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An Expression of Harmonic Vector Fields on
Hyperbolic 3-Cone-Manifolds in Terms of

Hypergeometric Functions

By

Michihiko Fujii∗ and Hiroyuki Ochiai∗∗

Abstract

Let V be a neighborhood of a singular locus of a hyperbolic 3-cone-manifold,
which is a quotient space of the 3-dimensional hyperbolic space. In this paper we give
an explicit expression of a harmonic vector field v on the hyperbolic manifold V in
terms of hypergeometric functions. The expression is obtained by solving a system of
ordinary differential equations which is induced by separation of the variables in the
vector-valued partial differential equation (∆ + 4)τ = 0, where ∆ is the Laplacian of
V and τ is the dual 1-form of v. We transform this system of ordinary differential
equations to single-component differential equations by elimination of unknown func-
tions and solve these equations. The most important step in solving them consists
of two parts, decomposing their differential operators into differential operators of
the type appearing in Riemann’s P -equation in the ring of differential operators and
then describing the projections to the components of this decomposition in terms of
differential operators that are also of the type appearing in Riemann’s P -equation.

§1. Introduction

Let U be a 3-dimensional space {(r, θ, φ) ∈ R3 ; r > 0} with Riemannian
metric g := dr2 + sinh2rdθ2 + cosh2rdφ2. The Riemannian space U is a model
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space of the 3-dimensional hyperbolic space. Now, let α, t and l be real numbers
satisfying that α > 0 and l > 0. Let V be a quotient space of U defined
by the equivalence relation (2) below. Then the space V is homeomorphic
to a product of an open interval and a 2-dimensional torus and the induced
Riemannian metric on V is the same form as g. This space V is a model space
of a neighborhood of a singular locus of a hyperbolic 3-cone-manifold whose
cone angle is α and complex length along the singular locus is l + t

√−1. Let
∆ be the Laplacian of V with respect to the induced Riemannian metric. We
consider the vector-valued partial differential equation ∆v = 0, where v is a
vector field on V . Its solutions are called harmonic vector fields. Harmonic
vector fileds play an important role to investigate infinitesimal deformations of
hyperbolic cone-manifold structures.

In this paper we give an explicit expression of harmonic vector fields. We
find out that harmonic vector fields can be expressed by hypergeometric func-
tions. By taking the dual of ∆v = 0, we obtain the vector-valued partial
differential equation (∆ + 4)τ = 0, where τ is the dual 1-form of v. In this
paper, we also consider a more general differential equation (∆ + 2 − λ)τ = 0
which contains a parameter λ ∈ R. In the case of harmonic vector fields, the
parameter λ is fixed to be a particular value, i.e., λ = −2.

By applying the method of separation of variables to (∆ + 2 − λ)τ = 0,
we obtain a system of ordinary differential equations in the variable r, given
in (3) below. Next, we replace the independent variable r by z, defined by
z = ( sinh r

cosh r )2. Then we obtain a system of ordinary differential equations in z,
given in (4) or (5) below. Most of the efforts of the paper is devoted to examine
this system.

The system (5) of ordinary differential equations has two parameters, de-
noted by a and b, which come from the given geometric parameters α, t and
l. For the most general case, i.e., ab �= 0, we can transform this to a single-
component ordinary differential equation by elimination of unknown functions.
This is a 6-th order homogeneous linear differential equation of Fuchsian type
with three singular points, z = 0, z = 1 and z = ∞. For the degenerate case,
i.e., ab = 0, the system (5) are reduced, so treated separately. However we
give the relations between the general case and the degenerated cases explicitly
(see the beginning of Section 3). We show that the differential operators ap-
pearing in these single-component differential equations can be factorized into
operators of the type appearing in Riemann’s P -equation (see Theorems 3.1.1,
3.1.5, 3.2.1 and 3.3.1). The factorizations indicate the sub/quotient structure
of the system. We expect more; the system may be decomposed into the direct
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sum of these factors. In our case, we can obtain such decompositions. We can
construct (see Ref. [2] for the algorithmic point of view) the differential oper-
ators with a special property, each of which gives the projection operator onto
the quotient factor (see Theorems 3.1.2 and 3.1.6). Due to these two results,
we obtain expressions of solutions of the single-component ordinary differential
equations under consideration in terms of those of Riemann’s P -equations (see
Corollaries 3.1.3, 3.1.7, 3.2.2 and 3.3.2).

We also represent fundamental systems of solutions to the system of ordi-
nary differential equations in (5) in terms of those of Riemann’s P -equations
(see Propositions 4.1.3, 4.1.6, 4.2.1 and 4.3.1). Moreover, if we assume that the
parameter a satisfies a “generic” condition (see Assumptions 5.1.1 and 5.3.1),
then we can express the fundamental systems of solutions to the system of dif-
ferential equations in (5) explicitly (see Sections 5.1 and 5.3). The functions
composing these fundamental systems are explicitly represented in terms of
hypergeometric functions. Hence, substituting z = ( sinh r

cosh r )2 and λ = −2 into
these fundamental systems, under the assumption expressed in Assumptions
5.1.1 and 5.3.1, we can express in terms of hypergeometric functions any 1-
form τ on V that is obtained by separating the independent variables in the
partial differential equation (∆+4)τ = 0. Then taking the dual of τ , we obtain
the desired expression for v, which is harmonic on V (see Theorem 2.1).

In this paper, we have omitted complicated explicit forms of differential
operators and long but straightforward computations for several formulae sat-
isfied by these differential operators. One can obtain the detailed version [3] of
this paper, where the explicit forms of such operators are described. Referring
to [3], one can also verify by oneself almost all the computation in this paper
by making use of the software Mathematica released from Wolfram Research.
We give a text file on the website

http://www.math.kyoto-u.ac.jp/∼mfujii/harmonic/operators.txt

where one can obtain all the differential operators written in Mathematica.
After taking operators from the website above, by carrying out programs at
the websites described in [3], one can check calculations.

The authors would like to thank Dr. Masaaki Suzuki for suggestions on
programming.
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§2. A System of Ordinary Differential Equations Providing
Harmonic Vector Fields on Hyperbolic 3-Cone-Manifolds

In this section we give background discussion on necessary concepts of
differential geometry, obtain a system of ordinary differential equations whose
solutions provide harmonic vector fields on a hyperbolic 3-cone-manifold and
state our main theorem. (See Rosenberg [7] for a general reference on Rie-
mannian geometry and Hodgson and Kerckhoff [4] for discussion specific to
hyperbolic 3-cone-manifolds.)

Let U be a 3-dimensional space

{(r, θ, φ) ∈ R3 ; r > 0}
with Riemannian metric

g := dr2 + sinh2rdθ2 + cosh2rdφ2.

We define (ω1, ω2, ω3) := (dr, sinhrdθ, coshrdφ) as a co-frame on U . We denote
by (e1, e2, e3) the orthonormal frame on U dual to (ω1, ω2, ω3). Then we have
e1 = ∂

∂r , e2 = 1
sinh r

∂
∂θ and e3 = 1

cosh r
∂

∂φ . In this section, for notational
convenience, we set x1 = r, x2 = θ, and x3 = φ. We express the metric g as

3∑
i,j=1

gi,jdx
i ⊗ dxj . Then we have g1,1 = 1, g2,2 = sinh2x1, g3,3 = cosh2x1 and

gi,j = 0 (if i �= j). The Christoffel symbol Γi
j,k can be calculated by using the

formula

Γi
j,k =

1
2

∑
l

gi,l

(
∂gj,l

∂xk
+
∂gk,l

∂xj
− ∂gj,k

∂xl

)
,

where (gk,l) = (gi,j)−1. The Levi-Civita connection ∇ can be calculated from

∇ ∂

∂xj

∂

∂xk
=

∑
i

Γi
j,k

∂

∂xi
.

Direct calculation yields

(
∇ ∂

∂xj

∂

∂xk

)
=


 0 cosh r

sinh r
∂
∂θ

sinh r
cosh r

∂
∂φ

cosh r
sinh r

∂
∂θ − sinh r cosh r ∂

∂r 0
sinh r
cosh r

∂
∂φ 0 − sinh r cosh r ∂

∂r


 .

Also, for (ωµ
λ), the matrix of the connection 1-forms, we find

(ωµ
λ) =


 0 − cosh r

sinh r ω2 − sinh r
cosh rω3

cosh r
sinh rω2 0 0
sinh r
cosh rω3 0 0


 .
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It can also be checked that U is a space of constant sectional curvature −1.
Let Ωp(U) denote the space of smooth, real-valued p-forms on U . Let d be

the usual exterior derivative of smooth real-valued forms on U :

d : Ωp(U) → Ωp+1(U).

We denote by ∗ the Hodge star operator defined by the Riemannian metric g
on U . Then we have

g(φ, ∗ ψ) dU = φ ∧ ψ,
for any real-valued p-form φ and (3− p)-form ψ, where dU is the volume form
of U . Let δ be the adjoint of d:

δ : Ωp(U) → Ωp−1(U).

Denoting by ∆ the Laplacian operating on smooth real-valued forms for the
Riemannian manifold U , we have

∆ = dδ + δd.

If we express a 1-form τ on U as

τ = f(r, θ, φ)ω1 + g(r, θ, φ)ω2 + h(r, θ, φ)ω3,

then, by explicit computation, we obtain (see Ref. [4] pp. 26–27)

(1)
(∆ + 2 − λ)τ

=
{
−frr−

(s
c
+
c

s

)
fr+

(
s2

c2
+
c2

s2
−4−λ

)
f− 1

s2
fθθ− 1

c2
fφφ+

2c
s2
gθ+

2s
c2
hφ

}
ω1

+
{
−grr−

(s
c
+
c

s

)
gr+

(
c2

s2
−4−λ

)
g− 1

s2
gθθ− 1

c2
gφφ− 2c

s2
fθ

}
ω2

+
{
−hrr−

(s
c
+
c

s

)
hr+

(
s2

c2
−4−λ

)
h− 1

s2
hθθ− 1

c2
hφφ− 2s

c2
fφ

}
ω3,

where λ is a real number, the subscripts denote derivatives with respect to the
variables r, θ and φ, and we denote sinh r and cosh r by s and c, respectively.

