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Scalar Conservation Laws with Vanishing and
Highly Nonlinear Diffusive-Dispersive Terms

By

Naoki FuJINO*

Abstract

We investigate the initial value problem for a scalar conservation law with highly
nonlinear diffusive-dispersive terms: us + f(u)z = e(u2™1) s — 6 (w2 pe (£ > 1). In
this paper, for a sequence of solutions to the equation with initial data, we give
convergence results that a sequence converges to the unique entropy solution to the
hyperbolic conservation law. In particular, our main theorem implies the results of
Kondo-LeFloch [15] and Schonbek [26], furthermore makes up for insufficiency of the
results in Fujino-Yamazaki [9] and LeFloch-Natalini [22]. Applying the technique
of compensated compactness, the Young measure and the entropy measure-valued
solutions as main tools, we establish the convergence property of the sequence. The
final step of our proof is to show that the measure-valued mapping associated to the
sequence of solutions is reduced to an entropy solution and this step is mainly based
on the approach of LeFloch-Natalini [22].

81. Introduction and the Main Result

Consider the sequence {u®} of smooth solutions of the Cauchy problem
for a scalar conservation law in one space dimension with highly nonlinear
diffusive-dispersive terms:

(1.1) Oy + Oy f (1) = €0, (Opu)? ™1 — 602(9,u)** ™1, (2,t) € R x (0, 00),
(1.2) u(z,0) =ug(z), =€R,
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where £ > 1 and €, § = §(¢) — 0+. In this paper, we will show that the
sequence {uf} converge to the unique entropy solution to

(1.3) us + f(u), =0, (x,t) € R x (0,00),

(1.4) u(z,0) =up(z), = €R.

To obtain the convergence property of {u®}, we assume that there exist the
smooth solutions to Eqs. (1.1) and (1.2) defined on R x (0, T*) for some T* > 0,

vanishing at infinity and associated with smooth and compactly supported
initial data ug and

(1.5) 3ug € LY(R)NLY(R), Vg > 1s.t. lim ug = ug in L'R)NLYR).
E—

In addition, we assume the following uniform boundedness concerning the initial
data with some constant Cy > 0 independent of &:

1
(1.6) l[ugllz2my + [ugl Lem) + 027 |[ug . |2 (m) < Co,

p— 2 —
for ¢ € (3z£ L 8042 1) (> 1).
On the other hand, we also assume for the flux function f(u) that f(u) is
a given smooth function which satisfies the following growth condition:

Q8] 3C; >0, m > 1s.t. |[f'(u)] < C 1+ |u/™ 1) for any u € R.

When F' is defined by F'(u) = f(u), we can replace the condition (I) by an
assumption (T’):

(1) 30y >0, m > 1s.t. |[F(u)] < Co(Jul® + |u|™") for any u € R.

Then, under the above assumptions, we show the following main result of the
present paper:

Theorem 1.1.  Suppose that a condition (I) and there exists a sequence
{u®} of the smooth solutions to Fqs. (1.1) and (1.2) defined on R x (0,T%),
vanishing at infinity and associated with the initial data satisfying (1.5) and

2 __(et1)(6b=m—1)
(1.6) with m < q <q € [3‘;73;4—1,34). If6=0 <sz<s«2—me—qe+w—1>), then, the
sequence {u®} converge to the unique entropy solution u € L*°(0,T*; L1(R)) to
Egs. (1.3) and (1.4) in L¥(0,7*; L?(R)) (Vk < oo and Vp < q).

Moreover if we assume that the sequence {u®} of solutions to Egs. (1.1),
(1.2) is bounded in L*(0,7*; L(R)), we obtain the same conclusion for any

(£4+1)(66—m—1)

g >m (m € (1,3¢), £ > 1) provided that 6 = o (5 20(3E=m) ) Namely it
follows that
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Theorem 1.2.  Suppose that a condition (I) and there exists a sequence
{u} of the smooth solutions to Eqs. (1.1) and (1.2) defined on R x (0,T7%),
vanishing at infinity and associated with the initial data satisfying (1.5) and
(1.6). If the sequence is uniformly bounded in L*°(0,T*; L4(R)) for some g > m

(6+1)(66—m—1)
(m e (1,30)) and § = o (5 2(30=m) ), then the sequence {u®} converge to

the unique entropy solution v € L*(0,T*; LY(R)) to Egs. (1.3) and (1.4) in
LE(0, T*; LP(R)) (Vk < o0 and Vp < q).

