Publ. RIMS, Kyoto Univ. **43** (2007), 525–533

Proper Stacks

By

Luca Prelli^{*}

Abstract

We generalize the notion of proper stack introduced by Kashiwara and Schapira to the case of a general site, and we prove that a proper stack is a stack.

Contents

Introduction

- §1. Review on Grothendieck Topologies and Sheaves
- §2. Review on Stacks
- §3. Proper Stacks

References

Introduction

In [3] Kashiwara and Schapira defined the notion of proper stack on a locally compact topological space X . A proper stack is a separated prestack S satisfying suitable hypothesis. They proved that a proper stack is a stack. In this paper, we generalize the notion of proper stack to the case of a site X associated to a small category \mathcal{C}_X and we prove that a proper stack is a stack.

Communicated by M. Kashiwara. Received June 27, 2006.

²⁰⁰⁰ Mathematics Subject Classification(s): 14A20, 18D30, 18F10.

Key words: Stacks, Grothendieck topologies

Reserch supported in part by grant CPDA061823 of Padova University.

[∗]Universit`a di Padova, Dipartimento di Matematica Pura ed Applicata, via Trieste 63, 35121 Padova, Italy or: Université Pierre et Marie Curie, Institut de Mathématiques de Jussieu, 175 rue du Chevaleret, 75013 Paris, France. e-mail: lprelli@math.unipd.it

c 2007 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

526 Luca Prelli

*§***1. Review on Grothendieck Topologies and Sheaves**

Let C be a category¹. As usual we denote by \mathcal{C}^{\wedge} the category of functors from \mathcal{C}^{op} to **Set** and we identify \mathcal{C} with its image in \mathcal{C}^{\wedge} via the Yoneda embedding. If $A \in \mathcal{C}^{\wedge}$, we will denote by \mathcal{C}_A the category of arrows $U \to A$ with $U \in \mathcal{C}$. When taking inductive and projective limits on a category I we will always assume that I is small.

We recall here some classical definitions (see [2]), following the presentation of [4].

Definition 1.1. A Grothendieck topology on a small category \mathcal{C}_X is a collection of morphisms in \mathcal{C}_X^{\wedge} called local epimorphisms, satysfying the following conditions:

- LE1 For any $U \in \mathcal{C}_X$, id_U : $U \rightarrow U$ is a local epimorphism.
- LE2 Let $A_1 \stackrel{u}{\rightarrow} A_2 \stackrel{v}{\rightarrow} A_3$ be morphisms in \mathcal{C}_X^{\wedge} . If u and v are local epimorphisms, then $v \circ u$ is a local epimorphism.
- LE3 Let $A_1 \stackrel{u}{\rightarrow} A_2 \stackrel{v}{\rightarrow} A_3$ be morphisms in \mathcal{C}_X^{\wedge} . If $v \circ u$ is a local epimorphism, then v is a local epimorphism.
- LE4 A morphism $u : A \to B$ in C_X^{\wedge} is a local epimorphism if and only if for any $U \in \mathcal{C}_X$ and any morphism $U \to B$, the morphism $A \times_B U \to U$ is a local epimorphism.

Definition 1.2. A morphism $A \to B$ in C_X^{\wedge} is a local monomorphism if $A \rightarrow A \times_B A$ is a local epimorphism.

A morphism $A \to B$ in \mathcal{C}_X^{\wedge} is a local isomorphism if it is both a local epimorphism and a local monomorphism.

Definition 1.3. A site X is a category \mathcal{C}_X endowed with a Grothendieck topology.

Let A be a category admitting small inductive and projective limits.

Definition 1.4. An A-valued presheaf on X is a functor $\mathcal{C}_X^{op} \to \mathcal{A}$. A morphism of presheaves is a morphism of such functors. One denotes by $P\text{sh}(X,\mathcal{A})$ the category of $\mathcal{A}\text{-valued presheaves on }X$.

