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Asymptotic Behavior of the Semigroup
Associated with the Linearized Compressible
Navier-Stokes Equation in an Infinite Layer

By

Yoshiyuki KAGET*

Abstract

Asymptotic behavior of solutions to the linearized compressible Navier-Stokes
equation around a given constant state is considered in an infinite layer R"~* x (0,a),
n > 2, under the no slip boundary condition for the momentum. The LP decay
estimates of the associated semigroup are established for all 1 < p < oco. It is also
shown that the time-asymptotic leading part of the semigroup is given by an n — 1
dimensional heat semigroup.

81. Introduction

This paper is concerned with the large time behavior of solutions to the
following system of equations:

(1.1) Oru+ Lu =0,

where u = with ¢ = ¢(z,t) € R and m = T (m'(z,t),...,m"(x,t)) €

¢
m
R"™, n > 2, and L is an operator defined by
0 ~vdiv
L =
vV —vAl, — vVdiv

with positive constants v and « and a nonnegative constant v. Here t > 0 de-
notes the time variable and € R™ denotes the space variable; the superscript” -
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stands for the transposition; I,, is the n x n identity matrix; and div, V and A
are the usual divergence, gradient and Laplacian with respect to z. We consider
(1.1) in an infinite layer

!
Q:R"_lx(O,a):{x:<x);x’ER"_1,0<xn<a}
Tn

under the boundary condition
(1.2) mlyo =0,

together with the initial condition

(1.3) ul,_y = up = <¢0> .
mo

Problem (1.1)—(1.3) is obtained by the linearization of the compressible Navier-
Stokes equation around a motionless state with a positive constant density,
where ¢ is the perturbation of the density and m is the momentum.

In [7] we showed that —L generates an analytic semigroup %/ (t) in WP x
LP for 1 < p < oco. In this paper we establish an LP decay estimate of %/(t) for
all 1 < p < oo and give a more detailed description of the behavior of Z/(t) as
t — o0.

One of the primary factors affecting the large time behavior of solutions
to (1.1)—(1.3) is that (1.1) is a symmetric hyperbolic-parabolic system. Due to
this structure, solutions of (1.1) exhibit characters of solutions of both wave
and heat equations. In the case of the Cauchy problem on the whole space R,
detailed descriptions of large time behavior of solutions have been obtained
([5, 6, 11, 13, 14]). Hoff and Zumbrun [5, 6] showed that there appears some
interesting interaction of hyperbolic and parabolic aspects of (1.1) in the decay
properties of LP norms with 1 < p < co. It was shown in [5, 6] that the solution
is asymptotically written in the sum of two terms, one is the solution of the
heat equation and the other is given by the convolution of the heat kernel and
the fundamental solution of the wave equation. The latter one is called the
diffusion wave and it decays faster than the heat kernel in LP norm for p > 2
while slower for p < 2. This decay property of the diffusion wave also appears
in the exterior domain problem ([12]). In the case of the half space problem, it
was shown in [8, 9] that not only the above mentioned behavior of the diffusion
wave appears but also some difference to the Cauchy problem appears in the
decay property of the spatial derivatives due to the presence of the unbounded
boundary.
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There is one more factor that affects the large time behavior of solutions
0 (1.1)—(1.3). In contrast to the domains mentioned above, the infinite layer
{2 has a finite thickness in the x,, direction. This implies that the Poincaré
inequality holds. If one considers, for example, the incompressible Navier-
Stokes equation under the no slip boundary condition (1.2), then it is easy
to see that, by the Poincaré inequality, the L? norm of the solution tends to
zero exponentially as t — co. In the case of problem (1.1)—(1.3), the Poincaré
inequality holds for m but not for ¢. This leads to that the spectrum reaches
the origin but it is like the one such as the n — 1 dimensional Laplace operator.
As a result, no hyperbolic feature appears in the leading part of the solution.

In fact, we will show that the solution u = %/ (t)ug of (1.1)~(1.3) satisfies

(14)  JJu®)]le = O =), Ju(t) —u@ (@) = O~ T =5)73)

for any 1 < p < 00 as t — oco. Here u(® = (¢(0(2',t),0) and ¢ (2 1) is a
function satisfying

1 a
at¢(0) — f"‘JA/(b(O) =0, (b(O) ‘t 0 = E / ¢0(-Tlv xn) drp,
= 0

where Kk = % and A" =92 +---4+02 .

The proof of (1.4) is based on a detailed analysis of the resolvent (A +
L)~! associated with (1.1)—(1.3). We will consider the Fourier transform (A +
Eg/)_l of the resolvent in 2z’ € R"™!, where ¢ € R""! denotes the dual
variable. The semigroup 7/(t) generated by —L is then written as Z/(t) =
ﬁ;l [ﬁ JreMA+ L)t d)\] . Since (A4 Lg¢/) ™! has different, characters be-
tween the cases |¢/| >> 1 and |¢/| << 1, we decompose the semigroup %/ (t)
into the two parts according to the partition: [¢'| > rg and |¢'| < ro for some
rg > 0.

In [7] we established the estimates of (A —1—25/)’1 with [£] > 7o, which will
lead to the exponential decay of the corresponding part of %/ (t). We derived an

integral representation for (A + Egl)—l

and applied the Fourier multiplier the-
orem as in [1, 2, 3], where L? estimates for the incompressible Stokes equation
were established.

In this paper we study (\ + Eg/)—l with |¢/] << 1. We regard Eg as
a perturbation from Eo to investigate the spectrum of —L near A = 0. We
will find that the spectrum near the origin is given by —&|¢’|> + O(|¢'[*) with
|¢'] << 1. Tt should be noted that the structure of the spectrum near the origin
is quite similar to that of the linearized operator appearing in the free surface

problem of viscous incompressible fluid studied in [4]. As in [4] we will appeal
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the analytic perturbation theory to compute the eigenvalue and the associated
eigenprojection of A + E&’ for |¢'| << 1. We will then derive the estimates
for the integral kernel of the eigenprojection which are used to obtain the LP
estimates of the semigroup.

This paper is organized as follows. In Section 2 we introduce some notation
and state the main result of this paper. In Section 3 we investigate (A + Egl)‘l
with |¢/| << 1. Section 4 is devoted to the proof of the main result. In the
Appendix we will give the integral representation for (A + Eg/)_l obtained in
[7] to estimate some part of the Dunford integral for the semigroup.