In the consideration of a convergence, the appropriate balance in the re-
lation between ¢ and § is claimed so that the sequence of solutions to the
conservation laws with diffusion and dispersion terms converges to the solution
to the hyperbolic conservation law. In fact, when 6 = 0, Eq. (1.1) is reduced
to a parabolic equation. In this case, if e — 0 (with § = 0), it is rather trivial
that the sequence {u®} of solutions to Eq. (1.1) converges to the solution to
(1.3) owing to the classical vanishing viscosity method. On the other hand,
when ¢ = 0, then Eq. (1.1) is reduced to the generalized Korteweg-de Vries
(KdV) equation [16]. If § — 0 in the KdV equation, the sequence of the solu-
tions to Eq. (1.1) does not converge to the solution to Eq. (1.3) in general (cf.
3, 4, 19, 20]).

We recall several fundamental results for the convergence problem to the
scalar conservation laws with diffusion and dispersion terms:

Ou® + 0, f(u®) = R°, u® =u(x,t)

where € > 0 and R = R°(u®,uS,us,, ) — 0 as ¢ — 0. In particular, our
main Theorem 1.1 includes previous results. For the linear diffusion and the
linear dispersion terms as £ = 1 in Eq. (1.1) i.e.

R® = eut

I
ce — Ou

rxxT?

a first convergence result is obtained by Schonbek [26] under the assumption
2

that either § = O(e?) for Burgers’ type flux (f(u) = “7) and for the family of

flux functions:
u2h+1

- >

or the stronger condition § = O(e?) for general subquadratic flux functions f.
This convergence result has been improved by Kondo-LeFloch [15] for the flux
satisfying |f'(u)] < M (for Vu € R, M > 0). They give that the subsequence
of solutions converges in L*(0,00; LP(R)) (1 < k < co and 1 < p < 2) to a weak
solution of the Cauchy problem (1.3), (1.4) under the assumption § = O(g?).
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Moreover they obtain that the limit is the unique entropy solution in the sense of
Kruzkov under the stronger condition § = o(¢?). They also give a convergence
result for multidimensional conservation laws. Clearly, our result is extension
to their works. See also a result for systems in Hayes-LeFloch [11].

As compared with the above results, there are the following results for the
nonlinear diffusion and the nonlinear dispersion terms:

(1.7) R =eb(uf)e — 6 ((ug)*7h) ., £>1

under the assumptions that f satisfies the growth condition (I) and moreover
that a nondecreasing function b satisfies b(0) = 0, b(A)A > 0 (for VA € R) and

(I1) C|A[CAHDT < (AN < Co APV for any || > N

where C3, Cy, N > 0, r > 1. In the case as £ = 1 in Eq. (1.7), LeFloch-
Natalini [22] show that the sequence {u®} is bounded in L*(0,7™*; LY(R)) for
m<5— %(:: q) and obtain the convergence result that the sequence converges
to the unique entropy solution v € L>(0,7*; LY(R)) in L*(0,T*; LP(R)) (k <
00, p < q) for é = O(eﬁ) (r > 1). In the case that £ > 1 for Eq. (1.7), it
is investigated by Fujino-Yamazaki [9]. In [9], we prove the same convergence
property to [22] for ¢ = 0(5%) (m < g, V¢ >1). On the consideration
to Eq. (1.7), the assumption (II) of the diffusion term is very important in the
proof of their results in [9, 22]. From the assumption (II), the function b can
not imply the identity function b(\) = A because, as ¢, » = 1 in (II), it follows
that

(IT') C3IAI? < b(X) < CY|A]? for any [A| > N

where C%, C}, N > 0. Comparing with this assumption for b in Eq. (1.7), the

20—1

=1 (Vu € R) of the diffusion term in our scalar

nonlinear power function u
conservation law (1.1) imply the identity function as ¢ = 1 clearly. On the
other hand, observing the domain of ¢ for the L¢(R), it is that (m <)q € [4,5)
in [9, 22] and that (m <)q € [3[22#, 3¢] (¢ > 1) in Theorem 1.1 of this paper.
Therefore, in that sense, we can also consider the different results for g > m.
In this paper, we consider the scalar conservation laws with highly non-
linear diffusive-dispersive terms (1.1) without the assumptions (II) nor (II’)
by using the technique developed in [9, 22]. Especially, we make use of the
compensated compactness, the measure-valued (m.-v.) solutions of the Cauchy
problem which are investigated by, for example, DiPerna [8] and Szepessy [27].

Moreover the final step of the proof of the main result relies mainly on the
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approach of LeFloch-Natalini [22]. To give convergence results Theorems 1.1,
1.2, we recall some elementary notions in Section 2 and we establish the uni-
form boundedness in LY(R) by a priori estimates of the solutions to Eq. (1.1)
in Section 3. In the last section, owing to a priori estimates and boundedness
obtained in Section 3, the convergence argument due to [22] is applied to Egs.
(1.1), (1.2).

