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Modified Elastic Wave Equations
on Riemannian and Kahler Manifolds

By

Yoshiyasu YASuTOMI*

Abstract

We introduce some geometrically invariant systems of differential equations on
any Riemannian manifolds and also on any K&hler manifolds, which are natural exten-
sions of the elastic wave equations on R®. Further we prove the local decomposition
theorems of distribution solutions for those systems. In particular, the solutions of
our systems on Kéahler manifolds are decomposed into 4 solutions with different prop-

agation speeds.

80 Introduction and Results

Introduction

The elastic wave equation on R? is written as follows:

2

Pu:=p O - (A + p)grad div u — pAu

"
32
=PpEt (A +2u)grad div u + p rot rot u = f,

where u is a 3-dimensional vector field of the displacement of an elastic body, p
is the density constant and A, u are the Lamé constants. It is well-known that
any distribution solution u of Pu = 0 is decomposed into a sum u = uy + us of
solutions w1, us satisfying the following additional equations:

rot uy =0, div us =0.
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We call up,us a longitudinal wave solution and a transverse wave solution,
respectively.

The elastic wave equations on Euclidean space are well studied in the
Scattering theorem and propagation problems by Kawashita [6], Shimizu [7],
and so on.

Real elastic waves (earthquakes) propagate through many layers which do
not necessarily lie in good order. Therefore, more general study, we extend the
elastic wave equations on Euclidean space to ones on Riemannian manifolds. In
a physical generalization of this system of equations to Riemannian manifolds
we replace div, rot with some covariant differentiations. However covariant
differentiations do not commute with each other in general. Hence we consider
the new elastic wave equations which do not depend on the choice of coordi-
nates, and find the natural model of hyperbolic equations with multi-values
and multi-modes extended from the theory of the elastic wave equations as the
model to apply the polarization theory.

To begin with, in Chapter 2, we consider the physical generalization P°™® u
=0 of the elastic wave equation on a Riemannian manifold. In Chapter 3, we
introduce a new differential equation Py u = 0 which is a modification on the
lower order term of the original equation Forg u = 0. Then we show that; the
new differential equation admits a decomposition of any solutions into longi-
tudinal wave solutions and transverse wave solutions. However, the original
equation does not admit any similar decompositions in general. Moreover we
generalize Py and P, to operators on p-differential forms. In Chapter 4, we
deal with the differential equations P, u = 0, P; u = 0 on complex manifolds
and Px u = 0 on Kahler manifolds. We show any distribution solutions of the
differential equations Py u = 0 and P} u = 0 admit some decompositions into
2 solutions with different propagation speeds. In the same way, we also show
that any distribution solution of the equation Px u = 0 admits a decomposition
into 4 solutions with 4 different propagation speeds.

Results

Definition 0.1. Let M be an n-dimensional Riemannian manifold and
M = R; x M. Let u = Y u'd; be a contravariant vector field on M with
parameter t; precisely, a contravariant vector field on M with (dt,u) = 0.
We assume the density constant p and the Lame constants A\, u are positive.
Because the Riemannian metric tensor g;; (and the inverse metric tensor g of
gi;) and the covariant differentiation V; are commutative on the Riemannian
manifolds (cf. [2] Section 15), we define the original elastic wave equation as
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follows:
POte 4t = pa—;ui — AgijVijuk — ugikvjvkuj — ugjijVkui
= pa—;ui — AV Viuh — uV,; Vil — pV,; Vi
= pg—;ui — AV Vit — pVViuk — pV Vel = f°

where we denote V' = ¢/ V; according to the custom (cf. [1] Section 26).

In this paper, we often omit ) by Einstein’s convention.

Because of the duality between contravariant vector fields and covariant
forms, and the fact that differential operators attach covariant vector (tensor),
we consider a new differential equation

82
Porg u; 1= pwui — Avivkuk — ,quViuk — /N’kaui
82
pwui — (A + 2u)Vinuk + wkviuk - uvkvkui - 2uRliul
= fia
where R!; is the Ricci tensor (cf. [1] Section 26).
When we put

32
Py vy = Pzt~ A +20) ViV + pV*Viuy — pV Vi,

the differential equation Py u; = f; on M is a modification on the part of
order 0 of the differential equation Pyu; = fi, and we can rewrite Py u =
pg—;u + (A + 2p)ddu + pddu = f for a 1-differential form u = u;dx’ (cf. [1]
Section 26). Here, d, § are the exterior differential operator and the associated
exterior differential operator on M, respectively.

The differential operators d,  operate on p-differential forms for all p, then
we extend the equations naturally to equations for p-differential forms.

Let /\(p ) T* M be a vector bundle of p-differential forms on M. Let 5](5) be
a sheaf of p-forms on M with C* coefficients, and Dbg@) a sheaf of p-currents
on M; that is, p-forms with distribution coefficients. In this article, we do
not mean distributions the dual space of C§°(M). Our distributions behave as

. . . P —~ (
“functions” for coordinate transformations. Further we define 8](\5) and Db IZ).

Definition 0.2. We denote by 51(\5), Y%EZ) the sheaves of sections of SZ(TZ),

Db%? which do not include the covariant vector dt. That is, setting the projec-
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tion 7 : Ry x M — M, we define

Ep =D o nel Dby =DbY © el
7151(\/1) 71.—151(\3)
For @
u= Z Ujy gy (t,2)dT™ A~ Ada'® € DbAZ ,

1<iy < <ip<n

N( .
we define an operator Py for Db;}) on M (1 <p<n-—1), where the coefficients
{ui,...i, } are supposed to be alternating with respect to (i1 ---ip).

Definition 0.3. We define sheaf-morphisms Py : Db M) — Dbg\? by

2

Py u + (A + 2u)ddu + pddu.

e
~ o
For p = 1, this equation is the covariant form of P, u’.

When p = 0 or n, Py u = 0 reduces to a wave equation. Therefore we
suppose 1 <p <n—1.

For u € 2,77)551), we define equations 9", MY, M5, MG as follows:

mr . Pru=0,

o Py u=0, (02 + aA)u
du =0, du =0,
Py u=0, (0? A)u

My - “ +h
ou =0, ou =0,
P, u=0, 0?u =0,

MG : ¢ du=0, < 4 du=0,
ou =0, ou = 0.

Here, & = (A + 2u)/p, B = p/p and A — d§ + 6d : Dber — Db s the

Laplacian on M.

Further we define subsheaves Sol(IM"; p), Sol(M}; p), (j = 0,1,2) of 737755)
as follows: For 9% = IN*, M7,

Sol(MN™; p) ::{u € 757)5\3) ‘ u satisfies ‘RR}
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Then, we have the following theorem.

Theorem A (Theorem 3.1). For any germ u € Sol(9M%;p)

o, » there
(t,z)

t,x

exist some germs u; € Sol(M; p) 69 (7 =1,2) such that u = u; + us.
t,x

)

Furthermore, the equation v = uy+ug = 0 implies uq, us € Sol(MG; p) 02
t,x

Equivalently, we have the following eract sequence:
0 — Sol(tf; p) —— Sol (M p) @ Sol (M5; p) ~~ Sol(M*;p) — 0,

where F(U) =U & (-U), G(Uy ® Uz) = Uy + Us.

