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Chapter 0. Introduction

§0.1. Goal of this series of papers

This is the first of the series of papers under the title

“Toward resolution of singularities over a field of positive characteristic”
Part I. Foundation; the language of the idealistic filtration
Part II. Basic invariants associated to the idealistic filtration

and their properties
Part III. Transformations and modifications of the idealistic filtration
Part IV. Algorithm in the framework of the idealistic filtration

Our goal is to present a program toward constructing an algorithm for reso-
lution of singularities of an algebraic variety over a perfect field k of positive
characteristic p = char(k) > 0. We would like to emphasize, however, that the
program is created in the spirit of developing a uniform point of view toward
the problem of resolution of singularities in all characteristics, and hence that
it is also valid in characteristic zero.
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In Part I, we establish the notion and some fundamental properties of an
idealistic filtration, which is the main language to describe the program. This
part, therefore, forms the foundation of the program.

In Part II, we study the basic invariants σ and µ̃ associated to an idealistic
filtration, which will become the building blocks toward constructing the strand
of invariants used in our algorithm, and discuss their properties.

In Part III, we analyze the behavior of an idealistic filtration under the two
main operations in the process of our algorithm for resolution of singularities:

• transformations of an idealistic filtration under the operation of taking
blowups, and

• modifications of an idealistic filtration under the operation of constructing
the strand of invariants.

Part II and Part III should play the role of a bridge between the foundation
in Part I and the presentation of our algorithm in Part IV.

In Part IV, we present our algorithm for resolution of singularities ac-
cording to the program as a summary of the series. In characteristic zero,
the program leads to a complete algorithm (slightly different from the existing
ones), which then serves as a prototype toward the case in positive character-
istic. In positive characteristic, all the ingredients of the program work nicely
forming a perfect parallel to the case in characteristic zero, except for the
problem of termination: we do not know at this point whether our algorithm
terminates after finitely many steps or not. Although we do know that the
strand of invariants we construct strictly drops after each blowup, we can not
exclude the possibility that the denominators of some invariants in the strand
may indefinitely increase and hence that the descending chain condition may
not be satisfied. The problem of termination remains as the only missing piece
toward completing our algorithm in positive characteristic. We hope, however,
that we may be able to fix this problem during the process of writing down all
the details of the program in this series of papers.

§0.2. Overview of the program

Below we present an overview of the program, by first giving a crash course
on the existing algorithm(s) in characteristic zero, then pinpointing the main
source of troubles if we try to apply the same methods to the case in positive
characteristic, and finally describing how our program attempts to overcome
these troubles.
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0.2.1. Crash course on the existing algorithm(s) in characteristic
zero.

0.2.1.1. Standard reduction. By a standard argument free of characteris-
tic, the problem of resolution of singularities of an abstract algebraic variety
is reduced to, and reformulated as, the problem of transforming a given ideal
I ⊂ OW on a nonsingular variety W over k into the one whose multiplicity
(order) becomes lower than the aimed (or expected) multiplicity a everywhere,
through a sequence of blowups and through a certain transformation rule for the
ideal. We require that each center of blowup to be nonsingular and transversal
to the boundary, which consists of the exceptional divisor and the strict trans-
form of a simple normal crossing divisor E on W given at the beginning. We
call this reformulation the problem of resolution of singularities of the triplet
(W, (I, a), E), and call Sing(I, a) = {P ∈ W ; ordP (I) ≥ a} its singular locus
or support.

0.2.1.2. Inductive scheme in characteristic zero. At the very core of all
the existing algorithmic approaches in characteristic zero lies the common in-
ductive scheme on dimension; reduce the problem of resolution of singularities
of (W, (I, a), E) to that of (H, (J , b), D), where H is a smooth hypersurface
in W . The hypersurface H is called a hypersurface of maximal contact, since
it contains (contacts) the singular locus Sing(I, a) and since so do its strict
transforms throughout any sequence of transformations. The ideal J on H is
usually realized as J = C(I)|H , where C(I) is the so-called coefficient ideal of
the original ideal I, which is larger than I. (It is worthwhile noting that the
mere restriction I|H of the original ideal would fail to provide the inductive
scheme in general, and it is necessary to take a larger ideal.) In short, we
decrease the dimension by converting the problem on W into the one on the
hypersurface of maximal contact H with dim H = dim W − 1.

0.2.1.3. Algorithm: modifications and construction of the strand of
invariants. The above description of the inductive scheme is, however, over-
simplified. For an arbitrary triplet (W, (I, a), E), a hypersurface of maximal
contact may not exist at all. In order to guarantee that a hypersurface of
maximal contact H exists, we have to take the “companion modification” as-
sociated to the weak-order “w”. Furthermore, in order to guarantee that H

is transversal to E and hence that we can take D = E|H as a simple normal
crossing divisor on H, we have to take the “boundary modification” associ-
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ated to the invariant “s”. In other words, only after considering the pair of
invariants (w, s) and taking the corresponding companion modification and its
boundary modification, we can find the triplet (H, (J , b), D) of dimension one
less as described in 0.2.1.2., whose resolution of singularities corresponds to the
decrease of the pair of invariants (w, s). (In general, even after modifications, a
hypersurface of maximal contact exists only locally, and so does (H, (J , b), D).
Therefore, it is an issue how to globalize this procedure, the important issue
which we ignore in this crash course for simplicity.)

Therefore, the actual algorithm realizing the inductive scheme is carried
out in such a way that we construct the strand of invariants

inv classical = (w, s)(w, s)(w, s) · · ·

by repeating the operations of taking the companion modification, boundary
modification, and taking the restriction to a hypersurface of maximal contact,
and that at the end we reach the stage where the maximum locus of the strand
inv classical of invariants coincides with the last hypersurface of maximal con-
tact, which is hence nonsingular and which we choose as the center of blowup.
(We remark that, to be precise, at the end we may also reach the stage where
the ideal is “monomial”, in which case the nonsingular center of blowup can
be chosen easily by a combinatorial method.) After the blowup, we repeat the
same process. We can repeat the process only finitely many times, since after
each blowup the value of the strand of invariants strictly drops and since the
set of its values satisfies the descending chain condition, leading to the termi-
nation of the algorithm. (See, e.g.,[Vil89] [Vil92] [BM97] [EV00] [EH02] [BV03]
[W�lo05] [Kol05] [BM07] [Mk07] for details of the construction of the strand of
invariants and the corresponding modifications in the classical setting.)

0.2.2. Trouble in positive characteristic. In positive characteristic,
however, the examples by R. Narasimhan [Nar83a] [Nar83b] and others [Hau98]
[Mk07] demonstrate that there is no hope of finding a hypersurface of maximal
contact in general (even after companion or boundary modification), as long as
we require it to contain the singular locus and to be nonsingular. This lack of
a hypersurface of maximal contact and hence of an apparent inductive scheme
is the main source of troubles, which allowed the problem in positive character-
istic to elude any systematic attempt to find an algorithm for its solution so far.

0.2.3. Our program: a new approach in the framework of the
idealistic filtration. Our program offers a new approach to overcome the
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main source of troubles in the language of the idealistic filtration, which is a re-
fined extension of such classical notions as the idealistic exponent by Hironaka,
the presentation by Bierstone-Milman, the basic object by Villamayor, and the
marked ideal by W�lodarczyk. We devote Part I of the series of papers to intro-
ducing the notion of an idealistic filtration, and to establishing its fundamental
properties.

0.2.3.1. What is an idealistic filtration? In the classical setting, we
consider the pair (I, a) consisting of an ideal I ⊂ OW on a nonsingular variety
W and the aimed multiplicity a ∈ Z>0. Stalkwise at a point P ∈ W , this is
equivalent to considering the collection of pairs {(f, a) ; f ∈ IP }.

Suppose we interpret the pair (f, a) as a statement saying that “the mul-
tiplicity of f is at least a”. In this interpretation, the problem of resolution
of singularities (cf. 0.2.1.1.) is, after a sequence of blowups and through trans-
formations and at every point of the ambient space, to negate at least one
statement in the collection.

Observe in this interpretation that the following conditions naturally hold:

(o) (f, 0) ∀f ∈ OW,P , (0, a) ∀a ∈ Z
(i) (f, a), (g, a) =⇒ (f + g, a)

r ∈ OW,P , (f, a) =⇒ (rf, a)
(ii) (f, a), (h, b) =⇒ (fh, a + b)
(iii) (f, a), b ≤ a =⇒ (f, b).

Observe also that the problem of resolution of singularities stays
unchanged, even if we add the statements derived from the given collection us-
ing the above conditions (implications). For example, starting from the given
collection {(f, a) ; f ∈ IP }, the problem stays unchanged even if we consider the
new collection {(f, n) ; f ∈ I�n/a�

P , n ∈ Z≥0}. Our philosophy is that it should
be theoretically more desirable to consider the larger or largest collection of
statements toward the problem of resolution of singularities.

Accordingly we define an idealistic filtration, at a point P ∈ W , to be a
subset I ⊂ OW,P × R satisfying the following conditions:
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(o) (f, 0) ∈ I ∀f ∈ OW,P , (0, a) ∈ I ∀a ∈ R
(i) (f, a), (g, a) ∈ I =⇒ (f + g, a) ∈ I

r ∈ OW,P , (f, a) ∈ I =⇒ (rf, a) ∈ I
(ii) (f, a), (h, b) ∈ I =⇒ (fh, a + b) ∈ I
(iii) (f, a) ∈ I, b ≤ a =⇒ (f, b) ∈ I.

Note that, as a consequence of conditions (o) and (iii), we have

(f, a) ∈ I for any f ∈ OW,P , a ∈ R≤0.

We say an element (f, a) ∈ I is at level a. Note that we let the level vary
in R. Starting from the level varying in Z, we are naturally led to the situation
where we let the level varying in the fractions Q when we start considering the
condition (cf. R-saturation)

(radical) (fn, na) ∈ I, n ∈ Z>0 =⇒ (f, a) ∈ I,

and then to the situation where we let the level varying in R when we start
considering the condition of continuity

(continuity) (f, al) ∈ I for a sequence {al} with lim
l→∞

al = a =⇒ (f, a) ∈ I.

Note that there is one more natural condition to consider related to the
differential operators

(differential) (f, a)∈I, d a differential operator of degree t=⇒(d(f), a − t)∈I.

We remark that we do not include condition (radical), (continuity) or (dif-
ferential) in the definition of an idealistic filtration, even though these condi-
tions play crucial roles when we consider the radical and differential saturations
of an idealistic filtration (cf. 0.2.3.2.3.). We also introduce the notion of an
idealistic filtration of r.f.g. type (cf. §0.8).

We also remark that, given an ideal IP , considering the collection {(f, na) ;
f ∈ In

P , n ∈ Z≥0} with additive and multiplicative conditions (i) and (ii) as
above is equivalent to considering the Rees algebra ⊕n∈Z≥0In

P . Therefore, the
notion of an idealistic filtration can be regarded as a generalization of the no-
tion of the Rees algebra, where the grading takes only nonnegative integers for
the latter and the level takes rational or even real values for the former. The
properties of the Rees algebra within the context of the problem of resolution of
singularities, in connection with the differential operators and integral closure,
have also been extensively studied by the recent series of papers by Villamayor
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[Vil06a] [Vil06b] [EV07]. It seems, however, that the consideration of the ra-
tional (and real) levels is unique to our approach. We would like to emphasize
that the extension of the levels leads to a real difference in carrying out the
steps of our algorithm and that it is not a matter of theoretical convenience
(cf. Remark 3.2.2.2 (6)).

0.2.3.2. Distinguished features. Being framed in a refinement of the clas-
sical notions, our program in the language of the idealistic filtration shares
some common spirit with the existing approaches. However, the following four
features distinguish our program from them in a decisive way:

0.2.3.2.1. Leading generator system as a collective substitute for
a hypersurface of maximal contact. Given an idealistic filtration I ⊂
OW,P × R at a point P ∈ W , we look at the graded ring of its leading terms
L(I) :=

⊕
n∈Z≥0

L(I)n where L(I)n = {f mod mn+1
W,P ; (f, n) ∈ I, f ∈ mn

W,P }.
If we fix a regular system of parameters (x1, . . . , xd) at P and if we fix a
natural isomorphism of G =

⊕
n∈Z≥0

mn
W,P /mn+1

W,P with the polynomial ring
k[x1, . . . , xd], the graded ring L(I) can be considered as a graded k-subalgebra
of G = k[x1, . . . , xd].

Now the fundamental observation is that (if the idealistic filtration is dif-
ferentially saturated (cf. D-saturation in 0.2.3.2.3.)) for a suitably chosen reg-
ular system of parameters, we can choose the generators of L(I), as a graded
k-subalgebra of k[x1, . . . , xd], to be of the form

{xpei

i ; ei ∈ Z≥0}i∈I for some I ⊂ {1, . . . , d}
when we are in positive characteristic char(k) = p > 0. We define a leading gen-
erator system of the idealistic filtration to be a set of elements {(hi, p

ei)}i∈I ⊂ I
whose leading terms give rise to the set of generators as above, i.e., hi mod
mpei+1

W,P = xpei

i for i ∈ I. We emphasize that the leading terms of the elements
in the leading generator system lie in degrees p0, p1, p2, p3, . . . , and hence that
the leading generator system may not form (a part of) a regular system of
parameters when we are in positive characteristic char(k) = p > 0. In the
example by R. Narasimhan [Nar83a] [Nar83b], where there is no nonsingular
hypersurface of maximal contact, there is no leading term of degree one in any
leading generator system. When we are in characteristic zero char(k) = 0, in
contrast, we can choose the generators of L(I) to be concentrated all in degree
one, i.e., of the form

{xi}i∈I for some I ⊂ {1, . . . , d}.
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Accordingly, we can take a leading generator system to be a set of elements
{(hi, 1)}i∈I ⊂ I with hi mod m2

W,P = xi for i ∈ I. If we look at the classical
algorithm(s), then a hypersurface of maximal contact (locally at P ) is given by
{hi = 0} (for some i ∈ I). Since the leading term of hi is linear, it is guaranteed
to define a nonsingular hypersurface.

Although forming a clear contrast, the case in positive characteristic and
the case in characteristic zero should not be considered as two separate entities.
Rather, the case in characteristic zero should be considered as a special case of
the uniform phenomenon: Traditionally we define the characteristic char(k) to
be the (non-negative) generator of the set of the annihilators in Z of the unit
“1” in the field k. However, as Hironaka points out in [Hir70], for the purpose
of considering the problem of resolution of singularities, it is more natural to
adopt the following definition

p = inf{n ∈ Z>0 ; n · 1 = 0 ∈ k}.
Therefore, the case of characteristic being zero in the traditional sense corre-
sponds to the case of p = ∞ in this convention. In other words, we expect the
behavior in characteristic zero to be similar to the one in positive characteristic
with large p, and ultimately to lie at the limit when p → ∞. Accordingly,
in characteristic zero with p = ∞, the (virtual) leading terms of the leading
generator system in degrees p1 = p2 = · · · = ∞ are invisible (non-existent),
while the actual leading terms are concentrated all in degree limp→∞ p0 = 1.

That is to say, we consider the notion of a hypersurface of maximal contact
in characteristic zero to be a special case of the notion of a leading generator
system, which is valid in all characteristics. Accordingly, we use the notion of
a leading generator system as a collective substitute in positive characteristic
for the notion of a hypersurface of maximal contact in characteristic zero in the
process of constructing an algorithm according to our program.

We would like to remark that, for the purpose of studying a singularity,
the idea of analyzing the leading terms of its defining ideal is nothing new, and
so classical as is the term “tangent cone”. Even in a more specific subject of the
problem of resolution of singularities and in the context of studying the Rees
algebra, Hironaka, Oda, and Giraud, among others, realized its importance
early on in relation to the effect of taking the differential saturation and/or to
the notion of a standard basis (cf. [Hir70] [Oda73] [Oda83] [Oda87] [Gir75]).
The fundamental observation mentioned above appears in [Oda87]. In fact,
the recent approaches (cf. 0.5.2), e.g., the one by Villamayor via “generic pro-
jection” [Vil06a] [Vil06b] [EV07], referring to Hironaka’s τ -invariant, the one
by W�lodarczyk via the notion of “p-order” [W�lo07], referring to [Gir75] as its
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inspirational source, and the one by Hironaka himself [Hir05] [Hir06], all find
renewed interests in this classical idea combined with novel developments of
their own. Our approach via the notion of the leading generator system is no
exception.

0.2.3.2.2. Enlargement vs. restriction. (Construction of the strand of in-
variants through enlargements (modifications) of an idealistic filtration, and
without using restriction to a hypersurface of maximal contact.) At first sight,
the introduction of the notion of a leading generator system does not seem
to contribute toward overcoming the main source of troubles at all. Recall
(cf. 0.2.1.3.) that in the classical setting in characteristic zero the strand of
invariants is constructed in such a way that a unit (w, s) is added to the strand
constructed so far every time we decrease the dimension by one, and then con-
tinue the construction by restricting ourselves to a hypersurface of maximal
contact. Nonsingularity of a hypersurface of maximal contact is absolutely
crucial in order to continue the construction by restriction. Therefore, in the
new setting in positive characteristic where we use a leading generator system,
we seem to fail to construct the strand of invariants if any of the elements in
the leading generator system defines a singular hypersurface. However, in the
construction of the strand of invariants in the new setting, we do not use any
restriction but only use enlargements (modifications) of the idealistic filtration.
In fact, starting from a given idealistic filtration on a nonsingular variety W ,
we construct the triplet of invariants (σ, µ̃, s), where σ reflects the degrees of
the leading terms of a leading generator system, and µ̃ and s are the weak-order
(with respect to a leading generator system) and the invariant determined by
the boundary, respectively, corresponding to the invariants w and s as before.
In the classical setting, after taking the corresponding companion modifica-
tion and boundary modification, we take a hypersurface of maximal contact
at this point and continue the process by taking the restriction to it. In the
new setting, however, after taking the companion modification and boundary
modification, we consider a leading generator system of the newly modified ide-
alistic filtration and continue the process. In other words, in the new setting,
we construct the strand of invariants in the following form

invnew = (σ, µ̃, s)(σ, µ̃, s)(σ, µ̃, s) · · · ,

and the construction is done only through enlargement keeping the ambient
space W intact, and hence the crucial nonsingularity intact.

It is worthwhile noting that µ̃ is independent of the choice of a leading



�

�

�

�

�

�

�

�

830 Hiraku Kawanoue

generator system, which is a priori needed for its definition, and hence is an
invariant canonically attached to the idealistic filtration (if it is appropriately
saturated (See 0.2.3.2.3. below.)). This implies that the strand of invariants
invnew is also canonically determined globally. Therefore, we see that the center
of each blowup in our algorithm, which is the maximum locus of the strand
of invariants, is also canonically and globally defined, without the so-called
Hironaka’s trick needed in the classical setting (cf. 0.2.3.2.3. and [W�lo05]).

In Part II, we will define the two basic invariants denoted by σ and µ̃ in the
context of an idealistic filtration as above. They form the building blocks for
constructing the strand of invariants (together with invariant s related to the
boundary). Some of their properties which are straightforward in characteris-
tic zero, e.g., the upper semi-continuity, become highly non-trivial in positive
characteristic and are also discussed in Part II.

Discussion of the modifications is one of the main themes of Part III, where
the classical notion of the companion modification and that of the boundary
modification find their perfect analogs in the context of the enlargements of an
idealistic filtration with respect to a leading generator system.

0.2.3.2.3. Saturations. It is important in our program to make a given idealistic
filtration “larger” without changing the associated problem of resolution of
singularities. Ultimately, we would like to find the largest of all such (with
respect to a certain fixed kind of operations “X”), leading to the notion of the
(X-)saturation. Dealing with the saturated idealistic filtration, we expect to
extract more intrinsic information toward a solution of the problem of resolution
of singularities (e.g. invariants which are independent of the choice of a leading
generator system in the new setting, or the choice of a hypersurface of maximal
contact in the classical setting). The two key saturations in our program are
the differential saturation (called the D-saturation for short, with respect to
the operation of taking differentiations) and the radical saturation (called the
R-saturation for short, with respect to the operation of taking the n-th roots
(radicals)), the latter being equivalent to taking the integral closure (for an
idealistic filtration of r.f.g. type). (The operation of taking the coefficient ideal
and the operation of taking the “homogenization” in the sense of [W�lo05] share
the same spirit with D-saturation. In fact, we can obtain new formulas for
the coefficient ideal and the homogenization as byproducts of the notion of
the D-saturation of an idealistic filtration. See [Mk07] for details. We also
invite the reader to look at [Kol05], which discusses several extensions of the
idea of homogenization.) At the center of our program sits the analysis of the
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interaction of these two saturations (See also [Vil06a] [Vil06b] [EV07] for the
related results in the study of the Rees algebra.), leading to the notion of the
bi-saturation (called the B-saturation) and its explicit description as the RD-
saturation. Note that the notion of a leading generator system in 0.2.3.2.1.
is defined only through D-saturation, and the new nonsingularity principle in
0.2.3.2.4. only through B-saturation.

0.2.3.2.4. New nonsingularity principle. There is another problem which
comes along with using a leading generator system as a collective substitute
for a hypersurface of maximal contact. In the classical setting in characteristic
zero, what guarantees the nonsingularity of the center is the nonsingularity of
a hypersurface of maximal contact (cf. 0.2.1.3.). In our new setting in positive
characteristic, we no longer have this guarantee. In fact, at the intermediate
stage of the construction of the strand of invariants, the leading generator
system may not be (a part of) a regular system of parameters and hence may
define a singular subscheme. We observe, however, that at the end of the
construction of the strand of invariants the enlarged idealistic filtration takes
such a special form that guarantees the corresponding leading generator system
to be (a part of) a regular system of parameters. The maximum locus of the
strand of the invariants, which we choose as the center, is defined by this leading
generator system, and hence is nonsingular. We call this observation the new
nonsingularity principle of the center.

We would like to remark that, as the new nonsingularity principle is indis-
pensable in our program, the use of B-saturation (and hence of R-saturation)
is essential in executing our algorithm. This feature distinguishes our program
not only from the existing and classical methods but also from the other pro-
posed approaches (cf. 0.5.2), where the conceptual importance of R-saturation
(taking the integral closure) is emphasized in defining some equivalence classes
but never used explicitly in executing their algorithms.

