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Coupling of Two Partial Differential Equations
and its Application
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Abstract

The paper considers the following two partial differential equations

(A)
∂u

∂t
= F

“
t, x, u,

∂u

∂x

”
and (B)

∂w

∂t
= G

“
t, x, w,

∂w

∂x

”

in the complex domain, and gives an answer to the following question: when can we
say that the two equations (A) and (B) are equivalent? or when can we transform (A)
into (B) (or (B) into (A))? The discussion is done by considering the coupling of two
equations (A) and (B), and by solving their coupling equation. The most important
fact is that the coupling equation has infinitely many variables and so the meaning
of the solution is not so trivial. The result is applied to the problem of analytic
continuation of the solution.

§1. Introduction

In this paper, I will present a new approach to the study of nonlinear
partial differential equations in the complex domain. Since the research is still
in the first stage, as a model study I will discuss only the following two partial
differential equations

(A)
∂u

∂t
= F
(
t, x, u,

∂u

∂x

)
(where (t, x) ∈ C2 are variables and u = u(t, x) is the unknown function) and
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536 Hidetoshi Tahara

(B)
∂w

∂t
= G
(
t, x, w,

∂w

∂x

)
(where (t, x) ∈ C

2 are variables and w = w(t, x) is the unknown function). For
simplicity we suppose that F (t, x, u0, u1) (resp. G(t, x, w0, w1)) is a holomor-
phic function defined in a neighborhood of the origin of Ct × Cx × Cu0 × Cu1

(resp. Ct × Cx × Cw0 × Cw1).
My basic question is

Question. When can we say that the two equations (A) and (B) are
equivalent? or when can we transform (A) into (B) (or (B) into (A))?

One way to treat this question is to consider the coupling of (A) and (B),
and to solve their coupling equation.

The coupling of two partial differential equations (A) and (B) means that
we consider the following partial differential equation with infinitely many vari-
ables (t, x, u0, u1, . . .)

(Φ)
∂φ

∂t
+
∑
m≥0

Dm[F ](t, x, u0, . . . , um+1)
∂φ

∂um
= G
(
t, x, φ,D[φ]

)

(where φ = φ(t, x, u0, u1, . . .) is the unknown function), or the following partial
differential equation with infinitely many variables (t, x, w0, w1, . . .)

(Ψ)
∂ψ

∂t
+
∑
m≥0

Dm[G](t, x, w0, . . . , wm+1)
∂ψ

∂wm
= F
(
t, x, ψ,D[ψ]

)

(where ψ = ψ(t, x, w0, w1, . . .) is the unknown function). In the equation (Φ)
(resp. (Ψ)), the notation D means the following vector field with infinite many
variables

D =
∂

∂x
+
∑
i≥0

ui+1
∂

∂ui

(
resp. D =

∂

∂x
+
∑
i≥0

wi+1
∂

∂wi

)
,

and Dm[F ] (m = 0, 1, 2, . . .) are defined by D0[F ] = F , D[F ] = DF , D2[F ] =
D(D[F ]), D3[F ] = D(D2[F ]) and so on. These two equations (Φ) and (Ψ) are
called the coupling equations of (A) and (B).

In Sections 3 and 4, I will explain the meaning of the coupling of (A) and
(B), solve their coupling equations, and establish the equivalence of (A) and
(B) under suitable conditions. Way of solving (Φ) and (Ψ) is as follows: first we
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get a formal solution and then we prove the convergence of the formal solution.
Since the solution has infinitely many variables, the meaning of the convergence
is not so trivial.

In the last Section 5, I will give an application to the problem of analytic
continuation of the solution. The result is just the same as in Kobayashi [4]
and Lope-Tahara [5]: this shows the effectiveness of our new approach in this
paper.

In the case of ordinary differential equations, the theory of the coupling of
two differential equations was discussed in Section 4.1 of Gérard-Tahara [1]; it
will be surveyed in the next Section 2.

The results in this paper were already announced in Tahara [9].

§2. Coupling of Two Ordinary Differential Equations

Before the discussion in partial differential equations, let us give a brief
survey on the coupling of two ordinary differential equations in [Section 4.1 of
Gérard-Tahara [1]].

First, let us consider the following two ordinary differential equations:

(a)
du

dt
= f(t, u),

(b)
dw

dt
= g(t, w),

where f(t, u) (resp. g(t, w)) is a holomorphic function defined in a neighborhood
of the origin of Ct × Cu (resp. Ct × Cw).

Definition 2.1. The coupling of (a) and (b) means that we consider
the following partial differential equation (2.1) or (2.2):

(2.1)
∂φ

∂t
+ f(t, u)

∂φ

∂u
= g(t, φ)

(where (t, u) are variables and φ = φ(t, u) is the unknown function), or

(2.2)
∂ψ

∂t
+ g(t, w)

∂ψ

∂w
= f(t, ψ)

(where (t, w) are variables and ψ = ψ(t, w) is the unknown function). We call
(2.1) or (2.2) the coupling equation of (a) and (b).

The convenience of considering the coupling equation lies in the following
proposition.
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Proposition 2.2. (1) Let φ(t, u) be a solution of (2.1). If u(t) is a
solution of (a) then w(t) = φ(t, u(t)) is a solution of (b).

(2) Let ψ(t, w) be a solution of (2.2). If w(t) is a solution of (b) then
u(t) = ψ(t, w(t)) is a solution of (a).

Proof. We will prove only (1). Let φ(t, u) be a solution of (2.1) and let
u(t) be a solution of (a). Set w(t) = φ(t, u(t)). Then we have

dw(t)
dt

=
d

dt
φ(t, u(t)) =

∂φ

∂t
(t, u(t)) +

∂φ

∂u
(t, u(t))

du(t)
dt

=
∂φ

∂t
(t, u(t)) + f(t, u(t))

∂φ

∂u
(t, u(t)) = g(t, φ(t, u(t))) = g(t, w(t)).

This shows that w(t) is a solution of (b).

Next, let us give a relation between two coupling equations (2.1) and (2.2).
We have

Proposition 2.3. (1) Let φ(t, u) be a solution of (2.1) and suppose that
the relation w = φ(t, u) is equivalent to u = ψ(t, w) for some function ψ(t, w);
then ψ(t, w) is a solution of (2.2).

(2) Let ψ(t, w) be a solution of (2.2) and suppose that the relation u =
ψ(t, w) is equivalent to w = φ(t, u) for some function φ(t, u); then φ(t, u) is a
solution of (2.1).

Proof. We will show only the part (1). Since w = φ(t, u) is equivalent to
u = ψ(t, w), we get u ≡ ψ(t, φ(t, u)). By derivating this with respect to t and
u we get

0 ≡ ∂ψ

∂t
(t, φ(t, u)) +

∂ψ

∂w
(t, φ(t, u))

∂φ

∂t
(t, u),

1 ≡ ∂ψ

∂w
(t, φ(t, u))

∂φ

∂u
(t, u).

By using these relations we have(∂ψ
∂t

+ g(t, w)
∂ψ

∂w

)∣∣∣
w=φ(t,u)

=
∂ψ

∂t
(t, φ(t, u)) + g(t, φ(t, u))

∂ψ

∂w
(t, φ(t, u))

= −∂ψ
∂w

(t, φ(t, u))
∂φ

∂t
(t, u) + g(t, φ(t, u))

∂ψ

∂w
(t, φ(t, u))

=
∂ψ

∂w
(t, φ(t, u))

(
−∂φ
∂t

(t, u) + g(t, φ(t, u))
)

=
∂ψ

∂w
(t, φ(t, u))f(t, u)

∂φ

∂u
(t, u) = f(t, u).



�

�

�

�

�

�

�

�

Coupling of Two PDEs 539

Since w = φ(t, u) is equivalent to u = ψ(t, w), we obtain

∂ψ

∂t
+ g(t, w)

∂ψ

∂w
= f(t, ψ(t, w));

this proves the result (1).

Now, let us discuss the equivalence of two differential equations. Let f(t, z)
and g(t, z) be holomorphic functions of (t, z) in a neighborhood of (0, 0) ∈
Ct × Cz as before, and let us consider the following two equations:

[a]
du

dt
= f(t, u), u(t) −→ 0 (as t −→ 0),

[b]
dw

dt
= g(t, w), w(t) −→ 0 (as t −→ 0).

Denote by Sa (resp. Sb) the set of all the holomorphic solutions of [a] (resp.
[b]) in a suitable sectorial neighborhood of t = 0. Let φ(t, u) be a holomorphic
solution of (2.1) satisfying φ(0, 0) = 0: if u(t) ∈ Sa we have φ(t, u(t)) −→
φ(0, 0) = 0 (as t −→ 0), and therefore the mapping

Φ : Sa � u(t) −→ φ(t, u(t)) ∈ Sb

is well defined. Hence, if Φ : Sa −→ Sb is bijective, solving [a] is equivalent to
solving [b]. Thus:

Definition 2.4. If Φ : Sa −→ Sb is well defined and bijective, we say
that the two equations [a] and [b] are equivalent.

The following result gives a sufficient condition for Φ to be bijective.

Theorem 2.5. If the coupling equation (2.1) has a holomorphic solu-
tion φ(t, u) in a neighborhood of (0, 0) ∈ Ct × Cu satisfying φ(0, 0) = 0 and
(∂φ/∂u)(0, 0) �= 0, then the mapping Φ is bijective and so the two equations [a]
and [b] are equivalent.

Proof. Let us show that the mapping Φ : Sa −→ Sb is bijective. Since
(∂φ/∂u)(0, 0) �= 0, by the implicit function theorem we can solve the equation
w = φ(t, u) with respect to u and obtain u = ψ(t, w) for some holomorphic
function ψ(t, w) satisfying ψ(0, 0) = 0. Moreover we know that this ψ(t, w)
is a solution of (2.2). Therefore, by (2) of Proposition 2.2 we can define the
mapping

Ψ : Sb � w(t) −→ ψ(t, w(t)) ∈ Sa.
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Since w = φ(t, u) is equivalent to u = ψ(t, w), w(t) = φ(t, u(t)) is also equivalent
to u(t) = ψ(t, w(t)); this implies that w(t) = Φ(u(t)) is equivalent to u(t) =
Ψ(w(t)). Thus we can conclude that Φ : Sa −→ Sb is bijective and Ψ is the
inverse mapping of Φ.

In the application, we will regard (2.3) as an original equation and (2.4)
as a reduced equation. Then, what we must do is to find a good reduced form
(2.4) so that the following 1) and 2) are satisfied:

1) (2.3) is equivalent to (2.4), and
2) we can solve (2.4) directly.

In a sense, (2.4) must be the best partner, and our coupling equation is a tool
to find its best partner. The naming “coupling” comes from such a meaning.

In Gérard-Tahara [1], one can see many concrete applications of this theory
to the reduction problem of Briot-Bouquet’s differential equation.

§3. Coupling of Two Partial Differential Equations

Now, let us generalize the theory in Section 2 to partial differential equa-
tions. In this section we will give only a formal theory, and in the next section
we will give a substantial meaning to the formal theory.

Let us consider the following two nonlinear partial differential equations:

(A)
∂u

∂t
= F
(
t, x, u,

∂u

∂x

)
(where (t, x) ∈ C2 are variables and u = u(t, x) is the unknown function) and

(B)
∂w

∂t
= G
(
t, x, w,

∂w

∂x

)
(where (t, x) ∈ C2 are variables and w = w(t, x) is the unknown function). For
simplicity we suppose that F (t, x, u0, u1) (resp. G(t, x, w0, w1)) is a holomor-
phic function defined in a neighborhood of the origin of Ct × Cx × Cu0 × Cu1

(resp. Ct × Cx × Cw0 × Cw1).
For a function φ = φ(t, x, u0, u1, . . .) with respect to the infinitely many

variables (t, x, u0, u1, . . .) we define D[φ](t, x, u0, u1, . . .) by

D[φ] =
∂φ

∂x
(t, x, u0, u1, . . .) +

∑
i≥0

ui+1
∂φ

∂ui
(t, x, u0, u1, . . .).

For m ≥ 2 we define Dm[φ] as follows: D2[φ] = D [D[φ]], D3[φ] = D
[
D2[φ]

]
,

and so on. If φ is a function with (p+3)-variables (t, x, u0, . . . , up) then Dm[φ]
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is a function with (p+m + 3)-variables (t, x, u0, . . . , up+m). Of course, if ψ =
ψ(t, x, w0, w1, . . .) is a function with respect to the variables (t, x, w0, w1, . . .)
the notation D[ψ](t, x, w0, w1, . . .) is read as

D[ψ] =
∂ψ

∂x
(t, x, w0, w1, . . .) +

∑
i≥0

wi+1
∂ψ

∂wi
(t, x, w0, w1, . . .).

We can regard D as a vector field with infinitely many variables (x, u0, u1, . . .)
(resp. (x,w0, w1, . . .)):

D =
∂

∂x
+
∑
i≥0

ui+1
∂

∂ui

(
resp. D =

∂

∂x
+
∑
i≥0

wi+1
∂

∂wi

)
.

This operator D comes from the following formula: if K(t, x, u0, u1, . . .)
is a function with infinitely many variables (t, x, u0, u1, . . .) and if u(x) is a
holomorphic function, then under the relation ui = (∂/∂x)iu (i = 0, 1, 2, . . .)
we have

∂

∂x
K
(
t, x, u,

∂u

∂x
, . . .
)

=
∂K

∂x
+
∂K

∂u0
u1 +

∂K

∂u1
u2 + · · · = D[K].

Therefore, for any m ∈ N we have

Dm[K]
(
t, x, u,

∂u

∂x
, . . .
)

=
( ∂
∂x

)m[
K
(
t, x, u,

∂u

∂x
, . . .
)]
.