Let X be an n-dimensional complex manifold with a Hermitian metric, and
/\(q’r) T*X a vector bundle of (¢, r)-type differential forms on X. Let 5)(2;,7») be

a sheaf of (g, r)-forms on X with C'* coefficients, and Dbg?’r) a sheaf of (g,7)-

currents on X. Setting X =R, x X, we also define 5~§g’T), ﬁ)ﬁ?’r) similarly to

£, Dby

Definition 0.4. We define sheaf-morphisms P, P : 5b§“") — 5b§“")

on X which are similar to Pg:

2 2

_ .0 = 5
Po =25+ 0100+ 0300, P = o5+ 0300+ asdd,

where o, as, a3 and a4 are positive constants. Here, 0, 0 are the exterior
differential operator, the conjugate exterior differential operator on X, and 9,
¥ are the associated operators of 9, 9, respectively.

For u € ﬁ)ﬁ?r), we define equations 9°, MY, MG, M*, MS*, MT* as

follows:
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M+ Pru=0,

im;?*:{Pgu:O’ <:>{<a§+0<3ﬁ)u=0,

Ou =0,

Ou =0,

e Pru=0, PN (02 + asO)u = 0,
Yu =0, YJu = 0.

Here, 0 = 99 + 90 and O = 09 4+ 90 are the complex Laplace-Beltrami
operators.

Further we define subsheaves Sol(M%;q,7), Sol(MF;q,7) (j = 1,2),

Sol(IMN*; q,r), Sol(MG*; q,7) (k = 3,4) ofl%ﬁ?’r) as follows: For M¢ = M, M7,
M, M*
) k

Sol(M; q,7) ::{u € ZA)?)ESIJ) ’ u satisfies ‘JIC}.

Then, we get the following theorems.

Theorem B (Theorem 4.1). For any germ u € Sol(IMC; q, )

o, , there

t,2)

exist some germs u; € Sol(MF;q,7) ( =1,2) such that u = uy + us.

(t.%)

Theorem B’ (Theorem 4.2).  For any germ u € Sol(IM*;q,r)

[SRrNs

(t,2)
(k = 3,4) such that u =

there exist some germs up € Sol(IMy*;q,r) e
2

U3 + Ug.-

Now we assume that X is a Kahler manifold; that is, for the Hermitian
metric h, we have the equation d (Z hjz(z)dzj A dz’f) = 0, and we know that
hjg can be described as hjg = Bj5k¢ with a smooth real function ¢ locally (cf.

[3] Chapter 1, Section 7). Then the following equations for operators on ﬁaﬁ?’”

are well-known (cf. [4] Chapter 3, Section 2):

O=0=14,
(0.1) 09 +99=0, 0V+90=0,
004+00=0, 99+909=0.

As for the relationship between the conditions (0.1) and the Kéahler condition,
we give a brief introduction and a proof of the equivalency in Appendix.
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oy . N(Qv’r) N(qu)
Definition 0.5. We define sheaf-morphisms Py : Dby = — Dby ~ on
X by

2

= 92 + 01185 + Oz258 + 043519 + 044195.

Py

Here, a1, as, a3 and a4 are positive constants.

When g,7 =0 or n, P u = 0 reduces to a wave equation. When ¢ = 0,n
or r = 0,n, Py stands for P} or P, respectively. Therefore, we suppose
1<qg,r<n-—1.

For u € 13?)()? , we define equations 9%, MK (i = 1,2,3,4), e Mo
(k) = (13),(23), (14), (24)) as follows:

)

Me : Pcu=0,

me Feu=0, my fKuz7
BUZO, ’[9u:7
e, - fKuzO7 B P u=0,
ou =0, Yu =0,
Pou=0, (af O‘l;ra?’A) —0,
11(3: au:o7 — 8’&:0,
Ou =0, Ou =0,
Peu=0, (83+0‘2"2m3A) —0,
12(3: EU:O, — EUZO,
Ou =0, Ou =0,
a1 + oy
P.u=0, 0?2 + A)u =0,
- (45
14 14 Ou=0, — Ou =0,
19“':07 19’(1/:0,
Qo + 0y
P« u=0, 0? Alu =0,
Nt (o 2250
24+ | Yu=0, — du =0,
19“20, 19111—0,
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Pou=0, Ofu = A%y =0,
. du =0, (8§+a1+0‘3A)u:0,
130 © ) o — 2

ou =0, ou =0,

A?u =0, ou =0,

Pou=0, Ofu = A%u =0,

Tu =0, <8§+0‘2+0‘3A)u:0,

Moa0 1 S — = A 2

ou =0, Yu =0,

A?u =0, ou =0,

P.u=0, Ofu = A%u =0,
< ou =0, <3t2+a1+a4A)u:0,
40 : — 2

Yu =0, ou =0,

AQU:Oa 19U:0,

P u=0, Ofu = A%u =0,
« Ju =0, (8?+02+Q4A)u20,
240 - — A 2

19U:0, ?9’[14:0,

AQU:Oa 19U:0

Further we define subsheaves Sol(9MX;q,r), Sol(IME; q,r) (z = 1,2,3,4),
N(qxr)

Sol( ;‘k;qm), Sol(m;-(ko;qm) ((jk) = (13),(23),(14),(24)) of Dby = as the

sheaves of Y%g?’r)—solutions, respectively.
Then, we have the following theorem.

Theorem C (Theorem 4.3). For any germ u € Sol(INX; q,7) there

© 0.’
t,z

0o ((i7) = (13),(23), (14),(24)) such

exist some germs u;; € Sol(M;q,7)
that u = w13 + uz3 + U14 + u24.

Further, we find that u = u13 + us3 + u14 + uzq = 0 implies

ujr € Sol(Myos0,7)  ((Gk) = (13),(23), (14), (24)).

FEquivalently, we have the following exact sequence:

0— /Sol(i)ﬁ?jo;q,r) R @Sol(fmﬁj;q,r) A, Sol(M*;q,r) — 0.
(i5) (i5)
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Here,

i
@ Sol(M0;9,7) ::{(uij) € @Sol(i)ﬁ?jo;qm) ‘ Zuii = O},
(i5) (45) (45)
GUi3® U3 @ U14 B Uss) = U3 B U3 ®U14 B Uss, HU13 2 Uz BU14 B Uay) =
Uiz + Uz + Urg + Uay.

81. Preparation from Riemannian Geometry

In this section, we recall some notations and terminologies in Riemannian
geometry used in this paper according to [1] (Chapter 2,5), [2] (Chapter 3),
and [5] (Chapter 1,4).

We assume that M is oriented. Then, there is a global section €2 of 51(\/7;)
on M, which never vanishes on M.

