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On Holomorphic L2 Functions on Coverings of
Strongly Pseudoconvex Manifolds

By

Alexander Brudnyi∗

Abstract

In this paper we answer an important question posed in the paper [GHS] by Gro-
mov, Henkin and Shubin on existence of sufficiently many holomorphic L2 functions
on arbitrary coverings of strongly pseudoconvex manifolds.

§1. Introduction

1.1. Let M ⊂⊂ N be a domain with smooth boundary bM in an n-dimensional
complex manifold N , specifically,

(1.1) M = {z ∈ N : ρ(z) < 0}
where ρ is a real-valued function of class C2(Ω) in a neighbourhood Ω of the
compact set M := M ∪ bM such that

(1.2) dρ(z) �= 0 for all z ∈ bM .

Let z1, . . . , zn be complex local coordinates in N near z ∈ bM . Then the
tangent space TzN at z is identified with Cn. By T c

z (bM) ⊂ TzN we denote
the complex tangent space to bM at z, i.e.,

(1.3) T c
z (bM) =

w = (w1, . . . , wn) ∈ Tz(N) :
n∑

j=1

∂ρ

∂zj
(z)wj = 0

 .
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964 Alexander Brudnyi

The Levi form of ρ at z ∈ bM is a hermitian form on T c
z (bM) defined in the

local coordinates by the formula

(1.4) Lz(w, w) =
n∑

j,k=1

∂2ρ

∂zj∂zk
(z)wjwk .

The manifold M is called pseudoconvex if Lz(w, w) ≥ 0 for all z ∈ bM and
w ∈ T c

z (bM). It is called strongly pseudoconvex if Lz(w, w) > 0 for all z ∈ bM

and all w �= 0, w ∈ T c
z (bM).

Equivalently, strongly pseudoconvex manifolds can be described as the ones
which locally, in a neighbourhood of any boundary point, can be presented as
strictly convex domains in Cn. It is also known (see [C], [R]) that any strongly
pseudoconvex manifold admits a proper holomorphic map with connected fibres
onto a normal Stein space.

Without loss of generality we may and will assume that π1(M) = π1(N)
for M as above. Let r : N ′ → N be an unbranched covering of N . By M ′ :=
r−1(M) we denote the corresponding covering of M . Also, by bM ′ := r−1(bM)
and M ′ := M ′ ∪ bM ′ we denote the boundary and the closure of M ′ in N ′.

Let dVM ′ be the Riemannian volume form on M ′ obtained by a Rieman-
nian metric pulled back from N . By H2(M ′) we denote the Hilbert space of
holomorphic functions g on M ′ with norm

(1.5)
(∫

z∈M ′
|g(z)|2dVM ′(z)

)1/2

.

Let X be a subspace of the space O(M ′) of all holomorphic functions on
M ′.

A point z ∈ bM ′ is called a peak point for X if there exists a function
f ∈ X such that f is unbounded on M ′ but bounded outside U ∩ M ′ for any
neighbourhood U of z in N ′.

A point z ∈ bM ′ is called a local peak point for X if there exists a function
f ∈ X such that f is unbounded in U ∩M ′ for any neighbourhood U of z in N ′

and there exists a neighbourhood U of z in N ′ such that for any neighbourhood
V of z in N ′ the function f is bounded on U \ V .

The Oka-Grauert theorem [G] implies that if M is strongly pseudoconvex
and bM is not empty then every z ∈ bM is a peak point for H2(M). In general
it is not known whether a similar statement is true for boundary points of an
infinite covering M ′ of M .

Assume that M ′ := MG is a regular covering of M with a transformation
group G. In [GHS] the von Neumann G-dimension dimG was used to measure
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the space H2(MG). In particular, one of the main results [GHS, Theorem 0.2]
states:

Theorem. If M is strongly pseudoconvex, then

(a) dimGH2(MG) = ∞ and

(b) each point in bMG is a local peak point for H2(MG).

Also, in [GHS, p. 554] the following important question was asked: “A
natural question arises: is the compact group action really relevant for the
existence of many holomorphic L2-functions or is it just an artifact of the
chosen methods which require a use of von Neumann algebras? ” And further:
“It is not clear how to formulate conditions assuring that dim L2O(M ′) = ∞1

without any group action.”
In fact, in the above question the authors do not mean coverings of strongly

pseudoconvex manifolds only but rather complex manifolds of bounded geom-
etry satisfying certain geometrical conditions.