0.2.3.3. Uniformity of our program in all characteristics. It should be
emphasized that our program is not designed to come up with an esoteric strat-
egy peculiar to the situation in positive characteristic, but rather intended to
develop a uniform point of view toward the problem of resolution of singulari-
ties valid in all characteristics. Part IV is devoted to letting this point of view
manifest itself in the form of an algorithm, summarizing all the ingredients of
the program.
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§0.3. Algorithm constructed according to the program

0.3.1. Algorithm in characteristic zero. Aiming at uniformity, our
program makes perfect sense and works just as well in characteristic zero, lead-
ing to a new algorithm slightly different from the existing ones. We will demon-
strate in Part IV how the distinguished features of our program described in
0.2.3.2. work in the new algorithm.

0.3.2. Algorithm in positive characteristic; the remaining prob-
lem of termination. The algorithm in characteristic zero, now through uni-
formity, serves as a prototype toward establishing an algorithm in positive char-
acteristic. In fact, we can carry out almost all the procedures of our algorithm
in positive characteristic, forming a perfect parallel to the case in characteristic
zero, except for the problem of termination.

0.3.2.1. Termination. It is easy to see that in characteristic zero the invariants
constituting the strand, constructed according to the program, have bounded
denominators, and hence that the strand takes its value in the set satisfying the
descending chain condition. Since the value of the strand strictly drops after
each blowup, we conclude that the algorithm terminates after finitely many
steps. However, in positive characteristic, we can not exclude the possibility
that the denominators may increase indefinitely as we carry out the processes
(blowups) of the algorithm. (In the unit (σ, µ̃, s) for the strand, the values
of invariant σ and s are easily seen to satisfy the descending chain condition.
Therefore, more specifically, the only issue is the boundedness of the denomi-
nators for the values of µ̃, which are fractional.) Therefore, we do not know at
the moment if the algorithm terminates after finitely many steps.

The problem of termination remains as the only missing piece in our quest
of establishing an algorithm for resolution of singularities in positive character-
istic according to the program. The details will be discussed in Part IV.

§0.4. Assumption on the base field

We carry out our entire program assuming that the base field k is alge-
braically closed field of characteristic char(k) = p ≥ 0.

Our definition of a leading generator system, the key notion of the pro-
gram, at a closed point P ∈ W where W is a variety of dimension d smooth over
k, needs the assumption of the base field being algebraically closed, since we use
the fact OW,P /mW,P

∼= k and the natural isomorphism G =
⊕

n≥0 mn+1
W,P /mn

W,P
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∼= k[x1, . . . , xd] with respect to a fixed regular system of parameters (x1, . . . , xd),
as well as the fact that we can take the p-th root of any element within k (when
char(k) = p > 0). We briefly mention below what happens if we loosen the
assumption on the base field.

0.4.1. Perfect case. Suppose that the base field k is perfect, but not
necessarily algebraically closed. Upon completion, the algorithm constructed
according to the program should be equivariant under any group action (cf.
Part IV). Therefore, as long as the base field k is perfect, we see that the al-
gorithm established over its algebraic closure k descends to the one over the
original base field k, utilizing the equivariance under the action of the Galois
group Gal(k/k).

0.4.2. Non-perfect case. Over a non-perfect field k, we even have to
start distinguishing the notion of being regular and that of being smooth over
k. The discussions, including the one on how we may try to reduce the non-
perfect case to the perfect case using the Lefschetz Principle type argument,
will be given in Part IV.

§0.5. Other methods and approaches

0.5.1. Brief history. First we briefly mention the history of a few of
the other methods and approaches than the algorithmic approach we follow
toward the problem of resolution of singularities in positive characteristic. We
refer the reader to [Lip75] [Moh96] [HLOQ00] for a more detailed account.

Resolution of singularities for curves is a classical result, with many of its
ideas and methods leading to the higher dimensional cases even to this day.

Among several results for surfaces, the most general one seems to be given
by [Lip69] [Lip78], which establish resolution of singularities of an arbitrary
excellent scheme in dimension 2.

It is [Zar40] that initiated the strategy to establish local uniformizations
first, with the theory of valuations as the central tool, and then by patch-
ing them to establish resolution of singularities globally. The theory of local
uniformization has been further developed by many people [Abh66] [Cos00]
[Kuh97] [Kuh00]. We should mention the approaches by [Tei03] [Spi04] toward
local uniformization in higher dimensions.

Jung’s idea of taking the (generic) projection provides many useful ap-
proaches toward the problem of resolution of singularities. [Abh66] uses the
method of Albanese projecting from a singular point, combined with the theory
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of local uniformization, to resolve singularities of a threefold X when char(k)
is greater than (dim X)! = 6. A simplified proof has been recently given by
[Cut06], which also discusses the potential and problems if one tries to extend
the method to higher dimensions. There are attempts to study the problem
in the remaining characteristic char(k) = 2, 3, 5 by [Cos87] [Moh96] [Cos04]
[Pil04] in dimension 3.

Without any restriction on the dimension of a variety or on the base field
k, the most remarkable development in the vicinity of the problem of resolu-
tion of singularities is arguably the method of alteration initiated by de Jong
[dJ96]. Given a variety X, it constructs a proper and generically finite mor-
phism f : Y → X from a regular variety Y . (In characteristic zero, one can
refine the method of alteration to realize f as a birational map. See [AdJ97]
[BP96] [Par99] for details.) The structure of f is rather obscure, though its
existence follows nicely and simply by regarding X as a family of curves fibered
over a variety of dimension one less and hence by paving a way to apply in-
duction. The method of alteration even works in mixed characteristics or with
integral schemes over Z, and hence it allows a wide range of applications for
arithmetic purposes.

0.5.2. Recent announcements of other new approaches. During
the preparation of the first draft for Part I, we were informed that Hironaka
announced a program of resolution of singularities in all characteristics p > 0
and in all dimensions at the summer school in Trieste 2006 (cf. [Hir06]). In the
course of revision, we also learned of a program by Villamayor [Vil06a] [Vil06b]
[EV07] and one by W�lodarczyk [W�lo07], each pursuing its own direction dif-
ferent from ours using the method of “generic projection” and the notion of
“p-order”, respectively, toward resolution of singularities in positive character-
istic. We have not had the time to analyze these approaches in comparison
to ours, while none of them, including ours, seems to claim a complete proof
for the moment. We refer the reader to their research papers for the precise
contents.

§0.6. Origin of our program and its name

This series of papers is a joint work of H. Kawanoue and K. Matsuki as a
whole. However, the program forming the backbone of the series was conceived
in its entirety by the first author toward his Ph.D. thesis, and revealed to the
second author in the summer of 2003 at a private seminar held at Purdue
University as a blueprint toward constructing an algorithm for resolution of
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singularities in positive characteristic. As such all the essential ideas are due
to the first author. The only contribution of the second author was to help the
first author and jointly bring these ideas together converging into a coherent
algorithm. Part I, which represents the main portion of the afore-mentioned
Ph.D. thesis, bears only the name of the first author.

In the process of writing this series of papers, we felt it is not only con-
venient but also necessary to give a proper name to our program. After its
main framework “the idealistic filtration”, we decided to call it the Idealistic
Filtration Program, abbreviated as the IFP.
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§0.8. Outline of Part I

Following the itemized table of contents at the beginning, we describe the
outline of the structure of Part I below.

At the end of the introduction in Chapter 0, we give a brief description of
the preliminaries to read Part I and the subsequent series of papers. In Chap-
ter 1, we recall some basic facts on the differential operators, especially those
in positive characteristic. Both in the description of the preliminaries and in
Chapter 1, our purpose is not to exhaustively cover all the material, but only to
minimally summarize what is needed to present our program and to fix our no-
tation. For example, an elementary characterization, in terms of the differential
operators, of an ideal generated by the pe-th power elements in characteristic
p = char(k) > 0 is included only due to the lack of an appropriate reference.
We should emphasize here that the use of the logarithmic differential operators
is indispensable in our setting in the language of the idealistic filtration (See
Remark 1.2.2.3).

Chapter 2 is devoted to establishing the notion of an idealistic filtration,
and its fundamental properties. The most important ingredient of Chapter
2 is the analysis of the D-saturation and R-saturation and that of their in-
teraction. In our algorithm, given an idealistic filtration, we always look for
its bi-saturation, called the B-saturation, which is both D-saturated and R-
saturated and which is minimal among such containing the original idealistic
filtration. The existence of the B-saturation is theoretically clear. However,
we do not know a priori whether we can reach the B-saturation by a repetition
of D-saturations and R-saturations starting from the given idealistic filtration,
even after infinitely many times. The main result here is that the B-saturation
is actually realized if we take the D-saturation and then R-saturation of the
given one, each just once in this order. In our algorithm, we do not deal
with an arbitrary idealistic filtration, but only with those which are generated
by finitely many elements with rational levels. We say they are of r.f.g. type
(short for “rationally and finitely generated”). It is then a natural and crucial
question if the property of being of r.f.g. type is stable under D-saturation and
R-saturation. We find somewhat unexpectedly that the argument of M. Nagata
(cf. [Nag57]), which was originally developed to answer some questions posed by
P. Samuel regarding the asymptotic behavior of ideals, is tailor-made to estab-
lish the stability under R-saturation (while the stability under D-saturation
is elementary). Since the use of R-saturation (together with the use of D-
saturation) and the introduction of the rational levels are essential in executing
our algorithm, so is the stability of r.f.g. type.
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In Chapter 3, through the analysis of the leading terms of an idealistic
filtration (which is D-saturated), we define the notion of a leading generator
system, which, as discussed in 0.2.3.2.1., plays the role of a collective substitute
for the notion of a hypersurface of maximal contact.

Chapter 4 is the culmination of Part I, establishing the new nonsingularity
principle of the center for an idealistic filtration which is B-saturated. Its proof
is given via three somewhat technical but important lemmas, which we will use
again later in the series of papers.

Our theory in Part I is mainly local, dealing almost exclusively with an
idealistic filtration over the local ring of a closed point on a nonsingular ambient
variety. The global theory toward constructing an algorithm will be discussed
in the subsequent papers.

The main purpose of Part I is to establish the foundation of our program
toward constructing an algorithm for resolution of singularities. However, we
believe that the results on the idealistic filtration we discuss here in Part I,
notably the analysis leading to the explicit description of the B-saturation,
stability of r.f.g. type, and the new nonsingularity principle, are of interest on
their own in the subject of the ideal theory in commutative algebra.

This finishes the discussion of the outline of Part I.

§0.9. Preliminaries

We summarize a few of the preliminaries in order to read Part I and the
subsequent series of papers.

0.9.1. The language of schemes. Our entire argument is carried out
in the language of schemes. For example, a variety is an integral separated
scheme of finite type over k. Accordingly, when we say “points”, we refer to the
scheme-theoretic points and do not confine ourselves to the closed points, which
correspond to the geometric ones in the classical setting. Thus the invariants
that we construct will be defined over all the scheme-theoretic points, and not
confined to the closed points. However, some of the key notions of our program,
notably that of a leading generator system, are only defined at the level of the
closed points, and the values of the invariants over the non-closed points are
given only indirectly through their upper or lower semi-continuity (cf. Part II).

Our program is not conceived in the language of schemes originally.
Rather, it has its origin in the concrete analysis and computation in terms
of the coordinates at the closed points. As such, it can be applied to many
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other “spaces” than algebraic varieties over k, where the same analysis and
computation can be applied to the coordinates at its closed points. The task
of presenting a set of axiomatic conditions for the IFP to function, and that of
listing explicitly the spaces within its applicability will be dealt with elsewhere.

0.9.2. Basic facts from commutative algebra. For the basic facts
in commutative algebra, we try to use [Mat86] as the main source of reference.

0.9.3. Multi-index notation. When we have the multi-variables, ei-
ther as the indeterminates in the polynomial ring or as a regular system of
parameters, we often use the following multi-index notations:

X = (x1, . . . , xd), I = (i1, . . . , id) ∈ Zd
≥0,

|I| =
d∑

α=1

iα, XI =
d∏

α=1

xiα
α ,(

I

J

)
=

d∏
α=1

(
iα
jα

)
for J = (j1, . . . , jd) ∈ Zd

≥0

where
(

i

j

)
=

i!
(i − j)!j!

∈ Z≥0 denotes the binomial coefficient,

(We also use the convention that, whenever iα < jα, we set
(

iα
jα

)
= 0.)

∂XJ =
∂|J|

∂i1
x1 · · · ∂id

xd

(expressed by ∂J for short).

eα = (0, . . . ,

α∨
1, . . . , 0).

Chapter 1. Basics on Differential Operators

The purpose of this chapter is to give a brief account of the differential
operators, which play a key role in the Idealistic Filtration Program.

We would like to mention that it is through reading the papers [Hir70]
[Oda73] that our attention was first brought to the importance of the higher
order differential operators in the context of the problem of resolution of sin-
gularities in positive characteristic.

Our main reference is EGA IV §16 [Gro67], where all that we need, espe-
cially the properties of the higher order differential operators of Hasse-Schmidt
type in positive characteristic, and much more, is beautifully presented. We
only try to extract some basic facts and discuss them in the form that suits our
limited purposes.
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§1.1. Definitions and first properties

1.1.1. Definitions. Recall that the base field k is assumed to be an
algebraically closed field of char(k) ≥ 0.

Definition 1.1.1.1. Let R be a k-algebra. We use the following nota-
tion:

µ : R ⊗k R → R the multiplication map, I := ker(µ) the kernel of µ,

Pn
R = R ⊗k R/In+1, qn : R → R ⊗k R → Pn

R for n ∈ Z≥0

where qn is the composition of the map to the second factor with the projection,
i.e.,

qn(r) = (1 ⊗ r mod In+1) for r ∈ R.

A differential operator d of degree ≤ n on R (over k) for n ∈ Z≥0 is a map
d : R → R of the form

d = u ◦ qn with u ∈ HomR(Pn
R, R).

(We note that the R-module structure on Pn
R is inherited from the R-module

structure on R ⊗k R given by the multiplication on the first factor.)
We denote the set of differential operators of degree ≤ n on R by Diffn

R,
i.e.,

Diffn
R := {d = u ◦ qn ; u ∈ HomR(Pn

R, R)} .

(Note that Diffn
R inherits the R-module structure from the one on HomR

×(Pn
R, R).)
We call DiffR =

⋃∞
n=0 Diffn

R (cf. Lemma 1.1.2.1) the set of the differential
operators on R (over k).

For a subset T ⊂ R, we also use the following notation

Diffn
R(T ) = ({d(r) ; d ∈ Diffn

R, r ∈ T}).

1.1.2. First properties.

Lemma 1.1.2.1. Let the situation and notation be the same as in Def-
inition 1.1.1.1.

(1) Let d be a k-linear map d : R → R. Then d is a differential operator of
degree ≤ n, i.e., d ∈ Diffn

R if and only if d satisfies the Leibnitz rule of degree
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n: ∑
T⊂Sn+1

(−1)|T |

 ∏
s∈Sn+1\T

rs

 d

(∏
s∈T

rs

)
= 0

where Sn+1 = {1, 2, . . . , n, n + 1} and rs ∈ R for s ∈ Sn+1.
(2) The natural map

φR : HomR(Pn
R, R) → Diffn

R,

given by d = φR(u) = u ◦ qn for u ∈ HomR(Pn
R, R), is bijective (and actually

an isomorphism between R-modules).
(3) If R is finitely generated as an algebra over k, then Pn

R is finitely generated
as an R-module, and so is HomR(Pn

R, R) ∼→ Diffn
R.

(4) Let R′ be the localization RS of R with respect to a multiplicative set S ⊂ R

or the completion R̂ of R with respect to a maximal ideal m ⊂ R. We define
the map Diffn

R → Diffn
R′ so that the following diagram commutes

HomR(Pn
R, R)

φR−−−−→ Diffn
R

↓ ↓
HomR(Pn

R, R) ⊗R R′ φR⊗RR′
−−−−−−→ Diffn

R ⊗RR′

↓
HomR′(Pn

R ⊗R R′, R ⊗R R′)
�

‖
HomR′(Pn

R′ , R′)
φR′−−−−→ Diffn

R′ ,

where the vertical arrows are the natural maps.

Consequently, the bijections are compatible with localization and comple-
tion.

Moreover, if R is essentially of finite type over k, then the second vertical
arrow on the left is an isomorphism, and hence so is the second vertical arrow
on the right.
(5) Let d ∈ Diffn

R be a differential operator of degree ≤ n on R. Then d is a
differential operator of degree ≤ m for any n ≤ m. That is to say,

Diffn
R ⊂ Diffm

R for n ≤ m.

With respect to these inclusions, {Diffn
R}n∈Z≥0 forms a projective system.
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(6) Let d ∈ Diffn
R be a differential operator of degree ≤ n on R, and d′ ∈ Diffn′

R

be a differential operator of degree ≤ n′ on R. Then the composition d ◦ d′ is
a differential operator of degree ≤ n + n′ on R, i.e., d ◦ d′ ∈ Diffn+n′

R .
(7) Let R be an algebra essentially of finite type over k, I ⊂ R an ideal, and
let R′ be as in (4). Then we have

Diffn
R(I)R′ = Diffn

R′(IR′).

Proof.

(1) We refer the reader to Proposition (16.8.8) in EGA IV §16 [Gro67] for a
proof.

(2) The isomorphism φR is the one mentioned in (16.8.3.1) in EGA IV §16
[Gro67].

(3) Suppose R is finitely generated as an algebra over k. Let X = {x1, . . . , xt}
be a set of generators for R over k. We see that Pn

R is generated by
{qn(XI) ; I ∈ Zt

≥0} as an R-module (cf. the first note in Definition 1.1.1.1).
We also see, by the relation

∏
s∈Sn+1

(1⊗rs−rs⊗1) = 0 in Pn
R , that qn(XI)

for any I ∈ Zt
≥0 belongs to the R-span of {qn(XI) ; I ∈ Zt

≥0, |I| ≤ n}.
Therefore, we conclude that Pn

R is finitely generated as an R-module and
hence that so is HomR(Pn

R, R) ∼→ Diffn
R.

(4) Compatibility of the bijections with localization and completion follows
immediately from the definitions and from the fact that Pn

R ⊗R R′ = Pn
R′ .

In order to verify the “Moreover” part, it suffices to show the assertion
assuming that R is finitely generated as an algebra over k. Then since the
extension R → R′ is flat and since Pn

R is finitely generated as an R-module
by (3), the second vertical arrow on the left is an isomorphism, and hence
so is the second vertical arrow on the right.

(5) The natural surjection Pm
R = (R ⊗k R)/Im+1 � Pn

R = (R ⊗k R)/In+1

for n ≤ m induces the injection HomR(Pn
R, R) ↪→ HomR(Pn+1

R , R) and
hence the inclusion Diffn

R ⊂ Diffm
R . It is clear that {Diffn

R}n∈Z≥0 forms a
projective system with respect to these inclusions.

(6) We refer the reader to Proposition (16.8.9) in EGA IV §16 [Gro67].
(7) When R′ = R̂, the equality Diffn

R(I)R′ = Diffn
R′(IR′) follows from the

“Moreover” part of (4) and from the fact that the differential operators are
continuous with respect the m-adic topology (the latter being a consequence
of the Leibnitz rule).

Thus we give a proof of the equality only when R′ = RS in the following.
Since the inclusion Diffn

R(I)RS ⊂ Diffn
RS

(IRS) follows easily from the
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“Moreover” part of (4), we have only to show the opposite inclusion

Diffn
R(I)RS ⊃ Diffn

RS
(IRS).

Take f = s−1r ∈ IRS with r ∈ R, s ∈ S, and take d ∈ Diffn
RS

. We want to
show d(f) ∈ Diffn

R(I)RS. Set r1 = · · · = rn = s, rn+1 = f . Applying the
Leibnitz rule of degree n for d ∈ Diffn

RS
, we have

−snd(f)+
∑

{n+1}�T

(−1)|T |sn+1−|T |d
(
s|T |−2r

)
+
∑

n+1∈T

(−1)|T |fsn−|T |d
(
s|T |

)
=0

where the first term in the left hand side corresponds to the range T = {n+1}.
Since d ∈ Diffn

RS
= Diffn

R RS by the “Moreover” part of (4), the second term
and the third term of the left hand side belong to Diffn

R(I)RS. This implies
d(f) ∈ Diffn

R(I)RS .
This completes the proof for Lemma 1.1.2.1.

Corollary 1.1.2.2. Let X be a variety over k. Then there exists a
coherent sheaf HomOX

(Pn
X ,OX) ∼→ Diff n

X of the differential operators of degree
≤ n for n ∈ Z≥0 such that for any affine open subset U = Spec R ⊂ X we have

HomOX
(Pn

X ,OX)(U) = HomR(Pn
R, R) ∼→ Diffn

R = Diff n
X(U)

and that for any point x ∈ X we have a description of the stalk as

{HomOX
(Pn

X ,OX)}x = HomOX,x
(Pn

OX,x
,OX,x) ∼→ Diffn

OX,x
= {Diff n

X}x .

Moreover, for any closed point x ∈ X we have a description of the completion
of the stalk as

{HomOX
(Pn

X ,OX)}x ⊗OX,x
ÔX,x {Diff n

X}x ⊗OX,x
ÔX,x

‖ ‖
HomÔX,x

(Pn

ÔX,x

, ÔX,x) ∼→ Diffn

ÔX,x

Proof. This follows immediately from Lemma 1.1.2.1.

§1.2. Basic properties of differential operators on
a variety smooth over k

The purpose of this section is to discuss some basic properties of differential
operators on a variety W smooth over k.



�

�

�

�

�

�

�

�

Toward Resolution of Singularities 843

Accordingly, we denote by R the coordinate ring of an affine open subset
Spec R ⊂ W , or its localization by some multiplicative set.

1.2.1. Explicit description of differential operators with respect
to a regular system of parameters.

Definition 1.2.1.1. We say (x1, . . . , xd) with d = dim W is a regular
system of parameters for R if {dxα = (1 ⊗ xα − xα ⊗ 1 mod I) ; α = 1, . . . , d}
forms a basis for the module of differentials Ω1

R/k as an R-module, i.e.,

Ω1
R/k = I/I2 =

d⊕
α=1

Rdxα
∼= Rd,

where I ⊂ R ⊗k R is the kernel of the multiplication map µ : R ⊗k R → R

(cf. Definition 1.1.1.1).
(Note that in the case where R is the local ring associated to a closed point

P ∈ W such a regular system of parameters always exists, and that in the case
where R represents the coordinate ring of an affine open subset Spec R ⊂ W

such a regular system of parameters exists by “shrinking” Spec R if necessary.)

Lemma 1.2.1.2. Suppose we have a regular system of parameters
(x1, . . . , xd) for R with d = dim W . Then we have the following :

(1) We have a family of maps {∂XJ : R → R ; J ∈ Zd
≥0} such that

(i) ∂XJ (XI) =
(

I
J

)
XI−J for any I ∈ Zd

≥0, and that

(ii) {∂XJ ; |J | ≤ n} forms a basis of Diffn
R for any n ∈ Z≥0, i.e.,

Diffn
R =

⊕
|J|≤n

R∂XJ
∼= R(n+d

n ).