Definition 1.1.  The inner products (-, ) : /\(1) TrM x /\(1) T.M — R,
¢y AP TEM x AP T*M — R, are defined as follows. We choose a local
positive orthonormal system (w!,...,w") of C™ sections of T*M concerning
the Riemannian metric; that is, there is a positive valued C'*® function « such

that w! A -+ Aw™ = af) > 0, and for * :Z?ﬂaijdxj(i: 1,2,...,n) with a

local coordinate system (z',...,z"), we have g;; = > ,_; axiax;. Then for
o= g o;dz’, T = g T'0;
1<i<n 1<i<n
we define
(o,7) = E o;T",
1<i<n
and for

b= > iqda A Ada'r,

1<i1 < <ip<n
i i
P = E lf}z'lu.ipddfl/\"'/\ddfp,
1<i1 < <ip<n
we define

<¢a 7/}>* = Z ¢i1--<ipwi1mip

1<iy < <ip<n
. E PP ST E R 12 -
= ¢11~~~1pg g’ pwjr"jp'

1<iy<--<ip<n
1<j1<--<jp<n
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Definition 1.2.  We denote by d : Dbg\’}) — Dbg\’fl) the exterior differ-
ential operator which acts on Dbg\’/}) as a sheaf-morphism. Then the following
formulas are well-known:

d(¢£) = do+dy (6, € DbY)),

(¢ A ) = dg A+ (~1)P¢ A dp (¢ € DY), & € DbY),
d(dg) =0 (¢ € DO,

for f € DbYY, df :=>" %fjdxj e Dol

Here 0 < p < n. If p=mn, d¢ =0 holds.

Definition 1.3.  The isomorphism * : AT*M — A\ T*M of vector bun-
dle is defined as follows:
s NPT - AP TEM s a linear map,
Ao ) = ST A At
(_1)(i1—1)+~-+(ip—17)wj1 Acee Awin—p,

for any permutation (i1,...,%p,J1,...,Jn—p) of (L,...,n).
Here (i1 ---ip) and (j1 - - - jn—p) are indices satisfying
(41 +4pj1- - jn—p) is a permutation of (1---n),
1§i1<-~-<ip§n, 1< 5 <-~-<jn_p§n.

Remark.  The definition above does not depend on the choice of the
positive orthonormal system {w!, ..., w"}.

Proposition 1.1.  We set ¢, € /\(p) TxM. Then we obtain
GNP = (x@) AN = (§, )" Wl Ao AW,
*lzwl/\---/\wnz\/§dx1/\---/\da:",
*h = (_1)(i1—1)+"'+(izs—?)\/§ giljl .. .gipjp(bil_”ip dzit A - A dgin-»
e NP T M.
Here g = det(gr1).
Let U C M be an open subset. Let a(®) ¢ Dbgz)(U), B S](\ﬁ)(U) be

sections. We suppose that 3(?) has a compact support in U. Then the following
integral is well-defined:

(a®, g®) ;:/ (@®, By WA A wn,
M



ELasTic WAVE EQUATIONS ON MANIFOLDS 481

Definition 1.4. Let a® € DbS\Z), pr—1 ¢ 51(5—1) be sections. We
suppose 3%~ has a compact support. Then the sheaf-morphism § : Dbg\’/}) —

Dbg’}_l) is defined as

(5P P~V = (o) gpP=1)),

Hence we have
§=(—1)"P D gy

Definition 1.5.  Let X7 be the sheaf of ®" T, M @ @° T:; M-valued C'>
functions, and Db” the sheaf of Q" T, M @®* T:; M-valued distributions. Then,
the sheaf-morphisms V : X] — X[, Dby — Db}, are defined as follows:

for a(x) € X9, we have  Va(z) = ﬂdac]

for % € X}, we have V <8a) =1 k@iz ® da*,

for da’ € X9, we have V (dz’) = —T Jkdxi ® da,
foree X7, f € X, wehave V(e®f)=(Ve)®f+exVf.

Here,

Og9a | Ogie  Ogki
Il =g Ty, =g = Z —
{ Ak =g ((“)xk T T o

are the Riemann-Christoffel symbols.

Proposition 1.2. We set

_ JJidr g0 is T
e=e¢€!' dr" ® - ®dx . e ® € Xi.
trets Oxit oxIr
Then we have
Jie ]r Jl Jp—14dp+1-Jr ;v Jp __ _J1dr q
Ve = <8ke i I3 €i1-~~z‘p,1qz‘p+1~--ibpip k)

, ) 0
Xdz" @ Qdz"*" @ —— Q@ -+ ® ® dz".

ale 8 Jr

Hence we call the following the covariant differentiation:

J1t ]7‘ Jl Jp 19Jp+1-Jr Jp _ JJidr q
Vie = (&ce . e, F €i1-~~ip—1qip+1'“isFip k)
. . 0
Xdr'" ® - - - s - ®

81;j1 81;]7‘ ’
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§2. Elastic Mechaniques on Riemannian
Manifolds

Let M be an n-dimensional Riemannian manifold with metric g. We
consider an elastic body G in M. A motion of G is identified with an open
subset G of M with one parameter family of diffeomorphisms h(-) (t € R):

he: GN{t=0} =5 Gn{t=s}

Then the elastic wave equation for G is formulated as a time development
equation for small motions of G; that is, h; is close to the identity map and it
is expressed as

Ri(z) = 2" 4+ u'(x,t)

in a local coordinate system (x!,...,2"), where u = Y ui(x,t)d; is the small
displacement vector field.

Then, the differential dh of the map h and its dual map dh* are given as
follows:

dh:T,M 3 € ' = ¢ <8xj> =t 5w €T M

. s Oht ou’
dh Ty M 30— & = ( )

907 ) =M + oz e T M.
Let us calculate the difference between the line element of M

ds(z)? = gij(z) d’ ® da’
and its pull-back *ds(z)* by h:

ciy(@) dat @ da? = {*ds(a)? — ds(a)*}

1 Oh* on!

=5 {gkl(h(x))%@dxi ® dv! — g;j(w)dr' @ da:j} .

Here €;; is called the strain tensor. By ignoring the non-linear terms of u™,
Ipu™, Oju, we have

1
et = 5 (GrmOu™ + graOpu™ + u" mgia) -

On Riemannian spaces, equations

Vongkt = OmGrt — LiGren — LG = 0
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hold (cf. [2] Section 15), so we have

1
(2.1) Skl =5 {9em O™ + gruOpu™ +u™ (I gkn + Lipgni) b
1
L GO £ 0T + g™ 0" )

1
=3 (GemViu™ + gruViu™) .

In physics, we assume that the stress tensor ¢7¢ has a linear relationship
with the strain tensor at each point. Hence there exists the elastic coefficient
tensor E74% such that

gt

V9

As a physical assumption for E¥* we have the equations:

(2.2) = Flitkg,,.

Eijkl — Ejikl — Ezjlk

In particular, it is well-known that the elastic coefficient tensor of an isotropic
elastic body has the following form:

(2.3) Bk — \gii gh 4 gt gt 4 ugitgi®,

where A and p are the two Lame constants. Therefore, from (2.1), (2.2) and
(2.3), we get
alt
V9

g o N 1
= (A\g7g" + g™ g7 + pg' g’*) <§gmkvlum + §gmzvkum>

(2.4) = E'ikgy,

= \g"Viul + pg?' Vit + pgt Vi

Hence the equation of power-balance between the stress of the elastic body and
the external force is written as follows:

aff = Toas
= 75 §
where df? is the external force vector for the surface element dS;.
In order to introduce the elastic wave equation, we consider a small neigh-

borhood V' of a point x in M, whose boundary is given by a smooth closed
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surface S. Then the equation of motion for this small part V of the elastic
body is written as follows:

924 4 i i
p—dV:—/df’L:—/—dS-:/V-(—)dV.
v Ot s svg v T \Vg

Here dV = /g da' - - dz* with /g = \/det(gr:). We divide both sides by the
volume |V'| and shrink V to {z}. Then from (2.4), we have the elastic equation
on Riemannian manifolds:

82ui o'ji .. . . . .
(25) pw = Vj (ﬁ) = )\g”Vijuk + ug]ijVku’ + uglijVkuJ.

