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Classical Lie Groups
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Introduction

We write (G,R) for a compact connected Lie group G of dimension d > 0
regarded as a framed manifold with the right invariant framing R and de-
note by [G,R] its bordism class determined in πS

d via the Thom-Pontrjagin
construction. For this it is known [7] that 72[G,R] = 0 and more previ-
ously in [2] it is conjectured that [G,R] = 0 if rankG ≥ 10 or so. We have
[SO(2n), R] = 0 (n ≥ 2) already in [3] and so we are interested in such a
conjecture for the cases G = SO(n), SU(n) or Sp(n).

In this note we consider a slight modification of Proposition 5.3 of [1] which
describes the behavior of framings of G and using this we show the following
partial results:

[SO(8n+ 1), R] = 0, [SO(32n+ 3), R] = 0, [Sp(8n), R] = 0 and

[SU(8n+ 1), R] = 0 for n ≥ 1

And also we give a direct proof of the result of [6] about the 3-component of
[SO(2n+ 1), R] and so of [Sp(n), R]. In particular, two third parts of it follow
immediately from this modification.

§1. A Formula for Null Bordism Classes

In this section we will reconsider a result of Proposition 5.3 of [1] and give
a proof of it in order to grope for a little improvement. Let G be a compact
connected Lie group and H ⊂ G a closed subgroup isomorphic to Ss where
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462 Haruo Minami

s = 1 or 3. Let us assume that H is identified with Ss and denote by σ the
usual inclusion H ↪→ SO(s+ 1).

Let η be the vector bundle associated via σ with the principal H-bundle
π : G → G/H and denote by p : D(η) → G/H its disk bundle. Here G/H
means the space of right cosets of H in G as usual. Putting W = D(η) its
tangent bundle T (W ) can be decomposed as

(1.1) T (W ) ∼= p∗(T (G/H) ⊕ η)

as vector bundles over W where T (G/H) denotes the tangent bundle of G/H
(see [2] and also [4]). Clearly the associated sphere bundle S(η) → G/H of η
is isomorphic to the principal H-bundle π : G → G/H. Therefore we see that
the restriction of the equation of (1.1) to S(η) becomes an isomorphism

T (G) ⊕ (G× R) ∼= π∗(T (G/H)) ⊕ π∗(η)

of vector bundles over G where T (G) denotes the tangent bundle of G. Note
that π∗(η) has a natural cross-section so that it can be decomposed as π∗(η) ∼=
η0 ⊕ (G×R). Here η0 coincides with the bundle TH(G) consisting of tangents
along the fibres of the principal H-bundle π : G → G/H. This has a natural
right action of H. So we have an isomorphism

(1.2) T (G) ⊕ (G× R) ∼= π∗(T (G/H) ⊕ TH(G)/H) ⊕ (G× R)

of vector bundles over G.
Analogously as in (1.1) we have a decomposition

(1.3) T (G) ∼= π∗(T (G/H) ⊕ TH(G)/H).

It is easily checked that the equation of (1.2) is just a stabilization of this
isomorphism. Now dividing the equation of (1.3) by the right action of H
yields an isomorphism

T (G)/H ∼= T (G/H) ⊕ TH(G)/H

of vector bundles over G/H. Denote by AdG (resp. AdH) the adjoint repre-
sentation of G (resp. H). Then the restriction of AdG to H is decomposed
as

AdG|H = Ad(G,H) ⊕ AdH

since AdG|H contains AdH as a subrepresentation. Let H act via AdG|H
on the tangent space Te(G) at the identity element e of G. Then Te(G) is
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also decomposed as Te(G) = V ⊕ Te(H) corresponding to the decomosition of
AdG|H mentioned above. Consider the isomorphism L : T (G) → G × Te(G)
of vector bundles given by L(v) = (g, Lg−1∗(v)) for v ∈ Tg(G) where Lg−1

denotes left multiplication by g−1 and Tg(G) the tangent space at g ∈ G. Since
this isomorphism becomes compatible with the right action of H, we have
T (G)/H ∼= G×H Te(G). Similarly we obtain TH(G)/H ∼= G×H Te(H) so that
we can deduce from the equation following (1.3)

(1.4) T (G/H) ∼= G×H V.