(2) Let R̂ be the completion of R with respect to a maximal ideal m (corre-
sponding to a closed point P ∈ W ). Then the R̂-module Diffn

bR

∼→ Diffn
R ⊗RR̂

is free of rank
(
n+d

n

)
, having a basis {∂XJ ; |J | ≤ n} of the differential oper-

ators of degree ≤ n. The differential operators are continuous with respect to
the m-adic topology.

Set yi = xi − αi for 1 ≤ i ≤ d, where αi ∈ k, so that Y = (y1, . . . , yd)
is a regular system of parameters for Rm. Then for any f =

∑
cIY

I ∈
k[[y1, . . . , yd]] = R̂, we have

∂J (f) = ∂J

(∑
cIY

I
)

=
∑

cI∂J (Y I) =
∑

cI

(
I

J

)
Y I−J ,
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where ∂J is the abbreviated notation for ∂XJ .

(3) We have the generalized product rule

∂J (fg) =
∑

K+L=J

∂K(f)∂L(g) for f, g ∈ R (or R̂).

Proof.

(1) We refer the reader to Theorem (16.11.2) in EGA IV [Gro67].
(2) Observe that a differential operator (of degree ≤ n) is continuous with

respect to the m-adic topology, a fact which easily follows, e.g., from the
Leibnitz rule (of degree n). Note that ∂Y J (f) = ∂XJ (f) for any J ∈
Zd
≥0 and f ∈ R̂ by definition of Y = (y1, . . . , yd). The rest is a direct

consequence of (1).
(3) In order to check the generalized product rule, it suffices to check it for the

localization Rm for any maximal ideals of R. In order to check it for the
localization Rm, it suffices to check it for its completion R̂ with respect to
m.

By choosing a regular system of parameters Y = (y1, . . . , yd) for Rm as in
(2), we can identify R̂ with the power series ring k[[y1, . . . , yd]]. Thus we have
only to check (3) for the power series ring k[[y1, . . . , yd]]. By (2), it is also clear
that we have only to check it for the case of one variable, i.e., d = 1 with y1 = y

and that we may even assume f and g are powers of y, i.e., f = ya and g = yb.
Then we have

∂XJ (fg) = ∂Y J (fg) = ∂yn(yayb) = ∂yn(ya+b)

=
(

a + b

n

)
ya+b−n =

( ∑
l+m=n

(
a

l

)(
b

m

))
ya+b−n

=
∑

l+m=n

(
a

l

)
xa−l

(
b

m

)
xb−m =

∑
K+L=J

∂K(f)∂L(g),

which verifies the generalized product rule.
This completes the proof of Lemma 1.2.1.2.

Remark 1.2.1.3.
(1) It is easy to see that we have a relation

(∂x1)j1 ◦ (∂x2)j2 ◦ · · · ◦ (∂xd
)jd = J ! · ∂XJ

where J ! =
∏d

α=1 jα! in the multi-index notation.
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In characteristic zero, since J ! �= 0, the above relation implies that all the
differential operators are expressed as (the linear combinations over R of) the
composites of the differential operators of degree ≤ 1, e.g., R-homomorphisms
and ∂x1 , . . . , ∂xd

.
In positive characteristic char(k) = p > 0, however, J ! could well be equal

to 0 and hence we start seeing the differential operators of higher order which
cannot be expressed as (the linear combinations over R of) the composites of
differential operators of lower degrees, e.g.,

∂
xp1

α
, ∂

xp2
α

, . . . , ∂
xpe

α
, . . . for α = 1, . . . , d and e ∈ Z>0.

It is these operators which play a crucial role in positive characteristic.

(2) The following observation comes in handy when we compute the binomial
coefficients in positive characteristic char(k) = p > 0:

Let i =
∑

e aep
e and j =

∑
e bep

e be the expressions of the integers i, j ∈
Z≥0 as p-adic numbers with 0 ≤ ae, be < p. Then we have(

i

j

)
=
∏
e

(
ae

be

)
mod p.

The identity follows immediately from the observation that, in (Z/pZ)[x], the
number

(
i
j

)
is the coefficient of xj =

∏
e xbepe

in the polynomial (1 + x)i =∏
e(1 + x)aepe

=
∏

e(1 + xpe

)ae , which can be computed as the product of the
coefficients

(
ae

be

)
of xbepe

in (1 + xpe

)ae .

1.2.2. Logarithmic differential operators.

Definition 1.2.2.1. Let E be a simple normal crossing divisor on Spec
R, and IE ⊂ R its defining ideal. We define the set Diffn

R,E of the logarithmic
differential operators of degree ≤ n on R with respect to E by

Diffn
R,E = {d ∈ Diffn

R ; d(It
E) ⊂ It

E ∀t ∈ Z≥0}.
Lemma 1.2.2.2. Suppose we have a regular system of parameters

(x1, . . . , xd) for R with d = dim W , and a simple normal crossing divisor E

defined by IE = (
∏m

i=1 xi) for some 1 ≤ m ≤ d. Then we have the following :

(1) The R-module Diffn
R,E is free of rank

(
n+d

n

)
. It has a basis {XJE ∂XJ ; |J | ≤

n} (cf. Lemma 1.2.1.2 (1)), where JE = (j1, . . . , jm, 0, . . . , 0) for J = (j1, . . . ,
jm, jm+1, . . . , jd). Thus we have

Diffn
R,E =

⊕
|J|≤n

RXJE ∂XJ
∼= R(n+d

n ).
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(2) We have the logarithmic version of the generalized product formula

XJE∂J (fg) =
∑

K+L=J

XKE∂K(f)XLE∂L(g) for f, g ∈ R (or R̂).

Proof. This follows immediately from Lemma 1.2.1.2 and Definition
1.2.2.1.

Remark 1.2.2.3. Historically, after [Hir70] [Oda73] the development of
techniques using the differential operators, including the logarithmic ones, in
the study of singularities and their resolutions could be attributed to Jean
Giraud (cf. [Gir74] [Gir75]). (We would like to thank the referee for bringing
the historical impact of Giraud’s work to our attention.) Personally, however,
we first learned the explicit use of the logarithmic differential operators in the
context of resolution of singularities from [Cos87] and [BM97]. It is worthwhile
noting that even when we look at the existing algorithms which only use the
usual differential operators on the surface (e.g. [Vil89] [Vil92] [EV00] [EH02]
[W�lo05]), one could implicitly observe the use of the logarithmic ones in the
proof of Giraud’s lemma (cf. [Gir74]) they depend upon. We invite the reader
to look at [Bie04] [Bie05] and [BM03] [BM07] for the discussions on how the use
of the logarithmic differential operators, in contrast to the use of the usual ones,
affects the functorial properties of the algorithm, and even the formulation of
the problem of resolution of singularities.

The use of the logarithmic differential operators is a “must” for our algo-
rithm to function, as we will see in Parts III and IV, and is recognized as one
of the key ingredients of the IFP from the very beginning of its conception.

1.2.3. Relation with multiplicity. We end this section by pointing
out a basic relation between the multiplicity (order) and the differential op-
erators in the form of a lemma. It is because of this basic relation that the
differential operators play a key role in constructing an algorithm for resolution
of singularities, where the order function constitutes a fundamental invariant.

Lemma 1.2.3.1. Let I ⊂ R be an ideal. Let P ∈ Spec R be a point.
Then

ordP (I) ≥ n ⇐⇒ P ∈ V (Diffn−1
R (I)).

In particular, the order function ord∗(I) : Spec R → Z≥0 is upper semi-
continuous.
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Proof. First we show the equivalence in the case when P is a closed
point. Let m ⊂ R be the maximal ideal corresponding to the closed point P .
Let R̂ be the completion of R with respect to m. Note that ordP (I) = ordP (Î),
where Î = IR̂. On the other hand, since Diffn−1

bR
(Î) = Diffn

R(I)R̂ by Lemma

1.1.2.1 (7) and since R̂ is faithfully flat over R, we have Diffn−1
bR

(Î) ∩ R =
Diffn

R(I). Thus we have only to show the equivalence at the level of completion.
Choose a regular system of parameters (x1, . . . , xd) for Rm. Identify R̂ with
the power series ring k[[x1, . . . , xd]]. By definition, ordP (Î) ≥ n if and only
if, given f =

∑
J cJXJ ∈ Î ⊂ k[[x1, . . . , xd]] with cJ ∈ k, we have cJ = 0 for

any J with |J | < n. By Lemma 1.2.1.2 (2), the last condition is equivalent to
saying ∂XK (f) ⊂ m̂ for any f ∈ Î and K with |K| < n. Since {∂XK ; |K| < n}
generates Diffn−1

bR
as an R̂-module (cf. Lemma 1.2.1.2 (2)), this condition is

equivalent to Diffn−1
bR

(Î) ⊂ m̂, i.e., P ∈ V (Diffn−1
bR

(Î)). Therefore, we conclude

ordP (Î) ≥ n ⇐⇒ P ∈ V (Diffn−1
bR

(Î)).

From the above argument it follows that the equivalence asserted in the
lemma holds for a closed point and that the order function is upper semi-
continuous if we restrict ourselves to the space of the maximal ideals m-Spec R.

It is then straightforward to see that the same equivalence holds for an
arbitrary point in Spec R and that the order function is upper semi-continuous
over Spec R.

This completes the proof of Lemma 1.2.3.1.

§1.3. Ideals generated by the pe-th power elements

In this section, we denote by k an algebraically closed field of char(k) =
p > 0.

The purpose of this section is to give a characterization of the ideals gen-
erated by pe-th power elements, fixing e ∈ Z≥0, as the ideals invariant under
the action of the set of differential operators of degree ≤ pe − 1.

We denote by R the coordinate ring of an affine open subset Spec R of a
variety W smooth over k, or its localization at a maximal ideal. We denote by
R̂ the completion of R with respect to a maximal ideal of R.

1.3.1. Characterization in terms of the differential operators.

Definition 1.3.1.1. Fix a nonnegative integer e ∈ Z≥0. We denote the
e-th power of the Frobenius map by

F e : R → R
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i.e., F e(r) = rpe

for r ∈ R. We use the same symbol F e for the e-th power
of the Frobenius map of the localization RS or the completion R̂ by abuse of
notation if there is no chance of confusion.

Proposition 1.3.1.2. Let I ⊂ R be an ideal. Fix a nonnegative integer
e ∈ Z≥0. Then the following conditions are equivalent :

(i) The ideal I is generated by the pe-th power elements, i.e., I = (I ∩F e(R)).

(ii) The ideal I is invariant under the action of the set of the differential oper-
ators of degree ≤ pe − 1, i.e., I = Diffpe−1

R (I).

Moreover, the equivalence of conditions (i) and (ii) also holds over the comple-
tion R̂.

Before beginning the proof of Proposition 1.3.1.2, we remark a couple of
facts in the form of a lemma.

Lemma 1.3.1.3. Let R′ denote the localization RS with respect to a
multiplicative set S ⊂ R or the completion R̂ with respect to a maximal ideal
m ⊂ R. Then we have

(1) R ⊗F e(R) F e(R′) = R′,

(2) {I ∩ F e(R)}R′ = {IR′ ∩ F e(R′)}R′.

Proof.
(1) When R′ = RS , the assertion is clear since R ⊗F e(R) F e(RS) =

RF e(RS) = RS . When R′ = R̂, we see that R ⊗F e(R) F e(R̂) and R̂ are the
completions of R with respect to the topologies defined by {F e(mn)R}n∈Z>0

and {mn}n∈Z>0 respectively. It is easy to see that these two topologies coincide.
(2) Since I∩F e(R) ⊂ IR′∩F e(R′), we have the inclusion {I∩F e(R)}R′ ⊂

{IR′ ∩ F e(R′)}R′. In order to see the opposite inclusion, using the fact that
F e(R′) is flat over F e(R), we observe

{I ∩ F e(R)}R′ ⊃ {I ∩ F e(R)}F e(R′) = {I ∩ F e(R)} ⊗F e(R) F e(R′)

= {I ⊗F e(R) F e(R′)} ∩ {F e(R) ⊗F e(R) F e(R′)}
= {I ⊗R R ⊗F e(R) F e(R′)} ∩ F e(R′)

= {I ⊗R R′} ∩ F e(R′) = IR′ ∩ F e(R′),

which implies the desired inclusion.
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This completes the proof of Lemma 1.3.1.3.

Proof of Proposition 1.3.1.2.

Step 1. Reduction to the case over the completion R̂.
Firstly note that two ideals of R coincide if their localizations or even com-
pletions coincide at any maximal ideal m of R. Thus it suffices to show the
conditions

IR̂m = (I ∩ F e(R))R̂m and IR̂m = Diffpe−1
R (I)R̂m

are equivalent for any maximal ideal m ⊂ R. Secondly note that

(I ∩ F e(R))R̂m = {IR̂m ∩ F e(R̂m)}R̂m (by Lemma 1.3.1.3 (2)),
Diffpe−1

R (I)R̂m = Diffpe−1
dRm

(IR̂m) (by Lemma 1.1.2.1 (7)).

Therefore, it suffices to show the equivalence of the conditions in the case over
R̂ = R̂m. In the following consideration, we identify R̂ with the power series
ring k[[x1, . . . , xd]] (by choosing a regular system of parameters (x1, . . . , xd) for
Rm).

Step 2. Verification of the implication (i) =⇒ (ii).
We obviously have Î ⊂ Diffpe−1

bR
(Î). Thus we have only to show Î ⊃ Diffpe−1

bR
(Î)

assuming condition (i). By Lemma 1.2.1.2 (2), the set {∂XJ ; |J | ≤ pe − 1}
generates Diffpe−1

bR
as an R̂-module. Therefore, it suffices to check ∂XJ (f) ∈ Î

for any f ∈ Î and ∂XJ with |J | ≤ pe − 1. By assuming condition (i), we may
assume Î = ({rpe

λ ; rλ ∈ R̂}λ∈Λ) so that we can write f =
∑

λ∈Λ aλrpe

λ with
aλ ∈ R̂. We compute via the generalized product rule

∂XJ (f) = ∂XJ

(∑
λ∈Λ

aλrpe

λ

)
=
∑
λ∈Λ

∂XJ

(
aλrpe

λ

)
=
∑
λ∈Λ

{ ∑
K+L=J

∂XK (aλ) ∂XL

(
rpe

λ

)}
=
∑
λ∈Λ

∂XJ (aλ) rpe

λ ∈ I.

Note that, in order to obtain the last equality, we use the fact that ∂XL(rpe

λ ) = 0
unless L = 0. In fact, if rλ =

∑
J cJXJ ∈ k[[x1, . . . , xd]], then, by Lemma

1.2.1.2 (2), we have

∂XL(rpe

λ ) = ∂XL

(∑
J

cpe

J XpeJ

)
=
∑
J

cpe

J ∂XL(XpeJ ) =
∑

J

cpe

J

(
peJ

L

)
XpeJ−L.
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Since
(

peJ

L

)
=

d∏
i=1

(
peji

li

)
, and since

(
peji

li

)
= 0 mod p unless li = 0 because

li ≤ |L| ≤ |J | ≤ pe − 1, we conclude ∂XL(rpe

λ ) = 0 unless L = 0.
This completes the verification of the implication (i) =⇒ (ii).
Step 3. Verification of the implication (ii) =⇒ (i).

We obviously have Î ⊃ (Î∩F e(R̂)). Thus we have only to show Î ⊂ (Î∩F e(R̂))
assuming condition (ii). First note that, setting Γ = {0, 1, . . . , pe − 1}d, we can
express any f ∈ R̂ = k[[x1, . . . , xd]] in the form

f =
∑
M∈Γ

ape

MXM ,

where the set of coefficients {ape

M ; aM ∈ R̂}M∈Γ is uniquely determined.
It suffices to show that, given f ∈ Î and its expression as above, we have

{ape

M ; aM ∈ R̂}M∈Γ ⊂ Î, which implies f ∈ (Î ∩ F e(R̂)).
We derive a contradiction assuming {ape

M ; aM ∈ R̂}M∈Γ �⊂ Î. Set

N = max
{
M ∈ Γ ; ape

M �∈ Î
}

,

where the maximum is taken with respect to the lexicographical order on Γ.
We compute via the generalized product rule

Î = Diffpe−1
bR

(Î) � ∂XN

(
f −

∑
M>N

ape

MXM

)
=

∑
M≤N

∂XN (ape

MXM )

=
∑

M≤N

∑
K+L=N

∂XK (ape

M )∂XL(XM ) =
∑

M≤N

aP e

M ∂XN (XM ) = ape

N .

Note that, by the same argument as in Step 2 of this proof, we see ∂XK (ape

M ) = 0
unless K = 0. This is used to obtain the second last equality. Note also that(
M
N

)
= 0 if M < N . Indeed, if M < N , there exists 1 ≤ io ≤ d such that

mio
< nio

, which implies
(
mio
nio

)
= 0 (cf. 0.9.3) and hence

(
M
N

)
=
∏d

i=1

(
mi

ni

)
= 0.

Thus ∂XN (XM ) = 0 if M < N . This is used to obtain the last equality.
Therefore, we have ape

N ∈ Î, contradicting the choice of N . This completes the
verification of the implication (ii) =⇒ (i).

This completes the proof of Proposition 1.3.1.2.

We end this section by stating a lemma, which is proved in the same spirit
as the proof of Proposition 1.3.1.2 and is of interest on its own.

Lemma 1.3.1.4. Let R̂ be the completion of R with respect to a maxi-
mal ideal m of R, and e ∈ Z≥0 a nonnegative integer. Then

R ∩ F e(R̂) = F e(R).
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In other words, if r ∈ R has its pe-th root f within R̂, then f actually belongs
to R.

Proof. Since R̂ is faithfully flat over R, so is F e(R̂) over F e(R). Ap-
plying Theorem 7.5 in [Mat86] to the F e(R)-module R/F e(R), we see that the
natural map

R/F e(R) → (R/F e(R)) ⊗F e(R) F e(R̂)

is injective. On the other hand, using Lemma 1.3.1.3, we analyze the target of
the above map to be

(R/F e(R)) ⊗F e(R) F e(R̂) = {R ⊗F e(R) F e(R̂)}/{F e(R) ⊗F e(R) F e(R̂)}
= R̂/F e(R̂).

That is to say, we conclude that the map R/F e(R) → R̂/F e(R̂) is injective,
and hence that R ∩ F e(R̂) = F e(R).

This completes the proof of Lemma 1.3.1.4.

Chapter 2. Idealistic Filtration

The purpose of this chapter is to introduce the notion of an idealistic filtra-
tion, which is the main language to describe our program toward constructing
an algorithm for resolution of singularities, and establish its fundamental prop-
erties.

We develop our argument over a ring R, which is assumed to be the co-
ordinate ring of an affine open subset of a nonsingular variety W over k, or
its localization, or its completion with respect to a maximal ideal. That is to
say, more geometrically speaking, we carry out our analysis over an affine open
subset of a nonsingular variety W , or over a stalk, or over the analytic structure
at a closed point. Since the main operations on an idealistic filtration, such
as the operations of taking the D-saturation and R-saturation, are compatible
with localization and completion (for an idealistic filtration of r.f.g. type), it
is immediate to extend the (analytically) local analysis of this chapter to the
global argument, which we will develop in the subsequent papers.

§2.1. Idealistic filtration over a ring

Let R be the coordinate ring of an affine open subset of a nonsingular
variety W over k, or its localization, or its completion with respect to a maximal
ideal.
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2.1.1. Definitions.

Definition 2.1.1.1.

(1) Let T ⊂ R × R be a subset. For a ∈ R, we set Ta = {f ∈ R ; (f, a) ∈ T}.

(2) We call a subset I ⊂ R × R an idealistic filtration if it satisfies the following
conditions: 

(o) I0 = R,

(i) Ia is an ideal of R for any a ∈ R
(Ia is called the ideal of I at level a)

(ii) IaIb ⊂ Ia+b for any a, b ∈ R,

(iii) Ib ⊃ Ia if b ≤ a.

(3) Let T ⊂ R × R be a subset. We call the minimal idealistic filtration con-
taining T the idealistic filtration generated by T and denote it by G(T ). If
I = G(T ), we call T a set of generators for I (cf. Lemma 2.2.1.1 (2)).

When we want to emphasize the base ring R over which T generates the
idealistic filtration, we write GR(T ) inserting R as a subscript.

(4) We say an idealistic filtration I is of r.f.g. type (short for rationally and
finitely generated) if there exists a finite set T ⊂ R × Q ⊂ R × R such that
I = G(T ).

(5) Let T ⊂ R × R≥0 be a subset. Let P ∈ Spec R be a point. We define the
multiplicity µP (T ) of T at P to be

µP (T ) := inf
{

µP (f, a) :=
ordP (f)

a
; (f, a) ∈ T, a > 0

}
.

Note that we set µP (f, 0) = ∞ for any f ∈ R by definition, while ordP (0) = ∞.

(6) Let T ⊂ R × R be a subset. We define the support Supp(T ) of T to be

Supp(T ) = {P ∈ Spec R ; µP (T ) ≥ 1}.

Remark 2.1.1.2.

(1) It is straightforward to see that a subset I ⊂ R ×R is an idealistic filtration
if and only if it satisfies the following conditions:

(o) (f, 0) ∈ I ∀f ∈ R, (0, a) ∈ I ∀a ∈ R,

(i) (f, a), (g, a) ∈ I =⇒ (f + g, a) ∈ I,
r ∈ R, (f, a) ∈ I =⇒ (rf, a) ∈ I,

(ii) (f, a), (h, b) ∈ I =⇒ (fh, a + b) ∈ I,
(iii) (f, a) ∈ I, b ≤ a =⇒ (f, b) ∈ I.
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We invite the reader to look at 0.2.3.1. in Chapter 0 for the motivation behind
introducing the notion of an idealistic filtration.

(2) When T = I ⊂ R × R is an idealistic filtration, we define its multiplicity
µP (I) at a point P ∈ Spec R, and its support Supp(I) according to Definition
2.1.1.1 (5) and (6).

2.1.2. D-saturation. We define the notion of the differential saturation
(which we call the D-saturation for short) of an idealistic filtration. Budding
of an idea leading to the notion of D-saturation can be observed in the work of
Giraud and Villamayor, where they discuss the enlargement, called the exten-
sion, of an ideal obtained by adding the partial derivatives of the elements in
the ideal.