§2. Main Result

We first introduce some notation which will be used throughout the paper.
For a domain D and 1 < p < oo we denote by LP(D) the usual Lebesgue space
on D and its norm is denoted by || - [[»(p). Let £ be a nonnegative integer.
The symbol W*%?(D) denotes the ¢-th order L Sobolev space on D with norm
|| lwer(py- When p = 2, the space W*2(D) is denoted by H*(D) and its norm
is denoted by || - || ¢(p). C{(D) stands for the set of all C* functions which
have compact support in D. We denote by W,"* (D) the completion of CJ(D)
in W1P(D). In particular, Wy**(D) is denoted by H}(D).

We simply denote by LP(D) (resp., W%P(D), H*(D)) the set of all vector
fields m = T (m!,...,m") on D with m? € LP(D) (resp., W%P(D), HY(D)), j =
1,...,n, and its norm is also denoted by ||-||Lr(p) (resp., || [lwer(nys Il me(D))-

For u = ¢ with ¢ € W*P(D) and m = T(m!,...,m") € W51(D), we
m

define |[ullyw . (pyxweap) bY [[ullwrrpyxweany = [|@llwerpy + Imllweap)-
When k = ¢ and p = ¢, we simply write ||ullyx.rpyxwre(p) = l[Ullwer(p)-

In case D = §2 we abbreviate LP(£2) (resp., W*P(§2), H*(£2)) as LP (resp.,
WP HY). In particular, the norm || - || o0y = || - [|» is denoted by || - ||,

In case D = (0,a) we denote the norm of LP(0,a) by |- |, The inner
product of L2(0,a) is denoted by

(f.9) = / e g@) den, fog € I2(0,a).

Here g denotes the complex conjugate of g. Furthermore, we define (-, ) and
() by
1 1 /¢
0

for f,g € L?(0,a), respectively.
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The norms of W%?(0,a) and H*(0,a) are denoted by | - |yer and | - | e,

respectively.
!/

. x .
We often write x € 2 as x = < co' =T(x1,...,2,_1) € R"L. Partial
T

derivatives of a function u in z, 2, x, and ¢ are denoted by Oyu, Oy, O, u
and Oyu, respectively. We also write higher order partial derivatives of u in z
as OFu = (0%u; |a| = k).

We denote the k x k identity matrix by I;. In particular, when k =n+1,
we simply write I for I,,11. We also define (n+ 1) x (n+ 1) diagonal matrices

Qo and @ by

Qo = diag (1,0,...,0), Q =diag(0,1,...,1).

We then have, for u = <:;> € R

Qo = (g) Gu (g)

We next introduce some notation about integral operators. For a function
f = f(@) (¢’ € R*1), we denote its Fourier transform by f or .% f:

Fe) = (Fp)e) = / Fa)e € da

Rn—1

The inverse Fourier transform is denoted by %# -

(F @) = 2m) 0 [ phe ag
Rn—l
For a function K (xy,,yn) on (0,a) x (0,a) we will denote by K f the integral
operator [ K (@n, yn)f(Yn) dyn.
We denote the resolvent set of a closed operator A by p(A) and the spec-
trum of A by o(A). For A € R and 6 € (5, 7) we will denote

3(A,0) = {\ € C; larg (A — A)| < 6}

We now state the main result of this paper. In [7] we showed that —L
generates an analytic semigroup %/(t) on W (2) x L"(£2) (1 < r < oo) and
established the estimates of Z/(t) for 0 < ¢ < 1. As for the large time behavior
of % (t), we have the following result.
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Theorem 2.1.  Let 1 < r < oo and let Z(t) be the semigroup generated
by —L. Suppose that ug € L'(2) N [WhT(2) x L"(£2)]. Then the solution
u=Ut)uy of problem (1.1)~(1.3) is decomposed as

U (tyug = U (t)uo + % (t)uo,

where each term on the right-hand side has the following properties.

(i) " (t)ug is written in the form

U (tyug = # (t)uo + B (t)uo.

) (!
Here W0 (t)up = <¢ (Ox ’t)> and ¢ (2’ t) is a function independent of x,,
and satisfies the following heat equation on R™1:

0" — kA0 =0,  $V]ig = (¢o(2’,)),

o - The function 7 (t)ug satisfies
the following estimate. For any 1 < p < oo and £ = 0,1, there exists a positive
constant C' such that

where k= “2 and A’ = B2+ + 02

1

0 _n—=1l¢_1y_1
1052 (tuoll, < Ct "7 =573 |lug |y
holds for t > 1. Furthermore, it holds that
0 ~ _n—1¢q_1y_ ~
10. 2" (1)Quoll, < Ct=F =371 | Qug

and

12 )10:Qualll, < Ct=*= =9 |Quo 1.
(ii) There exists a positive constant ¢ such that %(m)(t)uo satisfies
1052 (ol < Ce™* fluallwer xir, £=0,1,
for all t > 1. Furthermore, the following estimates

1022 ) (£l oo < Ce|luol| yirsase,, gimises

1052 (tyuoll < Ce™* |luolwesroxwen,  p=1,00,

hold for all t > 1, provided that ug belongs to the Sobolev spaces on the right of
the above inequalities. Here [q] denotes the greatest integer less than or equal
to q.
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Remark 2.1. Young’s inequality for convolution integral, together with a
direct computation of the LP-norm of the heat kernel, shows that ||W(O)(t)u0|| »
n—1
decays exactly in the order t="7 (1=3) We thus have the optimal decay esti-
mate

12 (tuolly < €5 O ug .
Furthermore, noting that W(O)(t)éuo = 0, we have the estimate
10:2" (1) Quoll, < €t~ =571 Quol,
for t > 1.

We will prove Theorem 2.1 in Section 4.

83. Spectral Analysis for —L

The proof of Theorem 2.1 is based on the analysis of the resolvent problem
associated with (1.1)—(1.3), which takes the form

(3.1) Au+ Lu = f,

where L is the operator on H' x L? defined in (1.1) with domain of definition
D(L) = H' x (H?>N H}). To investigate (3.1) we take the Fourier transform in
2’ € R" 1. We then have the following boundary value problem for functions
¢(zy) and m(x,) on the interval (0, a):

(32) Au + Eg/u = f,
P(2n) fO(xn) R
where u = | m/(z,) |, f= 1] f'(zn) |, and Lg is the operator of the form
0 e Y0z,
Lo = | i€ v(§P =02 )y + 067 —itE'd,, :
’Vamn _iﬂflaa:n V(|§/|2 - 8§n) - ga:%n

which is a closed operator on H'(0,a) x L?(0,a) with domain of definition
D(L¢/) = H'(0,a) x (H?(0,a) N HL(0,a)).