Definition 3.0.1. The coupling of two partial differential equations (A)
and (B) means that we consider the following partial differential equation with
infinitely many variables (t, x, u0, u1, . . .)

(Φ)
∂φ

∂t
+
∑
m≥0

Dm[F ](t, x, u0, . . . , um+1)
∂φ

∂um
= G
(
t, x, φ,D[φ]

)

(where φ = φ(t, x, u0, u1, . . .) is the unknown function), or the following partial
differential equation with infinitely many variables (t, x, w0, w1, . . .)

(Ψ)
∂ψ

∂t
+
∑
m≥0

Dm[G](t, x, w0, . . . , wm+1)
∂ψ

∂wm
= F
(
t, x, ψ,D[ψ]

)

(where ψ = ψ(t, x, w0, w1, . . .) is the unknown function). We call (Φ) or (Ψ)
the coupling equation of (A) and (B).
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§3.1. The formal meaning of the coupling equation

In this section we will explain the meaning of the coupling equations (Φ)
and (Ψ) in the formal sense. Here, “in the formal sense” means that the result
is true if the formal calculation makes sense. For simplicity we write

φ(t, x, u, ∂u/∂x, . . .) = φ
(
t, x, u,

∂u

∂x
,
∂2u

∂x2
, . . . ,

∂nu

∂xn
, . . .
)
.

The convenience of considering the coupling equation lies in the following
proposition.

Proposition 3.1.1. (1) If φ(t, x, u0, u1, . . .) is a solution of (Φ) and if
u(t, x) is a solution of (A), then the function w(t, x) = φ(t, x, u, ∂u/∂x, . . .) is
a solution of (B).

(2) If ψ(t, x, w0, w1, . . .) is a solution of (Ψ) and if w(t, x) is a solution of
(B), then the function u(t, x) = ψ(t, x, w, ∂w/∂x, . . .) is a solution of (A).

Proof. We will show only (1). Let φ(t, x, u0, u1, . . .) be a solution (Φ) and
let u(t, x) be a solution of (A). Set ui(t, x) = (∂/∂x)iu(t, x) (i = 0, 1, 2, . . .): we
have w(t, x) = φ(t, x, u, ∂u/∂x, . . .) = φ(t, x, u0, u1, . . .) and ∂w/∂x = D[φ](t, x,
u0, u1, . . .). Therefore we have

∂w

∂t
=
∂φ

∂t
+
∑
i≥0

∂φ

∂ui

∂ui

∂t
=
∂φ

∂t
+
∑
i≥0

∂φ

∂ui

( ∂
∂x

)i
[
∂u

∂t

]

=
∂φ

∂t
+
∑
i≥0

∂φ

∂ui

( ∂
∂x

)i
[
F
(
t, x, u,

∂u

∂x

)]

=
∂φ

∂t
+
∑
i≥0

∂φ

∂ui
Di[F ](t, x, u0, . . . , ui+1)

= G
(
t, x, φ,D[φ]

)
= G
(
t, x, w,

∂w

∂x

)
.

This shows that w(t, x) is a solution of (B).

In order to state the relation between (Φ) and (Ψ), let us introduce the
notion of the reversibility of φ(t, x, u0, u1, . . .).

Definition 3.1.2. Let φ(t, x, u0, u1, . . .) be a function in (t, x, u0, u1, . . .).
We say that the relation w = φ(t, x, u, ∂u/∂x, . . .) is reversible with respect to
u and w if there is a function ψ(t, x, w0, w1, . . .) in (t, x, w0, w1, . . .) such that
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the relation

(3.1.1)




w0 = φ(t, x, u0, u1, u2, . . .),
w1 = D[φ](t, x, u0, u1, u2, . . .),
w2 = D2[φ](t, x, u0, u1, u2, . . .),

· · · · · ·
· · · · · ·

is equivalent to

(3.1.2)




u0 = ψ(t, x, w0, w1, w2, . . .),
u1 = D[ψ](t, x, w0, w1, w2, . . .),
u2 = D2[ψ](t, x, w0, w1, w2, . . .),

· · · · · ·
· · · · · · .

In this case the function ψ(t, x, w0, w1, . . .) is called the reverse function of
φ(t, x, u0, u1, . . .).

By the definition, we see

Lemma 3.1.3. The reverse function ψ(t, x, w0, w1, . . .) of φ(t, x, u0, u1,

. . .) is unique, if it exists.

Proof. Let ψ1(t, x, w0, w1, . . .) be another reverse function of φ(t, x, u0, u1,

. . .). Then the system

(3.1.3)




u0 = ψ1(t, x, w0, w1, w2, . . .),
u1 = D[ψ1](t, x, w0, w1, w2, . . .),
u2 = D2[ψ1](t, x, w0, w1, w2, . . .),

· · · · · ·
· · · · · · .

is equivalent to (3.1.1), and so (3.1.2) and (3.1.3) are equivalent; this means
that the equality

ψ(t, x, w0, w1, w2, . . .) = ψ1(t, x, w0, w1, w2, . . .)

holds as functions with respect to (t, x, w0, w1, w2, . . .).

The following proposition gives the relation between two coupling equa-
tions (Φ) and (Ψ): we can say that the equation (Ψ) is the reverse of (Φ).
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Proposition 3.1.4. If φ(t, x, u0, u1, . . .) is a solution of (Φ) and if the
relation w = φ(t, x, u, ∂u/∂x, . . .) is reversible with respect to u and w, then the
reverse function ψ(t, x, w0, w1, . . .) is a solution of (Ψ).

To prove this we need the following lemma:

Lemma 3.1.5. (1) For any functions φ(t, x, u0, u1, . . .) and H(t, x, u0,

u1, . . .) we have

(3.1.4)
∑
i≥0

Dk

[
∂φ

∂ui
Di[H]

]
=
∑
i≥0

∂Dk[φ]
∂ui

Di[H], k = 0, 1, 2, . . . .

(2) For a function K(t, x, w0, w1, . . .) with respect to the variables (t, x,
w0, w1, . . .) we write Kφ = K(t, x, φ,D[φ], . . .) which is a function with respect
to the variables (t, x, u0, u1, . . .). We have

(3.1.5) Dk
[
Kφ

]
=
(
Dw

k[K]
)
φ
, k = 0, 1, 2, . . . ,

where Dw is the same operator as D with (u0, u1, . . .) replaced by (w0, w1, . . .).
(3) If φ(t, x, u0, u1, . . .) is a solution of the coupling equation (Φ), we have

(3.1.6)
∂Dk[φ]
∂t

+
∑
i≥0

Di[F ]
∂Dk[φ]
∂ui

=
(
Dw

k[G]
)
φ
, k = 0, 1, 2, . . .

as a function with respect to the variable (t, x, u0, u1, . . .).

Proof. Let us show (1). By the definition of the operator D we have

∂

∂ui
D[φ] =

∂

∂ui

(∂φ
∂x

+ u1
∂φ

∂u0
+ · · · + ui

∂φ

∂ui−1
+ · · ·

)

= D

[
∂φ

∂ui

]
+

∂φ

∂ui−1
for i = 0, 1, 2, . . .

(where ∂φ/∂u−1 = 0); therefore we obtain

∑
i≥0

D

[
∂φ

∂ui
Di[H]

]
=
∑
i≥0

(
D
[ ∂φ
∂ui

]
Di[H] +

∂φ

∂ui
Di+1[H]

)

=
∑
i≥0

((∂D[φ]
∂ui

− ∂φ

∂ui−1

)
Di[H] +

∂φ

∂ui
Di+1[H]

)

=
∑
i≥0

∂D[φ]
∂ui

Di[H] −
∑
i≥1

∂φ

∂ui−1
Di[H] +

∑
i≥0

∂φ

∂ui
Di+1[H]

=
∑
i≥0

∂D[φ]
∂ui

Di[H].
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This proves the equality (3.1.4) in the case k = 1. The general case k ≥ 2 can
be proved by induction on k.

Next let us show (2). The case k = 1 is verified by

D
[
Kφ

]
=
∂Kφ

∂x
+
∑
i≥0

ui+1
∂Kφ

∂ui

=
(∂K
∂x

)
φ

+
∑
j≥0

( ∂K
∂wj

)
φ

∂Dj [φ]
∂x

+
∑
i≥0

ui+1

∑
j≥0

( ∂K
∂wj

)
φ

∂Dj [φ]
∂ui

=
(∂K
∂x

)
φ

+
∑
j≥0

( ∂K
∂wj

)
φ


∂Dj [φ]

∂x
+
∑
i≥0

ui+1
∂Dj [φ]
∂ui




=
(∂K
∂x

)
φ

+
∑
j≥0

( ∂K
∂wj

)
φ
Dj+1[φ]

=
(∂K
∂x

+
∑
j≥0

∂K

∂wj
wj+1

)
φ

= (Dw[K])φ.

The general case k ≥ 2 can be proved by induction on k.
Lastly let us show (3). Since φ(t, x, u0, u1, . . .) satisfies the equation (Φ),

by applying Dk to (Φ) and by using the relation Dk[Gφ] = (Dw
k[G])φ we have

∂Dk[φ]
∂t

+
∑
i≥0

Dk

[
Di[F ]

∂φ

∂ui

]
=
(
Dw

k[G]
)
φ
.

Therefore, to prove the equality (3.1.6) we have only to notice the following
equality:

∑
i≥0

Dk

[
Di[F ]

∂φ

∂ui

]
=
∑
i≥0

Di[F ]
∂Dk[φ]
∂ui

, k = 0, 1, 2, . . .

which is already proved in the part (1).

Proof of Proposition 3.1.4. Since (3.1.1) and (3.1.2) are equivalent, we
have the equality

(3.1.7) u0 = ψ
(
t, x, φ,D[φ], D2[φ], . . .

)
as a function with respect to the variables (t, x, u0, u1, u2, . . .). Therefore, by
applying ∂/∂ui to (3.1.7) we have

(3.1.8)
∑
j≥0

( ∂ψ
∂wj

)
φ

∂Dj [φ]
∂ui

=

{
1, if i = 0,

0, if i ≥ 1.
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Also, by applying ∂/∂t to (3.1.7) and then by using (3.1.6) and (3.1.8) we have

0 =
(∂ψ
∂t

)
φ

+
∑
j≥0

( ∂ψ
∂wj

)
φ

∂Dj [φ]
∂t

=
(∂ψ
∂t

)
φ

+
∑
j≥0

( ∂ψ
∂wj

)
φ


−∑

i≥0

Di[F ]
∂Dj [φ]
∂ui

+ (Dw
j [G])φ




=
(∂ψ
∂t

)
φ

+
∑
j≥0

( ∂ψ
∂wj

)
φ
(Dw

j [G])φ −
∑
i≥0

Di[F ]
∑
j≥0

( ∂ψ
∂wj

)
φ

∂Dj [φ]
∂ui

=
(∂ψ
∂t

)
φ

+
∑
j≥0

( ∂ψ
∂wj

)
φ
(Dw

j [G])φ − F.

Hence, as a function with respect to the variables (t, x, u0, u1, u1, . . .) we have
the equality

(∂ψ
∂t

)
φ

+
∑
j≥0

( ∂ψ
∂wj

)
φ
(Dw

j [G])φ = F (t, x, u0, u1).

Since (3.1.1) and (3.1.2) are equivalent, we can regard this equality as a function
with respect to the variables (t, x, w0, w1, . . .) and obtain

∂ψ

∂t
+
∑
j≥0

∂ψ

∂wj
Dj [G] = F

(
t, x, ψ,D[ψ]

)
.

This proves that ψ(t, x, w0, w1, . . .) is a solution of the equation (Ψ).

§3.2. Equivalence of (A) and (B)

Let F and G be function spaces in which we can consider the following
two partial differential equations:

[A]
∂u

∂t
= F
(
t, x, u,

∂u

∂x

)
in F ,

[B]
∂w

∂t
= G
(
t, x, w,

∂w

∂x

)
in G .

Set

SA = the set of all solutions of [A] in F ,

SB = the set of all solutions of [B] in G .
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Then, if the coupling equation (Φ) has a solution φ(t, x, u0, u1 . . .) and if φ(t, x,
u, ∂u/∂x, . . .) ∈ G is well defined for any u ∈ SA, we can define the mapping

(3.2.1) Φ : SA � u(t, x) �−→ w(t, x) = φ(t, x, u, ∂u/∂x, . . .) ∈ SB.

If the relation w = φ(t, x, u, ∂u/∂x, . . .) is reversible with respect to u and w,
and if the reverse function ψ(t, x, w0, w1, . . .) satisfies ψ(t, x, w, ∂w/∂x, . . .) ∈ F

for any w ∈ SB, we can also define the mapping

(3.2.2) Ψ : SB � w(t, x) �−→ u(t, x) = ψ(t, x, w, ∂w/∂x, . . .) ∈ SA.

Set w(t, x) = φ(t, x, u, ∂u/∂x, . . .); then by the definition of D we have

(3.2.3)




w = φ(t, x, u, ∂u/∂x, . . .),
∂w/∂x = D[φ](t, x, u, ∂u/∂x, . . .),
∂2w/∂x2 = D2[φ](t, x, u, ∂u/∂x, . . .),

· · · · · ·
· · · · · · .

Similarly, if we set u(t, x) = ψ(t, x, w, ∂w/∂x, . . .) we have

(3.2.4)




u = φ(t, x, w, ∂w/∂x, . . .),
∂u/∂x = D[φ](t, x, w, ∂w/∂x, . . .),
∂2u/∂x2 = D2[φ](t, x, w, ∂w/∂x, . . .),

· · · · · ·
· · · · · · .