The main result of the present paper answers the above formulated ques-
tion in the case of coverings of strongly pseudoconvex manifolds. In particular,
we show that the regularity of M ′ is irrelevant for the existence of many holo-
morphic L2 functions on M ′. Moreover, we also prove an extension of the above
result of [GHS]. Our method of the proof is different from that used in [GHS]
and is based on the L2 cohomology techniques, as well as, on the geometric
properties of M .

1.2. To formulate our result, let CM ⊂ M be the union of all compact complex
subvarieties of M of complex dimension ≥ 1. It is known that if M is strongly
pseudoconvex, then CM is a compact complex subvariety of M . Let zi, 1 ≤
i ≤ m, be distinct points in M \ CM . By l2(z′i) we denote the Hilbert space of
l2 functions on the fibre z′i := r−1(zi).

Theorem 1.1. If M is strongly pseudoconvex, then

(a) For any fi ∈ l2(z′i), 1 ≤ i ≤ m, there exists F ∈ H2(M ′) such that
F |z′

i
= fi, 1 ≤ i ≤ m;

(b) Each point in bM ′ is a peak point for H2(M ′).

Similar results are valid for certain weighted Lp spaces of holomorphic
functions on M ′. These and some other results will be published elsewhere. It

1dim H2(M ′) in our notation
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is worth noting that results much stronger than Theorem 1.1 can be obtained if
M is a strongly pseudoconvex Stein manifold, see [Br1], [Br2] for an exposition.

1.3. One of the purposes of [GHS] and of the present paper was to make
a contribution toward settling the Shafarevich conjecture. Let us recall that
the Shafarevich conjecture states that the universal covering L̃ of a complex
projective manifold L is holomorphically convex meaning that for every infinite
sequence without limit points in L̃ there exists a holomorphic function on L̃

that is unbounded on this sequence. According to a theorem of Grauert any
complex projective manifold L admits a holomorphic embedding into a strongly
pseudoconvex manifold M of complex dimension dimCM = dimCL+1 with the
same fundamental group. Thus the basic idea is to try to develop the complex
analysis on coverings M ′ of M and then, taking restrictions of holomorphic
functions on M ′ to the corresponding coverings L′(⊂ M ′), to study holomorphic
functions on L′.

The results of this paper and [GHS] don’t imply directly any new results
in the area of the Shafarevich conjecture. However, one obtains a rich complex
function theory on coverings of strongly pseudoconvex manifolds M ′ (as above).
Thus there is the hope that together with some additional ideas and methods
it could give some information about holomorphic functions on L′. We are
planning to return to this matter in a forthcoming paper.

Concerning the Shafarevich conjecture, for now the strongest results in this
area are due to Eyssidieux [E] and, independently, to Campana [Ca] and the
author [Br3]. The main result of the first of these papers states that the regular
covering of a complex projective manifold L corresponding to the intersection of
the kernels of all linear reductive representations π1(L) → GLn(C), with a fixed
n, is holomorphically convex. In the last papers it is proved that the regular
covering of a complex projective manifold L corresponding to the intersection
of the kernels of all representations of π1(L) to complex solvable Lie groups
is holomorphically convex. For other fundamental results in the area of the
Shafarevich conjecture we refer the reader to the Featured Review by Katzarkov
of the paper [E].

§2. Auxiliary Results

2.1. Let X be a complete Kähler manifold of dimension n with a Kähler form
ω and E be a hermitian holomorphic vector bundle on X with curvature Θ. Let
Lp,q

2 (X, E) be the space of L2 E-valued (p, q)-forms on X with the L2 norm,
and let W p,q

2 (X, E) be the subspace of forms such that ∂η is L2. (The forms
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η may be taken to be either smooth or just measurable, in which case ∂η is
understood in the distributional sense.) The cohomology of the resulting L2

Dolbeault complex (W ·,·
2 , ∂) is the L2 cohomology

Hp,q
(2) (X, E) = Zp,q

2 (X, E)/Bp,q
2 (X, E) ,

where Zp,q
2 (X, E) and Bp,q

2 (X, E) are the spaces of ∂-closed and ∂-exact forms
in Lp,q

2 (X, E), respectively.
If Θ ≥ εω for some ε > 0 in the sense of Nakano, then the L2 Kodaira-

Nakano vanishing theorem, see [D], [O], states that

(2.1) Hn,r
(2) (X, E) = 0 for r > 0 .