In [7] we studied (X + Eg)_l with [¢'| > r for any r > 0. In this section
we investigate the spectrum of _ZE’ for €| << 1. We analyze it regarding the
problem as a perturbation from the one with £ = 0.
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We write Ef/ in the following form:

L§/ = LO + Zgj 1) + Z gjé-kLJk s

g k=1
where ¢ =T (&, ..., &—1),
0 0 Y0z,
Lo = 0 —u@%nInA 0 , M=V,
Y0y, 0 -1 83 .
0 ivTe! 0
Eg.l) = | ive; 0 —iveio,, |,
0 —iDJTe;(r“)mn 0
0 0 0
Zﬁ) =0 vojpl,1+vejTe, 0
0 0 v

We will treat EEI as a perturbation from EO. We begin with the analysis of
(3.2) with ¢’ = 0:

A+ Zo)u = f.
We introduce some quantities. For k = 1,2,..., we set ax = kn/a. We
define A; ; and Ay i by
Ak = —Vai
and
Ak = 1/21 ap + %\/Vlak — 4y2a?
for K =1,2,.... An elementary observation shows that A4 ; are the two roots

of A2 4+ Vlak)\ +72a2 = 0; A_ g = Ay with Im Ay = vagy/1 — %aﬁ when
ar < 2v/vy and Ay € R when ay > 2v/v;; and it holds that

2
(3.3) Apg = —Z—l +O(k™2), A_j=—wd2+0(1)

as k — 0o. (See [7, Remarks 3.2 and 3.5].)
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Lemma 3.1. (i) The spectrum o(—Lo) is given by
~ 2
o(—Lo) = {0} U { ik }7Zy U{ A Ak 7 U{=2- 1

Here 0 is an eigenvalue with eigenspace spanned by T(1,0,...,0).

(ii) There exist positive numbers no and 0y with 0y € (5,m) such that the
following estimates hold uniformly for X\ € p(—Lg) N X (—no, 0o):

=~ C
-1 _
‘()\+L0) f‘HZXngm‘le[XI?’ 6_0517

- c
O QN+ Lo) ' f| < ———|flur-1xre, €=1,2,
QO+ Lo |, < o e
22, Qo+ Lo A < Sl
" 2= (N + 1)
Proof. We write (3.2) with ¢ =0 as

(3.4) am' — vz m' = f, m en=0.a = 0,
and

A + 70y, m™ = f7,
(3.5)

Am™ — 1102 m"™ + 0y, ¢ = ", m"| = 0.

z,=0,a

By using the Fourier series expansion, it is easy to see that (3.4) has a
unique solution m’ € H?(0,a) N H}(0,a) for any f' € L*(0,a) if and only if

A # Ay for any k= 1,2,... . Furthermore, it is also possible to deduce the
estimates o
85 ml’2S 7e|f/|2a £:051727
ST Ny
uniformly in A\ = —ZT”; +ne*® with n > 0 and 6 € [0,6p). Here 6 is any fixed

constant in (F,7) and C' is a positive constant depending only on 6.

We next consider (3.5). Let A = 0 and f° = f* = 0 in (3.5). We see
from the first equation of (3.5) that 9,, m™ = 0. Then the boundary condition

m" 0. = 0 implies that m™ = 0. It follows from the second equation of

Ln=

(3.5) that ¢ is a constant. Therefore, 0 is an eigenvalue and the geometric
eigenspace is spanned by () = 7(1,0,...,0).
Let A # 0 in (3.5). We then see that problem (3.5) is equivalent to

(36) 6= 1~ 0e,m"},
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(3.7) A2 — (A + 9292 m" = A" =0, [0, m"| =0.

z,=0,a
In case 1A +v2 = 0, it is easy to see that problem (3.6)—(3.7) has only the
trivial solution ¢ = m™ = 0 for fO = f*» = 0. For general f° € H'(0,a)
and f" € L?(0,a), (3.7) implies that m™ = )\ 2 {)\f” —0,, f°} which is not
necessarily in H'(0,a). This implies that —X1- € a( Lo).

Let us consider the case A # 0 and V1/\ +~2 # 0. In this case, (3.7) is
equivalent to

) 2 m" = AFP s 0 n —
(3 8) 8a:n V1/\+'Y { f 78 nf }’ m |xn=0,a O’

where 0 = m Since Af™ — vd,, f° € L?(0,a), problem (3.8) has a unique
solution m” € H2(O a) N H(0,a) if and only if 0 # —a? for any k = 1,2,.
namely, (A — Ap g)(A—A_) # 0 for any k = 1,2,... . If (3.8) has a solu—
tion m™ € H?(0,a) N H(0,a), then (3.6) determines ¢ which is in H'(0, a).
Consequently we see that o(—Lg) = {0}U {2 U e A 12 U {,%}

We next derive estimates for ¢ and m™ uniformly in A € p(—Lo) N 2 (=,
o) with suitable ny and 6y. To do so, we expand the solution m™ of (3.8)
into the Fourier sine series m™ = 220:1 my sinaix,. It is easy to see that the
Fourier coefficients m}! are given by

1 1

n___ ~ = I\fr 0
my, U+a%yl/\+72{fk+'7akfk}

for k=1,2,..., where f) and fJ are the coefficients of the Fourier cosine and
sine series expansion of f° and f, respectively.
Since (o + a?)(1A +7%) = (A — A4 k) (A — A_ 1), we have

o0

1
S O e P (WA kA
k=1 d >

It then follows from (3.3) that there are positive numbers 79 and 6y € (7, )
such that, for A with |arg (A + n9)| < 9,

- 1
<O e e U ek )
k=1

C|fl;
A+
This, together with (3.8), then implies that
|)\\
[iA 472

’ainmn’2§|al|mn|2 2] |f"s + m‘aznfob

< C(|f|H1><L2
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uniformly in A with |arg (A + 79)| < 6y. Taking the L? inner product of (3.8)
with m”™ and integrating by parts, we have

8r n2<C n|2 n n 0 N
o3 < 0 {lol "3+ 17l "l + 75 ] 0

Clfls |1 2
< — 8, m™
- |>\|+1+2| SUUE

n| C|f|2

uniformly in A with |arg (A + ng)| < 6, and hence, |0, m EPEIER
2

sequently, we have

Clf =4 pe

3.9 a2t m"|, <
(39 %2, (1A +1)%

for £ = 0,1, 2 uniformly in A with |arg (A + 19)| < 6p. It then follows from (3.6)
and (3.9) that

1 0 n

We next estimate the derivatives of ¢. Differentiating the first equation of
(3.5) we have

(3.10) Ay, & + 702 m" = 0y, f°.
We see from the second equation of (3.5) that
(3.11) —110; m" 470y, ¢ = " —

