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Abstract

We investigate the initial value problem for a scalar conservation law with highly
nonlinear diffusive-dispersive terms: ut + f(u)x = ε(u2�−1

x )x − δ(u2�−1
x )xx (� ≥ 1). In

this paper, for a sequence of solutions to the equation with initial data, we give
convergence results that a sequence converges to the unique entropy solution to the
hyperbolic conservation law. In particular, our main theorem implies the results of
Kondo-LeFloch [15] and Schonbek [26], furthermore makes up for insufficiency of the
results in Fujino-Yamazaki [9] and LeFloch-Natalini [22]. Applying the technique
of compensated compactness, the Young measure and the entropy measure-valued
solutions as main tools, we establish the convergence property of the sequence. The
final step of our proof is to show that the measure-valued mapping associated to the
sequence of solutions is reduced to an entropy solution and this step is mainly based
on the approach of LeFloch-Natalini [22].

§1. Introduction and the Main Result

Consider the sequence {uε} of smooth solutions of the Cauchy problem
for a scalar conservation law in one space dimension with highly nonlinear
diffusive-dispersive terms:

∂tu + ∂xf(u) = ε∂x(∂xu)2�−1 − δ∂2
x(∂xu)2�−1, (x, t) ∈ R × (0,∞),(1.1)

u(x, 0) = uε
0(x), x ∈ R,(1.2)
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1006 Naoki Fujino

where � ≥ 1 and ε, δ = δ(ε) → 0+. In this paper, we will show that the
sequence {uε} converge to the unique entropy solution to

ut + f(u)x = 0, (x, t) ∈ R × (0,∞),(1.3)

u(x, 0) = u0(x), x ∈ R.(1.4)

To obtain the convergence property of {uε}, we assume that there exist the
smooth solutions to Eqs. (1.1) and (1.2) defined on R×(0, T ∗) for some T ∗ > 0,
vanishing at infinity and associated with smooth and compactly supported
initial data uε

0 and

∃u0 ∈ L1(R) ∩ Lq(R), ∀q > 1 s.t. lim
ε→0

uε
0 = u0 in L1(R) ∩ Lq(R).(1.5)

In addition, we assume the following uniform boundedness concerning the initial
data with some constant C0 > 0 independent of ε:

||uε
0||L2(R) + ||uε

0||Lq(R) + δ
1
2� ||uε

0,x||L2�(R) ≤ C0,(1.6)

for q ∈
(

3�−1
� , 3�2+2�−1

�

)
(� ≥ 1).

On the other hand, we also assume for the flux function f(u) that f(u) is
a given smooth function which satisfies the following growth condition:

(I) ∃C1 > 0, m > 1 s.t. |f ′(u)| ≤ C1(1 + |u|m−1) for any u ∈ R.

When F is defined by F ′(u) = f(u), we can replace the condition (I) by an
assumption (I’):

(I′) ∃C2 > 0, m > 1 s.t. |F (u)| ≤ C2(|u|2 + |u|m+1) for any u ∈ R.

Then, under the above assumptions, we show the following main result of the
present paper:

Theorem 1.1. Suppose that a condition (I) and there exists a sequence
{uε} of the smooth solutions to Eqs. (1.1) and (1.2) defined on R × (0, T ∗),
vanishing at infinity and associated with the initial data satisfying (1.5) and

(1.6) with m < q
(
q ∈

[
3�2+3�−1

2� , 3�
])

. If δ = O

(
ε

(�+1)(6�−m−1)
2(3�2−m�−q�+3�−1)

)
, then the

sequence {uε} converge to the unique entropy solution u ∈ L∞(0, T ∗; Lq(R)) to
Eqs. (1.3) and (1.4) in Lk(0, T ∗; Lp(R)) (∀k < ∞ and ∀p < q).

Moreover if we assume that the sequence {uε} of solutions to Eqs. (1.1),
(1.2) is bounded in L∞(0, T ∗; Lq(R)), we obtain the same conclusion for any

q > m (m ∈ (1, 3�), � ≥ 1) provided that δ = o
(
ε

(�+1)(6�−m−1)
2�(3�−m)

)
. Namely it

follows that
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Theorem 1.2. Suppose that a condition (I) and there exists a sequence
{uε} of the smooth solutions to Eqs. (1.1) and (1.2) defined on R × (0, T ∗),
vanishing at infinity and associated with the initial data satisfying (1.5) and
(1.6). If the sequence is uniformly bounded in L∞(0, T ∗; Lq(R)) for some q > m

(m ∈ (1, 3�)) and δ = o
(
ε

(�+1)(6�−m−1)
2�(3�−m)

)
, then the sequence {uε} converge to

the unique entropy solution u ∈ L∞(0, T ∗; Lq(R)) to Eqs. (1.3) and (1.4) in
Lk(0, T ∗; Lp(R)) (∀k < ∞ and ∀p < q).

In the consideration of a convergence, the appropriate balance in the re-
lation between ε and δ is claimed so that the sequence of solutions to the
conservation laws with diffusion and dispersion terms converges to the solution
to the hyperbolic conservation law. In fact, when δ = 0, Eq. (1.1) is reduced
to a parabolic equation. In this case, if ε → 0 (with δ = 0), it is rather trivial
that the sequence {uε} of solutions to Eq. (1.1) converges to the solution to
(1.3) owing to the classical vanishing viscosity method. On the other hand,
when ε = 0, then Eq. (1.1) is reduced to the generalized Korteweg-de Vries
(KdV) equation [16]. If δ → 0 in the KdV equation, the sequence of the solu-
tions to Eq. (1.1) does not converge to the solution to Eq. (1.3) in general (cf.
[3, 4, 19, 20]).