¹We shall work in a given universe \mathcal{U} , small means \mathcal{U} -small (i.e. a set is \mathcal{U} -small if it is isomorphic to a set belonging to \mathcal{U}) and a category \mathcal{C} means a $\mathcal{U}\text{-category}$ (i.e. $\text{Hom}_{\mathcal{C}}(X, Y)$ is *U*-small for any $X, Y \in \mathcal{C}$).

If $F \in \text{Psh}(X, \mathcal{A})$, it extends naturally to \mathcal{C}_X^{\wedge} by setting

$$
F(A) = \varprojlim_{(U \to A) \in \mathcal{C}_A} F(U),
$$

where $A \in \mathcal{C}_X^{\wedge}$ and $U \in \mathcal{C}_X$.

Definition 1.5. Let X be a site.

- One says that $F \in \text{Psh}(X, \mathcal{A})$ is separated, if for any local isomorphism $A \to U$ with $U \in \mathcal{C}_X$ and $A \in \mathcal{C}_X^{\wedge}$, $F(U) \to F(A)$ is a monomorphism.
- One says that $F \in \mathrm{Psh}(X, \mathcal{A})$ is a sheaf, if for any local isomorphism $A \to U$ with $U \in \mathcal{C}_X$ and $A \in \mathcal{C}_X^{\wedge}$, $F(U) \to F(A)$ is an isomorphism.

*§***2. Review on Stacks**

Let \mathcal{C}_X be a small category. We suppose that a Grothendieck topology on \mathcal{C}_X is defined and we denote by X the associated site. We recall some classical definitions (see [1]), following the presentation of [4].

Definition 2.1. A prestack S on X is the data of:

- for each $U \in \mathcal{C}_X$, a category $\mathcal{S}(U)$,
- for each $V \to U \in \mathcal{C}_U$, a functor $j_{V U \ast} : \mathcal{S}(U) \to \mathcal{S}(V)$,
- given $U, V, W \in \mathcal{C}_X$ and $W \to V \to U$, an isomorphism of functors λ_{WVU} : $j_{W V*} \circ j_{V U*} \stackrel{\sim}{\rightarrow} j_{W U*},$

such that

- $j_{UU*} = \text{id}_{\mathcal{S}(U)},$
- given $\{U_i\}_{i\in I}\in \mathcal{C}_X$, $i=1,2,3,4$ and $U_1\to U_2\to U_3\to U_4$, the following diagram commutes:

Let $\varprojlim_{U \in \mathcal{C}_X} \mathcal{S}(U)$ denote a category defined as follows. An object F of

 $\varprojlim \mathcal{S}(U)$ is a family $\{(F_U)_U, (\psi_u)_u\}$ where U ∈ \mathcal{C}_X

- for any $U \in \mathcal{C}_X$, $F_U \in Ob(\mathcal{S}(U)),$
- for any morphism $U_1 \to U_2$ in \mathcal{C}_X , $\psi_{12} : j_{12*}F_{U_2} \to F_{U_1}$ is an isomorphism, such that for any sequence $U_1 \rightarrow U_2 \rightarrow U_3$ the following diagram commutes

$$
j_{12*}j_{23*}F_{U_3} \xrightarrow{\psi_{23}} j_{12*}F_{U_2}
$$

\n
$$
\lambda_{123}\downarrow \qquad \qquad \downarrow \psi_{12}
$$

\n
$$
j_{13*}F_{U_3} \xrightarrow{\psi_{13}} F_{U_1}.
$$

Note that $\psi_{\text{id}_U} = \text{id}_{F_U}$ for any $U \in \mathcal{C}_X$.

