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Numerical Solutions of Serrin’s Equations by
Double Exponential Transformation
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Abstract

We consider Serrin’s equations, which describe a steady flow of the incompressible
viscous fluid caused by an interaction between a vortex filament and a planar wall.
They are integro-differential equations with a singularity at an end point. By means
of the double exponential transformation, we numerically solve their solutions with
high accuracy, and compute a sufficient condition on the uniqueness of the solution.

§1. Introduction

The purpose of the present paper is to numerically solve Serrin’s equations:

f ′(x) + f2(x) = k2 G(x)
(1 − x2)2

, (0 ≤ x < 1)(1.1)

Ω′′(x) + 2f(x)Ω′(x) = 0, (0 ≤ x < 1)(1.2)

G(x) = 2(1 − x)2
∫ x

0

tΩ2(t)
(1 − t2)2

dt(1.3)

+2x
∫ 1

x

Ω2(t)
(1 + t)2

dt− P (x− x2), (0 ≤ x < 1)

with the boundary conditions

(1.4) f(0) = 0, Ω(0) = 0, Ω(1) = 1,

where k ≥ 0 and P ≥ 0 are parameters, x ∈ [0, 1), and f , Ω are unknown
functions. The prime denotes the differentiation. These equations were derived
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796 Shinsuke Hamada

by Serrin [9], from the stationary Navier-Stokes equations of incompressible
viscous fluid motion to describe an interaction between a vortex filament and
a planer wall: Consider the spherical coordinates (R,α, θ), where R is the
distance from the origin, α is the angle between a position vector and the
positive z-axis, and θ is the meridian angle about the z-axis. The plane z =
0 (or α = π/2) is the boundary wall, and a vortex filament is located on
the positive z-axis, i.e. α = 0. Accordingly, we consider the Navier-Stokes
equations in R > 0, 0 < α < π/2 and 0 ≤ θ < 2π. We assume the following
conditions: (i) the motion is axisymmetric, (ii) v = 0 at z = 0, (iii) vθ → C/r

as α→ 0, where C is a prescribed positive constant representing the strength of
the vortex filament, and (iv) the vortex filament is neither a sink nor a source.
In addition to (i), we assume the following similarity form:

vR =
G(x)
r

, vα =
F (x)
r

, vθ =
Ω(x)
r

,

where x = cosα and r = R sinα with r being the distance from z-axis. Setting
F (x) = 2ν(1 − x2)f(x) and some calculations leads to (1.1)–(1.4).

He studied these equations and obtained certain conditions on k and P

about the existence and non-existence of solutions. He also obtained some
properties of functions f , Ω and G, and computed solutions numerically by
successive iterations. Goldshtik & Shtern [3] studied some equations which
were equivalent to Serrin’s equations. They derived the asymptotic expansion
of solutions and numerically computed solutions by the shooting method. They
found two regions of the parameter space (k, P ); one is the region where at least
one solution exists and another is the subregion of the former where there are
at least two solutions.

The right hand side of (1.1) has a singularity at x = 1, which causes
a difficulty in a numerical computation. Serrin showed that f diverged at the
rate of O(| log(1−x)|) as x→ 1 because of the singularity. Thus, this singularity
must be taken into account for the computation of Serrin’s equations to keep
the accuracy of numerical computation. One of the naive methods to eliminate
such a singularity is regularization. For fixed ε > 0 the equation (1.1) is replaced
by

f ′(x) + f2(x) = k2 G(x)
(1 − x2 + ε)2

.(1.5)

Since the right hand side of (1.5) is nonsingular in [0, 1], we compute (1.2)–
(1.5) by a conventional numerical method. By letting ε tend to zero, we can
obtain approximate solutions of Serrin’s equations. However, this method has
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a problem. In order to obtain a good accurate solution, we have to make ε very
small. But too small ε makes equation (1.5) almost singular and we can hardly
compute (1.2)–(1.5) with good accuracy.