We recall several fundamental results for the convergence problem to the
scalar conservation laws with diffusion and dispersion terms:

∂tu
ε + ∂xf(uε) = Rε, uε = uε(x, t)

where ε > 0 and Rε = Rε(uε, uε
x, uε

xx, · · ·) → 0 as ε → 0. In particular, our
main Theorem 1.1 includes previous results. For the linear diffusion and the
linear dispersion terms as � = 1 in Eq. (1.1) i.e.

Rε = εuε
xx − δuε

xxx,

a first convergence result is obtained by Schonbek [26] under the assumption
that either δ = O(ε2) for Burgers’ type flux

(
f(u) = u2

2

)
and for the family of

flux functions:

f(u) = − u2h+1

2h + 1
, h ≥ 1,

or the stronger condition δ = O(ε3) for general subquadratic flux functions f .
This convergence result has been improved by Kondo-LeFloch [15] for the flux
satisfying |f ′(u)| ≤ M (for ∀u ∈ R, M > 0). They give that the subsequence
of solutions converges in Lk(0,∞; Lp(R)) (1 < k < ∞ and 1 < p < 2) to a weak
solution of the Cauchy problem (1.3), (1.4) under the assumption δ = O(ε2).
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Moreover they obtain that the limit is the unique entropy solution in the sense of
Kružkov under the stronger condition δ = o(ε2). They also give a convergence
result for multidimensional conservation laws. Clearly, our result is extension
to their works. See also a result for systems in Hayes-LeFloch [11].

As compared with the above results, there are the following results for the
nonlinear diffusion and the nonlinear dispersion terms:

Rε = εb(uε
x)x − δ

(
(uε

x)2�−1
)
xx

, � ≥ 1(1.7)

under the assumptions that f satisfies the growth condition (I) and moreover
that a nondecreasing function b satisfies b(0) = 0, b(λ)λ ≥ 0 (for ∀λ ∈ R) and

(II) C3|λ|(2�+1)r ≤ b(λ)λ ≤ C4|λ|(2�+1)r for any |λ| ≥ N

where C3, C4, N > 0, r ≥ 1. In the case as � = 1 in Eq. (1.7), LeFloch-
Natalini [22] show that the sequence {uε} is bounded in L∞(0, T ∗; Lq(R)) for
m < 5− 1

r (=: q) and obtain the convergence result that the sequence converges
to the unique entropy solution u ∈ L∞(0, T ∗; Lq(R)) in Lk(0, T ∗; Lp(R)) (k <

∞, p < q) for δ = O(ε
5−m

r(5−m)−1) ) (r ≥ 1). In the case that � ≥ 1 for Eq. (1.7), it
is investigated by Fujino-Yamazaki [9]. In [9], we prove the same convergence
property to [22] for δ = O(ε

6�−m−1
r(6�−m−1)−1 ) (m < q, ∀� ≥ 1). On the consideration

to Eq. (1.7), the assumption (II) of the diffusion term is very important in the
proof of their results in [9, 22]. From the assumption (II), the function b can
not imply the identity function b(λ) = λ because, as �, r = 1 in (II), it follows
that

(II′) C ′
3|λ|2 ≤ b(λ) ≤ C ′

4|λ|2 for any |λ| ≥ N

where C ′
3, C ′

4, N > 0. Comparing with this assumption for b in Eq. (1.7), the
nonlinear power function u2�−1

x (∀u ∈ R) of the diffusion term in our scalar
conservation law (1.1) imply the identity function as � = 1 clearly. On the
other hand, observing the domain of q for the Lq(R), it is that (m <)q ∈ [4, 5)
in [9, 22] and that (m <)q ∈ [3�2+3�−1

2� , 3�] (� ≥ 1) in Theorem 1.1 of this paper.
Therefore, in that sense, we can also consider the different results for q > m.

In this paper, we consider the scalar conservation laws with highly non-
linear diffusive-dispersive terms (1.1) without the assumptions (II) nor (II’)
by using the technique developed in [9, 22]. Especially, we make use of the
compensated compactness, the measure-valued (m.-v.) solutions of the Cauchy
problem which are investigated by, for example, DiPerna [8] and Szepessy [27].
Moreover the final step of the proof of the main result relies mainly on the
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approach of LeFloch-Natalini [22]. To give convergence results Theorems 1.1,
1.2, we recall some elementary notions in Section 2 and we establish the uni-
form boundedness in Lq(R) by a priori estimates of the solutions to Eq. (1.1)
in Section 3. In the last section, owing to a priori estimates and boundedness
obtained in Section 3, the convergence argument due to [22] is applied to Eqs.
(1.1), (1.2).

§2. Preliminaries

Let us remind of the basic theory for Young measure and entropy measure-
valued (m.-v.) solutions concisely. Following DiPerna [8], LeFloch-Natalini [22]
and Szepessy [27], we state a generalization of the Young measure.

