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Convergent and Divergent Solutions of Singular
Partial Differential Equations with Resonance

or Small Denominators

By

Masafumi Yoshino∗

Abstract

We show the solvability and nonsolvability of a singular nonlinear system of
partial differential equations with resonance in a class of functions holomorphic in
some neighborhood of the origin. These results are applied to the normal form theory
of a singular vector field.

§1. Introduction

In this paper, we study the solvability and nonsolvability of a singular
nonlinear system of partial differential equations which appear in the normal
form theory of vector fields. It is well-known that under the Poincaré condition
or a Diophantine condition the sytem of equations has a convergent power series
solution locally. (cf. Remark 2.) We are interested in the solvability in a class
of convergent power series without any Diophantine condition although there
are infinite resonances or small denominators. We are also interested in the
divergence caused by the presence of a nontrivial Jordan block in the linear
part. Because the singular operator which we consider has infinite resonance
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924 Masafumi Yoshino

or small denominators, a standard energy method or an iterative method does
not work due to the presence of high loss of derivatives.

To our best knowledge, few results are known for such operators. One
interesting approach for the problem is the geometric viewpoint. To be more
precise, let us consider an equation appearing from a Hamiltonian vector field.
Clearly, the normalizing transformation satisfies an equation with infinite res-
onance. (cf. (2.2).) It is well-known that the formal power series solutions of
the equation do not converge in general. Due to Ito and Zung, the convergence
is equivalent to the existence of a certain number of integrals. (cf. [1] and [5].)

We shall give a rather simple wide class of nonlinear perturbations for
which one can always find a convergent solution, which is different from an
integrability condition because we put no restriction on the resonance dimen-
sion. (cf. [1] and [5].) We also construct a Liouville type linear part and a
nonlinear perturbation for which a divergence of a (unique) solution occurs.
(cf. Proposition 3.1.) This especially shows that our sufficient condition of a
nonlinear perturbation is necessary in general.

We are also interested in the divergence phenomenon caused by the pres-
ence of a nontrivial Jordan block of the linear part in a Siegel case. In fact, if this
is the case, then the solutions corresponding to the normalizing transformation
generally diverge even if we assume a Diophantine condition. (cf. Proposition
3.2.) Theorem 2.1 also gives a convergence criterion for these operators.

This paper is organized as follows. In Section 2, we state convergence
results. In Section 3, we study the divergence and Diophantine phenomena. In
Section 4, we prepare necessary lemmas. In Section 5 we prove our theorem.

§2. Convergence Criterions

Let x = t(x1, . . . , xn) ∈ Cn, n ≥ 2 be the variable in Cn, and R be the
set of real numbers. Let Λ be an n-square constant matrix. Let LΛ be the Lie
derivative of the linear vector field Λx · ∂x

(2.1) LΛv = [Λx, v] = 〈Λx, ∂xv〉 − Λv,

where 〈Λx, ∂xv〉 =
∑n

j=1(Λx)j(∂/∂xj)v, with (Λx)j being the j-th component
of Λx. We consider the system of equations

(2.2) LΛu = R(u(x)),

where u = t(u1, u2, . . . , un) is an unknown vector function and

R(x) = t(R1(x), R2(x), . . . , Rn(x))
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is holomorphic in some neighborhood of x = 0 in Cn such that R(x) = O(|x|2)
when |x| → 0. The equation (2.2) appears as a linearizing equation of a singular
vector field. (cf. [4]). Because we can always reduce Λ to a Jordan normal form
by the linear change of the unknown functions U = Au, we may assume that
Λ is put in a Jordan normal form. Moreover we assume that there exists ∃ τ0,
0 ≤ τ0 ≤ π such that

(2.3) every component of e−iτ0Λ is a real number.

It follows that if λj (j = 1, 2, . . . , n) are the eigenvalues of Λ with multiplicity,
then we have

(2.4) ∃ τ0, 0 ≤ τ0 ≤ π, e−iτ0λj ∈ R (j = 1, 2, . . . , n).

If we set u(x) = x+v(x), v(x) = O(|x|2), then v satisfies the following equation

(2.5) LΛv = R(x + v(x)).

Let Z+ be the set of nonnegative integers, and let Zn
+(k) (k ≥ 0) be the

n-product of Z+, γ = t(γ1, γ2, . . . , γn) such that |γ| = γ1 + γ2 + · · · + γn ≥ k.
For γ ∈ Zn

+, we set xγ = xγ1
1 · · ·xγn

n . For k ≥ 0 and n ≥ 1, we denote by Cn
k [[x]]

the set of formal power series
∑

|η|≥k uηxη (uη ∈ Cn). We also define the
convergent n-vector power series which vanishes up to the (k− 1)-th derivative
by Cn

k [x]. We decompose Λ = ΛS + ΛN , where ΛS and ΛN are the semi-simple
and the nilpotent part of Λ, respectively. We denote by LΛS

the Lie derivative
of the linear vector field ΛSx · ∂x.

For a formal power series f(x) =
∑

γ fγxγ , we define the majorant of f ,
M(f)(x) by

(2.6) M(f) :=
∑

γ

|fγ |xγ .

For a vector f = (f1, f2, . . . , fn) we define M(f) := (M(f1), M(f2), . . . ,
M(fn)). For a formal power series with real coefficients a(x) =

∑
γ aγxγ and

b(x) =
∑

γ bγxγ , we define a � b if aγ ≤ bγ for all γ ∈ Zn
+. We define

(f1(x), f2(x), . . . , fn(x)) � (g1(x), g2(x), . . . , gn(x))

if fj(x) � gj(x) for j = 1, 2, . . . , n.
Let c > 0 be a constant. Let A+ (resp. A−) be the set of g(x) =

t(g1(x), . . . , gn(x)) ∈ Cn
2 [x] such that

(2.7) (LΛS
− c)M(g) 	 0 (resp. (LΛS

+ c)M(g) � 0)
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and that g(x) is a finite sum of the functions f = t(f1, f2, . . . , fn) ∈ Cn
2 [x] with

the following expansion at the origin

(2.8) fj(x) = xν

∑
γ

fj,γxγ , fj,γ ∈ C, j = 1, 2, . . . , n,

where ν is such that the j-th and the ν-th components of ΛS belong to the same
Jordan block of ΛN . We can prove that A± are linear spaces. (cf. Lemma 4.3.)
Then we have

Theorem 2.1. Suppose that (2.3) holds. Let R(x) ∈ A±. Assume
that R(x) is a polynomial with degree < c + 1 if ΛN 
= 0. Then, (2.5) has a
holomorphic solution in some neighborhood of the origin x = 0.