We now consider a model space of a neighborhood of a singular locus of
a hyperbolic 3-cone-manifold. Let α, t and l be real numbers satisfying that
α > 0 and l > 0. Let V be a quotient space of U defined by the equivalence
relation as follows:

(2) (r1, θ1, φ1) ∼ (r2, θ2, φ2)
⇐⇒ r1 =r2 and ∃k1, k2 ∈ Z such that θ1−θ2 =k1α+k2t, φ1−φ2 =−k2l.



�

�

�

�

�

�

�

�

732 Michihiko Fujii and Hiroyuki Ochiai

Then V is homeomorphic to (0,∞) × T 2, where T 2 is a 2-dimensional torus.
The Riemannian metric g on U induces a Riemannian metric on V which has
the same form as g. Let V (R) be a subset of V whose elements satisfy the
condition that r = R. Then V (R) is homeomorphic to T 2.

Remark. Let C be a hyperbolic 3-cone-manifold with cone-type singu-
larity along a simple closed geodesic Σ whose cone angle is equal to α and
complex length along Σ is equal to l + t

√−1. Then, if R is sufficiently small,
a subset

⋃
0<r<R V (r) of V is a neighborhood of Σ in C −Σ. The Riemannian

metric on C − Σ is incomplete near Σ. The metric completion of C − Σ is
identical to the hyperbolic cone structure on C. (See Refs. [1], [6].)

Now, let us assume that τ can be induced to be a 1-form on V . Then it
has the following equivariance properties:

τ (r, θ + α, φ) = τ (r, θ, φ) and τ (r, θ, φ+ l) = τ (r, θ + t, φ).

In order to find solutions of the equation (∆ + 2 − λ)τ = 0, we use sepa-
ration of variables. We decompose the function f(r, θ, φ) into the product of a
function f(r) on (0,∞) and a function on the torus. We decompose g(r, θ, φ)
and h(r, θ, φ) similarly. We further decompose these functions on the torus into
eigenfunctions of the Laplacian on the torus, which are of the forms cos(aθ+bφ)
and sin(aθ + bφ), where

a :=
2πn
α

and b :=
(2πm+ at)

l
(n,m ∈ Z).

Such a 1-form τ is called an ‘eigenform’ of the Laplacian. Then, from the
expression (1), we see that such a 1-form τ must be of the type

τ = f(r)cos(aθ + bφ)ω1 + g(r)sin(aθ + bφ)ω2 + h(r)sin(aθ + bφ)ω3,

or the type

τ = f(r)sin(aθ + bφ)ω1 + g(r)cos(aθ + bφ)ω2 + h(r)cos(aθ + bφ)ω3.

Then, for an eigenform τ of the Laplacian, we can verify the following (see (21)
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in Ref. [4]):

(3)
(∆ + 2 − λ)τ = 0

⇔




(3.1) f ′′(r)+
(s
c
+
c

s

)
f ′(r)+

(
λ− s2

c2
− c2

s2
− a2

s2
− b2

c2

)
f(r)

−2ac
s2

g(r)− 2bs
c2
h(r)=0,

(3.2) g′′(r)+
(s
c
+
c

s

)
g′(r)+

(
λ− c2

s2
− a2

s2
− b2

c2

)
g(r)− 2ac

s2
f(r)=0,

(3.3) h′′(r)+
(s
c
+
c

s

)
h′(r)+

(
λ− s2

c2
− a2

s2
− b2

c2

)
h(r)− 2bs

c2
f(r)=0,

where f ′(r) = df
dr (r), etc. Next, we define z := ( sinh r

cosh r )2. Then we have

(4)
(∆ + 2 − λ)τ = 0

⇔




(4.1) 4z2f ′′(z)+4zf ′(z)+
(

λz

(1−z)2 −
1

(1−z)2 −
z2

(1−z)2 −
a2

1−z−
b2z

1−z
)

×f(z)− 2a
(1−z)3/2

g(z)− 2bz3/2

(1−z)3/2
h(z)=0,

(4.2) 4z2g′′(z)+4zg′(z)+
(

λz

(1−z)2 −
1

(1−z)2 −
a2

1−z−
b2z

1−z
)
g(z)

− 2a
(1−z)3/2

f(z)=0,

(4.3) 4z2h′′(z)+4zh′(z)+
(

λz

(1−z)2 −
z2

(1−z)2 −
a2

1−z−
b2z

1−z
)
h(z)

− 2bz3/2

(1−z)3/2
f(z)=0,

where f ′(z) = df
dz (z), etc. Note that r > 0 is bijectively mapped onto 0 < z < 1.

The relations z1/2 = sinh r
cosh r and (1 − z)1/2 = 1

cosh r will be helpful to derive (4)
from (3). The system (4) can be expressed as

(5)




(5.1) 2z2(1 − z)
3
2P1(a, b, λ)f(z) − ag(z) − bz

3
2h(z) = 0,

(5.2) af(z) = 2z2(1 − z)
3
2P2(a, b, λ)g(z),

(5.3) bf(z) = 2z
1
2 (1 − z)

3
2P3(a, b, λ)h(z),



�

�

�

�

�

�

�

�

734 Michihiko Fujii and Hiroyuki Ochiai

where we define

P1(a, b, λ) :=
d2

dz2
+

1
z

d

dz
+

(
a2 + 1

4z2(z − 1)
+

b2 − 1
4z(z − 1)

+
λ− 2

4z(z − 1)2

)
,

P2(a, b, λ) :=
d2

dz2
+

1
z

d

dz
+

(
a2 + 1

4z2(z − 1)
+

b2

4z(z − 1)
+

λ− 1
4z(z − 1)2

)
,

P3(a, b, λ) :=
d2

dz2
+

1
z

d

dz
+

(
a2

4z2(z − 1)
+

b2 − 1
4z(z − 1)

+
λ− 1

4z(z − 1)2

)
.

Now, suppose τ be the dual 1-form of a harmonic vector field on V . Then,
by the Weitzenböck formula and the fact that the Ricci curvature of V is −2,
τ satisfies the differential equation (∆ + 4)τ = 0 on V . Hence, if λ = −2, then
solutions of the system of ordinary differential equations in (3), (4) or (5) give
1-forms that are dual to harmonic vector fields.

In Sections 3, 4 and 5, we solve the system of differential equations in (5)
and present fundamental systems of its solutions in the interval 0 < z < 1
that will be denoted by the set of 6 triples {(fj(z), gj(z), hj(z)); j = 1, . . . , 6}.
Moreover, in Sections 5.1 and 5.2, it is shown that fj(z), gj(z) and hj(z) can
be expressed explicitly in terms of hypergeometric functions, if the parameter
a satisfies the condition that a is not an integer. Let fj(r), gj(r) and hj(r) be
the functions of r (> 0) obtained by substituting ( sinh r

cosh r )2 for z and −2 for λ
in the functions fj(z), gj(z) and hj(z). Then the main result in this paper is
described as follows:

Theorem 2.1. Any harmonic vector field v on V whose dual 1-form τ

is an eigenform of the Laplacian of the type discussed above, which is obtained
under the condition a /∈ Z, is given by the following linear combination (or the
same form with sin and cos interchanged):

v=
6∑

j=1

{tjfj(r) cos (aθ + bφ)e1+tjgj(r) sin (aθ + bφ)e2+tjhj(r) sin (aθ + bφ)e3},

where tj ∈ R.

Remark. The variable z is originally taken to be 0 < z < 1. However,
we can regard all functions of the variable z that appear in this paper to be
defined on a simply connected domain in C−{0, 1} containing the open interval
(0, 1). For example, let

Λ := {z ∈ R; z ≤ 0 or z ≥ 1} = (−∞, 0] ∪ [1,∞) ⊂ R,
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then C − Λ = (C − R) ∪ (0, 1) is one of such domains. In this domain, we
choose the branch of the logarithm such that −π < Im(log z) < π and −π <
Im(log (1 − z)) < π. The hypergeometric series F (α, β; γ; z) converges on the
unit disk |z| < 1, and we consider its analytic continuation to C − Λ. In the
following sections, we regard the domain of all functions of the variable z to be
C − Λ.

§3. Method of Solving the System of Differential Equations

In this section we transform the system of differential equations given in (5)
into single-component differential equations by eliminating unknown functions
and find a representation of the solutions to these single-component differential
equations in terms of those of Riemann’s P -equations.

We consider four cases, determined by whether a and b are zero or nonzero,
separately, since the structure of the system (5) is different. In Section 3.1, we
study the most general case in which both a and b are nonzero. The reduced
cases in which a = 0, b = 0 and a = b = 0 are treated in Sections 3.2, 3.3 and
3.4, respectively. We remark that the procedure of the elimination depends on
the cases. However, we will see that the solutions of (5) of the case in which
a = 0 can be interpreted as a sort of limit of those of (5) with a �= 0. Simi-
larly for solutions of the cases in which b = 0 and a = b = 0. We subdivide
Section 3.1 into two parts. In the first part, we obtain a single-component
differential equation of 6-th order which the function h(z) must satisfy and
give a representation of its solutions. In the second part, we obtain a single-
component differential equation that the function g(z) must satisfy and give a
representation of its solutions. By considering both of these differential equa-
tions, we find that taking the limits a→ 0, b→ 0 and a, b→ 0 of the solutions
to the system of differential equations in (5) with a �= 0, b �= 0, these reduce
to the solutions obtained from (5) with a = 0, b = 0 and a = b = 0, respectively.