Proposition 2.1 ([8, 22, 27]). Suppose that the sequence {uε} is
bounded in L∞(0,∞; Lq(R)) and that f ∈ C(R) satisfies the growth condi-
tion (I) for some q′ ∈ (0, q), C > 0. Then there exists a subsequence {uε′} and
a probability measure-valued mapping ν = ν(x,t) defined on R × (0,∞), such
that

f(uε′
) → 〈ν(x,t), f〉 :=

∫
R

f(λ)dν(x,t)(λ) as ε′ → 0(2.1)

in Ls(R × (0,∞)) for any s ∈ (1, q/q′).

A probability measure-valued mapping ν in Proposition 2.1 is called a
Young measure associated with the subsequence {uε′}. For this Young measure
ν, an entropy measure-valued (m.-v.) solution is defined as follows:

Definition 2.1 ([8, 27]). Suppose that f ∈ C(R) satisfies the growth
condition (I) and the initial data u0 ∈ L1(R) ∩ Lq(R). If it follows that

∂t〈ν(x,t)(λ), |λ − k|〉 + ∂x〈ν(x,t)(λ), sgn(λ − k)(f(λ) − f(k))〉 ≤ 0(2.2)

in D′(R × (0,∞)) for any k ∈ R and that

lim
T→0+

1
T

∫ T

0

∫
K

〈ν(x,t)(λ), |λ − u0(x)|〉dxdt = 0(2.3)

for any compact sets K ⊆ R, then a Young measure ν : R× (0,∞) → Prob(R)
associated with the subsequence {uε′} is called an entropy measure-valued (m.-
v.) solution to Eqs. (1.3), (1.4).

Here we remark that it is not necessary to take a subsequence of {uε}. As
a well-known fact, for an entropy m.-v. solution to Eqs. (1.3), (1.4), uniqueness
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holds by [27]. Namely if ν and ν̃ are entropy m.-v. solutions to Eqs. (1.3),
(1.4), then there exists a function w ∈ L∞(R; L1(R)∩Lq(R)) such that ν(x,t) =
δw(x,t) = ν̃(x,t) for a.e. (x, t) ∈ R×(0,∞). This uniqueness of the entropy m.-v.
solution implies f(uε) → 〈ν(x,t), f〉 in the sense of distributions. We introduce
the convergence theorem as our main tool.

Theorem 2.1 ([22]). Suppose that f satisfies the growth condition (I)
and the initial data u0 ∈ L1(R)∩Lq(R) for q ≥ 1. Let ν be a Young measure as-
sociated with {uε} which is an uniformly bounded sequence in L∞(0,∞; Lq(R)).
If a Young measure ν is an entropy m.-v. solution to Eqs. (1.3), (1.4), then the
sequence {uε} converge to the unique entropy solution u ∈ L∞(0,∞; Lq(R)) in
L∞(0,∞; Lq′

loc(R)) (for any q′ ∈ [1, q)) to Eqs. (1.3), (1.4).

To obtain our convergence results by applying Theorem 2.1, we should
show that the uniform boundedness of a sequence {uε} in Lq(R) holds for
q > m and that a Young measure ν is an entropy m.-v. solution to Eqs. (1.3),
(1.4) in the following sections.

§3. A Priori Estimates

In this section, to establish the Lq boundedness, we give several a pri-
ori estimates of solutions to a scalar conservation law with highly nonlinear
diffusive-dispersive terms (1.1) with initial data uε

0 which are smooth functions
with compact support and satisfy the assumptions (1.5) and (1.6). We suppose
that there exists a sequence {uε} of the smooth solutions to Eqs. (1.1), (1.2)
defined on R× (0, T ∗), vanishing at infinity and associated with initial data uε

0

for some T ∗ ∈ (0,∞].
Throughout the calculation of this section and for simplicity, we omit the

upper-index ε and describe uε into u and so on. Referring to [9], as a first
estimate, we find

Lemma 3.1. For every T ∈ (0, T ∗), We have∫
R

u2(x, T )dx + 2ε

∫ T

0

∫
R

u2�
x (x, t)dxdt ≤ C0,(3.1)

and

δ

∫
R

u2�
x (x, T )dx + 2�(2� − 1)εδ

∫ T

0

∫
R

u2(2�−2)
x u2

xxdxdt(3.2)

≤ C0 + 2�

∫
R

F (u(x, T ))dx + 2�ε

∫ T

0

∫
R

f ′(u)u2�
x dxdt.
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Proof. Multiplying Eq. (1.1) by u and integrating it in space, we find∫
R

(
u2

2

)
t

dx = −ε

∫
R

u2�
x dx.

Integrating the above equation in time, We obtain

1
2

∫
R

u2(x, T )dx + ε

∫ T

0

∫
R

u2�
x dxdt =

1
2

∫
R

u2
0(x)dx.

From an assumption (1.6) of the initial data in L2 norm, We arrive the first
estimate (3.1).

In the same way, multiplying Eq. (1.1) by f(u)+δ(u2�−1
x )x and integrating

it in space, We have∫
R

F (u)tdx−δ

∫
R

(
u2�

x

2�

)
t

dx = −ε

∫
R

f ′(u)u2�
x dx+(2�−1)εδ

∫
R

(
u2�−2

x uxx

)2
dx.