Remark 1. If we drop the conditions of Theorem 2.1, then we encounter
the divergence caused by small denominators and the presence of a Jordan
block. More precisely, we have
(a) If c = 0, then Theorem 2.1 does not hold in general because of small
denominators. Namely, the condition LΛS

M(R) 	 0 or LΛS
M(R) � 0 is not

sufficient. (cf. Proposition 3.1.)
(b) There exists R such that neither LΛS

M(R) � 0 nor LΛS
M(R) 	 0 holds

for which Theorem 2.1 does not hold. This follows from Proposition 3.1 in view
of the arbitrariness of R′ in Proposition 3.1.
(c) If Λ is not semi-simple, then there exists R which is not a polynomial such
that Theorem 2.1 does not hold. This follows from Proposition 3.2.

Finally we note that because (2.5) has infinite resonance in general, the
uniqueness of a solution in Theorem 2.1 does not hold in general.

Remark 2. We will briefly review the notions used in this paper. Let
λj (j = 1, 2, . . . , n) be the eigenvalues of Λ with multiplicity. We say that
λj (j = 1, 2, . . . , n) satisfy the Poincaré condition if the convex hull of λj

(j = 1, 2, . . . , n) in the complex plane does not contain the origin 0 ∈ C. We
can easily see that the Poincaré condition is equivalent to the following estimate:
there exist C > 0 and K > 0 independent of α such that

(2.9) |〈λ, α〉 − λj | ≥ C|α|, ∀α = (α1, α2, . . . , αn) ∈ Zn
+, |α| ≥ K,

for j = 1, 2, . . . , n, where λ = (λ1, λ2, . . . , λn) and 〈λ, α〉 =
∑n

i=1 λiαi.
For α = (α1, α2, . . . , αn) ∈ Zn we define ‖α‖ =

∑n
i=1 |αi|. We say that

λ ∈ Rn is a Diophantine vector if there exist ∃τ > 0 and ∃C > 0 such that

(2.10) |〈λ, α〉 − λj | ≥ C‖α‖−n−τ , ∀α ∈ Zn, ‖α‖ ≥ 2, j = 1, 2, . . . , n.
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We call (2.10) a Diophantine condition. The vector which does not satisfy a
Diophantine condition is called a Liouville vector. By considering the special
case of (2.10) we have the classical definition of a Diophantine number. We
say that a number t ∈ R \ Q is a Diophantine number if there exist τ > 0 and
C > 0 such that for every p, q ∈ Z, q > 0, one has |t − p

q | ≥ Cq−2−τ . The
Liouville numbers are the complement of Diophantine numbers in R \ Q.

Finally, we give the definition of a Brjuno type Diophantine condition. We
set �j(α) = 〈λ, α〉 − λj and define

(2.11) ωk = inf{|�j(α)|; �j(α) 
= 0, α ∈ Zn, 2 ≤ ‖α‖ ≤ 2k, j = 1, 2, . . . , n},

where k = 1, 2, . . .. Then we say that λ satisfies the Brjuno type Diophantine
condition if

(2.12) −
∑
k≥0

ln(ωk+1)
2k

< +∞.

We can easily see that a Diophantine vector satisfies (2.12).

§3. Divergence and Diophantine Phenomena

In this section we study divergence caused by small denominators and the
presence of a Jordan block. We consider in x ∈ C2

(3.1) LΛu = R(x + u), Λ =

(
1 0
0 −τ

)
,

where τ > 0 is a Liouville number chosen later and u = O(|x|2). Then we have

Proposition 3.1. For every R′(x) holomorphic in some neighborhood
of the origin, there exist a Liouville number τ > 0 and a holomorphic pertur-
bation R′′(x) 
≡ 0 such that LΛS

M(R′′) 	 0 or LΛS
M(R′′) � 0 holds and that

the unique formal power series solution of (3.1) with R = R′ + R′′ diverges.

Proof. We construct an irrational number τ by the continued fraction
expansion τ = [a1, a2, . . .], aj ∈ N. Namely, if we define the sequence {pn} and
{qn} by

pn = anpn−1 + pn−2, n ≥ 2, p0 = 0, p1 = 1,(3.2)

qn = anqn−1 + qn−2, n ≥ 2, q0 = 1, q1 = a1,(3.3)
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then we have pn/qn → τ (n → ∞). Moreover, we have (cf. [3])

(3.4)
1

(an+1 + 2)q2
n

<

∣∣∣∣τ − pn

qn

∣∣∣∣ < 1
an+1q2

n

, n ≥ 0.

We substitute the expansion of u = (u1, u2) and Rj(x + u),

uj =
∑
|η|≥2

uj,ηxη,

Rj(x + u) =
∑
|γ|≥2

Rj,γ(x1 +
∑

u1,ηxη)γ1(x2 +
∑

u2,ηxη)γ2

into the equation (3.1). Then we have the recurrence relations

(η1 − τη2 − 1)u1,η = R1,η + Pη,1(uj,δ, |δ| < |η|, j = 1, 2),(3.5)

(η1 − τη2 + τ )u2,η = R2,η + Pη,2(uj,δ, |δ| < |η|, j = 1, 2),(3.6)

where Pη,j is a polynomial of uk,δ’s with coefficients given by the expansions
of R. Now suppose that a1, a2, . . . , an are given. We determine pn and qn by
(3.2) and (3.3), and we want to determine u1,η with η = (pn + 1, qn) from
(3.5) assuming that uj,δ (|δ| < |η|, j = 1, 2) are already determined. This is
possible if τ avoids a finite number of rational points. If the absolute value of
Pη,1(uj,δ, |δ| < |η|, j = 1, 2) is smaller than 2|η|+1, then we take R1,η such that
|R1,η| = 2 · 3|η|. On the other hand, if the absolute value of Pη,1(uj,δ, |δ| <

|η|, j = 1, 2) is larger than 2|η|+1, then we take R1,η such that |R1,η| = 2|η|.
It follows that the absolute value of the right-hand side of (3.5) is larger than
2|η|. In view of (3.4), we determine an+1 such that |u1,(pn+1,qn)| ≥ (pn + qn)!.
This is possible if we take an+1 sufficiently large. Moreover, by the definition
of continued fractions we see that the approximant [a1, a2, . . . , an+1] avoids the
finite number of rational points given in the above if we take an+1 sufficiently
large. Next we determine pn+1 and qn+1 from (3.2) and (3.3). Then we want
to determine u1,η with η = (pn+1 + 1, qn+1) from (3.5). We can determine the
terms uj,δ (|δ| < |η|, j = 1, 2) if τ avoids a finite number of rational points. This
is possible if an+2 is sufficiently large. Then we repeat the same argument as
in the above. Clearly, R(x) is holomorphic in some neighborhood of the origin.
On the other hand, if we take an+1 so that an+1 is larger than polynomial order
of qn, then it follows from (3.4) that τ is a Liouville number. Therefore we can
determine a Liouville number τ so that we have a divergent formal power series
solution u =

∑
|η|≥2 uηxη.