Let us identify the preceding two isomorphisms and write g×Hu for the element
of G×H V (resp. G×H Te(H)) represented by (g, u) ∈ G×V (resp. G×Te(H)).
If furthermore an element v ∈ Te(G) is decomposed as

v = vb + vf

where vb ∈ V and vf ∈ Te(H), then we see that the isomorphism of vector
bundles of (1.3) is given by the assignment

(1.5) Lg∗(v) �→ (g ×H vb) + (g ×H vf ).

Here we recall the definition of framings of tangent bundles. Identifying
Rd with Te(G) in a orientation preserving way, the right invariant framing
R : T (G) → G × Rd of T (G) is given by R(v) = (g,Rg−1∗(v)) for v ∈ Tg(G)
where Rg−1 denotes right multiplication by g−1. We note here that the left
invariant framing L defined above and this one are transformed into each other
with the change of orientation by (−1)d in degree under the map t : G → G

given by t(g) = g−1 for g ∈ G, i.e. it holds that [G,R] = (−1)d[G,L].
Given a map ϕ : G → SO(n), we have an automorphism of the trivial

bundle G × Rn given by (g, w) �→ (g, ϕ(g)−1(w)). Then the twisted framing
Rϕ of R by ϕ is defined as a direct sum of R and this automorphism. It is easy
to see that the determination of [G,Rϕ] depends essentially on the element β(ϕ)

of K̃O
−1

(G+) represented by ϕ where G+ denotes the G adjoined a disjoint
base point. In fact by definition ([10], Proposition 8.14) we see that [G,Rϕ] can
be represented as a Kronecker product of J(β(ϕ)) ∈ π0

S(G+) and the homotopy
fundamental class σ(G,R) ∈ πS

d (G+) of (G,R), i.e.

(1.6) [G,Rϕ] = 〈J(β(ϕ)), σ(G,R)〉

where J denotes the J-map K̃O
−1

(G+) → π0
S(G+). Henceforth we assume

that ϕ is identified with β(ϕ). Also we abbreviate (G,Rϕ) to (G,ϕ) and write
[G,Rϕ] = [G,ϕ] so that we have [G, 0] = [G,R].
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We turn now to the equation of (1.1). Suppose that there is a real repre-
sentation f of G such that

f |H = Ad(G,H) ⊕ σ ⊕ �

where the integer � denotes the �-dimensional trivial representation. Applying
f to the equation of (1.1) in the usual fashion under the identification of (1.4)
yields an isomorphism

F : T (W ) ⊕ (W × R�) →W × Rd+�+1

of vector bundles over W , so that W becomes a framed manifold with F as
a framing. And further considering the assignment of (1.5) we find that the
restriction

F ′ : T (G) ⊕ (G× R�+1) → G× Rd+�+1

of F to the restriction of T (W ) ⊕ (W × R�) →W to G ⊂W is given by

(v, (g, w)) �→ (g, f(g)(v + w))

for v ∈ Tg(G) and w ∈ R�+1. This implies that the twisted framing of R by −f
equals F ′, so that it can be extended over W . So (G,−f) becomes a framed
boundary of (W,F ).

Note that this result is slightly generalized as follows. Let ρ1, ρ2 be n-
dimensional real representations of G such that ρ1|H = ρ2|H. Define a map
ϕ̄ : G/H → SO(n) by ϕ̄(gH) = ρ1(g)ρ2(g)−1 for g ∈ G and put ϕ = ϕ̄ ◦ p :
W → SO(n). Then we see that the restriction of the twisted framing Fϕ of W
to G equals the twisted framing of R by −f +ρ1−ρ2, so that (G,−f+ρ1−ρ2)
also becomes a framed boundary of (W,Fϕ).