Definition 2.1.2.1. Let I ⊂ R × R be an idealistic filtration. We say I
is D-saturated if it satisfies the following condition (differential):

(differential) (f, a) ∈ I, d ∈ Difft
R =⇒ (d(f), a − t) ∈ I.

(We refer the reader to Chapter 1 for the meaning of the notation Difft
R.)

Let I be an idealistic filtration. We call the minimal D-saturated idealistic
filtration containing I the differential saturation (or D-saturation for short) of
I, and denote it by D(I) (cf. Lemma 2.2.1.1).

Let E be a simple normal crossing divisor on W . Then using the log-
arithmic differential operators with respect to E instead of the usual differ-
ential operators (cf. Definition 1.2.2.1), we consider the following condition
(differential)E :

(differential)E (f, a) ∈ I, d ∈ Difft
R,E =⇒ (d(f), a − t) ∈ I.

Replacing condition (differential) with condition (differential)E , we obtain the
notion of an idealistic filtration being DE-saturated and that of the DE-
saturation.

2.1.3. R-saturation. We define the notion of the radical saturation
(which we call the R-saturation for short) of an idealistic filtration. Note that,
for an R-saturated idealistic filtration, we not only require that we can take
the n-th root (radical) of an element within the idealistic filtration (if it exists
within R × R) for any n ∈ Z>0, but also require the continuity by definition.
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Definition 2.1.3.1. Let I ⊂ R × R be an idealistic filtration. We say I
is R-saturated if it satisfies the following conditions (radical) and (continuity):

(radical) (fn, na) ∈ I, f ∈ R, n ∈ Z>0 =⇒ (f, a) ∈ I
(continuity) {(f, al)} ⊂ I with liml→∞ al = a =⇒ (f, a) ∈ I.

Let I be an idealistic filtration. We call the minimal R-saturated idealistic
filtration containing I the radical saturation (or R-saturation for short) of I,
and denote it by R(I) (cf. Lemma 2.2.1.1).

Remark 2.1.3.2.

(1) We remark that, in positive characteristic p = char(k) > 0, if an idealis-
tic filtration I satisfies the following condition (Frobenius), which is a priori
slightly weaker than condition (radical), and condition (continuity), then it
actually satisfies conditions (radical) and (continuity). Therefore, instead of
checking conditions (radical) and (continuity) in order to show that a given
idealistic filtration is R-saturated in positive characteristic, we could check
conditions (Frobenius) and (continuity):

(Frobenius) (fp, pa) ∈ I, f ∈ R =⇒ (f, a) ∈ I.

In fact, suppose we have (fn, na) ∈ I, f ∈ R and n ∈ Z>0. Take e ∈ Z>0

so that pe > n, and take r ∈ Z≥0 with 0 ≤ r < n so that r ≡ pe mod n. Then

(fn, na) ∈ I=⇒(fpe−r, a · (pe−r))∈I by condition (ii) in Remark 2.1.1.2 (1)
=⇒(fpe

, a · (pe−r))∈I by condition (i) in Remark 2.1.1.2 (1)
=⇒(f, a · (1−p−er))∈I by condition (Frobenius)
=⇒(f, a)∈I by condition (continuity) with e→∞.

(2) In view of condition (iii) in Remark 2.1.1.2 (1), requiring condition (conti-
nuity) is equivalent to requiring the following (left continuity):

(left continuity) {(f, al)}⊂I with {al} increasing and lim
l→∞

al =a=⇒(f, a)∈I.

In terms of the ideals of an idealistic filtration associated to the levels, condi-
tion (left continuity) translates into the condition

Ia =
⋂
b<a

Ib ∀a ∈ R.

When an idealistic filtration is of r.f.g. type, this condition can be checked
rather easily. Therefore, we see that condition (continuity) is always satisfied
for an idealistic filtration of r.f.g. type. See Corollary 2.3.2.3 for detail.
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2.1.4. Integral closure. We define the notion of the integral closure of
an idealistic filtration, which is closely related to the notion of the R-saturation.
In general, if an idealistic filtration is R-saturated, then it is integrally closed. In
particular, for an idealistic filtration of r.f.g. type, where condition (continuity)
is automatic, it is R-saturated if and only if it is integrally closed.

We also conclude in Corollary 2.3.2.7, through the argument showing the
stability of r.f.g. type under R-saturation, that, for an idealistic filtration of
r.f.g. type, the R-saturation and the integral closure coincide.

Definition 2.1.4.1. Let I ⊂ R × R be an idealistic filtration.

(1) We say an element (f, a) ∈ R × R is integral over I if f satisfies a monic
equation of the form

fn + c1f
n−1 + · · · + cn = 0 with (ci, ia) ∈ I for i = 1, . . . , n.

(2) We say I is integrally closed if it satisfies the following condition (ic):

(ic) (f, a) ∈ R × R is integral over I =⇒ (f, a) ∈ I.

Let I be an idealistic filtration. We call the minimal integrally closed ideal-
istic filtration containing I the integral closure of I, and denote it by IC(I)
(cf. Lemma 2.2.1.1).

Remark 2.1.4.2. The notion of the integral closure is important in our
program. However, since the R-saturation and the integral closure coincide for
an idealistic filtration of r.f.g. type, and since almost all the idealistic filtrations
we consider are of r.f.g. type, we seldom use the symbol IC(I) or the notion
of the integral closure explicitly, and almost always use the notion of the R-
saturation, which is denoted by R(I).

2.1.5. B-saturation. We define the notion of the bi-saturation (which
we call the B-saturation). For the purpose of extracting the intrinsic infor-
mation toward a solution of the problem of resolution of singularities, we take
various saturations of a given idealistic filtration (cf. 0.2.3.2.3.). It would be
best if we could take an “optimal” one among such. In our algorithm, the
B-saturation (or BE-saturation) plays the role of the optimal saturation.

Definition 2.1.5.1. Let I ⊂ R × R be an idealistic filtration. We say
I is B-saturated (resp. BE-saturated) if it is both D-saturated (resp. DE-
saturated) and R-saturated. Given an idealistic filtration I, we call the minimal
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B-saturated (BE-saturated) idealistic filtration containing I the B-saturation
(resp. BE-saturation) of I, and denote it by B(I) (resp. BE(I)) (cf. Lemma
2.2.1.1).

Remark 2.1.5.2. While the existence of the B-saturation is as straight-
forward as the existence of the other saturations and integral closure, its explicit
construction is quite remarkable, which we will see in Corollary 2.4.2.3. We de-
scribe the explicit construction of the other saturations and integral closure in
Lemma 2.2.1.2.

§2.2. Basic properties of an idealistic filtration

In this section, we discuss some basic properties of an idealistic filtration
over a ring. We use the same notation as in §2.1.

2.2.1. On generation, D-saturation, R-saturation, integral clo-
sure, and B-saturation. The next two lemmas discuss the existence and
explicit construction of the idealistic filtration generated by a subset T ⊂ R×R,
the D-saturation, R-saturation, integral closure, and B-saturation.

Lemma 2.2.1.1.

(1) The intersection
⋂

λ∈Λ Iλ ⊂ R × R of a non-empty collection {Iλ}λ∈Λ of
idealistic filtrations is again an idealistic filtration. Moreover, if each Iλ is
D-saturated (resp. DE-saturated, R-saturated, integrally closed, B-saturated,
BE-saturated), then so is the intersection

⋂
λ∈Λ Iλ.

(2) Let T ⊂ R × R be a subset. Then G(T ) exists (cf. Definition 2.1.1.1 (3)).

(3) Let I be an idealistic filtration. Then D(I) (resp. DE(I), R(I), IC(I), B(I),
BE(I)) exists (cf. 2.1.2, 2.1.3, 2.1.4, 2.1.5).

Proof.
(1) It is clear from the definitions.
(2) Let S = {Iλ ; Iλ ⊃ T} be the collection of all the idealistic filtrations

containing T . Note that S is non-empty, since R × R ∈ S. Now it is clear that
the intersection

⋂
Iλ∈S Iλ is the minimal idealistic filtration containing T .

(3) Let S = {Iλ ; Iλ ⊃ I} be the collection of all the D-saturated (resp.
DE-saturated, R-saturated, integrally closed, B-saturated, BE-saturated) ide-
alistic filtrations containing I. Note that S is non-empty, since R × R ∈ S.
Now it is clear that the intersection

⋂
Iλ∈S Iλ is the minimal D-saturated (resp.
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DE-saturated, R-saturated, integrally closed, B-saturated, BE-saturated) ide-
alistic filtration containing I.

This completes the proof of Lemma 2.2.1.1.

Lemma 2.2.1.2. Let I be an idealistic filtration generated by T = {(fλ,

aλ)} ⊂ R × R, i.e., I = G(T ).

(1) Define a subset I′ ⊂ R × R by setting

I′a =
(∏

fnλ

λ ; nλ ∈ Z≥0,
∑

nλaλ ≥ a
)

a ∈ R.

Then I′ is an idealistic filtration, and I′ = I. Note that, when T = ∅, we use
the convention

G(∅) = ({0} × R) ∪ (R × R≤0).

(2) Let (x1, . . . , xd) be a regular system of parameters for R. Set

T ′ =
{

(∂XJ fλ, aλ − |J |) ; J ∈ Zd
≥0, (fλ, aλ) ∈ T

}
.

Then we have D(I) = G(T ′).
Let E be a simple normal crossing divisor, and say, {x1 · · ·xm = 0} defines

E for some 1 ≤ m ≤ d. Set

T ′
E =

{
(XJE∂XJ fλ, aλ − |J |) ; J ∈ Zd

≥0, (fλ, aλ) ∈ T
}

.

Then we have DE(I) = G(T ′
E). (We refer the reader to 1.2.2 for the notation.)

(3) Define subsets K, K ⊂ R × R by

Ka = {f ∈ R ; fn ∈ Ina for some n ∈ Z>0}, Ka =
⋂
b<a

Kb (a ∈ R).

Then K is an idealistic filtration, and R(I) = K .

(4) Let J ⊂ R × R be the subset consisting of all the elements integral over I.
Then J is an idealistic filtration, and IC(I) = J.

Proof.
(1) It is straightforward to see that I′ is an idealistic filtration, and that

any idealistic filtration containing T necessarily contains I′. Therefore, I′ = I
by the definition of I = G(T ).

(2) Let I′ be a D-saturated idealistic filtration containing T , or equiv-
alently containing I. Then it is clear that I′ ⊃ G(T ′). Therefore, in order
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to see D(I) = G(T ′), we have only to show G(T ′) is D-saturated, which fol-
lows from the fact that Difft

R is generated by {∂XJ ; |J | ≤ t} as an R-module,
and the generalized product rule (cf. Lemma 1.2.1.2). The proof for the case
of DE-saturation is identical to the case of D-saturation, replacing the usual
differentials with the logarithmic ones.

(3) Let I′ be an R-saturated idealistic filtration containing I. As I′ satisfies
condition (radical), we have K ⊂ I′. Therefore, we conclude

Ka =
⋂
b<a

Ka ⊂
⋂
b<a

I′b = I′a,

where the last equality follows since I′ satisfies condition (continuity) (cf. Re-
mark 2.1.3.2 (2)). That is to say, K ⊂ I′.

Thus, in order to see R(I) = K, we have only to show that K itself is an
idealistic filtration containing I, satisfying conditions (radical) and (continuity).

First we show that K is an idealistic filtration. We have only to check
that Ka (a > 0) is closed under addition (cf. Definition 2.1.1.1 (1) and Remark
2.1.1.2 (1)), while the other conditions follow easily. Take f, g ∈ Ka. Then for
any b < a, there exists n ∈ Z>0 such that fn, gn ∈ Inb. Then for any k ∈ Z>0,
we have

(f + g)k =
k∑

i=0

(
k

i

)
f igk−i ∈ I�

i
n �+� k−i

n �
nb ⊂ Ib(k−2n)

since � i
n�+�k−i

n � ≥ k
n −2. Therefore, we have f +g ∈ Kb(1−2nk−1). Since b < a

and k > 0 are arbitrary (while n depends only on b), we conclude f + g ∈ Kc

for any c < a. Therefore, we have f + g ∈ ⋂
c<a Kc = Ka.

Secondly we check condition (continuity) for K. In fact, we have

Ka =
⋂
b<a

Kb =
⋂
b<a

⋂
c<b

Kc =
⋂
b<a

Kb.

Therefore, K satisfies condition (continuity) (cf. Remark 2.1.3.2 (2)).
Finally we check condition (radical) for K. Suppose fn ∈ Ka. Fix b < a.

Then fn ∈ Kb by definition of K, and there exists m ∈ Z>0 such that (fn)m ∈
Imb by definition of K. Therefore, we have f ∈ Kn−1b. Since b < a is arbitrary,
we have f ∈ ⋂b<a Kn−1b = Kn−1a. Therefore, K satisfies condition (radical).

(4) It is clear that, if I′ is an idealistic filtration containing I and satisfying
(ic), then J ⊂ I′. Thus, in order to see IC(I) = J, we have only to show that J
itself is an idealistic filtration containing I, satisfying condition (ic).

It is clear that J contains I. Consider the graded subring Gr(I) :=
⊕

a∈R
×IaXa ⊂⊕

a∈R RXa, where X is a variable transcendental over R, and where
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the structure of the graded R-algebra is given through multiplication rule
XaXb = Xa+b.

Observe (cf. [Mat86]) that

(f, a) is integral over I ⇐⇒ Gr(I)[fXa] is a finite Gr(I)-module.

Observe also that
Gr(G(I, (f, a))) = Gr(I)[fXa].

Now from these observations it follows easily that J is an idealistic filtration,
and that J satisfies condition (ic).

This completes the proof for Lemma 2.2.1.2.

2.2.2. R-saturated implies integrally closed.

Proposition 2.2.2.1. Let I ⊂ R × R be an idealistic filtration. If I is
R-saturated, then I is integrally closed.

Proof. Let I be an R-saturated idealistic filtration. Suppose (f, a) ∈
R × R is integral over I, i.e., f satisfies a monic equation of the form

(�) fn + c1f
n−1 + · · · + cn = 0 with (ci, ia) ∈ I for i = 1, . . . , n.

We want to show (f, a) ∈ I.
If a ≤ 0, then obviously (f, a) ∈ I (cf. conditions (o), (iii) in Remark 2.1.1.2

(1)). Thus, we may further assume a > 0. Let

βl = 1 −
(

n − 1
n

)l

(l ∈ Z≥0).

We show by induction that

(♥)l (f, aβl) ∈ I.

(♥)0 is clear. Suppose we have shown (♥)l. Using the monic equation (�), we
have

fn = −(c1f
n−1 + · · · + cn)

with
(cif

n−i, a{i + (n − i)βl}) ∈ I (1 ≤ i ≤ n).

Since 0 ≤ βl < 1, we have

min
i

{i + (n − i)βl} = 1 + (n − 1)βl = nβl+1.
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Therefore, we conclude
(fn, anβl+1) ∈ I.

Since I is R-saturated, it follows from condition (radical)

(♥)l+1 (f, aβl+1) ∈ I.

Thus (♥)l is valid for all l ∈ Z≥0.
Note that liml→∞ aβl = a. Therefore, by condition (continuity) satisfied

by I, we conclude
(f, a) ∈ I.

Therefore, I is integrally closed.
This completes the proof of Proposition 2.2.2.1.

2.2.3. Analysis of interaction between D-saturation and
R-saturation. So far, we have studied the D-saturation and R-saturation
separately. In this subsection, we analyze the interaction of the operations of
taking D-saturation and R-saturation. Under the assumption that R has a
regular system of parameters, our result is stated in the following proposition,
which leads to the explicit construction of the B-saturation. Furthermore, the
assumption is later removed for an idealistic filtration of r.f.g. type (cf. Corol-
lary 2.4.2.3).

Proposition 2.2.3.1. Let I be an idealistic filtration over R which has
a regular system of parameters (x1, . . . , xd). Then DR(I) ⊂ RD(I).

If E is a simple normal crossing divisor defined by {x1 · · ·xm = 0} for
some 1 ≤ m ≤ d, then DER(I) ⊂ RDE(I).

Proof. We present a proof of the latter assertion in the logarithmic
case, as the former is a special case of the latter (E = ∅).

Step 1. Reduction of the assertion to the statement (♣).
By replacing I with DE(I) and via the obvious inclusion DER(I) ⊂ DER

×(DE(I)), we see that it suffices to prove the inclusion

DER(I) ⊂ R(I),

assuming I is DE-saturated. In order to show the first inclusion above, by
Lemma 2.2.1.2 (2), we have only to show⋃

J

{(DJ (f), a − |J |) ; (f, a) ∈ R(I)} ⊂ R(I),
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where DJ = XJE ∂XJ . Now since DJ = Dj1e1 · · ·Djded
, this second inclusion

then follows if we can show, for 1 ≤ i ≤ d, the inclusion below⋃
j≥0

{(Djei
(f), a − j) ; (f, a) ∈ R(I)} ⊂ R(I).

Let K, K ⊂ R × R be as in Lemma 2.2.1.2 (3). We claim that we may even
replace the range R(I) of (f, a) in the left hand side of the third inclusion with
K. That is to say, we claim it suffices to show

(♦)
⋃
j≥0

{(Djei
(f), a − j) ; (f, a) ∈ K} ⊂ R(I).

In fact, (♦) implies

{(Djei
(f), a − j) ; (f, a) ∈ K} ⊂ {(Djei

(f), a − j) ; (f, a) ∈ K} ⊂ R(I),

where, given a subset T ⊂ R × R, the subset T is defined by T a =
⋂

b<a Tb.
Since K = R(I) = R(I), this inclusion then would imply the third one.

Finally, we reduce (♦) to the following general statement:

(♣) Djei
(f) ∈ RDE(G{(fn, na)})a−j (f ∈ R, a ∈ R, 1 ≤ i ≤ d, n > 0, j ≥ 0).

Indeed, given f ∈ Ka, there exists n ∈ Z>0 such that fn ∈ Ina. Thus, (♣)
implies Djei

(f) ∈ RDE(G{(fn, na)})a−j ⊂ RDE(I)a−j = R(I)a−j since I is
assumed to be DE-saturated. Thus (♣) implies (♦).

Therefore, we conclude that the assertion of the lemma is reduced to the
statement (♣).

Step 2. Setup for the inductional proof of (♣).
We fix 1 ≤ i ≤ d, and omit i from the notation in the following argument. For

example, we denote Djei
by Dj . We also denote RDE(G({(fn, na)})) by J to

ease the notation.
Set c = �a�. We prove the statement (♣) by induction on c. We may

assume 0 ≤ j ≤ c, since otherwise we have a − j < 0 and Ja−j = R, in which
case (♣) clearly holds.

Case 1. c = 0.
In this case, j must be 0, and we obviously have

(Dj(f), a − j) = (f, a) ∈ R(G({(fn, na)})) ⊂ J.

Thus (♣) holds.
Case 2. c ≥ 1.
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In this case, we show (♣) in Steps 3, 4, and 5 using the inductional hypothesis.
Observe that

(Dj(f), a − j − 1) ∈ RDE(G({(fn, na − n)})) ⊂ J

for 0 ≤ j ≤ c − 1 = �a − 1�, from the inductional hypothesis.
Step 3. Construction of a sequence {bu,j}.

Our strategy for showing (♣) is, starting from the following initial state

b0,j = 1 (1 ≤ j ≤ c − 1), b0,c = a − c, bu,0 = 0 (u ≥ 0),

to construct the (double) sequence of numbers bu,j indexed by 0 ≤ j ≤ c and
u ∈ Z≥0 satisfying the following conditions (♠) and (♥):

(♠) (Dj(f), a − j − bu,j) ∈ J, (♥) lim
u→∞ bu,j = 0.

We construct the numbers bu,j inductively according to the lexicographical
order on the double index (u, j). Suppose we have already constructed all bα,β

with (α, β) < (u, j). Then, we define the number bu,j by the following formula

nbu,j = max

{0} ∪
∑

tl<j

bu,tl
+

∑
j≤tl≤c

bu−1,tl
+
∑
c<tl

(a − tl) ; T ∈ S∗
n,j




where Sn,j =
{
T ∈ Zn

≥0 ; |T | = nj
}

and S∗
n,j = Sn,j \ {(j, . . . , j)}.

Step 4. Verification of (♠).
By the argument in Step 2, condition (♠) holds at the initial state, i.e., if u = 0
or j = 0. We proceed to check condition (♣) by induction on the pair (u, j)
in the lexicographical order. Using the logarithmic version of the generalized
product rule (cf. Lemma 1.2.2.2 (2)) for fn, we compute

(	) Dj(f)n = Dnj(fn) −
∑

T∈S∗
n,j

n∏
l=1

Dtl
(f).

Take T ∈ S∗
n,j . Then, by inductional hypothesis, we have

 n∏
l=1

Dtl
(f),

∑
tl<j

(a − tl − btl,u) +
∑

j≤tl≤c

(a − tl − btl,u−1)

 ∈ J.
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By definition of bu,j and the fact
∑

l(a − tl) = na −∑
l tl = na − nj, we have∑

tl<j

(a − tl − btl,u) +
∑

j≤tl≤c

(a − tl − btl,u−1)

=
∑
tl≤c

(a − tl) −
∑
tl<j

btl,u −
∑

j≤tl≤c

btl,u−1

= n(a − j) −
∑

tl<j

btl,u +
∑

j≤tl≤c

btl,u−1 +
∑
tl>c

(a − tl)

 ≥ n(a − j) − nbu,j .

On the other hand, by definition of J, we have Dnj(fn) ∈ Jna−nj . Since bu,j ≥ 0
by definition, we have (Dnj(fn), n(a − j) − nbu,j) ∈ J. Therefore, by virtue of
the formula (	). we have (Dj(f)n, n(a − j) − nbu,j) ∈ J. As J is R-saturated,
we have (Dj(f), a − j − bu,j) ∈ J. Thus (♠) holds for (u, j), as desired.

Step 5. Verification of (♥).
We have only to show the following inequality:

(
) bu,j ≤ (
1 − n−j

) (
1 − n−c

)u−1 (u ≥ 1, j ≥ 0).

In fact, since bu,j ≥ 0 by definition and 0 < 1 − n−m < 1, condition (♥)
obviously follows from inequality (
).

We prove (
) by induction on the pair (u, j) in the lexicographical order.
Since bu,0 = 0, inequality (
) is valid for j = 0.
By definition of bu,j and from the fact

∑
c<tl

(a − tl) < 0, we have an
estimate

nbu,j ≤ max

∑
tl<j

bu,tl
+

∑
j≤tl≤c

bu−1,tl
; T ∈ S∗

n,j

 .