In this paper, to compute Serrin’s equation, we propose a new numerical
scheme using the double exponential transformation and the Chebyshev ex-
pansion. The double exponential transformation was proposed by Takahasi &
Mori [10] to compute definite integrals with high accuracy. Later, Sugihara [8]
rigorously proved optimality of the double exponential formula in a certain
class of functions. In other words, he denied the possibility that hyper-double
exponential formula like triple exponential formula works better than double
exponential formula. Recently, the double exponential transformation is used
not only to definite integrals but also to indefinite integrals [6, 11], to differential
equation [7], and to integral equations [5].

This paper consists of six sections. We propose a numerical method for
indefinite integrals using the double exponential transformation and the Cheby-
shev expansion in Section 2. Using the proposed method, we compute Serrin’s
equations in Section 3. In Section 4, we check the accuracy of our computation.
We examine in Section 5 Serrin’s proposition for the existence of solutions in
[9] using our method. The conclusion is given in Section 6.

§2. Numerical Method for Indefinite Integrals

In what follows, instead of (1.1)–(1.4), we consider the following integral
forms:

Ω(x) =

∫ x

0
exp

(
−2
∫ t

0
f(s)ds

)
dt∫ 1

0
exp

(
−2
∫ t

0
f(s)ds

)
dt
,(2.1)

f(x) =
∫ x

0

[
−f2(t) + k2 G(t)

(1 − t2)2

]
dt.(2.2)

It is easily verified that (1.1)–(1.4) are equivalent to (2.1), (2.2), and (1.3).
In order to compute them numerically with high accuracy, we propose a new
method using the double exponential transformation and the Chebyshev ex-
pansion.

In general, let us consider an indefinite integral

F (x) =
∫ x

0

f(t)dt,(2.3)

where f is analytic in [0, 1) and integrable in [0, 1]. Note that f may have an in-
tegrable singularity at x = 1. We define the double exponential transformation
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x = φ(τ ) by

φ(τ ) = tanh
(π

2
sinh τ

)
, (0 ≤ τ <∞).(2.4)

Using the change of variable x = φ(τ ), we rewrite (2.3) as

F (φ(τ )) =
∫ τ

0

f(φ(s))φ′(s)ds.(2.5)

Introducing a large parameter L > 0, we consider (2.5) in 0 ≤ τ ≤ L. Even if
f(φ(s)) tends to infinity, |f(φ(s))φ′(s)| tends to zero rapidly as s→ ∞ because
of the very rapid decay of φ′(s). We therefore choose the value of L so that the
integrand of (2.5) is effectively zero for s > L. Then φ(L) is very close to one,
since L is sufficiently large. Therefore, we have the approximation,

F (1) ≈
∫ L

0

f(φ(s))φ′(s)ds,(2.6)

with very small error.
We now introduce the change of variable τ = L(t + 1)/2 and set x(t) =

φ(L(t+ 1)/2), with which (2.5) is rewritten as

F (x(t)) =
∫ t

−1

f(x(s))x′(s)ds.(2.7)

The integrand f(x(s))x′(s) is analytic in [−1, 1]; thus we can expand the inte-
grand by the Chebyshev polynomials {Tj(x)}∞j=0:

f(x(s))x′(s) =
∞∑

j=0

cjTj(s),(2.8)

where {cj}∞j=0 are determined by

cj =
1
λj

∫ 1

−1

f(x(s))x′(s)Tj(s)w(s)ds,(2.9)

with

λj =



π

2
j �= 0,

π j = 0,
w(s) =

1√
1 − s2

.

Substituting (2.8) into (2.7), we have

F (x(t)) =
∫ t

−1

∞∑
j=0

cjTj(s)ds =
∞∑

j=0

cj

∫ t

−1

Tj(s)ds.(2.10)
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The actual numerical procedure goes as follows: First, noting that {cj}∞j=0

decay exponentially as j → ∞, we regard cj as approximately zero for suffi-
ciently large j. Therefore, f(x(s))x′(s) can be approximated by

f(x(s))x′(s) ≈
N∑

j=0

cjTj(s),(2.11)

in which N = 2m (m ∈ N) sufficiently large. Remembering that (2.11) is the
Chebyshev interpolation of f(x(s))x′(s), we compute {cj}N

j=0 by

cj ≈ νj

N

N∑
k=0

f(x(sk))x′(sk)Tj(sk),(2.12)

where sj = cos(jπ/N), ν0 = 1 and νj = 2 for j ≥ 1, which is computed by the
discrete cosine transformation. Next, F (x(t)) is approximated by

F (x(t)) ≈
N∑

j=0

cj

∫ t

−1

Tj(s)ds.(2.13)

The integration of Tj(s) is evaluated by the following formula:

∫ t

−1

Tj(s)ds =




t+ 1, j = 0,
1
2
(t2 − 1), j = 1,
Tj+1(t) − (−1)j+1

2(j + 1)
− Tj−1(t) − (−1)j−1

2(j − 1)
, j ≥ 2.