By adding (3.11) x = to (3.10) we obtain

2
()\ + Z—) oLy = 9l f0 { Y SV, LR
1

This, together with (3.9), implies that

045101, < e {10 47, + 10k, 7]+ N ok, )
C
S Wlfh{wrlell, g = O7 1,

for A with |arg (A +n9)| < 6o, by changing 79 > 0 and 6y € (%, ) suitably if
necessary. This completes the proof. O

We next investigate the eigenvalue 0 of —Eo.
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Lemma 3.2.  The eigenvalue 0 of —EO is simple and the associated
etgenprojection is given by

~ (¢) ¢
)y = or u= .
e () e ()

Proof. To show the simplicity of the eigenvalue 0, let us first consider the
problem Lou = P where ¢ = T(1,0,...,0) is an eigenfunction for the
eigenvalue 0. This problem is equivalent to (3.4)—(3.5) with A = 0, f = 0,
fO =1, f* =0. By (3.4), we have m’ = 0, and by the first equation of (3.5),
we have m"™ = %xn + ¢ for some constant c¢. There is no such m™ satisfying the
"

boundary condition m = 0. Therefore, 0 is a simple eigenvalue.

z,=0,a
Let us prove that the eigenprojection IT(®) has the desired form. Since
dim Range I1(®) = 1, we have IT(©y = ¢, for some ¢, € C. It then follows

that
(3.12) (IO, pO) = ¢,.

Consider now the formal adjoint problem

Au+ Liu =0,
where
0 0 Y0,
L= 0 —vd2 I,1 O
—Y0y,, 0 —1102

with domain of definition D(L}) = D(Lg). Similarly to above, we can see that
o(—L§) = o(—Lo), and, in particular, 0 is a simple eigenvalue and L(®) = 0.
Furthermore, let I1(9* be the eigenprojection for the eigenvalue 0 of —L§. Then
we have
GOu= 1 [ 04 To) tudr, TOw= 1 / A+ L) Lud),
21 r 2mi Ir

where " is a circle with center 0 and sufficiently small radius. By integration
by parts, we have

(A + Lo, 3) = (@, (A + L§)o)

y (A
for @, € D(Lg). Taking @ = (A + Lo)~'u and & = (X + L§)~'v, we have

)~ ')

O %

&~
S

(A + Lo) tuyv) = (u, (N +
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for u,v € H*(0,a) x L?(0,a). We then obtain

<ﬁ(0)u’¢(0)><2;/(>\+L0) 1ud)\,v>
1
:< 2m/p()\+L0) vd)\>

= (u, AO YO = (u,©) = ()
for u = ¢ . This, together with (3.12), gives the desired expression of o,
m

This completes the proof. O

We next estimate (A + Eg:)_l for small ¢’. Based on Lemma 3.1 we obtain
the following estimates.

Theorem 3.1.  Letny and 0y be the numbers given in Lemma 3.1. Then
there exists a positive number 7o = To(no,00) such that the set X(—ng, b)) N
{X N[>} is in p(— Eg/) for |&'| < Fo. Furthermore, the following esti-
mates hold for any multi-index o/ with |o/| < n uniformly in X € X(—ng,0) N
{X A =2} and & with |€'] < To:

/ ~ C
Yo' -1 o
’ag’ ()‘+L§’) f’H‘foz < |)\‘|f|Hé><L2a 6*0713

Vg < ~ C
8 0L Le) M f| € ———|flae-1xz2, £=1,2
%00+ Te) |, < g e, €= 12,
532, Qo+ Le) | < Sl
" NDTESIER .

Proof. In the following we will write

LMW(¢ Zg LY and L®(¢ Z &6 LS

Jj=1 j,k=1

We first observe that

~1 ~

@3) L] < C{1Qoul e + (Qul e }
and

(3.14) ’L(2) < C|C§U|H(z—1)+.

HexHE D+
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It then follows from Lemma 3.1 and (3.14) that
7@\ 4 Ty SO\ 4+ To)-1
@15) IR0+ Lo7l| | <cl@n+ Lo <l

for £ =0,1 and XA € X(—n0,00) N {X; [\ > L} with C = C(no,6p) > 0. Also,
by Lemma 3.1 and (3.13), we have

(3.16) 2+ o)~ < ClIfls

for £ = 0,1 and A € X(—no,00) N {X; |\ > L} with C = C(no,0p) > 0. It then
follows that there exists a positive number 7 such that if || < 7, then

(Z2E+12@) 0+ Lo

xL2 2‘f|2

for £ = 0,1 and A € X(—no,0p) N {\; A > L } By the Neumann series
expansion, we see that I + (L(l)@ )+ L@ (¢ )) (A + Lo)~! is invertible on
HY0,a) x L?(0,a), £ = 0,1, for A\ € X(—no,0p) N {)\ [A] > ’70} and 5’ with
€'] < 7o. In particular, we conclude that X(—ng,60) N {\;[A| > 2} C p( Lg /)
and

(3.17)
T 1 7T 31 c- N (70 T2 >N
(A+Le) ™ = A+ Lo) ™ 30 ()N [(Z0(€) + E2(€)) (A + Lo)
for A € X(—no,00) N {A;|A| = 2} and & with [¢'| < Fo. Furthermore, we see

s
from Lemma 3.1, (3.13) and (3.14) that

&N+ L)t f

H!x L2
c - N | (T(1) (¢t T(2) (¢! T y\—1 N
W%Z(—m (20 +L2@)) A+ L) 1
N=0 H!x L2
§m|f|Hé><L2a 6:071
Similarly, we have, for £ =1, 2,
a/ain@()\ﬂLEg')_lfL
C ' — ~ ~ ~ 1N
< ———— |0 Y ()Y [(ZOE) + D)) A+ L)Y S
(‘)\| + 1) 2 N=0 H{-1x]2

C
Smmmflxﬂ-
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Let us estimate 02 Qo(\ + ng)’lf. We see from Lemma 3.1, (3.13) and
(3.14) that
=¢ =~
P O+Lo)7|, < Ol

and
(2 =N
LR+ Lo, . <Clfla

uniformly for A € X (—ng,6p) N {)\; Al > ’770} Therefore, taking ry smaller if
necessary, we have

(E®E) +E2€)) A+ Bo) | < il

H2xH?!

for A € X(—no,00) N {A;|A] > 2} and ¢ with [¢'| < 7. It then follows from
Lemma 3.1 and (3.17) that

‘8?,/8§HQ0(>\+E5/)*1f‘

<Gt B e (@ 2@) o 0] o

< flarn
(|)\|+1)5| ‘H x H

This completes the proof. O
We next investigate the spectrum of fEE/ near A\ = 0.