Since (3.1.1) is equivalent to (3.1.2) we have the equivalence between (3.2.3)
and (3.2.4); therefore we have Ψ ◦ Φ = identity in SA and Φ ◦ Ψ = identity in
SB. Thus, we obtain

Theorem 3.2.1. Suppose that the coupling equation (Φ) has a solution
φ(t, x, u0, u1 . . .) and that the relation w = φ(t, x, u, ∂u/∂x, . . .) is reversible
with respect to u and w. If both mappings (3.2.1) and (3.2.2) are well defined,
we can conclude that the both mappings are bijective and that one is the inverse
of the other.

By this theorem, we may say:

Definition 3.2.2. (1) If the coupling equation (Φ) (resp. (Ψ)) has a
solution φ(t, x, u0, u1 . . .) (resp. ψ(t, x, w0, w1 . . .)) and if the relation w =
φ(t, x, u, ∂u/∂x, . . .) (resp. u = ψ(t, x, w, ∂w/∂x, . . .)) is reversible with re-
spect to u and w (or w and u), then we say that the two equations (A) and
(B) are formally equivalent.
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(2) In addition, if both mappings (3.2.1) and (3.2.2) are well defined, we
say that the two equations [A] and [B] are equivalent.

In the application, we will regard [A] as an original equation and [B] as a
reduced equation. Then, what we must do is to find a good reduced form [B]
so that the following 1) and 2) are satisfied:

1) [A] is equivalent to [B], and
2) we can solve [B] concretely.

§3.3. A Sufficient condition for the reversibility

As is seen above, the condition of the reversibility of φ(t, x, u0, u1, . . .) is
very important. In this section we will give a sufficient condition for the relation
w = φ(t, x, u, ∂u/∂x, . . .) to be reversible with respect to u and w.

Let us introduce the notations: DR = {x ∈ C ; |x| ≤ R}, OR denotes the
ring of holomorphic functions in a neighborhood of DR, and OR[[u0, . . . , up]]
denotes the ring of formal power series in (u0, . . . , up) with coefficients in OR.

Proposition 3.3.1. If φ(t, x, u0, u1, . . .) is of the form

(3.3.1) φ = u0 +
∑
k≥1

φk(x, u0, . . . , uk) tk ∈
∑
k≥0

OR[[u0, . . . , uk]] tk,

the relation w = φ(t, x, u, ∂u/∂x, . . .) is reversible with respect to u and w, and
the reverse function ψ(t, x, w0, w1, . . .) is also of the form

(3.3.2) ψ = w0 +
∑
k≥1

ψk(x,w0, . . . , wk) tk ∈
∑
k≥0

OR[[w0, . . . , wk]] tk.

To prove this, let us consider the following equation with respect to the
unknown function ψ = ψ(t, x, w0, w1, . . .):

(3.3.3) w0 = φ
(
t, x, ψ,D[ψ], D2[ψ], . . .

)
in
∑
k≥0

OR[[w0, . . . , wk]]tk.

We have

Lemma 3.3.2. Let φ(t, x, u0, u1, . . .) be of the form (3.3.1). Then, the
equation (3.3.3) has a unique solution ψ(t, x, w0, w1, . . .) of the form (3.3.2)
and it satisfies also

(3.3.4) u0 = ψ
(
t, x, φ,D[φ], D2[φ], . . .

)
in
∑
k≥0

OR[[u0, . . . , uk]]tk.
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Proof. Since the equation (3.3.3) is written in the form

w0 = ψ +
∑
k≥1

φk

(
x, ψ,D[ψ], . . . , Dk[ψ]

)
tk,

under the expression ψ =
∑

i≥0 ψit
i we have

w0 =
∑
i≥0

ψit
i +
∑
k≥1

φk

(
x,
∑
i≥0

ψit
i, . . . ,

∑
i≥0

Dk[ψi]ti
)
tk.

By setting t = 0 we have ψ0 = w0, and so this equation is reduced to the form

(3.3.5)
∑
i≥1

ψit
i = −

∑
k≥1

φk

(
x,
∑
i≥0

ψit
i, . . . ,

∑
i≥0

Dk[ψi]ti
)
tk.

Let us look at the coefficients of t in the both sides of (3.3.5); we have
ψ1 = −φ1(x, ψ0, D[ψ0]) = −φ1(x,w0, D[w0]) = −φ1(x,w0, w1) (in the second
equality we used the fact ψ0 = w0).

In general, for p ≥ 1 we consider the equation (3.3.5) in the modulo class
O(tp+1); then we have

(3.3.6)p

p∑
i=1

ψit
i ≡ −

p∑
k=1

φk

(
x,

p−k∑
i=0

ψit
i, . . . ,

p−k∑
i=0

Dk[ψi]ti
)
tk mod O(tp+1).

Note that only the terms ψ0(= w0), ψ1, . . . , ψp−1 appear in the right hand side
of (3.3.6)p; therefore, if ψ0(= w0), ψ1, . . . , ψp−1 are known, by looking at the
coefficients of tp in the both sides of (3.3.6)p we can uniquely determine ψp.
Moreover, if ψi has the form ψi(x,w0, . . . , wi) for i = 1, . . . , p− 1, we have the
result that ψp also has the form ψp(x,w0, . . . , wp). Thus, we have proved that
the equation (3.3.3) has a unique solution and it has the form (3.3.2).

Next, let us show that the above solution ψ(t, x, w0, w1, . . .) satisfies the
equation (3.3.4). To do so, it is enough to prove that

(3.3.7)p u0 ≡
p∑

i=0

ψi

(
x,

p−i∑
k=0

φkt
k, . . . ,

p−i∑
k=0

Di[φk]tk
)
ti mod O(tp+1)

(with φ0 = u0 and ψ0 = w0) holds for all p = 0, 1, 2, . . . . Let us show this by
induction on p. Our conditions are: ψ0 = w0, ψ1 = −φ1(x,w0, w1) and the
relations (3.3.6)p (for p ≥ 1).

When p = 0, the relation (3.3.7)0 is nothing but the equality u0 = ψ0(x, φ0)
= φ0. When p = 1, the right hand side of (3.3.7)1 is

ψ0(x, φ0 + φ1t) + ψ1(x, φ0, D[φ0])t = φ0 + φ1t+ ψ1(x, u0, u1)t

= u0 + (φ1(x, u0, u1) + ψ1(x, u0, u1))t = u0
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which is verified by φ0 = u0 and the definition of ψ1(x, u0, u1): this proves
(3.3.7)1.

Let p ≥ 2 and suppose that (3.3.7)p−1 is already proved: then we have

u0 ≡
p−1∑
i=0

ψi

(
x,

p−1−i∑
k=0

φkt
k, . . . ,

p−1−i∑
k=0

Di[φk]tk
)
ti mod O(tp)

≡
p−1∑
i=0

ψi

(
x,

p−1∑
k=0

φkt
k, . . . ,

p−1∑
k=0

Di[φk]tk
)
ti mod O(tp).

Since Dj [u0] = uj holds, by applying Dj to the both sides of the above equality
and by using (2) of Lemma 3.1.5 we have

uj ≡
p−1∑
i=0

Dj [ψi]
(
x,

p−1∑
k=0

φkt
k, . . . ,

p−1∑
k=0

Di+j [φk]tk
)
ti mod O(tp)(3.3.8)

for j = 0, 1, 2, . . . .

Since (3.3.6)p is a known relation we have

p∑
i=1

ψi(x,w0, . . . , wi)ti(3.3.9)

≡ −
p∑

k=1

φk

(
x,

p−1∑
i=0

ψit
i, . . . ,

p−1∑
i=0

Dk[ψi]ti
)
tk mod O(tp+1)

as functions with respect to the variables (t, x, w0, w1, . . .). By substituting

wi =
p−1∑
k=0

Di[φk](x, u0, . . . , uk+i)tk, i = 0, 1, 2, . . .

into the both sides of (3.3.9) we have the relation

p∑
i=1

ψi

(
x,

p−1∑
k=0

φkt
k, . . . ,

p−1∑
k=0

Di[φk]tk
)
ti(3.3.10)

≡ −
p∑

k=1

φk

(
x,

p−1∑
i=0

ψi

(
x,

p−1∑
k=0

φkt
k, . . . ,

p−1∑
k=0

Di[φk]tk
)
ti, . . . ,

p−1∑
i=0

Dk[ψi]
(
x,

p−1∑
k=0

φkt
k, . . . ,

p−1∑
k=0

Di+k[φk]tk
)
ti

)
tk

mod O(tp+1)



�

�

�

�

�

�

�

�

Coupling of Two PDEs 551

as functions with respect to the variables (t, x, u0, u1, . . .). Therefore, by ap-
plying (3.3.8) to the right hand side of (3.3.10) we obtain

p∑
i=1

ψi

(
x,

p−1∑
k=0

φkt
k, . . . ,

p−1∑
k=0

Di[φk]tk
)
ti

≡ −
p∑

k=1

φk

(
x, u0 +O(tp), . . . , uk +O(tp)

)
tk mod O(tp+1)

≡ −
p∑

k=1

φk

(
x, u0, . . . , uk

)
tk mod O(tp+1)

which immediately leads us to (3.3.7)p.
Thus, Lemma 3.3.2 is proved.

Proof of Proposition 3.3.1. Let ψ(t, x, w0, w1, . . .) be the solution of
(3.3.3) in Lemma 3.3.2. Let us show the equivalence between the relations

(3.3.11) uj = Dj [ψ](t, x, w0, w1, . . .), j = 0, 1, 2, . . .

and

(3.3.12) wj = Dj [φ](t, x, u0, u1, . . .), j = 0, 1, 2, . . . .

Let us apply Dj to the both sides of the equality (3.3.3); by (2) of Lemma
3.1.5 we have

wj = Dj [φ](t, x, ψ,D[ψ], D2[ψ], . . .), j = 0, 1, 2, . . .

and therefore under the relation (3.3.11) we can get the relation (3.3.12). Sim-
ilarly, by applying Dj to the both sides of the equality (3.3.4) we have

uj = Dj [ψ](t, x, φ,D[φ], D2[φ], . . .), j = 0, 1, 2, . . .

and therefore under the relation (3.3.12) we can get the relation (3.3.11). This
proves Proposition 3.3.1.

§3.4. Composition of two couplings

Let us consider three partial differential equations (A), (B) and

(C)
∂z

∂t
= H
(
t, x, z,

∂z

∂x

)
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(where (t, x) ∈ C
2 are variables and z = z(t, x) is the unknown function). The

coupling equation (A) and (B) is

(3.4.1)
∂φ

∂t
+
∑
i≥0

Di[F ](t, x, u0, . . . , ui+1)
∂φ

∂ui
= G
(
t, x, φ,D[φ]

)

and the coupling equation of (B) and (C) is

(3.4.2)
∂η

∂t
+
∑
i≥0

Di[G](t, x, w0, . . . , wi+1)
∂η

∂wi
= H
(
t, x, η,D[η]

)

(where η = η(t, x, w0, w1, . . .) is the unknown function). We have

Proposition 3.4.1. Let φ(t, x, u0, u1, u2, . . .) be a solution of (3.4.1),
and let η(t, x, w0, w1, w2, . . .) be a solution of (3.4.2). Then, the composition
ζ = η(t, x, φ,D[φ], D2[φ], . . .) is a solution of

(3.4.3)
∂ζ

∂t
+
∑
i≥0

Di[F ](t, x, u0, . . . , ui+1)
∂ζ

∂ui
= H
(
t, x, ζ,D[ζ]

)

(which is the coupling equation of (A) and (C)).

Proof. Set

ζ(t, x, u0, u1, u2, . . .) = η(t, x, φ,D[φ], D2[φ], . . .) (= ηφ).

Then, by Lemma 3.1.5, (3.4.1) and (3.4.2) we have

∂ζ

∂t
+
∑
i≥0

Di[F ]
∂ζ

∂ui

=
(∂η
∂t

)
φ

+
∑
j≥0

( ∂η
∂wj

)
φ

∂Dj [φ]
∂t

+
∑
i≥0

Di[F ]
∑
j≥0

( ∂η
∂wj

)
φ

∂Dj [φ]
∂ui

=
(∂η
∂t

)
φ

+
∑
j≥0

( ∂η
∂wj

)
φ

[
∂Dj [φ]
∂t

+
∑
i≥0

Di[F ]
∂Dj [φ]
∂ui

]

=
(∂η
∂t

)
φ

+
∑
j≥0

( ∂η
∂wj

)
φ
Dj

[
∂φ

∂t
+
∑
i≥0

Di[F ]
∂φ

∂ui

]

=
(∂η
∂t

)
φ

+
∑
j≥0

( ∂η
∂wj

)
φ
Dj

[
G(t, x, φ,D[φ])

]

=
(∂η
∂t

)
φ

+
∑
j≥0

( ∂η
∂wj

)
φ
Dj [G](t, x, φ,D[φ], . . . , D1+j [φ])
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=
(∂η
∂t

+
∑
j≥0

∂η

∂wj
Dj [G]

)
φ

=
(
H(t, x, η,D[η])

)
φ

= H(t, x, ηφ, D[η]φ) = H(t, x, ηφ, D[ηφ]) = H(t, x, ζ,D[ζ]).

This proves Proposition 3.4.1.

By combining this with Definition 3.2.2, we can easily see

Proposition 3.4.2. If (A) and (B) are formally equivalent (resp. equiv-
alent), and if (B) and (C) are formally equivalent (resp. equivalent), then (A)
and (C) are also formally equivalent (resp. equivalent).

As an application of Proposition 3.4.1, we will give another criterion of the
reversibility of φ(t, x, u0, u1, . . .). In the context of Section 3.1, let φ(t, x, u0, u1,

. . .) be a solution of (Φ), and let ψ(t, x, w0, w1, . . .) be a solution of (Ψ). Then,
by Proposition 3.4.1 we see that the composition ξ = ψ(t, x, φ,D[φ], D2[φ], . . .)
is a solution of

(3.4.4)
∂ξ

∂t
+
∑
i≥0

Di[F ](t, x, u0, . . . , ui+1)
∂ξ

∂ui
= F
(
t, x, ξ,D[ξ]

)
,

and the composition η = φ(t, x, ψ,D[ψ], D2[ψ], . . .) is a solution of

(3.4.5)
∂η

∂t
+
∑
i≥0

Di[G](t, x, w0, . . . , wi+1)
∂η

∂wi
= G
(
t, x, η,D[η]

)
.

