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626 Giovanni Morando

Abstract

Let X be a complex curve, Xsa the subanalytic site associated to X, M a
holonomic DX -module. Let Ot

Xsa
be the sheaf on Xsa of tempered holomorphic

functions and S ol(M) (resp. S olt(M)) the complex of holomorphic (resp. tempered
holomorphic) solutions of M. We prove that the natural morphism

H1(S olt(M)) −→ H1(S ol(M))

is an isomorphism. As a consequence, we prove that S olt(M) is R-constructible in
the sense of sheaves on Xsa. Such a result is conjectured by M. Kashiwara and P.
Schapira in [15] in any dimension.

Introduction

The problem of existence for ordinary linear differential equations (and
even non-linear) is classical and the litterature presents many results on this
subject. In particular, existence theorems for solutions with growth conditions
have been obtained by many authors such as J.-P. Ramis and Y. Sibuya ([21]),
B. Malgrange ([20]) and N. Honda ([7]). In [21] and [20], the authors proved
existence for functions with Gevrey-type growth conditions at the origin on
sectors of sufficiently small amplitude. Using similar techniques, in [7], the
author proved existence for ultra-distributions with support on R≥0.

The functional spaces considered in [21] and [20] correspond to sheaves
on the real blow-up at the origin of C. Essentially they are sheaves on the
unit circle. Indeed, growth conditions did not allow a global sheaf theoretical
approach.

Nonetheless, tempered distributions were a basic tool in M. Kashiwara’s
functorial proof of the Riemann-Hilbert correspondence in [9] and [10]. In
order to use tempered distributions functorially, M. Kashiwara introduced the
new functor THom of tempered cohomology. Such a functor represented the
first step in a different approach to sheaves which, through [13], led to the full
use of sheaves on sites in [14]. Indeed in [14], M. Kashiwara and P. Schapira
combined classical analytical results of S. �Lojasiewicz ([16], see also [19]) with
sheaves on sites. They realized tempered distributions, tempered C∞ functions
and Whitney C∞ functions as sheaves on the subanalytic site. They also defined
tempered holomorphic functions Ot

Xsa
as the complex of the solutions of the

Cauchy-Riemann system in the space of tempered distributions.
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In a subsequent paper, [15], M. Kashiwara and P. Schapira extended the
notion of microsupport of sheaves to the subanalytic site. In this way they
established the framework for the study of tempered holomorphic solutions
of D-modules. They also gave an example which is the starting point of the
study of tempered holomorphic solutions of an irregular ordinary differential
equation.

Given a complex analytic manifold X, we denote by OpcXsa
the category of

relatively compact subanalytic open subsets of X and by Xsa the subanalytic
site, that is the site whose underlying category is OpcXsa

and whose coverings are
the finite coverings. We denote by Mod(kX) (resp. Mod(kXsa

)) the category
of sheaves of k-modules on the site X (resp. Xsa). Let � : X −→ Xsa be the
natural morphism of sites.

Given a DX -module M, it is natural to compare

S olM := R�∗RHomDX

(M,OX

)
and

S oltM := RHom�!DX

(
�!M,Ot

Xsa

)
(for the definition of �!, see Section 2).

Along his proof of the Riemann-Hilbert correspondence, M. Kashiwara
proved that, if M is a regular DX -module, then S oltM ∼−→ S olM.

In [15], the authors studied S oltM comparing it to S olM, for a particular
example on a complex curve X.

In the present paper, we go into the study of S olt(M) for M a holonomic
D-module on a complex curve X. In particular we prove an existence theo-
rem for tempered solutions of ordinary differential equations in the subanalytic
topology, thus refining the classical results on small open sectors. Such a result
has two consequences.

First, we obtain that the natural morphism

(0.0.1) H1(S oltM) −→ H1(S olM)

is an isomorphism.
Second, we prove that the complex S olt(M) is R-constructible in the sense

of [15]. In that paper the authors conjectured such a result in any dimension.
Our results being on a complex curve, it is natural to look for exten-

sions of them in higher dimensions. In [22], C. Sabbah conjectured and widely
developed the higher dimensional version of Hukuhara-Turrittin’s Theorem.
Recently Y. André announced the proof of Sabbah’s conjecture. Such results
would be at the base of a possible extensions of our results.
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The contents of the present paper are subdivided as follows.
In Section 1, we briefly review subanalytic sets recalling the classical re-

sults that we will need. We study in detail relatively compact subanalytic open
subsets of R2. We give a decomposition of U ∈ OpcR2

sa
using sets biholomorphic

to open sectors. Such a result will be essential in Section 3.
In Section 2, we recall definitions and basic results of sheaves on the

subanalytic site and tempered holomorphic functions on a complex curve. In
Subsection 2.2 we prove a result concerning the composition of a tempered
holomorphic function and a biholomorphism.

In Section 3, we consider an open disc X ⊂ C centered at 0 and

(0.0.2) P := zN
d

dz
Im +A(z) ,

where m ∈ Z>0, N ∈ N, A ∈ gl(m,OC(X)) and Im is the identity matrix of
order m. The aim of this section is to study the solvability of P in the space
of tempered holomorphic functions on U ∈ OpcXsa

with 0 ∈ ∂U . We prove
that there exist an open neighborhood W ⊂ C of 0 and a finite subanalytic
covering {Uj}j∈J of U ∩ W such that for any gj ∈ Ot

Xsa
(Uj)m there exists

uj ∈ Ot
Xsa

(Uj)m such that Puj = gj (j ∈ J). We start the section by recalling
Hukuhara-Turrittin’s Theorem which is a basic tool in the study of ordinary
differential equations.

In Section 4, we deal with DX -modules on a complex analytic curve X.
We begin by recalling some classical results on DX -modules. In Subsection 4.2,
we prove a first consequence of the results of Section 3, that is, (0.0.1) is an
isomorphism. In Subsection 4.4 we prove a second consequence of the results of
Section 3, that is, S olt(M) is R-constructible in the sense of sheaves on Xsa.

We thank P. Schapira for proposing this problem to our attention and for
many fruitful discussions and A. D’Agnolo for many useful remarks.

§1. Subanalytic Sets

In the first subsection, we recall the definition and some classical results
on subanalytic sets. In the second subsection we focus on relatively compact
subanalytic open subsets of R2. We prove some results mixing the complex
and the real analytic structure on R2. Indeed, we describe the local structure
of relatively compact subanalytic open subsets of R2 via biholomorphic images
of open sectors (Theorem 1.4).
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§1.1. Review on subanalytic sets

Let M be a real analytic manifold, A the sheaf of real-valued real analytic
functions on M .

Definition 1.1. Let X ⊂M .

(i) X is said to be semi-analytic at x ∈M if there exists an open neighborhood
W of x such that X ∩W = ∪i∈I ∩j∈J Xi,j where I and J are finite sets
and either Xi,j = {y ∈ W ; fi,j(y) > 0} or Xi,j = {y ∈ W ; fi,j(y) = 0}
for some fi,j ∈ A(W ). X is said semi-analytic if it is semi-analytic at each
x ∈M .

(ii) X is said subanalytic if for any x ∈ M there exist an open neighborhood
W of x, a real analytic manifold N and a relatively compact semi-analytic
set A ⊂ M ×N such that π(A) = X ∩W , where π : M ×N → M is the
projection.

(iii) Let N be a real analytic manifold. A map f : X → N is said subanalytic
if its graph,

Γf :=
{

(x, y) ∈ X ×N ; y = f(x)
}
,

is subanalytic in M ×N .

Given X ⊂M , denote by
◦
X (resp. X, ∂X) the interior (resp. the closure,

the boundary) of X.

Proposition 1.1 (See [2]). Let X and Y be subanalytic subsets of M .

Then X ∪Y , X ∩Y , X,
◦
X and X \Y are subanalytic. Moreover the connected

components of X are subanalytic, the family of connected components of X is
locally finite and X is locally connected.

Definition 1.2, Theorem 1.1 and Proposition 1.2 below are stated and
proved in [4] for the more general case of o-minimal structures.

Definition 1.2 (Cylindrical Cell Decomposition). Let n ∈ Z>0. A
cylindrical cell decomposition (ccd for short)

{
Ck
}
k∈K of Rn is a finite par-

tition of Rn into subanalytic sets Ck obtained inductively on n in the following
way. The sets Ck are called cells.

n = 1: The cells defining a ccd of R are open intervals ]a, b[ or points {c},
where a ∈ R ∪ {−∞}, b ∈ R ∪ {+∞}, a < b, and c ∈ R.
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n > 1: A ccd
{
Dh

}
h∈H of Rn is given by a ccd

{
Ck
}
k∈K of Rn−1, lk ∈ N and

subanalytic continuous functions

ζk,1, . . . , ζk,lk : Ck → R

such that, for any x ∈ Ck, ζk,j(x) < ζk,j+1(x), j = 1, . . . , lk − 1 (k ∈ K).

The cells Dh are the graphs of ζk,j ,

Γζk,j
:=
{(
x, ζk,j(x)

) ∈ Ck × R
}

(1 ≤ j ≤ lk) ,

and the sets

(1.1.1)
{

(x, y) ∈ Ck × R; ζk,j(x) < y < ζk,j+1(x)
}

for 0 ≤ j ≤ lk, where ζk,0 = −∞ and ζk,lk+1 = +∞.