Theorem 3.2.  Let ng and 7o be the numbers given in Theorem 3.1.
Then there exists a positive number ro with ro < 7o such that for each & with
|€'] < 1o it holds that

o(=Le) N {N A < mo} = {ho(€N),

where M\o(¢') € R and \o(£') is a simple eigenvalue of ,EE, that has the form
2.2
n_ A2 /14
2o(€) =~ i 1 o(e)
as |€'| — 0.

Proof. By Theorem 3.1, (3.13) and (3.14), we see that if |A\| = 7o, then
A € p(—Lg) for [€'| < 7. In particular,

1

N 7.1
o (A+ Le) "t dA

[Al=m0

e =
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is the eigenprojection for the eigenvalues of —25/ lying inside the circle |A| = np.
The continuity of (A + Eg/)—l in (A, &) then implies that dim Range I1(¢') =
dim Range I1©® = 1. (See [10, Chap. 1, Lemma 4.10 and Chap. 4, Theorem
3.16].) Therefore, we see from Lemma 3.2 that a(—Zg) N{A; |A] < no} consists
of only one simple eigenvalue, say A\o(£').

To show that A\ (&’ ) has the desired asymptotic form, we first observe that
A is an eigenvalue of LE’ if and only if it is an e1genvalue of LT/E' for any
(n—1) x (n — 1) orthogonal matrix T”, since LE’ =T LT/ng where

100
T=|0T'0
001

It then follows that \o(£’) is a function of |¢’|, and hence, it suffices to consider
Lg with ¢ = nel, where 7 € R and |n\ 1€'|.

We write Lg with & = nej as an and L = Lo + nL(l) + 772L(2) We
also denote the corresponding eigenvalue by A\g(n). With this Ln, taking 77 =
—I,_1, we see that A\g(n) = Ao(—n) since Ag(£’) is simple. Furthermore, we
have a relation Enu = E_nﬂ, which implies that \o(1) = Xo(—7) = Ao(n). This
means that Ao(n) € R.

In view of (3.13) and (3.14) we can apply the analytic perturbation theory
[10, Chap. 2, Sect. 2.2 and Chap. 7, Remark 2.10] to see that

Ao() = A0 +nAM 4223 422G + o)

with A(9) = 0. Since A\o(n) = Xo(—7), we have A(1) = \(3) = 0. The coefficient
A2 of n? is given by

A = ~(EQ0,40) + ST 0, y),

~ ~ ~ -1 ~
where S = [(I — IO Lo(I - H(O))} . It is easy to see that Lfiw(o) = 0. Let

0
us compute (LY STM Y@ @), Since ZMyp(© =iy [ € |, we have
0
; 0
SLp© == | ef | (<0271,
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and hence,
2
C(=o7)7" 1

LVSLp®@ =~ | 0
— 0, (—07,) 71

779

Here (=02 )~' denotes the inverse of —92 under the 0-Dirichlet boundary

condition at z,, = 0,a. We thus obtain
2
(1) o571 v _
<L§ )SL§ )¢(0)7¢(0)> - _7<(_8£n) 1, 1) =—

Consequently, we obtain

a2,)/2
o(n) = == n* + 00"

This completes the proof.

GQ’)/Q

12v

O

We next investigate the eigenprojection 7 (&) associated with Ag(¢). To

do so, we will consider the formal adjoint problem
Au + Zz,u =f,
where Ez, is the operator of the form

n—1 n—1
Tx Tx (1) % 2)*
Ly =T5+ > &I + 3 &Ly
j=1 j.k=1

with domain of definition D(L},) = D(Le). Here &' = T(¢y, ...

0 0 —Y0x,,
ES = 0 —u@inln_l 0 s
—Y0y,, 0 —Vlﬁﬁn
0 —inTe} 0
f;l)* = | —ive; 0 —ivelo,, |,
0 —it"ed,, 0
0 0 0
L2 =10 vl velTe! 0
ik = ikln—1 +veg €;

0 0 I/(sjk

7671—1)7
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Theorem 3.3.  Let I1(¢') be the eigenprojection associated with Xo(&).
Then there exists a positive number ro such that for any & with |[£'| < ¢ the
projection II(£') is written in the form

~

(€ = /O T, 2 ya)ulyn) dyn

with .
n—
H(§/7xn7yn) = H(O) + E gjnj(l)(xnayn) + H(2)(§lvxn7yn)-
j=1

Here [1© = %QO; ﬁj(»l) € WL ((0,a) x (0,a)), j =1,...,n— 1; and I®x
(&', 20, yn) satisfies

o’ [7(2) ‘ < clezle’]
(€ )Wlm((Oa)x(Oa)) €'l

for any multi-index o' with || < n uniformly in & with |'] < ro. Furthermore,
I1(¢') has the properties

(€ [0.,Qu] = —f@ (0, 30(©)) |@u] - (2, 3?(©)) | Q]

and

00, 11(€")Qu = 8, T (€)Qu.
Proof. By (3.13)~(3.17) we sce that (A + L¢/)~* has the form
A+ Le) ' =N+ Lo)~ Zg] A+ Lo) 'L (A + Lo) ™t + R(A, €),

where

(3.18)  R()\¢)
—(A+ L) 'LOE)Y N+ Lo)?

M8

PO+ T Y ()N [E0E) + IO+ T ]

Z
U

2

and R(\,¢') satisfies

(3.19)

& ROENS| < CIEPT Flinon.
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Similarly, one can prove that

n—1
AL = A+ L) = S GO+ L) LY (A + L)~ + RA (A €),
j=1

where

(3.20)  R*(\¢&)
= —(\+ Ly L) (A + L)

PO Y ()Y [E0 ) + I e+ L) ]

N=2
and R*(\, &) satisfies

(3.21)

SRS < CIEP .
We now define ¥(¢’, z,,) and {p'*(é',xn) by

/ _L ’\/ -1,,(0)
W) =5 [ (I WO i

[=n0

and

Tk 1 T \—
V(¢ ) = 5 /I/\ A+ Lg) ™ @ dn,
="o

where () = 7(1,0,...,0). It then follows from (3.18)~(3.21) that ¢ and ¢*
have the form

n—1
W(E ) =@ + 3 i (@n) + P (' x),
(3.22) wh
O wn) = 0O + 3 GE (@a) + 0D ),
j=1

where 1[;;1), 1Z§1)*, ¥® and P @* satisfy

‘1/}](1) §C7 j:17"'7n_17
H?2

7, (1)

< C|§/|27|a'\.

g, +

Therefore, we have

(1) T(1)*
’% ’Wlm + ‘1/)]-

90|

i SC =1 n
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and

(3.23) og v (¢')

+
Wl.oo

D]

112—a’|
_<clgp.

