find that the
restriction

F':T(G)® (G x R*Y) — G x R*+1

of F to the restriction of T(W) & (W x R*) — W to G C W is given by

(v, (g, w)) = (g, f(9) (v + w))

for v € Ty(G) and w € R’ This implies that the twisted framing of R by — f
equals F’, so that it can be extended over W. So (G, —f) becomes a framed
boundary of (W, F).

Note that this result is slightly generalized as follows. Let p1, ps be n-
dimensional real representations of G such that pi|H = p|H. Define a map
¢ : G/H — SO(n) by @(gH) = p1(g)p2(g)~" for g € G and put ¢ = gop:
W — SO(n). Then we see that the restriction of the twisted framing F'¥ of W
to G equals the twisted framing of R by — f + p1 — pa, so that (G, —f + p1 — p2)
also becomes a framed boundary of (W, F¥).

In general there holds the following formula. For any real representations
p1, p2 of G we have

(1.7) [G,Adg — p1 + pa] = (=1)U[G, p1 = p2].

This is an easy modification of Lemma 4 of [9]. The proof can be done also
using the map ¢ : G — G as above. In fact ¢ transforms (G, Adg — p1 + p2) into
(G, p1 — p2) and then changes the orientation by (—1)? in degree. Using (1.7)
we therefore have that (G, Adg + f — p1 + p2) is framed null-bordant. Thus we
get the following.

Proposition 1.8 (cf. [1], Proposition 5.3). Let H C G be a closed
subgroup isomorphic to either S* or S3. Suppose that there exists a real rep-
resentation f of G such that f|H = Ad(g gy ® o up to trivial representations
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and given two real representations pi, pa of G satisfying p1|H = po|H. Then
(G, =f+p1—p2] =0

(hence equivalently [G,Adg + f — p1 + p2] =0).

82. Formulas for Classical Lie Groups

By (1.6) we have [G,¢] = (J(¢), o(G,R)). Hence putting k(z) = (x,
(G, R)) for x € m2(GT) we can write as x(J(¢)) = [G, ] and in particular
k(1) = [G,R] since J(0) = 1. For any prime p we denote by x(, the p-
component of elements = of the relevant groups and further by z(,qqy the odd-
component of z. Let p denote the identity map representation of SO(n) or the
realifications of those of SU(n) and Sp(n). Then from Proposition 1.8 we have
the following proposition.

Proposition 2.1 (cf. [1], Proposition 5.2).
a) [SO(n
B

)

n—1—3k)ploaay =0 (n > 2),

n n— 3 = 3k)pl(oda) = 0 (n > 4),

)

nflfSk) ](2):0(7122),

b) [SU(n n—1—3k)pl(oda) = 0 (n > 2),

)

wn

) =
O(n), =(
(n), =(
[SO(n), —(n — 3 — 32k)pl(2) = 0 (n > 4),
(n), —(
(n), =(

[
¢) [Sp(n),=(n—=3k)ploaay =0 (n = 1),

U(n),—(n—1—8k)pla) =0 (n>2),

[Sp(n), —(n — 8k)pl2) =0 (n = 1)

for integer k.

Proof. a) Choose SO(2) x I,_o for the subgroup H of G = SO(n) in
Proposition 1.8 where I; denotes the unit matrix of degree t. Then we can take
(n—1)p for the representation f required in Proposition 1.8 because Adg = A\?p,
Ady = 1 and p|H = o @ (n — 2). Moreover, for any k > 0, if we take
p1 = k(p?>® (n* —3n)) and ps = k(¢?p @ (2n — 4)p) where 1? denotes the 2nd
Adams operation, then we see that p; coincides with p, on H. Hence we have
from Proposition 1.8

R(J(=(n = 1)p — k(620 — p? + (20 — 4)p))) = 0.
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for any k£ > 0. But interchange p; and ps shows that this equality is valid in
the case where k < 0. Now the solution of the Adams conjecture [8] shows
that J(p — ¥?p)(oaq) = 1 and also J(p? — 2np) = 1 since $(p?) = 2nS(p) in
— 1

KO (G7T). Hence by substituting these two equalities into the above one
using the multiplicative formula J(z +y) = J(z)J(y), we get for any integer k

K(J(=(n —1=3k)p))(oda) =0

which shows that [SO(n), —(n — 1 — 3k)p(oaa) = 0.

To prove the second formula we set H = SU(2) x I,y C G = SO(n).
Then we can take f = (n—3)p and also it can be verified that 21/%p® (2n —8)p
coincides with p? @ (n? — 6n) on H. So by applying Proposition 1.8 again we
have

K(J(=(n=3)p = k((1+p™)/2)(2¢°p — p* + (2n— 8)p))) = 0

for any integer k and N > 0 where p denotes an odd prime. Hence by the same
reason as above we have

K(J(—(n =3 —=3k)p + 3kp" p)) (0aa) = 0

Now we know that J(z) € n2(GT) = Z & 7%(G) can be written as J(z) =
1+ J(z) where J(z) € 7%(G) and any elment of 7%(G) is nilpotent and has
finite order. So if IV is taken to be sufficiently large, then we see that there
holds .J(3kp™ p)p) = 1. Therefore it follows from the above equality that
k(J(=(n =3 —=3k)p)p) = 0 for any odd prime p, so that we have

K(J(=(n =3 = 3k)p))(oaay =0

and hence [SO(n), —(n — 3 — 3k)p|(0aq) = 0 for any integer k.