By inductional hypothesis, we observe the following (i) and (ii):
(i) For tl < j, we have

bu,tl
≤ (

1 − n−tl
) (

1 − n−c
)u−1 ≤ (

1 − n1−j
) (

1 − n−c
)u−1

(ii) For j ≤ tl ≤ c, we have

bu−1,tl
≤ (

1 − n−tl
) (

1 − n−c
)u−2 ≤ (

1 − n−c
)u−1

.

We also mention that, for any T = (t1, . . . , tn) ∈ S∗
n,j , there exists at least one

1 ≤ l ≤ n such that tl < j.
By these observations, we obtain the following estimate:

nbu,j ≤ (
1 − n1−j

) (
1 − n−c

)u−1 +
(
n − 1

)(
1 − n−c

)u−1

=
(
n − n1−j

) (
1 − n−c

)u−1 = n
(
1 − n−j

) (
1 − n−c

)u−1
,
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which implies inequality(
) for (u, j). This completes the proof for inequality
(
), and hence the verification of (♥).

Step 6. Finishing argument.
In the previous Steps, we confirmed conditions (♠) and (♥). Consequently,

since J is R-saturated, we have Dj(f) ∈ Ja−j for 0 ≤ j ≤ c. Namely (♣) holds
for c = �a�. This completes the inductional proof of (♣) stated in Step 2. This
completes the proof of Proposition 2.2.3.1.

Corollary 2.2.3.2. Let I be an idealistic filtration over R which has a
regular system of parameters (x1, . . . , xd). Then B(I) = RD(I).

If E is a simple normal crossing divisor defined by {x1 · · ·xm = 0} for
some 1 ≤ m ≤ d, then BE(I) = RDE(I).

Proof. We present a proof of the latter assertion in the logarithmic
case, as the former is a special case of the latter (E = ∅).

Since BE(I) is DE-saturated, we have BE(I) ⊃ DE(I). Then since BE(I)
is R-saturated, we have BE(I) ⊃ RDE(I). In order to see the opposite in-
clusion, we have only to show that RDE(I) is DE-saturated. By Proposition
2.2.3.1, we see

RDE(I) ⊂ DERDE(I) ⊂ RDEDE(I) = RDE(I).

Therefore, we conclude that RDE(I) = DERDE(I) is DE-saturated.
This completes the proof of Corollary 2.2.3.2.

Remark 2.2.3.3. Villamayor (cf. [Vil06a] [Vil06b] [EV07]) studies the in-
teraction between D-saturation and R-saturation in the context of the Rees
algebra (i.e., the relation between the differential structure and integral closure
in his language), and obtains the results similar to ours independently. For ex-
ample, Proposition 2.9 of [EV07] can be obtained if we apply our Proposition
2.2.3.1 to an idealistic filtration of r.f.g. type (cf. Corollary 2.4.2.3) and restrict
our attention to its ideals at the integral levels. It seems, however, that the
critical difference lies in the fact that our analysis involves the rational (and
real) levels. The introduction of the rational levels is not a matter of theoretical
convenience in our approach, but leads to a real difference in carrying out the
steps of our algorithm, when we compute the invariant µ̃ and construct the
associated companion modification (cf. Remark 3.2.2.2 (6) and Parts II, III,
IV).
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§2.3. Idealistic filtration of r.f.g. type

In Sections 2.1 and 2.2, we gave the definition of, and carried discussion
on the properties of, an idealistic filtration in general. However, the idealistic
filtrations we deal with in our algorithm are all of r.f.g. type (cf. Definition
2.1.1.1 (4)). Or rather to say, in order to guarantee for all the mechanisms
and arguments in our algorithm to work properly, we need to know that the
idealistic filtrations involved are all of r.f.g. type.

Since the operations of taking the D-saturation and R-saturation of a given
idealistic filtration are essential in our algorithm, it is then a natural and im-
portant question whether the property of being of r.f.g. type is stable under
these operations. The most important result of this section is to give an affir-
mative answer to this question: if an idealistic filtration I is of r.f.g. type, then
so are D(I) and R(I). As a consequence, starting from an idealistic filtration
of r.f.g. type, we see that we stay in the category of the idealistic filtrations of
r.f.g. type throughout the execution of our algorithm. We remark that some
related results can be found in [Hir03], discussing properties of an idealistic
exponent.

For D-saturation, the verification of stability is elementary, using compat-
ibility of D-saturation with localization (cf. Proposition 2.4.2.1 (2)) and using
the explicit construction in Lemma 2.2.1.2.

For R-saturation, however, the verification of stability is rather subtle.
Our argument presented here is due to Professor Shigefumi Mori, who showed
us how the contents of [Nag57] can be adapted to verify the required stabil-
ity under R-saturation. The essential point, starting from a given idealistic
filtration of r.f.g. type I, is to show the rationality and boundedness of the
denominators of the numbers a where R(I)a changes. Once the crucial ratio-
nality and boundedness are shown, stability can be reinterpreted as the finite
generation of the integral closure as an R-algebra (in some finite extension of
the field of fractions) of a certain graded ring, which is naturally associated to
the idealistic filtration I of r.f.g. type.

We remark that, among the proposed approaches (cf. 0.5.2), the consid-
eration of the rational levels and the actual use of the R-saturation in the
execution of an algorithm are unique to the IFP, and hence so is its call for
stability of r.f.g. type under R-saturation.

In this section, R denotes the coordinate ring of an affine open subset of
a variety W smooth over k of char(k) = p ≥ 0, or its localization by some
multiplicative set.
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2.3.1. Stability of r.f.g. type under D-saturation. We show that the
property of an idealistic filtration being of r.f.g. type is stable under
D-saturation.

Proposition 2.3.1.1. Let I ⊂ R × R be an idealistic filtration. If I is
of r.f.g. type, then so is its D-saturation D(I) (or DE-saturation DE(I)).

Proof. Step 1. Reduction to the case where there exists a regular system
of parameters (x1, . . . , xd) for R, where d = dim W .
We take a finite affine cover {Spec Rgl

; gl ∈ R}l∈L of Spec R with #L < ∞ so
that for each Rgl

there exists a regular system of parameters for Rgl
.

Since I is of r.f.g. type, so is Igl
, its localization by gl.

Suppose we have shown that D(Igl
) is of r.f.g. type, i.e., there exists a

finite set
TΛl

= {(fλl
, aλl

)}λl∈Λl
⊂ Rgl

× Q

such that D(Igl
) = GRgl

(TΛl
).

Observe that, since D(Igl
) = D(I)gl

by compatibility of localization with
D-saturation (cf. Proposition 2.4.2.1 (2)), for each (fλl

, aλl
), there exist (hλ, aλ)

∈ D(I) and nλ ∈ Z>0 such that (fλl
, aλl

) = (g
−nλl

l hλl
, aλl

).
Then it is easy to see that the finite set

TΛ = {(hλl
, aλl

) ; λl ∈ Λl, l ∈ L} ⊂ D(I)

generates D(I), i.e., D(I) = GR(TΛ). In fact, by construction, we have

D(I)gl
⊃ GR(TΛ)gl

⊃ GRgl
(TΛl

) = D(Igl
) = D(I)gl

,

i.e., D(I)gl
= GR(TΛ)gl

for any l ∈ L, and hence D(I) = GR(TΛ).
Step 2. Proof of the statement in the case where there exists a regular

system of parameters (x1, . . . , xd) for R, where d = dim W .
Take a finite set of generators TΛ of the form

TΛ = {(fλ, aλ)}λ∈Λ ⊂ R × Q

such that I = G(TΛ). We may assume aλ > 0 ∀λ ∈ Λ by discarding those
with aλ ≤ 0. Let

TM = {(∂XJ fλ, aλ − |J |) ; (fλ, aλ) ∈ TΛ, 0 ≤ |J | < aλ}.

Then clearly we have #TM < ∞ and aλ − |J | ∈ Q ∀λ and ∀J with 0 ≤ |J | <

aλ.
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Now it follows from Lemma 2.2.1.2 (2) that D(I) = G(TM ). Therefore, we
conclude that D(I) is of r.f.g. type.

The proof for stability under DE-saturation is identical. This completes
the proof for Proposition 2.3.1.1.

2.3.2. Stability under R-saturation. We show that the property of
an idealistic filtration being of r.f.g. type is stable under R-saturation. We deal
with the problem of stability in terms of a certain graded ring which is naturally
associated to an idealistic filtration I of r.f.g. type and which “describes” I in
the sense stated below.

Definition 2.3.2.1. Let A =
⊕

n∈Z≥0
AqnXqn ⊂ ⊕

n∈Z≥0
RXqn =

R[Xq] be a graded R-subalgebra of the polynomial ring with one variable Xq

over R for some q ∈ Q>0. Let I ⊂ R × R be an idealistic filtration. We say A

describes I if it satisfies the following condition:

Iqa = Aq�a� for any a ∈ R≥0.

Lemma 2.3.2.2. Let I ⊂ R × R be an idealistic filtration. Then I is of
r.f.g. type if and only if there exists A which describes I (as stated in Definition
2.3.2.1) and which is finitely generated as an R-algebra.

Proof. Suppose that there exists such A which describes I and which
is generated by a finite set of homogeneous elements {fλXqnλ}λ∈Λ as a graded
R-subalgebra in R[Xq]. Then I is generated by the finite set {(fλ, qnλ)}λ∈Λ,
and hence is of r.f.g. type.

Conversely, suppose that I is an idealistic filtration of r.f.g. type, generated
by a finite set T = {(fλ, nλ

δ )}λ∈Λ ⊂ R × Q for some δ ∈ Z>0. It is immediate
that, if we take the graded R-subalgebra A of R[Xq], with q = δ−1 and A0 = R,
generated by the finite set {fλX

i
δ ; λ ∈ Λ, 0 ≤ i ≤ nλ} over R, then A describes

I.
This completes the proof of Lemma 2.3.2.2.

We remark that if I is an idealistic filtration of r.f.g. type, and if A ⊂
R[Xq] is a graded R-subalgebra which describes I for some q ∈ Q>0, then A is
automatically finitely generated over R.

Corollary 2.3.2.3. Let I be an idealistic filtration of r.f.g. type. Then
I satisfies condition (continuity).
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Proof. We want to show Ia =
⋂

b<a Ib for any a ∈ R (cf. Remark 2.1.3.2
(2)).

It is clear when a ≤ 0 (cf. condition (o) in Definition 2.1.1.1 (2)).
Suppose a > 0. By Lemma 2.3.2.2, there exists a graded R-subalgebra

A ⊂ R[Xq], for some q ∈ Q>0, which describes I and which is finitely generated
as an R-algebra. Then by definition we have Iqa = Aq�a�. Since Is ⊃ It for any
s < t, we conclude⋂

b<a

Iqb =
⋂

�a�−1<b<a

Iqb =
⋂

�a�−1<b<a

Aq�b� =
⋂

�a�−1<b<a

Aq�a� = Aq�a� = Iqa,

i.e., Iqa =
⋂
b<a

Iqb.

This completes the proof of Corollary 2.3.2.3.

Proposition 2.3.2.4. Let I ⊂ R × R be an idealistic filtration. If I is
of r.f.g. type, then so is its R-saturation.

Before beginning the proof of Proposition 2.3.2.4, we extract the essence
that we need from Nagata’s paper [Nag57] with some modifications.

Let R be a noetherian domain, K = Q(R) its field of fractions and a =
(u1, . . . , us) ⊂ R a proper ideal of R with a finite set of its generators uj . Set

Rj = R
[

u1
uj

, . . . , us

uj

]
, and let Rj be its normalization in Q(Rj) = K for each

j. Let {Pjk}k ⊂ Spec Rj be the set of all the minimal primes of ujRj . Note
that it is a finite set and that, by Krull’s Hauptidealsatz, the primes Pjk are of
height 1. Let Rjk = (Rj)Pjk

be the localization of Rj at Pjk for each j, k. Since
Rjk is a 1-dimensional noetherian normal ring, it is a discrete valuation ring.
We denote the valuation of Rjk by vjk for each j, k. We consider the functions
θa, θa : R → R≥0 ∪ {∞} defined by

θa(r) = sup
{m

n
; rn ∈ am, n, m ∈ Z≥0, n > 0

}
,

θa(r) = sup
{m

n
; rn ∈ am, n, m ∈ Z≥0, n > 0

}
.

Using the notation as above, we have the following lemmas.

Lemma 2.3.2.5. For n ∈ Z>0, we have

an = R ∩
⋂
j,k

un
j Rjk.
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Proof. Firstly we show an ⊂ R ∩ ⋂
j,k un

j Rjk. It suffices to show
an ⊂ un

j Rjk for each j, k. Fix j, k and take f ∈ an. Then, there exists a monic
equation

fm + a1f
m−1 + · · · + am = 0 (ai ∈ ain).

Considering the valuation vjk of this equation, there exists some 1 ≤ i ≤ m such
that vjk(fm) = vjk(aif

m−i) and hence vjk(f i) = vjk(ai). Since aRjk = un
j Rjk,

we have vjk(ai) ≥ in · vjk(uj). Consequently vjk(f) ≥ nvjk(uj), and hence
f ∈ un

j Rjk. Thus the inclusion an ⊂ un
j Rjk holds.

Secondly we show the opposite inclusion an ⊃ R ∩⋂j,k un
j Rjk.

Take g ∈ R ∩⋂j,k un
j Rjk. Set R′ = R

[
un

1
g , . . . ,

un
s

g

]
and b =

(
un

1
g , . . . ,

un
s

g

)
⊂ R′. We show g ∈ an in the following Steps.

Step 1. We show b = R′.
Assume b is a proper ideal of R′. Then there exists a valuation ring (V, mV )

of Q(R′) = K such that V ⊃ R′ and mV ∩ R′ ⊃ b. We denote its valuation as
v. Take j0 such that v(uj0) = min1≤i≤s v(ui). Then, as ui

uj0
∈ V for each i, we

have
Rj0 ⊂ V and hence Rj0 ⊂ V.

Since
un

j0
g ∈ b ⊂ mv, we have g �∈ un

j0
V , and hence g �∈ un

j0
Rj0 . Now, since Rj0

is noetherian normal domain, principal ideal un
j0

Rj0 is represented as

un
j0Rj0 = Rj0 ∩

⋂
ht p=1

pvp(un
j0

)(Rj0)p = Rj0 ∩
⋂
k

P
vj0k(un

j0
)

j0k Rj0k.

Therefore there exists some k such that

g �∈ P
vj0k(un

j0
)

j0k Rj0k = un
j0

Rj0k,

which contradicts to the choice of g. Thus we have b = R′.
Step 2. We show g ∈ an.

Since 1 ∈ b by Step 1, there exists F (X1, . . . , Xs) ∈ R[X1, . . . , Xs] such that
F (0, . . . , 0) = 0 and F

(
un

1
g , . . . ,

un
s

g

)
= 1. Setting deg F = n, we obtain

0 = gn

{
1 − F

(
un

1

g
, . . . ,

un
s

g

)}
= gn + c1g

n−1 + · · · + cn with ci ∈ ai,

a monic equation which shows g ∈ an. This completes the proof of Lemma
2.3.2.5.

Lemma 2.3.2.6. Let r ∈ R. Then,

θa(r) = θa(r) = min
j,k

{
vjk(r)
vjk(uj)

}
∈ Q.
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Moreover, for n, m ∈ Z≥0 with n > 0, rn ∈ am if and only if m
n ≤ θa(r).

Proof. Step 1. We show the first equation θa(r) = θa(r).
Since am ⊂ am, it is immediate that θa(r) ≤ θa(r). We show θa(r) ≥ θa(r).
Take n, m ∈ Z≥0 with n > 0 such that rn ∈ am. By definition, there exists a
monic equation

(rn)c+1 + a1(rn)c + · · · + ac+1 = 0 with ai ∈ aim.

We show
♥t : rn(c+t) ∈ amt (rnR + am)c (t ∈ Z>0)

by induction on t. Looking at the monic equation above, we have

rn(c+1) ∈ am(rn)c + · · · + a(c+1)mrn(c+t) = am (rnR + am)c ,

thus ♥1 holds. For the case t > 1, we have

rn(c+t) = rn · rn(c+t−1) ∈ rnam(t−1)(rnR + am)c (By ♥t−1)

⊂ am(t−1)
(
rn(c+1)R + am(rnR + am)c

)
⊂ am(t−1) (am(rnR + am)c) (By ♥1)

= amt(rnR + am)c.

Thus ♥t, and hence rn(c+t) ∈ amt holds for any t ∈ Z>0. It follows that

θa(r) ≥ sup
{

mt

n(c + t)
; t ∈ Z>0

}
≥ m

n
.

Since the numbers n, m ∈ Z≥0 with n > 0 such that rn ∈ am are taken
arbitrarily, we have θa(r) ≥ θa(r).

Step 2. We show the second equality.
By Lemma 2.3.2.5, we have

rn ∈ am ⇐⇒ rn ∈ um
j Rjk (∀j, k) ⇐⇒ vjk(rn) ≥ vjk(um

j ) (∀j, k)

⇐⇒ nvjk(r) ≥ mvjk(uj) (∀j, k)

⇐⇒ m

n
≤ min

{
vjk(r)
vjk(uj)

; j, k

}
.

Therefore θa(r)=min
{

vjk(r)
vjk(uj)

; j, k
}
∈Q. The “Moreover” part is now obvious.

This completes the proof of Lemma 2.3.2.6.

We now go back to the proof of Proposition 2.3.2.4.
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Proof of Proposition 2.3.2.4. Take a finite set T = {(fλ, aλ)}λ∈Λ ⊂
R × Q such that I = G(T ).

Step 1. We may assume T ⊂ R × {L} for some L ∈ Z>0.
Replacing T with T ∩ R × R>0, we may assume T ⊂ R × Q>0. Set

L = min
{

n ∈ Z>0 ;
n

aλ
∈ Z>0 ∀λ ∈ Λ

}
and T ′ =

{
(f

L
aλ

λ , L)
}

λ∈Λ

.

Then it is clear that R(G(T )) = R(G(T ′)). Therefore, by replacing T with T ′,
we may assume T ⊂ R × {L}.

Step 2. Description of R(I) in terms of the function θI .
Let I = IL be the ideal of the idealistic filtration I at level L. Define J ⊂ R×R

by setting JLa = {f ∈ R ; θI(f) ≥ a} for a ∈ R. We show R(I) = J. Since
I = G(T ) = G(I × {L}), we have ILa = I�a� for any a ∈ R by Lemma 2.2.1.2
(1). (We use the convention that I−n = R for n ∈ Z>0). Thus, by Lemma
2.2.1.2 (3), R(I) = K where K ⊂ R × R is defined by

KLa =
{

f ∈ R ; ∀b < a, ∃n ∈ Z>0 s.t. fn ∈ InLb = I�nb�
}

(a ∈ R).

The condition above can be rephrased as follows:(
∀b < a, ∃n ∈ Z>0 s.t. fn ∈ I�nb�

)
⇔
(

sup
{

b ∈ R≥0 ; ∃n ∈ Z>0 s.t. fn ∈ I�nb�
}

≥ a
)

⇔
(

sup
{�nb 

n
; ∃n ∈ Z>0, ∃b ∈ R≥0 s.t. fn ∈ I�nb�

}
≥ a

)
⇔
(

sup
{m

n
; ∃n, m ∈ Z>0 with n > 0 s.t. fn ∈ Im

}
≥ a

)
⇔ θI(f) ≥ a.

Thus R(I)La = KLa = JLa for a ∈ R, hence R(I) = J.
Step 3. There exists ρ ∈ Z>0 such that Ja = J�ρa�/ρ for any a ∈ R.

We apply Lemma 2.3.2.6 with a = I to our setting. Let ρ be a common
multiple of {vjk(uj) ; j, k}. Take f ∈ JLa. Then, we have θI(f) ≥ a. Since
ρθI(f) ∈ Z by Lemma 2.3.2.6, we have ρLθI(f) ≥ �ρLa . Therefore, we have
f ∈ J�ρLa�/ρ, and hence JLa ⊂ J�ρ(La)�/ρ. The opposite inclusion is clear by
condition (iii) in Definition 2.1.1.1 for the idealistic filtration J.

Step 4. We show S1 describes R(I) and S1 = S0
R1 in the following

notation: Consider the graded R-algebras
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R0 = R[XL] ⊃ S0 =
⊕

n∈Z≥0

InXLn

R1 = R[X
1
ρ ] ⊃ S1 =

⊕
n∈Z≥0

J n
ρ
X

n
ρ

where X is an indeterminate. We denote by S0
R1 the integral closure of S0 in

R1.
It is clear from Step 3 that S1 describes J = R(I). We have only to prove

S1 = S0
R1 .

Firstly we show S1 ⊂ S0
R1 . Let gX

n
ρ ∈ S1 be a homogeneous element of

S1. Since g ∈ Jn
ρ

, we have θI(g) = θI(g) ≥ n
ρL . Thus, by Lemma 2.3.2.6, we

have gρL ∈ In. Therefore there exists a monic equation(
gρL

)m
+ c1

(
gρL

)m−1
+ · · · + cm = 0 with ci ∈ (In)i.

This in turn provides a monic equation of gX
n
ρ over S0, i.e.,(

gX
n
ρ

)ρLm

+ (c1X
Ln)

(
gX

n
ρ

)ρL(m−1)

+ · · · + cmXLnm = 0.

Therefore, we have S1 ⊂ S0
R1 .

Secondly we show S1 ⊃ S0
R1 . Take g =

∑
n∈Z≥0

gn
ρ
X

n
ρ ∈ S0

R1 . Then we
have a monic equation of g over S0, i.e.,

(♠) gm + c1(XL)gm−1 + · · · + cm(XL) = 0 with ci(XL) ∈ S0.

Set G =
∑

n∈Z≥0
gn

ρ
X

n
ρ Y n ∈ R1[Y ] where Y is another indeterminate. By

replacing X by XY ρ in (♠), we have a monic equation of G over S0[Y ], i.e.,

Gm + c1(XLY ρL)Gm−1 + · · · + cm(XLY ρL) = 0 with ci(XLY ρL) ∈ S0[Y ].

Since S0[Y ]
R1[Y ]

= S0
R1 [Y ] (cf. Alg. Comm., Chap. V, §1, no3, Prop. 12 in

[Bou64]), each coefficient of Y n in G are integral over S0, i.e.,

gn
ρ
X

n
ρ ∈ S0

R1 (n ∈ Z≥0).

Thus we may assume g is a homogeneous element in R1, say, g = g l
ρ
X

l
ρ .