We note that (¥(¢'),1*(¢')) is analytic in ¢ and
n—1
W) 5 €N =1+ 3 & { @@, + @i, v} + F@(e),
j=1

where W) (¢') satisfies ’8?,/@(2)(5’)
smaller if necessary, we see that

< C|¢')>71¥'l. In particular, taking 7o

for |&'] < 71p.
We set

Then we have

and

n—1
(3.24) V(€ 20) = 0O+ Y U (@n) + @€ 20),

j=1
where wgl)* and 1 @* satisfy

‘%@)* <C, j=1,...,n—1,
Wl,oo
(3.25)

a1 (2)% ¢
o3 v (e

12—’ |
< Clepe,

It is not difficult to see that (u,* (&)1 (¢') is the eigenprojection I1(¢’) asso-
ciated with Ag(£’).
Setting

IO =10,
113 (s yn) = 0O )05 () + 057 (@) 0O (g,

T 2, yn) = 0, 2,) TV yn) + V(€ 22) T (€, yn),
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we see from (3.22)—(3.25) that the integral kernel I1(&, 2, yn) of II(£) is writ-
ten as

n—1
(@, yn) =0 20) 0 (€ y) =T O+ 3 G (@, y0) + TP (€ 20, y0)
j=1

with ﬁ](l) e Wbt ((0,a) x (0,a)),j=1,...,n—1, and

oY T (e, ‘ < Cle'z1el.
5 € ) i a0y = CIE
We thus conclude that 17 (&’) is written in the desired form.
We finally show that ﬁ(ﬁ’) {8% éu} () and (%nﬁ({’)@u have the desired

forms. Since ¥*(¢',y,) is an eigenfunction of ZZ,, we have @1/1* =0,
Yn=0,a

which implies that ﬁ(f',mn,yn)é
yields

= 0. An integration by parts then

—

ﬁ(fl) [8967; éu} (75) = /Oa ﬁ(glz T, yn)ayn @u(yn) dyn
== [0 B ) Qutan)
=~ (8, 1) [Qu] (@a).

Since 3%]? (0) = 0, we have the desired form of II(¢’) {(“)mn @u} Furthermore,

since 9, ¥(© = 0 and Qv(© = 0, we have 8%17}1)(35”,%)@ = 0, and hence,
8xnyﬁ(§’)@u = 8%17(2) (¢")Qu. This completes the proof. O

We next consider (A + Egl)_l with |¢| > rg. The analysis of (A + ng)_l
with |¢/| > r for any > 0 is given in [7]. Applying [7, Theorems 2.5-2.7], we
obtain the following estimates.

Let ro be the number given in Theorem 3.3. We take a cut-off function
x(§') € C°(R™!) satisfying 0 < x < 1 on R"™!, x(¢') =1 for [¢/| < 2 and
x(&) =0 for |¢'| > ro. We set
(3.26) XO(E) =x(€), x(E)=1-x(&)

We define the operators RY)()), j = 0,1, by
B21) RO =F N0+ Le) ], =01

By [7, Theorems 2.5-2.7] we have the following estimates.
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Theorem 3.4.  Let rg be the positive number given in Theorem 3.3.

(i) There exist positive numbers ij and 6 with 6 € (5,m) such that X(—1, 6)
< p(~Le) for |¢'| > 7.

(ii) Let 1 < p < oo and define ]j(l)()\) as above. Then the following
estimates hold uniformly in A € X (-1, 0):

k(1) Qo f llwr.» 1Qf1l, _
0, R (/\)f”pS{ S +(|/\|+1)1_§ . k=0,1.

Theorem 3.5.  Let 77 and 0 be the numbers as in Theorem 3.4. Then
the following estimates hold uniformly in A € X (—1,0):

Qofll yizmren QS zan
O QoRY N fllew < C | H 2 oz "4 k=01,
|| xQO ( )f” = ‘)\|+1 (|>\|+1)%

and

HaicéR(l)()\)f”oo < C { ||Q0f||H[ 3 +k + ||QfHH[%]*1+k } ’ k= 07 1

2

(Al + 1)k (JA|+1)%
. . . 1

Here € is some number satisfying 0 < e < 3.

Theorem 3.6. Let p = 1,00 and let 1 and 0 be the numbers as in
Theorem 3.4. Then the following estimates hold uniformly in \ € X (—1,0):

C
[0EQoRM (N fl,» < Wl|f|'wk+l4’xwkvp7 k=0,1,

and

A+ (A +1)i-%
84. Proof of Theorem 2.1

In this section we prove Theorem 2.1 by applying Theorems 3.1-3.6.

Proof of Theorem 2.1. Let nn > 0 be a positive number. By Theorem 2.1
in [7] there exists a number 6 € (3, ) such that %/ (t)ug is written as

1
U(tug = — | eM(A+ L) tugd),

27 r
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where I' = {\ = + se**?; s > 0}.
We decompose % (t)ug into the following form:

U (tyug = U (t)ug + UM (t)ug,
where U (t)ug, j = 0, 1, are defined by

U9 (tyug = F [L

At (G) (¢t E,—l i~ 0.1
5 [N+ o) L G0,

with xU)(¢') defined in (3.26).
We first consider UM (t)ug. In view of Theorem 3.4, we can deform the

+i6.

contour I into I'ne = {A = —1j + se™"’; s > 0}, where 77 and f are the numbers

given in Theorem 3.4. We then obtain
1
U (1 = — / M RO (A)ug d,
211 I
where R ()) is the operator defined in (3.27). Tt follows from Theorems 3.4
3.6 that
|00 D (#)uo|, < Ce=!luollwenxpr, 1 <p<oo, £=0,1,

H@ﬁU(l)(t)uoHoo < Ce_CtHU()HH[%HHz {=0,1,

N s

[0UD (o], < Ce=Hluollwesroswes, p=1,00, £=0,1,

for t > 1.
We next consider U(® (t)ug. By Theorem 3.1, we can deform the contour
I' into Iy U I" and a suitable circle around 0, where

Io={\=—no+is; |s| < so}, f:{,\:77+seii9; $> 30}

Here we choose positive numbers sy and 5y so that I connects with I at
the end points of Iy. It then follows from Theorems 3.2, 3.3 and the residue
theorem that U(® (t)ug is written as

UO (t)ug = WO (t)ug + WD (t)u,

where
W(O) (t)U() — ﬁ_l {X(O) (gl)eAO(El)tH(gl)ﬂo}
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By using the integral representation of (A + Zg)’l given in [7, Theorem 3.8],
one can see that W) (t)uo has the same estimates as those for UM (t)ug. We
will give an outline of the estimates for W) (¢)ug in the Appendix.