2.2. Let M ⊂⊂ N be a strongly pseudoconvex manifold. Without loss of
generality we will assume that π1(M) = π1(N) and N is strongly pseudoconvex,
as well. Then there exist a normal Stein space XN , a proper holomorphic
surjective map p : N → XN with connected fibres and points x1, . . . , xl ∈ XN

such that

p : N \
⋃

1≤i≤l

p−1(xi) → XN \
⋃

1≤i≤l

{xi}

is biholomorphic, see [C], [R]. By definition, the domain XM := p(M) ⊂ XN is
strongly pseudoconvex, and so it is Stein. Without loss of generality we may
assume that x1, . . . , xl ∈ XM . Thus ∪1≤i≤l p−1(xi) = CM .

Let L ⊂⊂ N be a strongly pseudoconvex neighbourhood of M . Then
XL := p(L) is a strongly pseudoconvex neighbourhood of XM in XN . We
introduce a complete Kähler metric on the complex manifold L\CM as follows.

According to [N] there is a proper one-to-one holomorphic map i : XL ↪→
C

2n+1, n = dimCXL, which is an embedding at regular points of XL. Thus
i(XL) ⊂ C

2n+1 is a closed complex subvariety. By ωe we denote the (1, 1)-form
on L obtained as the pullback by i ◦ p of the Euclidean Kähler form on C2n+1.
Clearly, ωe is d-closed and positive outside CM .

Similarly we can embed XN into C2n+1 as a closed complex subvariety.
Let j : XN ↪→ C2n+1 be an embedding such that j(XL) belongs to the open
Euclidean ball B of radius 1/4 centered at 0 ∈ C2n+1. Set zi := j(xi), 1 ≤ i ≤ l.
By ωi we denote the restriction to L \CM of the pullback with respect to j ◦ p

of the form −√−1 · ∂∂ log(log ||z − zi||2)2 on C2n+1 \ {zi}. (Here || · || stands
for the Euclidean norm on C2n+1.) Since j(XL) ⊂ B, the form ωi is Kähler.
Its positivity follows from the fact that the function − log(log ||z||2)2 is strictly
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plurisubharmonic for ||z|| < 1. Also, ωi is extended to a smooth form on
L \ p−1(xi). Now, let us introduce a Kähler form ωL on L \CM by the formula

(2.2) ωL := ωe +
∑

1≤i≤l

ωi .

Proposition 2.1. The path metric d on L \CM induced by ωL is com-
plete.

Proof. Assume, on the contrary, that there is a sequence {wj} convergent
either to CM or to the boundary bL of L such that the sequence {d(o, wj)} is
bounded (for a fixed point o ∈ L \ CM ). Then, since ωL ≥ ωe, the sequence
{i(p(wj))} ⊂ C2n+1 is bounded. This implies that {wj} converges to CM . But
since ωL ≥∑ωi, the latter is impossible, see, e.g., [GM] for similar arguments.

In the same way one obtains complete Kähler metrics on unbranched cov-
erings of L \ CM induced by pullbacks to these coverings of the Kähler form
ωL on L \ CM .

2.3. We retain the notation of the previous section. Also, for an n-dimensional
complex manifold X by TX and T ∗

X we denote complex tangent and cotangent
bundles on X and by KX = ∧nT ∗

X the canonical line bundle on X.
Let r : N ′ → N be an unbranched covering. Consider the corresponding

covering (L \ CM )′ := r−1(L \ CM ) of L \ CM . We equip (L \ CM )′ with the
complete Kähler metric induced by the form ω′

L := r∗ωL.
Next we consider the function f :=

∑
0≤i≤l fi on (L \CM )′ such that f0 is

the pullback by i◦p◦ r of the function ||z||2 on C2n+1 and fi is the pullback by
j ◦ p ◦ r of the function − log(log ||z− zi||2)2 on C2n+1 \ {zi}, 1 ≤ i ≤ l. Clearly
we have

(2.3) ω′
L :=

√−1 · ∂∂f .