In general there holds the following formula. For any real representations
ρ1, ρ2 of G we have

(1.7) [G,AdG − ρ1 + ρ2] = (−1)d[G, ρ1 − ρ2].

This is an easy modification of Lemma 4 of [9]. The proof can be done also
using the map t : G→ G as above. In fact t transforms (G,AdG −ρ1 +ρ2) into
(G, ρ1 − ρ2) and then changes the orientation by (−1)d in degree. Using (1.7)
we therefore have that (G,AdG + f − ρ1 + ρ2) is framed null-bordant. Thus we
get the following.

Proposition 1.8 (cf. [1], Proposition 5.3). Let H ⊂ G be a closed
subgroup isomorphic to either S1 or S3. Suppose that there exists a real rep-
resentation f of G such that f |H = Ad(G,H) ⊕ σ up to trivial representations
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and given two real representations ρ1, ρ2 of G satisfying ρ1|H = ρ2|H. Then

[G,−f + ρ1 − ρ2] = 0

(hence equivalently [G,AdG + f − ρ1 + ρ2] = 0).

§2. Formulas for Classical Lie Groups

By (1.6) we have [G,ϕ] = 〈J(ϕ), σ(G,R)〉. Hence putting κ(x) = 〈x,
σ(G,R)〉 for x ∈ π0

S(G+) we can write as κ(J(ϕ)) = [G,ϕ] and in particular
κ(1) = [G,R] since J(0) = 1. For any prime p we denote by x(p) the p-
component of elements x of the relevant groups and further by x(odd) the odd-
component of x. Let ρ denote the identity map representation of SO(n) or the
realifications of those of SU(n) and Sp(n). Then from Proposition 1.8 we have
the following proposition.

Proposition 2.1 (cf. [1], Proposition 5.2).

a) [SO(n),−(n− 1 − 3k)ρ](odd) = 0 (n ≥ 2),

[SO(n),−(n− 3 − 3k)ρ](odd) = 0 (n ≥ 4),

[SO(n),−(n− 1 − 8k)ρ](2) = 0 (n ≥ 2),

[SO(n),−(n− 3 − 32k)ρ](2) = 0 (n ≥ 4),

b) [SU(n),−(n− 1 − 3k)ρ](odd) = 0 (n ≥ 2),

[SU(n),−(n− 1 − 8k)ρ](2) = 0 (n ≥ 2),

c) [Sp(n),−(n− 3k)ρ](odd) = 0 (n ≥ 1),

[Sp(n),−(n− 8k)ρ](2) = 0 (n ≥ 1)

for integer k.

Proof. a) Choose SO(2) × In−2 for the subgroup H of G = SO(n) in
Proposition 1.8 where It denotes the unit matrix of degree t. Then we can take
(n−1)ρ for the representation f required in Proposition 1.8 because AdG = λ2ρ,
AdH = 1 and ρ|H = σ ⊕ (n − 2). Moreover, for any k ≥ 0, if we take
ρ1 = k(ρ2 ⊕ (n2 − 3n)) and ρ2 = k(ψ2ρ⊕ (2n− 4)ρ) where ψ2 denotes the 2nd
Adams operation, then we see that ρ1 coincides with ρ2 on H. Hence we have
from Proposition 1.8

κ(J(−(n− 1)ρ− k(ψ2ρ− ρ2 + (2n− 4)ρ))) = 0.
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for any k ≥ 0. But interchange ρ1 and ρ2 shows that this equality is valid in
the case where k < 0. Now the solution of the Adams conjecture [8] shows
that J(ρ − ψ2ρ)(odd) = 1 and also J(ρ2 − 2nρ) = 1 since β(ρ2) = 2nβ(ρ) in

K̃O
−1

(G+). Hence by substituting these two equalities into the above one
using the multiplicative formula J(x+ y) = J(x)J(y), we get for any integer k

κ(J(−(n− 1 − 3k)ρ))(odd) = 0

which shows that [SO(n),−(n− 1 − 3k)ρ](odd) = 0.
To prove the second formula we set H = SU(2) × In−4 ⊂ G = SO(n).