The morphisms are defined in natural way. Let $F, G \in \varprojlim_{U \in \mathcal{C}_X} \mathcal{S}(U)$. Then

$$
\operatorname{Hom}_{\underset{U \in \mathcal{C}_X}{\underleftarrow{\lim}} \mathcal{S}(U)}(F, G) \simeq \underset{U \in \mathcal{C}_X}{\underleftarrow{\lim}} \operatorname{Hom}_{\mathcal{S}(U)}(F_U, G_U).
$$

For any $A \in \mathcal{C}_X^{\wedge}$, we set

$$
\mathcal{S}(A) = \varprojlim_{(U \to A) \in \mathcal{C}_A} \mathcal{S}(U).
$$

A morphism $\varphi: A \to B$ in \mathcal{C}_X^{\wedge} defines a functor $j_{AB*}: \mathcal{S}(B) \to \mathcal{S}(A)$, therefore a prestack on \mathcal{C}_X extends naturally to a prestack on \mathcal{C}_X^{\wedge} .

Definition 2.2. Let X be a site.

- A prestack S on X is called separated if for any $U \in \mathcal{C}_X$, and for any local isomorphism $A \to U$ in \mathcal{C}_X^{\wedge} , $j_{AU*}: \mathcal{S}(U) \to \mathcal{S}(A)$ is fully faithful.
- A prestack S on X is called a stack if for any $U \in \mathcal{C}_X$, and for any local isomorphism $A \to U$ in \mathcal{C}_X^{\wedge} , $j_{AU*}: \mathcal{S}(U) \to \mathcal{S}(A)$ is an equivalence.

Proposition 2.3. *Let* S *be a prestack on* X*. Then* S *is a stack if and only if* S *satisfies the following conditions*:

- (i) S *is separated,*
- (ii) *for any* $U \in \mathcal{C}_X$ *and for any local isomorphism* $A \rightarrow U$ *the restriction* $functor\ j_{AU*}: \mathcal{S}(U) \rightarrow \mathcal{S}(A)$ *admits a left adjoint* j_{AU}^{-1} *satisfying* $j_{AU*} \circ$ $j_{AU}^{-1} \simeq$ id (*or, equivalently, the functor* j_{AU}^{-1} *is fully faithful*).

Proof. The result follows from the fact that two categories are equivalent if and only if they admit a pair of fully faithful adjoint functors. \Box

*§***3. Proper Stacks**

Let \mathcal{C}_X be a small category. In this section we extend a result of [3] to the case of a site X associated to a small category \mathcal{C}_X .

Let S be a prestack on X and assume the following hypothesis

(1)
$$
\begin{cases}\n\text{for any } U, V \in \mathcal{C}_X \text{ and any morphism } U \to V \text{ in } \mathcal{C}_X^{\wedge}, \text{ the functor } \\ \nj_{UV^*}: \mathcal{S}(V) \to \mathcal{S}(U) \text{ admits a left adjoint } j_{UV}^{-1} \text{ satisfying } \\ \text{id}_{\mathcal{S}(U)} \xrightarrow{\sim} j_{UV^*} \circ j_{UV}^{-1} \text{ (or, equivalently, } j_{UV}^{-1} \text{ is fully faithful),} \\ \text{- for all } U \in \mathcal{C}_X \text{ the category } \mathcal{S}(U) \text{ admits small inductive limits.}\n\end{cases}
$$

Lemma 3.1. *Let* S *be a prestack and assume* (1). Let $A \in C_X^{\wedge}$, $V \in C_X$ and $A \rightarrow V$ *. Then the functor* j_{AV*} *admits a left adjoint, denoted by* j_{AV}^{-1} .

Proof. Let
$$
F = \{F_U\}_{(U \to A) \in C_A} \in \mathcal{S}(A)
$$
, and let $j_{AV}^{-1}F := \varinjlim_{(U \to A) \in C_A} j_{UV}^{-1}F_U$.