Section 3.1: a �= 0, b �= 0 a→0−−−−−→ Section 3.2: a = 0, b �= 0�b→0

�b→0

Section 3.3: a �= 0, b = 0 −−−−−→
a→0

Section 3.4: a = 0, b = 0

We now briefly describe the method of solving the single-component differ-
ential equation obtained in the first part of Section 3.1. This differential equa-
tion is a 6-th order homogeneous linear differential equation for the function
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h(z) that is obtained by eliminating f(z) and g(z) from the system of differential
equations in (5). We first factorize the differential operator of this differential
equation (see Theorem 3.1.1). The factors in these factorizations are operators
of the type appearing in Riemann’s P -equation. Moreover, we find (see The-
orem 3.1.2) a differential operator which gives a linearly isomorphic mapping
from the solution space of Riemann’s P -equation to a subspace of the solu-
tion space of the differential equation in question (see Corollary 3.1.3). This
operator is also of the type appearing in Riemann’s P -equation. In general,
this sort of operator is called a ‘splitting operator’. (See Ref. [2] for general
discussion on factorizations of differential operators of Fuchsian type with three
singular points and splitting operators. In Ref. [2], we presented an algorithm
for factorizations and also an algorithm for finding splitting operators from fac-
torizations.) Then, we can express solutions of the differential equation under
study in terms of Riemann’s P -equations.

§3.1. The case a �= 0 and b �= 0

(i) A single-component differential equation for h(z)

We can transform the system of differential equations given in (5) into a
single-component differential equation of 6-th order for the function h(z).

First, we eliminate f(z) from (5.1) and (5.3). Since b �= 0, we obtain the
following relation between g(z) and h(z):

ab g(z) = −4z
5
2 (z − 1)3S(a, b, λ)h(z),(6)

where we define

S(a, b, λ) := z
−1
2 (1−z)−3

2 P1(a, b, λ)z
1
2 (1−z) 3

2P3(a, b, λ)+
b2

4
z−1(z−1)−3.(7)

The differential operator S(a, b, λ) is of 4-th order and its explicit form is given
in [3]. It is seen that its coefficients are rational functions of z and even functions
with respect to a. Next, since ab �= 0, by eliminating f(z) and g(z) from (5.2),
(5.3) and (6), we obtain the following equation which h(z) must satisfy in the
present, a �= 0, b �= 0 case:

X(a, b, λ)h(z) = 0,(8)

where X(a, b, λ) is a differential operator of 6-th order defined by
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X(a, b, λ) : = z
−5
2 (1 − z)−3P2(a, b, λ)z

5
2 (1 − z)3S(a, b, λ)(9)

+
a2

4
z−4(z − 1)−3P3(a, b, λ).

The coefficients of X(a, b, λ) are also rational functions of z and are described
concretely in [3]. By referring to [3], it can be seen that the differential equation
(8) is of Fuchsian type with regular singularities at z = 0, z = 1 and z = ∞
and that its characteristic exponents are

• ±a
2
,

2 ± a

2
,

4 ± a

2
(z = 0),(10)

• 1 ±√
2 − λ

2
,

3 ±√
2 − λ

2
,

2 ±√
3 − λ

2
(z = 1),(11)

• −1 ± b
√−1

2
,

1 ± b
√−1
2

,
3 ± b

√−1
2

(z = ∞).(12)

By direct computation, it can be verified that the theorem below holds.

Theorem 3.1.1. For any a, b, λ ∈ R, the differential operator X(a, b, λ)
can be factorized as

X(a, b, λ) = P6(a, b, λ)P5(a, b, λ)P4(a, b, λ)(13)

= P6(−a, b, λ)P5(−a, b, λ)P4(a, b, λ),(14)

where we define

P4(a, b, λ) :=
d2

dz2
+

(
1
z
− 1
z−1

)
d

dz
+

(
a2

4z2(z−1)
+

b2+1
4z(z−1)

+
λ+1

4z(z−1)2

)
,

P5(a, b, λ) :=
d2

dz2
+

(
2
z

+
4

z−1

)
d

dz
+

(
a(a+2)

4z2(z−1)
+

b2+25
4z(z−1)

+
λ+7

4z(z−1)2

)
,

P6(a, b, λ) :=
d2

dz2
+

(
6
z

+
6

z−1

)
d

dz
+

(
(a−6)(a+4)
4z2(z−1)

+
b2+121
4z(z−1)

+
λ+23

4z(z−1)2

)
.

It can be checked that the following relationship between P4(a, b, λ),
P5(a, b, λ) and P6(a, b, λ) holds.

Theorem 3.1.2. Define

P7(a, b, λ) :=
d2

dz2
+

(
3
z

+
3

z − 1

)
d

dz
+

(
a2 − 4

4z2(z − 1)
+

b2 + 25
4z(z − 1)

+
λ+ 1

4z(z − 1)2

)
.
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Then, if λ �= 2, the following equality holds for any a, b ∈ R,

(15) P4(a, b, λ)
4

2−λz
2(z−1)4P7(a, b, λ)− 4

2−λz
2(z−1)4P6(a, b, λ)P5(a, b, λ)=1.

By Theorems 3.1.1 and 3.1.2, we find that the operator 4
2−λz

2(z − 1)4

P7(a, b, λ) provides a splitting of the short exact sequence of the D-modules

0 −→ D/DP6P5 −→ D/DX −→ D/DP4 −→ 0,

where the operators Pi(a, b, λ) and X(a, b, λ) are abbreviated as Pi and X, re-
spectively. In fact, the following corollary provides the decomposition of the
solution space of the differential equation Xw(z) = 0 corresponding to this
splitting of the short exact sequence of the D-modules.

Corollary 3.1.3. Assume that a �= 0 and λ �= 2. Then, for any b ∈ R,
each solution of the differential equation

X(a, b, λ)w(z) = 0

can be written as

w(z) = u(z) +
4

2 − λ
z2(z − 1)4P7(a, b, λ)(v+(z) + v−(z)),

where u(z), v+(z) and v−(z) are solutions of the equations P4(a, b, λ)u(z) = 0,
P5(a, b, λ)v+(z) = 0 and P5(−a, b, λ)v−(z) = 0, respectively. Conversely,
if u(z), v+(z) and v−(z) are solutions of the equations P4(a, b, λ)u(z) = 0,
P5(a, b, λ)v+(z) = 0 and P5(−a, b, λ)v−(z) = 0, then

w(z) := u(z) +
4

2 − λ
z2(z − 1)4P7(a, b, λ)(v+(z) + v−(z))

satisfies the equation X(a, b, λ)w(z) = 0.

Proof. We write the operators Pi(a, b, λ), Pi(−a, b, λ) and X(a, b, λ) as
Pi, P−

i and X, respectively. We can rephrase Theorem 3.1.1 as X = P6P5P4 =
P−

6 P
−
5 P4. By Theorem 3.1.2, we have

4
2 − λ

z2(z − 1)4P6P5P4
4

2 − λ
z2(z − 1)4P7v(z)

=
4

2 − λ
z2(z − 1)4P6P5

(
4

2 − λ
z2(z − 1)4P6P5 + 1

)
v(z)

=
(

4
2 − λ

z2(z − 1)4P6P5 + 1
)

4
2 − λ

z2(z − 1)4P6P5v(z).
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Then, if P6P5v(z) = 0 holds, so too does P6P5P4
4

2−λz
2(z − 1)4P7v(z) = 0.

Thus we can define the mapping

Φ : {u(z);P4u(z) = 0} ⊕ {v(z);P6P5v(z) = 0} → {w(z);Xw(z) = 0}

by

Φ(u(z), v(z)) := u(z) +
4

2 − λ
z2(z − 1)4P7v(z).

Now, assume that u(z) + 4
2−λz

2(z − 1)4P7v(z) = 0. Then

0 =−P4u(z) = P4
4

2 − λ
z2(z − 1)4P7v(z)

=
(

4
2 − λ

z2(z − 1)4P6P5 + 1
)
v(z) = v(z),

which implies that u(z) = 0 also. This shows that Φ is injective. There-
fore Φ is a linear isomorphism, because the two spaces {u(z);P4u(z) = 0} ⊕
{v(z);P6P5v(z) = 0} and {w(z);Xw(z) = 0} are both dimension 6.

By uniqueness of decomposition of differential operators in the ring of
operators, we have P6P5 = P−

6 P
−
5 . Now, define the mapping

Ψ : {v+(z);P5v
+(z) = 0} ⊕ {v−(z);P−

5 v
−(z) = 0} → {v(z);P6P5v(z) = 0}

by
Ψ(v+(z), v−(z)) := v+(z) + v−(z).

If v+(z) + v−(z) = 0, then from the relation P−
5 − P5 = a

z2(1−z) , we obtain

0 = P5v
+(z) = −P5v

−(z) =
(

a

z2(1 − z)
− P−

5

)
v−(z) =

a

z2(1 − z)
v−(z).

Hence, since a �= 0, we find v−(z) = 0. This implies, by the above assumption,
that v+(z) = 0. We thus find that Ψ is injective. Therefore, because the two
spaces {v+(z);P5v

+(z) = 0}⊕{v−(z);P−
5 v

−(z) = 0} and {v(z);P6P5v(z) = 0}
are both dimension 4, Ψ is a linear isomorphism. Combining this and the result
for Φ, we conclude that

Φ◦(1⊕Ψ) : {u(z);P4u(z)=0}⊕{v+(z);P5v
+(z)=0}⊕{v−(z);P−

5 v
−(z)=0}

→ {w(z);Xw(z)=0}

is also a linear isomorphism.



�

�

�

�

�

�

�

�

740 Michihiko Fujii and Hiroyuki Ochiai

(ii) A single-component differential equation for g(z)

We can also obtain a single-component differential equation for g(z) by
eliminating f(z) and h(z) from the system of differential equations in (5) as
follows.

First, since a �= 0, eliminating the function f(z) from (5.1) and (5.2), we
obtain the following relation between g(z) and h(z):

ab h(z) = −4z
5
2 (z − 1)3T (a, b, λ)g(z),(16)

where we define

(17)

T (a, b, λ) := z−2(1−z)−3
2 P1(a, b, λ)z2(1−z) 3

2P2(a, b, λ)+
a2

4
z−4(z−1)−3.

The differential operator T (a, b, λ) is of 4-th order and described explicitly in
[3]. We see that its coefficients are rational functions of z and even functions
with respect to b. Next, since ab �= 0, by eliminating f(z) and h(z) from (5.2),
(5.3) and (16), we obtain the following equation which g(z) must satisfy in the
present, a �= 0, b �= 0 case:

Y (a, b, λ)g(z) = 0,(18)

where Y (a, b, λ) is a differential operator of 6-th order defined by

Y (a, b, λ) : = z
−5
2 (z − 1)−3P3(a, b, λ)z

5
2 (z − 1)3T (a, b, λ)(19)

+
b2

4
z−1(z − 1)−3P2(a, b, λ).