(2.14)

To check if the numerical scheme works, we compute the following indefi-
nite integrals:

example 1:
∫ x

0

log
1

1 − t
dt = (1 − x) log(1 − x) + x,

example 2:
∫ x

0

dt√
1 − t2

= arcsinx,

example 3:
∫ x

0

√
1 − t2 =

1
2

(
arcsinx+ x

√
1 − x2

)
,

example 4:
∫ x

0

tdt =
1
2
x2.

Both of the integrands in examples 1 and 2 have a singularity at x = 1.
In particular, example 1 is important for the computation of Serrin’s equa-
tions since the integrands of Serrin’s equations have the same log-singularity,
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Figure 1. Log plot of the maximum errors for the example 1.

O([log(1 − x)]2) as x→ 1. The integrand of example 3 is continuous at x = 1,
but the derivative of the integrand has a singularity at x = 1. Example 4 is
the analytic case.

Figures 1–4 show log-plot of the maximum error eN (f), which is defined
by

eN (f) = max
0≤j≤N

|I(f ;xj) − IN (f ;xj)| ,

where f is a integrand, xj = x(sj), sj = cos(jπ/N),

I(f ;xj) =
∫ xj

0

f(x)dx,

and IN (f ;xj) is the approximation of I(f ;xj). Our computation was car-
ried out by Pentium-M processor with Windows XP, and the double precision
floating-point computation was used. We compute each integrals with L = 1.0,
1.01, . . . , 3.19, 3.2 and the number of collocation points N = 4, 8, 16, 32, 64,
128, 256.

From Figures 1–4, we see that the maximum errors rapidly decrease. For
example, the error attains the limit of error of the double precision at N = 64
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Figure 2. Log plot of the maximum errors for the example 2.

in the example 1. We can also observe almost the same result in the examples
3 and 4. But in the example 2, the maximum errors do not reach the limit
of errors of double precision. Note that in computation of the example 2, we
have to compute 1/

√
1 − x2 near x = 1, which may cause the loss of significant

digits. Since the values of 1/
√

1 − x2 near x = 1 crucially contribute to the
integral, a care is necessary in the example 2. In fact, we should use

x′(t)√
1 − x(t)2

=
Lπ cosh(L(t+ 1)/2)

4 cosh(π
2 sinh(L(t+ 1)/2)

,

instead of

x′(t)√
1 − x(t)2

=
Lπ cosh(L(t+ 1)/2)

4 cosh2(π
2 sinh(L(t+ 1)/2))

√
1 − tanh2(π

2 sinh(L(t+ 1)/2))
.

The reason the maximum errors do not reach the limit of errors of double
precision seems to be, though we are not sure, that the loss of accuracy in the
computation of 1/

√
1 − x2 near x = 1 is not eliminated completely.

We now mention the choice of L. In order to obtain a good accurate
solution, x(L) should be approximately one in theory. Accordingly we would
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Figure 3. Log plot of the maximum errors for the example 3.

like to choose sufficiently large L. However, we must not choose too large L
because of the singularity. The computation of the examples 1 and 2 fails if
L > 3.2. So the choice of L should be discussed carefully. Our numerical
computation shows that |1− x(2.0)| = 2.25× 10−5, |1− x(2.5)| = 1.11× 10−8,
and |1−x(3.0)| = 4.27×10−14. From this fact and monotonic increase of x(L),
we may say that x(L) is approximately one if L ≥ 3.0. Therefore we can get
good results in the examples 1–4, if we choose L = 3.0.