Theorem 1.1 (See [4], Theorem 2.10). Let A1, . . . , Ad be relatively
compact subanalytic subsets of Rn. There exists a cylindrical cell decomposition
of Rn adapted to each Aj. That is, each Aj is a union of cells.

Proposition 1.2 (See [4], Theorem 3.4). Let Z be a subanalytic subset
of Rn. The following properties are equivalent.

(i) Z is closed and bounded.

(ii) Every subanalytic continuous map ζ :]0, 1[→ Z extends by continuity to a
map [0, 1[→ Z.

(iii) For any subanalytic continuous function ζ : Z → R, ζ(Z) is closed and
bounded.

For Theorem 1.2 below, see [2, Theorem 6.4].

Theorem 1.2 (�Lojasiewicz’s Inequality). Let M be a real analytic ma-
nifold, K ⊂M . Let f, g : K → R be subanalytic functions with compact graphs.
If f−1

({0}) ⊂ g−1
({0}), then there exist c, r ∈ R>0 such that, for any x ∈ K,

|f(x)| ≥ c|g(x)|r .
For Theorem 1.3 below, see [12, Proposition 8.2.3].

Theorem 1.3 (Curve Selection Lemma). Let Z be a subanalytic subset
of M and let z0 ∈ Z. Then there exists an analytic map

γ :] − 1, 1[−→M ,

such that γ(0) = z0 and γ(t) ∈ Z for t 	= 0.
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§1.2. Subanalytic subsets of R2

Notation 1.1. Given a real analytic manifold M , we denote by OpMsa

(resp. OpcMsa
) the category of subanalytic open (resp. relatively compact

subanalytic open) subsets of M .

Let
π̃ : R≥0×] − π, 3π[−→R2

(�, ϑ) 
−→ �eiϑ .

One has that, given U ∈ OpcR2
sa

with 0 /∈ U , π̃−1(U) is a subanalytic open
subset of R>0×] − π, 3π[, relatively compact in R2.

For R ∈ R>0, η, ξ : [0, R] −→] − π, 3π[ subanalytic continuous functions
such that η(�) < ξ(�), for any � ∈]0, R[, denote

Bξη :=
{

(�, ϑ) ∈ ]0, R[× ] − π, 3π[ ; η(�) < ϑ < ξ(�)
}
.

Remark that Bξη ⊂ [0, R]×] − π, 3π[.

Proposition 1.3. Let U ∈ OpcR2
sa

, 0 ∈ ∂U . There exists an open neigh-
borhood W ⊂ R2 of 0, such that U ∩W is a finite union of sets of the form
π̃(Bξη) ∩W .

Proof. The set π̃−1(U) is a subanalytic open subset of R>0×] − π, 3π[,
relatively compact in R2. Let ε ∈ R>0, ε < π. Take a cylindrical cell decompo-
sition of R2 adapted to

π̃−1(U) ∩
(
R>0 ×

]− ε, 2π + ε
[)

.

The conclusion follows.

For z ∈ C and ε ∈ R>0, denote by B(z, ε) the open ball of center z and
radius ε.

Let us introduce semi-analytic arcs and prove an easy result which states
the local equivalence between semi-analytic arcs and graphs of subanalytic func-
tions.

Definition 1.3. Let γ :] − 1, 1[−→ R2 be an analytic map, δ ∈ R>0

such that γ|[0,δ] is injective. We call

Γ := γ
(
]0, δ[

)
a semi-analytic arc with an endpoint at γ(0).
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Recall that, given a function η, we denote by Γη the graph of η.

Lemma 1.1. Let R ∈ R>0, η : [0, R[→ R a subanalytic continuous
map. There exist δ ∈ R>0 and an analytic map γ :] − 1, 1[−→ R2 such that
γ(0) =

(
0, η(0)

)
and

(1.2.1) γ
(
] − 1, 1[\{0}) = Γη ∩

(
]0, δ[×R

)
.

In particular, there exist a semi-analytic arc Γ with an endpoint at
(
0, η(0)

)
and an open neighborhood W ⊂ R2 of

(
0, η(0)

)
, such that

Γη ∩W = Γ ∩W .

Proof. Let p1 : R2 → R be the projection on the first coordinate.
By Theorem 1.3 there exists an analytic map γ :] − 1, 1[−→ R2 such that

γ(0) =
(
0, η(0)

)
and

(1.2.2) γ
(

] − 1, 1[\{0}
)

⊂ Γη\
{(

0, η(0)
)}

.

Remark that we can suppose that γ|[0,1[ and γ|]−1,0] are injective. Since

γ
(
] − 1, 1[

)
is arcwise-connected, p1

(
γ
(
] − 1, 1[

))
is arcwise-connected as well.

Hence, since {0} � p1

(
γ
(
] − 1, 1[

)) ⊂ R≥0, there exists δ ∈ R>0 such that

p1

(
γ
(
] − 1, 1[

))
= [0, δ[.

Further, by (1.2.2),

(1.2.3) p1

(
γ
(
] − 1, 1[ \{0})) =]0, δ[ .

Let us prove that if 0 < x < δ, then
(
x, η(x)

) ∈ γ
(
] − 1, 1[\{0}), this

will conclude the proof. Let x ∈]0, δ[. By (1.2.3), there exists y ∈ R such
that (x, y) ∈ γ

(
] − 1, 1[\{0}). By (1.2.2), it follows that y = η(x). Hence(

x, η(x)
) ∈ γ

(
] − 1, 1[\{0}).

Roughly speaking, from Lemma 1.1 and Proposition 1.3, it follows that
(∂U) ∩W is a finite collection of semi-analytic arcs with an endpoint at 0.

Let us now introduce biholomorphic images of open sectors. We start with
a well known result on the local nature of holomorphic functions on C. For
Proposition 1.4 below, see [6, Theorem 2.1].

Proposition 1.4. Let U ⊂ C be an open neighborhood of 0, ϕ : U →
C a non constant holomorphic map such that 0 is a zero of order n for ϕ.
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There exist an open neighborhood U ′ ⊂ U of 0, ε ∈ R>0, and a holomorphic
isomorphism ψ : U ′ → B(0, ε) such that, for any z ∈ U ′,

ϕ|U ′(z) =
(
ψ(z)

)n
.

Definition 1.4. Let α, β ∈ R, r ∈ R>0, α < β. The set

Sα,β,r :=
{
�eiϑ ∈ C×; 0 < � < r, ϑ ∈]α, β[

}
is called an open sector of amplitude β − α and radius r or simply an open
sector.

We will need to stress on the amplitude and the direction of a sector so we
will also use the following slightly different notation

Sτ±η,r := Sτ−η,τ+η,r

for τ ∈ R and η, r ∈ R>0.

Corollary 1.1. Let U ⊂ C be an open neighborhood of 0, ϕ : U → C a
non constant holomorphic map such that ϕ(0) = 0.

(i) There exist r, τ ∈ R>0 such that B(0, r) ⊂ U and, for any ϑ ∈ R, ϕ|Sϑ±τ,r

is an injective map.

(ii) Suppose that, given α, β ∈ R, there exist µ, δ, R ∈ R>0 such that

ϕ
(
]0, δ[×{0}) ⊂ Sα+µ,β−µ,R .

Then, there exist η, r′ ∈ R>0 such that

ϕ
(
S0±η,r′

) ⊂ Sα,β,R .

Proof. It is based on Proposition 1.4 and the fact that holomorphic iso-
morphisms are conformal maps.

We are now ready to state and prove the main result of this section. Denote
by OC the sheaf of holomorphic functions on C.

Theorem 1.4. Let U ∈ OpcR2
sa

, 0 ∈ ∂U . There exist an open neigh-
borhood W ⊂ C of 0, a finite set J , open sectors Sj,k, ϕj,k ∈ OC

(
Sj,k

)
(j ∈ J, k = 1, 2) such that

(i) ϕj,k(0) = 0 and ϕj,k|Sj,k
is injective (j ∈ J, k = 1, 2),
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(ii)

U ∩W =
⋃
j∈J

(
ϕj,1

(
Sj,1

) ∩ ϕj,2(Sj,2)) .
Proof of Theorem 1.4. By Proposition 1.3, it is sufficient to prove the

statement for U = π̃(Bξη) ∩W , for W ⊂ C an open neighborhood of 0.
First we need two technical lemmas.

Lemma 1.2. Let S be an open sector, ϕ ∈ OC

(
S
)

such that ϕ(0) = 0
and ϕ|S is injective. Suppose that there exists ε ∈ R>0 such that ϕ(S)∩B(0, ε)
is contained in an open sector of amplitude strictly smaller than 2π.

Then there exist r ∈ R>0, an open neighborhood V ⊂ C of 0 and ζ1, ζ2 :
[0, ε] →] − π, 3π[ subanalytic continuous functions such that, for any � ∈ [0, ε],
ζ1(�) < ζ2(�) and

ϕ
(
S ∩B(0, r)

)
= π̃

(
Bζ2ζ1

) ∩ V .

Proof. We limit to give a sketch of the proof which is essentially of topo-
logical nature.