The explicit form of Y (a, b, λ) is given in [3]. By direct computation, we can
verify the following theorem.

Theorem 3.1.4. For any a, b, λ ∈ R, the differential operators X(a, b, λ)
and Y (a, b, λ) satisfy the equality

Y (a, b, λ) = z
−1
2 X(a, b, λ)z

1
2 .(20)

By referring to [3], we see that the equation (16) is of Fuchsian type with
regular singularities at z = 0, z = 1 and z = ∞ and that its characteristic
exponents are
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• −1 ± a

2
,

1 ± a

2
,

3 ± a

2
(z = 0),(21)

• 1 ±√
2 − λ

2
,

3 ±√
2 − λ

2
,

2 ±√
3 − λ

2
(z = 1),(22)

• ±b
√−1
2

,
2 ± b

√−1
2

,
4 ± b

√−1
2

(z = ∞).(23)

We have the following two theorems:

Theorem 3.1.5. For any a, b, λ ∈ R, the differential operator Y (a, b, λ)
can be factorized as

Y (a, b, λ) = P10(a, b, λ)P9(a, b, λ)P8(a, b, λ)(24)

= P10(a,−b, λ)P9(a,−b, λ)P8(a, b, λ),(25)

where we define

P8(a, b, λ) :=
d2

dz2
+

(
2
z
− 1
z−1

)
d

dz
+

(
a2−1

4z2(z−1)
+

b2

4z(z−1)
+

λ+1
4z(z−1)2

)
,

P9(a, b, λ) :=
d2

dz2
+

(
4
z

+
4

z − 1

)
d

dz

+
(

a2 − 9
4z2(z − 1)

+
(6 + b

√−1)(8 − b
√−1)

4z(z − 1)
+

λ+ 7
4z(z − 1)2

)
,

P10(a, b, λ) :=
d2

dz2
+

(
6
z

+
6

z − 1

)
d

dz

+
(

a2 − 25
4z2(z − 1)

+
(12 + b

√−1)(10 − b
√−1)

4z(z − 1)
+

λ+ 23
4z(z − 1)2

)
.

Theorem 3.1.6. Define

P11(a, b, λ) :=
d2

dz2
+

(
7
z

+
8

z − 1

)
d

dz

+
(
a2 + 2b

√−1 − 35
4z2(z − 1)

+
b2 + 196
4z(z − 1)

+
λ+ 43

4z(z − 1)2

)
,

P12(a, b, λ) :=
d2

dz2
+

(
3
z

+
5

z − 1

)
d

dz

+
(
a2 + 2b

√−1 − 3
4z2(z − 1)

+
(6 + b

√−1)(8 − b
√−1)

4z(z − 1)
+

λ+ 13
4z(z − 1)2

)
.
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Assume that λ �= 2. Then, for any a, b ∈ R, we have

(26)

P8(a, b, λ) 4
λ−2z

3(z − 1)4P12(a, b, λ) − 4
λ−2z

3(z − 1)4P11(a, b, λ)P9(a, b, λ) = 1.

By Theorems 3.1.5 and 3.1.6, we obtain the following corollary which is
shown in the same way as Corollary 3.1.3 (see [3] for its proof).

Corollary 3.1.7. Assume that b �= 0 and λ �= 2. Then, for any a ∈ R,
each solution of the differential equation

Y (a, b, λ)r(z) = 0

can be written

r(z) = p(z) +
4

λ− 2
z3(z − 1)4

(
P12(a, b, λ)q+(z) + P12(a,−b, λ)q−(z)

)
,

where p(z), q+(z) and q−(z) are solutions of the equations P8(a, b, λ)p(z) = 0,
P9(a, b, λ)q+(z)=0 and P9(a,−b, λ)q−(z)=0, respectively. Conversely, if p(z),
q+(z) and q−(z) are solutions of the equations P8(a, b, λ)p(z) = 0, P9(a, b, λ)q+

(z) = 0 and P9(a,−b, λ)q−(z) = 0, then

r(z) := p(z) +
4

λ− 2
z3(z − 1)4

(
P12(a, b, λ)q+(z) + P12(a,−b, λ)q−(z)

)
satisfies the equation Y (a, b, λ)r(z) = 0.

§3.2. The case a = 0 and b �= 0

As stated at the beginning of Section 3, the results obtained in Section 3.1
reduce in the a→ 0 limit to those in the present case.

In this case, (5.2) becomes the differential equation

P2(0, b, λ)g(z) = 0.(27)

This is Riemann’s P -equation and can be solved. Since b �= 0, as in Section 3.1
(i), from (5.1) and (5.3), we obtain the following differential equation of 4-th
order:

S(0, b, λ)h(z) = 0.(28)
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By referring to [3], we see that the differential equation (28) is of Fuchsian type
with regular singularities at z = 0, z = 1 and z = ∞ and that its characteristic
exponents are

• 0, 0, 1, 2 (z = 0),(29)

• 1 ±√
2 − λ

2
,

2 ±√
3 − λ

2
(z = 1),(30)

• −1 ± b
√−1

2
,

1 ± b
√−1
2

(z = ∞).(31)

By direct computation, we obtain

Theorem 3.2.1. For any b, λ ∈ R, the differential operator S(0, b, λ)
can be factorized as

S(0, b, λ) = P5(0, b, λ)P4(0, b, λ).(32)

In analogy to Corollary 3.1.3, by Theorems 3.2.1 and 3.1.2, we obtain the
following.

Corollary 3.2.2. Assume that λ �= 2. Then, for any b ∈ R, each
solution of the differential equation

S(0, b, λ)w(z) = 0

can be written as

w(z) = u(z) +
4

2 − λ
z2(z − 1)4P7(0, b, λ)v(z),

where u(z) and v(z) are solutions of the equations P4(0, b, λ)u(z) = 0 and
P5(0, b, λ)v(z) = 0, respectively. Conversely, if u(z) and v(z) are solutions of
the equations P4(0, b, λ)u(z) = 0 and P5(0, b, λ)v(z) = 0, then

w(z) := u(z) +
4

2 − λ
z2(z − 1)4P7(0, b, λ)v(z)

satisfies the equation S(0, b, λ)w(z) = 0.
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§3.3. The case a �= 0 and b = 0

As stated at the beginning of Section 3, the results obtained in Section 3.1
reduce in the b→ 0 limit to those in the present case.

In this case, (5.3) becomes the single-component differential equation

P3(a, 0, λ)h(z) = 0.(33)

Like (27), this is Riemann’s P -equation and can be solved. Because a �= 0,
as in Section 3.1(ii), from (5.1) and (5.2), we obtain the following differential
equation of 4-th order in g(z):

T (a, 0, λ)g(z) = 0.(34)

Referring to [3], it is seen that the differential equation (34) is of Fuchsian type
with regular singularities at z = 0, z = 1 and z = ∞ and that its characteristic
exponents are

• −1 ± a

2
,

1 ± a

2
(z = 0),(35)

• 1 ±√
2 − λ

2
,

2 ±√
3 − λ

2
(z = 1),(36)

• 0, 0, 1, 2 (z = ∞).(37)

By direct calculation, we have

Theorem 3.3.1. For any a, λ ∈ R, the differential operator T (a, 0, λ)
can be factorized as

T (a, 0, λ) = P9(a, 0, λ)P8(a, 0, λ).(38)

In analogy to Corollary 3.1.7, by Theorems 3.3.1 and 3.1.6, we obtain the
following.

Corollary 3.3.2. Assume that λ �= 2. Then, for any a ∈ R, each
solution of the differential equation

T (a, 0, λ)r(z) = 0

can be written as

r(z) = p(z) +
4

λ− 2
z3(z − 1)4P12(a, 0, λ)q(z),
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where p(z) and q(z) are solutions of the equations P8(a, 0, λ)p(z) = 0 and
P9(a, 0, λ)q(z) = 0, respectively. Conversely, if p(z) and q(z) are solutions
of the equations P8(a, 0, λ)p(z) = 0 and P9(a, 0, λ)q(z) = 0, then

r(z) := p(z) +
4

λ− 2
z3(z − 1)4P12(a, 0, λ)q(z)

satisfies the equation T (a, 0, λ)r(z) = 0.

§3.4. The case a = 0 and b = 0

As stated at the beginning of Section 3, the results obtained in Section 3.1
reduce in the a, b→ 0 limit to those in the present case.

In this case, the three equations in (5) become the three single-component
differential equations

(39) P1(0, 0, λ)f(z) = 0,
(40) P2(0, 0, λ)g(z) = 0,
(41) P3(0, 0, λ)h(z) = 0,

respectively.

§4. Fundamental Systems of Solutions to the System of
Differential Equations

In this section we present fundamental systems of solutions to the system
of differential equations in (5) by making use of the solutions of the single-
component differential equations obtained in Section 3. As described in Section
3, the system of differential equations in (5) depends on whether a and/or b is
zero. We obtain fundamental systems of solutions separately in the four cases
a �= 0 and b �= 0, a = 0 and b �= 0, a �= 0 and b = 0, and a = 0 and b = 0.
Then, we construct a particular representation of the fundamental system of
solutions for the case a �= 0 and b �= 0 such that the results in this case reduce
to those obtained in the other three cases in the limits that the appropriate
parameter(s) goes (go) to zero.
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§4.1. The case a �= 0, b �= 0 and λ �= 2

(i) System of solutions obtained from X(a, b, λ)h(z) = 0

For a solution h(z) given by Corollary 3.1.3, the corresponding functions
f(z) and g(z) are obtained from the relations (5.3) and (6), respectively. These
relations are expressed in terms of the operators P3(a, b, λ) and S(a, b, λ), whose
orders are 2 and 4, respectively. We now show that each of these operators can
be reduced to an operator of lower order and then use these new operators to
derive a simple expression of solutions to the system of differential equations
in (5).

