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On the Zero-Set of Real Polynomials in
Non-Separable Banach Spaces
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Abstract

We show constructively that every homogeneous polynomial that is weakly con-
tinuous on the bounded subsets of a real Banach space whose dual is not weak∗-
separable admits a closed linear subspace whose dual is not weak∗-separable either
where the polynomial vanishes. We also prove that the same can be said for vector-
valued polynomials. Finally, we study the validity of this result for continuous 2-
homogeneous polynomials.

§1. Introduction

Since A. Plichko and A. Zagorodnyuk showed in [9] that, in a complex
infinite-dimensional Banach space, every homogeneous continuous scalar-valued
polynomial vanishes in a linear subspace of infinite dimension, there has been
some interest concerning the zero-set of continuous homogeneous polynomials
mainly in two directions, one in trying to measure the size (finite dimension) of
the zero-set comparing with the dimension of the whole space, see [3] and [4],
and another one when studying the validity of the result for infinite-dimensional
real spaces, see [3], [1] and [5].

As it has become usual in the theory of infinite-dimensional complex Anal-
ysis, see [7], given a real Banach space X and a positive integer n, by P(nX) we
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686 Jesús Ferrer

shall represent the space of real-valued continuous homogeneous polynomials
of degree n endowed with its usual norm

‖ P ‖= sup{|P (x) | : ‖x‖≤ 1}.
For P ∈ P(nX), there is by definition a continuous symmetric n-linear

functional, usually denoted by
∨
P , such that P (x) =

∨
P (x, x, (n)... , x), the Polar-

ization formula guarantees the uniqueness of such functional
∨
P . By Pf (nX)

we denote the subspace of P(nX) formed by those polynomials which can be
written as P (x) =

∑m
j=1 λj〈u∗

j , x〉n, with λj ∈ R, u∗
j ∈ X∗, 1 ≤ j ≤ m, and

they are called finite type polynomials. The space of approximable polynomials,
PA(nX), is given by the closure of Pf (nX) in P(nX). By Pw(nX) we represent
the subspace of P(nX) formed by those polynomials that are weakly contin-
uous on the bounded subsets of X. A polynomial P ∈ P(nX) is a nuclear
polynomial whenever it has the form P (x) =

∑∞
j=1 aj 〈u∗

j , x〉n, x ∈ X, where
(aj)∞j=1 ∈ �1 and (u∗

j )
∞
j=1 is a bounded sequence of X∗. Denoting by PN (nX)

the class of nuclear polynomials, it is quite clear that

Pf (nX) ⊂ PN (nX) ⊂ PA(nX) ⊂ Pw(nX) ⊂ P(nX).

In what follows X will be an infinite-dimensional real Banach space and X∗

its topological dual. We use the symbol 〈·, ·〉 to denote the standard duality
between X and X∗. If P ∈ P(nX), its zero-set will be denoted by P−1(0), i.e.,
P−1(0) = {x ∈ X : P (x) = 0}. We say that P−1(0) has infinite dimension
whenever it contains an infinite-dimensional linear subspace of X.

If A ⊂ X and B ⊂ X∗, then we use the notation

A⊥ = {x∗ ∈ X∗ : 〈x∗, x〉 = 0, x ∈ A}, B⊥ = {x ∈ X : 〈x∗, x〉 = 0, x∗ ∈ B}.
For a polynomial P ∈ P(nX), the following conjugacy relationship between

its first and (n−1)-th derivatives turned out to be relevant. The first derivative
is the mapping P ′ : X −→ X∗ such that

P ′(x) = n
∨
P (x, (n−1)... , x, ·), x ∈ X,

while the (n − 1)-th derivative is given by the continuous linear map P (n−1) :
X −→ Ls(Xn−1) such that

P (n−1)(x) = n!
∨
P (x, ·, (n−1)... , ·), x ∈ X,

where Ls(Xn−1) denotes the space of symmetric continuous (n−1)-linear func-
tionals on X. It is then straightforward to notice, using the Polarization for-
mula, that

Ker P (n−1) = P ′(X)⊥.
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Notice that Ker P (n−1) is a closed linear subspace of P−1(0) such that every
maximal linear subspace of P−1(0) must contain it: If Z is such a maximal
subspace, then, for x ∈ KerP (n−1), z ∈ Z,

P (x + z) = P (x) + P (z) +
n−1∑
j=1

(
n

j

)
∨
P (x, (j)... , x, z, (n−j)... , z)

=
1
n!