There exist η ∈ [0, 2π], µ ∈ R>0, µ < π, such that ϕ(S)∩B(0, ε) ⊂ Sη±µ,ε.
Remark that [η − µ, η + µ] ⊂ ]η − π, η + π[⊂ ] − π, 3π[. Take a ccd of R2

adapted to

π̃−1
(
ϕ
(
S
) ∩B(0, ε)

)
∩
(

R>0×]η − µ, η + µ[
)
.

Since, for any δ ∈ R>0, ϕ
(
S
)∩B(0, δ) has just one connected component having

0 in its boundary, the conclusion follows.

Lemma 1.3. Let R ∈ R>0, η : [0, R] −→] − π, 3π[ a subanalytic con-
tinuous map. There exist an open neighborhood V ⊂ C of 0, τ, r, ε ∈ R>0,
ϕ ∈ OC

(
B(0, r)

)
and ζ1, ζ2 : [0, ε] →] − π, 3π[ subanalytic continuous functions

satisfying the following conditions.

(i) ϕ|S−τ,τ,r
is injective.

(ii) For any � ∈ [0, ε], −π < ζ1(�) < η(�) < ζ2(�) < 3π and

(1.2.4) ϕ
(
S0,τ,r

)
= π̃

(
Bζ2η

)
∩ V ,

(1.2.5) ϕ
(
S−τ,0,r

)
= π̃

(
Bηζ1

)
∩ V .
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Proof. Remark that it is sufficient to prove the statement for η|[0,ε′] for
some ε′ ∈ R>0, ε′ < R. We set for short ηε′ := η|[0,ε′].

Since η(0) ∈] − π, 3π[, there exist ε, µ1 ∈ R>0, µ1 < π, such that [ηε(0) −
µ1, ηε(0) + µ1] ⊂] − π, 3π[ and

(1.2.6) Γηε
\ (0, ηε(0)

) ⊂ ]0, R[× ]ηε(0) − µ1, ηε(0) + µ1[ .

First, let us show that there exist an open neighborhood W ⊂ C of ]−1, 1[,
ϕ ∈ OC(W ) and δ ∈ R>0 such that ϕ(0) = 0 and

(1.2.7) ϕ
((

] − 1, 1[ \{0})× {0}
)

= π̃
(

Γηε
∩ (]0, δ[×R

))
.

By Lemma 1.1, there exist δ ∈ R>0 and an analytic map γ :] − 1, 1[→ R2

such that γ(0) =
(
0, η(0)

)
and

γ
(
] − 1, 1[\{0}) = Γηε

∩ (]0, δ[×R
)
.

Since π̃ ◦ γ is an analytic map, there exist a complex neighborhood Wof
] − 1, 1[ and ϕ ∈ OC(W ) such that ϕ|]−1,1[×{0} = π̃ ◦ γ|]−1,1[. In particular,
ϕ(0) = 0 and

(1.2.8) ϕ
((

] − 1, 1[ \{0})× {0}
)

= π̃
(

Γηε
∩ (]0, δ[×R

))
.

Hence, (1.2.7) follows.
Now, remark that (1.2.6) implies that

(1.2.9) π̃
(
Γηε

\ (0, ηε(0)
)) ⊂ Sηε(0)±µ1,R .

Combining (1.2.8) and (1.2.9), we have that

ϕ
(
]0, 1[×{0})⊂ π̃

(
Γηε

∩ (]0, δ[×R
))

⊂ π̃
(
Γηε

\ (0, ηε(0)
))

⊂ Sηε(0)±µ1,R .(1.2.10)

Since [ηε(0) − µ1, ηε(0) + µ1] ⊂ ] − π, 3π[ and µ1 < π, there exists µ2 ∈ R>0

such that µ1 < µ2 < π and

(1.2.11) [ηε(0) − µ2, ηε(0) + µ2] ⊂] − π, 3π[ .

Let r ∈ R>0 be such that B(0, r) ⊂ W . Then, Corollary 1.1 (ii) applies and
there exist τ ∈ R>0 such that, up to shrinking r,

(1.2.12) ϕ
(
S0,τ,r

) ⊂ Sηε(0)±µ2,R .
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Further, by Corollary 1.1 (i), up to shrinking τ and r, we have that ϕ|S0,τ,r
is

injective.
Then, Lemma 1.2 applies and there exist r′ ∈ R>0, an open neighborhood

V ⊂ C of 0 and ζ1, ζ2 : [0, ε] →] − π, 3π[ subanalytic continuous functions such
that, for any � ∈ [0, ε], ζ1(�) < ζ2(�) and

ϕ(S0,τ,r′) = π̃(Bζ2ζ1 ) ∩ V .

Then, (1.2.11) and (1.2.12) imply that one can chose ζ1 = ηε. Hence (1.2.4)
follows.

Clearly, (1.2.5) can be proved using the same arguments.

End of the Proof of Theorem 1.4. As said above, by Proposition 1.3, it
is sufficient to prove the statement for U = π̃(Bξη) ∩W , for W ⊂ C an open
neighborhood of 0.

Consider Bξη, by Lemma 1.3, there exist ζ1, ζ2 : [0, ε] →]−π, 3π[, r, τ ∈ R>0,
ϕ1, ϕ2 ∈ OC

(
B(0, r)

)
, V1, V2 ⊂ C open neighborhoods of 0 such that, for any

� ∈ [0, ε], η(�) < ζ2(�) < 3π, −π < ζ1(�) < ξ(�), ϕ1|S0,τ,r
ϕ2|S−τ,0,r

are
injective and

π̃
(
Bζ2η

) ∩ V1 = ϕ1(S0,τ,r) ,

π̃
(
Bξζ1
) ∩ V2 = ϕ2(S−τ,0,r) .

We distinguish two cases: ξ(0) = η(0) and η(0) < ξ(0).
(i) Suppose ξ(0) = η(0).
We have that

−π < ζ1(0) < η(0) = ξ(0) < ζ2(0) < 3π .

It follows that there exists ε′ ∈ R>0 such that, for any � ∈ [0, ε′],

ζ1(�) < η(�) ≤ ξ(�) < ζ2(�) .

Hence, considering η, ξ, ζ1, ζ2 as restricted to [0, ε′], we have that

Bξη = Bζ2η ∩Bξζ1 .

Now, up to take smaller τ, ε′, we can suppose that π̃(Bξζ1) and π̃(Bζ2η ) are
contained in an open sector of amplitude strictly smaller than 2π. In particular,
π̃ is a bijection on Bζ2η ∪Bξζ1 . It follows that

π̃
(
Bξη
)

= π̃
(
Bζ2η

) ∩ π̃(Bξζ1) .
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Taking V := V1 ∩ V2, the conclusion follows.
(ii) Suppose η(0) < ξ(0).
Up to take smaller τ , there exist ε′ ∈ R>0 and α, β : [0, ε′] → R constant

functions such that, for any � ∈ [0, ε′],

η(�) < α(�) < ζ2(�) < ζ1(�) < β(�) < ξ(�) .

It follows that, considering η, ξ, ζ1, ζ2 as restricted to [0, ε′],

Bξη = Bζ2η ∪Bβα ∪Bξζ1 .

The conclusion follows.

Detailing the proof of Theorem 1.4, one can give a more precise statement
in the following way.

Remark. Let U , W , ϕj,k and Sj,k as given in Theorem 1.4. Given r, η ∈
R>0, there exist an open neighborhood W ′ ⊂ W of the origin, a finite set J ′

and open sectors S′
j′,k ⊂ Sj,k (j′ ∈ J ′) such that the amplitude (resp. the

radius) of S′
j′,k is smaller than η (resp. r) and

U ∩W ′ =
⋃
j∈J′

(
ϕj,1

(
S′
j,1

) ∩ ϕj,2(S′
j,2

))
.

§2. Tempered Holomorphic Functions

In the first subsection we recall the definition and some classical results on
the subanalytic site Xsa underlying a complex curve X and sheaves on Xsa.
In the second subsection we recall the definition of the subanalytic sheaf of
tempered holomorphic functions on a complex curve. In the third subsection
we prove a result on the pull back of tempered holomorphic functions through
biholomorphisms. We refer to [15] and [14] for the first and the second subsec-
tions.

§2.1. The subanalytic site

Let X be a complex analytic manifold, denote by X the complex conjugate
manifold and by XR the underlying real analytic manifold. For k a commutative
ring, we denote by Mod(kX) the category of sheaves of k-modules on X.

We endow OpcXsa
:= OpcXRsa

with a Grothendieck topology, called the
subanalytic topology, by deciding that an usual open covering U = ∪i∈IUi in
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OpcXsa
is a covering for the subanalytic topology if there exists a finite subset

J ⊂ I such that U = ∪j∈JUj . Denote by Xsa this site and call it the subanalytic
site. Further, denote by Covsa(U) the family of coverings of U ∈ OpcXsa

for the
subanalytic topology and by Mod(kXsa

) the category of sheaves of k-modules
on the subanalytic site.

One can show (see [14, Remark 6.3.6]) that Mod(kXsa
) is equivalent to the

category of sheaves on the site Xsa,lf , where the class of open sets of Xsa,lf is
OpXsa

and, for U ∈ OpXsa
, the family of coverings of U for Xsa,lf consists of

subanalytic open coverings {Uσ}σ∈Σ of U such that for any compact K of X,
there exists a finite subset J ⊂ Σ such that K ∩ ( ∪j∈J Uj) = K ∩ U .