Let E := (L\CM )′×C be the trivial holomorphic line bundle on (L\CM )′.
Let g be the pullback to (L \ CM )′ of a smooth plurisubharmonic function on
L. We equip E with the hermitian metric e−f−g (i.e., for z × v ∈ E the square
of its norm in this metric equals e−f(z)−g(z)|v|2 where |v| is the modulus of
v ∈ C). Then the curvature ΘE of E satisfies

(2.4) ΘE := −√−1 · ∂∂ log(e−f−g) = ω′
L +

√−1 · ∂∂g ≥ ω′
L.
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Thus we can apply the L2 Kodaira-Nakano vanishing theorem of Section 2.1 to
get

(2.5) Hn,r
(2) ((L \ CM )′, E) = 0 for r > 0 .

Let K(L\CM )′ be the canonical holomorphic line bundle on (L \ CM )′

equipped with the hermitian metric induced by ω′
L. Consider the hermitian

line bundle Vg := E ⊗ K(L\CM )′ equipped with the tensor product of the cor-
responding hermitian metrics. Then from (2.5) we have

(2.6) H0,r
(2) ((L \ CM )′, Vg) ∼= Hn,r

(2) ((L \ CM )′, E) = 0 for r > 0 .

2.4. Let U ⊂ L be a relatively compact neighbourhood of CM . Consider
a finite open cover (Ui)1≤i≤k of L \ U by simply connected coordinate charts
Ui ⊂⊂ N \ CM . We introduce complex coordinates on U ′

i := r−1(Ui) ⊂ N ′

by the pullback of the coordinates on Ui. In these coordinates U ′
i is naturally

identified with Ui × S where S is the fibre of r : N ′ → N .
Let η be a smooth (p, q)-form on (L \ CM )′ equals 0 on r−1(U). Then in

the above holomorphic coordinates (z, s), z = (z1, . . . , zn) ∈ Ui ∩ L, s ∈ S, on
U ′

i ∩ L′, L′ := r−1(L), the form η is presented as

(2.7) η(z, s) =
∑

i1,...,ip,j1,...,jq

ηi;i1,...,ip,j1,...,jq
(z, s)dzi1∧· · ·∧dzip

∧dzj1∧· · ·∧dzjq

where ηi;i1,...,ip,j1,...,jq
are smooth functions on (Ui ∩ L) × S.

We say that η belongs to the space Ep,q
U ;2((L \ CM )′) if in (2.7) we have

(2.8) sup
z∈Ui∩L,i,i1,...,ip,j1,...,jq

{∑
s∈S

|ηi;i1,...,ip,j1,...,jq
(z, s)|2

}
< ∞ .

Let e be a holomorphic section of K|L\CM
. Then η · r∗e can be viewed as

a (p, q)-form with values in Vg. (Here r∗e is the pullback of e to (L \CM )′, i.e.,
r∗e ∈ O((L \ CM )′, K|(L\CM )′).)

Proposition 2.2. For every η ∈ Ep,q
U ;2((L \ CM )′) and e ∈ O(L \ CM ,

K|L\CM
) there is a plurisubharmonic function g in the definition of the metric

on Vg such that η · r∗e ∈ Lp,q
2 ((L \ CM )′, Vg).

Proof. In this proof by || · || we denote the hermitian metric on the space
of Vg-valued (p, q)-forms induced by the hermitian metrics on Vg and T(L\CM )′ .
Set

hi;i1,...,ip,j1,...,jq
(z) := ||r∗e(z, s) · dzi1 ∧ · · · ∧ dzip

∧ dzj1 ∧ · · · ∧ dzjq
||2.
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Then hi;i1,...,ip,j1,...,jq
is a nonnegative continuous function on Ui ∩L. Let ĝ be

such that r∗ĝ = g. By the definition of metrics on Vg and T(L\CM )′

(2.9) hi;i1,...,ip,j1,...,jq
(z) := ĥi;i1,...,ip,j1,...,jq

(z) · e−ĝ(z),

where ĥi;i1,...,ip,j1,...,jq
is a nonnegative continuous function on Ui ∩L indepen-

dent of ĝ.
Now for some A ∈ N we have

||η(z, s) · r∗e(z, s)||2(2.10)

≤A ×
∑

i1,...,ip,j1,...,jq

|ηi;i1,...,ip,j1,...,jq
(z, s)|2 · hi;i1,...,ip,j1,...,jq

(z) .

