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Proper Stacks

By

Luca PRELLI*

Abstract

We generalize the notion of proper stack introduced by Kashiwara and Schapira
to the case of a general site, and we prove that a proper stack is a stack.
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Introduction

In [3] Kashiwara and Schapira defined the notion of proper stack on a
locally compact topological space X. A proper stack is a separated prestack
S satisfying suitable hypothesis. They proved that a proper stack is a stack.
In this paper, we generalize the notion of proper stack to the case of a site X
associated to a small category Cx and we prove that a proper stack is a stack.
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81. Review on Grothendieck Topologies and Sheaves

Let C be a category'. As usual we denote by C” the category of functors
from C°P to Set and we identify C with its image in C” via the Yoneda em-
bedding. If A € C", we will denote by C4 the category of arrows U — A with
U € C. When taking inductive and projective limits on a category I we will
always assume that I is small.

We recall here some classical definitions (see [2]), following the presentation
of [4].

Definition 1.1. A Grothendieck topology on a small category Cx is a
collection of morphisms in C% called local epimorphisms, satysfying the follow-
ing conditions:

LE1 For any U € Cx, idy : U — U is a local epimorphism.

LE2 Let A; % Ay % As be morphisms in C%. If uw and v are local epimorphisms,
then v o u is a local epimorphism.

LE3 Let A; = Ay - A3 be morphisms in Cy. If vouis a local epimorphism,
then v is a local epimorphism.

LE4 A morphism u: A — B in C% is a local epimorphism if and only if for any
U € Cx and any morphism U — B, the morphism A xg U — U is a local
epimorphism.

Definition 1.2. A morphism A — B in C% is a local monomorphism if
A — A xpg Ais alocal epimorphism.

A morphism A — B in C% is a local isomorphism if it is both a local
epimorphism and a local monomorphism.

Definition 1.3. A ssite X is a category Cx endowed with a Grothendieck
topology.

Let A be a category admitting small inductive and projective limits.

Definition 1.4. An A-valued presheaf on X is a functor C{ — A.
A morphism of presheaves is a morphism of such functors. One denotes by
Psh(X, A) the category of A-valued presheaves on X.

I'We shall work in a given universe U, small means U-small (i.e. a set is U-small if
it is isomorphic to a set belonging to U) and a category C means a U-category (i.e.
Home (X,Y) is U-small for any X,Y € C).
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If F € Psh(X, A), it extends naturally to C% by setting

F(A)= lm F),
(U—A)eCa

where A € C§ and U € Cx.
Definition 1.5. Let X be a site.

e One says that F' € Psh(X, .A) is separated, if for any local isomorphism
A — U withU € Cx and A € C%, F(U) — F(A) is a monomorphism.

e One says that F' € Psh(X, A) is a shealf, if for any local isomorphism A — U
with U € Cx and A € C}, F(U) — F(A) is an isomorphism.
82. Review on Stacks

Let Cx be a small category. We suppose that a Grothendieck topology on
Cx is defined and we denote by X the associated site. We recall some classical

definitions (see [1]), following the presentation of [4].

Definition 2.1. A prestack S on X is the data of:

for each U € Cx, a category S(U),
for each V. — U € Cy, a functor jyy. : S(U) — S(V),

given U, V,W € Cx and W — V — U, an isomorphism of functors Ay vy :

TWV O JVUs — JWU,
such that

* juus = ids),

given {U;}ier € Cx, i =1,2,3,4 and Uy — Uy — Us — Uy, the following

diagram commutes:

. . . 234 . .
J12% © J23% O J34s% — > J12% © J24x
l)\lzg lA124
. . A134 .
J13% © J34x J14x

Let lim S(U) denote a category defined as follows. An object F of

UeCx
lim S(U) is a family {(Fv)v, (Yu)u} where
UeCx
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e for any U € Cx, Fy € Ob(S(U)),

e for any morphism U; — Us in Cx, Y12 : j12+Fv, — Fy, is an isomorphism,
such that for any sequence U; — Us — Ugs the following diagram commutes

. . P .
J124J235 Fry ——— 124 F 1,
>\123l liblz
. P13
Jis«Fv, ——— Fy,.
Note that tiq, = idp, for any U € Cx.