P (n−1)(x)(x, (n−1)... , x)

+
n−1∑
j=1

1
j!(n − j)!

P (n−1)(x)(x, (j−1)... , x, z, (n−j)... , z) = 0,

i.e., Z +Ker P (n−1) ⊂ P−1(0), and the maximality of Z yields that KerP (n−1)

is contained in Z.
Hence, if Ker P (n−1) were non-zero, we would easily obtain a non-zero

linear subspace contained in P−1(0). Indeed, we will seek for conditions in
order to guarantee that KerP (n−1) is sufficiently big. For this purpose, recall
that

(Ker P (n−1))⊥ = (P ′(X)⊥)⊥ = lin
w∗

(P ′(X)),

and so, roughly speaking, the smaller P ′(X) is the bigger Ker P (n−1) will be.
In particular, if P ′(X) were separable, then (X/ KerP (n−1))∗ = (Ker P (n−1))⊥

would have to be weak∗-separable and this is mainly the reason why in the next
section we shall be dealing with this type of space.

§2. Spaces which can be Injected into a Hilbert Space

In this section we proceed to introduce a class of real Banach spaces, and
a subclass, which will help us in our goal of finding conditions under which the
zero-set of a polynomial will contain big enough linear subspaces.

We say that a real Banach space X is in class CH whenever there exists a
one-to-one continuous linear map from X into a Hilbert space. When X ∈ CH

we shall say that X is injected into a Hilbert space. If X is injected into a
separable Hilbert space, then we shall write X ∈ W∗. Clearly, W∗ ⊂ CH . The
following properties of the spaces in these two classes are quite straightforward.

Proposition 1. The following conditions are equivalent for a space X:
(i) X ∈ W∗.
(ii) X∗ is weak∗-separable.
(iii) X∗ has a countable total subset.
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Proposition 2. If X is in class CH (respectively, in W∗) and Y is a
space that is injected linearly and continuously into X, then Y ∈ CH (respec-
tively, Y ∈ W∗). Hence, every closed linear subspace of X is in the same class
that X.

Proposition 3. If X is separable, then X and X∗ are in W∗.

The next result is used several times in this paper.

Proposition 4. Let Y be a closed linear subspace of the Banach space
X. If Y is in W∗ and X/Y is in CH , then X is in CH .

Proof. With no loss of generality, we may assume that we have two one-
to-one bounded linear maps

S1 : Y −→ �2, S2 : X/Y −→ �2(Γ0),

with Γ0 being a set that is disjoint from the set of positive integers N. Now, for
each j ∈ N, if ej denotes the corresponding unit vector, we have that S∗

1ej ∈ Y ∗.
Let v∗j ∈ X∗ be the extension of S∗

1ej to X such that ‖ v∗j ‖=‖ S∗
1ej ‖. Setting

Γ := N ∪ Γ0, we define the mapping T : X → �2(Γ) such that, for x ∈ X,
Tx := (λγ)γ∈Γ where

λγ :=

{
2−γ〈v∗γ , x〉, γ ∈ N,

〈S2(x + Y ), eγ〉, γ ∈ Γ0.

Then, T is a well defined linear map such that it is bounded. To see that it is
one-to-one, let x ∈ X be such that Tx = 0, then, 0 = 〈S2(x + Y ), eγ〉, γ ∈ Γ0,
implies that S2(x+Y ) = 0, and so x ∈ Y ; hence, from 0 = 2−j〈v∗j , x〉, j ∈ N, it
follows that 0 = 〈S∗

1ej , x〉 = 〈ej , S1x〉, j ∈ N, therefore S1x = 0, and x = 0.

If in the proof of the former proposition Γ0 is taken to be countable, then
the next result obtains.

Corollary 1. Let Y be a closed linear subspace of X such that Y and
X/Y are both in W∗, then X is also in W∗, i.e., being in W∗ is a three-space
property.