By the definition of a continued fraction expansion, we have pn +1−τqn−
1 > 0 or pn + 1 − τqn − 1 < 0 according as n is odd or even. For simplicity,
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we take pn and qn for odd n. If we take R′′
1,η appropriately, then we have

R1,η 
= 0 and the support of R′′
1,η is contained in η1 − τη2 − 1 > 0. This

proves that LΛS
M(R′′) 	 0. By a similar argument we can also treat the case

LΛS
M(R′′) � 0. This completes the proof.

Remark 3. We know that almost all nonlinear perturbations of a Liou-
ville type linear operator has a divergent solution. (cf. [2]) Our result shows
that for any nonlinear perturbation there exists a Liouville number τ such that
the divergence occurs if we add a limited type of nonlinear perturbations.

Next we study the divergence caused by the presence of a nontrivial Jordan
block even if a Diophantine condition is verified. We consider in x ∈ C3

(3.7) LΛu = R(x + u), Λ =


1 0 0

0 −τ −1
0 0 −τ


 ,

where τ > 0 is an irrational number and u = O(|x|2). Then we have

Proposition 3.2. Let c > 0. For every irrational number τ > 0 there
exists R 
≡ 0 which is not a polynomial such that (LΛS

− c)M(R) 	 0 or
(LΛS

+ c)M(R) � 0 holds and that the unique formal power series solution of
(3.7) diverges.

Proof. Let K be such that K > c+2. We denote by [c] the largest integer
which does not exceed c. Then we define

(3.8) R1(x) = x
[c]+2
1 R̃1(x1), R2(x) =

∑
max{c,2}≤i−τj<K

xi
1x

j
2, R3(x) ≡ 0,

where R̃1 is holomorphic at the origin such that R̃1 	 0. We can easily see
that (LΛS

− c)M(R) 	 0.
We will construct the solution u = (u1, u2, u3) of (3.7). We set u1(x) =

x1w1(x1). Then it follows from the first equation of (3.7) that w1 satisfies
x1∂1w1 = x

[c]+1
1 (1 + w1)[c]+2R̃1(x1(1 + w1)). By the elementary computations,

we can easily show that the equation has a holomorphic solution w1(x1) such
that w1 	 0. Next u3 satisfies (x1∂1 − τx2∂2 − τx3∂3 − x3∂2 + τ )u3 = 0. By
the irrationality of τ , we have u3 = 0.

Next, by the second equation of (3.7) u2 satisfies

(3.9) (x1∂1 − τx2∂2 − τx3∂3 − x3∂2 + τ )u2 = R2(x1(1 + w1), x2 + u2).
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We denote by g(x) the right-hand side of (3.9). By the expansions u2(x) =∑
α u2,αxα and g(x) =

∑
α gαxα, we define the vectors U and G by

(3.10) U := t(u2,(α1,N−�,�))N
�=0, G := t(g(α1,N−�,�))N

�=0,

where we may assume that N + α1 ≥ 2, N, α1 ∈ Z+. Indeed, by (3.8) and
(3.9) one may assume that the order of g(x) is greater than 2. Hence in the
definition of G in (3.10) we may assume that N + α1 ≥ 2, N, α1 ∈ Z+. On
the other hand, because the differential operator in the left-hand side of (3.9)
preserves homogeneous polynomials, we may assume the conditions for U . By
substituting the expansions of g(x) and u2(x) into (3.9), we have

(3.11) (α1 − τN + τ )U −MNU = G,

where MN is given by

(3.12) MN =




0 0 0 . . . 0 0 0
N 0 0 . . . 0 0 0
0 N − 1 0 . . . 0 0 0
0 0 N − 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 0 0
0 0 0 . . . 0 1 0




, N ≥ 1,

and M0 = 0. By inductive arguments we get

(3.13) u2,(α1,N−�,�) =
�∑

r=0

1
(α1 − τN + τ )r+1

(N − � + r)!
(N − �)!

g(α1,N−�+r,�−r)

for � = 0, 1, . . . , N , because α1 − τN + τ 
= 0 by the assumption α1 + N ≥ 2
and the irrationality of τ .

We set L := x1∂1 − τx2∂2 − τx3∂3. By the definition of R2, we obtain
(L− c)M(R2) 	 0. Because the order of x1w1, u2 or R2 is equal to or greater
than 2 by the constructions of w1 and u2 or the definition of R2, it follows
that, in the Taylor expansion of the right-hand side of (3.9) the terms xα

(α1 + N = 2, α2 + α3 = N) appear only in the expansion of R2(x1, x2). Hence,
we see that (L − c)M(u2) 	 0 up to the terms of order 2. Now, suppose
that (L − c)M(u2) 	 0 holds up to order k. Then, we want to show that
(L−c)M(g) 	 0 holds up to order at least k+1. Indeed, in view of the definition
of g we may consider the terms of order less than or equal to k+1 which appear
in xi

1(1 + w1)i(x2 + u2)j . Let us consider the term
(

i
ν

)(
j
µ

)
xi

1w
ν
1xj−µ

2 uµ
2 , (ν ≥ 0
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and 0 ≤ µ ≤ j). Then, by the definition of g we have (L − c)M(xi
1x

j−µ
2 ) 	 0

because i − τ (j − µ) > i − τj ≥ c. On the other hand the terms of order less
than or equal to k + 1 appearing in uµ