By (5.3) and (6), the components of the solution (f(z), g(z), h(z)) that
corresponds to a solution bu(z) of the equation P4(a, b, λ)u(z) = 0 are given by

f(z) =
2
b
z

1
2 (1 − z)

3
2P3(a, b, λ)bu(z),

g(z) =
−4
ab
z

5
2 (z − 1)3S(a, b, λ)bu(z),

h(z) = bu(z).

Here, we have

Lemma 4.1.1. If we divide the operators 2z
1
2 (1 − z)

3
2P3(a, b, λ) and

−4z
5
2 (z − 1)3S(a, b, λ) by P4(a, b, λ) from the right, then, for any a, b, λ ∈ R,

we obtain R1 and a2z−
1
2 as remainders, respectively, where we define

R1 := −2z
1
2 (1 − z)

1
2

(
d

dz
− 1

2(z − 1)

)
.

By Lemma 4.1.1, we obtain

f(z) = R1u(z), g(z) = az−
1
2u(z) and h(z) = bu(z).

Note that solutions (f(z), g(z), h(z)) of this form satisfy the relation bz
1
2 g(z) =

ah(z).
Next, we derive a representation of solutions that correspond to solutions

of the equations P5(a, b, λ)v+(z) = 0 and P5(−a, b, λ)v−(z) = 0. First, note
that the composed mapping Φ ◦Ψ defined in the proof of Corollary 3.1.3 is an
isomorphism into its image:

Φ ◦ Ψ : {v+(z);P5(a, b, λ)v+(z) = 0} ⊕ {v−(z);P5(−a, b, λ)v−(z) = 0}
� v+(z) + v−(z)

�→ 4
2−λz

2(z−1)4P7(a, b, λ)(v+(z)+v−(z)) ∈ {w(z);X(a, b, λ)w(z)=0}.
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Then, by (5.3) and (6), the components of the solution (f(z), g(z), h(z)) that
corresponds to a solution (2−λ)b

4 v+(z) of the equation P5(a, b, λ)v+(z) = 0 are
given by

f(z) =
2
b
z

1
2 (1 − z)

3
2P3(a, b, λ)

4
2 − λ

z2(z − 1)4P7(a, b, λ)
(2 − λ)b

4
v+(z),

g(z) =
−4
ab
z

5
2 (z − 1)3S(a, b, λ)

4
2 − λ

z2(z − 1)4P7(a, b, λ)
(2 − λ)b

4
v+(z),

h(z) =
4

2 − λ
z2(z − 1)4P7(a, b, λ)

(2 − λ)b
4

v+(z).

Here, we have

Lemma 4.1.2. If we divide the operators 2z
1
2 (1 − z)

3
2P3(a, b, λ)z2(z −

1)4P7(a, b, λ), −4z
5
2 (z−1)3S(a, b, λ)z2(z−1)4P7(a, b, λ) and bz2(z−1)4P7(a, b,

λ) by P5(a, b, λ) from the right, then, for any a, b, λ ∈ R, we obtain R2(a, b),
aR3(a, λ) and R4(a, b) as remainders, respectively, where we define

R2(a, b) :=−z 1
2 (1 − z)

7
2

(
a
d

dz
+
a(a+ 2)

2z
+

3a− a2 − b2

2(z − 1)

)
,

R3(a, λ) :=−z 1
2 (z − 1)3

(
a
d

dz
+
a(a+ 2)

2z
+

3a+ λ− 2
2(z − 1)

)
,

R4(a, b) :=−bz(z − 1)3
(
d

dz
+
a+ 2
2z

+
3

2(z − 1)

)
.

Then, by Lemma 4.1.2, we obtain

f(z) = R2(a, b)v+(z), g(z) = R3(a, λ)v+(z) and h(z) = R4(a, b)v+(z).

Note that solutions of this form satisfy the relation

(2 − λ)
(
bz

1
2 (1 − z)

−1
2 f(z) − ah(z)

)
= (a2 + b2)

(
bz

1
2 g(z) − ah(z)

)
.

In the same manner, with noting that P3(−a, b, λ) = P3(a, b, λ), S(−a, b, λ)
= S(a, b, λ) and P7(−a, b, λ) = P7(a, b, λ), we show that the components of each
solution (f(z), g(z), h(z)) that corresponds to a solution (2−λ)b

4 v−(z) of the
equation P5(−a, b, λ)v−(z) = 0 can be represented in terms of the operators
R3, R4 and R5 as follows:

f(z) = R2(−a, b)v−(z), g(z) = −R3(−a, λ)v−(z), h(z) = R4(−a, b)v−(z).
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Summarizing the above, we have the proposition below.

Proposition 4.1.3. Let {u1(z), u2(z)}, {v+
1 (z), v+

2 (z)} and {v−1 (z),
v−2 (z)} be fundamental systems of solutions of the equations P4(a, b, λ)u(z) = 0,
P5(a, b, λ)v+(z) = 0 and P5(−a, b, λ)v−(z) = 0, respectively. For each i ∈
{1, 2}, define

(fi(z), gi(z), hi(z)) := (R1ui(z), az−
1
2ui(z), bui(z)),

(fi+2(z), gi+2(z), hi+2(z)) := (R2(a, b)v+
i (z), R3(a, λ)v+

i (z), R4(a, b)v+
i (z)),

(fi+4(z), gi+4(z), hi+4(z))
:= (R2(−a, b)v−i (z),−R3(−a, λ)v−i (z), R4(−a, b)v−i (z)).

Then, in the case where a �=0, b �=0 and λ �= 2, the set of 6 triples {(fj(z), gj(z),
hj(z)); j = 1, . . . , 6} forms a fundamental system of solutions to the system of
differential equations in (5) on the domain C − Λ.

Proof. The mapping

Φ◦(1⊕Ψ) : {u(z);P4u(z)=0}⊕{v+(z);P5v
+(z)=0}⊕{v−(z);P−

5 v
−(z)=0}

→ {w(z);Xw(z) = 0}
given in the proof of Corollary 3.1.3 is a linear isomorphism. We have assumed
that λ �= 2 and b �= 0. Then the functions hj(z) are linearly independent.
Therefore the 6 triples (fj(z), gj(z), hj(z)) are also linearly independent and
thus form a basis of the space of the solutions of (5).

(ii) System of solutions obtained from Y (a, b, λ)g(z) = 0

We now obtain another fundamental system of solutions to the system
of differential equations in (5) by making use of the solutions to the single-
component differential equation (18), expressed in terms of the function g(z),
that are given in Corollary 3.1.7.

By (5.2) and (16), the components of the solution (f(z), g(z), h(z)) that
corresponds to a solution ap(z) of the equation P8(a, b, λ)p(z) = 0 are given by

f(z) =
2
a
z2(1 − z)

3
2P2(a, b, λ)ap(z),

g(z) = ap(z),

h(z) =
−4
ab
z

5
2 (z − 1)3T (a, b, λ)ap(z).

Here, we have
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Lemma 4.1.4. If we divide the operators 2z2(1 − z)
3
2P2(a, b, λ) and

−4z
5
2 (z − 1)3T (a, b, λ) by P8(a, b, λ) from the right, then, for any a, b, λ ∈ R,

we obtain R5 and b2z
1
2 as remainders, respectively, where we define

R5 := −2z(1 − z)
1
2

(
d

dz
− 1

2z(z − 1)

)
.

By Lemma 4.1.4, we obtain

f(z) = R5p(z), g(z) = ap(z) and h(z) = bz
1
2 p(z).

Note that solutions (f(z), g(z), h(z)) of this form satisfy the relation bz
1
2 g(z) =

ah(z).
Next, we derive a representation of solutions that correspond to solutions

of the equations P9(a, b, λ)q+(z) = 0 and P9(a,−b, λ)q−(z) = 0. First, we
note that, by Corollary 3.1.7, (5.2) and (16), the components of each solution
(f(z), g(z), h(z)) that corresponds to a solution (λ−2)a

4 q+(z) of the equation
P9(a, b, λ)q+(z) = 0 are given by

f(z) =
2
a
z2(1 − z)

3
2P2(a, b, λ)

4
λ− 2

z3(z − 1)4P12(a, b, λ)
(λ− 2)a

4
q+(z),

g(z) =
4

λ− 2
z3(z − 1)4P12(a, b, λ)

(λ− 2)a
4

q+(z),

h(z) =
−4
ab
z

5
2 (z − 1)3T (a, b, λ)

4
λ− 2

z3(z − 1)4P12(a, b, λ)
(λ− 2)a

4
q+(z).

Here, we have

Lemma 4.1.5. If we divide the operators 2z2(1−z) 3
2P2(a, b, λ)z3(z−1)4

P12(a, b, λ), az3(z − 1)4P12(a, b, λ) and −4z
5
2 (z − 1)3T (a, b, λ)z3(z − 1)4

P12(a, b, λ) by P9(a, b, λ) from the right, then, for any a, b, λ ∈ R, we obtain
R6(a, b), R7(a, b) and bR8(b, λ) as remainders, respectively, where we define

R6(a, b) := z2(1 − z)
7
2

(
b
√−1

d

dz
+
a2 + 3b

√−1
2z

+
3b
√−1 − a2 − b2

2(z − 1)

)
,

R7(a, b) := az2(z − 1)3
(
d

dz
+
b
√−1 + 3

2z
+

3
2(z − 1)

)
,

R8(b, λ) := z
5
2 (z − 1)3

(
b
d

dz
+

3b
√−1 − b2 + λ− 2

2
√−1z

+
3b
√−1 − λ+ 2

2
√−1(z − 1)

)
.
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Then, by Lemma 4.1.5, we obtain

f(z) = R6(a, b)q+(z), g(z) = R7(a, b)q+(z) and h(z) = R8(b, λ)q+(z).

Note that solutions of this form satisfy the relation

(2−λ)
√−1

(
az

1
2 (1 − z)

−1
2 f(z) + b

√−1z
1
2 g(z)

)
= (a2+b2)

(
bz

1
2 g(z) − ah(z)

)
.