Concerning the connection of the two classes introduced before with the
problem of finding big linear subspaces inside the zero-set of a polynomial,
we must indicate that this relationship already appears in [1] and [5]. Also,
the problem of knowing whether, analogously to Corollary 1, being in CH is
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a three-space property is stated in [5], as well as the following particular case
(in some sense conjugate to the statement of Proposition 4): “If Y ∈ CH and
X/Y ∈ W∗, does this imply that X ∈ CH ?”. Admitting first that this author
has been unable to answer none of the preceding problems, the class of spaces
satisfying this latter property will be considered in our last section when we
deal with continuous 2-homogeneous polynomials.

We already know that, if X is separable then X and X∗ are both in
W∗, let’s take a look now at some other examples of spaces not belonging
to W∗, which will obviously be non-separable. After [11, p. 600], we know
that every non-separable weakly compactly generated space, and hence every
non-separable reflexive one and c0(Γ), Γ an uncountable set, has a non-weak∗-
separable dual. This, plus the fact that c0(Γ) can be canonically injected into
�∞(Γ), yields that, for uncountable Γ, c0(Γ) and �∞(Γ) are not in W∗ and
clearly �2(Γ) ∈ CH \W∗. The easiest example of a space X such that X ∈ W∗

and X∗ /∈ W∗ is given by X = �∞: Being obvious that �∞ ∈ W∗, we show that
�∗∞ /∈ W∗: It is shown in [10] that �∞ contains a closed subspace F such that
�∞/F is isomorphic to a non-separable Hilbert space. Hence, F⊥ = (�∞/F )∗ is
a subspace of �∗∞ which is also isomorphic to a non-separable Hilbert space. If
�∗∞ were in class W∗, then, from Proposition 2, there would be a non-separable
Hilbert space in W∗, which is clearly contradictory.

There are also examples satisfying the contrary, i.e., X /∈ W∗ and X∗ ∈
W∗. In particular, there is one which plays a somewhat outstanding role and
we shall take a look at it right now. Let X = c0([0, 1]). Then X∗ = �1([0, 1]),
and to show that X∗ is in W∗, since the space of continuous functions C[0, 1],
being separable, is a quotient of �1, and therefore its topological dual C[0, 1]∗

is isomorphic to a subspace of �∞, it suffices to see that �1([0, 1]) can be con-
tinuously injected into C[0, 1]∗. This is done by noticing that the mapping
T : �1([0, 1]) → C[0, 1]∗ such that, if x = (xγ) ∈ �1([0, 1]), Tx :=

∑
γ∈[0,1] xγδγ ,

where δγ is the Dirac measure at the point γ ∈ [0, 1], is one-to-one bounded
and linear.

Also, since (�∞/c0)∗ admits no countable total subsets [8, p. 316], it follows
that �∞/c0 is not in W∗.

We finish this section by showing that, if X /∈ W∗, then every sequence
of closed linear subspaces (Ej)∞j=1 such that X/Ej ∈ W∗, j ≥ 1, satisfies that
∩∞

j=1Ej /∈ W∗.

Lemma 1. Let E be a closed linear subspace of the Banach space X.
Then E⊥ is σ(X∗, X)-separable if and only if there is a sequence (u∗

j )
∞
j=1 in

X∗ such that E = ∩∞
j=1 Ker u∗

j .
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Proposition 5. Let (Ej)∞j=1 be a sequence of closed linear subspaces of
X such that, for each j, E⊥

j is σ(X∗, X)-separable. Let E := ∩∞
j=1Ej, then:

(i) E⊥ is also σ(X∗, X)-separable.
(ii) If X /∈ W∗, then E /∈ W∗.

Proof. For each j, from the previous lemma, there is a sequence (u∗
jk)∞k=1

⊂ X∗ such that Ej = ∩∞
k=1 Ker u∗

jk. Hence

E⊥ = (∩∞
j=1Ej)⊥ = (∩∞

j,k=1 Ker u∗
jk)⊥ = lin

w∗
{u∗

jk : j, k ≥ 1}
is clearly σ(X∗, X)-separable, thus obtaining (i). Besides, this yields X/E ∈
W∗, and, if X /∈ W∗, the 3-space property shown in Corollary 1 guarantees
(ii).