According to the definition of Lp,q
2 ((L \ CM )′, Vg) we have to show that

|η · r∗e|2 :=
∫

(L\CM )′
||η · r∗e||2 · (ω′

L)n < ∞ .

Since ω′
L = r∗ωL, from (2.9) and (2.10) we get

|η · r∗e|2 ≤

A ×
k∑

i=1

∫
Ui∩L

 ∑
i1,...,ip,j1,...,jq ,s∈S

|ηi;i1,...,ip,j1,...,jq
(·, s)|2

̂hi;i1,...,ip,j1,...,jq
e−ĝωn

L.

Also, by the hypothesis of the proposition, see (2.8),

sup
z∈Ui∩L

 ∑
i1,...,ip,j1,...,jq,s∈S

|ηi;i1,...,ip,j1,...,jq
(z, s)|2

 < ∞ for 1 ≤ i ≤ k .

Thus in order to prove the proposition it suffices to check that there is ĝ in the
definition of the metric on Vg such that for every i

(2.11)
∫

Ui∩L

ĥi;i1,...,ip,j1,...,jq
e−ĝωn

L < ∞ .

The required result now follows from

Lemma 2.3. Let h be a nonnegative piecewise continuous function on
L equals 0 in some neighbourhood of CM and bounded on every compact subset
of L \CM . Then there exists a smooth plurisubharmonic function ĝ on L such
that ∫

L

h · e−ĝ ωn
L < ∞ .
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Proof. Without loss of generality we identify L \ CM with XL\
∪1≤j≤l {xj}. Also, we identify XL with a closed subvariety of C2n+1 as in
Section 2.2. Let U be a neighbourhood of ∪1≤j≤l {xj} such that h|U ≡ 0. By
∆r ⊂ C2n+1 we denote the open polydisk of radius r centered at 0 ∈ C2n+1.
Assume without loss of generality that 0 ∈ XL \U . Consider the monotonically
increasing function

(2.12) v(r) :=
∫

∆r∩(XL\U)

h · ωn
L , r ≥ 0 .

By v1 we denote a smooth monotonically increasing function satisfying v ≤ v1

(such v1 can be easily constructed by v). Let us determine

v2(r) :=
∫ r+1

0

2v1(2t) dt , r ≥ 0 .

By the definition v2 is smooth, convex and monotonically increasing. Moreover,

v2(r) ≥
∫ r+1

r+1
2

2v1(2t) dt ≥ (r + 1)v(r + 1) .

Next we define a smooth plurisubharmonic function v3 on C
2n+1 by the formula

v3(z1, . . . , z2n+1) :=
2n+1∑
j=1

v2(|zj |) .

Then the pullback of v3 to L is a smooth plurisubharmonic function on L.
This is the required function ĝ. Indeed, under the identification described at
the beginning of the proof we have∫

L

h · e−ĝ ωn
L =

∞∑
k=1

∫
(∆k\∆k−1)∩(XL\U)

h · e−ĝ ωn
L ≤

∞∑
k=1

v(k)e−v2(k−1) ≤
∞∑

k=1

v(k)e−kv(k) < ∞ .

To complete the proof of the proposition it remains to put in the above
lemma

h :=
∑

i,i1,...,ip,j1,...,jq

ρi · ĥi;i1,...,ip,j1,...,jq

where ρi is the characteristic function of Ui ∩ L.
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2.5. Let O ⊂⊂ L be a neighbourhood of CM . We set O′ := r−1(O), C ′
M :=

r−1(CM ). Assume that the manifold N , see Section 1.1, is equipped with a
hermitian metric ρ. We equip the bundle KL with the hermitian metric induced
by ρ. Also, we equip KL′ := r∗KL with the hermitian metric ρ′ := r∗ρ.

Proposition 2.4. Any h ∈ L2((L \ CM )′, Vg) holomorphic on O′ \ C ′
M

admits an extension to a section ĥ of KL′ such that ĥ|M ′ ∈ L2(M ′, KL′).