In the same manner, with noting that P2(a,−b, λ) = P2(a, b, λ), and
T (a,−b, λ) = T (a, b, λ), it can be shown that the components of each solution
(f(z), g(z), h(z)) that corresponds to a solution (λ−2)a

4 q−(z) of the equation
P9(a,−b, λ)q−(z) = 0 can be represented in terms of the operators R6, R7 and
R8 as follows:

f(z) = R6(a,−b)q−(z), g(z) = R7(a,−b)q−(z), h(z) = −R8(−b, λ)q−(z).

Summarizing the above, we have the proposition below, analogous to
Proposition 4.1.3.

Proposition 4.1.6. Let {p1(z), p2(z)}, {q+1 (z), q+2 (z)} and {q−1 (z),
q−2 (z)} be fundamental systems of solutions of the equations P8(a, b, λ)p(z) = 0,
P9(a, b, λ)q+(z) = 0 and P9(a,−b, λ)q−(z) = 0, respectively. For each i ∈ {1,
2}, define

(fi(z), gi(z), hi(z)) := (R5pi(z), api(z), bz
1
2 pi(z)),

(fi+2(z), gi+2(z), hi+2(z)) := (R6(a, b)q+i (z), R7(a, b)q+i (z), R8(b, λ)q+i (z)),
(fi+4(z), gi+4(z), hi+4(z))

:= (R6(a,−b)q−i (z), R7(a,−b)q−i (z),−R8(−b, λ)q−i (z)).

Then, in the case where a �=0, b �=0 and λ �=2, the set of 6 triples {(fj(z), gj(z),
hj(z)); j = 1, . . . , 6} forms a fundamental system of solutions to the system of
differential equations in (5) on the domain C − Λ.

§4.2. The case a = 0, b �= 0 and λ �= 2

As discussed in Section 3.2, the system of differential equations in (5) is
equivalent to the two single-component differential equations (27) and (28).
The equation (27) for g(z) can be solved independently. It is seen that the case
of Section 4.1 reduces to this case, when the parameter a goes to 0.
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By Corollary 3.2.2, (5.3) and Lemma 4.1.1, the functions f(z) and h(z)
that correspond to a solution bu(z) of the equation P4(0, b, λ)u(z) = 0 are

f(z) =
2
b
z

1
2 (1 − z)

3
2P3(0, b, λ)bu(z) = R1u(z),

h(z) = bu(z).

The functions f(z) and h(z) that correspond to a solution (2−λ)b
4 v(z) of

the equation P5(0, b, λ)v(z) = 0 are

f(z) =
2
b
z

1
2 (1 − z)

3
2P3(0, b, λ)

4
2 − λ

z2(z − 1)4P7(0, b, λ)
(2 − λ)b

4
v(z),

h(z) =
4

2 − λ
z2(z − 1)4P7(0, b, λ)

(2 − λ)b
4

v(z),

also by Corollary 3.2.2 and (5.3). Then, by Lemma 4.1.2, we obtain

f(z) = R2(0, b)v(z) and h(z) = R4(0, b)v(z).

Summarizing the above, we have the following, which should be compared
with Proposition 4.1.3.

Proposition 4.2.1. Let {u1(z), u2(z)}, {v1(z), v2(z)} and {m1(z),
m2(z)} be fundamental systems of solutions to the equations P4(0, b, λ)u(z) = 0,
P5(0, b, λ)v(z) = 0 and P2(0, b, λ)m(z) = 0, respectively. For each i ∈ {1, 2},
define

(fi(z), gi(z), hi(z)) := (R1ui(z), 0, bui(z)) ,
(fi+2(z), gi+2(z), hi+2(z)) := (0,mi(z), 0),
(fi+4(z), gi+4(z), hi+4(z)) := (R2(0, b)vi(z), 0, R4(0, b)vi(z)).

Then, in the case where a = 0, b �=0 and λ �=2, the set of 6 triples {(fj(z), gj(z),
hj(z)); j = 1, . . . , 6} forms a fundamental system of solutions to the system of
differential equations in (5) on the domain C − Λ.

Note that the operator R3(a, λ)P5(a, b, λ)R3(a, λ)−1 reduces to the differ-
ential operator P2(0, b, λ) appearing in (27) as a → 0. This demonstrates the
compatibility of the solution mi in Proposition 4.2.1 with the corresponding
solution in Proposition 4.1.3.
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§4.3. The case a �= 0, b = 0 and λ �= 2

As discussed in Section 3.3, the system of differential equations in (5) is
equivalent to the two single-component differential equations (33) and (34).
The equation (33) for h(z) can be solved independently. It is seen that the case
of Section 4.1 reduces to this case, when the parameter b goes to 0.

By Corollary 3.3.2, (5.2) and Lemma 4.1.4, the functions f(z) and g(z)
that correspond to a solution ap(z) of the equation P8(a, 0, λ)p(z) = 0 are

f(z) =
2
a
z2(1 − z)

3
2P2(a, 0, λ)ap(z) = R5p(z),

g(z) = ap(z).

The functions f(z) and g(z) that correspond to a solution (λ−2)a
4 q(z) of

the equation P9(a, 0, λ)q(z) = 0 are

f(z) =
2
a
z2(1 − z)

3
2P2(a, 0, λ)

4
λ− 2

z3(z − 1)4P12(a, 0, λ)
(λ− 2)a

4
q(z),

g(z) =
4

λ− 2
z3(z − 1)4P12(a, 0, λ)

(λ− 2)a
4

q(z),

also by Corollary 3.3.2 and (5.2). Then, by Lemma 4.1.5, we obtain

f(z) = R6(a, 0)q(z) and g(z) = R7(a, 0)q(z).

Summarizing the above, we have the following, which should be compared
with Proposition 4.1.6.

Proposition 4.3.1. Let {p1(z), p2(z)}, {q1(z), q2(z)} and {n1(z), n2(z)}
be fundamental systems of solutions to the equations P8(a, 0, λ)p(z)=0, P9(a, 0,
λ)q(z) = 0 and P3(a, 0, λ)n(z) = 0, respectively. For each i ∈ {1, 2}, define

(fi(z), gi(z), hi(z)) := (R5pi(z), api(z), 0) ,
(fi+2(z), gi+2(z), hi+2(z)) := (R6(a, 0)qi(z), R7(a, 0)qi(z), 0),
(fi+4(z), gi+4(z), hi+4(z)) := (0, 0, ni(z)).

Then, in the case where a �=0, b = 0 and λ �=2, the set of 6 triples {(fj(z), gj(z),
hj(z)); j = 1, . . . , 6} forms a fundamental system of solutions to the system of
differential equations in (5) on the domain C − Λ.

Note that −R8(−b, λ)P9(a,−b, λ) (−R8(−b, λ))−1 reduces to the differen-
tial operator P3(a, 0, λ) appearing in (33) as b → 0. This demonstrates the
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compatibility of the solution ni in Proposition 4.3.1 with the corresponding
solution in Proposition 4.1.6.

§4.4. The case a = 0, b = 0

As discussed in Section 3.4, the system of differential equations in (5) is
equivalent to the three single-component differential equations (39), (40) and
(41). It is seen that the case of Section 4.1 reduces to this case when both a

and b go to 0. Independence of (39), (40) and (41) leads to the following.

Proposition 4.4.1. Let {l1(z), l2(z)}, {m1(z),m2(z)} and {n1(z),
n2(z)} be fundamental systems of solutions to the equations P1(0, 0, λ)l(z) = 0,
P2(0, 0, λ)m(z) = 0 and P3(0, 0, λ)n(z) = 0, respectively. For each i ∈ {1, 2},
define

(fi(z), gi(z), hi(z)) := (li(z), 0, 0),
(fi+2(z), gi+2(z), hi+2(z)) := (0,mi(z), 0),
(fi+4(z), gi+4(z), hi+4(z)) := (0, 0, ni(z)).

Then, in the case where a=0 and b=0, the set of 6 triples {(fj(z), gj(z), hj(z));
j = 1, . . . , 6} forms a fundamental system of solutions to the system of differ-
ential equations in (5) on the domain C− Λ.

§5. Explicit Expressions of the Fundamental Systems of Solutions

In this section we derive explicit expressions of the fundamental systems of
solutions to the system of differential equations in (5), which are given implic-
itly in the propositions in Section 4. These expressions are obtained in terms of
hypergeometric functions by stipulating the parameter a to be “generic”. We
say that a is generic if it is not an integer (see Assumptions 5.1.1 and 5.3.1).

§5.1. The case a �= 0, b �= 0 and λ �= 2

We now obtain an explicit expression of the fundamental system {(fj(z),
gj(z), hj(z)); j = 1, . . . , 6} of solutions to the system of differential equations
in (5) presented implicitly in Proposition 4.1.3.
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In the present case, the characteristic exponents of the equations P4(a, b,
λ)u(z) = 0, P5(a, b, λ)v+(z) = 0 and P5(−a, b, λ)v−(z) = 0 are

• a
2 ,

−a
2 (z = 0); 2+

√
3−λ

2 , 2−√
3−λ

2 (z = 1); −1+b
√−1

2 , −1−b
√−1

2 (z = ∞),

• a
2 ,

−a−2
2 (z = 0); −3+

√
2−λ

2 , −3−√
2−λ

2 (z = 1); 5+b
√−1
2 , 5−b

√−1
2 (z = ∞),

• a−2
2 , −a

2 (z = 0); −3+
√

2−λ
2 , −3−√

2−λ
2 (z = 1); 5+b

√−1
2 , 5−b

√−1
2 (z = ∞),

respectively. The differences between the two exponents at z = 0 are a, a + 1
and a− 1 in the three cases.

Assumption 5.1.1. The parameter a is not an integer.