It is easy to see that the equation (3.4.4) has a solution ξ = u0; therefore, if
the solution of

(3.4.6)
∂ξ

∂t
+
∑
m≥0

Dm[F ]
∂ξ

∂um
= F (t, x, ξ,D[ξ]), ξ

∣∣∣
t=0

= u0

is unique and if ψ(t, x, φ,D[φ], . . .)|t=0 = u0 holds, we have u0 = ψ(t, x, φ,
D[φ], . . .). Similarly, if the uniqueness of the solution of

(3.4.7)
∂η

∂t
+
∑
m≥0

Dm[G]
∂η

∂um
= G(t, x, η,D[η]), η

∣∣∣
t=0

= w0

is valid and if φ(t, x, ψ,D[ψ], . . .)|t=0 = w0 holds, we have w0 = φ(t, x, ψ,
D[ψ], . . .). Thus, we obtain
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Proposition 3.4.3. Let φ(t, x, u0, u1, . . .) be a solution of (Φ) with φ|t=0

= u0, and let ψ(t, x, w0, w1, . . .) be a solution of (Ψ) with ψ|t=0 = w0. If
the uniqueness of the solution is valid in two Cauchy problems (3.4.6) and
(3.4.7), then we can conclude that the relation w = φ(t, x, u, ∂u/∂x, . . .) is
reversible with respect to u and w, and ψ(t, x, w0, w1, . . .) is the reverse function
of φ(t, x, u0, u1, . . .).

§4. Equivalence of Two Partial Differential Equations

In this section, we will give a concrete meaning to the formal theory in
Section 3 and establish the equivalence of two partial differential equations.

Let (t, x) ∈ Ct×Cx be the variables, and let F (t, x, z1, z2) be a holomorphic
function defined in a neighborhood of the origin of Ct × Cx × Cz1 × Cz2 . Let
us consider the following partial differential equation

(4.0.1)
∂u

∂t
= F
(
t, x, u,

∂u

∂x

)
and let us seek for a reduction to a simple form. As is seen in the case of ordinary
differential equations (in [1]), it will be reasonable to treat the equation

(4.0.2)
∂w

∂t
= 0

as a candidate of the reduced form of (4.0.1). In order to justify this assertion,
it is enough to discuss the following coupling equation

(Φ)
∂φ

∂t
+
∑
m≥0

Dm[F ](t, x, u0, . . . , um+1)
∂φ

∂um
= 0, or

(Ψ)
∂ψ

∂t
= F
(
t, x, ψ,D[ψ]

)
.

In this section we denote by R(C \ {0}) the universal covering space of C \ {0},
and we write Sθ = {t ∈ R(C \ {0}) ; | arg t| < θ} and Sθ(r) = {t ∈ R(C \
{0}) ; 0 < |t| ≤ r, | arg t| < θ} for θ > 0 and r > 0.

§4.1. Formal solutions of (Φ) and (Ψ)

First, let us look for a formal solution of the coupling equation (Φ) in the
form

(4.1.1) φ = u0 +
∑
k≥1

φk(x, u0, . . . , uk) tk ∈
∑
k≥0

OR[[u0, . . . , uk]] tk.

We have
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Proposition 4.1.1. The coupling equation (Φ) has a unique formal
solution of the form (4.1.1). Moreover we have the following properties : i)
φ1(x, u0, u1) = −F (0, x, u0, u1), ii) φk(x, u0, . . . , uk) (for k ≥ 1) is a holomor-
phic function in a neighborhood of {(x, u0, . . . , uk) ∈ C×Ck+1 ; |x| ≤ R, |u0| ≤
ρ and |u1| ≤ ρ} for some R > 0 and ρ > 0 which are independent of k, and
iii) φk(x, u0, . . . , uk) (for k ≥ 2) is a polynomial with respect to (u2, . . . , uk).

Proof. Set φ0 = u0 and

F (t, x, z1, z2) =
∑
i≥0

Fi(x, z1, z2) ti.

By substituting (4.1.1) into the equation (Φ) we have
∑
k≥1

kφkt
k−1 +

∑
i≥0

∑
j≥0

∑
0≤m≤j

Dm[Fi](x, u0, . . . , um+1)
∂φj

∂um
ti+j = 0.

If we set t = 0 in the above equality we see

(4.1.2) φ1 = −F0(x, u0, u1)
∂φ0

∂u0
= −F0(x, u0, u1) = −F (0, x, u0, u1),

and also by looking at the coefficients of tk (with k ≥ 1) we have the following
recurrent formulas:

(4.1.3) φk+1 = − 1
k + 1

∑
i+j=k

∑
0≤m≤j

Dm[Fi](x, u0, . . . , um+1)
∂φj

∂um
.

This proves that φk(x, u0, . . . , uk) (k = 2, 3, . . .) are determined uniquely by
the formula (4.1.3) inductively on k. The other conditions follow from (4.1.3)
and the definition of D.

Next, let us look for a formal solution of the coupling equation (Ψ) in the
form

(4.1.4) ψ = w0 +
∑
k≥1

ψk(x,w0, . . . , wk) tk ∈
∑
k≥0

OR[[w0, . . . , wk]] tk.

We have

Proposition 4.1.2. The coupling equation (Ψ) has a unique formal
solution of the form (4.1.4). Moreover we have the following properties : i)
ψ1(x,w0, w1) = F (0, x, w0, w1), ii) ψk(x,w0, . . . , wk) (for k ≥ 1) is a holomor-
phic function in a neighborhood of {(x,w0, . . . , wk) ∈ C×Ck+1 ; |x| ≤ R, |w0| ≤
ρ and |w1| ≤ ρ} for some R > 0 and ρ > 0 which are independent of k, and
iii) ψk(x,w0, . . . , wk) (for k ≥ 2) is a polynomial with respect to (w2, . . . , wk).
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Proof. Set ψ0 = w0 and

(4.1.5) F (t, x, w0 + Y,w1 + Z) =
∑
i,j,α

ai,j,α(x,w0, w1) tiY jZα.

Then, by substituting (4.1.4) into the equation (Ψ) and by comparing the co-
efficients of tk in the both sides of the equation (Ψ) we have the result that
ψk(x,w0, . . . , wk) (k = 1, 2, . . .) are determined uniquely by the following re-
current formulas: ψ1(x,w0, w1) = a0,0,0(x,w0, w1) = F (0, x, w0, w1) and

ψk+1(x,w0, . . . , wk+1) =
1

k + 1

∑
1≤i+j+α≤k

ai,j,α(x,w0, w1)(4.1.6)

×
∑

|l|+|m|=k−i

ψl1 · · ·ψljD[ψm1 ] · · ·D[ψmα
]

(for k ≥ 1), where |l| = l1 + · · · + lj and |m| = m1 + · · · + mα. This proves
Proposition 4.1.2.

Let φ(t, x, u0, u1, . . .) and ψ(t, x, w0, w1, . . .) be the formal solution in
Propositions 4.1.1 and 4.1.2, respectively. Then, by Proposition 3.3.1 we see
that the relation w = φ(t, x, u, ∂u/∂x, . . .) is reversible with respect to u and
w and that ψ(t, x, w0, w1, . . .) is the reverse function of φ(t, x, u0, u1, . . .). By
Definition 3.2.2 we have

Theorem 4.1.3. The two equations (4.0.1) and (4.0.2) are formally
equivalent.

§4.2. Convergence of ψ(t, x, w0, w1, . . .)

In this section we will prove the convergence of the formal solution

(4.2.1) ψ = w0 +
∑
k≥1

ψk(x,w0, . . . , wk) tk

of the equation (Ψ) in Proposition 4.1.2.
For R1 > 0, ε > 0 and η > 0 we set

Wk(R1, ε, η) =
{
(x,w0, . . . , wk) ∈ C × C

k+1 ; |x| ≤ R1,(4.2.2)

|w0| ≤ 0!ε/η0, |w1| ≤ 1!ε/η, . . . , |wk| ≤ k!ε/ηk
}
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(k = 1, 2, . . .). By Proposition 4.1.2 and by taking R1 > 0, ε > 0, η > 0 so that
R1, ε and ε/η are sufficiently small we may suppose that each ψk(x,w0, . . . , wk)
is a holomorphic function on Wk = Wk(R1, ε, η) and so

‖ψk‖Wk
= max

Wk

∣∣ψk(x,w0, . . . , wk)
∣∣ <∞, k = 1, 2, . . . .

We have

Proposition 4.2.1. Let R1 > 0 be sufficiently small. Then, for any
η > 0 we can find an ε > 0 such that the series

(4.2.3)
∑
k≥1

‖ψk‖Wk
zk with Wk = Wk(R1, ε, η)

is convergent in a neighborhood of z = 0 ∈ C.

To prove this result, we suppose:

c-1) F (t, x, z1, z2) is a holomorphic function in a neighborhood of K =
{(t, x, z1, z2) ∈ C4 ; |t| ≤ r, |x| ≤ R0, |z1| ≤ ρ1, |z2| ≤ ρ2} for some
r > 0, R0 > 0, ρ1 > 0 and ρ2 > 0, and

c-2) |F (t, x, z1, z2)| ≤M on K.

Take any 0 < ρ0
1 < ρ1 and 0 < ρ0

2 < ρ2. Set K0 = {(x,w0, w1) ∈ C
3 ; |x| ≤

R0, |w0| ≤ ρ0
1, |w1| ≤ ρ0

2}, and let ai,j,α(x,w0, w1) ((i, j, α) ∈ N
3) be the coeffi-

cients in (4.1.5): by Cauchy’s inequality we have

(4.2.4)
∣∣ai,j,α(x,w0, w1)

∣∣ ≤ M

ri (ρ1−ρ0
1)j (ρ2−ρ0

2)α
on K0

for any (i, j, α) ∈ N3.
Let w(x) be a holomorphic function on DR = {x ∈ C ; |x| ≤ R} for some

R (with 0 < R ≤ R0) and suppose the condition

(4.2.5) ‖w‖R ≤ ρ0
1 and

∥∥∥∥∂w∂x
∥∥∥∥

R

≤ ρ0
2

where we used the notation

‖w‖R = max
x∈DR

|w(x)|.

By (4.2.4) we have

(4.2.6)
∣∣ai,j,α(x,w, ∂w/∂x)

∣∣ ≤ M

ri (ρ1−ρ0
1)j (ρ2−ρ0

2)α
on DR.

The following is the key result on the convergence of ψ(t, x, w0, w1, . . .).
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Proposition 4.2.2. Suppose the conditions c-1) and c-2). If w(x) is a
holomorphic function on DR for some R (with 0 < R ≤ R0) and satisfies the
condition (4.2.5) for some ρ0

1 and ρ0
2 (with 0 < ρ0

1 < ρ1 and 0 < ρ0
2 < ρ2), then

the series

(4.2.7)
∑
k≥1

ψk

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)
zk

is convergent at least in the domain

Ω =
{

(x, z) ∈ C
2 ; |x| < R,(4.2.8)

|z|
R− |x| <

r

R+ 4Mr
(
(R/(ρ1−ρ0

1)) + (e/(ρ2−ρ0
2))
)}.

Moreover, we have the following estimates :

∑
k≥1

∣∣∣ψk

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∣∣∣ |z|k ≤ ρ1 − ρ0
1

2
on Ω,(4.2.9)

∑
k≥1

∣∣∣D[ψk]
(
x,w,

∂w

∂x
, . . . ,

∂k+1w

∂xk+1

)∣∣∣ |z|k ≤ ρ2 − ρ0
2

2
on Ω.(4.2.10)

Before the proof of this result, we recall Nagumo’s lemma:

Lemma 4.2.3 (Nagumo’s lemma). If f(x) is a holomorphic function
on {x ∈ C ; |x| < R} and satisfies

‖f‖s ≤ C

(R− s)a
for 0 < ∀s < R

for some C ≥ 0 and a ≥ 0, we have∥∥∥∂f
∂x

∥∥∥
s
≤ (a+ 1)eC

(R− s)a+1
for 0 < ∀s < R.

This was first proved by Nagumo [6] in a more general form; one can see a
simple proof in the book [3] (Lemma 5.1.3 of [3]). In the proof of Proposition
4.2.2 this lemma will play an important role.

Proof of Proposition 4.2.2. By Proposition 4.1.2, we may assume that all
the terms

ψk

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)
, k = 1, 2, . . .

are holomorphic functions on DR.
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We will prove the convergence of (4.2.7) by the method of majorant series.
As an equation of majorant series, we adopt the following analytic functional
equation with respect to Y :

(4.2.11)



Y = z

∑
i+j+α≥0

M

ri (ρ1−ρ0
1)j (ρ2−ρ0

2)α

( R

R − s

)i+j

zi Y j
( eY

R − s

)α

,

Y (0) = 0,

where s is a parameter with 0 < s < R. By the implicit function theorem we see
that (4.2.11) has a unique holomorphic solution Y = Y (z) in a neighborhood
of z = 0 ∈ C. If we expand this into the form

Y =
∑
k≥1

Ykz
k

we easily see that the coefficients Yk (k = 1, 2, . . .) are determined uniquely by
the following recurrent formulas: Y1 = M and

Yk+1 =
∑

1≤i+j+α≤k

M

ri (ρ1−ρ0
1)j (ρ2−ρ0

2)α

( R

R− s

)i+j

(4.2.12)

×
∑

|l|+|m|=k−i

Yl1 · · ·Ylj

( eYm1

R− s

)
· · ·
( eYmα

R− s

)

(for g ≥ 1), where |l| = l1 + · · · + lj and |m| = m1 + · · · + mα. Moreover, by
induction on k we can see that Yk has the form

Yk =
Ck

(R− s)k−1
, k = 1, 2, . . .

where Ck ≥ 0 (k = 1, 2, . . .) are constants independent of the parameter s. We
write Yk = Yk(s) when we emphasize the fact that Yk depends on the parameter
s (with 0 < s < R).