Let PSh(kXsa
) be the category of presheaves of k-modules on Xsa. Denote

by for : Mod(kXsa
) → PSh(kXsa

) the forgetful functor which associates to a
sheaf F on Xsa its underlying presheaf. It is well known that for admits a left
adjoint ·a : PSh(kXsa

) → Mod(kXsa
).

For F ∈ PSh(kXsa
), let us briefly recall the construction of F a.

For U ∈ OpcXsa
and S = {U1, . . . , Un} ∈ Covsa(U), set

(2.1.1)

F (S) :=
{

(s1, . . . , sn) ∈
n∏
j=1

F (Uj); sj |Uj∩Uk
= sk|Uj∩Uk

, j, k = 1, . . . , n
}
.

If S is a covering of U and S′ is a refinement of S, then there exists a natural
restriction morphism F (S) −→

�SS′
F (S′).

Then, for U ∈ OpcXsa
, set

(2.1.2) F+(U) := lim−→
S∈Covsa(U)

F (S) .

It turns out that F a � F++.
Now, let s ∈ F a(U). Since the inductive limit considered in (2.1.2)

is filtrant, s can be identified to an n-uple (s1, . . . , sn) ∈ F (S), for S =
{Uj}j=1,...,n ∈ Covsa(U), sj ∈ F (Uj) (j = 1, . . . , n).

Further, if s ∈ F a(U) can be identified to s1 ∈ F (S1) and to s2 ∈ F (S2),
for S1, S2 ∈ Covsa(U), then there exists a refinement S ∈ Covsa(U) of S1 and
S2 and s̄ ∈ F (S) such that s can be identified to s̄.

For Proposition 2.1 below, see [14, Proposition 2.1.12].

Proposition 2.1. Consider the complex in Mod(kXsa
)

(2.1.3) F ′ ϕ−→ F
ψ−→ F ′′ .

The following conditions are equivalent.
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(i) (2.1.3) is exact.

(ii) For any U ∈ OpcXsa
and any t ∈ F (U) such that ψ(t) = 0, there exist

{Uj}j∈J ∈ Covsa(U) and sj ∈ F (Uj) such that ϕ(sj) = t|Uj
(j ∈ J).

We shall denote by
� : X −→ Xsa ,

the natural morphism of sites associated to OpcXsa
−→ OpX = {U ⊂

X; U open}. We refer to [14] for the definitions of the functors �∗ :
Mod(kX) −→ Mod(kXsa

) and �−1 : Mod(kXsa
) −→ Mod(kX) and for Proposi-

tion 2.2 below.

Proposition 2.2.

(i) �∗ is right adjoint to �−1.

(ii) �−1 has a left adjoint denoted by �! : Mod(kX) −→ Mod(kXsa
) .

(iii) �−1 and �! are exact, �∗ is exact on constructible sheaves.

(iv) �∗ and �! are fully faithful.

Through �∗, we will consider Mod(kX) as a subcategory of Mod(kXsa
).

The functor �! is described as follows. If U ∈ OpcXsa
and F is a sheaf on

X, then �!(F ) is the sheaf on Xsa associated to the presheaf U 
→ F
(
U
)
.

§2.2. Definition and main properties of Ot
Xsa

Througout this subsection, X will be a complex analytic curve with struc-
ture sheaf OX . For higher dimensions we refer to [14].

Denote by DX the sheaf of differential operators with holomorphic coef-
ficients on X. Denote by DbXR

the sheaf of distributions on XR and, for a
closed subset Z of X, by ΓZ(DbXR

) the subsheaf of sections supported by Z.
One denotes by DbtXsa

the presheaf of tempered distributions on XR defined as
follows

OpXsa

 U 
−→ DbtXsa

(U) := Γ(X;DbXR
)
/

ΓX\U (X;DbXR
) .

In [14] it is proved that DbtXsa
is a sheaf on Xsa. This sheaf is well defined in the

category Mod(�!DX). Moreover, for any U ∈ OpcXsa
, DbtXsa

is Γ(U, ·)-acyclic.
One defines the sheaf Ot

Xsa
∈ Db

(
�!DX

)
of tempered holomorphic func-

tions as
Ot
Xsa

:= RHom�!DX

(
�!OX ,DbtXR

)
.
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In [14] it is proved that, since dimX = 1, R�∗OX and Ot
Xsa

are concen-
trated in degree 0 . Hence we can write the following exact sequence of sheaves
on Xsa

0 −→ Ot
Xsa

−→ DbtXsa

∂̄−→ DbtXsa
−→ 0 .

Lemma 2.1. Let X = C, XR = R2, U, V ∈ OpcR2
sa

.

(i) Hj(U,Ot
Xsa

) = 0, for j > 0.

(ii) The following sequence is exact

(2.2.1) 0 → Ot
Xsa

(U ∪ V ) → Ot
Xsa

(U) ⊕Ot
Xsa

(V ) → Ot
Xsa

(U ∩ V ) → 0 .

Proof. (i) By the definition of DbtXsa
, given h ∈ DbtXsa

(U), there exists
h̃ ∈ DbXR

(R2) such that h̃
∣∣
U

= h. It is well known that there exists g ∈
DbXR

(R2) such that ∂̄g = h̃. This implies that ∂̄
(
g|U
)

= h. So we have the
exact sequence

0 −→ Ot
Xsa

(U) −→ DbtXsa
(U) ∂̄−→ DbtXsa

(U) −→ 0 .

Since DbtXsa
is acyclic with respect to the functor Γ(U ; ·), for U ∈ OpcXsa

,
it follows that, for all j ∈ Z>0, Hj(U,Ot

Xsa
) = 0.

(ii) Obvious from (i).

Now we recall the definition of polynomial growth for C∞ functions on
XR and in (2.2.5) we give an alternative expression for tempered holomorphic
functions on U ∈ OpcXsa

.

Definition 2.1. Let U be an open subset of XR, f ∈ C∞
XR

(U). One says
that f has polynomial growth at p ∈ X if it satisfies the following condition.
For a local coordinate system x = (x1, x2) around p, there exist a sufficiently
small compact neighborhood K of p and M ∈ Z>0 such that

(2.2.2) sup
x∈K∩U

dist(x,K \ U)M
∣∣f(x)

∣∣ < +∞ .

We say that f ∈ C∞
XR

(U) has polynomial growth on U if it has polynomial
growth at any p ∈ X. We say that f is tempered at p if all its derivatives have
polynomial growth at p ∈ X. We say that f is tempered on U if it is tempered
at any p ∈ X. Denote by C∞,t

X the presheaf on XR of tempered C∞-functions.
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It is obvious that f has polynomial growth at any point of U . If no
confusion is possible we will write “f is tempered” instead of “f is tempered
on U”.

In [14] it is proved that C∞,t
X is a sheaf on Xsa.

For U ⊂ R2 a relatively compact open set, we can characterize functions
with polynomial growth on U by means of a family of norms.

For x ∈ R2, f ∈ C∞
R2(U), g = (g1, . . . , gm) ∈ (C∞

R2(U)
)m and M ∈ Z>0,

denote

δ∂U (x) := dist(x, ∂U) ,(2.2.3)

||f ||MU := sup
x∈U

δ∂U (x)M |f(x)| ,

||g||MU := max
{||gj ||MU ; j = 1, . . . ,m

}
.

Proposition 2.3. Let U ⊂ R2 be a relatively compact open set and let
f ∈ C∞

R2(U). Then f has polynomial growth if and only if there exists M ∈ R>0

such that

(2.2.4) ||f ||MU < +∞ ,

or equivalently: there exist C,M ∈ R>0 such that for any x ∈ U ,∣∣f(x)
∣∣ ≤ Cδ∂U (x)−M .

Proof. Suppose that f satisfies (2.2.4), that is,

sup
x∈U

δ∂U (x)M |f(x)| < +∞ .

Let K be a compact neighborhood of U . For any p ∈ U , K is a compact
neighborhood of p such that

sup
x∈K∩U

dist(x,K \ U)M |f(x)| ≤ sup
x∈U

δ∂U (x)M |f(x)|
<+∞ .

Hence, f has polynomial growth.
Conversely, suppose that h has polynomial growth. That is, for p ∈ ∂U ,

there exists a compact neighborhood Kp of p verifying (2.2.2).
Set

V :=
{
x ∈ Kp; δ∂U\Kp

(x) > δ∂U (x)
}
.

Then for any x ∈ V , δ∂U (x) = δ∂U∩Kp
(x).
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Since p ∈ V , there exists ε ∈ R>0 such that B(p, ε) ⊂ V . Set

Zp := B(p, ε) ∪ (Kp ∩ ∂U) .

Then Zp ∩ ∂U = Kp ∩ ∂U and, for any x ∈ Zp ∩ U , δ∂U (x) = δ∂U∩Kp
(x) =

δ∂U∩Zp
(x).

Hence,

sup
x∈Zp∩U

δ∂U (x)M |f(x)| = sup
x∈Zp∩U

δ∂U∩Zp
(x)M |f(x)|

≤ sup
x∈Kp∩U

δ∂U∩Kp
(x)M |f(x)|

<+∞ .