Proof. Consider a coordinate neighbourhood U ⊂⊂ O of a point q ∈ CM

with coordinates z = (z1, . . . , zn). Taking the pullback of these coordinates to
r−1(U) we identify r−1(U) with U × S where S is the fibre of r. Then

h(z, s) = hU (z, s)dz1 ∧ · · · ∧ dzn, z ∈ U \ CM , s ∈ S.

By the definition of the metric || · || on Vg we have

||h(z, s)||2ωn
L(z) = |hU (z, s)|2||dz1 ∧ · · · ∧ dzn||2ωn

L(z) =

|hU (z, s)|2e−ĝ(z)(
√−1)n ∧n

i=1 dzi ∧ dzi.

Now, the hypotheses of the proposition imply that

(2.13)
∫

z∈U\CM

(∑
s∈S

|hU (z, s)|2
)

e−ĝ(z)(
√−1)n ∧n

i=1 dzi ∧ dzi < ∞ .

Let ωn be the volume form induced by the hermitian metric ρ on N with the
associated (1, 1)-form ω. Since by our construction ĝ is smooth on L, we have
on U :

e−ĝ(z)(
√−1)n ∧n

i=1 dzi ∧ dzi ≥ c ωn

for some c > 0. From here and (2.13) we get

(2.14)
∫

z∈U\CM

(∑
s∈S

|hU (z, s)|2
)

ωn(z) < ∞ .

In particular, this implies that every hU (·, s), s ∈ S, belongs to the L2 space on
U \ CM defined by integration with respect to the volume form (

√−1)n ∧n
i=1

dzi ∧ dzi. Also, every hU (·, s) is holomorphic on U \ CM . Using these facts
and the Cauchy integral formulas for coefficients of the Laurent expansion of
hU (·, s), one obtains easily that every hU (·, s) can be extended holomorphically
to U . In turn, this gives an extension ĥ of h to r−1(U). Now from (2.14) we
obtain that ĥ ∈ L2(U, KL′).
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Next assume that Ũ ⊂⊂ L \ CM is a simply connected coordinate neigh-
bourhood of a point q ∈ M \CM . Identifying r−1(Ũ) with Ũ ×S we have anew
inequality of type (2.13) for h|r−1(eU). Since ĝ is smooth on L \ CM , repeating

literally the previous arguments we get that h ∈ L2(Ũ , KL′). Taking a finite
open cover of M by the above neighbourhoods U and Ũ and considering the
extension of h to M ′ defined by the above extended forms ĥ on r−1(U) we get
the required result.

§3. Proofs

3.1. Proof of Theorem 1.1 (a). First, we prove Theorem 1.1 (a) for m = 1:

Theorem 3.1. Let z ∈ M \ CM and z′ := r−1(z) ∈ M ′. Then for any
f ∈ l2(z′) there exists F ∈ H2(M ′) such that F |z′ = f .

Proof. In the proof we retain the notation of Section 2.
Let p : N → XN be the proper holomorphic map onto the normal Stein

space XN from Section 2.2 such that p : N \ CM → XN \ ∪1≤i≤l {xi} is
biholomorphic. Since XN is Stein, there is a holomorphic function h on XN

whose set of zeros Zh contains p(z) and does not intersect ∪1≤j≤l {xj}. Let
O ⊂⊂ XN be a Stein neighbourhood of the compact set Zh ∩XL, XL := p(L),
such that O ∩ ∪1≤j≤l {xj} = ∅ and O is holomorphically convex in XN . We
set O′ := (p ◦ r)−1(O) ⊂ N ′. Then according to [Br1, Theorem 1.10] there is
a holomorphic function h1 on O′ satisfying

(3.1) h1|z′ = f and sup
y∈p−1(O)

 ∑
x∈r−1(y)

|h1(x)|2
 < ∞ .