This defines a functor $j_{AV}^{-1}: \mathcal{S}(A) \to \mathcal{S}(V)$. Let $G \in \mathcal{S}(V)$. We have the chain of isomorphisms

$$
\begin{aligned} \text{Hom}_{\mathcal{S}(V)}(j_{AV}^{-1}F, G) &= \text{Hom}_{\mathcal{S}(V)}(\underbrace{\lim}_{(U \to A) \in \mathcal{C}_A} j_{UV}^{-1}F_U, G) \\ &\simeq \underbrace{\lim}_{(U \to A) \in \mathcal{C}_A} \text{Hom}_{\mathcal{S}(V)}(j_{UV}^{-1}F_U, G) \\ &\simeq \underbrace{\lim}_{(U \to A) \in \mathcal{C}_A} \text{Hom}_{\mathcal{S}(U)}(F_U, j_{UV*}G) \\ &\simeq \text{Hom}_{\mathcal{S}(A)}(F, j_{AV*}G). \end{aligned}
$$

Lemma 3.2. *Let* S *be a prestack on* X *satisfying* (1), *let* $U', U, V \in \mathcal{C}_X$ *and* $U' \rightarrow U \rightarrow V$ *. Then*

(i) *there exists a canonical morphism* $j_{U'V}^{-1} \circ j_{U'V^*} \to j_{UV}^{-1} \circ j_{UV^*}$,

(ii) *we have* $j_{U'V}^{-1} \circ j_{U'V*} \simeq j_{U'V}^{-1} \circ j_{U'V*} \circ j_{UV}^{-1} \circ j_{UV*}.$

Proof. (i) The adjunction morphism $j_{U'U}^{-1} \circ j_{U'U*} \to id_{\mathcal{S}(U)}$ defines

$$
j_{U'V}^{-1}\circ j_{U'V*}\simeq j_{UV}^{-1}\circ j_{U'U}^{-1}\circ j_{U'U*}\circ j_{UV*}\rightarrow j_{UV}^{-1}\circ j_{UV*}.
$$

(ii) We have $j_{U'V*} \simeq j_{U'U*} \circ j_{UV*}$, and then

$$
j_{U'V*} \circ j_{UV}^{-1} \simeq j_{U'U*} \circ j_{UV*} \circ j_{UV}^{-1} \simeq j_{U'U*}.
$$

 \Box

Hence we have the chain of isomorphisms

$$
j_{U'V}^{-1} \circ j_{U'V*} \circ j_{UV}^{-1} \circ j_{UV*} \simeq j_{U'V}^{-1} \circ j_{U'U*} \circ j_{UV*} \simeq j_{U'V}^{-1} \circ j_{U'V*}.
$$

Lemma 3.3. *Let* S *be a prestack on* X *satisfying* (1). Let $U, V, W \in \mathcal{C}_X$ *and let* $U \to W$, $V \to W$ *be morphisms. Consider the diagram*

where $U \times_W V \in C_X^{\wedge}$. Then there exists a canonical morphism

(2)
$$
j_{U\times_W VW}^{-1} \circ j_{U\times_W VW*} \to j_{UW}^{-1} \circ j_{UW*} \circ j_{VW}^{-1} \circ j_{VW*}.
$$

Proof. Since $U \times_W V \in C_X^{\wedge}$ for each $F \in \mathcal{S}(W)$ we have

$$
j_{U\times_W V W\ast} F = \{ j_{W' W\ast} F \}_{(W'\to U\times_W V) \in \mathcal{C}_{U\times_W V}} \in \mathcal{S}(U \times_W V)
$$

hence as in Lemma 3.1

$$
j_{U\times_W V W}^{-1} j_{U\times_W V W\ast} F \simeq \varinjlim_{(W'\to U\times_W V)\in \mathcal{C}_{U\times_W V}} j_{W' W}^{-1} j_{W' W\ast} F.
$$