83. Decomposition of Modified Elastic Wave Equations on
Riemannian Manifolds

We set a = (A +2u)/p, B = p/p. Then, we have the next lemmas.

Lemma 3.1.  For any u € Sol(IM*;p) and the variety

Vi i= U {(t,x;r,{) ‘ ™~ )é)? = O}

k=1,2

=U {(WC;T,&) ‘ 72— erg" (2)&:; = O},

k=1,2
we have WF(u) C Vi, where c1 = o, co = f.
Proof. The symbol of the second-order operator p~!'Py (t,x,;,d,) at

pt = (%; &) € T*M is defined as a linear operator

_ o (®), . ®)
oa(p P )pt) s N\ TEM — N TEM

given by the following:

o 1 . o o o 5 . ° o
oa(p™ P )(pO)U 1= lim e D pmIp, (8,5, 0, 0,) (eM[zf]*”’U) :
— 00

. . (p) .
where we consider the coefficients of U € /\ T*M as constants in a local
xT

coordinate system. Here [z,£] = 2;€,. We suppose (7,&) # (0,0). Therefore
we get

o2 (p~ P ) (pt)U =02(8% + add + BSd)U
=— 72U + (—1)"Va(E A (+(E A D))
+(=1)"B(EAXEAD))).
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Here £ := Y ¢;da?. Let w = (wi,...,w,) be a positive orthonormal system
at TxM satisfying wy = £/|€]. We set U = Uy + Uy where Uy = ZUUL«)I,
x
el
U, = Z Usrw!, then we get §~/\ Uy =0, 5/\ *Uy = 0. Therefore we have
1¢1

HEASEAT)) = (é As <|£| S Unyeon M)) = (~1)"?E)Te,

1¢1
EN(x(EN#U)) = ()P VIEPT,

o2(p 7 Po YU = (=72 + alE2)Us + (—72 + BIE2)U,

Thus we find that oo (p~! Py )(];)t) has 2 eigenvalues (—72+alé|?), (=724 |€]2),
and their multiplicities are ,,_1Cp—_1, n—1Cp, respectively. Hence we get

det(ra(p™ P (1)) = (—7 + alg2)r=1 O (=72 o BIER) .

o] o]
If o2(p~ Py )(pt) is an isomorphism, pt does not belong to the charac-
[e]
teristic variety of Pyu = 0. Therefore, for a characteristic point pt, we have
[e]
det(o2(p~ 1Py )(pt)) = 0. Hence,

WF(u) € Vi = | {(tx'rf)‘T —ck|§|2*0}

k=1,2

= U {(thﬁ)‘T —crg(z )ﬁiijO}.

k=1,2
O

Lemma 3.2. For a germ u € DbM at ( ,x), we assume WF(u) 3
(%,:%;:I:dt). Then, there exists a germ w € DbM) at (t 1), which satisfies

Aw = u and WF(w) # (t,x; +dt).

Proof. For a differential form u = > uy(t,z)dx’, we write Au =
S { Py (2,0, )uk (t, @) o’ . A'is an elliptic operator on Db{}). Therefore, in
a neighborhood of (z,) € M x M, there exist integral kernels {G 1. (z,v)} kL,
which satisfy

{z Pyx(2,0:)Grr(z,y) =1 - 6(z —y),
WF(Grr) C{(z,y:6,m) | 2 =y,§ = —n}.
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Here, ¢ 1 is a Kronecker’s delta. Hence,
w= Z(/ GKL(xyy)uL(tyy)w(y)dy) dz™

satisfies Aw = u at (;,53) and WF(w) Z (;,gs;idt). Here ¢ € C§°(M) has a
compact support in a small neighborhood of = and ¥(y) = 1 near z. O
Then, we get the following theorem.
Theorem 3.1.  For any germ u € Sol(IM*";p) G5y there exist some

t,x

germs uj € Sol(M};p) T (7 =1,2) such that u = uy + uz.

t,x

Furthermore, the equation u = ui+ug = 0 implies uy, ug € Sol(MG;p)

)
Equivalently, we have the following exact sequence:

0 — Sol(IMy: p) —— Sol (M p) & Sol(M;p) - Sol(M™;p) — 0,
where F(U) =U & (-U), G(U, ® Uy) = Uy + Us.

Proof. For u € ﬁ)E\Z)

25y we suppose u1,us are of the form;

YT

us = 0v, U3 =u— ov.

Here v € {Dvbggﬂ) a3y Hence we have only to impose the following conditions
on v:

Py (6v) =0,

d(u — év) =0,

dv = 0.

Since the equation Py (0v) = (87 + 86d) 6v = & (07 + BA) v holds, it is
sufficient to impose the next conditions:

02v + AV =0, 0%v = —Bdu,
dév = du, — Av = du,
dv =0, dv = 0.

From Lemma 3.1 and Lemma 3.2, we have a w satisfying Aw = v and WF(w) #

(g, %; +dt). Then it is sufficient to impose the following equations on v:
92 (v — dw) = —d(Bu + d}w),
A(v — dw) =0,
d(v —dw) = 0.
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Therefore we can take v as follows:

v—dw = —d/; ds /; (ﬁu(T, z) + 0 %w(r, x))dr.

Then us satisfies the following wave equation:
2

pﬁuQ + ﬁAUQ =0.

Hence u € Sol(9M*;p)

can be decomposed as a sum u = u; + ug, where

)

uj € Sol(M;p) ‘(; 0 (j=12).
T
When v = u; + us = 0 holds, the equations du; = 0 and dus = 0 imply
Uy, us € Sol(M§;p)

(1,8)

Therefore we have an exact sequence
0 — Sol(MG; p) — Sol (M5 p) & Sol(My; p) — Sol(M*; p) — 0.
O

Remark.  For the case p = 1, the contravariant form of this decomposi-

, S~
tion means the decomposition u* = v +ub € Db, satisfying the next conditions:
Viu" =0, Vi — Vi’ =0.

Remark.  In Einstein spaces satisfying R;; = Ag;;, a distribution solution
u of Pyre u = 0 has a similar decomposition u = u; + uz. However, if M is not
an Einstein space, a distribution solution u of FPy.; u = 0 does not necessarily
admit any decomposition of solutions above.

84. Decomposition of Modified Elastic Wave Equations on
Complex Manifolds

We extend the results on a Riemannian manifold to ones in a complex
manifold X with a Hermitian metric h. Firstly, we recall operators on complex
manifolds according to [3] (Chapter 5), [4] (Chapter 3), and [5] (Chapter 5).

Definition 4.1. We denote by 9 : Dbgg’r) — Dbggﬂ’r) the exterior dif-
ferential operator which acts on Db\¢" as a sheaf-morphism and 8 : DbZ") —
Dbgg’rﬂ) the conjugate exterior differential operator. For a section

$=0; ;7.5 A AdZONDT A NdE of D",
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the following formulas are well-known:

d¢ = (9 + 9)¢,
09 v 1 = 3 (g+1,7)
Op = — dzF Nd2" Ao NdZl AdZT A ANdET € DBYTT,
0zk
qu_ ¢ dzF NdZ A - Ad2i AdE A - AdET € DBETTY.