Looking at the coefficient of X
ml
ρ in (♠), we have

gm
l
ρ

+ α1g
m−1
l
ρ

+ · · · + αm = 0
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where αn is the coefficient of X
nl
ρ in cn ∈ S0 ⊂ R1. Note that αn = 0 if

nl �∈ ρLZ, and αn ∈ I
nl
ρL if nl ∈ ρLZ. Thus, for any 1 ≤ n ≤ m, we have

αn ∈ I
nl
ρL = I nl

ρ
⊂ R(I) nl

ρ
.

Since R(I) is integrally closed by Proposition 2.2.2.1, we have

g l
ρ
∈ R(I) l

ρ
= J l

ρ
and hence g = g l

ρ
X

l
ρ ∈ J l

ρ
X

l
ρ ⊂ S1.

Therefore, we have S1 ⊃ S0
R1 .

Step 5. We see that S1 is finitely generated over R.
It is clear when I = (0), since S1 = R. We assume I �= (0).

Since R is normal, so is R1 = R[X
1
ρ ]. Thus

S1 = S0
R1 = S0

Q(R1)
.

Note that Q(R1) is a finite extension of Q(S0) = Q(R[XL]). By §33 of [Mat86],
it follows that S1 = S0

Q(R1) is a finite S0-module. On the other hand, S0 is
finitely generated over R. Indeed, taking generators of I as I = (r1, . . . , rt), we
have S0 = R[r1X

L, . . . , rtX
L]. Thus S1 is also finitely generated over R.

Step 6. Finishing argument.
By Steps 2 and 3, we see that S1 describes the idealistic filtration R(I). Since
S1 is finitely generated over R, we conclude that R(I) is r.f.g. type (cf. Lemma
2.3.2.2). This completes the proof of Proposition 2.3.2.4.

Corollary 2.3.2.7. Let I ⊂ R × R be an idealistic filtration. Assume I
is of r.f.g. type. Then its R-saturation coincides with its integral closure, i.e.,

R(I) = IC(I).

Proof. By Proposition 2.2.2.1, R(I) is integrally closed.
Therefore, we have R(I) ⊃ IC(I). Thus we have only to show R(I) ⊂ IC(I).
By the same argument as in Step 1 of the proof of Proposition 2.3.2.4,

we may assume that I is generated by a finite number of elements at level
L. In fact, using the same notation, we see that R(G(T )) = R(G(T ′)) and
IC(G(T )) = IC(G(T ′)). Then as shown in Step 4 of the proof of Proposition
2.3.2.4, the integral closure S1 ⊂ R[X

1
ρ ] of S0 in R[X

1
ρ ] describes R(I), while

S0 describes I.
Take an element (f, a) ∈ R(I). Then we have (f, �ρa�

ρ ) ∈ R(I) (cf. Lemma

2.3.1.1), which implies fX
�ρa�

ρ ∈ S1. Now since fX
�ρa�

ρ is integral over S0, by
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the same argument as in Step 4 of the proof of Proposition 2.3.2.4, we see that
(f, �ρa�

ρ ) is integral over I, i.e., (f, �ρa�
ρ ) ∈ IC(I). Finally, since a ≤ �ρa�

ρ , we
conclude (f, a) ∈ IC(I). This shows the desired inclusion.

This completes the proof of Corollary 2.3.2.7.

§2.4. Localization and completion of an idealistic filtration

In this section, we discuss the notion of localization and completion of an
idealistic filtration over R, associated to the localization and completion of R,
respectively. Our main observation here is the compatibility of the operations
of taking the generation, D-saturation, and R-saturation with localization and
completion. The compatibility allows us to reduce the analysis of the global
properties of these operations to the local or to the analytic ones, to which we
may apply some explicit computations.

In this section R denotes the coordinate ring of an affine open subset of a
nonsingular variety W over k.

2.4.1. Definition.

Definition 2.4.1.1. Let I ⊂ R × R be an idealistic filtration over R.
(1) (Localization) Let S be a multiplicative set of R. Consider the subset
IS ⊂ RS × R defined by

(IS)a = (Ia)S = Ia ⊗R RS (a ∈ R).

Then IS is an idealistic filtration, called the localization of I by S.
In case P ∈ Spec R is a point corresponding to a prime ideal P ⊂ R (we

use the same symbol for the point and prime ideal by abuse of notation) with
S = R \ P , we often denote IS by IP .

(2) (Completion) Let R̂ be the completion of R with respect to a maximal
ideal m ⊂ R. Consider the subset Î ⊂ R̂ × R defined by

(̂I)a = Îa = Ia ⊗R R̂ (a ∈ R).

Then Î is an idealistic filtration, called the completion of I (with respect to
m-adic topology).

Remark 2.4.1.2. We remark that, for idealistic filtrations I, I′ ⊂ R × R,
the following conditions are equivalent:
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(1) I ⊂ I′,

(2) Im ⊂ I′m for any maximal ideal m ⊂ R,

(3) Î ⊂ Î′, where the completion “̂ ” is taken with respect the m-adic
topology, for any maximal ideal m ⊂ R.

In fact, fixing the level a ∈ R, we see that the equivalence of the conditions
on the idealistic filtrations follows from the equivalence of the corresponding
conditions on the ideals, which is a standard result in commutative ring theory.

2.4.2. Compatibility.

Proposition 2.4.2.1.

(1) (Compatibility with generation) Let T ⊂ R × R be a subset. Then we have

GR(T )S = GRS
(T ), ĜR(T ) = G bR(T ).

In particular, if I = G(T ) is of r.f.g. type, then so are IS and Î.

(2) (Compatibility with D-saturation) Let I ⊂ R × R be an idealistic filtration.
Then we have

D(I)S = D(IS), D̂(I) = D(̂I).

Let E be a simple normal crossing divisor. Then we have

DE(I)S = DE(IS), D̂E(I) = DE (̂I).

(3) (Compatibility with R-saturation) Let I ⊂ R × R be an idealistic filtration
of r.f.g. type. Then we have

R(I)S = R(IS), R̂(I) = R(̂I).

Proof.
(1) This follows easily from the explicit construction of the generation in

Lemma 2.2.1.2 (1).
(2) We verify D(I)S = D(IS). Firstly we show the inclusion D(I)S ⊂

D(IS). Note that D(IS) ∩ {R × R} is an idealistic filtration over R containing
I, and being D-saturated by Lemma 1.1.2.1 (4). Therefore, we have

D(I) ⊂ D(IS) ∩ {R × R} ⊂ D(IS).
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At level a ∈ R, this implies D(I)a ⊂ D(IS)a and hence (D(I)a)S ⊂ D(IS)a.
That is to say, we have D(I)S ⊂ D(IS).

Secondly we show the opposite inclusion D(I)S ⊃ D(IS). Note that D(I)S

is an idealistic filtration over RS containing I, and hence containing IS . We
claim that D(I)S is D-saturated. In fact, suppose (f, a) ∈ D(I)S, i.e., f ∈
{D(I)a}S . Then, for d ∈ Difft

RS
, we see by Lemma 1.1.2.1 (7)

d(f) ∈ Difft
RS

({D(I)a}S) =
{

Difft
R (D(I)a)

}
S
⊂ {D(I)a−t}S .

That is to say, we have (d(f), a − t) ∈ D(I)S, checking condition (differential)
for D(I)S. Thus we have D(I)S ⊃ D(IS).

This completes the verification for D(I)S = D(IS).
The verification for D̂(I) = D(̂I) is identical to the one above using again

Lemma 1.1.2.1 (7), and left to the reader as an exercise.
The verification for the compatibility of localization and completion with

DE-saturation goes almost verbatim to the one above, replacing D and Difft
R

with DE and Difft
R,E . We leave the verification of the statement of Lemma

1.1.2.1 (7) obtained by replacing Difft
R with Difft

R,E as an exercise to the reader,
since it is identical to the one we gave in Chapter 1.

(3) We use the same notation and argument as in Step 1 through Step 4
of the proof of Proposition 2.3.2.4 (See also Remark 2.4.2.2 (1) below). First,
since I, IS, and Î share the same set of generators T , we may take in Step 1
the common replacement T ′ at level L, which keeps the left hand side and right
hand side of the equation for compatibility intact. Therefore, we may assume
from the beginning that I is generated by T ⊂ R × {L}. Let I = IL and
A =

⊕
n∈Z≥0

InXLn ⊂ R[XL]. Note that A describes the idealistic filtration I
(cf. Definition 2.3.2.1, Lemma 2.3.2.2). Moreover,

AS =
⊕

n∈Z≥0

In
SXLn ⊂ RS [XL] and Â =

⊕
n∈Z≥0

ÎnXLn ⊂ R̂[XL]

describe the localization IS and completion Î, respectively.
Step 2 goes without any change for all I, IS , and Î.
We take ρ in Step 3 so that ρ works for all I, IS and Î simultaneously. Set

A, AS, Â as the integral closures of A in R[X
1
ρ ], of AS in RS [X

1
ρ ], and of Â

in R̂[X
1
ρ ], respectively. Then, in Step 4, we see that A, AS, Â describe the

idealistic filtrations R(I), R(IS), R(̂I), respectively.
On the other hand, since A describes R(I), it follows by definition that

(A)S and Â describe the localization R(I)S and completion R̂(I), respectively.
Now since the operation of taking the integral closure commutes with lo-

calization, we have (A)S = AS . Thus we conclude R(I)S = R(IS).
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As to the question of commutativity of the operation of taking the integral
closure with completion, recall that R is a finitely generated k-algebra or its
localization, hence that it is a Grothendieck ring. Since A is a finitely generated
R-algebra by Step 5 of Proposition 2.3.2.4, A is also a Grothendieck ring. This
allows us to conclude that Â is normal, since A is also normal (See Remark 1
to Theorem 32. 6 in [Mat86]). Now Â is integral over Â, since A is integral

over A. Therefore we conclude Â = Â, and hence R̂(I) = R(̂I).
This completes the proof of Proposition 2.4.2.1.

Remark 2.4.2.2.
(1) In Section 2.3, the base ring R was assumed to be the coordinate ring of
an affine open subset of a variety W smooth over k, or its localization. We
did not deal with the case where the base ring is the completion R̂. Note that
the proof of Proposition 2.3.2.4 works just as well over the base ring being the
completion R̂ from Step 1 through Step 4, but fails in Step 5, where Q(R̂[X])
is not finitely generated over k. Therefore, we do not claim the stability of the
idealistic filtrations of r.f.g. type over R̂ under R-saturation.

Nevertheless, we should emphasize that the following assertion is valid:

If an idealistic filtration I over R is of r.f.g. type, then so is R(̂I).

Indeed, since R(I) is of r.f.g. type by Proposition 2.3.2.4, the assertion is a
direct consequence of compatibility R(̂I) = R̂(I).
(2) The assumption of I being of r.f.g. type is indispensable in Proposition
2.4.2.1 (3). The following gives a counterexample to the assertion of compat-
ibility with R-saturation when I is not of r.f.g. type: Let I = G(T ) be an
idealistic filtration over R = k[x, y] where the set of generators T is an infinite
set given as below

T = {(φiy, 1 − i−1) ; i ∈ Z>0}, φi =
i∏

j=1

(x − j).

We claim that, m = (x, y) being the maximal ideal corresponding to the origin,
we have

R(Im) = GRm
({(y, 1)}), (y, 1) �∈ R(I)m.

This implies that R(Im) �= R(I)m and also that R(̂I) = G bR({(y, 1)}) �= R̂(I) ��
(y, 1) where the completion is taken with respect to m.

Since R(Im) = G({(y, 1)}) is clear, we only show the second part of the
claim (y, 1) �∈ R(I)m. Assume (y, 1) ∈ R(I)m. Then there exists f(x, y) ∈ k[x, y]
such that f(0, 0) �= 0 and that fy ∈ R(I)1. Let K be as in Lemma 2.2.1.2 (3).
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Then, for any l ∈ Z>0, we have fy ∈ K1−l−1 and hence fmlyml ∈ Iml−m for
some m ∈ Z>0. Since the generators in T are homogeneous with respect to
y, we see that Iml−m is a homogeneous ideal with respect to y (cf. Lemma
2.2.1.2 (1)). This implies f(x, 0)mlyml ∈ Iml−m. By Lemma 2.2.1.2 (1), we
then conclude

f(x, 0)ml ∈
(

φi1 · · ·φir
; r ≤ ml, r −

r∑
t=1

i−1
t ≥ ml − m

)
.

Looking at the range {i1, . . . , ir}, we have

1 − r−1
r∑

t=1

i−1
t = r−1

(
r −

r∑
t=1

i−1
t

)
≥ (ml)−1(ml − m) = 1 − l−1,

and hence

l−1 ≥ r−1
r∑

t=1

i−1
t ≥

(
max

t
it

)−1

.

This implies that each range {i1, . . . , ir} contains at least one it with it ≥
l. Therefore, we have φl|f(x, 0)ml and hence φl|f(x, 0). Since l ∈ Z>0 is
arbitrary, we conclude f(x, 0) = 0, contradicting the assumption f(0, 0) �= 0.
This contradiction shows (y, 1) �∈ R(I)m.

We end this section by stating a corollary which says that the results
of 2.2.3 hold for an idealistic filtration I over R which is essentially of finite
type over k, without assuming it has a regular system of parameters, if I is of
r.f.g. type.

Corollary 2.4.2.3. Let I be an idealistic filtration of r.f.g. type over R

which is essentially of finite type over k. Then, we have

DR(I) ⊂ RD(I), B(I) = RD(I).

Let E be a simple normal crossing divisor. Then we have

DER(I) ⊂ RDE(I), BE(I) = RDE(I).

In particular, the operation of taking the B-saturation or BE-saturation is com-
patible with localization or completion for an idealistic filtration of r.f.g. type,
and the property of being r.f.g. type is stable under the operation.

Proof. Firstly we show the inclusion DR(I) ⊂ RD(I). By Proposition
2.4.2.1, it suffices to check the inclusion over the localization of R at an arbi-
trary maximal ideal. Then, since the localization admits a regular system of
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parameters, we can apply Proposition 2.2.3.1 to verify the inclusion. Secondly,
in order to prove B(I) = DR(I), we can repeat the argument in Corollary
2.2.3.2, which is valid regardless whether R has a regular system of parameters
or not, once we have the inclusion.

The proof of the logarithmic case is almost identical to the one above.

Chapter 3. Leading Generator System

The purpose of this chapter is to analyze the leading terms of the elements
(at the nonnegative integral levels) of an idealistic filtration (localized at a
closed point), i.e., to analyze the structure of the graded ring formed by the
lowest terms of their power series expansions. Even though our analysis is
elementary, it leads to the most important notion in the Idealistic Filtration
Program, i.e., that of a leading generator system. In this chapter, we only give
the definition of a leading generator system. However, it could be said that a
large portion of our entire series of papers, though written with resolution of
singularities in mind as the principal goal, is a treatise on the properties of a
leading generator system in its own light.

We should emphasize that the idea of analyzing the leading terms (of the
elements in the defining ideal) for the study of a singularity is nothing new and
as classical as the word “tangent cone”. Even in a more specific context of the
problem of resolution of singularities, Hironaka and Oda (cf. [Hir70] [Oda73]
[Oda83] [Oda87]), among others, realized its importance early on and made an
extensive analysis developing the theory of the so-called Hironaka’s additive
group scheme. We also refer the reader to Pomerol’s paper [Pom74] on the
subject, which leads to Giraud’s attempt to find an appropriate notion of a
hypersurface of maximal contact in positive characteristic (cf. [Gir74] [Gir75]).

It is only natural that the recent approaches toward resolution of singular-
ities in positive characteristic (cf. 0.5.2) have found renewed interests in these
classical ideas. Villamayor pays special attention to the “differential struc-
ture” of the Rees algebras and their leading terms, and studies Hironaka’s
τ -invariant in his approach using “generic projection” (cf. [Vil06a] [Vil06b]
[EV07]). W�lodarczyk [W�lo07] puts the notion of “p-order” at the center of
his approach in pursuit of a hypersurface of maximal contact in positive char-
acteristic, finding inspiration in Giraud’s work. Our approach is no exception
drawing its inspiration from the afore-mentioned works of the classical masters.

However, the IFP seems to stand out unique in its systematic use of the
notion of a leading generator system as a collective substitute for the notion of
a hypersurface of maximal contact (cf. 0.2.3), and we carry out the program to
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the extent that we can present an explicit algorithm in positive characteristic (in
Part IV) having the algorithm in characteristic zero as its prototype, though the
problem of termination still remains (cf. §0.3). While the discussion of how we
actually make the systematic use of a leading generator system in our algorithm
has to wait for Part III and Part IV, the role of this chapter establishing the
foundation is no less important.

In the following, we give a more technical briefing of the notion of a leading
generator system.

Our analysis in this chapter is local, or even analytically local. Accord-
ingly, we consider an idealistic filtration I over R where R is taken to be the
localization at a maximal ideal corresponding to a closed point P ∈ W of the
coordinate ring of an affine open subset of a variety W smooth over an alge-
braically closed field k of char(k) = p ≥ 0, or its completion. We denote by m

the maximal ideal of R.
It is worth emphasizing that the main results of this chapter are obtained

assuming that the idealistic filtration is D-saturated.
The main object of our study is the graded k-subalgebra L(I) =

⊕
n∈Z≥0

×L(I)n, formed by the leading terms (of the ideals at the nonnegative in-
tegral levels of the idealistic filtration (cf. §3.1)), of the graded ring G =⊕

≥0 mn/mn+1 =
⊕

n∈Z≥0
Gn, which is isomorphic to a polynomial ring with

d (= dim W )-variables over k.
In characteristic zero, if I is D-saturated, L(I) is generated as a graded

algebra over k by its degree one component L(I)1, i.e., L(I) = k[L(I)1]. More-
over, the hypersurfaces of maximal contact correspond exactly to the ele-
ments of the form (h, 1) ∈ I whose leading terms belong to L(I)1 \ {0}, i.e.,
h = (h mod m) ∈ L(I)1 \ {0}. A fundamental observation of the IFP is then
that the invariants we need to build a sequence of blowups for resolution of
singularities can be all constructed from a collection {(hi, 1)} ⊂ I with {hi}
forming a basis of L(I)1 and hence generating the graded algebra L(I), instead
of taking a hypersurface of maximal contact one by one.

In characteristic char(k) = p > 0, in contrast, L(I) may not be generated
as a graded algebra over k by its degree one component L(I)1 even if I is D-
saturated. Or worse, L(I)1 may be 0, i.e., there is no hypersurface of maximal
contact. However, if I is D-saturated, L(I) is generated as a graded algebra
over k by

⋃
e∈Z≥0

L(I)pure
pe , i.e.,

L(I) = k

 ⋃
e∈Z≥0

L(I)pure
pe

 ,
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where L(I)pure
pe ⊂ L(I)pe is the subspace consisting of “pure” elements. (We call

an element w ∈ L(I)pe “pure” if w = vpe

for some v ∈ G1.) Observing that
there is a sequence of inclusions

L(I)1 = L(I)pure
p0 , {L(I)pure

p0 }p ⊂ L(I)pure
p1 , {L(I)pure

p1 }p ⊂ L(I)pure
p2 · · · ,

which stabilizes to a sequence of equalities after some point, i.e., there exists
eM ∈ Z≥0 such that for e > eM the above inclusions become equalities

{L(I)pure
pe−1}p = L(I)pure

pe ,

we are led to the following notion of a leading generator system.
We call a subset H = {(hij , p

ei)} ⊂ I a leading generator system if it
satisfies the following conditions:

(i) hij ∈ mpei and hij = (hij mod mpei+1) ∈ L(I)pure
pei for any i, j,

(ii) {hij
pe−ei

; ei ≤ e} consists of #{(i, j) ; ei ≤ e}-distinct elements, and
forms a k-basis of L(I)pure

pe for any e ∈ Z≥0.
Therefore, if I is D-saturated, the leading terms of the elements in the

leading generator system generates L(I) as a graded algebra over k, i.e.,

L(I) = k[{hij}].

(Note that we have dimk L(I)pure
pe ≤ dim W for any e ∈ Z≥0 and hence that

condition (ii) implies #H ≤ dim W .)
In the existing algorithms in characteristic zero the notion of a hypersur-

face of maximal contact is the key for their inductive structure on dimension
to function via the invariant unit (w, s) (cf. 0.2.1.3.). According to the IFP we
try to carry out an algorithm, even in positive characteristic, where the notion
of a leading generator system provides a new inductive structure via the in-
variant unit (σ, µ̃, s), in which σ, roughly speaking, plays the role of dimension
(cf. 0.2.3.2.).

§3.1. Analysis of the leading terms of an idealistic filtration

3.1.1. Definitions.

Definition 3.1.1.1.
(1) Let I be an idealistic filtration over R with its maximal ideal m. Recall

that the maximal ideal m corresponds to a closed point P ∈ W . Set

G =
⊕

n∈Z≥0

mn/mn+1 =
⊕

n∈Z≥0

Gn.
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We define the graded k-subalgebra

L(I) =
⊕

n∈Z≥0

L(I)n ⊂ G,

which we call the leading algebra of the idealistic filtration I at P , by setting

L(I)n = {f = (f mod mn+1) ; (f, n) ∈ I, f ∈ mn}.

Note that L(I)0 = k by condition (o) in Definition 2.1.1.1 (2).
(2) Set p = char(k) when k is of positive characteristic, or p = ∞ when k

is of characteristic zero. For e ∈ Z≥0 with pe ∈ Z>0, we define the pure part
L(I)pure

pe of L(I)pe by the formula

L(I)pure
pe = L(I)pe ∩ F e(G1) ⊂ L(I)pe ,

where F e is the e-th power of the Frobenius map of G (cf. Definition 1.3.1.1).
An element w ∈ L(I)pe is called pure if w ∈ L(I)pure

pe .

Remark 3.1.1.2. If we choose a regular system of parameters (x1, . . . , xd)
for R, there is a natural isomorphism G ∼= k[x1, . . . , xd]. Through this isomor-
phism, we may identify G with the polynomial ring over k.

We use the convention that ∞n =∞ for n∈Z>0 and ∞0 =1 (cf. 0.2.3.2.1.).
Therefore, the only pure part we consider in characteristic zero is in degree one,
where we have

L(I)pure
∞0 = L(I)pure

1 = L(I)1.

In other words, in characteristic zero, all the pure elements are in degree one.
We see that L(I)n is a k-vector subspace of Gn, which follows from the def-

inition of an idealistic filtration I. Using the assumption that k is algebraically
closed, we also see that L(I)pure

pe is a k-vector subspace of L(I)pe .

3.1.2. Heart of our analysis. At the heart of our analysis sits the
following lemma, whose origin can be traced back to Hironaka and Oda. (See,
e.g., [Oda87] for the notion of the flag of Frobenius linear subspaces.) Since it is
quite fundamental to the IFP, we present our own proof, despite its elementary
nature, for the sake of completeness and for the purpose of fixing the notation
for later use.