§3. Zero-Sets of Weakly Continuous Polynomials

In this section we make use of the previous results to show that, for ev-
ery homogeneous polynomial of an arbitrary degree that is weakly continuous
on the bounded subsets of a space X not belonging to class W∗, its zero-set
contains a closed linear subspace Z which is not in W∗ either, i.e., its dual is
not weak∗-separable, and so Z is clearly non-separable. This provides a strict
generalization of some results in [1] and also analogs of some other results in
[5]

Proposition 6. If X is a Banach space which is not in class W∗, then,
if n is any positive integer, for each P ∈ Pw(nX), Ker P (n−1) is not in W∗.

Proof. If P ∈ Pw(nX), making use of the conjugacy relation mentioned
in the first section, we have

Ker P (n−1) = P ′(X)⊥.

From [7, p. 88, Proposition 2.6], we know that P ′ is (weak-to-norm)-uniformly
continuous on the bounded subsets and, since BX is weakly precompact, it
follows that P ′(X) is norm-separable in X∗. Clearly then, lin

w∗
(P ′(X)) is

weak∗-separable and so, since

(X/P ′(X)⊥)∗ = (P ′(X)⊥)⊥ = lin
w∗

(P ′(X)),

we have that X/P ′(X)⊥ is in W∗. From Corollary 1, since X is not in W∗, it
follows that Ker P (n−1) = P ′(X)⊥ is not in W∗.

Recalling that Ker P (n−1) is contained in every maximal linear subspace
contained in P−1(0), the next result clearly follows.
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Corollary 2. If X /∈ W∗, then, for every integer n and every P ∈
Pw(nX), every maximal linear subspace Z contained in P−1(0) is such that
Z /∈ W∗.

The next result gives us another characterization of the spaces in class W∗.

Corollary 3. For a Banach space X, the following conditions are equiv-
alent :

(i) X ∈ W∗.
(ii) For any even integer n, X admits a

positive definite polynomial P ∈ PN (nX).
(iii) For any even integer n, X admits a

positive definite polynomial P ∈ Pw(nX).
(iv) There is an even integer n such that X

admits a positive definite polynomial P ∈ Pw(nX).
(v) There is an even integer n such that X

admits a positive definite polynomial P ∈ PN (nX).

Proof. If X ∈ W∗, let T : X −→ �2 be a one-to-one continuous linear
map. For any even n, the nth-degree polynomial

P (x) :=
∞∑

j=1

2−j 〈ej , Tx〉n =
∞∑

j=1

2−j 〈T ∗ej , x〉n, x ∈ X,

is clearly nuclear and positive definite, hence we have that (i) ⇒ (ii).
Since (ii) ⇒ (iii) and (iii) ⇒ (iv) are obvious, we see that (iv) ⇒ (v):

Under condition (iv), X has to be in W∗, otherwise, after Corollary 2, no
polynomial of Pw(nX) would be positive definite; hence, after (i) ⇒ (ii), (v)
follows.

(v) ⇒ (i): Obvious, after Corollary 2.

As a by-product of this last corollary, we obtain a stronger version of part
(i) in Theorem 16 of [1].

Corollary 4. Let X be any infinite-dimensional real Banach space.
Then, either X admits a positive definite nuclear polynomial of degree 2, or,
for every positive integer n, the zero-set of every P ∈ Pw(nX) contains a closed
linear subspace of X whose dual is not weak∗-separable.

Proof. For any space X, if X is class W∗, from Corollary 3, there is a
positive definite nuclear polynomial of any even degree, in particular of the
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2nd degree. On the other hand, if X is not in W∗, from Proposition 6, for
arbitrary n, if P ∈ Pw(nX), then KerP (n−1) is not in class W∗ either, and,
since Ker P (n−1) ⊂ P−1(0), the result follows.

The results previously obtained will be used in the following to show that,
if X /∈ W∗, then every vector-valued polynomial, not necessarily homogeneous,
which is weakly continuous on the bounded subsets of X admits a closed linear
subspace not belonging to W∗ where the polynomial is constant.

Lemma 2. If P ∈ Pw(nX), then (Ker P (n−1))⊥ is σ(X∗, X)-separable.