This assumption is equivalent to the assumption that none of the values a,
−a, a+1, −a− 1, a− 1 and −a+1 is a negative integer. Under this condition,
we can choose fundamental systems of solutions to the three equations above
in {z ∈ C − Λ ; |z| < 1} explicitly. First, define

u(z, a, b, λ) :=z
a
2 (1−z) 2+

√
3−λ

2 F
(

a+1+b
√−1+

√
3−λ

2 , a+1−b
√−1+

√
3−λ

2 ; a+1; z
)
,

v(z, a, b, λ) :=z
a
2 (1−z)−3+

√
2−λ

2 F
(

a+2+b
√−1+

√
2−λ

2 , a+2−b
√−1+

√
2−λ

2 ; a+2; z
)
,

where F (α, β; γ; z) is the hypergeometric function. Then we choose the funda-
mental systems as follows:

u1(z) := u(z, a, b, λ)

= z
a
2 (1 − z)

2+
√

3−λ

2 F
(

a+1+b
√−1+

√
3−λ

2 , a+1−b
√−1+

√
3−λ

2 ; a+ 1; z
)
,

u2(z) := u(z,−a, b, λ)

= z
−a
2 (1 − z)

2+
√

3−λ

2 F
(

−a+1+b
√−1+

√
3−λ

2 , −a+1−b
√−1+

√
3−λ

2 ;−a+ 1; z
)
,

v+
1 (z) := v(z, a, b, λ)

= z
a
2 (1 − z)

−3+
√

2−λ

2 F
(

a+2+b
√−1+

√
2−λ

2 , a+2−b
√−1+

√
2−λ

2 ; a+ 2; z
)
,

v+
2 (z) := v(z,−a− 2, b, λ)

= z
−a−2

2 (1 − z)
−3+

√
2−λ

2 F
(

−a+b
√−1+

√
2−λ

2 , −a−b
√−1+

√
2−λ

2 ;−a; z
)
,

v−1 (z) := v(z,−a, b, λ)

= z
−a
2 (1 − z)

−3+
√

2−λ

2 F
(

−a+2+b
√−1+

√
2−λ

2 , −a+2−b
√−1+

√
2−λ

2 ;−a+2; z
)
,

v−2 (z) := v(z, a− 2, b, λ)

= z
a−2
2 (1 − z)

−3+
√

2−λ

2 F
(

a+b
√−1+

√
2−λ

2 , a−b
√−1+

√
2−λ

2 ; a; z
)
,
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Remark. Without Assumption 5.1.1, it may be necessary to use a stan-
dard procedure in the theory of hypergeometric functions, in which logarithmic
terms are employed in constructing the fundamental systems of solutions (see
Ref. [5]).

Then, by Proposition 4.1.3, with use of the formula

d

dz
F (α, β; γ; z) =

αβ

γ
F (α+ 1, β + 1; γ + 1; z),

and employing Assumption 5.1.1, we obtain the following explicit expression
for the fundamental system of solutions in {z ∈ C−Λ ; |z| < 1} to the system
of differential equations in (5):

f1(z) =R1u1(z) = R1u(z, a, b, λ) = f1(z, a, b, λ),

g1(z) = az
−1
2 u1(z) = az

−1
2 u(z, a, b, λ) = g1(z, a, b, λ),

h1(z) = bu1(z) = bu(z, a, b, λ) = h1(z, a, b, λ),

f2(z) =R1u2(z) = R1u(z,−a, b, λ) = f1(z,−a, b, λ),

g2(z) = az
−1
2 u2(z) = az

−1
2 u(z,−a, b, λ) = −g1(z,−a, b, λ),

h2(z) = bu2(z) = bu(z,−a, b, λ) = h1(z,−a, b, λ),

f3(z) =R2(a, b)v+
1 (z) = R2(a, b)v(z, a, b, λ) = f3(z, a, b, λ),

g3(z) =R3(a, λ)v+
1 (z) = R3(a, λ)v(z, a, b, λ) = g3(z, a, b, λ),

h3(z) =R4(a, b)v+
1 (z) = R4(a, b)v(z, a, b, λ) = h3(z, a, b, λ),

f4(z) =R2(a, b)v+
2 (z) = R2(a, b)v(z,−a− 2, b, λ) = f4(z, a, b, λ),

g4(z) =R3(a, λ)v+
2 (z) = R3(a, λ)v(z,−a− 2, b, λ) = g4(z, a, b, λ),

h4(z) =R4(a, b)v+
2 (z) = R4(a, b)v(z,−a− 2, b, λ) = h4(z, a, b, λ),

f5(z) =R2(−a, b)v−1 (z) = R2(−a, b)v(z,−a, b, λ) = f3(z,−a, b, λ),

g5(z) =−R3(−a, λ)v−1 (z) = −R3(−a, λ)v(z,−a, b, λ) = −g3(z,−a, b, λ),

h5(z) =R4(−a, b)v−1 (z) = R4(−a, b)v(z,−a, b, λ) = h3(z,−a, b, λ),

f6(z) =R2(−a, b)v−2 (z) = R2(−a, b)v(z, a− 2, b, λ) = f4(z,−a, b, λ),
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g6(z) =−R3(−a, λ)v−2 (z) = −R3(−a, λ)v(z, a− 2, b, λ) = −g4(z,−a, b, λ),

h6(z) =R4(−a, b)v−2 (z) = R4(−a, b)v(z, a− 2, b, λ) = h4(z,−a, b, λ),

where we define

f1(z, a, b, λ) := z
a−1
2 (1 − z)

1+
√

3−λ

2 (z + az +
√

3 − λz − a)

×F
(

a+1+b
√−1+

√
3−λ

2 , a+1−b
√−1+

√
3−λ

2 ; a+ 1; z
)

− (a+1+b
√−1+

√
3−λ)(a+1−b

√−1+
√

3−λ)
2(a+1) z

a+1
2 (1 − z)

3+
√

3−λ

2

×F
(

a+3+b
√−1+

√
3−λ

2 , a+3−b
√−1+

√
3−λ

2 ; a+ 2; z
)
,

g1(z, a, b, λ):=az
a−1
2 (1−z) 2+

√
3−λ

2

×F
(

a+1+b
√−1+

√
3−λ

2 , a+1−b
√−1+

√
3−λ

2 ; a+1; z
)
,

h1(z, a, b, λ) := bz
a
2 (1−z) 2+

√
3−λ

2

×F
(

a+1+b
√−1+

√
3−λ

2 , a+1−b
√−1+

√
3−λ

2 ; a+1; z
)
,

f3(z, a, b, λ) :=−1
2z

a−1
2 (1 − z)

2+
√

2−λ

2

×(−2az − a2z + b2z − a
√

2 − λz + 2a+ 2a2)

×F
(

a+2+b
√−1+

√
2−λ

2 , a+2−b
√−1+

√
2−λ

2 ; a+ 2; z
)

−a(a+2+b
√−1+

√
2−λ)(a+2−b

√−1+
√

2−λ)
4(a+2) z

a+1
2 (1 − z)

4+
√

2−λ

2

×F
(

a+4+b
√−1+

√
2−λ

2 , a+4−b
√−1+

√
2−λ

2 ; a+ 3; z
)
,

g3(z, a, b, λ) := 1
2z

a−1
2 (1−z) 1+

√
2−λ

2 (2z−2az−2a2z−a√2−λz−λz + 2a+2a2)

×F
(

a+2+b
√−1+

√
2−λ

2 , a+2−b
√−1+

√
2−λ

2 ; a+ 2; z
)

+a(a+2+b
√−1+

√
2−λ)(a+2−b

√−1+
√

2−λ)
4(a+2) z

a+1
2 (1 − z)

3+
√

2−λ

2

×F
(

a+4+b
√−1+

√
2−λ

2 , a+4−b
√−1+

√
2−λ

2 ; a+ 3; z
)
,

h3(z, a, b, λ) := b
2z

a
2 (1 − z)

1+
√

2−λ

2 (−2z − 2az −√
2 − λz + 2 + 2a)

×F
(

a+2+b
√−1+

√
2−λ

2 , a+2−b
√−1+

√
2−λ

2 ; a+ 2; z
)
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+ b(a+2+b
√−1+

√
2−λ)(a+2−b

√−1+
√

2−λ)
4(a+2) z

a+2
2 (1 − z)

3+
√

2−λ

2

×F
(

a+4+b
√−1+

√
2−λ

2 , a+4−b
√−1+

√
2−λ

2 ; a+ 3; z
)
,

f4(z, a, b, λ) :=− (a2+b2−a
√

2−λ)
2 z

−a−1
2 (1 − z)

2+
√

2−λ

2

×F
(

−a+b
√−1+

√
2−λ

2 , −a−b
√−1+

√
2−λ

2 ;−a; z
)

+ (−a+b
√−1+

√
2−λ)(−a−b

√−1+
√

2−λ)
4 z

−a−1
2 (1 − z)

4+
√

2−λ

2

×F
(

−a+2+b
√−1+

√
2−λ

2 , −a+2−b
√−1+

√
2−λ

2 ;−a+ 1; z
)
,

g4(z, a, b, λ) := 2−λ−a
√

2−λ
2 z

−a−1
2 (1 − z)

1+
√

2−λ

2

×F
(

−a+b
√−1+

√
2−λ

2 , −a−b
√−1+

√
2−λ

2 ;−a; z
)

− (−a+b
√−1+

√
2−λ)(−a−b

√−1+
√

2−λ)
4 z

−a−1
2 (1 − z)

3+
√

2−λ

2

×F
(

−a+2+b
√−1+

√
2−λ

2 , −a+2−b
√−1+

√
2−λ

2 ;−a+ 1; z
)
,

h4(z, a, b, λ) :=− b
√

2−λ
2 z

−a
2 (1 − z)

1+
√

2−λ

2

×F
(

−a+b
√−1+

√
2−λ

2 , −a−b
√−1+

√
2−λ

2 ;−a; z
)

− b(−a+b
√−1+

√
2−λ)(−a−b

√−1+
√

2−λ)
4a z

−a
2 (1 − z)

3+
√

2−λ

2

×F
(

−a+2+b
√−1+

√
2−λ

2 , −a+2−b
√−1+

√
2−λ

2 ;−a+ 1; z
)
.

Recalling that the parameters a and b are real numbers, it is easy to demon-
strate that the following proposition.

Proposition 5.1.2. If λ ∈ R with λ < 2 and z ∈ C−Λ, then, for each
i ∈ {1, . . . , 6} we have

fi(z) = fi(z), gi(z) = gi(z), hi(z) = hi(z).

In particular, if 0 < z < 1, then for each i ∈ {1, . . . , 6} we have fi(z), gi(z),
hi(z) ∈ R.