Definition 4.2.  The linear operator * on X induces isomorphisms A 4"
T*X — N9 T* X of vector bundle. Hence we have sheaf-morphisms
* Dbgg’r) — Dbg?_r’n_q) on X as follows: For

=150 Aw! e Db,

we have
nl---m JC \ —IC (n—rmn—q)
*w_(s(IJJ IC)@/)ij ANw' € Dby D
where {w!,...,w"} is a local orthonormal system of C* sections of T*X con-

cerning the Hermitian metric and I¢ := {1,...,n}\I. Here §(-) = £1 is the
signature of the permutation (Ijjclc) of (1---nl---m).

Let U C X be an open subset. Let a(@") = a5 w! AT’ € Dbg?’r)(U),
plor) = Br7 wl A o’ € Eg’r)(U) be sections. We suppose that $(¢") has a
compact support in U. Then the following integral is well-defined:

(a(q,T)yﬁ(q’T)) pp— / <a(q,r)“6(q,r)>* WA AW ATEA AT,
X
where, (a(®7) 307y — Zaﬁ ﬁ
1,J

Definition 4.3. Let o(?7) ¢ Dbg?m), pla—1r) ¢ Sgg_“), and y(@7=1) ¢
8)(?’7"_1) be sections. We suppose 4(9=17) and v(¢"=1) have compact supports.
Then sheaf-morphisms ¥ : Dbgg"d) — Dbg?_u) and 9 : Dbgg"d) — Dbg?’r_l) are
defined as

(ﬁa(w)’ﬂ(qflm)) — (a(qm)’ aﬂ(q*lﬂ”))7
(V@) Alar=Dy = (g(er) Gylor=1)y,
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Further they satisfy the following equations:

Then, we get the lemmas as follows.

Lemma 4.1.  For any u € Sol(MC;q,r) and the variety

Veim U {t.5m0) | = aul¢ =0}

k=1,2

= U {tzTC ‘7’ — aph (2 )@C?‘:O},

k=1,2

we have WF(u) C Vi, where (1,() is identified with the real cotangent vector
Tdt + 2Re((dz).

Proof. The symbol of the second-order operator P (t,z,0;,0.,0.) at
;t = (g, ¢) € T*X is defined as a linear operator

o (@r) ., (gr) .
oa(Pe)pt): \ 7 TEX - N TEX

given by the following:

— lim %e‘“QRC[Z’Z]“g)PC (;,3,8 8.,9.) ( Xi(2Re[z, <]+tT)U>

(g,m)
where we consider the coefficients of U € /\ T*X as constants in a local
z

o

coordinate system. Here, [z,(] = #(;. We suppose (;,C) # (0,0). Therefore
we get

7o (Po Y (pt)U = 02(82 + 0,199 + a9\ U
= 72U — a1 (EA *(EAU))) — aa(*(EA*(EAD))).

S} .
Here E := ) (;dz?. Let w = (w1,...,w,) be an orthonormal system of T X
z

satisfying wq = Z/|Z|. When we set U = Uy + Uy where Uy = Z U, 5w AT,
lel



490 YOSHIYASU YASUTOMI

Us =) Uyzw' Aw, we get EAUL =0, ZA +Up = 0. Therefore we have

1¢1
*(E/\*(E/\U)) :*(E/\*(E\ZUZZ? wy Aw! /\@J))
1¢1
:5(;1f§a;2)m<%(§A%;Uﬂjwf’Aquf)}
141

= _‘E|2U25
EA*ENAU)) = —|E]PUL,
02(Pe )(p)U = (=72 + an |E?)U1 + (—72 + 02|E*) Vs
Thus we find that oo (P )(];t) has 2 eigenvalues (=724 a1 |E[2), (=724 a2 |E[2),

and their multiplicities are ,_1Cy_1 - ,Cy, n—1Cq - nCy, respectively. Hence we
get

o
det(o2( Py )(pt)) = (7,‘;2 + a1|5|2)n710q_1.ncr(7,‘;2 + a2|5|2)”,1cq~nCT‘

[e]
If oo(Pc )(]())t) is an isomorphism, pt does not belong to the character-

istic variety of Po w = 0. Therefore, for a characteristic point pot7 we have
det(oa(Pe )(pt)) = 0. Hence,
WE@) Ve = |J {70 | 7 — anl¢? = 0}

k=1,2

— U {(t,z;T, <) ’ 72— ockhij(z)g“i(_j = O}.

k=1,2

O

Lemma 4.2. Foragermu € {Dvbﬁgm) at (;, 2), we assume WF (u) % (;, 2;

+dt). Then, there exists a germ w € ﬁ)g?r) at (t,2), which satisfies Dw = u

and WF(w) 3 (;,g; +dt).
Proof. For u=Y u,z(t,z)dz’ Adz", we write

Ou=> {Prx(z 0., 0:)upg(t, 2) bz’ Adz".

O is an elliptic operator on Dbg?’r). Therefore, in a neighborhood of (2, 2) €
X x X, there exist integral kernels {G g (2, 2")} kar, which satisfy
Z Py (2,0.,0.)Grm(z,2") =050 - 6(Rez —Rez’) - 6(Im 2z — Im 2/),
WF(Grnr) C{(z,2;¢dz + (dz + ('dz’ + ('dz") | z = 2/, ¢ = —('}.
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Here, 67 s is a Kronecker’s delta. Hence,
w= Z(/ Grm(z, 2" )uy 7 (¢ 2)0(2")d(Re 2")d(Im z’))de A dz"

satisfies Ow = u at (;,;) and WF(w) # (g,;;idt). Here ¢ € C§°(X) has a
compact support in a small neighborhood of 2 and (') = 1 near 2. O

Then, we get the following theorem.

Theorem 4.1.  For any germ u € Sol(M;q,r) | ., , there exist some

t,z

. (1 =1,2) such that u = uy + us.

(t.9)

germs u; € Sol(MF;q,7)

7 (qar)

Proof. For u € Dby

62’ we suppose u, ug are of the form;

I
uy = 0v, us =u— ov.

—~(g—1,r)

Here v € Dby Gy Hence we have only to impose the following conditions
on v:

P. (0v) =0,

I(u— v) =0,

Jv = 0.

Since the equation Py (8v) = (87 + 189) 9v = 9 (07 + cu ) v = 0 holds, it is
sufficient to impose the next conditions:

020+ a10v = 0, 02v = —ayu,
Vv = Ju, — Ov = Ju,
Jv =0, Jv = 0.

From Lemma 4.1 and Lemma 4.2, we have a w satisfying Ow = u and WF(w) #

° o
(t, z; £dt). Then it is sufficient to impose the following equations on v:

02 (v — Yw) = —I(ayu + O?w),
O(v — Jw) =0,
I(v —Jw) = 0.