2 satisfies (L− c)M(·) 	 0. Similarly we
have (L − c)M(wν

1 ) 	 0. Hence we have the assertion. It follows from (3.9)
that (L − c)M(u2) 	 0 holds up to order at least k + 1. By induction, we
obtain (L− c)M(u2) 	 0. Because τ > 0, it follows that (L + τ − c)M(u2) 	
(L − c)M(u2) 	 0. On the other hand, we have that (L − 1 − c)M(u1) 	 0,
because the order of u1 = u1(x1) is greater than [c]+2 by the construction. We
also have (L + τ − c)M(u3) = 0 	 0. Therefore we have (LΛS

− c)M(u) 	 0.
Next we will show that u2 	 0. Indeed, by the relation (L− c)M(u2) 	 0

we see that the support of the Taylor expansion of u2 satisfies that α1 − τα2 −
τα3 ≥ c > 0. Because R 	 0, it follows from (3.13) that the coefficients in
Taylor expansion of u2 of homogeneous order 2 are nonnegative. Namely, we
have u2 	 0 up to order 2. Hence, we have g(x) 	 0 up to at least order 3,
because R 	 0. It follows from (3.13) that u2 	 0 up to at least order 3. By
inductive argument, we have u2 	 0.

We will show the divergence. By the definition of g, we can write gα =
g̃α + hα, where g̃α comes from R2(x) and hα comes from terms containing
w1 and u2. By the assumption and what we have proved in the above, we
have g̃α ≥ 0 and hα ≥ 0. Because g̃(α1,N,0) = 1, it follows from (3.13) that
u2,(α1,0,N) ≥ N !(α1−τN+τ )−N−1. Hence u2 diverges. This ends the proof.

§4. Preliminary Lemmas

In order to prove lemmas, we use subspaces of A±. Let f ∈ A− be given
by (2.8). For ρ > 0, we introduce the norm of f by

(4.1) ‖f‖ρ :=
n∑

j=1

M(fj)(ρ, . . . , ρ) =
n∑

j=1

∑
γ

|fj,γ |ρ|γ|+1,

if the right-hand side is finite. The set of all f such that ‖f‖ρ < ∞ is denoted
by A−,ρ. We similarly define A+,ρ. If we make the change of the variables
xj �→ εxj , then we may assume that ρ > 1 in the above definition. Hence we
assume ρ > 1 in the following. For the sake of simplicity, we sometimes omit
the suffix of the norm ‖·‖ρ, and denote it by ‖·‖ if there is no fear of confusion.

Let the operators Q± on the spaces A∓ be defined by

Q±V (x) = −
∫ ±∞

0

e−tΛV (etΛx)dt, V ∈ A∓,(4.2)

if the right-hand side integral converges. We denote by A0
∓ the subset of ele-

ments of A∓ which are polynomials in x. Then we have
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Lemma 4.1. Suppose that (2.3) holds. Moreover, assume that ΛN = 0.
Then, Q± is a continuous linear operator on A∓ into A∓ such that LΛQ±V =
V for every V ∈ A∓. Moreover, there exists c1 > 0 such that ‖Q±V ‖ρ ≤
c1‖V ‖ρ for all V ∈ A∓. If ΛN 
= 0, then Q± is a linear operator on A0

∓ into
A0

∓.

Proof. Because the proof is similar, we prove the lemma for Q+. By
multiplying (2.5) with e−iτ0 , we may assume that all components of Λ are
real. For V (x) = t(V1(x), V2(x), . . . , Vn(x)) ∈ A−, let Vj(x) =

∑
γ xγVj,γ

(j = 1, 2, . . . , n) be the Taylor expansion of Vj(x). We set λ = t(λ1, λ2, . . . , λn).
We write Λ = ΛS +ΛN , where ΛS and ΛN are the semi-simple and the nilpotent
parts of Λ, respectively. Because [ΛS , ΛN ] = 0, we have

(4.3) e−tΛV (etΛx) = e−tΛN e−tΛS V (etΛx).

Since (etΛx)γ = (etΛN x)γet〈λ,γ〉, it follows that the j-th component of
e−tΛS V (etΛx) is given by∑

γ

e−tλj (etΛx)γVj,γ =
∑

γ

(etΛN x)γet〈λ,γ〉−tλj Vj,γ .(4.4)

On the other hand, it follows from (2.7) that, for every γ ∈ Zn
+(2) and j =

1, 2, . . . , n, we have 〈λ, γ〉 − λj ≤ −c < 0 if Vj,γ 
= 0. Hence we obtain

(4.5) exp(t〈λ, γ〉 − tλj) ≤ e−ct, ∀t ≥ 0.

It follows that for each t ≥ 0, the sum (4.4) converges.
If Λ is semi-simple, i.e., ΛN = 0, then it follows from (4.4) and (4.5) that

the integral (4.2) converges. If ΛN 
= 0, then we see that the growth of terms
appearing in (etΛN x)γ is at most t|γ|(�−1), where � ≥ 2 is the maximal size of
the Jordan block of ΛN . Because we assume that V is a polynomial in case
ΛN 
= 0, it follows from (4.3), (4.4) and (4.5) that the integral in (4.2) converges
and it is a polynomial of x.

Because the substitution xγ �→ (etΛx)γ preserves the property (2.8), we see
that Q+V is a finite sum of vector functions whose components satisfy (2.8).

Next we will show that (LΛS
+ c)M(Q+V ) � 0. We note that every

monomial xδ which appears in (etΛN x)γ satisfies 〈λ, γ〉 = 〈λ, δ〉. Indeed, the
map x �→ etΛN x induces a linear upper (lower) triangular transformation among
the components of x corresponding to the same Jordan block. Because λi’s
coincide with each other for such components, we have the assertion. In view
of the definition of Q+, the condition 〈λ, γ〉 − λj ≤ −c is preserved by the
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operator Q+. Hence we have Q+V ∈ A−. Therefore Q+ : A− �→ A− is
well-defined if ΛN = 0. We remark that the above argument also shows that
Q+ : A0

− �→ A0
− is well-defined if ΛN 
= 0.

Next we will show that LΛQ+V = V for V ∈ A−. For every V ∈ A− we
will prove

(4.6) e−tΛ〈Λx, ∂x〉V (etΛx) = e−tΛ d

dt
V (etΛx), t ≥ 0,

in some neighborhood of the origin x = 0 independent of t, 0 ≤ t < ∞. Indeed,
by the relation ∂xV (etΛx) = (∇V )(etΛx)etΛ we have

〈Λx, ∂x〉V (etΛx) = (∇V )(etΛx)etΛΛx(4.7)

= (∇V )(etΛx)
d

dt
etΛx =

d

dt
V (etΛx).