The following lemma guarantees that Y (z) =
∑

k≥1 Yk(s)zk is a majorant
series of (4.2.7).

Lemma 4.2.4. For any k = 1, 2, . . . we have:

∥∥∥ψk

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∥∥∥
s
≤ Yk(s) for 0 < ∀s < R,(4.2.13)k ∥∥∥D[ψk]

(
x,w,

∂w

∂x
, . . . ,

∂k+1w

∂xk+1

)∥∥∥
s
≤ eYk(s)

R− s
for 0 < ∀s < R.(4.2.14)k
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Proof of Lemma 4.2.4. We will prove this by induction on k. Since ψ1 is
defined by ψ1(x,w0, w1) = F (0, x, w0, w1), we have∥∥∥ψ1

(
x,w,

∂w

∂x

)∥∥∥
s
≤
∥∥∥F(0, x, w, ∂w

∂x

)∥∥∥
R
≤M = Y1

for 0 < ∀s < R. By Lemma 4.2.3 we have∥∥∥D[ψ1]
(
x,w,

∂w

∂x
,
∂2w

∂x2

)∥∥∥
s

=
∥∥∥( ∂
∂x

)
ψ1

(
x,w,

∂w

∂x

)∥∥∥
s
≤ eM

R− s
=

eY1

R− s

for 0 < ∀s < R. This proves (4.2.13)1 and (4.2.14)1.
Next, let k ≥ 1 and suppose that (4.2.13)p and (4.2.14)p are already proved

for p = 1, . . . , k. Then, by (4.1.6), (4.2.6) and the induction hypothesis we have

∥∥∥ψk+1

(
x,w,

∂w

∂x
, . . . ,

∂k+1w

∂xk+1

)∥∥∥
s

≤ 1
k + 1

∑
1≤i+j+α≤k

M

ri (ρ1−ρ0
1)j (ρ2−ρ0

2)α

×
∑

|l|+|m|=k−i

Yl1 · · ·Ylj

( eYm1

R− s

)
· · ·
( eYmα

R− s

)
.

Therefore, by comparing this with (4.2.12) and by using R/(R−s) > 1 we have

∥∥∥ψk+1

(
x,w,

∂w

∂x
, . . . ,

∂k+1w

∂xk+1

)∥∥∥
s

(4.2.15)

≤ 1
k + 1

Yk+1 =
1

k + 1
Ck+1

(R− s)k
for 0 < ∀s < R :

this yields (4.2.13)k+1. Moreover, by applying Lemma 4.2.3 to (4.2.15) we have

∥∥∥D[ψk+1]
(
x,w,

∂w

∂x
, . . . ,

∂k+2w

∂xk+2

)∥∥∥
s

=
∥∥∥( ∂
∂x

)
ψk+1

(
x,w,

∂w

∂x
, . . . ,

∂k+1w

∂xk+1

)∥∥∥
s

≤ 1
k + 1

(k + 1)eCk+1

(R− s)k+1
=

eCk+1

(R− s)k+1
=
eYk+1

R− s
for 0 < ∀s < R.

This proves also (4.2.14)k+1.

Now, let us prove that the series (4.2.7) is convergent in the domain Ω in
(4.2.8). By Lemma 4.2.4, for any fixed s with 0 < s < R we have

∑
k≥1

∥∥∥ψk

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∥∥∥
s
|z|k ≤

∑
k≥1

Yk(s)|z|k = Y (|z|)
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where Y (z) is the unique solution of (4.2.11). Therefore, to prove the conver-
gence of the series (4.2.7) on Ω it is sufficient to show that Y (z) is convergent
on Ω, or equivalently that Y (z) is holomorphic on Ω.

Note that Y (z) 
 0 and so

Y = z
∑

i+j+α≥0

M

ri (ρ1−ρ0
1)j (ρ2−ρ0

2)α

( R

R− s

)i+j

zi Y j
( eY

R− s

)α

= Mz
∑

i+j+α≥0

( R

R− s

z

r

)i( R

R− s

Y

ρ1−ρ0
1

)j( e

R − s

Y

ρ2−ρ0
2

)α

� Mz(
1 − R

R− s

z

r

)(
1 − R/(ρ1−ρ0

1) + e/(ρ2−ρ0
2)

R− s
Y
) ,

where
∑

i aiz
i �∑i biz

i means that |ai| ≤ bi holds for all i. Therefore, if we
consider the equation

(4.2.16)



Z =

Mz(
1 − R

R − s

z

r

)(
1 − R/(ρ1−ρ0

1) + e/(ρ2−ρ0
2)

R− s
Z
) ,

Z(0) = 0,

we see that this equation has a unique holomorphic solution Z(z) in a neigh-
borhood of z = 0 ∈ C and we have Z(z) 
 Y (z). Moreover, by solving (4.2.16)
concretely we have

Z(z) =
1
2β

(
1 −
√

1 − 4βMz

1 − αz

)
with

α =
R

R − s

1
r

and β =
R/(ρ1−ρ0

1) + e/(ρ2−ρ0
2)

R− s
.

Thus, we conclude that Z(z) is holomorphic in the domain

Ωs =
{
z ∈ C ;

4βM |z|
1 − α|z| < 1

}

=
{
z ∈ C ;

|z|
R− s

<
r

R+ 4Mr(R/(ρ1−ρ0
1) + e/(ρ2−ρ0

2))

}
.

Since Z(z) 
 Y (z) holds, we see that Y (z) is also holomorphic on Ωs and so
the series ∑

k≥1

∥∥∥ψk

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∥∥∥
s
|z|k

is convergent in the domain Ωs.
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Since s can be taken arbitrarily in 0 < s < R, we obtain the result that
the series (4.2.7) is convergent in the domain

⋃
0<s<R

{
(x, z) ∈ C

2 ; |x| ≤ s, z ∈ Ωs

}
= Ω.

This proves the former half of Proposition 4.2.2.
Let us show the estimates (4.2.9) and (4.2.10). Since Y (z) � Z(z), we

have Y (|z|) ≤ Z(|z|); therefore, if |x| = s we have

∑
k≥1

∣∣∣ψk

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∣∣∣ |z|k ≤
∑
k≥1

∥∥∥ψk

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∥∥∥
s
|z|k

≤ Y (|z|) ≤ Z(|z|) =
1
2β

(
1 −
√

1 − 4βM |z|
1 − α|z|

)

≤ 1
2β

=
(R− s)

2(R/(ρ1−ρ0
1) + e/(ρ2−ρ0

2))

≤ R

2R/(ρ1−ρ0
1)

=
ρ1−ρ0

1

2
on Ω;

this proves (4.2.9). Similarly, we have

∑
k≥1

∣∣∣D[ψk

](
x,w,

∂w

∂x
, . . . ,

∂k+1w

∂xk+1

)∣∣∣ |z|k

≤ e

R− s
Y (|z|) ≤ e

R − s
Z(|z|) =

e

R− s

1
2β

(
1 −
√

1 − 4βM |z|
1 − α|z|

)

≤ e

R− s

1
2β

=
e

2(R/(ρ1−ρ0
1) + e/(ρ2−ρ0

2))

≤ e

2e/(ρ2−ρ0
2)

=
ρ2−ρ0

2

2
on Ω;

this proves (4.2.10).
Thus, all the parts of Proposition 4.2.2 are proved.

For a(x) =
∑

i≥0 aix
i we write |a|(x) =

∑
i≥0 |ai|xi 
 0; for a(x, y) =∑

i,j ai,jx
iyj we write |a|(x, y) =

∑
i,j |ai,j |xiyj 
 0; and so on.

Let F (t, x, z1, z2) be as before, let |F |(t, x, z1, z2) be defined as above, and
let us consider

(Ψ+)
∂ψ+

∂t
= |F |

(
t, x, ψ+, D[ψ+]

)
.
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It is clear by Proposition 4.1.2 that (Ψ+) has a unique formal solution ψ+(t, x,
w0, w1, . . .) of the form

ψ+ = w0 +
∑
k≥1

ψ+
k (x,w0, . . . , wk) tk ∈

∑
k≥0

OR[[w0, . . . , wk]] tk

and that ψ+
k (x,w0, . . . , wk) 
 0 holds for all k = 1, 2, . . . . By Proposition 4.2.2

we have

Proposition 4.2.5. Suppose that |F |(t, x, z1, z2) satisfies the conditions
c-1) and c-2) with F and M replaced by |F | and M+, respectively. If w(x) is a
holomorphic function on DR for some R (with 0 < R ≤ R0) and satisfies the
condition (4.2.5) for some ρ0

1 and ρ0
2 (with 0 < ρ0

1 < ρ1 and 0 < ρ0
2 < ρ2), then

the series

(4.2.17)
∑
k≥1

ψ+
k

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)
zk

is convergent at least in the domain

Ω+ =
{

(x, z) ∈ C
2 ; |x| < R,(4.2.18)

|z|
R− |x| <

r

R + 4M+r
(
R/(ρ1−ρ0

1) + e/(ρ2−ρ0
2)
)}.

Moreover, we have the following estimates :

∑
k≥1

∣∣∣ψ+
k

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∣∣∣ |z|k ≤ ρ1 − ρ0
1

2
on Ω+,(4.2.19)

∑
k≥1

∣∣∣D[ψ+
k ]
(
x,w,

∂w

∂x
, . . . ,

∂k+1w

∂xk+1

)∣∣∣ |z|k ≤ ρ2 − ρ0
2

2
on Ω+.(4.2.20)

By using this proposition, let us give a proof of Proposition 4.2.1.

Proof of Proposition 4.2.1. Let r > 0, R0 > 0, ρ1 > 0 and ρ2 > 0 be as
in Proposition 4.2.5, and let 0 < R ≤ R0, 0 < ρ0

1 < ρ1 and 0 < ρ0
2 < ρ2. Take

a > 0 and L > R such that

(4.2.21)
a

L−R
≤ ρ0

1 and
a

(L−R)2
≤ ρ0

2

hold. Set
w(x) =

a

L− x
.
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Then, we see that w(x) is a holomorphic function on DR and

∂kw

∂xk
=

k!a
(L− x)k+1

, k = 0, 1, 2, . . .

and so we have ‖w‖R ≤ ρ0
1 and ‖∂w/∂x‖R ≤ ρ0

2. Hence, by Proposition 4.2.5
and its proof we see: for any fixed s with 0 < s < R the series

(4.2.22)
∑
k≥1

∥∥∥ψ+
k

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∥∥∥
s
zk

is convergent in the domain

(4.2.23) Ω+
s =

{
z ∈ C ;

|z|
R− s

<
r

R+ 4M+r(R/(ρ1−ρ0
1) + e/(ρ2−ρ0

2))

}
.

Since ψ+(t, x, w0, . . . , wk) 
 0 holds, we have

∥∥∥ψ+
k

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∥∥∥
s

=
∥∥∥ψ+

k

(
x,

0!a
(L− x)

,
1!a

(L− x)2
, . . . ,

k!a
(L− x)k+1

)∥∥∥
s

= ψ+
k

(
s,

0!a
(L− s)

,
1!a

(L− s)2
, . . . ,

k!a
(L− s)k+1

)
;

therefore, if we set ε = a/(L− s), η = L− s and

Wk(s, ε, η) =
{
(x,w0, . . . , wk) ∈ C × C

k+1 ; |x| ≤ s,

|w0| ≤ 0!ε/η0, |w1| ≤ 1!ε/η, . . . , |wk| ≤ k!ε/ηk
}
,

we have

‖ψk‖Wk
≤ ‖ψ+

k ‖Wk
= ψ+

k

(
s,

0!ε
η0
,
1!ε
η
, . . . ,

k!ε
ηk

)

= ψ+
k

(
s,

0!a
(L− s)

,
1!a

(L− s)2
, . . . ,

k!a
(L− s)k+1

)

=
∥∥∥ψ+

k

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∥∥∥
s
.

Thus, by the convergence of (4.2.22) we obtain the result that the series

(4.2.24)
∑
k≥1

‖ψk‖Wk
zk with Wk = Wk(s, ε, η)

is convergent on Ω+
s .
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Now, let us justify the assertion of Proposition 4.2.1. Take any 0 < R1 <

R0 and fix it. For any η > 0 we take ε so that

(4.2.25) 0 < ε ≤ min
{
ρ0
1/2, ρ

0
2η/4
}
.

Set L = R1 + η, a = ε(L − R1) and R = min{R0, R1 + η/2}; then we have
η = L−R1, ε = a/(L−R1), L−R ≥ L−R1 − η/2 = η/2,

a

L−R
=
ε(L−R1)
L−R

≤ εη

η/2
= 2ε ≤ ρ0

1,

a

(L−R)2
=
ε(L−R1)
(L−R)2

≤ εη

(η/2)2
=

4ε
η

≤ ρ0
2.

Thus, by setting s = R1 we can conclude that the series (4.2.24) with s = R1

is convergent in the domain Ω+
R1

(with R = min{R0, R1 + η/2}). This proves
Proposition 4.2.1.