Since ∂U is compact, the conclusion follows.

Lemma 2.2 below is an easy consequence of Cauchy’s Formula. See [23,
Lemma 3].

Lemma 2.2. Let U be a relatively compact open subset of X, f ∈
OX(U) with polynomial growth on U . Then f ∈ Ot

Xsa
(U).

For Proposition 2.4 below, see [14].

Proposition 2.4. One has the following isomorphism

Ot
Xsa

� RHom�!DX

(
�!OX , C∞,t

XR

)
.

Hence, for U ∈ OpcXsa
, we deduce the short exact sequence

(2.2.5) 0 −→ Ot
Xsa

(U) −→ C∞,t
XR

(U) ∂̄−→ C∞,t
XR

(U) −→ 0 .

§2.3. Pull-back of tempered holomorphic functions

Recall that, for U a relatively compact open subset of R2 and z ∈ R2, we
set δ∂U (z) := dist(z, ∂U).

Lemma 2.3. Let X be an open subset of R2, f : X → R2 be a C∞-
subanalytic map. Let U ∈ OpcXsa

, V ∈ OpcR2
sa

satisfying f(U) = V and
f
(
∂U
)

= ∂V . Let h ∈ C∞
R2(V ).

Then h has polynomial growth on V if and only if h◦f has polynomial
growth on U .
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Proof. Consider the subanalytic continuous functions δ∂U , δ∂V ◦f |U : U →
R≥0. Since f

(
∂U
)

= ∂V and f(U) = V ,(
δ∂V ◦ f |U

)−1({0}) = ∂U .

In particular, (
δ∂V ◦ f |U

)−1({0}) = δ−1
∂U

({0}) .
By Theorem 1.2, there exist a, b, α, β ∈ R>0 such that, for any x ∈ U ,

(2.3.1) a
(
δ∂V ◦ f |U (x)

)α
≤ δ∂U (x) ,

and

(2.3.2) b
(
δ∂U (x)

)β ≤ δ∂V ◦ f |U (x) .

(i) Suppose that h◦f has polynomial growth on U , that is, there exist
C,M ∈ R>0 such that, for any x ∈ U ,∣∣h(f(x)

)∣∣ ≤ C
(
δ∂U (x)

)−M
.

By (2.3.1), we obtain∣∣h(f(x)
)∣∣ ≤ Ca−M

(
δ∂V ◦ f |U (x)

)−Mα
.

Since f(U) = V , it follows that, for any y ∈ V ,∣∣h(y)
∣∣ ≤ Ca−M

(
δ∂V (y)

)−Mα
,

that is, h has polynomial growth on V .
(ii) Suppose that h has polynomial growth on V , that is, there exist

C ′,M ′ ∈ R>0 such that, for any y ∈ V ,

|h(y)| ≤ C ′(δ∂V (y)
)−M ′

.

Since f(U) = V , we have, for any x ∈ U ,∣∣h(f(x))
∣∣ ≤ C ′(δ∂V ◦ f(x)

)−M ′
.

By (2.3.2), we obtain ∣∣h(f(x))
∣∣ ≤ C ′b−M

′(
δ∂U (x)

)−M ′β
,

that is, h ◦ f has polynomial growth on U .
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Theorem 2.1. Let X be an open subset of C, f ∈ OC(X). Let U ∈
OpcXsa

such that f |U is an injective map. Let h ∈ OX

(
f(U)

)
. Then, h ∈

Ot
Csa

(
f(U)

)
if and only if h ◦ f ∈ Ot

Xsa
(U).

Proof. Since f is an open mapping, f |U : U → f(U) is a holomorphic
isomorphism.

It is sufficient to prove that f(∂U) = ∂
(
f(U)

)
in order to apply Lemma

2.3.
(i) f(∂U) ⊂ ∂

(
f(U)

)
. For x ∈ ∂U , there exists {xn}n∈N ⊂ U such that

xn −→
n→+∞

x. It follows that f(xn) −→
n→+∞

f(x), hence f(x) ∈ f(U). Suppose

that f(x) ∈ f(U). Since f |U is an isomorphism onto f(U), there exists x ∈ U

such that f(x) = f(x), this contradicts the hypothesis that f |U is injective. It
follows that f(x) ∈ ∂

(
f(U)

)
.

(ii) f(∂U) ⊃ ∂
(
f(U)

)
. For y ∈ ∂(f(U)), there exists {yn}n∈N ⊂ f(U) such

that yn −→
n→+∞

y. Set xn :=
(
f |U
)−1(yn). Then {xn}n∈N ⊂ U is a bounded

sequence. Hence there exists a subsequence converging to x ∈ U . Since f(x) =
y and f |U is an isomorphism onto f(U), x ∈ ∂U .

§3. Existence Theorem

Let X ⊂ C be an open neighborhood of 0, P a differential operator defined
on X, whose only possible singular point is 0. In this section we study the non-
homogeneous ordinary differential system relative to P .

In the first subsection we recall some classical results on the holomorphic
solutions of P .

In the second subsection we start by recalling an existence theorem for tem-
pered holomorphic functions on small open sectors. As said in the introduction
such a result is classical and it has been treated in more general cases by many
authors. We recall the version obtained by N. Honda in [7]. Then we state and
prove the main result of this section which states that given U ∈ OpcXsa

, with
0 ∈ ∂U , there exist an open neighborhood W of 0 and

{
Uj
}
j∈J ∈ Covsa(U∩W )

such that P is a surjective endomorphism on Ot
Xsa

(Uj) (j ∈ J). The proof is
based on the decomposition of the germ of U at 0 in sets biholomorphic to open
sectors (Theorem 1.4) and on an existence theorem for sets biholomorphic to
open sectors. The proof of this latter result uses a result on the composition
of a biholomorphism and a tempered holomorphic function (Theorem 2.1) in
order to reduce the problem to open sectors of small amplitude.

As a corollary we obtain that P is a surjective endomorphism of the sheaf
Ot
Xsa

.
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§3.1. Some classical results

Denote by C0
C

the sheaf of continuous functions on C. For R a ring, we
denote by gl(m,R) (resp. GL(m,R)) the ring of (resp. multiplicative group
of invertible) m × m matrices. In this chapter we are going to consider z1/l,
l ∈ Z>0, as a holomorphic function on open sets contained in open sectors of
amplitude smaller than 2π, by chosing the branch of z1/l which has positive
real values on R>0 × {0}.

Let X ⊂ C be an open disc centered at 0. Let

(3.1.1) P := zN
d

dz
Im +A(z) ,

where m ∈ Z>0, N ∈ N, A ∈ gl
(
m,OC(X)

)
and Im is the identity matrix of

order m.
Theorem 3.1 below is a fundamental result on ordinary differential sys-

tems. A complete proof of Theorem 3.1 below, originally due to Hukuhara and
Turrittin, is given in [24].

Theorem 3.1 (See [24]). Let P be the differential operator (3.1.1).
There exist l ∈ Z>0, a diagonal matrix Λ ∈ gl

(
m, z−1/l · C[z−1/l]

)
and for

any ϑ0 ∈ R, there exist ϑ1, ϑ2 ∈ R, ϑ1 < ϑ0 < ϑ2, R,K,M ∈ R>0 and
FSϑ1,ϑ2,R

∈ GL
(
m,OC(Sϑ1,ϑ2,R)∩ C0

C

(
Sϑ1,ϑ2,R \ {0})), satisfying the following

conditions

(i) for any z ∈ Sϑ1,ϑ2,R,

(3.1.2) K−1|z|M ≤ ∣∣FSϑ1,ϑ2,R
(z)
∣∣ ≤ K|z|−M ,

(ii) the m columns of the matrix FSϑ1,ϑ2,R
(z) exp

(
Λ(z)

)
are C-linearly inde-

pendent holomorphic solutions of the system Pu = 0.

If no confusion is possible we will write F (z) instead of FSϑ1,ϑ2,R
(z).

Note that (3.1.2) implies that F, F−1 ∈ GL
(
m,Ot

Xsa
(Sϑ1,ϑ2,R)

)
.

Definition 3.1. We call the matrix F (z) exp
(
Λ(z)

)
, given in Theorem

3.1, a fundamental holomorphic solution of P on Sϑ1,ϑ2,R. If U is an open
subset of Sϑ1,ϑ2,R, we say that P a fundamental holomorphic solution on U .

Lemma 3.1. Let U ∈ OpcXsa
, connected and simply connected. Suppose

that P has a fundamental holomorphic solution F (z) exp(Λ(z)) on U . Let g ∈
O(U)m, z1 ∈ U .
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Then, for Γz1,z ⊂ U a path from z1 to z ∈ U ,

F (z) exp
(
Λ(z)

) ∫
Γz1,z

exp
(− Λ(ζ)

)
F (ζ)−1 g(ζ)

ζN
dζ

is a holomorphic solution of Pu = g.

Proof. Obvious.