Therefore we can take v as follows:

t s
v— 2w = —5% ds[ (alu(T, 2) + 02w (T, z))dT.
¢ ¢
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Then u; satisfies the following wave equation:

2
—uy + a0u; = 0.

ot?
Hence u € Sol(MC;q,7) | o) can be decomposed as a sum u = uj + us, where
t,z
u; € Sol(M;q,7) | o, (1=1,2). O
(t,2)

In the same way, we obtain the following similar lemmas and theorem as
adjoint versions of Lemma 4.1, Lemma 4.2, and Theorem 4.1. We omit the
proofs because the arguments go in a similar way.

Lemma 4.3.  For any u € Sol(IM*;q,r) and the variety

Ve = U {(t,z;r,() ‘ 7% — ag|¢)? :O}

k=34

= {(tZ;T» <) ‘ 72— aph" (2)¢i(; = 0},
k=34
we have WF(u) C V&, where (1,¢) is identified with the real cotangent vector
Tdt + 2Re((dz).

Lemma 4.4. Foragermu € {Dvbgr) at (;, 2), we assume WF (u) % (;, z;
—~ (a,7)

+dt). Then, there exists a germ w € Dby = at (;,;), which satisfies Ow = u
and WF(w) 3 (;,g; +dt).
Theorem 4.2.  For any germ u € Sol(IM*; q,r) G2y there exist some
t,z

(k = 3,4) such that u = uz + uy.

o
1Y

germs uy, € Sol(MT*;q,7) g

Now we assume that X is a Kéhler manifold. For the sheaf-morphisms Pk,
we have the following lemmas.

Lemma 4.5.  For any u € Sol(IM*; q,r) and the variety
Veim U {570 |0 - 8lc? =0)}
k=1,2,3,4

U {tsn0]¢ - s (:)6G=0) |,

k=1,2,3,4

we have WF(u) C Vi, where 81 = a1 + a3, o =as +as, f3=a1 + aq, B4 =
as + ay and (7,Q) is identified with the real cotangent vector Tdt + 2Re((dz).
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Proof. Similarly to Lemma 4.1, we get the symbol of the second-order
operator

73 (P Y(p)U =05(02 + 0100 + 290 + 300 + au9d)U
z—?QU—al(E/\ (* (E/\*U))) —ag(* ( /\*(E/\U)))
fa3<§/\ (* (E/\*U))) 7014(* (E/\*(E/\U))).

(1|

Here = := Y (;d2’. Let w = (wi,...,w,) be an orthonormal system of 77X
satisfying w; = Z/|E|. We set U = Uy + Uz + Us + Uy where
U= Y U rn@’, Up= Y Uygw' rna’,
lel,1eJ 1¢1,1€J
Us = Z USijI/\wJ, U, = Z U417w1/\wJ.
1€l,1¢J 1¢1,1¢J
Then we get
=AU =0, EAU, =0, =EAU;=0, EAxU, =0,
E/\Ulzo, E/\*UQZO, =AUz =0, =AUy = 0.

Therefore we have

*(E/\*(E/\U)) = *(E/\*(|E|(Z(U217+U4ﬁ)w1 Aw! /\w‘]))>

1¢1
= ~[EP(U2 + Ua),

—|EP (U1 + Ua),

[ —
*
VN
[1]|
>
*
-
N———
N—
I

)
Ax(EA U)) = —|Z]X(Us + Uy),
)

= (* (E/\*U)) = —|Z]2(U; + Uy).

PP = Y (=74 BilER) U
k=1,2,3,4
Thus we find that oo (Px )(1())t) has 4 eigenvalues —72 + 3|22 (k = 1,2,3,4),
and their multiplicities are +j, respectively. Here v, = ,_1Cy—1 - n—1Cr_1,
Y2 = n—qu “n-1Cr_1, V3 = n—qu—l “n—-1Cy, and Y4 = n—lcq n—1Cy. Hence
we get
ke

det(o2(Pe )(pt) = [T (= 7+ Bul=P)

k=1
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If o9(Px )(];t) is an isomorphism, ];t does not belong to the character-
istic variety of Px u = 0. Therefore, for a characteristic point ;t, we have
det(o2(Px )(pt)) = 0. Hence,

WEw) cVe= | {570 |2 - Blc? =0)

k=1,2,3,4
= U {(taZ;Tv C) ‘(7_2 76khlj(z)gz§: 0) }
k=1,2,3,4

O

Lemma 4.6.  For any germ u € Sol(IMX;q,r) G2 there exist some
t,z

. (1 =1,2) such that u = uy + us.

(t.9)

germs uj € Sol(M;q,7)

Proof. For u € ﬁﬁg’r)

0o we suppose uq, uy are of the form;

\Z
uy = Jvy, ug = u — Ovy.

—~(q—1,
Here v, € Dbﬁg g ., - Hence we have only to impose the following condi-

(t.9)

tions on vy:
Py« (0v1) =0,
I(u — Ovy) =0,
dvy = 0.

Since the equation

Py (0vy) = (Bf + @100 + a309 + 044195) ot
= 8 (6? + Oé1|:| + (13519 + (14195) V1 = 0

holds, it is sufficient to impose the next conditions:

(8,52 + a0+ 309 + a4195) v1 =0, Pro = —aqVu,
D(u — dvy) = 0, = ¢ Ov =y,
5’[]1 = 0, 5?)1 = 0.

From Lemma 4.5 and Lemma 4.2, we have a w satisfying OJw = u and WF (w) #
(t, 2 +dt). Then, when we put

v —dw =9, —oayPu—1 P*w=:1,
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and use (J = [J, it is sufficient to impose the following equations on ¢:

Pr :<8t2 + 300 + 044195)90 =1, (0? + (g — a3)195)<p =1,
Up =0, > Uy =0,
Yo =0, ¥ = 0.

Setting  := {1 € Dby

G : DW:O,@M’/:O}, we note that

t,z

JO(F) C F, (90)*F = 0.

Since ¢ € F and WF () # (2, 2;4dt), then we can take ¢ as follows:

t S
gpz% ds% (s, z)ds'
¢ ¢
t s s’ T
+(a3—a4)% ds% ds’% drﬁ YOY(1', z)dr
¢ ¢ ¢ ¢

Hence u € Sol(MX;q,r) can be decomposed into a sum u = uj + us,

° o
t,z

where u; € Sol(imz-(; q,7)

(j=1,2). O

Oo
32

By the proof above, we get the following more precise form of i, us.

Lemma 4.7.  Let u = uy +us be a decomposition. We can write uy, us
in the preceding lemma as follows:

u; = Ovy, uy = Jug,
(a=1,7) —~ (g+1,r) L ° o
where vy € DbX G2 v € Dby @9 satisfying WF(v;) # (t, z; £dt)
t,z t,z

(j = 1,2) and the equations

(41) { 0?v1 + a10vy + a309v; + au¥0v; = 0,

0?0y + vy + 30009 + a90vy = 0.