By integrating in time, We obtain

δ

∫
R

u2�
x dx + 2�(2� − 1)εδ

∫ T

0

∫
R

(
u2�−2

x uxx

)2
dxdt

= δ

∫
R

u2�
0,xdx − 2�

∫
R

F (u0)dx + 2�

∫
R

F (u)dx + 2�ε

∫ T

0

∫
R

f ′(u)u2�
x dxdt

Hence We obtain an inequality (3.2) by the uniform bound of u0,x in the L2�

norm.

Combining an assumption (I’) and the uniform bound of u in L∞(0, T ∗;
L2(R)) derived by a estimate (3.1), we can replace by a following assumption;

(I”) ∃C5 > 0, m > 1 s.t. |F (u)| ≤ C5(1 + |u|m+1) for any u ∈ R.

To estimate the solution u to Eq. (1.1) in the L∞ norm, we use the
estimates (3.1), (3.2) and an assumption (I”).

Lemma 3.2. Suppose m ∈ (1, 6� − 1) (� ≥ 1), then there exists a con-
stant C > 0 such that

sup
t∈(0,T∗)

||u(·, t)||L∞(R) ≤ Cδ−
1

6�−m−1 .(3.3)

Proof. From the inequality (3.2) and an assumption (I”), we have

δ

∫
R

u2�
x (x, T )dx + 2�(2� − 1)εδ

∫ T

0

∫
R

u2(2�−2)
x u2

xxdxdt

≤ C0 + C sup
t∈[0,T ]

||u(·, t)||m−1
L∞(R)

(
||u(·, T )||L2(R) + ε

∫ T

0

∫
R

u2�
x dxdt

)
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with some C > 0. In view of an estimate (3.1), we get

δ

∫
R

u2�
x (x, T )dx + 2�(2� − 1)εδ

∫ T

0

∫
R

u2(2�−2)
x u2

xxdxdt(3.4)

≤ C

(
1 + sup

t∈[0,T ]

||u(·, t)||m−1
L∞(R)

)

which implies for every T ∈ (0, T ∗) that

δ
1
2� ||ux(·, T )||L2�(R) ≤ C

(
1 + sup

t∈[0,T ]

||u(·, t)||m−1
L∞(R)

) 1
2�

with some C > 0.

Hence by the Hölder’s inequality and the estimate (3.1) again, we have for
∀t1 ∈ [0, T ]

|u(x, t1)|3 ≤ 3
∫ x

−∞
|u2(y, t1)ux(y, t1)|dy

≤ 3
(∫

R

|u|2pdy

) 1
p
(∫

R

|ux|2�dy

) 1
2�

≤ 3δ−
1
2�

(
sup

t1∈[0,T ]

||u(·, t1)||2p−2
L∞(R)

∫
R

|u|2dy

) 1
p

δ
1
2� ||ux(·, t1)||L2�(R)

≤Cδ−
1
2� sup

t1∈[0,T ]

||u(·, t1)||
2p−2

p

L∞(R)

(
1 + sup

t1∈[0,T ]

||u(·, t1)||m−1
L∞(R)

) 1
2�

≤Cδ−
1
2� sup

t1∈[0,T ]

||u(·, t1)||
1
�

L∞(R)

(
1 + sup

t1∈[0,T ]

||u(·, t1)||m−1
L∞(R)

) 1
2�

with some C > 0 where p = 2�
2�−1 . Therefore, for ∀t ∈ (0, T ∗), we have

sup
t∈(0,T∗)

||u(·, t)||6�
L∞(R) ≤ Cδ−1 sup

t∈(0,T∗)

||u(·, t)||2L∞(R)

(
1 + sup

t∈(0,T∗)

||u(·, t)||m−1
L∞(R)

)

with some C > 0. Here we describe h := supt∈(0,T∗) ||u(·, t)||L∞(R), and con-
sider the algebraic inequality h6� ≤ Cδ−1h2(1 + hm−1). Therefore we obtain
the uniform estimate (3.3).

Substituting the uniform boundedness (3.3) of u in the L∞ norm into the
inequality (3.4), we can easily obtain
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Lemma 3.3. For any T ∈ (0, T ∗) and m ∈ (1, 6� − 1) (� ≥ 1), there
exists a constant C > 0 such that∫

R

ux(x, T )2�dx + 2�(2� − 1)ε
∫ T

0

∫
R

u2(2�−2)
x u2

xxdxdt ≤ Cδ−
2(3�−1)
6�−m−1 .

We remark that this inequality implies∫
R

ux(x, T )2�dx + ε

∫ T

0

∫
R

u2(2�−2)
x u2

xxdxdt ≤ Cδ−
2(3�−1)
6�−m−1(3.5)

with some C > 0.
Utilizing some estimates obtained in this section, the uniform boundedness

of the sequence {uε} in Lq(R) for q ∈
(

3�−1
� , 3�2+2�−1

�

)
(� ≥ 1) is established.

For some technical reasons, we divide our proof into � > 1 and � = 1.

Proposition 3.1. Suppose the condition (I) for m < 3�2−q�+3�−1
�

(
q ∈(

3�−1
� , 3�2+2�−1

�

)
, � > 1

)
and the uniform bound (1.6) for the initial data,

then the sequence {uε} of solutions to Eqs. (1.1), (1.2) is uniformly bounded in

Lq(R) with respect to t ∈ (0, T ∗) provided that δ = O

(
ε

(�+1)(6�−m−1)
2(3�2−m�−q�+3�−1)

)
.