Let ρ be a C∞ function on XN \ ∪1≤i≤l {xi} equals 1 in some neigh-
bourhood of Zh ∩ O in O and 0 outside O. By ρ′ := (p ◦ r)∗ρ we denote its
pullback to N ′. Then h2 := (ρ′ · h1)|(L\CM )′ is a C∞ function on (L \ CM )′.
Let h′ := (p ◦ r)∗h|L′ be the restriction to L′ of the pullback of h. Consider
the C∞ (0, 1)-from η := ∂h2/h′. It follows easily from (3.1) and (2.8) that
η ∈ E0,1

U ;2((L \ CM )′) for some U ⊂ L \ p−1(O).
Next, since XN can be embedded to C2n+1, and since z is a regular point

of XN , there is a section e ∈ O(N, KN ) such that e(z) �= 0. Let V ⊂ L be the
set of zeros of e. Then V is contained in the preimage p−1(V ′) of a complex
analytic subspace V ′ ⊂ XN . Since XN is Stein, the latter implies that there is
a bounded holomorphic function fe on L such that fe ·e−1 is a bounded section
from O(L, K∗

L) and fe(z) = 1 (recall that L ⊂⊂ N).
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Further, by Proposition 2.2 there is a function g in the definition of the
metric on the vector bundle Vg from Section 2.3 such that η̃ := η·r∗e ∈ L0,1

2 ((L\
CM )′, Vg). Since ∂η̃ = 0, by (2.6) there is a section h3 ∈ L2((L \ CM )′, Vg)
such that ∂h3 = η̃. Choose g in the definition of the metric on Vg so that
also h2 · r∗e ∈ L2((L \ CM )′, Vg). Thus h4 := h2 · r∗e − h′h3 ∈ L2((L \
CM )′, Vg), is holomorphic on (L \ CM )′. By Proposition 2.4 h4 is extended to
a holomorphic section h′

4 of KL′ such that h′
4|M ′ ∈ L2(M ′, KL′). Moreover, by

our construction h′
4|z′ = f · r∗e|z′ . Finally, we set

F := h′
4|M ′ · (r∗fe · r∗e−1)|M ′ .

Then F ∈ H2(M ′) and F |z′ = f .

Now, let us prove Theorem 1.1 (a).
By Theorem 3.1 there are functions Fi ∈ H2(M ′) such that Fi|z′

i
= fi,

1 ≤ i ≤ m. Let ti be a holomorphic function on N such that ti(zi) = 1 and
ti(zj) = 0 for j �= i. Then the function F :=

∑
1≤i≤m r∗ti · Fi satisfies the

required condition.

3.2. Proof of Theorem 1.1 (b). Let x ∈ bM be a boundary point of a
strongly pseudoconvex manifold M ⊂⊂ N . We will prove that each point
y ∈ r−1(x) is a peak point for H2(M ′).

Choose a coordinate neighbourhood U1 ⊂⊂ N of x with complex coor-
dinates w = (w1, . . . , wn) centered at x such that the complex tangent space
T c

x(bM) is given by the equation w1 = 0. Consider the Taylor expansion of the
defining function ρ for M , see (1.1), (1.2), at x:

(3.2) ρ(w) = ρ(x) + 2Ref(x, w) + Lx(w − x, w − x) + O(||w − x||3) ,

where Lx is the Levi form at x and f(x, w) is a complex quadratic polynomial
with respect to w:

f(x, w) =
∂ρ

∂w1
(x)w1 +

1
2

∑
1≤µ,ν≤n

∂2ρ

∂wµ∂wν
(x)wµwν .

(Here ∂ρ
∂w1

(x) �= 0 and ∂ρ
∂wi

(x) = 0 for 2 ≤ i ≤ n by the choice of the coordinates
on U1). Next, in a sufficiently small simply connected neigbourhood U ⊂⊂ U1

of x we introduce new coordinates z = (z1, . . . , zn) by the formulas

z1 = f(x, w) and zi = wi for 2 ≤ i ≤ n .

Since bM is strongly pseudoconvex at x, diminishing if necessary U we have
that in U the intersection of the hyperplane z1 = 0 with M consists of one
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point x and Re z1 < 0 in U . Let H := {z ∈ U : Re z1 < 0}. Then we can
choose a branch of log z1 so that hx(z) = log z1 is a holomorphic function in
H. Clearly, hx ∈ L2(H) for L2 defined by a Riemannian volume form pulled
back from N , and hx has a peak point at x.