Lemma 3.1.2.1. Let G = k[x1, . . . , xd] be the polynomial ring over k

with d variables X = (x1, . . . , xd). We regard G as a graded k-algebra with
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natural grading defined by the degree. We define “p” as in Definition 3.1.1.1
and we use the same convention as in Remark 3.1.1.2.

Let L =
⊕

n∈Z≥0
Ln ⊂ G be a graded k-subalgebra of G with L0 = G0 =

k. Suppose that L is D-saturated in the sense that it satisfies the following
condition:

f ∈ L, ∂ ∈ DiffG =⇒ ∂(f) ∈ L.

Then L is generated as a graded algebra over k by its pure part Lpure :=⊔
e∈Z≥0

Lpure
pe where Lpure

pe = Lpe ∩ F e(G1) ⊂ Lpe , i.e., L = k[Lpure].
Moreover, we can choose {e1 < · · · < eM} ⊂ Z≥0 and V1 ! · · · ! VM ⊂ G1

with Vi = {vij}j satisfying the following conditions :
(i) F ei(Vi) ⊂ Lpure

pei for 1 ≤ i ≤ M ,
(ii)

⊔
ei≤e F e(Vi) is a k-basis of Lpure

pe for any e ∈ Z≥0.
In particular, we have L = k[

⊔M
i=1 F ei(Vi)] with

∑M
i=1 #Vi ≤ d.

Proof. We prove the following assertion

(♥)d L = k[Lpure]

by induction on the number of variables d. When d = 0, we have G = L = k

and Lpure = ∅. Thus we obviously have (♥)0.
Now we prove (♥)d assuming (♥)d−1. Take f ∈ L. It suffices to show

f ∈ k[Lpure]. We may assume that f is homogeneous of degree r ∈ Z≥0, i.e.,
f ∈ Lr. Set

s = max{t ∈ Z≥0 ; f ∈ F t(G)}, r = r′ps,

and take g ∈ Gr′ such that f = gps

. We write g =
∑

|J|=r′ cJXJ ∈ Gr′ with
cJ ∈ k.

By the maximality of s (and since k is algebraically closed), we observe that
there exists Jo with |Jo| = r′ such that cJo

�= 0 and that p � |Jo = (jo1, . . . , jod),
i.e., p � | joα for some α. By renumbering the variables, we may assume p � | jod.

We compute

z = ∂Jo−ed
g = jodcJo

· xd +
d−1∑
α=1

(joα + 1)cJo−ed+eα
· xα.

Since jodcJo
∈ k\{0}, we may take (x1, . . . , xd−1, z) as a new system of variables

for the polynomial ring G. We set G′ = k[x1, . . . , xd−1] to be the polynomial
ring with (d − 1)-variables and L′ = L ∩ G′. Note that L′ is D-saturated.
Rewrite g =

∑r′

i=0 aiz
i with ai ∈ G′

r′−i in terms of the new system of variables.
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Note that, for any h ∈ G and K ∈ Zd
≥0, we have

∂XpsK (hps

) = ∂XK (h)ps

,

which follows from the equations (cf. Remark 1.2.1.3 (2))

∂psK(XpsJ ) =
(

psJ

psK

)
Xps(J−K) and

(
psJ

psK

)
=
(

J

K

)
=
(

J

K

)ps

.

Thus we have
∂XpsK (f)=∂XpsK (gps

)=∂XK (g)ps

=zps

, K =Jo − ed,

∂zpsi(f)=∂zpsi(gps

)=∂zi(g)ps

=aps

i +
r′∑

t=i+1

(
t

i

)
aps

t z(t−i)ps

(0 ≤ i ≤ r′).

Recall that L is D-saturated. Thus the first formula implies zps ∈ L, and the
second formula implies aps

i ∈ L for 0 ≤ i ≤ r′ by descending induction on i.
On one hand, we have zps ∈ Lpure by definition. On the other hand, since

L′ = k[L′ pure] by inductional hypothesis on the number of variables, we have

{aps

i ; 0 ≤ i ≤ r′} ⊂ L ∩ G′ = L′ = k[L′ pure] ⊂ k[Lpure].

Therefore, we conclude

f = gps

=
r′∑

i=0

aps

i zpsi ∈ k[Lpure].

This completes the inductional step and hence the proof for L = k[Lpure].
In order to see the “Moreover” part of the statement, observe that there

is a sequence of inclusions among the pure parts

Lpure
p0 = L1, {Lpure

p0 }p ⊂ Lpure
p1 , {Lpure

p1 }p ⊂ Lpure
p2 , · · · .

Let e1 < · · · < ei < · · · < eM be the integers indicating the stages where the
above inclusions are not equalities, i.e.,{

{Lpure
pei−1}p � Lpure

pei (1 ≤ i ≤ M)
{Lpure

pe−1}p = Lpure
pe e �∈ {ei ; 1 ≤ i ≤ M}.

Note that the set of such integers is a finite set, since the dimension of the pure
part is uniformly bounded, i.e., dimk Lpure

pe ≤ dim G1 = d for any e ∈ Z≥0.
Now we have only to take Vi ⊂ G1 (i = 1, . . . , M) inductively so that

F ei(Vi) ∪
⋃
j<i

F ei(Vj) ⊂ Lpure
pei
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forms a basis of Lpure
pei for 1 ≤ i ≤ M .

This completes the proof of Lemma 3.1.2.1.

3.1.3. Leading generator system. The statement of Lemma 3.1.2.1
leads us to the following notion of a leading generator system of a D-saturated
idealistic filtration.

Definition 3.1.3.1. Let I be a D-saturated idealistic filtration. We
call a subset H = {(hij , p

ei)} ⊂ I a leading generator system if it satisfies the
following conditions:

(i) hij ∈ mpei and hij = (hij mod mpei+1) ∈ L(I)pure
pei for any i, j,

(ii) {hij
pe−ei

; ei ≤ e} consists of #{(i, j) ; ei ≤ e}-distinct elements, and
forms a k-basis of L(I)pure

pe for any e ∈ Z≥0.

Proposition 3.1.3.2. A leading generator system exists for a D-
saturated idealistic filtration I.

Proof. Since I is D-saturated, it follows that L(I) is D-saturated and
hence that we can apply Lemma 3.1.2.1 to L = L(I) ⊂ G. Take a collection
H = {(hij , p

ei)} so that hij = vpei

ij , where {e1 < · · · < eM} and V1 ! · · · !VM ⊂
G1 with Vi = {vij}j are taken as stated in Lemma 3.1.2.1, satisfying conditions
(i) and (ii). Then H is a leading generator system for I.

Remark 3.1.3.3.
(1) Condition (i) in Definition 3.1.3.1 can be rephrased in terms of the differ-
ential operators as follows:

(i) D(hij) ∈ m for any D ∈ Diff(pei )
R ,

where Diff(pei )
R is defined by the following formula

Diff(pei )
R :=

∑
a+b=pei ,0<a,b<pei

Diffa
R ◦Diffb

R .

(2) We often study a subset H = {(hij , p
ei)} ⊂ I which satisfies some slightly

weaker conditions than those for a leading generator system. Namely, we

require condition (i), and instead of full condition (ii) where {hij
pe−ei

; ei ≤ e}
should form a basis of L(I)pure

pe , we only require {hij
pe−ei

; ei ≤ e} to be k-
linearly independent.
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The class of the subsets described above, which is slightly bigger than the
class of the leading generator systems, is often better suited for the purpose of
setting up some inductional proofs. We refer the reader to Chapter 4 for the
examples of such proofs.

§3.2. Invariants σ and µ̃

In this section, we present the definitions of the two of the most basic
invariants (at the closed point P ∈ W ) that we use in our algorithm, σ and µ̃,
in relation to the notion of a leading generator system.

We warn the reader, however, that in the actual process of our algorithm,
the definitions of σ and µ̃ will be slightly modified. For example, in order to
determine the invariant µ̃ in our setting, we also have to take the boundary
divisor of reference into consideration, just as we do to determine the weak
order in the classical setting.

The purpose of this presentation is to bring a flavor of how these invariants
may function in our algorithm, while the details, including their fundamental
properties, will be discussed in Parts II, III, and IV.

3.2.1. Invariant σ.

Definition 3.2.1.1. Let I be a D-saturated idealistic filtration. Then
the invariant σ is defined to be the following infinite sequence indexed by e ∈
Z≥0

σ = (d − lpure
p0 , d − lpure

p1 , . . . , d − lpure
pe , . . . )

where
d = dim W, lpure

pe = dimk L(I)pure
pe .

More precisely, σ should be considered as a function σ : Z≥0 → Z≥0 defined by

σ(e) = d − lpure
pe .

Remark 3.2.1.2.

(1) The reason why we take the (infinite) sequence of d − lpure
pe instead of the

(infinite) sequence of lpure
pe is two-fold:

(i) When we consider the invariant lpure
pe , fixing e but varying P ∈ W , we

see (cf. Part II) that it is lower semi-continuous. Taking its negative, we
have our invariant upper semi-continuous as desired.
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(In other words, the bigger lpure
pe is, the better the singularities are. There-

fore, as the measure of how bad the singularities are, it is natural to take
our invariant to be its negative.)

(ii) We reduce the problem of resolution of singularities of a variety X to
that of embedded resolution. Therefore, it would be desirable or even
necessary to come up with an algorithm which would induce the “same”
process of resolution of singularities, no matter what ambient variety W

we choose for an embedding X ↪→ W (locally).

While lpure
pe is dependent of the choice of W , dim W − lpure

pe is not. There-
fore, the latter is more appropriate as an invariant toward constructing
such an algorithm.

(2) As observed before, the dimension of the pure part is non-decreasing (with
respect to the power e ∈ Z≥0 of pe), and is uniformly bounded from above by
d = dim W , i.e.,

0 ≤ lpure
p0 ≤ lpure

p1 ≤ · · · lpure
pe−1 ≤ lpure

pe ≤ · · · ≤ d = dim W

and hence stabilizes after some point, i.e., there exists eM ∈ Z≥0 such that for
e > eM the above inequalities become equalities

lpure
pe−1 = lpure

pe .

Therefore, though σ is an infinite sequence by definition, essentially we are
only looking at some finite part of it.

(3) In characteristic zero, the invariant σ consists of only one term (d − dim
L(I)1), where dim L(I)1 can be regarded as indicating “how many linearly
independent hypersurfaces of maximal contact we can take” for I.

(4) We relieve ourselves of the task of giving the precise definition of the
“τ -invariant” in the theory of Hironaka’s additive group scheme (cf. [Hir70]
[Oda73] [Oda83] [Oda87]). However, roughly speaking, Hironaka’s τ -invariant
in our context corresponds to the total number of the elements in a leading
generator system #H = #{(hij , p

ei)}. That is to say, in terms of Remark (2),
it is equal to lpure

peM . Our invariant σ, which incorporates the information on the
levels of the elements in a leading generator system, although closely related
and inspired by the ideas of Hironaka, is different from Hironaka’s τ -invariant.
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3.2.2. Invariant µ̃.

Definition 3.2.2.1. Let I be a D-saturated idealistic filtration. Take a
leading generator system H = {(hij , p

ei)} of I. Set H = {hij} and (H) ⊂ R to
be the ideal generated by H.

For f ∈ R, we define its multiplicity (or order) modulo (H) to be

ordH(f) = sup {n ∈ Z≥0 ; f ∈ mn + (H)} .

We also define

µH(I) := inf
{

µH(f, a) :=
ordH(f)

a
; (f, a) ∈ I, a ∈ R>0

}
.

(Note that we set ordH(0) = ∞ by definition.) Finally we define the invariant
µ̃ by

µ̃ = µH(I).

Remark 3.2.2.2.

(1) We will see in Part II that µH(I) is independent of the choice of a leading
generator system, and hence that the invariant µ̃ is actually an intrinsic one
associated to the idealistic filtration I.

(2) In characteristic zero, where H forms (a part of) a regular system of param-
eters, the upper semi-continuity of the invariant µ̃ (along the locus where the
invariant σ is constant) follows immediately from the upper semi-continuity
of the usual multiplicity defined on the nonsingular subvariety defined by the
ideal (H). In positive characteristic, however, it is highly non-trivial, and its
verification is one of the main subjects of Part II.

(3) In our algorithm, the invariant µ̃ is actually computed as µH,E(I), using
not only the information about a leading generator system but also the one
about the boundary divisor E in reference. For all the details, we refer the
reader to Parts II, III, and IV.

(4) In Part II, we study the power series expansion of f ∈ R with respect
to (the elements in H associated to) a leading generator system. There the
invariant ordH(f) can be computed as the multiplicity of the “constant” term.
Again we refer the reader to Part II for its detail.

(5) In characteristic zero, the invariant µ̃ corresponds to the multiplicity of
what is called the coefficient ideal (restricted to a hypersurface of maximal
contact) in the classical setting.
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(6) In characteristic zero (or more generally in the case where all the elements
of a leading generator system are concentrated at level 1, i.e., in the case
where ei = 0 for any i), the order modulo (H) is additive in the sense that for
f, g ∈ R we have

ordH(fg) = ordH(f) + ordH(g).

In positive characteristic char(k) = p > 0, however, we have only the inequality

ordH(fg) ≥ ordH(f) + ordH(g)

in general, and the strict inequality does actually happen in the case ei > 0
for some i. It is possible that, for (f, a/b) ∈ I with a, b ∈ Z>0 and hence
(f b, a) ∈ I, we have

µH(f b, a) =
ordH(f b)

a
>

b · ordH(f)
a

=
ordH(f)

a/b
= µH(f, a/b).

It is also possible that

inf {µH(f, a) ; (f, a) ∈ I, a ∈ Z>0} > inf {µH(f, a) ; (f, a) ∈ I, a ∈ R>0} .

Therefore, it makes a real difference in computing the invariant µ̃ whether we
only consider the integral levels or we consider the rational (and real) levels
(cf. the last emphasis in 0.2.3.1. and Remark 2.2.3.3). We refer the reader to
Part II for more details.

Chapter 4. Nonsingularity Principle

The purpose of this chapter is to establish the nonsingularity principle,
which guarantees the nonsingularity of the center of each blowup in our algo-
rithm (cf. 0.2.3.2.4.). Recall that in the classical setting the nonsingularity of
the center is guaranteed by the nonsingularity of a hypersurface of maximal
contact (cf. 0.2.1.3.). Since we use a leading generator system as a collective
substitute for a hypersurface of maximal contact, and since a leading generator
system may contain some elements defining singular hypersurfaces, the classi-
cal nonsingularity principle is no longer available in our algorithm. Instead, we
look at the final form of the idealistic filtration, obtained after the modifications
associated with the construction of the strand of invariants (cf. 0.2.3.2.2.). It
has a special property of having the invariant µ̃ = ∞. What we prove is that
an idealistic filtration with invariant µ̃ = ∞, assuming it is both R-saturated
and D-saturated (i.e., B-saturated), has all the elements in a leading generator
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system concentrated at level 1, and hence that its support, defined by these
elements, is nonsingular. Therefore, we conclude that the center, which is the
maximum locus of the strand of the invariants and which coincides with the
support of the idealistic filtration described as above, is also nonsingular. We
emphasize that the use of the R-saturation, as seen in the nonsingular principle,
is indispensable in our algorithm. This feature seems to distinguish our algo-
rithm from the other proposed approaches (cf. 0.5.2), where the R-saturation
(integral closure) may appear in their conceptual foundation but is never used
in the actual algorithm.

The following is the brief description of this chapter.
In Section 4.1, we prepare some technical lemmas that we use in the proof

of the nonsingularity principle. They describe the behavior of a leading gen-
erator system, which we expect to be parallel to the behavior of a collection
of hypersurfaces of maximal contact forming (a part of) a regular system of
parameters in characteristic zero. We will use these lemmas again later in our
series of papers.

Section 4.2, where we present the statement and proof of the nonsingularity
principle, is literally the culminating point of Part I.

In this Section, R represents the localization at a maximal ideal, or its
completion, of the coordinate ring of an affine open subset of a variety W

smooth over an algebraically closed field k of char(k) = p > 0, or characteristic
zero where we formally set p = ∞ in the arguments below. We denote by m

the maximal ideal of R, which corresponds to a closed point P ∈ W .

§4.1. Preparation toward the nonsingularity principle

4.1.1. Setting for the supporting lemmas. We fix the following
setting for the three supporting lemmas we present in 4.1.2:

Let H = {h1, . . . , hN} ⊂ R be a subset of R consisting of N elements, and
let 0 ≤ e1 ≤ · · · ≤ eN be nonnegative integers associated to these elements,
satisfying the following conditions:

(i) hl ∈ mpel and hl = (hl mod mpel+1) ∈ F el(G1) for l = 1, . . . , N . (See
Definition 3.1.1.1.)

(ii) {hl
pes−el

; el ≤ es} consists of #{l ; el ≤ es}-distinct and k-linearly inde-
pendent elements in the k-vector space F es(G1) for s = 1, . . . , N .
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We set
e := e1 = min{el ; l = 1, . . . , N},
L := max{l ; l = 1, . . . , N, el = e} = #{l ; l = 1, . . . , N, el = e}.
e′ := eL+1 (if L = N, then we set e′ = ∞).

Let (x1, . . . , xd) be a regular system of parameters for R such that

Md,L =
[
∂

xpe

i
(hl)

]i=1,...,d

l=1,...,L
∈ M(d × L, R)

has the invertible L × L first minor, i.e.,

M =
[
∂

xpe

i
(hl)

]i=1,...,L

l=1,...,L
∈ GL(L, R).

Let C = [cij ]i=1,...,L
j=1,...,L ∈ GL(L, R) be the inverse matrix of M so that

CM = IL.
We introduce the following multi-index notations:

T := (t1, . . . , tL) ∈ ZL
≥0, cT :=

L∏
j=1

(cL,j)tj .

Remark 4.1.1.1.

(1) Condition (i) in Setting 4.1.1 can be rephrased in terms of the differential
operators as follows (cf. Remark 3.1.3.3 (1)):

(i) D(hl) ∈ m ∀D ∈ Diff(pel )
R .

(2) We are not assuming in our situation that the subset H is associated to a
leading generator system of an idealistic filtration. See Remark 3.1.3.3 (2).

(3) Conditions (i) and (ii) imply that, for any regular system of parameters

(y1, . . . , yd), the matrix My =
[
∂

ype

i
(hl)

]i=1,...,d

l=1,...,L
is of size d × L and has the

full rank, i.e., rank My = L. Therefore, by a linear change of variables, we may
always come up with a regular system of parameters (x1, . . . , xd) satisfying the
condition in our situation.

4.1.2. Statements and proofs of the supporting lemmas. Given
a regular system of parameters (x1, . . . , xd), we have the corresponding partial
differential operators ∂xu

i
(u ∈ Z>0) for 1 ≤ i ≤ d. Given a set of elements

(h1, . . . , hN ) as described in the setting (e.g. the set associated to a leading
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generator system), we would like to have their corresponding partial differen-
tial operators. The next lemma constructs a differential operator Du, which
behaves like “∂hu

L
” in spirit when we look at the initial terms of our concern.

Lemma 4.1.2.1 (Supporting Lemma 1). Let u, r be integers such that

0 ≤ u < pe′−e and 0 ≤ r.

Define
Du :=

∑
|T |=u

cT ∂peT ∈ Diffupe

R and D−1 = 0,

where we use the abbreviated notation ∂J = ∂XJ .
Then for any β ∈ mr and 1 ≤ l ≤ N , we have

Du (βhl) ≡ (Duβ)hl + δL,lDu−1β mod mr+pel−upe+1.

Proof. By the generalized product rule, we have

Du (βhl) =
∑
|T |=u

cT ∂peT (βhl) =
∑
|T |=u

cT
∑

J≤peT

(∂peT−Jβ) (∂Jhl) .

We remark here that

{pel � |J} or {pel < |J |} =⇒ ordP (∂Jhl) > pel − |J |.

Thus, in the process of continuing the above computation modmr+pel−upe+1,
the term ∂Jhl is relevant only when J = pelej (1 ≤ j ≤ L) or when J = O.
Therefore, we have

Du (βhl) ≡
 ∑

|T |=u

cT ∂peT β

hl +
L∑

j=1

∑
|T |=u

cT
(
∂peT−pelej

β
) (

∂pelej
hl

)
where the first and the second term in the right hand side correspond to the
case J = O and J = pelej for 1 ≤ j ≤ L respectively.

We remark here that in the generalized product rule we only consider the
case where O ≤ peT − pelej . Looking at the j-th components, we conclude

0 ≤ petj − pel ≤ pe|T | − pel < pe · pe′−e − pel = pe′ − pel .

This implies that we only consider the case where

el = e and tj ≥ 1.
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Therefore, setting T ′ = T − ej , we have

Du (βhl) ≡ (Duβ) hl + δe,el

L∑
j=1

∑
|T ′|=u−1

cT ′+ej (∂peT ′β)
(
∂peej

hl

)

= (Duβ) hl + δe,el

 L∑
j=1

cL,j∂peej
hl

 ∑
|T ′|=u−1

cT ′
∂peT ′β


= (Duβ) hl + δe,el

(CM)L,l Du−1β

= (Duβ) hl + δL,lDu−1β.

Therefore, we conclude

Du (βhl) ≡ (Duβ) hl + δL,lDu−1β mod mr+pel−upe+1.

This completes the proof of Lemma 4.1.2.1.

The next lemma computes the coefficient of hL, using the differential op-
erator constructed in the previous lemma, in terms of the coefficients of the
other elements hl (l �= L) and terms of higher multiplicity.

Lemma 4.1.2.2 (Supporting Lemma 2). Let v, s be integers such that

1 ≤ v < pe′−e and 0 ≤ s.

Define

Fv =
v∑

u=1

(−1)uhu−1
L Du.

Suppose that the elements α, β1, . . . , βN ∈ R satisfy the following conditions :
α +

N∑
l=1

βlhl ∈ ms+1

ordP (βl) ≥ s − pel (1 ≤ l ≤ N).

Then we have

βL ≡ Fvα + (−1)vhv
LDvβL +

∑
1≤l≤N,

l =L

(Fvβl) hl mod ms−pe+1.

(We use the convention that mn = R when n ≤ 0.)
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Proof. From Supporting Lemma 1 it follows that for 1 ≤ l ≤ N

Du (βlhl) ≡ (Duβl) hl + δL,lDu−1βl mod ms−upe+1.

Multiplying by (−1)uhu−1
L and adding them up with u ranging from 1 to v, we

obtain

Fv (βlhl) ≡ (Fvβl) hl + δL,l

v∑
u=1

(−1)uhu−1
L Du−1βl mod ms−pe+1

= (Fvβl) hl − δL,l

v−1∑
u=0

(−1)uhu
LDuβl.