Then we can take f = (n−3)ρ and also it can be verified that 2ψ2ρ⊕ (2n−8)ρ
coincides with ρ2 ⊕ (n2 − 6n) on H. So by applying Proposition 1.8 again we
have

κ(J(−(n− 3)ρ− k((1 + pN )/2)(2ψ2ρ− ρ2 + (2n− 8)ρ))) = 0

for any integer k and N ≥ 0 where p denotes an odd prime. Hence by the same
reason as above we have

κ(J(−(n− 3 − 3k)ρ+ 3kpNρ))(odd) = 0.

Now we know that J(x) ∈ π0
S(G+) = Z ⊕ π0

S(G) can be written as J(x) =
1 + J̃(x) where J̃(x) ∈ π0

S(G) and any elment of π0
S(G) is nilpotent and has

finite order. So if N is taken to be sufficiently large, then we see that there
holds J(3kpNρ)(p) = 1. Therefore it follows from the above equality that
κ(J(−(n− 3 − 3k)ρ)(p) = 0 for any odd prime p, so that we have

κ(J(−(n− 3 − 3k)ρ))(odd) = 0

and hence [SO(n),−(n− 3 − 3k)ρ](odd) = 0 for any integer k.
As for the succeeding two formulas about their 2-components it suffices

to use the 3rd Adams operation ψ3 instead of ψ2 in the arguments similar to
those in the above cases.

b), c) The proofs of these two cases are quite parallel to that of a). Here it
suffices to choose SU(2)× In−2 (resp. Sp(1)× In−1) for the required subgroup
H of G = SU(n) (resp. Sp(n)). Then f can be taken to be (n−1)ρ (resp. nρ).

Proposition 2.2.

a) [SO(3n+ 1), R](odd) = 0,
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[SO(3n+ 3), R](odd) = 0,

[SO(8n+ 1), R](2) = 0,

[SO(32n+ 3), R](2) = 0,

b) [SU(3n+ 1), R](odd) = 0,

[SU(8n+ 1), R](2) = 0,

c) [Sp(3n), R](odd) = 0,

[Sp(8n), R](2) = 0

for n ≥ 1.

Proof. These follow by substituting adequate integers for n and k in the
formulas of Proposition 2.1. For example, the first formula is just the first one
of Proposition 2.1 with 3n+ 1 instead of n and k = n.

The following is also an immediate corollary of Proposition 2.2.

Corollary 2.3.

[SO(24n+ 1), R] = 0,

[SO(96n+ 3), R] = 0,

[SU(24n+ 1), R] = 0,

[Sp(24n), R] = 0

for n ≥ 1.

As noted in the introduction we know in [7] that [G,R] has at most 2-
and 3-components. But we have [G,R](3) = 0 for G = SO(2n+ 1), Sp(n) (n ≥
3, n �= 5, 7, 11) and SU(n) (n ≥ 3) by [6] and [5] respectively. Hence Corollary
2.3 can be improved as follows.

Corollary 2.4.

[SO(8n+ 1), R] = 0,

[SO(32n+ 3), R] = 0,

[SU(8n+ 1), R] = 0,
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[Sp(8n), R] = 0

for n ≥ 1.

§3. Remarks for SO(2n + 1) and Sp(n)

In this section we will give a direct proof of the following result of [6] using
Proposition 2.1.

(3.1) [SO(2n+ 1), R](3) = 0, equivalently [Sp(n), R](3) = 0 for n ≥ 3, n �= 5.