Proof. To show the uniform boundedness of the sequence {uε} in Lq(R),
we obtain a priori estimate of the solutions in Lq(R). We set ρ(u) := |u|q for
q ∈

(
3�−1

� , 3�2+2�−1
�

)
(� > 1). Multiplying Eq. (1.1) by ρ′(u) and integrating

in space and time, we find∫
R

ρ(u(x, T ))dx + ε

∫ T

0

∫
R

ρ′′(u)u2�
x dxdt(3.6)

=
∫
R

ρ(u0(x))dx + δ

∫ T

0

∫
R

ρ′(u)x

(
u2�−1

x

)
x

dxdt.

Applying inequalities (3.1), (3.3) and (3.5), we estimate the second term in the
right-hand side of Eq. (3.6):∣∣∣∣∣δ
∫ T

0

∫
R

ρ′(u)x

(
u2�−1

x

)
x

dxdt

∣∣∣∣∣
≤
∣∣∣∣∣(2� − 1)δ

∫ T

0

∫
R

ρ′′(u)ux · u2�−2
x uxxdxdt

∣∣∣∣∣
≤ Cδ

∫ T

0

∫
R

|u|q−2|ux||u2�−2
x uxx|dxdt
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≤ Cδ

(∫ T

0

∫
R

|u|p1(q−2)dxdt

) 1
p1
(∫ T

0

∫
R

|ux|2�dxdt

) 1
2�
(∫ T

0

∫
R

|u2�−2
x uxx|2dxdt

) 1
2

≤ Cδ

(
sup

t′∈(0,T )

||u(·, t′)||p1(q−2)−2
L∞(R)

∫ T

0

∫
R

|u|2dxdt

) 1
p1

· ε− 1
2� · ε− 1

2 δ−
3�−1

6�−m−1

≤ Cδ sup
t′∈(0,T )

||u(·, t′)||
�(q−3)+1

�

L∞(R) · T 1
p1 · ε− �+1

2� δ−
3�−1

6�−m−1

≤ CT
�−1
2� ε−

�+1
2� δ1− �(q−3)+1

�(6�−m−1)− 3�−1
6�−m−1

≤ CT
�−1
2� ε−

�+1
2� δ

3�2−m�−q�+3�−1
�(6�−m−1)

with some C > 0 where 1
p1

+ 1
2� + 1

2 = 1
(
i.e. p1 = 2�

�−1

)
for � > 1. Substituting

this estimate into Eq. (3.6), we obtain the uniform estimate in the Lq(R) under
the condition (I) for m < 3�2−q�+3�−1

� . Namely there exists a constant C > 0

such that, for any q ∈
(

3�−1
� , 3�2+2�−1

�

)
(� > 1),

sup
t∈(0,T∗)

||u(·, t)||qLq(R) ≤ C

(
1 + T

�−1
2� ε−

�+1
2� δ

3�2−m�−q�+3�−1
�(6�−m−1)

)
.(3.7)

From the structure of this a priori estimate (3.7), it follows Proposition 3.1
directly.

When � = 1, we can replace the estimates (3.1), (3.3), (3.5) by following
estimates respectively:

(3.1)’
∫
R

u2(x, T )dx + 2ε

∫ T

0

∫
R

u2
x(x, t)dxdt ≤ C0,

(3.3)’ sup
t∈(0,T∗)

||u(·, t)||L∞(R) ≤ Cδ−
1

5−m ,

(3.5)’
∫
R

ux(x, T )2dx + ε

∫ T

0

∫
R

u2
xxdxdt ≤ Cδ−

4
5−m .

Hence for q′ ∈ (2, 4), the uniform boundedness of the sequence {uε} of solutions
to

(1.1)’ ∂tu + ∂xf(u) = ε∂2
xu − δ∂3

xu, (x, t) ∈ R × (0,∞)

in Lq′
(R) is obtained as follows:
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Proposition 3.2. Suppose the condition (I) for m < 5− q′ (q′ ∈ (2, 4))
and the uniform bound (1.6) for the initial data, then the sequence {uε} of
solutions to Eqs. (1.1)’, (1.2) is uniformly bounded in Lq′

(R) with respect to
t ∈ (0, T ∗) provided that δ = O

(
ε

5−m

5−m−q′
)
.

Proof. In the same way of proof of Proposition 3.1, we set ρ̃(u) := |u|q′

for q′ ∈ (2, 4), and multiply Eq. (1.1)’ by ρ̃′(u). Integrating it in space and
time, we get ∫

R

ρ̃(u(x, T ))dx + ε

∫ T

0

∫
R

ρ̃′′(u)u2
xdxdt(3.8)

=
∫
R

ρ̃(u0(x))dx + δ

∫ T

0

∫
R

ρ̃′′(u)uxuxxdxdt.