This proves (4.6) for each t ≥ 0 and x in some neighborhood of the origin. If
ΛN = 0, then we have

e−tΛ d

dt
V (etΛx) =

∑
γ

〈λ, γ〉et〈λ,γ〉−ΛStVγxγ ,

where V (x) =
∑

γ Vγxγ . Because ‖et〈λ,γ〉−ΛSt‖ ≤ 1 for all t ≥ 0, we see that
the right-hand side is holomorphic in some neighborhood of x = 0 independent
of t. By an analytic continuation, (4.6) holds for all x in some neighborhood
of the origin independent of t, t ≥ 0. This proves (4.6).

By (4.6) we have

LΛQ+V = (〈Λx, ∂x〉 − Λ)Q+V(4.8)

=−
∫ ∞

0

e−tΛ〈Λx, ∂x〉V (etΛx)dt + Λ
∫ ∞

0

e−tΛV (etΛx)dt

=−
∫ ∞

0

e−tΛ d

dt
V (etΛx)dt + Λ

∫ ∞

0

e−tΛV (etΛx)dt

=−
∫ ∞

0

d

dt

(
e−tΛV (etΛx)

)
dt = V (x).

Finally we shall prove the estimate. If Λ is semi-simple, then we have

Q+Vj(x) = −
∑

γ

xγ

∫ ∞

0

exp(t〈λ, γ〉 − tλj)dtVj,γ =
∑

γ

xγ(〈λ, γ〉 − λj)−1Vj,γ .

Therefore, there exists c1 > 0 independent of V such that ‖Q+V ‖ρ ≤ c1‖V ‖ρ.
This ends the proof.

For the later use, we give several lemmas.
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Lemma 4.2. If f ∈ C1[x], g ∈ C1[x] and c is a complex number, then
M(fg) � M(f)M(g), M(f + g) � M(f) + M(g) and M(cf) � |c|M(f).

The proof is clear from the definition.

Lemma 4.3. Assume that 0 � f � g and c > 0. If (LΛS
+ c)g � 0,

then (LΛS
+ c)f � 0. Similarly, if (LΛS

− c)g 	 0, then (LΛS
− c)f 	 0.

Proof. Suppose that (LΛS
+ c)g � 0. If f =

∑
fγxγ and g =

∑
gγxγ ,

then (〈λ, γ〉 + c)gγ ≤ 0 and 0 ≤ fγ ≤ gγ . If gγ = 0, then we have fγ = 0
and hence (〈λ, γ〉 + c)fγ ≤ 0. On the other hand, if 〈λ, γ〉 + c ≤ 0, then
(〈λ, γ〉 + c)fγ ≤ 0. This proves that (LΛS

+ c)f � 0. We can prove the latter
half similarly.

Remark 4. The spaces A± are linear spaces. Indeed, let f, g ∈ A− and
α ∈ C. The condition (2.8) is easily verified for f +g or αf . We set L := LΛS

+c

(c > 0). Then LM(f) � 0 and LM(g) � 0 imply that L(M(f) + M(g)) � 0.
Because M(f + g) � M(f) + M(g) by Lemma 4.2, it follows from Lemma 4.3
that LM(f + g) � 0. This proves that A− is a linear space. The proof is the
same for A+.

Lemma 4.4. Let ρ > 0. For u, v ∈ Cn[x] such that ‖u‖ρ < ∞ and
‖v‖ρ < ∞, we have ‖u · v‖ρ ≤ ‖u‖ρ‖v‖ρ.

This is clear from the definition.

§5. Proof of Theorem 2.1

Proof of Theorem 2.1. We will prove the theorem in the case R ∈ A−.
The proof is the same in the case R ∈ A+. If there is no fear of confusion,
we omit the suffices and we simply denote A and Q instead of A∓,ρ and Q±,ρ,
respectively. Similarly, we sometimes omit the suffix of ‖ · ‖ρ and write ‖ · ‖
instead of ‖ · ‖ρ.

In order to solve (2.5) we set v = QV . By Lemma 4.1, Eq. (2.5) can be
written in the form

(5.1) V = R(x + QV ),

if ΛN = 0. In view of this we will solve (5.1). We define the sequence {V j}j by

(5.2) V 0 = R(x), V 1 = R(x + QV 0) − R(x),
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(5.3) V j+1 = R(x+QV 0+· · ·+QV j)−R(x+QV 0+· · ·+QV j−1), j = 1, 2, . . .

In order to show that V j ’s are well-defined we first consider the case ΛN 
= 0.
By Lemma 4.1 and the assumption, we see that V 0 and QV 0 are polynomi-
als. Hence, by (5.2) V 1 is a polynomial. Inductively, we see that V j ’s are
polynomials. We will show that V j ∈ A0. For this purpose, we will prove
that R(x + QV ) ∈ A0 if V ∈ A0. Indeed, if we can prove this, then we have
R(x + QV 0) ∈ A0. It follows that V 1 = R(x + QV 0) − R(x) ∈ A0. Next we
have V 0 + V 1 ∈ A0, and thus V 2 ∈ A0. By the induction we have V j ∈ A0

(j = 0, 1, 2, . . .).
In order to show (2.8) we write

(5.4) Rj(x + QV ) =
∑

γ

Rj,γ(x + QV )γ =
∑

γ

Rj,γ

∏
i

(xi + (QV )i)γi ,

where (QV )i is the i-th component of QV . Because QV ∈ A0, (QV )k is the
sum of the functions hµ with hµ being divisible by xµ where xk and xµ belong to
the same Jordan block. If Rj(x) is divisible by xk with xk and xj belonging to
the same Jordan block, then it follows that Rj(x+QV ) is the sum of functions
divisible by some xν with xν and xj belonging to the same Jordan block. Hence
(2.8) holds.

Next we will show that (LΛS
+ c)M(R(· + QV )) � 0. Let xη be any

monomial appearing in the right-hand side of (5.4). Because (LΛS
+c)M(R) �

0 by the assumption, it follows that the γ’s in (5.4) satisfy that 〈λ, γ〉−λj ≤ −c.
In view of the relation QV ∈ A0, (QV )i can be expanded in the power series
of xδ such that 〈λ, δ〉−λi ≤ −c. If we expand (xi +(QV )i)γi in the right-hand
side of (5.4) into the power series of x, then we see that xη appears if some
xi in xγ is replaced by xδ appearing in (QV )i a finite number of times. If xγ

turns into xη by the one substitution, then we have

〈λ, η〉 − λj = 〈λ, γ〉 − λj − λi + 〈λ, δ〉 ≤ −2c < −c.