We now summarize the advantage and disadvantage of our method. If the
integrand is smooth at one end of the interval and singular at another end, then
we can compute its indefinite integral with high accuracy by using our method.
It is the advantage of our method. However, if the integrand is singular at
both ends of the interval, we cannot use our method to compute the indefinite
integrals. It is the disadvantage of our method.
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Figure 4. Log plot of the maximum errors for the example 4.

§3. Computation of Serrin’s Equations

§3.1. Discretization of the mapping Φ

We compute Serrin’s equations with the method in the previous section.
Let us define a mapping f 	→ Φ[f ] in the following way:

(Φ[f ])(x) =
∫ x

0

[
−f2(t) + k2 G(t)

(1 − t2)2

]
dt.(3.1)

Here G is defined by (1.3) with Ω defined in (2.1). Then a solution of Serrin’s
equations is a fixed point of the mapping Φ.

We now explain the computational procedure, which consists of three steps
to discritize (2.1), (1.3), and (3.1). Throughout this section, N denotes 2m with
a positive integer m. We define xj and wj by

xj = x

(
cos
(
jπ

N

))
, and wj = x′

(
cos
(
jπ

N

))
,

where x(t) = φ(L(t+ 1)/2) with φ in (2.4). The weight ωj is defined by

ωj =

{
π
2n , j = 0,
π
n , j = 1, . . . , N.
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For given fj , approximation for f(xj), the first step is the computation of
Ωj (j = 0, . . . , N), the approximation for Ω(xj):

aj =
N∑

k=0

ωkwkfkTj(xk), bj = exp

(
−2

N∑
k=0

al

∫ xj

0

Tk(t)dt

)
,

cj =
N∑

k=0

ωkwkbkTj(xk), dj =
N∑

k=0

cl

∫ xj

0

Tk(t)dt, Ωj =
dj

d0
.

Here, aj and cj are computed by the discrete cosine transform. Then, we define
Ω′

0 = b0/d0, which is an approximation for Ω′(1).
The second step is to compute G. Note that the indefinite integral in (1.3)

∫ x

0

tΩ(t)2

(1 − t2)2
dt(3.2)

diverges as x→ 1, which makes it difficult to compute (1.3). Regarding to this,
we use L’Hôspital’s theorem

lim
x→1

(1 − x)2
xΩ2(x)

(1 − x2)2
= lim

x→1

xΩ2(x)
(1 + x)2

=
1
4
,

lim
x→1

(1 − x)
[
xΩ2(x)

(1 − x2)2
− 1

4
1

(1 − x)2

]
= lim

x→1

1
1 − x

[
xΩ2(x)
(1 + x)2

− 1
4

]

= − lim
x→1

(1 + x)2(Ω2(x) + 2xΩ(x)Ω′(x)) − 2x(1 + x)Ω2(x)
(1 + x)4

= −Ω′(1)
2

.

Then the integrand of (3.2) satisfies the following asymptotic expantion near
x = 1:

xΩ2(x)
(1 − x2)2

=
1
4
(1 − x)−2 +

Ω′(1)
2

(1 − x)−1 + o
[
(1 − x)−1

]
.

We therefore obtain

(1− x)2
∫ x

0

tΩ2(t)
(1 − t2)2

dt(3.3)

= (1 − x)2
∫ x

0

[
tΩ2(t)

(1 − t2)2
− 1

4
(1 − t)−2 +

Ω′(1)
2

(1 − t)−1

]

+
1
4
(1 − x)2

∫ x

0

dt

(1 − t)2
− Ω′(1)

2
(1 − x)2

∫ x

0

dt

1 − t

= (1 − x)2
∫ x

0

g(t)dt+
1
4
(1 − x) +

Ω′(1)
2

(1 − x)2 log(1 − x),
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where we set

g(x) =
tΩ2(t)

(1 − t2)2
− 1

4
(1 − t)−2 +

Ω′(1)
2

(1 − t)−1.

Here, g(x) is integrable near x = 1 and is much less singular than the integrand
of (3.2). Therefore, we apply the method in Section 3 to an indefinite integral
of g(x) to compute (3.2).