As for the succeeding two formulas about their 2-components it suffices
to use the 3rd Adams operation ¢® instead of ¢? in the arguments similar to
those in the above cases.

b), ¢) The proofs of these two cases are quite parallel to that of a). Here it
suffices to choose SU(2) x I, (resp. Sp(1) x I,,_1) for the required subgroup
H of G = SU(n) (resp. Sp(n)). Then f can be taken to be (n—1)p (resp. np).

O

Proposition 2.2.

a) [50(377, + 1), R](odd) = O,
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[SO(3n +3), R](0dq) = 0,
[SO(8n+ 1), R](2) =0,
[SO(32n + 3), ](2) =0,
b) [SU(3n+ 1), R](oaay = 0,
[SU8n +1), R](2) =0,
c) [Sp(3n), R](oaa) =0,
[Sp(8n), R]2) =0

forn > 1.

Proof. These follow by substituting adequate integers for n and k in the
formulas of Proposition 2.1. For example, the first formula is just the first one
of Proposition 2.1 with 3n + 1 instead of n and k = n. O

The following is also an immediate corollary of Proposition 2.2.
Corollary 2.3.
[SO(24n +1),R] =0,
[SO(96n + 3),R| =0,
[SU(24n + 1), R] =0,
[Sp(24n),R] =0
forn > 1.

As noted in the introduction we know in [7] that [G, R] has at most 2-
and 3-components. But we have [G, R](3) = 0 for G = SO(2n+ 1), Sp(n) (n >
3,n#5,7,11) and SU(n) (n > 3) by [6] and [5] respectively. Hence Corollary
2.3 can be improved as follows.

Corollary 2.4.
[SO(8n+1),R] =0,
[SO(32n+ 3),R] =0,

[SU(8n +1), R] = 0,
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[Sp(8n), k] = 0

form > 1.

§3. Remarks for SO(2n 4+ 1) and Sp(n)

In this section we will give a direct proof of the following result of [6] using
Proposition 2.1.

(3.1) [SO(2n+ 1), R]3y = 0, equivalently [Sp(n), R]3) = 0 for n > 3,n # 5.

Here we find that this assertion holds in the cases n = 7 and 11 which remain
undecided in [6]. But it is regrettable that the case n = 5 does so yet. Since
[SO(2n + 1), R](3y and [Sp(n), R]() have the same order by Lemma 2.6 of [6]
we consider only the case G = SO(2n + 1) below.

Especially the cases where n = 0,1 mod 3 are straightforward from the
first and second formulas of Proposition 2.1, a). In fact by substituting n =
30,k =20 and n = 3(+1,k = 2¢ into them with 2n+ 1 instead of n respectively
we can get [G, R]3) = 0 immediately.

We next consider the case n =2 mod 3, i.e. n=3¢+2 (£ > 2). Putting
p=J (p)(3) where p is as above we have from the first and second formulas of
Proposition 2.1, a)

(3.2) R(T+p)* =0 and  w((14+wp)***?) =0 for k>0.

Let H = SO(2) x Is,,—1 C G and let G and T(G) be provided with the natural
right actions of H. Then the twisted framing R¥ which occurs in (1.6) becomes
an H-equivariant isomorphism. So we can apply Lemma 2.2 of [7] to this
equivariant framed manifold (G, R¥) and hence we have 24][G, ¢] = 0 by the
same argument as in Theorem 1.1 of [7]. So taking as ¢ the one used in the
proof of Proposition 2.1, a) we have 3% ((1+x)3*) = 0 for any k > 0. Combining
this with (3.2) yields 3x((1 + p)¥) = 0 for any k& > 0 and so by induction on &
we have

(3.3) 3k(u*) =0 for k> 0.
Using this Theorem (5.3) of [2] gives
(3.4 G, Rl = (~D'R(7%)  and  @*+ =0,

From now on we work modulo 3 due to (3.3). Again from (3.2) by induction
on k we have

(3.5)  k(EF+pty=0 and k(E*FT 4+t =0 for k>0.
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Put a = j(AdG)(g). Then it can be deduced from (1.7) that
(3.6) K((14 a)u®) = (=1)*&(R*) and s((1 + a)R*) = (=1)k(u*) for k >0

where R is the formal power series given by 1+ R = (14+pu)~!. As is seen above
it holds that J(p — ¢?p)(3) = 1 so that J(2A*p)3) = J((12¢ + 9)p)(3). Since
A2p = Adg this yields

Tta =1—Lp® =00+ 1) S+ (0+1) (02 —043) /31° — 2 (L+1) (02 —£+3) /312 4Dy

where hi5 denotes the sum of the higher terms with degrees above 15. From
(3.5) it follows immediately that

3£+2) 3l+1) _ 3[) 3[—1) 3[—2) 3@—3)

K (p = —k(p K(p™), K = —k(p = r(p

)

3Z—4) 36—5) 32—6) 36—7) 36—8) 32—9).

K(p = —k(p =K(p77), K = —r(u = K(p

The calculations below are done taking account of these equalities. By calcu-
lating both of the equalities of (3.6) with k = 3¢ — 6 we obtain

R(=p* P4+ 1)) =0 and  k((€—1)p* 7 + (2 + 1)) =0.

These show that x(13+2) = 0. Hence by virtue of (3.4) we see that if ¢ is prime
to 3 then [G, R](3) = 0. Now suppose that £ =0 mod 3 and put £ = 3s. Then
calculating the first equalities of (3.6) with k = 3¢ — 7,3¢ — 8 yields

30-7 ( 3€+2) -0 _30—7

and  K(—p +su2?) = 0.

K s=1u

By adding these equations, we have #(u3*2) = 0 which completes the proof of
(3.1).
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