By the similar argument, we have the estimate 〈λ, η〉 − λj ≤ −c in the general
case. Hence R(x + QV ) satisfies (LΛS

+ c)M(R(· + QV )) � 0. This proves
that R(x + QV ) ∈ A0.

Next we consider the case ΛN = 0. Let V ∈ A. Because Q is continuous
by Lemma 4.1, R(x+QV ) is well-defined in some neighborhood of the origin if
‖V ‖ is sufficiently small. We will estimate ‖R(·+ QV )‖ρ. By making the scale
change of the variables, if necessary, one may assume ‖R‖2ρ < ε. By Lemma
4.1, Lemma 4.4 and (4.1) we have

(5.5) ‖R(· + QV )‖ρ ≤
∑
γ,j

|Rj,γ |(ρ + c1‖V ‖ρ)|γ|.
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If ‖V ‖ρ < ε for sufficiently small ε such that c1ε < ρ, then the right-hand side
of (5.5) is bounded by ε because ‖R‖2ρ < ε. On the other hand, by the same
argument as in the case ΛN 
= 0, we can prove that R(x+QV ) ∈ A. Therefore,
one can define V j ∈ A (j = 0, 1, . . .) by (5.2) and (5.3) inductively.

Next we will prove the convergence of {V j} in A. For this purpose we will
show that there exist constants c0 ≥ 0 and K0 ≥ 0 independent of j such that,
for j = 0, 1, 2, . . .,

‖V j‖ ≤ cj
0ε

j+1,(5.6)

‖QV j‖ ≤K0‖V j‖.(5.7)

Clearly we have ‖V 0‖ = ‖R‖ < ε by the definition. Next we will show (5.7) for
j = 0. If ΛN = 0, then the estimate follows from Lemma 4.1. Hence we may
assume ΛN 
= 0. Let d0 be the degree of R. By Lemma 4.1 we have QV 0 ∈ A0.
By the definition we have

QV 0 = −
∫ ∞

0

e−tΛV 0(etΛx)dt = −
∫ ∞

0

e−tΛN e−tΛS V 0(etΛx)dt.(5.8)

We set

(5.9) W (t, x) ≡ (W1(t, x), . . . , Wn(t, x)) := e−tΛS V 0(etΛx).

Then the components of the first Jordan block of e−tΛN W are given by

W1 − tW2 +
t2

2
W3 − t3

3!
W4 + · · ·(5.10)

W2 − tW3 +
t2

2!
W4 − · · ·

· · ·

There are finite number of similar terms corresponding to every Jordan block
of e−tΛN W . Hence we can easily see that ‖QV 0‖ρ is bounded by the following
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quantity

n−1∑
k=0

∥∥∥∥
∫ ∞

0

(−t)k

k!
Wk+1(t, x)dt

∥∥∥∥+
n−2∑
k=0

∥∥∥∥
∫ ∞

0

(−t)k

k!
Wk+2(t, x)dt

∥∥∥∥+ · · ·(5.11)

≤
n−1∑
k=0

∫ ∞

0

tk

k!
‖Wk+1(t, ·)‖ dt +

n−2∑
k=0

∫ ∞

0

tk

k!
‖Wk+2(t, ·)‖ dt + · · ·

=
∫ ∞

0

‖W1(t, ·)‖ dt +
∫ ∞

0

‖W2(t, ·)‖ (1 + t)dt

+
∫ ∞

0

‖W3(t, ·)‖
(

1 + t +
t2

2

)
dt + · · ·

≤
n∑

j=1

∫ ∞

0

B0(t)‖Wj(t, ·)‖dt,

where B0(t) =
∑n−1

ν=0 tν/ν!. We write V 0 = (V 0
1 , V 0

2 , . . . , V 0
n ), and expand V 0

j

(1 ≤ j ≤ n) into the Taylor series V 0
j =

∑
γ V 0

j,γxγ . Then, by (5.9) we have

Wj(t, x) = e−tλj V 0
j (etΛx) = e−tλj

∑
γ

V 0
j,γ(etΛx)γ(5.12)

=
∑

γ

et〈λ,γ〉−tλj V 0
j,γ(etΛN x)γ .

Because the sum with respect to γ is finite, we have
(5.13)

n∑
j=1

∫ ∞

0

B0(t)‖Wj(t, ·)‖dt ≤
∑
j,γ

|V 0
j,γ |
∫

B0(t)et〈λ,γ〉−tλj‖(etΛN x)γ‖ρdt.

On the other hand, we have

(5.14) ‖(etΛN x)γ‖ρ ≤ ρ|γ|(etΛN�e)γ ≤ ρ|γ|
∑

|γ|≤d0

(etΛN�e)γ ,

where �e = (1, 1, . . . , 1). In terms of the estimate 〈λ, γ〉 − λj ≤ −c (j =
1, 2, . . . , n) and (5.14), the right-hand side of (5.13) can be estimated in the
following way

≤
∑
j,γ

ρ|γ||V 0
j,γ |
∫

B0(t)e−ct
∑

|δ|≤d0

(etΛN�e)δdt(5.15)

≤K(d0)
∑
j,γ

ρ|γ||V 0
j,γ | = K(d0)‖V 0‖ρ,
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where K(d0) =
∫

B0(t)e−ct
∑

|δ|≤d0
(etΛN�e)δdt. Therefore we have ‖QV 0‖ρ ≤

K(d0)‖V 0‖ρ. If we set K0 = max{K(d0), c1} with c1 given by Lemma 4.1, then
we have (5.7) for j = 0.

Next we will prove (5.6) for j = 1. It follows from (5.2) that

(5.16) ‖V 1‖ ≤ ‖QV 0‖
∫ 1

0

‖∇R(· + τQV 0)‖dτ.

In order to estimate ‖∇R(·+ τQV 0)‖ we make the same argument as in (5.5).
Indeed, if we have the estimate

(5.17)
∑

γ

|Rj,γ ||γ|(2ρ)|γ| < c2ε, j = 1, 2, . . . , n,

for some constant c2 > 0 independent of ε, then we obtain

(5.18) ‖∇R(· + τQV 0)‖ < c2ε, ∀τ, 0 ≤ τ ≤ 1,

if K(d0)ε < ρ. The estimate (5.17) follows from the assumption ‖R‖2ρ < ε if
we replace ρ > 1 with 1 < ρ′ < ρ. For the sake of simplicity we assume that
(5.17) holds in the following.