Keeping these facts in mind, we define Gj , which is the approximation for
G(xj) as follows:

gj =
xjΩ2

j

(1 − x2
j)2

− 1
4(1 − xj)2

− Ω′
0

2(1 − xj)
,

pj =
N∑

k=0

ωkwkgkTj(xk), qj =
N∑

k=0

pk

∫ xk

0

Tj(t)dt,

G
(1)
j = 2(1 − xj)2qj +

1
2
(1 − xj) + Ω′

0(1 − xj)2 log(1 − xj),

rj =
N∑

k=0

ωkwk
Ω2

k

(1 + xk)2
Tj(xk),

G
(2)
j = 2xj

N∑
k=0

rk

∫ xk

0

Tj(t)dt,

Gj = G
(1)
j +G

(2)
j − P (xj − x2

j ).

The final step is the computation of (3.1). To deal with the singularity
of the integrand in the right hand side of (3.1), we recall the two lemmas in
Serrin [9].

Lemma 3.1. Let G be defined by (1.3), where f and Ω are solutions of
Serrin’s equations. Then G(1) = 0, and G′(1) = P − 1.

Lemma 3.2. Let f be a solution of Serrin’s equations. Then,

f(x) ∼ O

(
log

1
1 − x

)
as x→ 1.

From Lemma 3.2, we see that f2(t) is integrable. On the other hand, the
second term G(t)/(1− t2)2 is not integrable. With Lemma 3.1 and L’Hôpital’s
theorem, we have

k2 G(x)
(1 − x2)2

=
1
4
k2(1 − P )

1
1 − x

+ o

(
1

1 − x

)
.
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Therefore,

f(x) =
∫ x

0

[
−f2(t) + k2 G(t)

(1 − t2)2

]
dt(3.4)

=
∫ x

0

h(t)dt+
1
4
k2(1 − P ) log

(
1

1 − x

)
,

where

h(t) = −f2(t) + k2 G(t)
(1 − t2)2

− 1
4
k2(1 − P )

1
1 − t

.

Keeping these facts in mind, we define Φ[f ]j (approximation for Φ[f ](xj))
as follows:

hj = −f2
j + k2 Gj

(1 − x2
j )2

− 1
4
k2(1 − P )

1
1 − xj

, sj =
N∑

k=0

ωkwkhkTj(xk),

Φ[f ]j =
N∑

l=0

sl

∫ xj

0

Tl(t)dt+
1
4
k2(1 − P ) log

(
1

1 − xj

)
.

§3.2. Tracing the solution path with pseudoarclength method

In this subsection, we numerically solve f = Φ[f ] by the pseudoarclength
method. As for the pseudoarclength method, see [1, 2, 4]. It is one of the meth-
ods to trace a solution path with critical points. Note that Serrin’s equations
have an exact solution f(x) = 0, Ω(x) = x for the parameter (k, P ) = (0, 0).
Starting from this trivial solution for (k, P ) = (0, 0), we can compute solu-
tions for arbitrary parameters (k, P ). The computation of solution for (k, P )
consists of two steps. In the first step, we compute a solution at (k, 0) start-
ing from the trivial solution for (k, P ) = (0, 0) with a generalized Newton’s
method. In the next step, we compute a solution at (k, P ) starting from the
solution at (k, 0) by the pseudoarclength method. Specifically, let {fj}N

j=0 be
a solution at (k, P ) = (k0, 0). Then, for small ∆k, we compute a solution at
(k, P ) = (k0 + ∆k, 0) with a generalized Newton’s method for the equation
f − Φ[f ] = 0 with the initial value {fj}N

j=0. With this process starting from
(k, P ) = (0, 0), solutions can be found at (k, P ) = (k, 0) for arbitrary k ≥ 0. In
the generalized Newton’s method, we use the following approximate Jacobian
of Φ.

DΦ[f ] = (DΦij)i,j=0,...,N , DΦij =
Φ[f + εj ]i − Φ[f ]i

ε
,
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where

εj = (0, . . . , 0,
j
�
ε , 0, . . . , 0) ∈ RN+1

and ε is a small number. In our computation, ε = 1.0 × 10−6 was used.
Next, starting from a solution at (k, P ) = (k0, 0), which is computed by

the above method, we compute a solution at (k, P ) = (k0, P ) by using the
pseudoarclength method for P .