Since α +
∑N

l=1 βlhl ∈ ms+1, we have Fv

(
α +

∑N
l=1 βlhl

)
∈ ms+1−pe

.
Therefore, we obtain

Fvα ≡−Fv

(
N∑

l=1

βlhl

)
mod ms+1−pe

≡−
N∑

l=1

{
(Fvβl) hl − δL,l

v−1∑
u=0

(−1)uhu
LDuβl

}
mod ms+1−pe

= −
N∑

l=1

(Fvβl) hl +
v−1∑
u=0

(−1)uhu
LDuβL.

Therefore, we conclude

Fvα +
∑

1≤l≤N,
l =L

(Fvβl) hl ≡ − (FvβL) hL +
v−1∑
u=0

(−1)uhu
LDuβL mod ms+1−pe

= −
v∑

u=1

(−1)uhu
LDuβL +

v−1∑
u=0

(−1)uhu
LDuβL = D0βL − (−1)vhv

LDvβL.

Since D0 = idR, we conclude

βL ≡ Fvα + (−1)vhv
LDvβL +

∑
1≤l≤N,

l =L

(Fvβl) hl mod ms−pe+1.

This completes the proof of Lemma 4.1.2.2.

The next lemma shows that, given a linear combination of (h1, . . . , hL),
we can retake the coefficients so that they have the expected multiplicities.
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This paves the way to the coefficient lemma in the next subsection, where we
extract more information on the coefficients when (hl, p

el) (l = 1, . . . , N) are
in a (D-saturated) idealistic filtration.

Lemma 4.1.2.3 (Supporting Lemma 3). We have(
N∑

l=1

Rhl

)
∩ mr =

N∑
l=1

mr−pel
hl for any r ∈ Z≥0.

(We use the convention that mn = R when n ≤ 0.)

Proof. We have only to show the inclusion

(")

(
N∑

l=1

Rhl

)
∩ mr ⊂

N∑
l=1

mr−pel
hl,

while the opposite one is clear.
We prove the inclusion by induction on the triplet (χ, L, r) where

χ = {el ; l = 1, . . . , N},

and where the set of the triplets is endowed with the lexicographical order.
Case 1. (χ, L) = (1, 1), i.e., N = 1.

In this case, take βh1 ∈ (Rh1)∩mr with β ∈ (mr : h1). Then since h1 �∈ mpe+1,
we have β ∈ mr−pe

. Thus we have

(Rh1) ∩ mr = (mr : h1)h1 ⊂ mr−pe

h1,

which shows the inclusion ("). (Note that the inclusion (") holds even when
r < pe.)

Case 2. (χ, L) > (1, 1), r ≤ peN .
In this case, set M = min{l ; el = eN}. Since r ≤ peN , we observe

(�)
N∑

l=M

Rhl =
N∑

l=M

mr−pel
hl ⊂ mr.

Assume χ = 1. Then we have M = 1, and (�) implies the inclusion (")
immediately.



�

�

�

�

�

�

�

�

896 Hiraku Kawanoue

Assume χ > 1. Then we we have(
N∑

l=1

Rhl

)
∩ mr =

(
M−1∑
l=1

Rhl +
N∑

l=M

Rhl

)
∩ mr

=

(
M−1∑
l=1

Rhl

)
∩ mr +

N∑
l=M

mr−pel
hl (by (�))

⊂
M−1∑
l=1

mr−pel
hl +

N∑
l=M

mr−pel
hl =

N∑
l=1

mr−pel
hl,

which implies the inclusion ("). Note that the inclusion on the third line is
obtained by induction on χ, since

# {el ; 1 ≤ l ≤ M − 1} = χ − 1.

Case 3. (χ, L) > (1, 1), r > peN .
Note that this case happens only when we are in positive characteristic 0 <

p = char(k) < ∞. In this case, we take an element

g =
N∑

l=1

βlhl ∈
(

N∑
l=1

Rhl

)
∩ mr ⊂

(
N∑

l=1

Rhl

)
∩ mr−1.

By induction on r, we may assume

βl ∈ mr−1−pel (1 ≤ l ≤ N).

By applying Supporting Lemma 2 with

0 < pe′−e − 1 = v, 0 ≤ r − 1 = s, α = 0,

as we check the conditions

α +
N∑

l=1

βlhl ∈ ms+1, ordP (βl) ≥ s − pel (1 ≤ l ≤ N),

we conclude

βL ≡ Fvα + (−1)vhv
LDvβL +

∑
1≤l≤N,

l =L

(Fvβl) hl mod ms−pe+1.

Since Fvα = 0, we conclude

βL ∈ Rhpe′−e−1
L +

∑
1≤l≤N,

l =L

Rhl + mr−pe

.
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Therefore, we have

g =
N∑

l=1

βlhl =
∑

1≤l≤N,
l =L

βlhl + βLhL

∈

 ∑
1≤l≤N,

l =L

Rhl + Rhpe′−e

L + mr−pe

hL

 ∩ mr

=

 ∑
1≤l≤N,

l =L

Rhl + Rhpe′−e

L

 ∩ mr + mr−pe

hL.

Now instead of looking at the original

H = {h1, . . . , hL−1, hL, hL+1, . . . , hN} with (χ, L),

we look at

H′ = {h1, . . . , hL−1, h
′
L = hpe′−e

L , hL+1, . . . , hN} with (χ′, L′).

If L = 1, then we have χ′ = χ− 1. If L > 1, then we have (χ′, L′) = (χ, L− 1).
Hence we always have (χ′, L′) < (χ, L). Therefore, by induction, we conclude ∑

1≤l≤N,
l =L

Rhl + Rhpe′−e

L

 ∩ mr ⊂
∑

1≤l≤N,
l =L

mr−pel
hl + mr−pe′

hpe′−e

L .

Plugging in this inclusion for the third line of the analysis for g, we conclude

g ∈

 ∑
1≤l≤N,

l =L

Rhl + Rhpe′−e

L

 ∩ mr + mr−pe

hL.

=
∑

1≤l≤N,
l =L

mr−pel
hl + mr−pe′

hpe′−e

L + mr−pe

hL

=
∑

1≤l≤N,
l =L

mr−pel
hl + mr−pe

hL =
N∑

l=1

mr−pel
hl.
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Since g ∈
(∑N

l=1 Rhl

)
∩ mr is arbitrary, we have the inclusion

(")

(
N∑

l=1

Rhl

)
∩ mr ⊂

N∑
l=1

mr−pel
hl.

This completes the proof of Lemma 4.1.2.3.

4.1.3. Setting for the coefficient lemma. We describe the setting for
the coefficient lemma:

Let I be a D-saturated idealistic filtration over R.
Let H = {h1, . . . , hN} ⊂ R be a subset of R, and let 0 ≤ e1 ≤ · · · ≤ eN be

nonnegative integers associated to these elements, satisfying conditions (i) and
(ii) as described in Setting 4.1.1, and satisfying one more condition
(iii) (hl, p

el) ∈ I for l = 1, . . . , N .
We denote by (H) ⊂ R the ideal generated by the set H.
For f ∈ R, set

ordH(f) = sup {n ∈ Z≥0 ; f ∈ mn + (H)}

and

µH(I) := inf
{

µH(f, a) :=
ordH(f)

a
; (f, a) ∈ I, a ∈ R>0

}
.

Note that we set ordH(0) = ∞ by definition.
We also bring the attention of the reader to the following notation:
For B = (b1, . . . , bN ) ∈ ZN

≥0, we set [B] = (b1p
e1 , . . . , bNpeN ) and hence

|[B]| =
N∑

l=1

blp
el .

4.1.4. Statement and proof of the coefficient lemma.

Lemma 4.1.4.1 (Coefficient Lemma). Let ν ∈ R≥0 be a nonnegative
number such that ν < µH(I). Set

I′t = It ∩ m�νt�,

where we use the convention that mn = R for n ≤ 0. Then for any a ∈ R, we
have

Ia =
∑
B

I′a−|[B]|H
B .
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Proof. We set

qa =
∑
B

I′a−|[B]|H
B ⊂ Ia.

Our goal is to show Ia = qa.
When a ≤ 0, since R = I′a ⊂ qa, we have Ia = R = qa, the desired equality.
Therefore, in the following, we assume a > 0.
Step 1. Proof for the inclusion (�)c,r defined below.

For c ∈ Z>0 and r ∈ Z≥0, we set

Jc,r = mr+1 + qa +
∑

|[B]|≥c

mr−|[B]|HB.

We prove the inclusion

(�)c,r Ia ∩ mr ⊂ Jc,r (1 ≤ c ≤ �a , r ∈ Z≥0)

by induction on c.
Case 1. c = 1.

In this case, if �νa ≤ r, then the inclusion (�)1,r holds since

Ia ∩ mr ⊂ Ia ∩ m�νa� = I′a ⊂ qa ⊂ J1,r.

If �νa ≥ r + 1, then we have

Ia ∩ mr ⊂
(
m�νa� + (H)

)
∩ mr (by definition of µH(I) and ν)

⊂ mr+1 +

(
N∑

l=1

Rlhl

)
∩ mr (since m�νa� ⊂ mr+1 ⊂ mr)

= mr+1 +
N∑

l=1

mr−pel
hl (by Supporting Lemma 3)

= mr+1 +
∑
|B|=1

mr−|[B]|HB ⊂ mr+1 +
∑

|[B]|≥1

mr−|[B]|HB ⊂ J1,r,

and hence the inclusion (�)1,r.
Case 2. c ≥ 2 assuming the inclusion (�)c−1,r.

Using the inclusion (�)c−1,r, we have

Ia ∩ mr ⊂
mr+1 + qa +

∑
|[B]|≥c−1

mr−|[B]|HB

 ∩ Ia

= qa +

mr+1 +
∑

|[B]|≥c−1

mr−|[B]|HB

 ∩ Ia.
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Since qa ⊂ Jc,r, in order to show the inclusion (�)c,r, we have only to provemr+1 +
∑

|[B]|≥c−1

mr−|[B]|HB

 ∩ Ia ⊂ Jc,r.

Let f be an element in the left-hand side of the desired inclusion above, so that
there exists a finite set{

αB ∈ mr−|[B]| ; |[B]| ≥ c − 1
}

⊂ R

such that
f −

∑
|[B]|≥c−1

αBHB ∈ mr+1.

Fix a multi-index Bo with |[Bo]| = c − 1.
Choose a regular system of parameters (x1, . . . , xd) such that

hl − xpel

l ∈ mpel+1 (1 ≤ l ≤ N).

The partial derivatives in the following computation are taken with respect to
this regular system of parameters X = (x1, . . . , xd). We use the abbreviation
∂J = ∂XJ . The symbol “≡” denotes an equality modulo mr−(c−1)+1 = mr−c+2.
We compute

∂[Bo]f ≡
∑

|[B]|≥c−1

∂[Bo](αBHB)

=
∑

|[B]|≥c−1

∑
J≤[Bo]

(∂[Bo]−JαB)(∂JHB) (by the generalized product rule)

≡
∑

|[B]|≥c−1

∑
J≤[Bo]

(∂[Bo]−JαB)(∂JX [B])

=
∑

|[B]|≥c−1

∑
J≤[Bo]

(∂[Bo]−JαB)
(

[B]
J

)
X [B]−J .

In the last formula, the binomial coefficient
(
[B]
J

)
is zero unless J = [K] for

some K ≤ Bo. Therefore, we have

∂[Bo]f ≡
∑

|[B]|≥c−1

∑
K≤Bo

(∂[Bo−K]αB)
(

[B]
[K]

)
X [B−K]

=
∑

|[B]|≥c−1

∑
K≤Bo

(∂[Bo−K]αB)
(

B

K

)
X [B−K]

≡
∑

|[B]|≥c−1

∑
K≤Bo

(∂[Bo−K]αB)
(

B

K

)
HB−K .
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In the last formula, the binomial coefficient
(

B
K

)
= 0 unless K ≤ B.

If K < B, we have |[B − K]| ≥ 1 and

∂[Bo−K]αB ∈ mr−|[B]|−|[Bo−K]| = mr−(c−1)−|[B−K]|.

If K = B, we have B = Bo, since B = K ≤ Bo and |[Bo]| = c − 1 ≤ |[B]|.
Therefore, we have

(∗) ∂[Bo]f − αBo
∈
∑

K<B

mr−c+1−|[B−K]|HB−K + mr−c+2

=
∑

|[B]|≥1

mr−c+1−|[B]|HB + mr−c+2.

On the other hand, since f ∈ Ia ∩ mr and since the idealistic filtration I is
D-saturated, we have

∂[Bo]f ∈ Ia−(c−1) ∩ mr−(c−1) = Ia−c+1 ∩ mr−c+1.

Using the inclusion (�)1,r−c+1, we obtain

(∗∗) ∂[Bo]f ∈ Ia−c+1 ∩ mr−c+1 ⊂ mr−c+2 + qa−c+1 +
∑

|[B]|≥1

mr−c+1−|[B]|HB .

From (∗) and (∗∗) it follows that

αBo
HBo ∈ mr−c+2HBo + qa−c+1H

Bo +
∑

|[B]|≥1

mr−c+1−|[B]|HB+Bo

⊂ mr+1 + qa +
∑

|[B+Bo]|≥c

mr−c+1−|[B]|HB+Bo ⊂ Jc,r.

Since Bo is arbitrary with |[Bo]| = c − 1, we conclude that αBHB ∈ Jc,r

for all B with |[B]| = c − 1. Therefore, we have

f ∈
∑

|[B]|≥c−1

αBHB +mr+1 =
∑

|[B]|=c−1

αBHB +

mr+1+
∑

|[B]|≥c

αBHB

⊂Jc,r,

which implies the desired inclusion (�)c,r.
This completes the proof of the inclusion (�)c,r.
Step 2. Finishing argument.

We finish the proof of Coefficient Lemma using the result of Step 1.
Applying the inclusion (�)�a�,r for r ∈ Z≥0, we have

Ia ∩ mr ⊂ mr+1 + qa +
∑

|[B]|≥�a�
mr−|[B]|HB = mr+1 + qa,
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since I′a−|[B]| = R for B with |[B]| ≥ �a .
Therefore, we have

Ia ∩ mr ⊂ Ia ∩ (mr+1 + qa

)
= Ia ∩ mr+1 + qa,

which implies
Ia ∩ mr + qa = Ia ∩ mr+1 + qa,

for any r ∈ Z≥0. In particular, we have

Ia = Ia ∩ m0 + qa = Ia ∩ m�νa� + qa = I′a + qa = qa.

This completes the proof of Lemma 4.1.4.1.

Remark 4.1.4.2.

(1) The purpose of having a nonnegative number ν ∈ R≥0 with ν < µH(I)
involved in our statement of Lemma 4.1.4.1 is to make it valid even when
µH(I) = ∞, the case to which we often apply Coefficient Lemma. When
µH(I) < ∞, we may of course apply Coefficient Lemma, setting ν = µH(I).

(2) We can restrict the range of B in the expression Ia =
∑

B I′a−|[B]|H
B to a

specific finite range, e.g., B with |[B]| < a + peN . In fact, if |[B]| ≥ a + peN ,
there exists B′ < B such that a ≤ |[B′]| < a+peN . Then we have I′a−|[B]|H

B ⊂
RHB′

= I′a−|[B′]|H
B′

. Therefore, if B is out of this range, the term I′a−|[B]|H
B

is redundant, i.e., ∑
B

I′a−|[B]|H
B =

∑
|[B]|<a+peN

I′a−|[B]|H
B .

(3) In Part II, given an element (f, a) ∈ I of a D-saturated idealistic filtration,
we analyze “the power series expansion of f with respect to a set H satisfying
conditions (i), (ii), (iii) (e.g. a leading generator system of I)”. This provides
a different approach to Coefficient Lemma and an alternative proof.

§4.2. Nonsingularity principle

4.2.1. Statement of the nonsingularity principle.

Theorem 4.2.1.1. Let I be an idealistic filtration which is B-saturated.
Let H = {h1, . . . , hN} ⊂ R be a subset of R, and let 0 ≤ e1 ≤ · · · ≤ eN be
nonnegative integers associated to these elements, satisfying conditions (i), (ii),
(iii) as described in Setting 4.1.3. Suppose µH(I) = ∞. Then
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(1) H = {(hl, p
el) ; l = 1, . . . , N} generates the idealistic filtration I, i.e.,

I = G(H).

(2) The elements in H are all concentrated at level p0 = 1, i.e.,

H ⊂ R × {1}.

(Note that in characteristic zero, where we take p = ∞ according to our con-
vention, we set p0 = ∞0 = 1. cf. 0.2.3.2.1.).

Consequently, we conclude that the support of the idealistic filtration is
defined by H, i.e., Supp(I) = V (H), and hence that it is nonsingular.

Remark 4.2.1.2.

(1) In Theorem 4.2.1.1, we see from assertion (1) that

{hl = (hl mod mpel ) ; l = 1, . . . , N}

generates L(I) (cf. Definition 3.1.1.1), and hence conclude that H is a leading
generator system, even though we do not a priori assume so.

(2) In Part II, we will look at the invariant µ̃, which is a priori defined to be
µ̃ = µH(I) with respect to the set H associated to a leading generator system.
We will see, however, that µH(I) is independent of the choice of a leading
generator system, and hence that µ̃ is actually an invariant intrinsic to the
idealistic filtration I. Therefore, the nonsingularity principle above can be
regarded as the description of an idealistic filtration with µ̃ = ∞, with the
conclusions holding for any leading generator system H.

(3) Recall that, as we construct the strand of invariants in our algorithm, we
enlarge the idealistic filtration and construct its modifications (cf. 0.2.3.2.2.
and 0.2.3.2.4.). At the end of the construction of the strand of invariants,
we reach the last modification, which is an idealistic filtration (which is both
R-saturated and D-saturated) whose leading generator system satisfies the
conditions described in the above. The maximum locus of the strand of in-
variants, which we take as the center of blowup, coincides with the support
of this last modification (in a neighborhood of each point of the maximum
locus), and hence is nonsingular according to Theorem 4.2.1.1. This is why it
is called the nonsingularity principle of the center.

(4) In order to show I = G(H), we only need I to be D-saturated, while in
order to show H ⊂ R × {1}, we need I to be B-saturated.
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4.2.2. Proof of the nonsingularity principle.

Proof for assertion (1).
We show that H generates the idealistic filtration I, i.e., I = G(H).
Since µH(I)=∞, we can apply Coefficient Lemma with an arbitrary non-

negative number Z≥0 � ν < µH(I) = ∞ and obtain

Ia =
∑
B

I′a−|[B]|H
B =

∑
|[B]|≥a

I′a−|[B]|H
B +

∑
|[B]|<a

I′a−|[B]|H
B

⊂
∑

|[B]|≥a

RHB + I′a−(�a�−1) ⊂
∑

|[B]|≥a

RHB + m�ν(a−�a�+1)�.

Since a − �a + 1 > 0, this implies by Krull’s intersection theorem that

Ia ⊂
∞⋂

r=0

 ∑
|[B]|≥a

RHB + mr

 =
∑

|[B]|≥a

RHB .

This shows that H generates I, i.e., I = G(H).

Proof for assertion (2).
We show that the elements in H are concentrated at level p0 = 1, i.e.,

H ⊂ R × {1}. Set

H0 = {(hl, p
el) ∈ H ; el = 0} = H ∩ (R × {1}).

We will derive a contradiction assuming H0 �= H. Set e = min{el ; el > 0}.
Step 1. We show that Ia = (H) for 0 < a ≤ 1 and that (H) =

√
(H).

In fact, since I = G(H) and since H ⊂ R × R≥1, Lemma 2.2.1.2 (1) implies
that

Ia =
N∑

l=1

Rhl = (H) for 0 < a ≤ 1.

Suppose g ∈ √
(H), i.e., gn ∈ (H) = I1 for some n ∈ Z>0. Since I is R-

saturated, this implies g ∈ I1/n = (H). Therefore, we have (H) =
√

(H).
Step 2. We show that (H) = ((H) ∩ Rpe

) + (H0).
Set

D = {d ∈ Diffpe−1
R ; d((H0)) ⊂ (H0)}.

Observe
(∗) D((H)) ⊂ (H).

In fact, for d ∈ D, since H \ H0 ⊂ ⋃
el>0 Ipel = Ipe and since I is D-saturated,

we have
d ((H \ H0)) ⊂ d (Ipe) ⊂ Ipe−(pe−1) = I1 = (H).
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Therefore, we conclude

d((H)) = d((H0)) + d ((H \ H0)) ⊂ (H0) + (H) = (H).

Now (∗) implies

(∗∗) Diffpe−1

R

(
(H)

)
⊂ (H) and hence Diffpe−1

R

(
(H)

)
= (H)

where
R = R/(H0) and (H) = (H)/(H0).

Then, by Proposition 1.3.1.2, (∗∗) implies

(H) =
(

(H) ∩ R
pe)

.

Therefore, we have
(H) =

(
(H) ∩ Rpe

)
+ (H0).

Step 3. Finishing argument.
By Step 2, we conclude

(H) = (H0) +
(

(H) ∩ Rpe
)

= (H0) +
({

gpe ∈ (H) ; g ∈ R
})

= (H0) +
({

gpe

; g ∈ (H)
})

(by (H) =
√

(H))

= (H0) +
({

gpe

; g ∈ (H \ H0)
})

⊂ (H0) + mpe+1,

i.e., (H) ⊂ (H0) + mpe+1.
Choose a regular system of parameters (x1, . . . , xd) so that{

xl = hl for 1 ≤ l ≤ L where L = #{l ; el = 0}
xpel

l ≡ hl mod mpel+1 for L + 1 ≤ l ≤ N.

Then the above inclusion would imply{
(H) + mpe+1

}
/mpe+1 ⊂

{
(H0) + mpe+1

}
/mpe+1 ⊂ R/mpe+1

and we identify R/mpe+1 ∼= k[x1, . . . , xd]/(x1, . . . , xd)pe+1.
On the other hand, however, we have the following element in the first

quotient

(the leading term of hL+1) = xpeL+1

L+1 = xpe

L+1 ∈
{

(H) + mpe+1
}

/mpe+1,
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which obviously is not in the middle quotient

(x1, . . . , xL) =
{

(H0) + mpe+1
}

/mpe+1,

a contradiction !
This contradiction is derived from the assumption that H0 �= H.
Therefore, we conclude H0 = H, i.e.,

H ⊂ R × {1}.

This completes the proof of Theorem 4.2.1.1, the nonsingularity principle.
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