§3.2. Existence theorem for tempered holomorphic functions

Let l ∈ Z>0, p(z) ∈ z−1/l ·C[z−1/l], S an open sector of amplitude smaller
than 2π, g ∈ OX(S). Set

(3.2.1) Ip,z0(g)(z) := exp
(
p(z)

) ∫
Γz0,z

exp
(− p(ζ)

)
g(ζ)dζ ,

where z0 ∈ S and Γz0,z ⊂ S is a path from z0 to z ∈ S.

Proposition 3.1 (See [7], Proposition 2.3). Let l ∈ Z>0 and p(z) ∈
z−1/l · C[z−1/l]. There exists α ∈ R>0 such that for any open sector S of
amplitude η ≤ α, there exist z0 ∈ S and a path Γz0,z ⊂ S from z0 to z ∈ S such
that if g ∈ OX(S) satisfies ||g||MS < +∞, for some M ∈ R>0, then Ip,z0(g) ∈
OX(S) and

||Ip,z0(g)||MS < +∞ .

Now we prove an analogue of Proposition 3.1 for sets biholomorphic to an
open sector of sufficiently small amplitude. Then we will use such a result to
prove an existence theorem for P on U ∈ OpcXsa

, 0 ∈ ∂U .

Proposition 3.2. Let W ⊂ C be an open neighborhood of 0, ϕ ∈
OC(W ) non constant, ϕ(0) = 0, l ∈ Z>0, p ∈ z−1/lC[z−1/l].

There exist r, η ∈ R>0 such that for any open sector S ⊂⊂ B(0, r) ⊂W of
amplitude smaller than η, there exist z0 ∈ ϕ

(
S
)

and a path Γz0,z ⊂ ϕ
(
S
)

from
z0 to z ∈ ϕ(S) such that, for any g ∈ Ot

Xsa

(
ϕ(S)

)
,

Ip,z0(g)(z) = exp
(
p(z)

) ∫
Γz0,z

exp
(− p(ζ)

)
g(ζ)dζ ∈ Ot

Xsa

(
ϕ(S)

)
.



�

�

�

�

�

�

�

�

Existence Theorem for Tempered Solutions 647

Proof. The proof is based on the following sequence of equivalences which
will be made rigorous along the proof.

Ip,z0(g)(z) ∈Ot
Xsa

(ϕ(S))(3.2.2)

�
Ip,z0(g) ◦ ϕ(w) ∈Ot

Wsa
(S)

�
Ip̃,w0(g̃)(w) ∈Ot

Wsa
(S)

for some p̃(w) ∈ w−1/l′ ·C[w−1/l′ ], l′ ∈ Z>0, w0 ∈ S and g̃ ∈ Ot
Wsa

(S). We will
obtain (3.2.2) from Proposition 3.1 by taking the amplitude of S small enough.

There exists c ∈ Z>0 such that, ϕ(w) = wcϕ1(w) and ϕ1(0) 	= 0, for any
w ∈ W . There exist r, η0 ∈ R>0, η0 < 2π, such that, for any open sector
S ⊂⊂ B(0, r) ⊂W of amplitude smaller than η0, ϕ|S is injective. For the rest
of the proof, a sector S will be supposed to have amplitude (resp. of radius)
smaller than η0 (resp. r).

Let

p(z) :=
n∑
j=1

aj
zj/l

,

for q ∈ Z>0 and aj ∈ C (j = 1, . . . , n).
We have

p
(
ϕ(w)

)
=

n∑
j=1

aj(
wcϕ1(w)

)j/l
=

n∑
j=1

aj
ϕ2,j(w)
wcj/l

=
n∑
j=1

aj

(
qj∑
k=1

βj,k
wk/λj

+ ϕ3,j(w)

)

=
q′∑
j=1

a′j
wj/l′

+ ψj(w) ,

for some l′, λj , qj , q′ ∈ Z>0, βj,k, a′j ∈ C and ϕ2,j , ϕ3,j , ψj power series in z1/l′′ ,
for some l′′ ∈ Z>0, converging on S and defined on S.

Set

p̃(w) :=
q′∑
j=1

a′j
wj/l′

∈ w−1/l′C[w−1/l′ ]
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and

h(w) := exp
( q′∑
j=1

ψj(w)
)

∈ OC(S) ∩ C0
C

(
S
)
.

It follows that

exp
(
p(ϕ(w))

)
= exp

(
p̃(w)

)
h(w) .

Consider p̃ ∈ w−1/l′C[w−1/l′ ]. By Proposition 3.1, there exists η ∈ R>0,
such that for S an open sector of amplitude smaller that η, there exist w0 ∈ S,
a path Γw0,w ⊂ S from w0 to w such that, for any g̃ ∈ Ot

Wsa
(S),

(3.2.3) exp
(
p̃(w)

) ∫
Γw0,w

exp
(− p̃(ζ)

)
g̃(ζ)dζ ∈ Ot

Wsa
(S) .

Since the multiplication by h and h−1 is a bijection on Ot
Wsa

(S), (3.2.3)
implies that, for any g̃ ∈ Ot

Wsa
(S),

(3.2.4) h(w)Ip̃,w0

(
h−1 · g̃)(w)

= h(w) exp
(
p̃(w)

) ∫
Γw0,w

exp
(− p̃(ζ)

)
h(ζ)−1g̃(ζ)dζ ∈ Ot

Wsa
(S) .

Set z0 := ϕ(w0) ∈ ϕ
(
S
)

and let Γz0,z := ϕ
(
Γw0,w

)
. Then, for any g ∈

Ot
Xsa

(
ϕ(S)

)
,

(3.2.5) Ip,z0(g) ◦ ϕ(w) = h(w)Ip̃,w0

(
h−1 ·(g ◦ ϕ)·ϕ′)(w) .

Up to shrinking η, we can suppose that η < η0. In particular ϕ|S is
injective for any open sector S of amplitude smaller than η.

Since (g ◦ ϕ)·ϕ′ ∈ Ot
Wsa

(S), (3.2.4) and (3.2.5) imply that

Ip,z0(g) ◦ ϕ(w) ∈ Ot
Wsa

(S) .

Since ϕ|S is injective, the conclusion follows by Theorem 2.1.

Let us now consider the differential operator P given in (3.1.1).

Proposition 3.3. Let J be a finite set, Wj ⊂ C open neighborhoods of
0, ϕj ∈ OC(Wj) non constant, ϕj(0) = 0 (j ∈ J). There exist r, η ∈ R>0 such
that for any sector S ⊂⊂ B(0, r) ⊂ ∩j∈JWj of amplitude smaller than η,

P : Ot
Xsa

(ϕj(S))m −→ Ot
Xsa

(ϕj(S))m

is an epimorphism (j ∈ J).
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Proof. There exists η0 ∈ R>0 such that for any sector S ⊂⊂ ∩j∈JWj

of amplitude smaller than η0, P has fundamental holomorphic solutions
F (z) exp(Λ(z)) on ϕj(S), for any j ∈ J .

For k = 1, . . . ,m, let pk ∈ z−1/lC[z−1/l] be the (k, k)-entry of Λ, for some
l ∈ Z>0.

By Proposition 3.2, for any j ∈ J, k = 1, . . . ,m, there exist rj,k, ηj,k such
that for any open sector S ⊂⊂ B(0, rj,k) ⊂ ∩j∈JWj of amplitude smaller than
ηj,k, there exist z0,j,k ∈ ϕj

(
S
)

and paths Γz0,j,k,z from z0,j,k to z ∈ ϕj(S) such
that for any gj ∈ Ot

Xsa
(ϕj(S))

exp
(
pk(z)

) ∫
Γz0,j,k,z

exp
(− pk(ζ)

)
gj(ζ)dζ ∈ Ot

Xsa

(
ϕj(S)

)
.

Set

r : = min{rj,k; j ∈ J, k = 1, . . . ,m} ,
η : = min{η0, ηj,k; j ∈ J, k = 1, . . . ,m} .

Let S ⊂⊂ B(0, r) be an open sector of amplitude smaller than η. Let Γj be
the collection of m paths Γz0,j,k,z, then for any g ∈ Ot

Xsa
(ϕj(S))m

exp
(
Λ(z)

) ∫
Γj

exp
(− Λ(ζ)

)
g(ζ)dζ ∈ Ot

Xsa

(
ϕj(S)

)m
(j ∈ J).

Since multiplication by F (z) and F (z)−1

zN are bijections on Ot
Xsa

(
ϕ(Vj)

)m,
we obtain that, for any g ∈ Ot

Xsa
(ϕj(S))m,

F (z) exp
(
Λ(z)

) ∫
Γj

exp
(− Λ(ζ)

)F (ζ)−1

ζN
g(ζ)dζ ∈ Ot

Xsa

(
ϕj(S)

)m
(j ∈ J).

The conclusion follows by Lemma 3.1.

Lemma 3.2. Let U, V ∈ OpcXsa
. If P is a surjective endomorphism

both on Ot
Xsa

(U)m and Ot
Xsa

(V )m. Then P is a surjective endomorphism on
Ot
Xsa

(U ∩ V )m.

Proof. The result follows from the exact sequence (2.2.1).

Theorem 3.2. Let U ∈ OpcXsa
with 0 ∈ ∂U . There exist an open

neighborhood W ⊂ X of 0 and {Uj}j∈J ∈ Covsa(U ∩W ) such that, for any
j ∈ J ,

P : Ot
Xsa

(Uj)m −→ Ot
Xsa

(Uj)m



�

�

�

�

�

�

�

�

650 Giovanni Morando

is an epimorphism.