Proof. We define Dt_l = fit dtq f;tl dtg - - f{l_l dt;. Putting v; = Jw +
D% + (a3 — ag)99D; %), we calculate the difference:
g = u—up = u— O0vy
= 90w — D200 + (oq — a3)90D; o)
= 90w — (D;? — (o — a3)OD; ) (—oqu — Piw)
= 90w — (D;? — (o — a3)V0D; )(198 a1u + Piw) 4 (oo — aq)90u)

= 58(11) — (D% = (o4 — a3)90D; ) (aou + Pgw)) .
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Hence, we can get
v = E(w — (D% = (o4 — a3)99D; ) (ayu + Pgw)) ,
vy = 8<w - (D;2 — (g — a3)195D;4)(042u + Pgw)) .
In particular, WF(v;) =% (;,g; +dt) (j = 1,2). The first equation of (4.1) is

already obtained in the proof of Lemma 4.6. The second equation of (4.1) is
also obtained in a similar way as follows: Set @ = vy — Jw. Then @ satisfies

(8,52 + (g — ag)ﬁ5)¢ =V = —0(agu + Piw),

O¢ =0,
0P = 0.
Hence,
P =W, Pt vg = —aa0u,
0o =0, < < Ovg = Ju,
0P =0, OJvg = 0.

Thus we obtain
(Pg + QQD)’UQ =0.

This is just the second equation of (4.1). O
Then we have the following lemma.

Lemma 4.8.  For any germ u; = dvy € Sol(IY;q,7) ¢ with a v, €

t,2
—~—(q—1,r)

Dby

69 satisfying (4.1) and WF(v1) & (g, 2, +dt), there exist some germs
t

)

uy;j € Sol(MYj5q,7)

E (j = 3,4) such that u1 = uiz + u14.

Proof. For u; = 0v; € i)vbﬁ?r)

25 we suppose u13,u14 are of the form;

U3 = 85‘/, U1qg = U1 — 85V = 6(’[}1 — EV)

—~(g—1,r—1
Here V € Dbﬁg Y

&9 Hence we have only to impose the following
t,z
conditions on V: _
P (00V) =0,

I(vy — V) =0,

IV = 0.
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Since the equation
P (00V) = (07 + 0109 + 200 + 309 + ay99) 90V
=00 (0} + a0+ a30) V = 85(5}2 + (a1 + ag)ﬁ)V

holds, it is sufficient to impose the next conditions:

19(111 - EV) = O, — EV = ?91}1,
IV =0, IV = 0.
From Lemma 4.5 and Lemma 4.4, we have a w’ satisfying Jw’ = v; and

WF(w') & (;, %, +dt). Then it is sufficient to impose the following equations on
V:
OV — ) = 9 (o + as)or + ),

OV —duw') =0,
HV —dw') = 0.
Therefore we get
(4.2) V —dw = —9D;? ((al + az)vi(t, 2) + 82w (t, z))

Indeed the O-closedness of right side of (4.2) follows from (4.1). Hence u; €

Sol(M¥:q,r) can be decomposed as a sum u; = uiz + w14, where uy; €

° o
t,z

Sol(MF;54,7)

(j:374)~ O

(&%)
In the same way, we obtain the following similar lemma as adjoint version
of Lemma 4.8. We omit the proof because the arguments go in a similar way.

Lemma 4.9.  For any germ uy = Yvy € Sol(M; q,7) Ky with a vy €
t,z

—~(g+1,r

Dbg? )

o

satisfying (4.1) and WF(vy) & (2, z; +dt), there exist some germs

° o
4

Ugy € Sol(IM,5q,7)

(k = 3,4) such that ug = ugz + uay.

(%)
Then we have the following theorem.

Theorem 4.3.  For any germ u € Sol(IM*; q,r)

o . s there exist some
(t,2)

32

germs ui; € Sol(M;q,7)

,

6o ((i5) = (13),(23),(14), (24)) such that u =

u13 + U2z + U4 + U24.
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Further, we find that u = w13 + us3 + u14 + uzq = 0 implies

ujr € Sol(Mpiq,7)  ((jk) = (13),(23), (14), (24)).

FEquivalently, we have the following eract sequence:

0— @ Sol(M05q,7) <, @Sol Mm5q,7m) A, Sol(M*; q,r) — 0.
(23) (i5)

Here,

@ SOl 1.]07 q7 : { uz-] @SOl 1]0; q, r) ‘ Z uz] - 0}7

(i) (i) (i)
GUis3® U3 U14 P Uss) = U13 @ U3 ®U14 B Uss, HU13P Uz U114 B Usy) =
Uiz + Uszz + Urg + Uay.

Proof. By virtue of Lemma 4.6, 4.7, 4.8, and 4.9, we find that u €
Sol(IMX; q, 1) ro

is decomposed as a sum u = 13 + U2z + U4 + U2q4 by

o

t,z
using uy; € Sol(OMijia.v) | o (1) = (13), (28), (14), (24)).
t,z
When u = uy3+usz+uis+usg = 0holds, we set w = ui3+uss = —u1a—1uo4.

Then w satisfies Ow = 0, Yw = 0. Hence we have Aw = 20w = 0, and so
Auyg = —Augz. By a similar argument we obtain A%u;3 = 0. Therefore we
have u13 € Sol(M505¢,7) 6o In a similar way we conclude that

t,z

ujr € Sol(Mio3q,m)  ((jk) = (23), (14), (24)).
This completes the proof of Theorem 4.3. O

Example 1. We assume X = C2. Then, X is a Kihler manifold with

~(1,1
the complex Euclidean metric. We find a solution u € Db; : of the form with

¢ = G1dzt + (2d2? where (1, () € C2\{0};
u(t, z) = U(t)e' =<9,
Then,

P — {U~ + (a1 = az) (A (+ (CA#U)) +asl¢PU

(s - a9 T (5 (CA#0)) +aalcPU =479 <o,

Ut)=c1(t) CAC+ea(t) ¢ AT+ cs(t) CHACH eq(t) ¢F AT,
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where ¢+ = (,dz' — ¢ dz?, |¢| = |¢*] hold. Then, we get
(C/f + (o1 + 043)|C\201)C AC+ (C/zl + (a1 + 044)\C|202)C e
(c;,’ + (o + a3)|<\2(:3)G AC+ (cﬁ{ + (o + a4)\g|%4) ¢t A ZL =0.

Hence, we obtain

c1(t) = AB exp (i\/oq + a3|§|t) + Al exp (—i\/al + a3|§|t) ,
cot) = Aﬂ exp (i\/al + a4|<|t) + Al exp (—i\/al + a4|<|t) ,
c3(t) = A;% exp (i\/OéQ + a3|§|t) + A exp (—i\/az + a3|§|t) ,
ca(t) = AZ, exp (ivaz + ag|C[t) + Az exp (—ivaz + auq|(t) .
Since
U(0) = (Afy + Afy) (AC+ (Af + AL) (AT
_ - _ .y
+ (Al + AR) CEACH (AS + Agy) CEACT,
0 ) _ —
QU(O) =ivaq + az|¢|(Afy — Afz) CAC
+ivar T aalC|(Af, - A) (AT
+ivag + as|¢|(Afy — Azs) (N AC
+ivan T aalC|(Af, — A5) (AT
we get

(U(0),¢AQ" . (5U0),¢A Q"
21¢[? 2v/ar + aslCf”
(U0),¢AO" L (5U©),6A0"
21| 2v/ar + aal¢f*
U@ A T (GO CAT)
" 2|¢I* 2yor Fagl¢P
UO).CAT) | AGUO).CAT)
2|¢]* 2y/ar +aql¢)P
(U(0),¢ AT (BU0).¢E A"

+
A13_

A1_3 =

A1_4 =

+

A= T P9 Jan T aalp

Ao - U0, NG (FU0).¢H A G
23 —

AT T avm t P
WO).¢t AT (GUO). AT
2(¢1* 2y/az +ag|¢)P

+
A24_
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), ¢ AT (BUO).C AT
2cf 2/as ¥ aaldl?