By the proof we have

Proposition 4.2.6. Suppose that |F |(t, x, z1, z2) satisfies the conditions
c-1) and c-2) with F and M replaced by |F | and M+, respectively. Let 0 <

ρ0
1 < ρ1 and 0 < ρ0

2 < ρ2. Then, for any 0 < R1 < R0, η > 0 and 0 < ε ≤
min{ρ0

1/2, ρ0
2η/4} the series∑

k≥1

‖ψ+
k ‖Wk

zk with Wk = Wk(R1, ε, η)

is convergent in the domain Ω+
R1

(in (4.2.23) with s = R1 and R = min{R0,

R1 + η/2}). Moreover, we have the following estimate:

∑
k≥1

‖ψ+
k ‖Wk

|z|k ≤ ρ1 − ρ0
1

2
on Ω+

R1
.

The following corollary explains how to use this result.

Corollary 4.2.7. Let ψ(t, x, w0, w1, . . .) be the unique solution of (Ψ)
of the form (4.2.1), and let w(t, x) be a holomorphic function on Sθ(r) × DR

for some θ > 0, r > 0 and R > 0. If

(4.2.26) sup
Sθ(r)×DR

|w(t, x)| < min
{
ρ1/2, ρ2R/4

}

holds, the function ψ(t, x, w, ∂w/∂x, . . .) is convergent and defines a holomor-
phic function on Sθ(r1) ×DR1 for some r1 > 0 and R1 > 0.
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Proof. By the assumption we can take ε > 0, 0 < η < R, 0 < ρ0
1 < ρ1

and 0 < ρ0
2 < ρ2 such that

sup
Sθ(r)×DR

|w(t, x)| ≤ ε ≤ min
{
ρ0
1/2, ρ

0
2η/4
}
.

Then, by Cauchy’s inequality we have
∥∥∥∂kw

∂xk
(t)
∥∥∥

R−η
≤ k!ε

ηk
on Sθ(r), k = 0, 1, 2, . . .

and therefore by setting R1 = R − η and Wk = Wk(R1, ε, η) (k = 1, 2, . . .) we
have

∑
k≥1

∥∥∥ψk

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∥∥∥
R1

|t|k

≤
∑
k≥1

‖ψk‖Wk
|t|k ≤

∑
k≥1

‖ψ+
k ‖Wk

|t|k <∞, if t ∈ Sθ(r) ∩ Ω+
R1
.

This proves Corollary 4.2.7.

Remark. Of course, this corollary can be verified directly by Proposition
4.2.2.

§4.3. Convergence of φ(t, x, u0, u1, . . .)

In this section we will prove the convergence of the formal solution

(4.3.1) φ = u0 +
∑
k≥1

φk(x, u0, . . . , uk) tk

of the equation (Φ) in Proposition 4.1.1.
For R1 > 0, ε > 0 and η > 0 we set

Uk(R1, ε, η) =
{
(x, u0, . . . , uk) ∈ C × C

k+1 ; |x| ≤ R1,(4.3.2)

|u0| ≤ 0!ε/η0, |u1| ≤ 1!ε/η, . . . , |uk| ≤ k!ε/ηk
}

(k = 1, 2, . . .). By Proposition 4.1.1 and by taking R1 > 0, ε > 0, η > 0 so that
R1, ε and ε/η are sufficiently small we may suppose that each φk(x, u0, . . . , uk)
is a holomorphic function on Uk = Uk(R1, ε, η) and so

‖φk‖Uk
= max

Uk

∣∣φk(x, u0, . . . , uk)
∣∣ <∞, k = 1, 2, . . . .

We have



�

�

�

�

�

�

�

�

Coupling of Two PDEs 567

Proposition 4.3.1. Let R1 > 0 be sufficiently small. Then, for any
η > 0 we can find an ε > 0 such that the series

(4.3.3)
∑
k≥1

‖φk‖Uk
zk with Uk = Uk(R1, ε, η)

is convergent in a neighborhood of z = 0 ∈ C.

To prove this, we consider

(Ψ+)
∂ψ+

∂t
= |F |

(
t, x, ψ+, D[ψ+]

)
;

let

(4.3.4) ψ+ = w0 +
∑
k≥1

ψ+
k (x,w0, . . . , wk) tk

be the unique solution of this equation. Then, Proposition 4.3.1 follows easily
from Proposition 4.2.6, Lemma 4.3.2 given below and Stirling’s formula

√
2πxx+1/2e−x ≤ Γ(1 + x) ≤

√
2πxx+1/2e−x+1 for x > 0.

Lemma 4.3.2. For any k = 0, 1, 2, . . . we have

(4.3.5)k |φk|(x, ψ+, . . . , Dk[ψ+]) �
∑
q≥0

(k + q)k

k!
ψ+

k+q(x,w0, . . . , wk+q) tq

(with φ0 = u0 and ψ+
0 = w0). In particular, by setting t = 0 we have

(4.3.6)k |φk|(x,w0, . . . , wk) � kk

k!
ψ+

k (x,w0, . . . , wk).

Proof. When k = 0, we have φ0(x, u0) = u0 and

|φ0|(x, ψ+) = ψ+ =
∑
q≥0

ψ+
q t

q;

this proves (4.3.5)0. When k = 1, we have φ1(x, u0, u1) = −F (0, x, u0, u1) and
so

|φ1|
(
x, ψ+, D[ψ+]

)
= |F |(0, x, ψ+, D[ψ+]

)
� |F |(t, x, ψ+, D[ψ+]

)
=
∂ψ+

∂t
=

∂

∂t

∑
p≥0

ψ+
p t

p =
∑
q≥0

(1 + q)ψ+
1+q t

q;
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this proves (4.3.5)1.
Let k ≥ 1 and suppose that (4.3.5)p is already proved for p = 0, 1, . . . , k.

Then, by (4.1.3) we have

|φk+1| � 1
k + 1

∑
i+j=k

∑
0≤m≤j

Dm[|Fi|](x, u0, . . . , um+1)
∂|φj |
∂um

and so

|φk+1|
(
x, ψ+, . . . , Dk+1[ψ+]

)
tk(4.3.7)

� 1
k + 1

∑
i+j=k

∑
0≤m≤j

Dm[|Fi|]
(
x, ψ+, . . . , Dm+1[ψ+]

)
ti

× ∂|φj |
∂um

(
x, ψ+, . . . , Dj [ψ+]

)
tj .

Since we have by (2) of Lemma 3.1.5

Dm[|Fi|](x, ψ+, . . . , Dm+1[ψ+]
)
ti = Dm

[
|Fi|
(
x, ψ+, D[ψ+]

)
ti
]

� Dm
[
|F |(t, x, ψ+, D[ψ+]

)]
= Dm

[∂ψ+

∂t

]
=
∂Dm[ψ+]

∂t
,

by applying this to (4.3.7) we have

|φk+1|
(
x, ψ+, . . . , Dk+1[ψ+]

)
tk(4.3.8)

� 1
k + 1

∑
0≤j≤k

∑
0≤m≤j

∂Dm[ψ+]
∂t

∂|φj |
∂um

(
x, ψ+, . . . , Dj [ψ+]

)
tj

=
1

k + 1

∑
0≤j≤k

∂

∂t

(
|φj |
(
x, ψ+, . . . , Dj [ψ+]

))× tj .

Thus, by the induction hypothesis we obtain

|φk+1|
(
x, ψ+, . . . , Dk+1[ψ+]

)
tk(4.3.9)

� 1
k + 1

∑
0≤j≤k

∂

∂t

(∑
q≥0

(j + q)j

j!
ψ+

j+q(x,w0, . . . , wj+q) tq
)

× tj

=
1

k + 1

∑
0≤j≤k

∑
q≥1

(j + q)j

j!
q ψ+

j+q(x,w0, . . . , wj+q) tq−1+j

=
1

k + 1

∑
0≤j≤k

∑
p≥j

(p+ 1)j

j!
(p+ 1 − j)ψ+

p+1(x,w0, . . . , wp+1) tp.



�

�

�

�

�

�

�

�

Coupling of Two PDEs 569

Since the degree of each term of the left hand side of (4.3.9) in t is greater than
or equal to k, by looking at the terms whose degree in t is greater than or equal
to k and then by canceling tk from the both sides we obtain

|φk+1|
(
x, ψ+, . . . , Dk+1[ψ+]

)
� 1

k + 1

∑
0≤j≤k

∑
p≥k

(p+ 1)j

j!
(p+ 1 − j)ψ+

p+1(x,w0, . . . , wp+1) tp−k

=
1

k + 1

∑
q≥0

∑
0≤j≤k

(k + 1 + q)j

j!
(k + 1 + q − j)

× ψ+
k+1+q(x,w0, . . . , wk+1+q) tq

=
1

k + 1

∑
q≥0

[ ∑
0≤j≤k

(
(k + 1 + q)j+1

j!
− j (k + 1 + q)j

j!

)]

× ψ+
k+1+q(x,w0, . . . , wk+1+q) tq

=
1

k + 1

∑
q≥0

(k + 1 + q)k+1

k!
ψ+

k+1+q(x,w0, . . . , wk+1+q) tq

=
∑
q≥0

(k + 1 + q)k+1

(k + 1)!
ψ+

k+1+q(x,w0, . . . , wk+1+q) tq;

this proves (4.3.5)k+1.

Since kk/k! ≤ ek/
√

2π holds for any k = 1, 2, . . . , we have the following
precise form of Proposition 4.3.1:

Proposition 4.3.3. Suppose that |F |(t, x, z1, z2) satisfies the conditions
c-1) and c-2) with F and M replaced by |F | and M+, respectively. Let 0 <

ρ0
1 < ρ1 and 0 < ρ0

2 < ρ2. Then, for any 0 < R1 < R0, η > 0 and 0 < ε ≤
min{ρ0

1/2, ρ
0
2η/4} the series∑

k≥1

‖φk‖Uk
zk with Uk = Uk(R1, ε, η)

is convergent in the domain

Ω∗
R1,η =

{
z ∈ C ;

e|z|
R −R1

<
r

R + 4M+r(R/(ρ1−ρ0
1) + e/(ρ2−ρ0

2))

}
(with R = min{R0, R1 + η/2}).

Moreover, we have the following estimate:∑
k≥1

‖φk‖Uk
|z|k ≤ ρ1 − ρ0

1

2
on Ω∗

R1,η.
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Corollary 4.3.4. Let φ(t, x, u0, u1, . . .) be the unique solution of (Φ) of
the form (4.3.1), and let u(t, x) be a holomorphic function on Sθ(r) ×DR for
some θ > 0, r > 0 and R > 0. If

sup
Sθ(r)×DR

|u(t, x)| < min
{
ρ1/2, ρ2R/4

}

holds, the function φ(t, x, u, ∂u/∂x, . . .) is convergent and defines a holomorphic
function on Sθ(r1) ×DR1 for some r1 > 0 and R1 > 0.

§4.4. Equivalence of (4.0.1) and (4.0.2)

Now, let us establish the equivalence of two equations (4.0.1) and (4.0.2).
Let r > 0, R > 0, ρ1 > 0 and ρ2 > 0. We suppose:

(H1)
F (t, x, z1, z2) is a holomorphic function on

{
(t, x, z1, z2) ∈ C4 ;

|t| < r, |x| < R, |z1| < ρ1, |z2| < ρ2

}
.

Definition 4.4.1. (1) We denote by X the set of all the functions
w(t, x) satisfying the following properties:

i) w(t, x) is a holomorphic function on Sθ(r1) ×DR1 for some θ > 0,
0 < r1 < r and 0 < R1 < R, and

ii) |w(t, x)| ≤ ρ0
1 and |(∂w/∂x)(t, x)| ≤ ρ0

2 hold on Sθ(r1) ×DR1 for
some 0 < ρ0

1 < ρ1 and 0 < ρ0
2 < ρ2.

(2) We denote by H the set of all the functions w(t, x) satisfying the
following properties:

i) w(t, x) is a holomorphic function on Dr1 ×DR1 for some 0 < r1 < r,
and 0 < R1 < R, and

ii) |w(t, x)| ≤ ρ0
1 and |(∂w/∂x)(t, x)| ≤ ρ0

2 hold on Dr1 ×DR1 for some
0 < ρ0

1 < ρ1 and 0 < ρ0
2 < ρ2.

Then we have

Theorem 4.4.2. Suppose the condition (H1). The following two equa-
tions are equivalent :

∂u

∂t
= F
(
t, x, u,

∂u

∂x

)
in X (resp. in H ),(4.4.1)

∂w

∂t
= 0 in X (resp. in H ).(4.4.2)
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This follows from Theorem 3.2.1 and

Proposition 4.4.3. (1) Let φ(t, x, u0, u1, . . .) be the solution of (Φ) in
(4.1.1). If u ∈ X (resp. u ∈ H ), then we have φ(t, x, u, ∂u/∂x, . . .) ∈ X

(resp. φ(t, x, u, ∂u/∂x, . . .) ∈ H ).
(2) Let ψ(t, x, w0, w1, . . .) be the solution of (Ψ) in (4.1.4). If w ∈ X

(resp. w ∈ H ), then we have ψ(t, x, w, ∂w/∂x, . . .) ∈ X (resp. ψ(t, x, w,
∂w/∂x, . . .) ∈ H ).