Thus using (3.1)’, (3.3)’ and (3.5)’, we can obtain the estimate for the second
term in the right-hand side of Eq. (3.8):∣∣∣∣∣δ

∫ T

0

∫
R

ρ̃′′(u)uxuxxdxdt

∣∣∣∣∣
≤ Cδ

∫ T

0

∫
R

|u|q′−2|ux||uxx|dxdt

≤ Cδ sup
t′∈(0,T )

||u(·, t′)||q′−2
L∞(R)

(∫ T

0

∫
R

|ux|2
) 1

2
(∫ T

0

∫
R

|uxx|2
) 1

2

≤ Cδ · δ− q′−2
5−m · ε− 1

2 · ε− 1
2 δ−

2
5−m

≤ Cε−1δ
5−m−q′

5−m

with some C > 0. Therefore substituting this estimate into Eq. (3.8), it follows
that there exists a constant C > 0 such that, for any q′ ∈ (2, 4),

sup
t∈(0,T∗)

||u(·, t)||q′

Lq′(R)
≤ C

(
1 + ε−1δ

5−m−q′
5−m

)
.(3.9)

which gives Proposition 3.2 for m < 5 − q′.

Combining Propositions 3.1 and 3.2, for any � ≥ 1, we arrive at the uniform
boundedness of the sequence {uε} in Lq(R).

Corollary 3.1. Suppose the condition (I) for m < 3�2−q�+3�−1
�

(
q ∈(

3�−1
� , 3�2+2�−1

�

)
, � ≥ 1

)
and the uniform bound (1.6) for the initial data,
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then the sequence {uε} of solutions to Eqs. (1.1), (1.2) is uniformly bounded in

Lq(R) with respect to t ∈ (0, T ∗) provided that δ = O

(
ε

(�+1)(6�−m−1)
2(3�2−m�−q�+3�−1)

)
.

Due to the fact that
[

3�2+3�−1
2� , 3�

]
⊂
(

3�−1
� , 3�2+2�−1

�

)
(� ≥ 1) and q >

3�2−q�+3�−1
� (> m) for q ∈

[
3�2+3�−1

2� , 3�
]
, Corollary 3.1 holds for m < q(

q ∈
[

3�2+3�−1
2� , 3�

]
, � ≥ 1

)
.

§4. Proof of the Main Result

Due to the uniform boundedness of a sequence {uε} in L∞(0, T ∗; Lq(R))
(Corollary 3.1) in the previous section, we can apply Theorem 2.1 as a conver-
gence tool if it is obtained that a Young measure ν associated with a sequence
{uε} is an entropy m.-v. solution of the Cauchy problem (1.3), (1.4). To ac-
complish the objective, we show the proof of the main Theorem 1.1 by using
several uniform estimates for the sequence {uε} under the growth condition (I)
for m < q

(
q ∈

[
3�2+3�−1

2� , 3�
])

and the assumptions (1.5), (1.6) for the initial
data uε

0.

Proof of Theorem 1.1. To apply the convergence Theorem 2.1, we will
show that a Young measure ν associated with a sequence {uε} is an entropy
m.-v. solution. In other words, it is necessary to establish that a Young measure
ν satisfies the entropy inequality (2.2) and the initial condition (2.3).

As first step, we consider for the entropy inequality (2.2). For any convex
smooth function η(u) : R → R such that η′ and η′′ are uniformly bounded on
R, we consider the distribution

Λε := ∂tη(uε) + ∂xσ(uε),(4.1)

where the flux σ : R → R is defined by σ′(u) = f ′(u)η′(u) for u ∈ R. Then
Λε converges to a nonpositive measure in D′(R × (0, T ∗)). In fact, we observe
that Λε is decomposed as follows:

Λε = η(uε)t + σ(uε)x

= η′(uε)uε
t + σ′(uε)uε

x

= η′(uε)
{
ε
(
(uε

x)2�−1
)
x
− δ

(
(uε

x)2�−1
)
xx

− f(uε)x

}
+ f ′(uε)η′(uε)uε

x

= εη′(uε)
(
(uε

x)2�−1
)
x
− δη′(uε)

(
(uε

x)2�−1
)
xx

= ε
{(

η′(uε)(uε
x)2�−1

)
x
− η′′(uε)(uε

x)2�
}

−δ
{(

η′(uε)
(
(uε

x)2�−1
)
x

)
x
− η′′(uε)

(
(uε

x)2�−1
)
x

uε
x

}
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= ε
(
η′(uε)(uε

x)2�−1
)
x
− εη′′(uε)(uε

x)2�

−δ
(
η′(uε)(uε

x)2�−1
)
xx

+ δ
(
η′′(uε)(uε

x)2�
)
x

+ δη′′(uε)
(
(uε

x)2�−1
)
x

uε
x

=: Λ1 + Λ2 + Λ3 + Λ4 + Λ5.

The estimate of each terms in Λε hold for all smooth function θ ∈ C∞
0 (R ×

(0, T ∗)) (θ ≥ 0) below. Throughout a process of calculation, we omit the
upper-index ε for simplicity similarly to Section 3.

To begin with, consider the term Λ1. By an estimate (3.1) and Hölder’s
inequality, we have

|〈Λ1, θ〉|=
∣∣∣∣∣ε
∫ T∗

0

∫
R

η′(u)u2�−1
x θxdxdt

∣∣∣∣∣(4.2)

≤Cε

(∫∫
supp θ

|ux|p1(2�−1)dxdt

) 1
p1 ||θx||Lp′

1 (R×(0,T∗))

≤Cε

(∫∫
supp θ

|ux|2�dxdt

) 2�−1
2�

||θx||Lp′
1 (R×(0,T∗))

≤Cε · ε− 2�−1
2�

≤Cε
1
2� → 0 (ε → 0)

with some C > 0 where 1
p1

+ 1
p′
1

= 1 with p1(2�−1) = 2�. We denotes by supp θ

the support of θ in R × (0, T ∗).
Next the second term Λ2 is nonpositive:

〈Λ2, θ〉 = −ε

∫ T∗

0

∫
R

η′′(u)u2�
x θdxdt ≤ 0.(4.3)

Using an estimate (3.1) again, we estimate the term Λ3:

|〈Λ3, θ〉|=
∣∣∣∣∣δ
∫ T∗

0

∫
R

η′(u)u2�−1
x θxxdxdt

∣∣∣∣∣(4.4)

≤Cδ

(∫∫
supp θ

|ux|p2(2�−1)dxdt

) 1
p2 ||θxx||Lp′

2 (R×(0,T∗))

≤Cδ

(∫∫
supp θ

|ux|2�dxdt

) 2�−1
2�

||θxx||Lp′
2 (R×(0,T∗))

≤Cε−
2�−1
2� δ

with some C > 0 where 1
p2

+ 1
p′
2

= 1 with p2(2� − 1) = 2�. In this case, when

δ = o
(
ε

2�−1
2�

)
, Λ3 → 0 in D′(R × (0, T ∗)) as ε → 0.
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On the other hand, by applying an estimate (3.1) to Λ4, we find:

|〈Λ4, θ〉|=
∣∣∣∣∣δ
∫ T∗

0

∫
R

η′′(u)u2�
x θxdxdt

∣∣∣∣∣(4.5)

≤Cδ||θxx||L∞(R×(0,T∗))

∫ T∗

0

∫
R

|ux|2�dxdt

≤Cε−1δ

with some C > 0 which includes δ = o (ε).
To deal with the last term Λ5, we divide into � > 1 and � = 1. In the case

that � > 1, remarking that
(
u2�−1

x

)
x

= u2�−2
x uxx, we combine the estimates

(3.1) and (3.5) as follows:

|〈Λ5, θ〉|=
∣∣∣∣∣δ
∫ T∗

0

∫
R

η′′(u)
(
u2�−1

x

)
x

uxθdxdt

∣∣∣∣∣(4.6)

≤Cδ||θ||Lp3 (R×(0,T∗))

×
(∫∫

supp θ

|u2�−2
x uxx|2dxdt

) 1
2
(∫∫

supp θ

|ux|2�dxdt

) 1
2�

≤Cδ · ε− 1
2 δ−

3�−1
6�−m−1 · ε− 1

2�

≤Cε−
�+1
2� δ

3�−m
6�−m−1

with some C > 0 where 1
2 + 1

2� + 1
p3

= 1 hence p3 = 2�
�−1 (� > 1). In the case

that � = 1, using the estimates (3.1)’ and (3.5)’, it follows that

|〈Λ5, θ〉|=
∣∣∣∣∣δ
∫ T∗

0

∫
R

η′′(u)uxuxxθdxdt

∣∣∣∣∣(4.7)

≤Cδ||θ||L∞(R×(0,T∗))

×
(∫∫

supp θ

|ux|2dxdt

) 1
2
(∫∫

supp θ

|uxx|2dxdt

) 1
2

≤Cδ · ε− 1
2 · ε− 1

2 δ−
2

5−m

≤Cε−1δ
3−m
5−m

with some C > 0. Now paying attention to an exponent of δ which are
yielded from inequalities (4.6) and (4.7), it holds that 3�−m

6�−m−1 > 0 for m < q(
q ∈

[
3�2+3�−1

2� , 3�
]
, � ≥ 1

)
. Hence inequalities (4.6) and (4.7) imply the con-

dition δ = o
(
ε

(�+1)(6�−m−1)
2�(3�−m)

)
.
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By the estimates (4.2)–(4.7), if δ = o
(
ε

(�+1)(6�−m−1)
2�(3�−m)

)
, then Λε converges to

a nonpositive measure in D′(R×(0, T ∗)) as ε → 0. In particular, one can verify

that δ = O

(
ε

(�+1)(6�−m−1)
2(3�2−m�−q�+3�−1)

)
implies δ = o

(
ε

(�+1)(6�−m−1)
2�(3�−m)

)
. Combining the

convergence property of Λε and that η(u) → 〈ν, η〉, σ(u) → 〈ν, σ〉 in D′(R ×
(0, T ∗)) as ε → 0 which are obtained by owing to Proposition 2.1, it follows
that

∂t〈ν(x,t)(λ), η(λ)〉 + ∂x〈ν(x,t)(λ), σ(λ)〉 ≤ 0(4.8)

for any convex entropy pairs such that η′ and η′′ are uniformly bounded on R.
Therefore, by the regularization of |u − k| (for all k ∈ R), the inequality (2.2)
follows.

Next, in the rest of this paper, we give a proof that the initial condition
(2.3) is satisfied by the argument due to DiPerna [8] and Szepessy [27].

Let g be a function g(λ) = |λ|r for r ∈ (1, 2) and {φn} ⊆ C∞
0 (R) be a

sequence of test functions such that

lim
n→∞φn = g′(u0) in Lr′

(R)

where 1
r + 1

r′ = 1. Furthermore we set

G(λ, λ0) := g(λ) − g(λ0) − g′(λ0)(λ − λ0).