Figure 5 is the solution path when k = 10 in 0 ≤ Ω′(1) ≤ 0.2. We set
L = 2.4 and N = 256. In this case, 1− x(1) ≈ 6.97× 10−8. From Figure 5, we
see that the solution path has a turning point at P ∗ ≈ 0.478. Figure 6 is the
same solution path as Figure 5 in 0 ≤ Ω′(1) ≤ 400. From Figure 6, we see that
the solution path rapidly increases and tends to infinity as P → P ∗∗, which lies
between 0 and 0.1.

Figures 7 and 8 show the graphs of the solution at (k, P ) = (10, 0.0832)
which lies on the upper branch of Figure 5. The left figure shows the graph of
f and the right one shows that of Ω. From these graphs we see the following
properties. The function Ω(x) is very small except in a small neighborhood of
x = 1 and increases to one very quickly near x = 1. On the other hand, as
x → 1, f swings rapidly among negative and positive values. It implies that
there is a strong downward jet near the vortex filament.

Although f ∼ | log(1 − x)| diverges at x = 1, the divergence is very weak.
Accordingly, the divergence of f at x = 1 is difficult to trace numerically. For
example, f seems to be monotone decreasing when P is smaller than 0.0766
(see Figure 8), although it eventually tends to +∞. This phenomenon is also
caused by the same reason. (Figure 9 also shows the limitation of our method.)

Near (k, P ) = (10, 0.0766), the upper branch of solution path has rapid
growth as is seen from Figure 6. Actually, at (k, P ) = (10, 0.0766), Ω′(1) =
1.23× 104 and the gradient of the solution path is approximately −1.09× 108.
From these observation, we can expect that there exists a P ∗∗ ≈ 0.0766, such
that Ω′(1) tends to infinity as P tends to P ∗∗ through the upper branch of the
solution path at k = 10. As for the number of solutions, we may say that when
k = 10, Serrin’s equations have one solution for 0 ≤ P ≤ P ∗∗, two solutions for
P ∗∗ < P < P ∗, one for P = P ∗, and none for P ∗ < P .

The solution path has a qualitative difference if k varies. Figure 10 shows
the solution path at k = 3, where no turning point exists. It suggests that
there is a critical value k∗ between k = 3 and k = 10 such that a picture like
Figure 5 is observed for k > k∗ and that like Figure 10 for k < k∗.

To verify whether this expression is true, we compute the solution paths
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Figure 5. The solution path at k = 10, (0 ≤ Ω′(1) ≤ 0.2).
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Figure 6. The solution path at k = 10. (L = 2.4, N = 256).
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Figure 7. The graph of a solution f at (k, P )=(10, 0.0832), (L=2.4, N=256).

for k from k = 1 to 10. We carried out these computations until Ω′(1) became
greater than 1.00 × 104. Figure 10 shows the turning points and the points at
which Ω′(1) first becomes greater than 1.00× 104. From Figure 11 we see that
the turning point exists for k > k∗, where k∗ is somewhere between 3 and 4.
In order to determine the precise value of k∗, we used the bisection method.
We found that k∗ is approximately equal to 3.4306. We also know that the all
the points at which Ω′(1) → ∞ lies near the curve Pk2 = 7.6478. Therefore
we can expect that Pk2 = 7.6478 is the critical value where Serrin’s equations
lose the uniqueness of the solution. Note that Goldshtik & Shtern [3] claimed
numerically that the critical value for the lack of the uniqueness of solutions
was Pk2 = 7.6447. Our result Pk2 = 7.6478 is very close to their result. But
we do not know which is a better value.

§4. Accuracy of Our Numerical Scheme

The parameters which affect the accuracy of our method are the trun-
cation L and the number of collocation points N . Accordingly we check the
dependence of the error on these parameters.

We define the following quantities, which we call the relative error of f
and Ω, respectively:
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Figure 8. The graph of a solution Ω at (k, P )=(10, 0.0832), (L=2.4, N=256).