By Lemma 3.2 we have $j_{W'W}^{-1} \circ j_{W'W*} \circ j_{VW}^{-1} \circ j_{VW*} \simeq j_{W'W}^{-1} \circ j_{W'W*}$ for each $(W' \to U \times_W V) \in C_{U \times_W V}$. We have natural morphisms

$$
j_{U\times_W VW}^{-1}\circ j_{U\times_W VW*} \xrightarrow{\sim} j_{U\times_W VW}^{-1}\circ j_{U\times_W VW*} \circ j_{VW}^{-1}\circ j_{VW*}
$$

$$
\rightarrow j_{UW}^{-1}\circ j_{UW*} \circ j_{VW}^{-1}\circ j_{VW*}.
$$

 \Box

Let $U, V, W \in \mathcal{C}_X$ and let $U \to W, V \to W$ be morphisms. The morphism (2) induces a natural arrow

$$
j_{U\times_W VV}^{-1}\circ j_{U\times_W VU*}\xrightarrow{\sim} j_{VW*}\circ j_{U\times_W VW}^{-1}\circ j_{U\times_W VW*}\circ j_{UW}^{-1}\to j_{VW*}\circ j_{UW}^{-1}.
$$

Definition 3.4. A proper stack S on X is a prestack satisfying

PRS1 S is separated,

- PRS2 for each $U \in \mathcal{C}_X$, $\mathcal{S}(U)$ admits small inductive limits,
- PRS3 for all $U, V \in \mathcal{C}_X$ and $U \to V$ the functor $j_{UV^*}: \mathcal{S}(V) \to \mathcal{S}(U)$ commutes with lim,
- PRS4 for all $U, V \in \mathcal{C}_X$ and $U \to V$ the functor $j_{UV^*}: \mathcal{S}(V) \to \mathcal{S}(U)$ admits a left adjoint j_{UV}^{-1} , satisfying $\mathrm{id}_{\mathcal{S}(U)} \stackrel{\sim}{\to} j_{UV*} \circ j_{UV}^{-1}$ (or, equivalently, the functor j_{UV}^{-1} is fully faithful),
- PRS5 for all $V, U, W \in C_X, U \to W$ and $V \to W$, the morphism

$$
j_{U\times_W VV}^{-1}\circ j_{U\times_W VU*}\to j_{VW*}\circ j_{UW}^{-1}
$$

is an isomorphism.

Remark 3.5. Here $U \times_W V \in C_X^{\wedge}$, since we have not assumed that C_X admits fiber products.

Lemma 3.6. *Let us consider the following diagram*

 $where U, V \in \mathcal{C}_X$ and $A \in \mathcal{C}_X^{\wedge}$. Let S be a proper stack on X. Then we have

$$
j_{UV*} \circ j_{AV}^{-1} \simeq j_{A \times_V UU}^{-1} \circ j_{A \times_V U A*}.
$$

Proof. Let $F = \{F_W\}_{(W\to A)\in\mathcal{C}_A} \in \mathcal{S}(A)$. We have the chain of isomorphisms

$$
j_{UV*} \circ j_{AV}^{-1}F \simeq j_{UV*} \lim_{(W \to A) \in \mathcal{C}_A} j_{WV}^{-1}F_W
$$

\n
$$
\simeq \lim_{(W \to A) \in \mathcal{C}_A} j_{UV*}j_{WV}^{-1}F_W
$$

\n
$$
\simeq \lim_{(W \to A) \in \mathcal{C}_A} j_{U \times_V WU}^{-1}j_{U \times_V W W*}F_W
$$

\n
$$
\simeq \lim_{(W \to A) \in \mathcal{C}_A} \lim_{(W \to A) \in \mathcal{C}_A(W' \to W \times_V U) \in \mathcal{C}_{W \times_V U}}
$$