Therefore we get, from (5.16) that

(5.19) ‖V 1‖ ≤ K(d0)c2ε
2

∫ 1

0

dτ = c0ε
2,

where c0 = K(d0)c2.
Next we will estimate ‖QV 1‖. In view of Lemma 4.1 we may assume that

ΛN 
= 0. We write V 1 = (V 1
1 , V 1

2 , . . . , V 1
n ) and consider the Taylor expansion

V 1
j (x) =

∑
γ V 1

j,γxγ . Here the sum is a finite one. We will show that for every
γ such that V 1

j,γ 
= 0 we have

(5.20) 〈λ, γ〉 − λj ≤ − c

d0 − 1
(|γ| − 1).

Noting that V 1
j = Rj(x+QR)−Rj(x), we first consider Rj(x). Because R ∈ A0,

we have 〈λ, γ〉−λj ≤ −c (j = 1, 2, . . . , n) for every xγ in the expansion of Rj(x).
Because |γ| ≤ d0, we have

(5.21) 〈λ, γ〉 − λj ≤ −c = −c
d0 − 1
d0 − 1

≤ − c

d0 − 1
(|γ| − 1), j = 1, 2, . . . , n.

Next we will prove (5.20) for Rj(x + QR). We note that QR satisfies
(5.20) because QR ∈ A0 and QR is the polynomial of degree d0. We set
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z = x + QR and we consider Rj(z) =
∑

δ Rj,δz
δ =

∑
γ R̃j,γxγ , where we

expand zδ = (x + QR)δ into the polynomial of x in the right-hand side. Then
xγ appears in the expansion of Rj(x+QR) in the following way. In the term xδ,
some xj(1) (1 ≤ j(1) ≤ n) is replaced by xδ(1)

which appears in the expansion
of (QR)j(1), where (QR)j(1) is the j(1)-th component of QR. Next some xj(2)

(1 ≤ j(2) ≤ n) is replaced by xδ(2)
which appears in the expansion of (QR)j(2).

In the same way, some xj(k) (1 ≤ j(k) ≤ n) is replaced by xδ(k)
which appears in

the expansion of (QR)j(k), (k = 1, 2, . . . , ν). It follows that γ has the expression

(5.22) γ = δ + δ(1) − ej(1) + δ(2) − ej(2) + · · · + δ(ν) − ej(ν).

By noting that QR ∈ A0 and by the same calculations as in (5.21) we have

〈λ, δ〉 − λj ≤−c ≤ − c

d0 − 1
(|δ| − 1),(5.23)

〈λ, δ(k)〉 − λj(k) ≤−c ≤ − c

d0 − 1
(|δ(k)| − 1), 1 ≤ k ≤ ν.(5.24)

Hence, by (5.22) we have

〈λ, γ〉 − λj = 〈λ, δ〉 − λj +
ν∑

k=1

(〈λ, δ(k)〉 − λj(k))(5.25)

≤− c

d0 − 1
(|δ| − 1 +

ν∑
k=1

(|δ(k)| − 1)) = − c

d0 − 1
(|γ| − 1), j = 1, 2, . . . , n.

This proves (5.20).
We will estimate ‖QV 1‖. By the same argument as for ‖QV 0‖ we have

‖QV 1‖ρ ≤
∑
j,γ

|V 1
j,γ |
∫ ∞

0

B0(t)et〈λ,γ〉−tλj‖(etΛN x)γ‖ρdt(5.26)

=
∑

j,|γ|≥ν0

+
∑

j,|γ|<ν0

≡ I2 + I1,

where V 1 =
∑

γ V 1
j,γxγ and ν0 is a sufficiently large integer chosen later. We

consider I1. We have

‖(etΛN x)γ‖ρ ≤ ρ|γ| × (a polynomial of t with degree determined by ν0).

On the other hand, we have 〈λ, γ〉 − λj ≤ −c and c > d0 − 1 ≥ 1 by the
assumption. It follows that I1 can be bounded by

(5.27) I1 ≤
∑

j,|γ|<ν0

|V 1
j,γ |ρ|γ|K1,
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where K1 depends on ν0.
Next we consider I2. By the definitions of the norm and etΛN we have

(5.28) ‖(etΛN x)γ‖ρ ≤ ρ|γ|(etΛN�e)γ ≤ ρ|γ|et|γ|,

where �e = t(1, 1, . . . , 1). Hence, by (5.20) we have

(5.29) I2 ≤
∑

j,|γ|≥ν0

|V 1
j,γ |ρ|γ|

∫ ∞

0

B0(t) exp
(

ct

d0 − 1
− ct|γ|

d0 − 1
+ t|γ|

)
dt.

By the assumption c > d0 −1 there exists κ > 0 such that (c/(d0 −1)−1) > κ.
We take ν0 so that c/(d0 − 1) < κν0. Then we have

ct

d0 − 1
− ct|γ|

d0 − 1
+ t|γ| ≤ ct

d0 − 1
− κt|γ| ≤ t

(
c

d0 − 1
− κν0

)
.

Hence the integral in the right-hand side of (5.29) converges and it is bounded
by some constant K2 independent of γ. Therefore we have

(5.30) I2 ≤ K2

∑
j,γ

|V 1
j,γ |ρ|γ|.

We note that K1 and K2 depend on c, d0 and the dimension n, and are inde-
pendent of γ. By (5.26), (5.27) and (5.30) we have

(5.31) ‖QV 1‖ρ ≤ I2 + I1 ≤ K0‖V 1‖ρ,

where K0 = max{K1+K2, K(d0), c1} with c1 given by Lemma 4.1. This proves
(5.7) for j = 1.