§82. Preliminaries

Let us remind of the basic theory for Young measure and entropy measure-
valued (m.-v.) solutions concisely. Following DiPerna [8], LeFloch-Natalini [22]
and Szepessy [27], we state a generalization of the Young measure.

Proposition 2.1 ([8, 22, 27]).  Suppose that the sequence {u®} is
bounded in L>(0,00; LY1(R)) and that f € C(R) satisfies the growth condi-
tion (1) for some ¢ € (0,q), C > 0. Then there exists a subsequence {u¢ } and
a probability measure-valued mapping v = v,y defined on R x (0,00), such
that

(2.1) ) = Wiy, £) = /R FN Wy (V) as &' — 0
in L*(R x (0,00)) for any s € (1,4/¢).

A probability measure-valued mapping v in Proposition 2.1 is called a
Young measure associated with the subsequence {uel }+. For this Young measure
v, an entropy measure-valued (m.-v.) solution is defined as follows:

Definition 2.1 ([8, 27]).  Suppose that f € C(R) satisfies the growth
condition (I) and the initial data ug € L'(R) N LY(R). If it follows that

(2.2) 0 (V@A) (A= El) + 02 (V@) (A), sgn(A = k)(f(A) — f(K))) <0

in D'(R x (0,00)) for any k € R and that

(2.3) TﬁmT/ / Viety (Vs A — up(a) ) dedt = 0

for any compact sets K C R, then a Young measure v : R x (0,00) — Prob(R)
associated with the subsequence {u'} is called an entropy measure-valued (m.-
v.) solution to Egs. (1.3), (1.4).

Here we remark that it is not necessary to take a subsequence of {u®}. As
a well-known fact, for an entropy m.-v. solution to Egs. (1.3), (1.4), uniqueness
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holds by [27]. Namely if v and © are entropy m.-v. solutions to Egs. (1.3),
(1.4), then there exists a function w € L>°(R; L'(R)NLY(R)) such that v, ¢ =
Ow(z,t) = Pz for a.e. (z,t) € Rx(0,00). This uniqueness of the entropy m.-v.
solution implies f(u®) — (v(5,1), f) in the sense of distributions. We introduce
the convergence theorem as our main tool.

Theorem 2.1 ([22]).  Suppose that f satisfies the growth condition (I)
and the initial data ug € L*(R)NLY(R) for ¢ > 1. Let v be a Young measure as-
sociated with {u®} which is an uniformly bounded sequence in L (0, co0; LY(R)).
If a Young measure v is an entropy m.-v. solution to Eqs. (1.3), (1.4), then the
sequence {u} converge to the unique entropy solution u € L*(0,00; LY(R)) in
L‘X’(O,oo;Lq/ (R)) (for any ¢’ € [1,q)) to Egs. (1.3), (1.4).

loc

To obtain our convergence results by applying Theorem 2.1, we should
show that the uniform boundedness of a sequence {u®} in L?(R) holds for
g > m and that a Young measure v is an entropy m.-v. solution to Egs. (1.3),
(1.4) in the following sections.

§3. A Priori Estimates

In this section, to establish the L? boundedness, we give several a pri-
ori estimates of solutions to a scalar conservation law with highly nonlinear
diffusive-dispersive terms (1.1) with initial data u§ which are smooth functions
with compact support and satisfy the assumptions (1.5) and (1.6). We suppose
that there exists a sequence {u®} of the smooth solutions to Egs. (1.1), (1.2)
defined on R x (0,7*), vanishing at infinity and associated with initial data u§
for some T € (0, o0].

Throughout the calculation of this section and for simplicity, we omit the
upper-index € and describe u¢ into v and so on. Referring to [9], as a first
estimate, we find

Lemma 3.1.  For every T € (0,T*), We have

T
(3.1) /u2(x,T)dx+25/ / w2 (x, t)dzdt < Oy,
R 0 JR

T
(3.2) 5/ uiz(x,T)dx—l—ZE(%—l)aS/ / w2202 dadt
R o JR

T
<Co+20 / F(u(z,T))dz + 2¢e / / f(w)yutdadt.
R 0 JR
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Proof. Multiplying Eq. (1.1) by u and integrating it in space, we find

2
/ <u_> dwz—s/ u?dz.
R 2 t R

Integrating the above equation in time, We obtain

1 r 1
—/ u2(x,T)dx+€/ / udxdt = —/ ud(z)dz.
2 Jr 0 JR 2 Jr

From an assumption (1.6) of the initial data in L? norm, We arrive the first
estimate (3.1).