Here we find that this assertion holds in the cases n = 7 and 11 which remain
undecided in [6]. But it is regrettable that the case n = 5 does so yet. Since
[SO(2n+ 1), R](3) and [Sp(n), R](3) have the same order by Lemma 2.6 of [6]
we consider only the case G = SO(2n+ 1) below.

Especially the cases where n ≡ 0, 1 mod 3 are straightforward from the
first and second formulas of Proposition 2.1, a). In fact by substituting n =
3�, k = 2� and n = 3�+1, k = 2� into them with 2n+1 instead of n respectively
we can get [G,R](3) = 0 immediately.

We next consider the case n ≡ 2 mod 3, i.e. n = 3�+ 2 (� ≥ 2). Putting
µ = J̃(ρ)(3) where ρ is as above we have from the first and second formulas of
Proposition 2.1, a)

(3.2) κ((1 + µ)3k+1) = 0 and κ((1 + µ)3k+2) = 0 for k ≥ 0.

Let H = SO(2)× I2n−1 ⊂ G and let G and T (G) be provided with the natural
right actions of H. Then the twisted framing Rϕ which occurs in (1.6) becomes
an H-equivariant isomorphism. So we can apply Lemma 2.2 of [7] to this
equivariant framed manifold (G,Rϕ) and hence we have 24[G,ϕ] = 0 by the
same argument as in Theorem 1.1 of [7]. So taking as ϕ the one used in the
proof of Proposition 2.1, a) we have 3κ((1+µ)3k) = 0 for any k ≥ 0. Combining
this with (3.2) yields 3κ((1 + µ)k) = 0 for any k ≥ 0 and so by induction on k
we have

(3.3) 3κ(µk) = 0 for k ≥ 0.

Using this Theorem (5.3) of [2] gives

(3.4) [G,R](3) = (−1)�κ(µ3�+2) and µ3�+3 = 0.

From now on we work modulo 3 due to (3.3). Again from (3.2) by induction
on k we have

(3.5) κ(µ3k + µ3k+1) = 0 and κ(µ3k+1 + µ3k+2) = 0 for k ≥ 0.
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Put α = J̃(AdG)(3). Then it can be deduced from (1.7) that

(3.6) κ((1 + α)µk) = (−1)�κ(Rk) and κ((1 + α)Rk) = (−1)�κ(µk) for k ≥ 0

where R is the formal power series given by 1+R = (1+µ)−1. As is seen above
it holds that J(ρ − ψ2ρ)(3) = 1 so that J(2λ2ρ)(3) = J((12� + 9)ρ)(3). Since
λ2ρ = AdG this yields

1+α = 1−�µ3−�(�+1)µ6+(�+1)(�2−�+3)/3µ9−�2(�+1)(�2−�+3)/3µ12+h15

where h15 denotes the sum of the higher terms with degrees above 15. From
(3.5) it follows immediately that

κ(µ3�+2) = −κ(µ3�+1) = κ(µ3�), κ(µ3�−1) = −κ(µ3�−2) = κ(µ3�−3),

κ(µ3�−4) = −κ(µ3�−5) = κ(µ3�−6), κ(µ3�−7) = −κ(µ3�−8) = κ(µ3�−9).

The calculations below are done taking account of these equalities. By calcu-
lating both of the equalities of (3.6) with k = 3�− 6 we obtain

κ(−µ3�−3 + (�+ 1)µ3�) = 0 and κ((�− 1)µ3�−3 + (�2 + 1)µ3�) = 0.

These show that κ(µ3�+2) = 0. Hence by virtue of (3.4) we see that if � is prime
to 3 then [G,R](3) = 0. Now suppose that � ≡ 0 mod 3 and put � = 3s. Then
calculating the first equalities of (3.6) with k = 3�− 7, 3�− 8 yields

κ(µ3�−7 − (s− 1)µ3�+2) = 0 and κ(−µ3�−7 + sµ3�+2) = 0.

By adding these equations, we have κ(µ3�+2) = 0 which completes the proof of
(3.1).
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