Proof. By Theorem 1.4, there exist an open neighborhood W of 0, a
finite set J , open sectors Sj,k, ϕj,k ∈ OC

(
Sj,k

)
, such that ϕj,k(0) = 0, ϕj,k|Sj,k

is injective (j ∈ J, k = 1, 2) and

(3.2.6) U ∩W =
⋃
j∈J

(
ϕj,1

(
Sj,1

) ∩ ϕj,2(Sj,2)) .
Further, by Remark 1.2, we can suppose that the amplitude and the radius of
Sj,k are arbitrarly small. In particular, Proposition 3.3 applies and we have
that P is an epimorphism on ϕj,k

(
Sj,k

)
, for any j ∈ J , k = 1, 2.

The conclusion follows from (3.2.6) and Lemma 3.2.

The following Corollary is an obvious consequence of Theorem 3.2. In view
of Proposition 2.1, it states that P is an epimorphism of sheaves on Xsa.

Corollary 3.1. Let U ∈ OpcXsa
with 0 ∈ ∂U . There exist an open

neighborhood W ⊂ X of 0 such that for any g ∈ Ot
Xsa

(U)m, there exist
{Uj}j∈J ∈ Covsa(U ∩W ) and uj ∈ Ot

Xsa
(Uj)m satisfying

Puj = g|Uj
(j ∈ J) .

Proof. Obvious.

§4. Tempered Holomorphic Solutions

In this section we deal with solutions of DX -modules, for X a complex
analytic curve.

In the first subsection we recall some classical results about DX -modules.
First, for a coherent DX -module M, we define the complex of holomorphic
(resp. tempered holomorphic) solutions of M, S olM (resp. S oltM). Then,
we recall that, if M is a regular holonomic DX -module, then S oltM � S olM.
Moreover we recall that a holonomic DX -module is locally an extension of a
DX -module supported on a point (hence regular) and a DX -module locally
isomorphic to a differential operator.

In the second subsection we state the existence theorem in the framework
of D-modules. It asserts that, for a holonomic DX -module M, H1

(
S oltM)

is
isomorphic to H1

(
S olM)

. Using the results recalled in the first subsection,
we reduce to the case of a differential operator. Such case is the object of the
third subsection.
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In the third subsection we treat the case of a differential operator. Making
use of the language of sheaves on Xsa, we give a more natural setting and
statement to the results obtained in Section 3.

In the fourth subsection we prove that S olt(M) is R-constructible in the
sense of sheaves on Xsa.

Throughout this section, X will be a complex analytic curve.

§4.1. Classical results on D-modules

For a detailed and comprehensive exposition of DX -modules we refer to [3]
and [11]. For an introduction to derived categories and cohomology of sheaves,
we refer to [12].

We denote by DX the sheaf of differential operators with holomorphic
coefficients on X, Mod(DX) the category of DX -modules, Modcoh(DX) the full
subcategory of Mod(DX) consisting of coherent DX -modules.

For M ∈ Modcoh(DX) we denote by charM the characteristic variety of
M. Recall that M ∈ Modcoh(DX) is said holonomic if dim charM = 1. We
denote by Modh(DX) ⊂ Modcoh(DX) the abelian category of holonomic DX -
modules.

We denote by Db(Xsa) (resp. Db(X), Db(DX)) the bounded derived cate-
gory of sheaves of C-vector spaces on Xsa (resp. sheaves of C-vector spaces on
X, DX -modules). We denote byDb

coh(DX) (resp. Db
h(DX)) the full subcategory

of Db(DX) consisting of bounded complexes whose cohomology groups are co-
herent (resp. holonomic). For M ∈ Db

coh(DX), set charM := ∪j∈ZcharHj(M).
Let T ∗X be the cotanget bundle on X, πX : T ∗X → X the canonical

projection, T ∗
XX the zero section of T ∗X and Ṫ ∗X := T ∗X \ T ∗

XX.
For M ∈ Db

coh(DX), set

S(M) := πX

(
charM∩ Ṫ ∗X

)
.

It is well known that, if M ∈ Db
h(DX), then S(M) is a discrete subset of

X.

Definition 4.1. An object M ∈ Db
h(DX) is said regular holonomic if,

for any x ∈ X,

RHomDX
(M,OX,x) ∼−→ RHomDX

(M, ÔX,x) ,

where ÔX,x is the DX,x-module of formal power series at x. We denote by
Db
rh(DX) the full subcategory of Db

h(DX) of regular holonomic DX -modules.
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Recall that � : X → Xsa is the natural morphism of sites. For a coherent
DX -module M, we set for short

S olM =R�∗RHomDX

(M,OX

) ∈ Db
(
Xsa

)
S oltM = RHom�!DX

(
�!M,Ot

Xsa

) ∈ Db
(
Xsa

)
.

For Theorem 4.1 below, see [10]. We recall it here with the notation of
[15].

Theorem 4.1. Let X be a complex analytic manifold, M ∈ Db
rh(DX).

The natural morphism in Db(Xsa)

S oltM −→ S olM
is an isomorphism.

For a ∈ X, let Γ[{a}](·) be the tempered support functor on a. For M ∈
Db(DX), denote

M(∗a) := OX(∗a) ⊗OX
M ,

where OX(∗a) is the DX -module of meromorphic functions at a.
Proposition 4.1 below follows from Kashiwara’s Lemma (see [11, Theorem

4.30]) and Kashiwara’s thesis [8].

Proposition 4.1. Let a ∈ X.

(i) For M ∈ Db
h(DX), there exists a distinguished triangle

RΓ[{a}]M −→ M −→ M(∗a) +1−→ .

(ii) If M ∈ Db
h(DX), then RΓ[{a}]M ∈ Db

rh(DX).

(iii) If M ∈ Modh(DX), then there exist an open neighborhood W of a and
P ∈ DX(W ) such that

M(∗a)|W � DX |W
DX |W · P .

§4.2. Existence theorem for holonomic DX-modules

Theorem 4.2. Let M ∈ Modh(DX). The natural morphism of sheaves
on Xsa

(4.2.1) H1
(
S olt

(M)) −→ H1
(
S ol

(M))
is an isomorphism.
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Proof. The problem is local on Xsa. Since S(M) is a discrete set, it is
sufficient to prove the statement in the case S(M) ⊂ {a}, for a ∈ X.

Now, using Theorem 4.1 and Proposition 4.1, it is sufficient to prove the
statement for M = DW

DW ·P , for W ⊂ X an open neighborhood of a and P ∈
DX(W ).

That is, up to shrinking X, we are reduced to prove that the natural
morphism of sheaves on Xsa

H1
(
S olt

( DX
DX · P

))
−→ H1

(
S ol

( DX
DX · P

))
is an isomorphism.

This is the object of Subsection 4.3 below.

§4.3. The case of a single operator

For this subsection, let X ⊂ C be an open disc centered at the origin and

(4.3.1) P =
m∑
j=0

aj(z)
dj

dzj
,

for aj(z) ∈ OX(X) (j = 1, . . . ,m), am not identically zero.
Set S(P ) := S

(DX/DX · P ), then we have

S(P ) =
{
z ∈ X; am(z) = 0

}
.

Remark that, since �∗ is exact on constructible sheaves and OX is �∗-
acyclic,

�∗OX

P�∗OX
� �∗

OX

POX
.

Proposition 4.2. The natural morphism of sheaves on Xsa

(4.3.2)
Ot
Xsa

POt
Xsa

−→ �∗
OX

POX
,

is an isomorphism.

We need two preliminary lemmas.

Lemma 4.1. Let U ∈ OpcXsa
, S(P )∩U = ∅. For any g ∈ Ot(U), there

exist {Uj}j∈J ∈ Covsa(U) and uj ∈ Ot(Uj) such that Puj = g|Uj
.
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Proof. Since the problem is local on Xsa and S(P ) is a discrete set, we
can suppose that S(P ) = {0}.

First case: 0 /∈ ∂U . It follows that P is a regular operator on a neighbor-
hood of U . The result follows immediately by Theorem 4.1.

Second case: 0 ∈ ∂U . The result follows from Theorem 3.1 and the first
case.

Lemma 4.2. Let U ⊂ X be an open ball and assume ∂U ∩ S(P ) = ∅.
Then, the natural morphism

Ot
Xsa

(U)
POt

Xsa
(U)

ϕt−→ OX(U)
POX(U)

is an isomorphism.

Proof. Consider the following commutative diagram

OX(U)

POX(U)

ϕc ��

�����������

OX(U)
POX(U)

Ot
Xsa

(U)

POt
Xsa

(U)
.

ϕt

��

The proof consists of two steps:

(i) ϕc is an isomorphism,

(ii) ϕt is injective.

(i) Consider the complex

F := 0 −→ OX
P−→ OX −→ 0 .