A2_4 -

Appendix

As an appendix, we give a brief introduction to Kéhler manifolds. Fur-
ther we give a proof of the equivalency of the conditions (0.1) and the Kéhler
condition in A.2.

A.1. The Kahler Condition on Hermitian Manifolds

Let X be an n-dimensional Hermitian manifold. Taking a holomorphic
local coordinates (z1,...,2"), we define a positive definite Hermitian matrix
hjz(2) = (025, 0.x) = , when (-, -) is the Hermitian metric. Then the (1, 1)-form

O = hy dz) Adz"
does not depend on the choice of the coordinates.

Definition A.1. We call a Hermitian manifold (X, h) a Kéhler mani-
fold when the equation

d® =0

is satisfied. We call this a Kahler condition.

To explain the meaning of d® = 0, we introduce the canonical connection

D induced by ®. Let X{*7) be a sheaf of ® " T.X @ A" T7 X-valued C>

functions.

(LO) _ (10)

Definition A.2. A holomorphic connection D : %(Svt) (s41,6) 18

defined as follows:

Forae€ &Y f e %Ei}?t),), we have D(a A f) = (da) A f
+ (=1)***a A Df.

To find the holomorphic connection induced by the Hermitian metric, we
put

9 i 0 k
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Since D induced by ® satisfy the following commutative diagram

(1,00 . O @ _ (0,1)
%(0,0) > @ _— h]z le S gX

n| |

. 0 -
200 2wy 5 @t —— aTJkl dzF A dzt e eV,

we get
w'y = h"Okh .

Hence we have

-0 dal P 0
Dl =) =" J ot — k
<a 8zj> (82”“ o ka) 0z 0 dz".

By the canonical duality between 9,; and dz’, D induces a holomorphic con-
nection on the cotangent bundle. Indeed we have

D (dzj) = —wijkdzi ® dz".

Then, if this D is compatible with the exterior differential (torsion-free condi-
tion), we must impose the condition D(dz7) = 0 in A*Y T*X; that is,

Wi = Wiy -

This condition is just the K&hler condition.

A.2. Necessity of Kidhler Conditions

We know that the Kéhler condition leads the conditions (0.1). Conversely,
we show that the conditions (0.1) imply the Kéhler condition.

Theorem A.1. If O =0 as operators on 5&1,1) on a Hermitian man-
ifold X, then X is a Kdhler manifold.

Proof. We fix any point p on X. Then by using a suitable complex linear
transformation we can take a local holomorphic coordinate system (z!,...,2")
around p satisfying the following:

{z1<p> = =2"(p) =0,

hi3(2) = bij + winiz' + @i 2 + O(|z]?).
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Then we get

W (z)

=0jk — Wk:jlzl — Wikl zH+ O(]2?),
det(hjk)

=1+wjjz + w5 2 + O(|2]?),
|det(hj)| =1 +w;jz! +wjj 28+ O(|2]?).

Let f = f;dz" Adz? and g = g;5dz" A dz’ be C (1,1)-forms with compact
supports. Therefore we have

(90f,9) = (0f,09)

0 P —
:/ 6le§ ( o )(hk:lhza hzlhka)hﬁ_]|det h| dz{all} /\dE{aH}
z z

d (9f; klyia il kayy 87 —1—
__/E(azé (PRI — pilp )h51|deth|)|deth| 'o5 AV

Here, {all} = {1,2,...,n}, dV =

| det h| dzt*} A dz 121}, Hence we have
(90f) ;5 -hioRPT

Of S S
— hklhla _ pilpka hﬁg _1'
o (82’9 ( AR *)hPI| det h| | | det A
Taking the values at z = 0, we obtain the following:

_ 0
(30f),5 = —-2 ( /5

3 o (hklhza hﬂhka)hﬁﬂ det h|) | det h|—1
Pop | Pl | O ol __0f5 0l
_ af i3 B iB id %
T T 9k07F | 92005 + Wk 92k +W2aka . zlla ~ wkala -
9faj afi; 0f.3 0f
+ TR~ WAl ~ DR T PRk

8 «
O*f *fiz af Of.5
_ Y Jap iB -~ kB 9aB
pE= = ) ( )

0z% 0zk
aff 0f.z Ofis
+ (wiak - wkai)# + Wgjk ( 92k ! — 82’]2‘]) )

On the other hand, let f = f;;dz' A dz’ and g = g;dz’ be C>(1,1)- and
C*(0, 1)-forms with compact supports, respectively. Then we have

_ - /g
(Df,9) = (f,09) :/fi% R Rk (W) | det h| dzta A gz {all}

/|deth| 1 9 mh”hjk|deth|)g dv.
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Therefore,

(0f)5 = —|deth|~h (flkh”hjﬂ deth]).

Jﬁa

Consequently we obtain the following:

- B
09f)a5 =~ 5,0 (Idethl Yhig p (fzkh”h]kdeth)>

_ 9 il aflﬁ 1 il ik
——@<h oot ldet | hysfp o (h h |dth|>
Taking the values at z = 0 again, we get
_ ?f5 Ofz 0f=z Of = 0f:5
o iB iB [ R—c) iB
(09f).5 pyp + Wia o3 + Win dro T WBkI G o Wikki Ao py
+ Caginfz-

Here Cyg;i are some constants which are independent of f and df. Therefore
we have the following equalities at z = O:

(Of) oz = (00f) 45 + (90f) 45

82f 3 of 3 of
= 8zk8_ + (n — wui)a—;ﬁ + (Wjak — Wkay) R J,f
Ofu7 Ofi5
+ Wgjik 02 k + Wija— 0z ] +Cocﬁ_]kf]k
Since O is the complex conjugate to [, we also have
_ f.3 of.5 Of .=
Lhas=—5% 85’“ + (win — wm)ia; + (wisk — wkgj)—azkj
Of 3 Of;
B ai
+wajka—§]k+ 1 92 1 ke
When the equation
0= (Df - ﬁf)ozﬁ
of = Of .= of =
= (Wi — wui)a—;ﬁ + (@jak — Wkaj)BTJIf + (@gjk — wkjﬁ)ﬁ
of = of = 0f =
af (& JB
— (win — wm)ﬁ — (wjk — Wkﬁj)gkj — (Wagr — ija)ﬁ
+ (Capjt — Cpari) f%
holds, for any given u, v,k € {1,...,n} we can choose f such that

8f]%(0)/azz = 6ip,6j1/6kﬁ7 /k'( )/8 f]”W(O) = 0,



504 YOSHIYASU YASUTOMI

and we have
0 = (@ut = Wup)dor s + (Dvap = Wpar)Ipx + (©prn — Wuns)dav-
If we choose @ = v and 8 # k, then we see that
Wy — D =0

holds for any S, k,u with 8 # k. Further if we take p = k # 3, we have
Warr — Wrra = 0 (not the summation in x) for any 8 # k. Consequently we get

wijr = wrj;  for any 4, j, k.

This is equivalent to the Kahler condition at p. That is, d®(p) = 0. Since p is
an arbitrary point of X, so X is a Kahler manifold. ]
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