EN (f) =
max0≤j≤N |f (N)

j − f
(2N)
2j |

max0≤j≤N |f (N)
j |

,

EN (Ω) =
max0≤j≤N |Ω(N)

j − Ω(2N)
2j |

max0≤j≤N |Ω(N)
j |

,

where {f (n)
j }n

j=0 and {Ω(n)
j }n

j=0 are numerical solutions with the number of
points n. Figures 12 and 13 show the relative errors of f and Ω at (k, P ) =
(5, 0.3) with various L and N . The notation 8–16 implies the graph of relative
error between the numerical solution with N = 8 and N = 16, i.e., E8(f)
and E8(Ω). We find that the relative errors of f and Ω rapidly decrease as
N increases when L is fixed. But the relative errors of f at 64–128, 128–256,
and 256–512 are between 1.00 × 10−9 and 1.00 × 10−14. On the contrary, the
corresponding relative errors of Ω decrease and tend to 1.00× 10−16, which are
the machine precision, for sufficiently large L. The reason why the relative error
of f hardly improve before it reaches the limits of errors of double precision is
that the singularity of f at x = 1 is not completely resolved.

We also see that for a fixed N the relative errors increase as L increases
and the computation fails when L > 2.6, as was explained in the previous
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Figure 9. The graph of a solution f at (k, P )=(10, 0.0766). (L=2.4, N=256).

section. More precisely, the maximum of L where the computation succeeds
gets larger as N increases. Note that there are cuts in the graph of 8–16 in
Figures 12 and 13. These cuts mean that the Newton’s iteration fails for the
corresponding parameters N and L are corresponding values. There is no cut in
the other graphs in Figures 12 and 13. While the computation for N = 256 and
L = 2.6 works well in the case of (k, P ) = (5, 0.3), the Newton method did not
converge with N = 256 and L = 2.6 in the other case of (k, P ) = (10, 0.0766).
Taking account of these observations, we chose L = 2.4 and N = 256 in our
computation.

§5. Estimate on the Parameter for the Existence of Solutions

Serrin proved the following lemma [9].

Lemma 5.1. Consider the following equations with a parameter λ

f ′(x) + f2(x) = −λ x

(1 + x)2(1 − x)
, (0 ≤ x < 1),(5.1)

and a corresponding condition

f(0) = 0.(5.2)
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Figure 10. The solution path at k = 3.

If the equation (5.1) with (5.2) has a solution, which exists on the entire [0, 1)
and satisfy f(x) = O(log[(1 − x)−1]) as x → 1, for some λ > 0, then Serrin’s
equations (1.1)–(1.4) has a solution for all P ≥ 0 and k ≥ 0 satisfying Pk2 < λ.

We now compute the critical value λ = λ∗, at which a solution of (5.1) and
(5.2) exists. First of all, we transform (5.1) and (5.2) to the following integral
equation:

f(x) =
∫ x

0

[
−f2(t) − λ

t

(1 + t)2(1 − t)

]
dt.(5.3)

Note that the first term −f2(t) is integrable in [0, 1] as long as f(t) = O[log(1−
x)], while the second term of integrand in (5.3) diverges as x → 1. Actually,
we have ∫ x

0

t

(1 + t)2(1 − x)
dt =

1
4

[
log

1 + x

1 − x
+

2
1 + x

]
.

We therefore obtain

f(x) = −
∫ x

0

f2(t)dt− λ

4

[
log

1 + x

1 − x
+

2
1 + x

]
,(5.4)

to which we can apply our method.
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Figure 11. The plot of the turning points (triangles) and the points at which
Ω′(1) ≈ ∞ (circles) for k = 3.0, 3.1, . . . , 4.0.

Now we define a mapping f 	→ Ψ[f ] as follows:

Ψ[f ](x) = −
∫ x

0

f2(t)dt− λ

4

[
log

1 + x

1 − x
+

2
1 + x

]
.(5.5)

Because a solution of (5.3) is a fixed point of Ψ, it is sufficient to determine λ∗

so that Ψ has a fixed point for λ < λ∗.
Note that f = 0 is a solution of (5.3) for λ = 0. By increasing λ, we

compute (f, λ) with the Newton method. If the Newton iteration does not
converge at λ = λ0+∆λ, we halve the increment value and try the computation
again. If the iterations no longer converge for ∆λ > ε∆, ε∆ = 1.0 × 10−8 in
our computation, we stop the computation and take λ as the approximation
of the critical value λ∗. We also note that (5.1) and (5.2) can have only one
at most solution for a given λ by the uniqueness of the solution of ordinary
differential equations. Accordingly, the solution path of (5.1) and (5.2) never
has a turning point. Therefore (5.1) and (5.2) have no solution for λ > λ∗,
which is computed by the above method.