Let us consider W (t)ug. We write it as

WO g = ' (#)uo + B (t)uo,

where -

w0 (tug = F! [e‘”lf/lztﬁw)@o} , K= —algj ,
and

R (tyug = W (tyuo + B (t)ug + B (tyuo + B (t)uo.

Here

P (tuo = F 7 [((O() = Ve PO,

B (o = F O AN ¢y |

By (Wuo = F 1 YO (e IO (&)
and

B3 (Wuo = F [ O(E) (" — e ¢y

with xk = % and

n—1
H(l)(gl) — Z ng](.l).
j=1
(0)
Clearly, Y (t)up = <¢ O(t)> and ¢(©) satisfies

090 — kA6 =0, 60| = (60).

It is easy to see that

By Theorem 3.3, we easily deduce that

af;%/(”(t)uou < Cefugl, £=0,1.
p

o R (t)yuo

<Ct T 0D ugy, £=0,1.
p
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Let us consider ;0) (t)ug. We will estimate it based on the Riemann-Lebesgue
lemma as in the estimates for solutions of the Cauchy problem given in [13].
Since

A Ouo= [ [ R el ) i,
with
(41) B (10 wasya) = F 7 XN IO w0, 90)] (')
= /R X AP ) T d

we have

85;'%%0) (ta R yn)

By Theorem 3.3, we see that

0Ly (tuo| < sup
1 0<yn<a

U .
ol

sup 8?/ (6/6/8% X(O) (é—/)e—ﬁ|§/|2tﬁ(2) (5/7 T, yn)) < C|€/|2_Ia/‘6_%|f/|2t
0<yn<a " B
n—1 s
for |3'| +j < 1. Therefore, since ¢ * = Z Wagj es""  we perform the
j=1

integration by parts in (4.1) to obtain, for any k =0,1,2,...,

85'/8%n%g0) (t’ xlv ) yn)

<C|l‘/|_k/ |§/‘2_k€_%‘§/|2td§/
1 RrRn—1

n

<Ol |8+ < 1

SUPo<y, <a

This implies that

aﬁ‘%g)) (t’ ERE) yn)

sup
0<yn<a 1
_n—1__ _ n _n—1__
<C N 1dx’+/ 2 TrEe T e
|2/ |<t2 |2/ |>t2
<Ct!

for £ = 0,1. Similarly, one can estimate %éo)(t)uo. In fact, by Theorem
3.2, we have \o(&') = —k|¢'|2 + XH(¢'), where A (¢') is analytic in ¢ and
AD(E)] < Cle'l. Since

1
Qo€ _ grle Pt A(4>(5/)t6—m\s'\2t/ DN g,
0
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we see from Theorem 3.3 that
sup [0g/ [¢/7 04, X (€)™ — e PO )|
1

Tn
0<yn<a

< C|e 1ol sl e

85;‘@1(30)(t7 ERS) yn)

for |3'[+j<1. Similarly to above, one can obtain supg<,, <,
<yn< L

< Ct~! for £ =0,1. Consequently, we have

On the other hand, it is easy to see that

Therefore, by interpolation, we have

‘ LR (t)uo

By Theorem 3.3, we have 11(0Q = 0, &Cnﬁ(o) =0 and @;nﬁ(l)(ﬁ’)@ = 0.
It then follows that

2.2 Qo =)

8ﬁ<@(0)(t)uoHl < Ct Hupli, €=0,1.

aﬁ%’(o)(t)uou <Ot~ " " Huplh, £=0,1.

| o D gy, £=0,1.
p

0., (%5 (1) + (1) Quo||

n—1

<Ct "z

],
Since 110 (¢") {8%@170} =— <8ynﬁ(j)(§’)) [@ﬂo}, j =1,2, we see that
(0 o ] | #710) 2

Quo

P
< o7 (=33

‘1'

Clearly, 896/%(0)@)@% =2 (t) {&yéuo] and

The desired results of Theorem 2.1 are thus obtained by setting
%)=+ 2 1)

0. 2" (t) Quo

b o],
p 1

and
U () =Dy + wh ().

This completes the proof. O
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85. Appendix

We here give an outline of the estimate for W™ (#)ug. The proof is based
on the integral representation for (A + ng)_lao given in [7, Theorem 3.8]. (See
Proposition A.2 below.)

We write

WD (B ug = WEO (g + WED (#)ug

where
_ 1 -~
WO (g = F ! [—/ MO (Y (N + L)~ g d/\}
271 Iy

and

WDy = #7 [ [ 200+ Loy ]
2m JF

The desired estimates for WD (t)ug can be obtained exactly in a similar
manner to the proof of [7, Theorems 2.1-2.3].

Let us consider W9 (#)uy. We first recall the integral representation
given in [7, Theorem 3.8].

We introduce the characteristic roots of the ordinary differential system
A+ E,g/)u = 0, which are given by £4;(X, &), j = 1,2, where

by 112
w1 = p1(A, |§/|2) =\ ++|§|

A2 + 11 |€712X + y2|¢|2
= 2\ €)= :
p2 = p2(A, [€]7) \/ VIA + 72

and

Observe that o= —“‘A@;&)&Zf*’”) with Ay o=—%L[¢'|2 £ £ /v2[E'[1—472[¢ ]2,

where Ay g satisfies A_ o = Ay o with Im A1 o = 1|¢/|y/1 — 2 |¢/|2 when [¢/] <
27/v1 and
1% .
Ao = =5 1€ £ivl¢| +0(I€'°)

as |¢'| — 0.
We next define complex valued functions b; (j =1,2,3) by

bi(\, €, ) = bi(\ |€]?, x,) = cosh pyx, — cosh paxy,,
bo(A\, & ) = ba(N, |€'|?, @) = p1 sinh py v, — ‘E I sinh pox,,,

bs(\, & ) = bs(\, |€)?, @) = po sinh pg, — ‘5 l sinh p12,,
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with p; = p; (A, &), j =1,2. We set
D(/\’gl) = D()‘v ‘§|2) = b3(/\’§/’ a)bQ(Avflra) + |§/‘2b1(/\’§/’ CL)2.

In the following we will frequently abbreviate b; (A, &, z,,) to bj(zy).
Roughly speaking, A € p(—L¢/) if and only if D(A,¢’) # 0. In fact, by [7,
Lemma 3.4] we have the following result.