§5.2. The case a = 0, b �= 0 and λ �= 2

In this case, the characteristic exponents of the equations P4(0, b, λ)u(z) =
0, P5(0, b, λ)v(z) = 0 and P2(0, a, λ)m(z) = 0 are

• 0, 0 (z = 0); 2+
√

3−λ
2 , 2−√

3−λ
2 (z = 1); −1+b

√−1
2 , −1−b

√−1
2 (z = ∞),
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• 0, −1 (z = 0); −3+
√

2−λ
2 , −3−√

2−λ
2 (z = 1); 5+b

√−1
2 , 5−b

√−1
2 (z = ∞),

• 1
2 ,

−1
2 (z = 0); 1+

√
2−λ

2 , 1−√
2−λ

2 (z = 1); b
√−1
2 , −b

√−1
2 (z = ∞),

respectively. In each case, the difference between the two exponents at z = 0
is an integer. Then, although the functions u1(z), v1(z) and m1(z) given in
Proposition 4.2.1 are chosen explicitly as follows, the other functions u2(z),
v2(z) and m2(z) might contain logarithmic terms:

u1(z) := u(z, 0, b, λ) = (1 − z)
2+

√
3−λ

2 F
(

1+b
√−1+

√
3−λ

2 , 1−b
√−1+

√
3−λ

2 ; 1; z
)
,

v1(z) := v(z, 0, b, λ) = (1 − z)
−3+

√
2−λ

2 F
(

2+b
√−1+

√
2−λ

2 , 2−b
√−1+

√
2−λ

2 ; 2; z
)
,

m1(z) :=m(z, b, λ) = z
1
2 (1 − z)

1+
√

2−λ

2 F
(

2+b
√−1+

√
2−λ

2 , 2−b
√−1+

√
2−λ

2 ; 2; z
)
,

where we define

m(z, b, λ) := z
1
2 (1 − z)

1+
√

2−λ

2 F
(

2+b
√−1+

√
2−λ

2 , 2−b
√−1+

√
2−λ

2 ; 2; z
)
.

§5.3. The case a �= 0, b = 0 and λ �= 2

Here, the characteristic exponents of the equations P8(a, 0, λ)p(z) = 0,
P9(a, 0, λ)q(z) = 0 and P3(a, 0, λ)n(z) = 0 are

• a−1
2 , −a−1

2 (z = 0); 2+
√

3−λ
2 , 2−√

3−λ
2 (z = 1); 0, 0 (z = ∞),

• a−3
2 , −a−3

2 (z = 0); −3+
√

2−λ
2 , −3−√

2−λ
2 (z = 1); 3, 4 (z = ∞),

• a
2 ,

−a
2 (z = 0); 1+

√
2−λ

2 , 1−√
2−λ

2 (z = 1); 1
2 ,

−1
2 (z = ∞),

respectively. In each case, the difference between the two exponents at z = 0
is a.

Assumption 5.3.1. The parameter a is not an integer.

Under this condition, we can choose fundamental systems of solutions in
{z ∈ C− Λ ; |z| < 1} explicitly. First, define

p(z, a, λ) := z
a−1
2 (1 − z)

2+
√

3−λ

2 F
(

a+1+
√

3−λ
2 , a+1+

√
3−λ

2 ; a+ 1; z
)
,

q(z, a, λ) := z
a−3
2 (1 − z)

−3+
√

2−λ

2 F
(

a+2+
√

2−λ
2 , a+

√
2−λ

2 ; a+ 1; z
)
,

n(z, a, λ) := z
a
2 (1 − z)

1+
√

2−λ

2 F
(

a+2+
√

2−λ
2 , a+

√
2−λ

2 ; a+ 1; z
)
.
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Then, we choose the fundamental systems as follows:

p1(z) := p(z, a, λ)

= z
a−1
2 (1 − z)

2+
√

3−λ

2 F
(

a+1+
√

3−λ
2 , a+1+

√
3−λ

2 ; a+ 1; z
)

=
1
a
g1(z, a, 0, λ),

p2(z) := p(z,−a, λ)

= z
−a−1

2 (1 − z)
2+

√
3−λ

2 F
(

−a+1+
√

3−λ
2 , −a+1+

√
3−λ

2 ;−a+ 1; z
)

= −1
a
g1(z,−a, 0, λ),

q1(z) := q(z, a, λ)

= z
a−3
2 (1 − z)

−3+
√

2−λ

2 F
(

a+2+
√

2−λ
2 , a+

√
2−λ

2 ; a+ 1; z
)
,

q2(z) := q(z,−a, λ)

= z
−a−3

2 (1 − z)
−3+

√
2−λ

2 F
(

−a+2+
√

2−λ
2 , −a+

√
2−λ

2 ;−a+ 1; z
)
,

n1(z) := n(z, a, λ)

= z
a
2 (1 − z)

1+
√

2−λ

2 F
(

a+2+
√

2−λ
2 , a+

√
2−λ

2 ; a+ 1; z
)
,

n2(z) := n(z,−a, λ)

= z
−a
2 (1 − z)

1+
√

2−λ

2 F
(

−a+2+
√

2−λ
2 , −a+

√
2−λ

2 ;−a+ 1; z
)
.

Then, by Proposition 4.3.1, with employing Assumption 5.3.1, we obtain the
following explicit expression of the fundamental system of solutions in {z ∈
C − Λ ; |z| < 1} to the system of differential equations in (5):

f1(z) =R5p1(z) = R5p(z, a, λ) = f1(z, a, 0, λ),
g1(z) = ap1(z) = ap(z, a, λ) = g1(z, a, 0, λ),
h1(z) = 0,

f2(z) =R5p2(z) = R5p(z,−a, λ) = f1(z,−a, 0, λ),
g2(z) = ap2(z) = ap(z,−a, λ) = −g1(z,−a, 0, λ),
h2(z) = 0,

f3(z) =R6(a, 0)q1(z) = R6(a, 0)q(z, a, λ) = f̃3(z, a, λ),
g3(z) =R7(a, 0)q1(z) = R7(a, 0)q(z, a, λ) = g̃3(z, a, λ),
h3(z) = 0,
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f4(z) =R6(a, 0)q2(z) = R6(a, 0)q(z,−a, λ) = f̃3(z,−a, λ),
g4(z) =R7(a, 0)q2(z) = R7(a, 0)q(z,−a, λ) = −g̃3(z,−a, λ),
h4(z) = 0,

f5(z) = 0,
g5(z) = 0,
h5(z) = n1(z) = n(z, a, λ),

f6(z) = 0,
g6(z) = 0,
h6(z) = n2(z) = n(z,−a, λ),

where we define

f̃3(z, a, λ) := a2

2 z
a−1
2 (1 − z)

2+
√

2−λ

2 F
(

a+2+
√

2−λ
2 , a+

√
2−λ

2 ; a+ 1; z
)
,

g̃3(z, a, λ) := a
2z

a−1
2 (1 − z)

1+
√

2−λ

2 (−a+ az +
√

2 − λz)

×F
(

a+2+
√

2−λ
2 , a+

√
2−λ

2 ; a+ 1; z
)

−a(a+2+
√

2−λ)(a+
√

2−λ)
4(a+1) z

a+1
2 (1 − z)

3+
√

2−λ

2

×F
(

a+4+
√

2−λ
2 , a+2+

√
2−λ

2 ; a+ 2; z
)
.

Proposition 5.3.2. If λ ∈ R with λ < 2 and z ∈ C−Λ, then, for each
i ∈ {1, . . . , 6} we have

fi(z) = fi(z), gi(z) = gi(z), hi(z) = hi(z).

In particular, if 0 < z < 1, then for each i ∈ {1, . . . , 6} we have fi(z), gi(z),
hi(z) ∈ R.

§5.4. The case a = 0, b = 0

Here, the characteristic exponents of the equations P1(0, 0, λ)l(z) = 0,
P2(0, 0, λ)m(z) = 0 and P3(0, 0, λ)n(z) = 0 are

• 1
2 ,

−1
2 (z = 0); 1+

√
3−λ

2 , 1−√
3−λ

2 (z = 1); 1
2 ,

−1
2 (z = ∞),
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• 1
2 ,

−1
2 (z = 0); 1+

√
2−λ

2 , 1−√
2−λ

2 (z = 1); 0, 0 (z = ∞),

• 0, 0 (z = 0); 1+
√

2−λ
2 , 1−√

2−λ
2 (z = 1); 1

2 ,
−1
2 (z = ∞),

respectively. In each case, the difference between the two exponents at z = 0 is
an integer. Then, we can take explicitly the functions l1(z), m1(z) and n1(z)
given in Proposition 4.4.1 as follows:

l1(z) := l1(z, λ) := z
1
2 (1 − z)

1+
√

3−λ

2 F
(

3+
√

3−λ
2 , 1+

√
3−λ

2 ; 2; z
)
,

m1(z) :=m1(z, λ) := m(z, 0, λ) = z
1
2 (1 − z)

1+
√

2−λ

2 F
(

2+
√

2−λ
2 , 2+

√
2−λ

2 ; 2; z
)
,

n1(z) := n1(z, λ) := n(z, 0, λ) = (1 − z)
1+

√
2−λ

2 F
(

2+
√

2−λ
2 ,

√
2−λ
2 ; 1; z

)
.

However the other functions l2(z), m2(z) and n2(z) given in Proposition 4.4.1
might contain logarithmic terms. In particular, if λ = −2, we have

f1(z) = l1(z) = l1(z,−2) = z
1
2 (1 − z)

1+
√

5
2 F

(
3+

√
5

2 , 1+
√

5
2 ; 2; z

)
,

g3(z) =m1(z) = m1(z,−2) = m(z, 0,−2) = z
1
2 (1 − z)

−1
2 ,

h5(z) = n1(z) = n1(z,−2) = n(z, 0,−2) = (1 − z)
−1
2 ,

and we can obtain the other independent solutions of P2(0, 0, λ)m(z) = 0 and
P3(0, 0, λ)n(z) = 0 explicitly as follows:

g4(z) =m2(z) := z
−1
2 (1 − z)

−1
2 (1 + z log z),

h6(z) = n2(z) := (1 − z)
−1
2 (z − log z).
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