The morphisms are defined in natural way. Let F,G € lim S(U). Then
UeCx

Hom piw sy (F,G) ~ lim Homgw)(Fu,Gu).

vecx UeCx

For any A € C%, we set

S(A) = lm  S©O),
(U—>A)€CA

A morphism ¢ : A — B in C} defines a functor jap. : S(B) — S(A), therefore
a prestack on Cxy extends naturally to a prestack on C%.

Definition 2.2. Let X be a site.

e A prestack S on X is called separated if for any U € Cx, and for any local
isomorphism A — U in C%, javus« : S(U) — S(A) is fully faithful.

e A prestack S on X is called a stack if for any U € Cx, and for any local
isomorphism A — U in C%, jaus« : S(U) — S(A) is an equivalence.

Proposition 2.3.  Let S be a prestack on X. Then S is a stack if and
only if S satisfies the following conditions:
(i) S is separated,

(ii) for any U € Cx and for any local isomorphism A — U the restriction
functor jau. : S(U) — S(A) admits a left adjoint jy;, satisfying japs o
jgé, ~id (or, equivalently, the functor jg}] is fully faithful).

Proof. The result follows from the fact that two categories are equivalent
if and only if they admit a pair of fully faithful adjoint functors. O
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83. Proper Stacks

Let Cx be a small category. In this section we extend a result of [3] to the
case of a site X associated to a small category Cx.
Let S be a prestack on X and assume the following hypothesis

- for any U,V € Cx and any morphism U — V in C%, the functor
(1) Juve : S(V) — S(U) admits a left adjoint ji;{, satisfying

ids() = juvs o jyv (or, equivalently, j;;i is fully faithful),
- for all U € Cx the category S(U) admits small inductive limits.

Lemma 3.1.  Let S be a prestack and assume (1). Let A€ Cy,V €Cx
and A — V. Then the functor jay. admits a left adjoint, denoted by j;xl/.

Proof. Let F = {Fy}w—ayec, € S(A), and let j  F = lim jyyFu.
(U—A)eCa
This defines a functor j; : S(A) — S(V). Let G € S(V). We have the chain

of isomorphisms

Homs v (jy F, G) = Homgy)( lim  jvFu,G)
(U—A)eCa

~ lim  Homg,(jgy Fu, G)
(U—A)ECa

~ lim  Homs)(Fu, juv«G)
(U—A)eCa

~ Homg(a)(F, jav«G).
O

Lemma 3.2.  Let S be a prestack on X satisfying (1), let U, U,V € Cx
and U' — U — V. Then

(i) there erists a canonical morphism ji i, © jurvs — Jgv © UV,
.. —1 . o~ a1 . —1 .
(ii) we have Jury CIU Vs = Jury ©JU V= C Jyy O JUV -
Proof. (i) The adjunction morphism j[}/lU o jurux — ids(y) defines
1 . o i1 1 . . -1 .
Jurv CJuvs = Jyy CJyry CIJUUx CJUuvx — Jyy CJUV -
(ll) We have jU/V* >~ jU’U* OjUV*a and then

. —1 . . —1 .
JU'V« O Jyy = JUiUux O JUuvs© Jyy = JUUx-
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Hence we have the chain of isomorphisms
—1 . —1 . o -1 . . o a1 .
Jurv CJUu'vs O Juy CIUVx = Jyry CJU'Ux CJUuvs = Jyry CJU' V-
O

Lemma 3.3.  Let S be a prestack on X satisfying (1). Let U, V,W € Cx
and let U - W,V — W be morphisms. Consider the diagram

UXWV—>V

L

U———W
where U xw V € C%. Then there exists a canonical morphism
2) s vw © JUxwVWe = Juiy © Juws © jyiy © jywe.
Proof. Since U xw V € C% for each F' € S(W) we have

JuswvwE = {gww FYw —vxwvieco,v € SWU xw V)

hence as in Lemma 3.1

1 . N . -1 .
]waijUxWVW*F ~ h_r)n ]Wlw.?W’W*F-
(W’HUXWV)GCUXWV

By Lemma 3.2 we have jI/_Vl’W O JW W © j;‘l/v O W = j;l,l,w o jww« for each
(W' = U xw V) € Cuxyv. We have natural morphisms