Table 1 shows the results of the computation of λ∗ at N = 16, 32, 64, 128,
and 256. Third column of Table 9 shows values of |λ∗N/2 − λ∗N |, where λ∗N is
defined as the approximate value of λ∗ at N . It shows that the critical value
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Figure 12. Graph of the relative error of f .

Table 1. Results of λ∗ and |λ∗N/2 − λ∗N |.

N λ∗ |λ∗N/2 − λ∗N |
16 7.49 —
32 7.63 1.43 × 10−1

64 7.64 4.99 × 10−3

128 7.63 2.57 × 10−3

256 7.63 8.52 × 10−4

λ∗ is approximately 7.63.
In [9], Serrin computed numerically λ∗, and concluded that λ∗ was ap-

proximately 8.12. However since Serrin did not show what kind of numerical
scheme he had used, we cannot follow his computation. So, let alone examine
the accuracy; we compute the critical value of λ, which is denoted by λ∗, with
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Figure 13. The relative error of Ω v.s. L.

our method and examine the validity of Serrin’s value.
Our result λ∗ ≈ 7.63 is substantially different from the Serrin’s result

λ∗ ≈ 8.12. It suggests that Serrin’s value may be doubtful. Note that our value
7.63 is close to the lack of the uniqueness of solutions of Serrin’s equations
k2P = 7.65. It suggests that the existence of solutions of (5.1) and (5.2) is
related to the uniqueness of the solution of Serrin’s equations. But the proof
of the above claim is left for the future work.

§6. Conclusion

We proposed a numerical method for indefinite integrals whose integrands
had a singularity at one side of the interval using the double exponential trans-
formation and the Chebyshev expansion. With the numerical method, we
solved Serrin’s equations, and we verified that there existed a region of (k, P )
where Serrin’s equations had two solutions. We also confirmed that near the
boundary of the region where Serrin’s equations had two solutions there exists
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a solution that had quick change near the x = 1. This change was the follow-
ing: f swung from a large negative value to the positive infinity as x→ 1, and
Ω increased to one. It physically means there is a strong downward jet near
the vortex filament. We also computed the value of sufficient condition for the
existence of solutions of Serrin’s equation, and we found that Serrin’s result
Pk2 ≤ 8.12 was not optimal.

In our method, we used “one-side” double exponential transformation φ(t),
which means that φ maps [0,∞) to [0, 1) and |f(φ(t))φ′(t)| decays double ex-
ponentially only as t → +∞. We usually use the double exponential transfor-
mation ψ(t) such that ψ maps (−∞,∞) to (−1, 1) and |f(ψ(t))ψ′(t)| decays
double exponentially as t → ±∞. However, we know that our method works
better than “two-side” DE for indefinite integrals whose integrands has a singu-
larity at one side of the interval. Actually, Table 2 shows the maximum errors
of the computations of the examples 1 in Section 2 with one-sided and two-sided
double exponential transformations, from which we see that the computation
of the one-sided DE transformation when N = n is almost the same accuracy
as that of the two-sided DE transformation when N = 2n.

Table 2. One-sided DE and two-sided DE errors of example 1 (L = 3.0).

N one-side two-side
4 6.70 × 10−2 4.99 × 10−1

8 3.74 × 10−3 1.38 × 10−1

16 1.85 × 10−6 5.00 × 10−3

32 4.74 × 10−13 3.21 × 10−6

64 1.55 × 10−15 7.45 × 10−13

128 1.66 × 10−15 1.44 × 10−15

256 1.77 × 10−15 1.55 × 10−15

However, there is a possibility that the two-sided DE transformation using
the sinc interpolation [6, 11] or the fast Fourier transform (FFT) [5] would be
better. In order to judge which methods are better, we have to execute the
rigorous error estimate for our method, which is left for another future work.
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