We will prove (5.6) and (5.7) by induction. Suppose that we have proven
(5.6) and (5.7) for j = 0, 1, 2, . . . , k. Then, by (5.6) and (5.7) we have

(5.32) ‖Q(V 0 + · · · + V k)‖ ≤ K0

k∑
ν=0

‖V ν‖ ≤ K0ε
k∑

ν=0

(εc0)ν = 2K0ε,

if εc0 < 1/2. Hence, if ρ + 2K0ε < 2ρ, then V k+1 is well-defined. Moreover, by
the definition we have

‖V k+1‖ ≤ ‖QV k‖
∫ 1

0

‖∇R(· + QV 0 + · · · + QV k−1 + τQV k)‖dτ(5.33)

≤K0c
k
0εk+1c2ε = ck+1

0 εk+2,

where c0 = K0c2. Here we used the estimate

‖∇R(· + QV 0 + · · · + QV k−1 + τQV k)‖ < c2ε,
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which follows by the similar argument like (5.18).
Next we will prove (5.7) for j = k+1. If ΛN = 0, then the assertion follows

from Lemma 4.1. Hence we assume ΛN 
= 0. Let V k+1 = t(V k+1
1 , . . . , V k+1

n )
and let V k+1

j (x) =
∑

γ V k+1
j,γ xγ , (j = 1, 2, . . . , n) be the Taylor expansion.

First we will prove (5.20) for γ such that V k+1
j,γ 
= 0. We will prove this by

the induction on ν of V ν
j . Suppose that (5.20) holds for V ν

j , (ν = 0, 1, . . . , m)
(m ≤ k) in such a way that Rj(x+QV 0 + · · ·+QV ν) (ν = 0, 1, . . . , m−1) also
satisfy (5.20). We have already proved the assertion for m = 0, 1. We want
to show that Rj(x + QV 0 + · · · + QV m) (1 ≤ j ≤ m) satisfies (5.20). If we
can prove this, then V m+1

j satisfies (5.20) by the inductive assumption and the
definition of V m+1

j .
We note that every j-th component of QV ν (ν = 0, 1, . . . , m) also satisfies

(5.20). Indeed, Q maps every monomial vector xγWγ (Wγ , a constant vector) to
the vector whose components are the polynomials of the form

∑
〈λ,γ〉=〈λ,δ〉 cδx

δ

for some constants cδ. Hence, in view of the definition of Q, we have the
assertion. Let

Rj(z) =
∑

δ

Rj,δz
δ =

∑
γ

R̃j,γxγ

be the Taylor expansion at the origin, where z = x+QV 0+· · ·+QV m. For every
ν and j, (0 ≤ ν ≤ m, j = 1, 2, . . . , n), we denote by (QV ν)j the j-th component
of QV ν . If xγ appears in the expansion of zδ = (x + QV 0 + · · ·+ QV m)δ, then
we see that some xj(1) (1 ≤ j(1) ≤ n) in the monomial xδ is replaced by xδ(1)

which appears in the expansion of some (QV ν)j(1), (0 ≤ ν ≤ m). Similarly,
xj(2) (1 ≤ j(2) ≤ n) in the monomial xδ is replaced by some (QV ν)j(2) and so
on. Hence we see that (5.22) holds.

Because δ(k) satisfies (5.20) by the inductive assumption we have

(5.34) 〈λ, δ(k)〉 − λj(k) = 〈λ, δ(k) − ej(k)〉 ≤ − c

d0 − 1
(|δ(k)| − 1).

Summing up with respect to k and by using |γ| = |δ| +∑k(|δ(k)| − 1) which
follows from (5.22) we have

〈λ, γ〉 − λj = 〈λ, δ〉 − λj +
ν∑

k=0

〈λ, δ(k) − ej(k)〉(5.35)

≤− c

d0 − 1
(|δ| − 1 +

∑
k

(|δ(k)| − 1)) = − c

d0 − 1
(|γ| − 1).

Hence we have proved that Rj(x + QV 0 + · · · + QV m) (1 ≤ j ≤ m) satisfies
(5.20). By induction (5.20) holds for γ such that V k+1

j,γ 
= 0. If we can prove
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(5.20), then the remaining argument of the proof of (5.7) for j = k + 1 is
identical with the one for ‖QV 1‖.

By (5.6) we see that the limit V :=
∑∞

j=0 V j exists in A. If ΛN = 0, then
the domain of Q contains A and satisfies LΛQ = Id on A by Lemma 4.1. It
follows that v := QV is a solution of (5.1).

Next we consider the case ΛN 
= 0. Because V 0 = O(|x|2) by the as-
sumption, we see from (5.2) that V 1 = O(|x|3). Inductively, we can see that
V j = O(|x|j+2) for j = 0, 1, 2, . . .. It follows that for every xγ , the coefficient of
xγ in V =

∑∞
0 V j is a finite sum. Because every V j satisfies (5.20), it follows

that every component of V satisfies (5.20).
We will show that QV is well-defined. We set V = (V1, V2, . . . , Vn). Let

Vj =
∑

γ Vj,γxγ be the Taylor expansion at the origin and consider

e−tΛV (etΛx) = e−tΛ
(
Vj(etΛx)

)
j

(5.36)

= e−tΛN

(∑
γ

et〈λ,γ〉−tλj Vj,γ(etΛN x)γ

)
j

.

By integrating both sides of (5.36) we make the same argument as in the es-
timate of ‖QV 1‖ in (5.26), (5.27), (5.28) and (5.29). Indeed, we have (5.26)
with V 1

j,γ replaced by Vj,γ . Then we can show the estimates (5.27) and (5.30).
Hence QV is well-defined. Moreover, the argument shows that the sum in the
right-hand side of (5.36) converges uniformly in t, 0 ≤ t < ∞ and in x when x

is in some neighborhood of the origin.
Next we will prove LΛQV = V . We make the same argument as in (4.8).

Indeed, it is sufficient to show that (4.6) holds for all x in some neighbor-
hood of the origin independent of t. First, by (4.7) we have that, for each
t, 〈Λx, ∂x〉V (etΛx) = d

dtV (etΛx) in some neighborhood of the origin x = 0
possibly depending on t. On the other hand, we have

e−tΛ d

dt
V (etΛ) = e−tΛ d

dt

∑
γ

et〈λ,γ〉Vγ(etΛN x)γ(5.37)

= e−tΛN

∑
γ

et〈λ,γ〉−tΛS Vγ

(
〈λ, γ〉(etΛN x)γ +

d

dt
(etΛN x)γ

)
.

By applying the same argument as the one in showing the uniform convergence
of (5.36) we can show that the right-hand side of (5.37) is an analytic function of
x in some neighborhood of the origin independent of t, 0 ≤ t < ∞. Therefore,
by the analytic continuation (4.6) holds in some neighborhood of the origin
x = 0 independent of t. Hence we have LΛQV = V . This proves that v := QV

is a solution of (2.2), which ends the proof of Theorem 2.1.
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