1 . ~ .1 . 1 .
Juxwvw CIUXw VWi 7 Juxy, VW CJUxw VW« O Jyywy © JVIWx
1 . 1 .
—Juw CJUW=x O Jyw CIVWx-
O

Let U,V,W € Cx and let U — W, V — W be morphisms. The morphism
(2) induces a natural arrow

J0 vy © JUxw VU — JVW © Gk v © JUxw Vs © duy — Jvws © Jgw-
Definition 3.4. A proper stack S on X is a prestack satisfying

PRS1 S is separated,
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PRS2 for each U € Cx, S(U) admits small inductive limits,

PRS3 for all U,V € Cx and U — V the functor jyy. : S(V) — S(U) commutes

with lim,
—

PRS4 for all U,V € Cx and U — V the functor jyy. : S(V) — S(U) admits
a left adjoint j[}‘l,, satisfying ids () 5 duve oj[}‘lf (or, equivalently, the
functor jgy, is fully faithful),

PRS5 for all VU W € Cx, U — W and V — W, the morphism
—1 . . -—1
JUxwvv CIUxwVUx = JVW= © Juw
is an isomorphism.

Remark 3.5. Here U xy V € C)A(, since we have not assumed that Cx
admits fiber products.

Lemma 3.6.  Let us consider the following diagram

AxyU——=A

|

U V

where U,V € Cx and A € C%. Let S be a proper stack on X. Then we have
. 1 -1 .
JUuv«CJay = Jaxy,UU CJAXvUA-

Proof. Let F' = {Fw}w—a)ec, € S(A). We have the chain of isomor-
phisms

juveojavF ~juve  lim it Fw
(W—>A)ECA

~ lim Juvedny Fw
(W—A)eCa

. 1 .
= hi,n ]UXVWU]UXVWW*FW

(W—A)eCa
~ lim limy JwrvFw:

(W—>A)€CA(W/—>W><VU)€CW><VU

. —1
= lim JwruFwe,
(W"—AxyU)ECaxy U
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where the second and the third isomorphism follow from PRS3 and PRS5 re-
spectively. The fourth isomorphism follows since W xy U € C% and we have

JuxywwsFw = {jwwFw }w —wxy)ecw v
> {Fw b w—wxyU)eCw v

On the other hand we have jax,va«f =~ {FWH}(WN_,AXVU)GCAXVU, hence

-1 . . 1
-]AXVUUO-]AXVUA*F: h_H)l -]W”UFW”'
(W"—=AxyU)eCax U

|

Theorem 3.7. Let X be a site associated to a small category Cx. Let
S be a proper stack on X. Then S is a stack.

Proof. Let A — V be a local isomorphism. By Proposition 2.3 it is
enough to show that jay. o ji ~ id. Let F = {Fv,}ovi—ajec, € S(A). Tt
satisfies, for each V; — V;

(3) Jviv, Py, & Fy,.

We have to show that jyv, v« jz‘l/F ~ Fy, for each V; — A. Let us consider
Vi, — A. By PRS5 and (3), for each Vj, — A we have the chain of isomorphisms

. -1 o -1 . o a1 .
JViOV*JVkVFVk — JVkXVViOViO]VkXVViOVk*FVk - ijxV\/iUViU]VkXV‘/iU‘/iO*F‘/iO'
Hence we obtain the isomorphism
. ,,1F o a1 . P
JVigVed aAv _]AXVV;UV;UJAXVV;‘UV;‘U* Vig

1 . ~ . : . .
and ]AXV\&O%O]AXV‘%W()*FWO ~ Fy, since S is separated and A xv V;, — V;,
is a local isomorphism. O

Example 3.8. Let k be a field, and X a topological space (or, more
generally, let X be a site associated to an ordered-set category). The prestack
associating to an open set U of X the category of sheaves of k-vector spaces?

on U is a proper stack.

2More generally, one can consider sheaves with values in a category A admitting small
inductive and projective limits, such that filtrant inductive limits are exact and satisfying
the ICP property (see [4] for a detailed exposition).
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