Let us show this proposition now. For a function w(t, x) =
∑

l≥0wl(t)xl

we write |w|x(t, x) =
∑

l≥0 |wl(t)|xl. If w(t, x) ∈ X (resp. w(t, x) ∈ H ) holds,
the coefficients wl(t) are all holomorphic on Sθ(r1) (resp. on Dr1); but |wl(t)|
(l ≥ 0) are only continuous on Sθ(r1) (resp. on Dr1). In order to treat this
function |w|x(t, x), let us introduce the following function spaces C(X ) and
C(H ):

Definition 4.4.4. (1) We denote by C(X ) the set of all the functions
w(t, x) satisfying the following properties:

i) w(t, x) is a continuous function on Sθ(r1) ×DR1 for some θ > 0,
0 < r1 < r and 0 < R1 < R,

ii) w(t, x) is holomorphic in x ∈ DR1 for any fixed t ∈ Sθ(r1), and
iii) |w(t, x)| ≤ ρ0

1 and |(∂w/∂x)(t, x)| ≤ ρ0
2 hold on Sθ(r1) ×DR1 for

some 0 < ρ0
1 < ρ1 and 0 < ρ0

2 < ρ2.
(2) We denote by C(H ) the set of all the functions w(t, x) satisfying the

following properties:
i) w(t, x) is a continuous function on Dr1 ×DR1 for some 0 < r1 < r,

and 0 < R1 < R,
ii) w(t, x) is holomorphic in x ∈ DR1 for any fixed t ∈ Dr1 , and
iii) |w(t, x)| ≤ ρ0

1 and |(∂w/∂x)(t, x)| ≤ ρ0
2 hold on Dr1 ×DR1 for some

0 < ρ0
1 < ρ1 and 0 < ρ0

2 < ρ2.

Then we have

Lemma 4.4.5. If w(t, x) ∈ X (resp. w(t, x) ∈ H ) we have |w|x(t, x) ∈
C(X ) (resp. |w|x(t, x) ∈ C(H )).

Proof. Suppose that w(t, x) =
∑

l≥0 wl(t)xl ∈ X . Then, by the condi-
tions |w(t, x)| ≤ ρ0

1 and |(∂w/∂x)(t, x)| ≤ ρ0
2 on Sθ(r1)×DR1 with 0 < ρ0

1 < ρ1

and 0 < ρ0
2 < ρ2 we have

|wl(t)| ≤ ρ0
1

R1
l

(l ≥ 0) and |lwl(t)| ≤ ρ0
2

R1
l−1

(l ≥ 1),



�

�

�

�

�

�

�

�

572 Hidetoshi Tahara

and so we see:

|w|x(t, x) =
∑
l≥0

|wl(t)|xl �
∑
l≥0

ρ0
1

R1
l
xl =

ρ0
1

1 − x/R1
,

∂|w|x
∂x

(t, x) =
∑
l≥1

l|wl(t)|xl−1 �
∑
l≥1

ρ0
2

R1
l−1

xl−1 =
ρ0
2

1 − x/R1
.

Therefore, if we take R2 > 0 sufficiently small so that ρ0
1/(1 − R2/R1) < ρ1

and ρ0
2/(1 − R2/R1) < ρ2 we have the properties: i) |w|x(t, x) is a continuous

function on Sθ(r1) × DR2 , ii) |w|x(t, x) is holomorphic in x ∈ DR2 , and iii)
||w|x(t, x)| ≤ ρ∗1 and |(∂|w|x/∂x)(t, x)| ≤ ρ∗2 on Sθ(r1) ×DR2 for ρ∗1 = ρ0

1/(1 −
R2/R1) < ρ1 and ρ∗2 = ρ0

2/(1−R2/R1) < ρ2. This proves the result: |w|x(t, x) ∈
C(X ). The case H can be proved in the same way.

Let

(4.4.3) ψ+ = w0 +
∑
k≥1

ψ+
k (x,w0, . . . , wk) tk

be the unique solution of

(4.4.4)
∂ψ+

∂t
= |F |

(
t, x, ψ+, D[ψ+]

)
.

If w = w(t, x) ∈ X (resp. w = w(t, x) ∈ H ), we have |w|x = |w|x(t, x) ∈
C(X ) (resp. |w|x = |w|x(t, x) ∈ C(H )) and

φk(x,w, ∂w/∂x, . . .) � |φk|(x, |w|x, ∂|w|x/∂x, . . .)

� kk

k!
ψ+

k (x, |w|x, ∂|w|x/∂x, . . .), k = 1, 2, . . . ,

ψk(x,w, ∂w/∂x, . . .) � |ψk|(x, |w|x, ∂|w|x/∂x, . . .)
� ψ+

k (x, |w|x, ∂|w|x/∂x, . . .), k = 1, 2, . . .

as formal power series in x (with a parameter t). Therefore, to prove Proposi-
tion 4.4.3 it is sufficient to show the following result.

Lemma 4.4.6. If w = w(t, x) ∈ C(X ) (resp. w = w(t, x) ∈ C(H )) we
have ψ+(t, x, w, ∂w/∂x, . . .) ∈ C(X ) (resp. ψ+(t, x, w, ∂w/∂x, . . .) ∈ C(H )).

Proof. Let θ > 0, 0 < r1 < r, 0 < R1 < R, 0 < ρ0
1 < ρ1 and 0 < ρ0

2 < ρ2.
Let w(t, x) be a continuous function on Sθ(r1)×DR1 which is holomorphic in x ∈
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DR1 for any fixed t ∈ Sθ(r1) and satisfies |w(t, x)| ≤ ρ0
1 and |(∂w/∂x)(t, x)| ≤ ρ0

2

on Sθ(r1) ×DR1 .
Then, by Proposition 4.2.5 we see that for any fixed t ∈ Sθ(r1) and any

fixed s with 0 < s < R1 the series

(4.4.5)
∑
k≥1

∥∥∥ψ+
k

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∥∥∥
s
|z|k

is convergent in the domain

Ω+
s =

{
z ∈ C ;

|z|
R1 − s

<
r

R1 + 4M+r
(
R1/(ρ1−ρ0

1) + e/(ρ2−ρ0
2)
)};

moreover we have the following estimates:

∑
k≥1

∥∥∥ψ+
k

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∥∥∥
s
|z|k ≤ ρ1 − ρ0

1

2
on Ω+

s ,

∑
k≥1

∥∥∥D[ψ+
k ]
(
x,w,

∂w

∂x
, . . . ,

∂k+1w

∂xk+1

)∥∥∥
s
|z|k ≤ ρ2 − ρ0

2

2
on Ω+

s .

Thus, by setting z = t we have∣∣∣ψ+
(
t, x, w,

∂w

∂x
, . . .
)∣∣∣

≤ |w(t, x)| +
∑
k≥1

∥∥∥ψ+
k

(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∥∥∥
s
|t|k

≤ ρ0
1 + (ρ1 − ρ0

1)/2 < ρ1 on (Sθ(r1) ∩ Ω+
s ) ×Ds,

and ∣∣∣ ∂
∂x
ψ+
(
t, x, w,

∂w

∂x
, . . .
)∣∣∣ = ∣∣∣D[ψ+]

(
t, x, w,

∂w

∂x
, . . .
)∣∣∣

≤
∣∣∣∂w
∂x

(t, x)| +
∑
k≥1

∥∥∥D[ψ+
k ]
(
x,w,

∂w

∂x
, . . . ,

∂kw

∂xk

)∥∥∥
s
|t|k

≤ ρ0
2 + (ρ2 − ρ0

2)/2 < ρ2 on (Sθ(r1) ∩ Ω+
s ) ×Ds.

This proves that ψ+(t, x, w, ∂w/∂x, . . .) belongs in the class C(X ).
Thus, the case w ∈ C(X ) is proved. The case w ∈ C(H ) can be proved

in the same way.

Let us give an application. Suppose the condition (H1). Let u(t, x) ∈ X

be a solution of the equation

(4.4.6)
∂u

∂t
= F
(
t, x, u,

∂u

∂x

)
.
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Set w(t, x) = φ(t, x, u, ∂u/∂x, . . .). Then, w(t, x) ∈ X is a solution of

(4.4.7)
∂w

∂t
= 0

and so w(t, x) can be expressed in the form w(t, x) = h(x) for some holomorphic
function h(x) in a neighborhood of x = 0. Since w(t, x) = h(x) ∈ H holds, by
the reversibility we have u(t, x) = ψ(t, x, w, ∂w/∂x, . . .) = ψ(t, x, h, ∂h/∂x, . . .)
∈ H . Thus, we have u(t, x) ∈ H . This proves

Theorem 4.4.7. Suppose the condition (H1). If u(t, x) is a solution of
(4.4.6) belonging in the class X , then u(t, x) can be continued holomorphically
up to some neighborhood of the origin of Ct × Cx.

§5. Application

Lastly, let us give an application to the problem of analytic continuation of
the solution. We will prove the same result as in Kobayashi [4] and Lope-Tahara
[5], as an application of the theory of coupling equations in this paper.

Let ω be an open neighborhood of the origin of Ct × Cx. In this section
we suppose

(H2) F (t, x, z1, z2) is a holomorphic function on ω × Cz1 × Cz2

and consider the equation

(5.0.1)
∂u

∂t
= F
(
t, x, u,

∂u

∂x

)
.

By the Taylor expansion in (z1, z2) we can express F (t, x, z1, z2) in the
form

F (t, x, z1, z2) =
∑

(j,α)∈∆

aj,α(t, x) z1j z2
α,

where (j, α) ∈ N × N, ∆ is a subset of N × N, and aj,α(t, x) are holomorphic
functions on ω. Without loss of generality we may suppose that aj,α(t, x) �≡ 0
for any (j, α) ∈ ∆; then we can write aj,α(t, x) = tkj,α bj,α(t, x), where kj,α

is a non-negative integer and bj,α(0, x) �≡ 0. Using the above, the function
F (t, x, z1, z2) may now be written as

F (t, x, z1, z2) =
∑

(j,α)∈∆

tkj,αbj,α(t, x) z1jz2
α.
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Set ∆2 = {(j, α) ∈ ∆ ; j + α ≥ 2}. We remark that the equation (5.0.1) is
linear if and only if ∆2 = ∅; it is nonlinear otherwise. In the case ∆2 �= ∅ we
define the index σ by

(5.0.2) σ = sup
(j,α)∈∆2

−kj,α − 1
j + α− 1

which was introduced by Kobayashi [4]. Note that this σ is a non-positive real
number.

Lemma 5.0.1. Set M = {(j, α) ∈ ∆2 ; σ = (−kj,α − 1)/(j + α − 1)}.
We have:

(1) If (j, α) ∈ M we have kj,α + 1 + σ(j + α− 1) = 0.
(2) If (j, α) ∈ ∆ \M we have kj,α + 1 + σ(j + α− 1) > 0.

Proof. (1) is clear from the definition of σ. Let us show (2). Let (j, α) ∈
∆ \M; if j+α ≥ 2, by the definition of σ we have σ > (−kj,α − 1)/(j+α− 1)
which is equivalent to kj,α + 1 + σ(j + α − 1) > 0, if j + α = 1 we have
kj,α +1+σ(j+α− 1) = kj,α +1 ≥ 1, and if j+α = 0 we have kj,α +1+σ(j+
α− 1) = kj,α + 1 − σ ≥ kj,α + 1 ≥ 1.

§5.1. Further equivalence of two PDEs

Let σ be the index defined by (5.0.2), and let us define a function-class Sσ

whose elements can be singular at t = 0.

Definition 5.1.1. We denote by Sσ the set of all the functions w(t, x)
satisfying the following properties:

i) w(t, x) is a holomorphic function on Sθ(r) ×DR for some θ > 0,
r > 0 and R > 0, and

ii) ‖w(t)‖R = o(|t|σ) (as t −→ 0 in Sθ(r)).

Then we have

Theorem 5.1.2. Suppose the conditions (H2) and ∆2 �= ∅; let σ be the
one in (5.0.2). The following two equations are equivalent:

∂u

∂t
= F
(
t, x, u,

∂u

∂x

)
in Sσ,(5.1.1)

∂w

∂t
= 0 in Sσ.(5.1.2)
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This follows from Theorem 3.2.1 and

Proposition 5.1.3. Suppose the conditions (H2) and ∆2 �= ∅; let σ be
the one in (5.0.2). We have:

(1) Let φ(t, x, u0, u1, . . .) be the solution of (Φ) in (4.1.1). If u ∈ Sσ, then
we have φ(t, x, u, ∂u/∂x, . . .) ∈ Sσ.

(2) Let ψ(t, x, w0, w1, . . .) be the solution of (Ψ) in (4.1.4). If w ∈ Sσ,
then we have ψ(t, x, w, ∂w/∂x, . . .) ∈ Sσ.

Proof. We will prove this by using Propositions 4.2.6 and 4.3.3. Since the
proofs of (1) and (2) are quite parallel to each other, we will prove only the
part (1).

Let u(t, x) be a holomorphic function on Sθ(r0) ×DR0 with θ > 0, r0 > 0
and R0 > 0, and suppose that ‖u(t)‖R0 = o(|t|σ) (as t −→ 0 in Sθ). We may
assume that r0 > 0 and R0 > 0 are sufficiently small, and so we may also
assume that |F |(t, x, z1, z2) is holomorphic in a neighborhood of {(t, x, z1, z2) ∈
C4 ; |t| ≤ r0, |x| ≤ R0, |z1| ≤ ρ1 and |z2| ≤ ρ2} for any ρ1 > 0 and ρ2 > 0.
Hence, we may assume that

(5.1.3)
∑

(j,α)∈∆

r0
kj,αBj,α ρ1

jρ2
α <∞

holds for any ρ1 > 0 and ρ2 > 0, where

(5.1.4) Bj,α = max
|t|≤r0,|x|≤R0

∣∣|bj,α|(t, x)∣∣, (j, α) ∈ ∆.

Since ‖u(t)‖R0 = o(|t|σ) (as t −→ 0 in Sθ) is assumed, we can choose
a function εt (in t ∈ Sθ(r0)) such that ‖u(t)‖R0 ≤ εt|t|σ on Sθ(r0) and that
εt = o(1) (as t −→ 0 in Sθ). Without loss of generality we may assume that
|t|/εt = o(1) (as t −→ 0 in Sθ(r)); if otherwise we have only to replace εt by
max{εt, |t|1/2}.