Proof. Repeating the argument used in the beginning of the proof of
Proposition 6, we have that P ′(X) is separable in X∗ and thus

(KerP (n−1))⊥ = (P ′(X)⊥)⊥ = lin
w∗

P ′(X)

is σ(X∗, X)-separable.

Proposition 7. Let (nj)∞j=1 be a sequence of positive integers and let
(Pj)∞j=1 be a sequence of polynomials such that, for each j, Pj ∈ Pw(nj X). If
X /∈ W∗, then there is a closed linear subspace Z in X such that Z /∈ W∗ and
Z ⊂ ∩∞

j=1P
−1
j (0).

Proof. For each j, set Zj := Ker P
(nj−1)
j . Then, from the previous lemma,

we have that Z⊥
j is σ(X∗, X)-separable, j ≥ 1. Setting Z := ∩∞

j=1Zj , we know
from Proposition 5 that Z⊥ is σ(X∗, X)-separable, and so, since X /∈ W∗, we
have that Z /∈ W∗. Now, since it is evident that KerP

(nj−1)
j ⊂ P−1

j (0), j ≥ 1,
the result follows.

For a Banach space Y and a positive integer n, the symbols P(nX, Y ) and
Pw(nX, Y ) will denote the spaces of n-homogeneous continuous polynomials
on X with values in Y and the subspace formed by those which are weakly
continuous (to say it in a more explicit way, weak-to-norm continuous) on the
bounded subsets of X, respectively. We see next that, when X is not in class
W∗, any countable family of polynomials in Pw(nX, Y ) vanishes simultaneously
on quite a big linear subspace.

Corollary 5. Let X, Y be Banach spaces with X /∈ W∗. Let (nj)∞j=1

be a sequence of positive integers and (Pj)∞j=1 a sequence of polynomials such
that, for each j, Pj ∈ Pw(nj X, Y ). Then there is a closed linear subspace Z in
X such that Z /∈ W∗ and Pj |Z = 0, j ≥ 1.
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Proof. For each j, again from [7, p. 88, Proposition 2.6], we know that Pj

is weak-to-norm uniformly continuous on the bounded subsets of X. Hence, we
have that its range Pj(X) is separable in Y . Thus, there is a separable closed
linear subspace Y0 in Y such that Pj(X) ⊂ Y0, j ≥ 1. The separability of Y0

guarantees the existence of a sequence (v∗k)∞k=1 in Y ∗ such that (∩∞
k=1 Ker v∗k)∩

Y0 = {0}. For j, k ≥ 1, defining Qjk(x) := 〈v∗k, Pj(x)〉, x ∈ X, we obtain
a polynomial Qjk ∈ Pw(nj X). For j ≥ 1, setting Zj := ∩∞

k=1 Ker Q
(nj−1)
jk ,

after the proof of the previous proposition, we have that Z⊥
j is σ(X∗, X)-

separable. Hence, from Proposition 5, it follows that Z := ∩∞
j=1Zj is such

that Z⊥ is σ(X∗, X)-separable. Consequently, since X /∈ W∗, Z is neither in
W∗ and, if x ∈ Z, for j ≥ 1, 〈v∗k, Pj(x)〉 = Qjk(x) = 0, k ≥ 1, implies that
Pj(x) ∈ (∩∞

k=1 Ker v∗k) ∩ Y0, i.e., Pj(x) = 0.

Corollary 6. Let P : X −→ Y be a polynomial, not necessarily homo-
geneous, which is weakly continuous on the bounded subsets of X. If X /∈ W∗,
then there is a closed linear subspace Z in X such that Z /∈ W∗ and P|Z = P (0).

Proof. Let P (x) = P (0) +
∑n

j=1 Pj(x), x ∈ X, where Pj ∈ Pw(jX, Y ),
1 ≤ j ≤ n. Applying the former corollary to the finite sequence P1, P2, ..., Pn,
there is a closed linear subspace Z in X such that Z /∈ W∗ and Pj |Z = 0,
1 ≤ j ≤ n. This clearly yields P (x) = P (0), x ∈ Z.