Following a detailed discussion in [9, 22], by the Cauchy-Schwarz inequality
and the Jensen inequality, we can easily check(

1
T

∫ T

0

∫
K

〈ν(x,t)(λ), |λ − u0(x)|〉dxdt

)2

(4.9)

≤ CK

T

∫ T

0

∫
K

〈ν(x,t)(λ), G(λ, u0(x))〉dxdt

≤ CK

T

∫ T

0

∫
R

〈ν(x,t)(λ), u0(x) − λ〉φndxdt

+CK ||u0||Lr(R)||g′(u0) − φn||Lr′ (R)

for any compact set K ⊆ R. From the definition of φn, it follows that

||g′(u0) − φn||Lr′ (R) → 0 as n → ∞

which indicates that the second term in the right-hand side of the inequality
(4.9) tends to zero as n → ∞. Consequently, it is sufficient to show that the
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first term of the right-hand side of Eq. (4.9) tends to zero as the upper bound
at t = 0 i.e.

lim
T→0+

1
T

∫ T

0

∫
R

〈ν(x,t)(λ), u0(x) − λ〉φndxdt ≤ 0(4.10)

so as to prove the initial condition (2.3). From the definition of the Young
measure ν, it holds that

1
T

∫ T

0

∫
R

〈ν(x,t)(λ), u0(x) − λ〉φndxdt

= lim
ε→0

1
T

∫ T

0

∫
R

(u0(x) − uε(x, t))φndxdt

= lim
ε→0

1
T

∫ T

0

∫
R

u0(x)φndxdt − lim
ε→0

1
T

∫ T

0

∫
R

uε(x, t)φndxdt

= lim
ε→0

(∫
R

(u0(x) − uε
0(x))φndx +

∫
R

uε
0(x)φndx

)
− lim

ε→0

1
T

∫ T

0

∫
R

uε(x, t)φndxdt

= lim
ε→0

∫
R

(u0(x) − uε
0(x))φndx − lim

ε→0

1
T

∫ T

0

∫
R

(uε(x, t) − uε
0(x))φndxdt

=− lim
ε→0

1
T

∫ T

0

∫
R

(∫ t

0

∂su
ε(x, s)ds

)
φn(x)dxdt.

where we use an assumption (1.5) for the initial data. Here, by the growth
condition (I) and the definition of φn, we remark that |f(u)| ≤ C(|u| + |u|m)
(C > 0) and

∫
R

φndx < Cn, and set

Γε :=
1
T

∫ T

0

∫
R

(∫ t

0

∂su
ε(x, s)ds

)
φn(x)dxdt.

Owing to the uniform boundedness of a sequence {uε} in L∞(0, T ∗; L2(R) ∩
Lq(R)) for q > m (an estimate (3.1), Corollary 3.1) and the same argument as
the inequalities (4.2), (4.4), we can estimate Γε as follows:

|Γε|

=

∣∣∣∣∣ 1T
∫ T

0

∫
R

(∫ t

0

∂su
ε(x, s)ds

)
φn(x)dxdt

∣∣∣∣∣
=

∣∣∣∣∣ 1T
∫ T

0

∫
R

(∫ t

0

(−∂xf(uε) + ε∂x(uε
x)2�−1 − δ∂2

x(uε
x)2�−1

)
ds

)
φn(x)dxdt

∣∣∣∣∣
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=

∣∣∣∣∣ 1T
∫ T

0

∫
R

∫ t

0

(
f(uε)∂xφn − ε(uε

x)2�−1∂xφn − δ(uε
x)2�−1∂2

xφn

)
dsdxdt

∣∣∣∣∣
≤ C

T

∫ T

0

∫
R

∫ t

0

(|uε| + |uε|m|) |∂xφn|dsdxdt + Cε
1
2� + Cε−

2�−1
2� δ

≤ C

T

∫ T

0

dt

∫ t

0

ds

(∫
R

|uε|2dx

) 1
2
(∫

R

|∂xφn|2dx

) 1
2

+
C

T

∫ T

0

dt

∫ t

0

ds

(∫
R

|uε|mq̃dx

) 1
q̃
(∫

R

|∂xφn|q̃′
dx

) 1
q̃′

+Cε
1
2� + Cε−

2�−1
2� δ

≤Cn1T +
C

T
· Cn2

∫ T

0

dt

∫ t

0

ds

(∫
R

|uε|qdx

) 1
q̃

+ Cε
1
2� + Cε−

2�−1
2� δ

≤CnT + Cε
1
2� + Cε−

2�−1
2� δ

with some C > 0 where 1
q̃ + 1

q̃′ = 1 with mq̃ = q (> m). When ε → 0 with

δ = o(ε
2�−1
2� ), we obtain that lim supε→0 |Γε| ≤ CnT . Hence we arrive at

1
T

∫ T

0

∫
R

〈ν(x,t)(λ), u0(x) − λ〉φndxdt ≤ CnT,

which implies the inequality (4.10), accordingly, we establish that the initial
condition (2.3) is satisfied.

Consequently Young measure ν is an entropy m.-v. solution to Eqs. (1.3)
and (1.4). Applying Theorem 2.1, the sequence {uε} of solutions to Eqs. (1.1)
and (1.2) converges to the unique entropy solution u ∈ L∞(0, T ∗; Lq(R)) to
Eqs. (1.3) and (1.4) in Lk(0, T ∗; Lp(R)) (∀k < ∞ and ∀p < q). This completes
the proof of Theorem 1.1.
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