Proposition A.1. D(\ ) #0 for (A, &) € Io x {|¢| < ro}.

To give an integral representation of (A + Eg/)—l f, we prepare several
functions. We define Bo(A, &', yn) by

YA 1
A +7% D(A,£)

1 .
ﬁO()‘a gla yn) = {bS (a)g sinh H2Yn + bl ((l) cosh :U'Qyn}

and set
bO(A7 617 yn) = iglﬁo()\v glv yn)
We define b, (A, &', y,) by
b0 €' 9m) = g (@ (0m) = b (@)ba(o)}

and B'(\, &', yn) by

inh n , 1T ¢!
B € ) =~ L 6O ) S
with -
BOE ) = i = B )
and )
B E ) = 5y 1ba(@balom) 1€ @)on ()

We finally introduce the Green functions of the equation p3v — 97 v =0
under the Dirichlet and Neumann boundary conditions at {z, = 0,a}. We
define g (xn,yn) (5 = 1,2) by

IR Sinhﬂj(a - xn) sinh HiYn, Yn < Ty,

D jsinh pja

gﬂj (xnvyn) =
—————sinh y;(a — sinh ;i x,,, Tn < Y.
15 sinh fja sinh 15 (a — yn) HjTns Tn < Yn
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Similarly, we define gfyj (zn,yn) by

————cosh Hj (CL - xn) cosh HiYny  Yn < Ty,
N iy sinh pja
g#j (mn, yn) =

cosh pj(a — yn) cosh pjzn,  n < yn.

iy sinh pja
We set
9y @) = 3 (@ yn) — 90t (@0 yn), M =D, N.

Note that gl’?j (resp. gﬁi) are the Green functions of the equation M?v—@%ﬂv =0
under the Dirichlet (resp. Neumann) boundary condition at {z, = 0,a}. We
also define hy; (2,,) and hy, ., (7,) by

hy,(xn) = cosh pjz,

iy sinh pja

and
Py s (zn) = Py (zn) — Py (T)-

We denote the Dirac measure by 4.

Using the functions described above, we can obtain an integral represen-
tation for (A + Lg )~ f ([7, Theorem 3.8]). In particular, we have the following
result.

Proposition A.2. If (\,¢&') € Iy x {0 < |¢/| < 7o}, then (A + L)1 f
is written as

(A + zé/)_lf(xn) = /0 E(/\’ﬁl,fﬁmyn)f(yn) dyn,

where
R()\’ 5/) xn? yn) = G()\’ 5/? xn? yn) + K()\7 5/7 xn, yn)'

Here G(A, €, 2, yn) is an (n+ 1) x (n+ 1) matriz of the form

G\ E T, yn)

d?i) 5(xn - yn)QO

a9 @nsyn) =TGN (T yn)  —02, 90 (€0 yn)

_8957“9,])[2 (xnv yn) 0 0
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0 0 0
+ 0 %gﬁ[l (T, Yn) In—1 0
0 0 19D (xn,yn)
0 0 0
1T &1 c et
o SEgN L @am) 500,90 (@) |
0 - %8“’719/{0\[1#2 (x”’y") _%agngl?l’ﬂ2 (‘Zn’y”)

where d(\) = A +72 and pj = p; (N, &), 5 =1,2; and

I?()‘vglawnvyn) = ﬁ()\,ﬁ’,wmyn) + I:I()‘agl,a — Tp,a — yn)a

where

HOE a—an,a—yn) = HNE a— zn,a — y,)diag (I, —1)
and
H(\ €, n,yn)

0 0 0

= %hm(xn)ﬂo(yn) %hm(xn)B/(yn) %hm(xn)bn(yn)

0 0 0
A @) o) o s (2)Br(5n) S ()b ()
+ i‘g/fg/ Poa i (%) Bo (Y 0 0
180, By () Bo (91) 0 0
0 0 0
[0 7¥h#17#2($n)51(yn) #hm,uz(xn)bn(yn)

,L-/T ’ ’iT ’
0 - Tgaﬂﬁnhm,uz (70)B1(Yn) Tgaxnhm,uz (70) b0 (Yn)

with d(A) = V1>‘+’)/2’ i = ,u’j()‘vfl)y .7 = 1727 ﬁj(yn) = ﬂj()‘agl,yn); .7 = 07 ]-7
B'(yn) = B' (A, €', yn) and by, (yn) = bn(N, &', yn)-

We are now in a position to give an outline of the proof of the estimate

(A1) WSO @uoll, < Ce™*uollp, 1< p < co.
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Let U(\, &, 2, yn) be defined by

1%

‘T’()\,f/7$n7yn) = X(O) (fl) <§()‘7§/7xnvyn) - W;\)(s(xn - yn)Q0> .

Note that supp \Tl()\, Sy Yn) C{IE| <o}
An elementary observation shows that

0<ea <[\ <ey j=1.2,

uniformly in (A, &) € Iy x {|¢'| < ro} (by changing 1y and rq suitably if
necessary). We also observe that sinh ;a6 = 0 (j = 1,2) if and only if

A= —v|e®))2 for j =1,

A== lWP £ 3 /IFRROT = H7EWP for j =2,

where [€®)|2 = [¢/)2 + a2, k = 0,1,2,... . Using these facts, together with
Proposition A.1, we can see

(A.2)

8?// [\Tl()\,f',xn,yn)” < Cy

for any multi-index o’ uniformly in (A, &) € Iy x {|¢'| <ro} and 0 < z,,y, <
a. In fact, it is not difficult to show (A.2) for each term in (I\/()\,f’,:cn,yn)
except the one including B'(\, &', y,) = —Ssii“rﬁl’ﬂly; L1+ 8\ ¢, yn)% which
seems to be singular as £ — 0. But by a direct computation one can show

BOLE yn) = €PN € yn) with B(X,€,yn) being smooth in (A,&,yn) €
Iy x {|€'| < ro} x[0,a]. (Cf. Proof of [7, Lemma 4.8].) Therefore, we can
obtain the estimate (A.2).

We set

‘I’()wfﬂlaffmyn):gz_l [‘Tf()\,,wmyn)}
- (27r)_("_1)/ (N, € 2, yn)e ™ de'.
Rn—1

By integration by parts we see from (A.2) that

sup  [U(N, 2, 20, y0)| < Cila!|7F
0<an,yn <a

for all k =0,1,2,..., uniformly in A\ € I'j. This implies that

sup ”\Ij()‘u'axmyn)”Ll(an) <C
0<zn,yn<a
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uniformly in A € I5.

It then follows that

WO uoll, < Ce™*uolly, 1< p < oo

The estimates for derivatives can be obtained similarly.
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