In the results previously given we determine constructively the big linear
subspace contained in the polynomial’s zero-set. Nevertheless, noticing that
what we really use is that weak zero-neighborhoods contain finite-codimensional
linear subspaces, there is a natural extension of these existence results to a
larger frame, namely that of the mappings which are weak-to-norm continuous
on the bounded sets. More explicitelly, we have the following generalization.

Corollary 7. Let f : X −→ Y be a weak-to-norm continuous mapping
on the bounded subsets of X such that f(0) = 0. If X /∈ W∗, then there is a
closed linear subspace Z in X, with Z /∈ W∗, such that Z ⊂ f−1(0).

Proof. Let BX and BY denote the closed unit balls of X and Y , respec-
tively. After the previous consideration, for every pair of positive integers m, n,
there is a closed finite-codimensional linear subspace Zmn ⊂ X such that

Zmn ∩ nBX ⊂ f−1

(
1
m

BY

)
∩ nBX .

Clearly, after Proposition 5, the subspace Z := ∩m,nZmn does the job.
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Corollary 8. Let (fj)∞j=1 be a sequence of mappings from X into Y

which are weak-to-norm continuous on the bounded subsets of X and such that
fj(0) = 0, j ≥ 1. Assume that, for all x ∈ X, f(x) := limj fj(x) exists. If
X /∈ W∗, then there is a closed linear subspace Z ⊂ X such that Z /∈ W∗ and
Z ⊂ f−1(0).

As a consequence of the above corollary, since the polynomials of the Taylor
expansion of an analytic map which is also weak-to-norm continuous on the
bounded subsets can be seen to be also weak-to-norm continuous on bounded
sets, see [2, Lemma 2.1], the next result obtains.

Corollary 9. Let f : X −→ Y be an analytic map which is weak-to-
norm continuous on the bounded subsets of X and such that f(0) = 0. If
X /∈ W∗, then there is a closed linear subspace Z in X, with Z /∈ W∗, such
that Z ⊂ f−1(0).

§4. Zero-Sets of Continuous 2-Homogeneous Polynomials

The following characterization of the spaces in CH is given in [1]: “X ∈ CH

if and only if X admits a positive definite continuous 2-homogeneous poly-
nomial”. It is then proved there that, if X /∈ CH , then every polynomial
P ∈ P(2X) has an infinite-dimensional zero-set and the following conjecture is
stated

Conjecture. For a real Banach space X, either X ∈ CH , or, for every
P ∈ P(2X), P−1(0) contains a non-separable linear subspace.

Also in that same paper, the authors prove the conjecture to be true when
X is of type 2, and also when X admits no positive definite continuous 4-
homogeneous polynomial. In what follows, we give some sufficient conditions
under which the conjecture also holds.

Proposition 8. Let X be a space such that X /∈ CH and X∗ ∈ CH .
Then, if P ∈ P(2X), Ker P ′ /∈ W∗.

Proof. The first Fréchet derivative of P is the continuous linear map

P ′ : X → X∗ such that 〈P ′(x), y〉 = 2 · ∨
P (x, y), x, y ∈ X. Assuming Ker P ′

were in W∗, then, from Proposition 4, since X /∈ CH , we would have that
X/ KerP ′ /∈ CH . But the map T : X/ KerP ′ → X∗ given by T (x+Ker P ′) :=
P ′(x) is well defined linear bounded and one-to-one, which would imply that
X/ KerP ′ is injected into X∗, but X∗ ∈ CH , after Proposition 2, would then
yield X/ KerP ′ ∈ CH , a contradiction.
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Corollary 10. If X /∈ CH and X∗ ∈ CH , then, for every P ∈ P(2X),
every maximal linear subspace Z contained in P−1(0) is such that Z /∈ W∗.

We show next that, for uncountable Γ, the spaces c0(Γ), �p(Γ), 2< p <∞,
are of the type just considered, i.e., X /∈ CH , X∗ ∈ CH .

Lemma 3. Let Γ be an uncountable set. Then, for 1 ≤ p ≤ 2, the space
�p(Γ) ∈ CH , while, for 2 < p ≤ ∞, �p(Γ) /∈ CH .