Take any 0 < R ≤ R0/2 and fix it. Then, take any t ∈ Sθ(r0/(4e)) and
fix it. Set ut(x) = u(t, x); then ut(x) is a holomorphic function on DR and
satisfies

(5.1.5)
∥∥∥∥∂kut

∂xk

∥∥∥∥
R

≤ k! εt|t|σ
Rk

, k = 0, 1, 2, . . . :

this is verified by the conditions R0 − R ≥ R, ‖ut‖R0 ≤ εt|t|σ and Cauchy’s
inequality.
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Therefore, if we set

r = 4e|t|, ρ0
1 = 2εt|t|σ, ρ1 = 3εt|t|σ, ρ0

2 = 4
εt|t|σ
R

, ρ2 = 5
εt|t|σ
R

(5.1.6)

and R1 = R, η = R, ε = εt|t|σ

(where t ∈ Sθ(r0/(4e)) is fixed), we can apply Proposition 4.3.3 to this case
and obtain the following result: the series∑

k≥1

‖φk‖Uk
zk with Uk = Uk(R, ε, η)

is convergent in the domain

(5.1.7) Ω∗ =
{
z ∈ C ; |z| < r

e(3 + 4M+r((3 + 2e)/(εt|t|σ))

}
,

where M+ is a constant satisfying

(5.1.8)
∣∣|F |(t, x, z1, z2)∣∣ ≤M+ on K∗

and K∗ is the compact set K∗ = {(t, x, z1, z2) ∈ C4 ; |t| ≤ r, |x| ≤ R0, |z1| ≤
ρ1, |z2| ≤ ρ2} under the condition (5.1.6). Note that the domain Ω∗ depends
on t. Since (5.1.5) is written as∥∥∥∥∂kut

∂xk

∥∥∥∥
R

≤ k! ε
ηk

, k = 0, 1, 2, . . . (under (5.1.6))

we have ∑
k≥1

∥∥∥φk

(
x, ut,

∂ut

∂x
, . . . ,

∂kut

∂xk

)∥∥∥
R
|z|k ≤

∑
k≥1

‖φk‖Uk
|z|k

and so we see that the series of the left hand side is also convergent on Ω∗.
If the fixed t satisfies t ∈ Ω∗, we can set z = t and obtain the convergence

of ∑
k≥1

φk

(
x, ut,

∂ut

∂x
, . . . ,

∂kut

∂xk

)
tk

on DR (where t is fixed).
Thus, to prove the convergence of φ(t, x, u(t, x), (∂u/∂x)(t, x), . . .) on the

domain Sθ(µ) ×DR it is sufficient to show the following lemma:

Lemma 5.1.4. There is a µ such that 0 < µ ≤ r0/(4e) and that t ∈ Ω∗

holds for any t ∈ Sθ(µ); in other words, the inequality

|t| < r

e(3 + 4M+r((3 + 2e)/(εt|t|σ))
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holds for any t ∈ Sθ(µ), where r is the one in (5.1.6) and M+ is a constant
satisfying (5.1.8).

Proof of Lemma 5.1.4. Since r = 4e|t| we have only to show the inequality

|t| < (4e|t|)
e(3 + 4M+(4e|t|)((3 + 2e)/(εt|t|σ))

which is equivalent to

(5.1.9)
M+|t|
εt|t|σ <

1
16e(3 + 2e)

.

Since |F |(t, x, z1, z2) is expressed in the form

|F |(t, x, z1, z2) =
∑

(j,α)∈∆

tkj,α |bj,α|(t, x) z1jz2
α

and since K∗ is the compact set K∗ = {(t, x, z1, z2) ∈ C4 ; |t| ≤ r, |x| ≤
R0, |z1| ≤ ρ1, |z2| ≤ ρ2} we may take M+ as

(5.1.10) M+ =
∑

(j,α)∈∆

rkj,αBj,α ρ1
jρ2

α (under (5.1.6))

where Bj,α ((j, α) ∈ ∆) are the constants in (5.1.4).
Let us show that the inequality (5.1.9) (with (5.1.10)) holds if |t| is suffi-

ciently small. By using r = 4e|t|, ρ1 = 3εt|t|σ, ρ2 = 5εt|t|σ/R and by setting
A = (r0/4e)1−σ, c1 = (3r0σ)/(4e)σ, c2 = (5r0σ)/(R(4e)σ), we have

M+|t|
εt|t|σ =

∑
(j,α)∈∆

(
4e|t|)kj,αBj,α 3j (5/R)α

(
εt|t|σ

)j+α−1|t|

= A
∑

(j,α)∈∆

(4e
r0

|t|
)kj,α+1+σ(j+α−1)

εt
j+α−1r0

kj,α Bj,α c1
jc2

α

=
∑

(j,α)∈M
∗ +

∑
(j,α)∈∆\M

j+α≥1

∗ +
∑

(j,α)=(0,0)

∗

= I1 + I2 + I3.

In the case (j, α) ∈ M, we have j+α ≥ 2 and kj,α + 1 + σ(j +α− 1) = 0.
Since |t| is sufficiently small we may assume that εt ≤ 1 holds. Therefore, we
have

I1 = A
∑

(j,α)∈M
εt

j+α−1r0
kj,α Bj,α c1

jc2
α(5.1.11)

≤ εt A
∑

(j,α)∈M
r0

kj,α Bj,α c1
jc2

α = o(1) (as |t| −→ 0).
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Since t ∈ Sθ(r0/(4e)) we have (4e/r0)|t| ≤ 1. Therefore, by using εt ≤ 1
we have

I2 ≤ A
∑

(j,α)∈∆\M
j+α≥1

(4e
r0

|t|
)kj,α+1+σ(j+α−1)

r0
kj,α Bj,α c1

jc2
α(5.1.12)

≤ A
∑

(j,α)∈∆\M
1≤j+α≤N

(4e
r0

|t|
)kj,α+1+σ(j+α−1)

r0
kj,α Bj,α c1

jc2
α

+A
∑

j+α>N

r0
kj,α Bj,α c1

jc2
α

for any integer N > 0. Since the second term of the right hand side is conver-
gent, by choosing N sufficiently large we can make it as small as possible. If
we fix N , the first term of the right hand side is only a finite sum; therefore,
by using the condition kj,α + 1 + σ(j + α− 1) > 0 and by letting |t| −→ 0 we
can make it as small as possible. Thus, we obtain the result: I2 = o(1) (as
|t| −→ 0).

In the case j + α = 0 we have kj,α + 1 + σ(j + α − 1) = kj,α + 1 − σ ≥
kj,α + 1 ≥ 1 and so

I3 = A
∑

(j,α)=(0,0)

(4e
r0

|t|
)kj,α+1+σ(j+α−1)

εt
j+α−1r0

kj,α Bj,α c1
jc2

α(5.1.13)

≤ A
(4e
r0

|t|
)
εt

−1r0
k0,0 B0,0

=
|t|
εt
A
(4e
r0

)
r0

k0,0 B0,0 = o(1) (as |t| −→ 0).

In the last equality, we used the condition: |t|/εt = o(1) (as |t| −→ 0).
Thus, we have proved that

M+|t|
εt|t|σ = o(1) (as |t| −→ 0)

which implies that there is a µ > 0 such that (5.1.9) holds for any |t| ≤ µ. This
proves Lemma 5.1.4.

Completion of the proof of Proposition 5.1.3. By Lemma 5.1.4 we have
seen that φ(t, x, u(t, x), (∂u/∂x)(t, x), . . .) is convergent on the domain Sθ(µ)×
DR. Moreover, by the latter half of Proposition 4.3.3 we have

∑
k≥1

∣∣∣φk

(
x, ut,

∂ut

∂x
, . . . ,

∂kut

∂xk

)∣∣∣ |t|k ≤ ρ1 − ρ0
1

2
on Sθ(µ) ×DR.



�

�

�

�

�

�

�

�

580 Hidetoshi Tahara

Since ρ1 − ρ0
1 = εt|t|σ we have

‖φ(t, x, u(t, x), (∂u/∂x)(t, x), . . .)‖R

≤ ‖u(t)‖R +
∑
k≥1

∥∥∥φk

(
x, ut,

∂ut

∂x
, . . . ,

∂kut

∂xk

)∥∥∥
R
|t|k

≤ εt|t|σ +
εt|t|σ

2
= o(|t|σ) (as |t| −→ 0).

Thus, we have obtained the condition φ(t, x, u(t, x), (∂u/∂x)(t, x), . . .) ∈ Sσ.
This completes the proof of Proposition 5.1.3.

§5.2. In the case ‖u(t)‖ = O(|t|σ)

Let M be as in Lemma 5.0.1. In this section we suppose

(5.2.1) M = ∅ :

this implies that kj,α + 1 + σ(j + α − 1) > 0 holds for all (j, α) ∈ ∆. Let us
define a function-class Zσ by the following:

Definition 5.2.1. We denote by Zσ the set of all the functions w(t, x)
satisfying the following properties:

i) w(t, x) is a holomorphic function on Sθ(r) ×DR for some θ > 0,
r > 0 and R > 0, and

ii) ‖w(t)‖R = O(|t|σ) (as t −→ 0 in Sθ(r)).

Then we have the following result.

Theorem 5.2.2. Suppose the condition (H2). Let σ be the one in (5.0.2)
and suppose the condition (5.2.1). The following two equations are equivalent :

∂u

∂t
= F
(
t, x, u,

∂u

∂x

)
in Zσ,(5.2.2)

∂w

∂t
= 0 in Zσ.(5.2.3)

To prove this, it is sufficient to show the following result:

Proposition 5.2.3. (1) Let φ(t, x, u0, u1, . . .) be the solution of (Φ) in
(4.1.1). If u ∈ Zσ, we have φ(t, x, u, ∂u/∂x, . . .) ∈ Zσ.

(2) Let ψ(t, x, w0, w1, . . .) be the solution of (Ψ) in (4.1.4). If w ∈ Zσ, we
have ψ(t, x, w, ∂w/∂x, . . .) ∈ Zσ.
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Proof. In this case, the proof is quite parallel to the proof of Proposition
5.1.3; we have only to notice that “ = o(|t|σ)” is replaced by “ = O(|t|σ)”,
and so we have only to replace εt by a positive constant C > 0 in the proof of
Proposition 5.1.3. Thus, by using the conditions kj,α + 1 + σ(j + α − 1) > 0
(for (j, α) ∈ ∆) and (4e/r0)|t| ≤ 1 we can estimate (M+|t|)/(C|t|σ) as follows:

M+|t|
C|t|σ =

∑
(j,α)∈∆

(
4e|t|)kj,αBj,α 3j (5/R)α

(
C|t|σ)j+α−1|t|

= A
∑

(j,α)∈∆

(4e
r0

|t|
)kj,α+1+σ(j+α−1)

Cj+α−1r0
kj,α Bj,α c1

jc2
α

≤ A
∑

(j,α)∈∆
j+α≤N

(4e
r0

|t|
)kj,α+1+σ(j+α−1)

Cj+α−1r0
kj,α Bj,α c1

jc2
α

+A
∑

(j,α)∈∆
j+α>N

Cj+α−1r0
kj,α Bj,α c1

jc2
α

= I1 + I2.

We note that the series I2 is convergent; therefore, by taking N sufficiently
large we can make I2 as small as we want; if N is fixed, the term I1 is a finite
sum and so by using the condition kj,α +1+σ(j+α−1) > 0 we see: I1 = o(1)
(as |t| −→ 0). Thus, if |t| > 0 is sufficiently small we have

(5.2.4)
M+|t|
C|t|σ <

1
16e(3 + 2e)

.

This corresponds to the result in (5.1.9).
The other parts of the proof of Proposition 5.2.3 is the same as in the proof

of Proposition 5.1.3, and so we may omit the details.

§5.3. Analytic continuation

Let us give an application. Let u(t, x) ∈ Sσ (resp. u(t, x) ∈ Zσ) be a
solution of the equation

∂u

∂t
= F
(
t, x, u,

∂u

∂x

)
.

Set w(t, x) = φ(t, x, u, ∂u/∂x, . . .). Then, w(t, x) ∈ Sσ (resp. w(t, x) ∈ Zσ) is
a solution of

∂w

∂t
= 0
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and so w(t, x) can be expressed in the form w(t, x) = h(x) for some holomorphic
function h(x) in a neighborhood of x = 0. Since w(t, x) = h(x) ∈ H holds, by
Theorem 4.4.2 we have u(t, x) = ψ(t, x, h, ∂h/∂x, . . .) ∈ H . This proves

Theorem 5.3.1. Suppose the conditions (H2) and ∆2 �= ∅; let σ be the
one in (5.0.2). We have:

(1) If u(t, x) is a solution of (5.0.1) belonging in the class Sσ, then u(t, x)
can be continued holomorphically up to some neighborhood of the origin of Ct×
Cx.

(2) If M = ∅ and if u(t, x) is a solution of (5.0.1) belonging in the class
Zσ, then u(t, x) can be continued holomorphically up to some neighborhood of
the origin of Ct × Cx.

Note that this is just the result of the first order case in Kobayashi [4]
and Lope-Tahara [5]. It is shown in Tahara [7] and [8] that the above result
is optimal for the analytic continuation of the solution. We will give here only
the following example.

Example 5.3.2. In the case

∂u

∂t
= u
(∂u
∂x

)m

(with m ∈ {1, 2, . . .})

we have σ = −1/m and M �= ∅. We see:
(1) If u(t, x) is a solution belonging in the class Sσ (with σ = −1/m),

then u(t, x) can be continued holomorphically up to some neighborhood of the
origin of Ct × Cx.

(2) But, we have a solution

u(t, x) =
(−1
m

)1/m x+ c

t1/m
(where c ∈ C is an arbitrary constant)

which belongs in the class Zσ (with σ = −1/m) and which cannot be continued
holomorphically to any neighborhood of the origin. Since this solution has a
singularity on {t = 0} of order |t|−1/m, this does not belong in the class Sσ

(with σ = −1/m).
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