\n
$$
\simeq \lim_{(W'' \to A \times_V U) \in \mathcal{C}_{A \times_V U}}
$$

\n
$$
j_{W''U}^{-1}F_{W''},
$$

532 Luca Prelli

where the second and the third isomorphism follow from PRS3 and PRS5 respectively. The fourth isomorphism follows since $W \times_V U \in C_X^{\wedge}$ and we have

$$
j_{U \times_V WW*} F_W \simeq \{ j_{W'W*} F_W \}_{(W' \to W \times_V U) \in C_{W \times_V U}}
$$

$$
\simeq \{ F_{W'} \}_{(W' \to W \times_V U) \in C_{W \times_V U}}.
$$

On the other hand we have $j_{A\times_V UA*}F \simeq {F_{W''}}_{(W''\to A\times_V U)\in \mathcal{C}_{A\times_V U}}$, hence

$$
j_{A\times_V U U}^{-1}\circ j_{A\times_V U A*} F\simeq \varinjlim_{(W''\to A\times_V U)\in \mathcal{C}_{A\times_V U}}j_{W''U}^{-1}F_{W''}.
$$

Theorem 3.7. *Let* X *be a site associated to a small category* C_X *. Let* S *be a proper stack on* X*. Then* S *is a stack.*

Proof. Let $A \rightarrow V$ be a local isomorphism. By Proposition 2.3 it is enough to show that $j_{AV*} \circ j_{AV}^{-1} \simeq id$. Let $F = \{F_{V_i}\}_{(V_i \to A) \in C_A} \in \mathcal{S}(A)$. It satisfies, for each $V_i \rightarrow V_j$

$$
(3) \t\t j_{V_i V_j *} F_{V_j} \xrightarrow{\sim} F_{V_i}.
$$

We have to show that $j_{V_i V *} j_{AV}^{-1} F \simeq F_{V_i}$ for each $V_i \to A$. Let us consider $V_{i_0} \rightarrow A$. By PRS5 and (3), for each $V_k \rightarrow A$ we have the chain of isomorphisms

$$
j_{V_{i_0}V\ast}j_{V_kV}^{-1}F_{V_k}\simeq j_{V_k\times_VV_{i_0}V_{i_0}}^{-1}j_{V_k\times_VV_{i_0}V_k\ast}F_{V_k}\simeq j_{V_k\times_VV_{i_0}V_{i_0}}^{-1}j_{V_k\times_VV_{i_0}V_{i_0}\ast}F_{V_{i_0}}.
$$

Hence we obtain the isomorphism

$$
j_{V_{i_0}V\ast}j_{AV}^{-1}F \simeq j_{A\times_VV_{i_0}V_{i_0}}^{-1}j_{A\times_VV_{i_0}V_{i_0}\ast}F_{V_{i_0}},
$$

and $j_{A\times_V V_{i_0} V_{i_0}}^{-1} j_{A\times_V V_{i_0} V_{i_0}*} F_{V_{i_0}} \simeq F_{V_{i_0}}$ since S is separated and $A\times_V V_{i_0} \to V_{i_0}$ is a local isomorphism.

Example 3.8. Let k be a field, and X a topological space (or, more generally, let X be a site associated to an ordered-set category). The prestack associating to an open set U of X the category of sheaves of k -vector spaces² on U is a proper stack.

²More generally, one can consider sheaves with values in a category A admitting small inductive and projective limits, such that filtrant inductive limits are exact and satisfying the ICP property (see [4] for a detailed exposition).

PROPER STACKS 533

Acknowledgements

We thank Pierre Schapira who encouraged us to generalize the notion of proper stack. We thank Stéphane Guillermou and Pietro Polesello for their useful remarks.

References

- [1] J. Giraud, *Cohomologie non abélienne*, Grundlehren der Math. 179, Springer, Berlin, 1971.
- [2] *SGA4*, *Théorie des topos et cohomologie étale des schémas. Tome 1*, Lecture Notes in Math., 269, Springer, Berlin, 1972.
- [3] M. Kashiwara and P. Schapira, Ind-sheaves, Astérisque No. 271 (2001), 136 pp. $[4]$ _____, *Categories and sheaves*, Grundlehren der Math. 332, Springer, Berlin, 2004
- [4] , *Categories and sheaves*, Grundlehren der Math. 332, Springer, Berlin, 2006.
- [5] L. Prelli, Sheaves on subanalytic sites, Phd Thesis, Universities of Padova and Paris 6, 2006.