Proof. For 1 ≤ p ≤ 2, it can be easily seen that the identity map from
�p(Γ) into �2(Γ) is well defined linear bounded and one-to-one, thus �p(Γ) ∈ CH .
Now, to see that, for 2 < p < ∞, �p(Γ) /∈ CH , let T : �p(Γ) → �2(∆) be a
bounded linear map, where ∆ is any set. For each ε > 0, the set Γε := {γ ∈
Γ : ‖Teγ ‖> ε} is finite, otherwise, we could find a sequence of distinct terms
(γj)∞j=1 ⊂ Γε. Let E be the closed linear span of (eγj

)∞j=1 in �p(Γ), thus we
have that E is a copy of �p inside �p(Γ). Now, after Pitt’s theorem, the map
T|E is compact and, since the sequence (eγj

)∞j=1 is weakly null, the sequence
(Teγj

)∞j=1 converges to zero, which is clearly a contradiction. Hence, the set
{γ ∈ Γ : Teγ 
= 0} is countable and, since Γ is not countable, there is γ ∈ Γ
such that Teγ = 0, i.e., eγ ∈ Ker T and so T cannot be one-to-one. The same
argument shows that c0(Γ) /∈ CH and so �∞(Γ) /∈ CH .

Corollary 11. Let Γ be an uncountable set and let X be any of the
spaces �p(Γ), 2 < p < ∞, or c0(Γ). If P is a continuous 2-homogeneous
polynomial on X, then KerP ′ is a closed linear subspace contained in P−1(0)
whose dual is not weak∗-separable. Consequently, every maximal linear subspace
contained in P−1(0) has a dual which is not weak∗-separable. If X = �∞(Γ),
then, for every P ∈ P(2X), P−1(0) contains a closed linear subspace Z such
that Z /∈ W∗.

In [5, Proposition 6], it is shown that the above stated conjecture holds
for spaces with the Controlled Separable Projection Property (CSPP), a class
that contains the weakly compactly generated spaces and thus it contains the
spaces c0(Γ), lp(Γ), 2 < p < ∞. Therefore, the statement in Corollary 11 follows
from the result before referred. Nevertheless, we would like to point out that,
although this author does not know of any example of a space X such that
X /∈ CH , X∗ ∈ CH and X does not have the CSPP, still the result given in the
previous corollary provides with a closed linear subspace, KerP ′, contained in
P−1(0) which is more than just non-separable, since it satisfies Ker P ′ /∈ W∗.

To finish, we introduce another class of spaces. We say that a space X is in
class C′

H whenever, for any sequence (u∗
j )

∞
j=1 in X∗, we have that ∩∞

j=1 Ker u∗
j /∈
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CH . Clearly, CH and C′
H are disjoint classes and we show that for the elements

of class C′
H the conjecture holds.

Proposition 9. Let X ∈ C′
H . If P ∈ P(2X), then every maximal linear

subspace contained in P−1(0) is non-separable.

Proof. Let Z be one of such maximal subspaces and suppose it is sep-
arable. Let Y := P ′(Z)⊥. Then, by the maximality of Z, we have that
P−1(0) ∩ Y = Z and P does not change sign in Y (we shall assume that
P|Y ≥ 0).

Since Y ⊥ = P ′(Z)
w∗

is σ(X∗, X)-separable, after Lemma 1 we have that
there is a sequence (u∗

j )
∞
j=1 in X∗ such that Y = ∩∞

j=1 Keru∗
j . Thus, since

X ∈ C′
H , it follows that Y /∈ CH . Now, by defining

Q(x + Z) := P (x), x ∈ Y,

we obtain a polynomial Q ∈ P(2(Y/Z)) which is positive definite. This implies
that Y/Z ∈ CH , but, Z being separable yields Z ∈ W∗, and so, after Proposition
4, we have that Y ∈ CH , a contradiction.

Finally, let us just remark that in order to solve positively the conjecture
stated at the beginning of this last section, it would be sufficient to give a
positive answer to the following question, which is equivalent to the second of
the questions posed in [5, Remark 3]: If X /∈ CH , and (u∗

j )
∞
j=1 ⊂ X∗, does it

always follow that ∩∞
j=1 Ker u∗

j /∈ CH ?, i.e., is it true that ¬CH = C′
H ?
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