In the same way, multiplying Eq. (1.1) by f(u)+6(u2"1)
it in space, We have

/RF(u)tdx—é/R (l;—gg)tdx:—/l{f’( utde + (20— 155/ um)2dx.

By integrating in time, We obtain

5/ zldaz—l—% 6—155// um d;vdt
zé/qud:c—%/Fuo d:t:—!—%/F dx—l—ZEE//f Yutdadt

Hence We obtain an inequality (3.2) by the uniform bound of ug, in the L?¢
norm. |

» and integrating

Combining an assumption (I’) and the uniform bound of u in L°°(0,T*;
L?(R)) derived by a estimate (3.1), we can replace by a following assumption;

(") 3C5 >0, m > 1s.t. |F(u)] < Cs(1+ |u|™*?t) for any u € R.

To estimate the solution w to Eq. (1.1) in the L norm, we use the
estimates (3.1), (3.2) and an assumption (I").

Lemma 3.2.  Suppose m € (1,6¢ — 1) (€ > 1), then there exists a con-
stant C > 0 such that

(3.3) sup  |[u(-,t)||pm) < C§~s7=mT,
te(0,T)

Proof. From the inequality (3.2) and an assumption (I"), we have

5/ dex—i—%(E—laé// w202 dadt

<(Co+C sup [|lu(-, )HLOC(R) <||u(-,T)|L2(R)+E/ / u?fdmdt)
0 JR

te[0,T
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with some C' > 0. In view of an estimate (3.1), we get
T
3.4 8 | w?(x,T)dx + 20(20 —1)eb w222 dadt
( x x xrx
R 0 JR

g()(l—i— sup |Ju(-, )|L°°(R)>

te[0,T]

which implies for every T' € (0,T*) that

1

27

82 |[uy (-, T)|| 2ery < C [ 14 sup [ul-, )| with some C > 0.
t€[0,T) L (®R)

Hence by the Holder’s inequality and the estimate (3.1) again, we have for
Vi, € [O,T]

x
)P <3 [ty
— 00

1 1
D 27
gz( / u|2pdy) ( / |um|2fdy)
R R

D
R — 1
<35 24( sup ||u(.7t1)|2LZ;(2R)/R|u2dy> 53l (- 1) e cre)

t1€[0,T7]

1

27

_1

<C67 2 sup ||u( tl)HLoo(R) <1+ sup ||u(-, tl)”Loc(R))
t1€[0,T] t1€[0,7)

1

20
<Co72¢ sup ||u( tl)HLoo(R) <1+ sup Hu( tl)”Loo(R))
t1€[0,7] t1€[0,7]

with some C > 0 where p = . Therefore, for Vt € (0,7*), we have

sup ||u(-, 1)]|%% gy < C5" sup ||u('vt)|%°°(R)<1+ sup |[Ju(-, )ILm(R>
te(0,T+) te(0,T+) te(0,T+)

with some C' > 0. Here we describe h := sup;¢ (g 7+ [|u(-,?)||L~(®), and con-
sider the algebraic inequality h% < C§~'h2(1 + h™~!). Therefore we obtain
the uniform estimate (3.3). O

Substituting the uniform boundedness (3.3) of w in the L> norm into the
inequality (3.4), we can easily obtain
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Lemma 3.3. For any T € (0,T*) and m € (1,6¢ — 1) (£ > 1), there
exists a constant C' > 0 such that

/ g (z, T)? da 4 20(20 — 1) / / 220202 gt < O§ vomet,
R

We remark that this inequality implies

(3.5) /uz(rﬂ T2‘dx+z-:/ / 22022 gt < O§ vom=t

with some C > 0.

Utilizing some estimates obtained in this section, the uniform boundedness
of the sequence {u®} in LY(R) for q € (BE ! %) (£ > 1) is established.
For some technical reasons, we divide our proof into £ > 1 and ¢ = 1.

Proposition 3.1.  Suppose the condition (I) for m < w (q €

(AN
then the sequence {u®} of solutions to Eqs. (1.1), (1.2) is uniformly bounded in

(£+1)(66—m—1)
L1(R) with respect to t € (0,T*) provided that § = O (€2<342m‘-’44+341>>.

(b M), ‘> 1) and the uniform bound (1.6) for the initial data,

Proof. 'To show the uniform boundedness of the sequence {u} in LY(R),
we obtain a priori estimate of the solutions in LI(R). We set p(u) := |ul? for

q € <36%1, %) (¢ > 1). Multiplying Eq. (1.1) by p/(u) and integrating
in space and time, we find

(3.6) / plu(z,T)) dx+5/ / Yu2tdadt
— /R plug(z))dx + 6 /O /R p'(u)g (u2f1), dudt.