Since ∂U∩S(P ) = ∅, then RΓ∂U
(
F |U

) � 0. It follows that RΓ
(
U,F

) ∼−→
RΓ
(
U,F

)
. In particular, since OX is Γ

(
U, ·) and Γ

(
U, ·)-acyclic, it follows that

ϕc is an isomorphism.
(ii) Let h ∈ ker(ϕt), that is, h ∈ Ot

Xsa
(U) and there exists u ∈ OX(U)

satisfying Pu = h. Let us prove that u ∈ Ot
Xsa

(U).
The problem is local on Xsa. Clearly, u|U0 ∈ Ot

Xsa
(U0) for any U0 ∈

OpcUsa
. So, let x ∈ ∂U , there exists an open neighborhood W of x such that

S(P ) ∩ U ∩W = ∅. In particular, P is a regular operator on U ∩W .
By Theorem 4.1, the complex

0 −→ Ot
Xsa

|U∩W
P−→ Ot

Xsa
|U∩W −→ 0
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is concentrated in degree 0. In particular, there exists {Vj}j∈J ∈ Covsa(U ∩W )
and vj ∈ Ot

Xsa
(Vj) such that Pvj = h|Vj

, that is, P (vj − u|Vj
) = 0. Since

S(P ) ∩ V j = ∅, then vj − u|Vj
extends holomorphically up to the boundary of

Vj . That is vj−u|Vj
= w, for some w ∈ OX

(
V j
)
. In particular u|Vj

∈ Ot
Xsa

(Vj).
The conclusion follows.

Now we can prove Proposition 4.2.

Proof of Proposition 4.2. Since S(P ) is a discrete set and the statement
is local on Xsa, we can suppose that S(P ) ⊂ {0}.

We are going to prove that, for any U ∈ OpcXsa
, the natural morphism

(4.3.3)
Ot
Xsa

POt
Xsa

(U)
ϕ−→ OX

POX
(U)

is an isomorphism.
Consider the presheaves on OpcXsa

defined by

OpcXsa

 U 
−→ F t(U) :=

Ot
Xsa

(U)
POt

Xsa
(U)

,

OpcXsa

 U 
−→ F (U) :=

OX(U)
POX(U)

.

Recall that, for a presheaf G on Xsa, we denote by Ga the associated sheaf on
Xsa. We have that Ot

Xsa

POt
Xsa

:= F t,a and �∗ OX

POX
� F a.

Suppose that 0 /∈ U . Then F a(U) � 0 and Lemma 4.1 implies that
F t,a(U) � 0.

Suppose now that 0 ∈ U . First, let us prove that ϕ is surjective.
Recall (2.1.1). Let s ∈ F a(U). Since the inductive limit considered

in (2.1.2) is filtrant, s can be identified to (s0, . . . , sn) ∈ F (S), for S =
{U0, . . . , Un} ∈ Covsa(U) and sj ∈ F (Uj) (j = 0, . . . , n). Up to take a re-
finement, we can suppose that 0 ∈ U0 is an open ball, s0 ∈ F t(U0), 0 /∈ Uk,
sk = 0 and s0|U0∩Uk

= 0 as an element of F t(U0 ∩ Uk) (k 	= 0).
It follows that (s0, 0, . . . , 0) defines an element of F t(S). In particular, it

defines a section st ∈ F t,a(U) such that ϕ(st) = s. Hence ϕ is surjective.
Now, let us show that ϕ is injective.
Let st ∈ F t,a(U) such that ϕ(st) = 0. As before, st can be identified

with (st0, . . . , s
t
n) ∈ F t(S), for S = {U0, . . . , Un} ∈ Covsa(U) and stj ∈ F t(Uj)

(j = 0, . . . , n). Up to take a refinement of S, we can suppose that 0 ∈ U0 is
an open ball, 0 /∈ Uk and stk = 0 for k 	= 0. That is, st can be identified to
(st0, 0, . . . , 0) ∈ F t(S).
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Now, let ϕt : F t(U0) → F (U0). By Lemma 4.2, ϕt is injective. Clearly,
ϕ(st) = 0 implies that ϕt(st0) = 0. Hence st0 = 0 and ϕ is injective.

§4.4. R-constructibility for tempered holomorphic solutions

In the study of classical solution sheaves of D-modules, the notions of
micro-support and R-constructibility play a central role. We refer to [12] for
definitions and classical results. In [15], M. Kashiwara and P. Schapira defined
such notions in the context of sheaves on Xsa. Further, they conjectured some
results on tempered holomorphic solutions of holonomic D-modules involving
R-constructibility corresponding to classical results on holomorphic solutions.

Proposition 4.3 below follows from the results obtained in Section 3. It
proves, in dimension 1, a conjecture from [15] stating that, for M a holonomic
DX -module, S olt(M) is R-constructible in the sense of sheaves on Xsa.

Denote by Db
R−c(CX) the full triangulated subcategory of the bounded

derived category of Mod(CX) consisting of complexes whose cohomology groups
are R-constructible. In what follows, for F ∈ Db(CXsa

) and G ∈ Db
R−c(CX),

we set for short

RHomCX
(G,F ) := �−1RHomCXsa

(G,F ) ∈ Db(CX)

and
RHomCX

(G,F ) := RΓ(X,RHomCX
(G,F )) .

Proposition 4.3. Let X be a complex curve and let M ∈ Db
h(DX).

Then, for any G ∈ Db
R−c(CX), RHomCX

(G,S olt(M)) ∈ Db
R−c(CX).

Proof. We may suppose that X ⊂ C is an open ball centered at the origin.
By dévissage we may suppose that M � DX

DX P , for P a differential operator as
in (4.3.1) such that S(P ) ⊂ {0}. Since the triangulated category Db

R−c(CX) is
generated by the objects CU , for U ∈ OpcXsa

, we may assume that G = CU for
such an U .

Let V ∈ OpcXsa
such that 0 /∈ V , then Theorem 4.1 implies that

S olt(M)|V � S ol(M)|V . In particular,

RHomCX
(CU ,S olt(M))|X\{0} � RHomCX

(CU ,S ol(M))|X\{0} .

It follows that RHomCX
(CU ,S olt(M)) is weakly-R-constructible on X and

R-constructible on X \ {0}.
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Since HomCX
(CU ,S olt(M)) is a subsheaf of HomCX

(CU ,S ol(M)) and
RHomCX

(CU ,S olt(M)) is concentrated in degrees 0 and 1, it remains to prove
that the stalk at 0 of Ext1

CX
(CU ,S olt(M)) has finite dimension.

Since RHomCX
(CU ,S olt(M)) is weakly-R-constructible, there exists an

open ball B such that

(4.4.1) Ext1CX

(
CU ,S olt(M)

)
0
� R1HomCX

(
CU∩B ,S olt(M)

)
.

Recall that S olt(M) is represented by the complex

0 −→ Ot
Xsa

P−→ Ot
Xsa

−→ 0

and that Ot
Xsa

is Γ(V, ·)-acyclic for V ∈ OpcXsa
. It follows that the object

RHomCX
(CU ,S olt(M)) is represented by the complex

Γ
(
U,S olt(M)

)
:= 0 −→ Ot

Xsa
(U) P−→ Ot

Xsa
(U) −→ 0 .

In particular

R1HomCX

(
CU ,S olt(M)

) � H1
(
Γ
(
U,S olt(M)

))
.

We conclude the proof by showing that H1
(
Γ
(
U,S olt(M)

))
has finite dimen-

sion.
First consider the case 0 ∈ U . By (4.4.1), we can suppose that U is an

open ball. Then, by Lemma 4.2, we have

H1
(
Γ
(
U,S olt(M)

)) � H1
(
Γ
(
U,S ol(M)

))
and the conclusion follows.

Suppose now that 0 ∈ ∂U .
By Theorem 3.2 and Lemma 3.2, there exists a finite covering

{
Uj
}
j∈J ∈

Covsa(U) such that, for any K ⊂ J

(4.4.2) H1
(
Γ
(
UK ,S olt(M)

)) � 0 ,

where we have set for short UK := ∩k∈KUk.
Arguing by induction on n ≥ 1, we are going to prove that, for any n ≥ 1

and K1, . . . ,Kn ⊂ J ,

H1
(
Γ
( ∪nh=1 UKh

,S olt(M)
))

has finite dimension. This will conclude the proof.
If n = 1, the result follows at once from (4.4.2).
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Suppose now that, for any K ′
1, . . . ,K

′
n−1 ⊂ J ,

(4.4.3) dim H1
(
Γ
( ∪n−1

h=1 UK′
h
,S olt(M)

))
< +∞ .

Consider K1, . . . ,Kn ⊂ J and the following distinguished triangle

(4.4.4) Γ
( ∪nh=1 UKh

,S olt(M)
) −→

Γ
( ∪n−1

h=1 UKh
,S olt(M)

)⊕ Γ
(
UKn

,S olt(M)
) −→

Γ
( ∪n−1

h=1 UKh
∩ UKn

,S olt(M)
) +1−→ .

Clearly UKh
∩ UKn

= UKh∪Kn
. Then (4.4.3) implies that the second

and the third term of the distinguished triangle (4.4.4) have finite dimensional
cohomology groups.

The conclusion follows.
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Birkhäuser Boston, Boston, MA, 1991.

[21] J.-P. Ramis and Y. Sibuya, Hukuhara domains and fundamental existence and unique-
ness theorems for asymptotic solutions of Gevrey type, Asymptotic Anal. 2 (1989), no. 1,
39–94.
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