Let H ′ := r−1(H) ⊂⊂ N ′. Take a point y ∈ r−1(x) ⊂ bM ′. Let Hy be
the connected component of H ′ containing y. We set hy := r∗hx|Hy

. Next,
consider a smooth function ρ on N equals 1 in a neigbourhood O ⊂⊂ U of x with
support S ⊂⊂ U . Let Oy ⊂⊂ Uy be connected components of O′ = r−1(O)
and U ′ = r−1(U) containing y. By ρy we denote the pullback of ρ|U to Uy

and by S′ ⊂⊂ U ′
y support of ρy. Then ∂(hyρy) can be extended by 0 to a

C∞ (0, 1)-form η on (N ′ \ S′) ∪ H ′
y ∪ O′

y. Note that (N \ S) ∪ H ∪ O is a
neighbourhood of M . Hence, since M ⊂⊂ N is strongly pseudoconvex, there
is a strongly pseudoconvex manifold L ⊂⊂ (N \ S) ∪ H ∪ O such that M ⊂ L.
Observe also that r−1((N \S)∪H∪O) ⊂ (N ′\S′)∪H ′

y∪O′
y. Thus the form η is

well-defined on L′ := r−1(L). Moreover, by our definitions η ∈ E0,1
W ;2((L\CM)′)

for some neighbourhood W of CM , see Section 2.4.
As in the proof of part (a) we will choose a section e ∈ O(N, KN ) such

that e(x) �= 0 and a function fe ∈ O(L) such that fe(x) = 1 and fe · e−1 is a
bounded section from O(L, K∗

L).
Now, by Proposition 2.2 there is a function g in the definition of the metric

on the vector bundle Vg from Section 2.3 such that η̃ := η · r∗e ∈ L0,1
2 ((L \

CM )′, Vg). Since ∂η̃ = 0, by (2.6) there is a section h1 ∈ L2((L \ CM )′, Vg)
such that ∂h1 = η̃. According to Proposition 2.4 h1|(M\CM )′ is extended to
a section h2 of KL′ such that h2 ∈ L2(M ′, KL′). From here, using the fact
that (hyρy)|M ′∩Hy

is extended by 0 to a smooth L2 function on M ′, we get
h′ := (hyρy) · r∗e − h2 ∈ H2(M ′, KL′). Finally, we set

h := h′ · (r∗fe · r∗e−1)|M ′ .

Clearly, h ∈ H2(M ′) and it has a local peak point at y. Let us show that in
fact h has a peak point at y. This will complete the proof of the theorem.

Let L1 ⊂⊂ L be a neighbourhood of M . We set L′
1 := r−1(L1). Then by

Proposition 2.4 h1|r−1(L1\CM ) is extended to a section of KL′
1

(denoted as before
by h2). By the definition, h′

2 := h2 · (r∗fe · r∗e−1)|L′
1

is a smooth holomorphic
on L′

1 \ S′ function. From the facts that L1 ⊂⊂ L, the L2 norm || · || on L′
1

is defined by a Riemannian volume form pulled back from N using the mean-
value property for the plurisubharmonic function |h′

2|2 on L′
1 \ S′ we get for

some c > 0,
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sup
z∈M

 ∑
w∈r−1(z),w/∈Uy

|h′
2(w)|2

 ≤ c · ||h′
2||2 < ∞ .

In addition, h′
2 is continuous on Uy ∩M ′. These imply easily that h is bounded

outside U ∩ M ′ for any neighbourhood U of y in N ′.
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variété projective algébrique complexe, Invent. Math. 156 (2004), no. 3, 503–564.

[G] H. Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of
Math. (2) 68 (1958), 460–472.

[GHS] M. Gromov, G. Henkin and M. Shubin, Holomorphic L2 functions on coverings of
pseudoconvex manifolds, Geom. Funct. Anal. 8 (1998), no. 3, 552–585.

[GM] C. Grant and P. Milman, Metrics for singular analytic spaces, Pacific J. Math. 168
(1995), no. 1, 61–156.

[N] R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J.
Math. 82 (1960), 917–934.

[O] T. Ohsawa, Complete Kähler manifolds and function theory of several complex vari-
ables. Sugaku Expositions 1 (1988), no. 1, 75–93.

[R] R. Remmert, Sur les espaces analytiques holomorphiquement séparables et holomor-
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