Applying inequalities (3.1), (3.3) and (3.5), we estimate the second term in the
right-hand side of Eq. (3.6):

(uié_ ! ) , dxdt

(2¢0—-1)0 // Uy - u 2umd:cdt

gca// a2} |02 2t | ddlt
0JR
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T o[ T 2%/ T
<Co (/ / |up1(q—2)dxdt> (/ / |ux|2£d:cdt> </ / ung_QumFd:cdt)
0 /R 0 /R 0 JRr

1
Pl
34—1
<C§< sup |Ju(-,t')| ilo(f(RQ)) 2// |ul dggdt) LT . e ST
€(0,T)
£(g—=3)+1 1 41 1
<00 sup Nu( )|y T - EX R
t'€(0,T)
< OTS o= 52 5l wtm iy — e
2_ o _
< CTz;Tlg_Z;T}(;M z(szz_mq—gjf)lZ :
with some C > 0 Where ot 2( +1 5=1 (1 e. pp = ) for £ > 1. Substituting

this estimate into Eq. (3.6), we obtain the uniform estlmate in the L9(R) under

3@2—q£+3£—1
[2

the condition (I) for m < Namely there exists a constant C' > 0

such that, for any ¢ € (M 1 M) (£>1),
- 302 —ml—ql+36—1
(3.7) sup \|u(.,t)||qu(R) <C (1 +T%g—%5uez_7m_+1)> .
te(0,7*)

From the structure of this a priori estimate (3.7), it follows Proposition 3.1
directly. ]

When ¢ = 1, we can replace the estimates (3.1), (3.3), (3.5) by following
estimates respectively:

T
3.1y /uQ(x,T)derQe/ / u?(x, t)dzdt < Co,
R 0o JR

(3.3) sup [u(-, t)]|pe(my < CO 77,
te(0,7)
T 4
(3.5) / Uy (z, T)dx + 5/ / u?, dedt < C§ 5=,
R o Jr
Hence for ¢’ € (2,4), the uniform boundedness of the sequence {u®} of solutions
to
(1.1y Opu+ Op f(u) = €0%u — 603u, (2,t) € R x (0,00)

in L7 (R) is obtained as follows:

2
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Proposition 3.2.  Suppose the condition (I) form < 5—¢' (¢’ € (2,4))
and the uniform bound (1.6) for the initial data, then the sequence {u®} of
solutions to FEgs. (1.1), (1.2) is umformly bounded in L7 (R) with respect to

t € (0, T*) provided that § = O (55 m—q )
Proof. In the same way of proof of Proposition 3.1, we set p(u) := |u|?

for ¢ € (2,4), and multiply Eq. (1.1)’ by p'(u). Integrating it in space and
time, we get

o /Rﬁ(u(x’T))dx+E/OT/Rf)w(u)uidxdt
- /Rﬁ (uo(@))de + /OT /R P (u) gty dadt.

Thus using (3.1)", (3.3)” and (3.5)’, we can obtain the estimate for the second
term in the right-hand side of Eq. (3.8):

T
|5/ /ﬁ'(u)uxumd:sdt
o Jr
T ’
<08 [ [ a2 sl deds
0 /R
3 T 3
< C6 sup ||u( %;?R //|u:c|2 // |U;ca:|2
€(0,T) 0 /R

_d-2
S 06 . 6 5—m . g
< Ce i mm

MI»—A

5—m

vl
03

with some C' > 0. Therefore substituting this estimate into Eq. (3.8), it follows
that there exists a constant C' > 0 such that, for any ¢’ € (2,4),

’ 5—m—gq’
(3.9) sup[[u( D[,y < C (147875550 ).
te(0,T) L (R)
which gives Proposition 3.2 for m <5 —¢’. O

Combining Propositions 3.1 and 3.2, for any ¢ > 1, we arrive at the uniform
boundedness of the sequence {u°} in LI(R).

[
(M%, 352*#), l > 1) and the uniform bound (1.6) for the initial data,

Corollary 3.1.  Suppose the condition (1) for m < 37 —qt+3e-1 (q €
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then the sequence {u®} of solutions to Egs. (1.1), (1.2) is uniformly bounded in
(0+1)(60—m—1)
LY(R) with respect to t € (0,T*) provided that 6 = O <52(322—m2—4f+3f—1>>,

Due to the fact that [w 34 (%, hﬂ’l) (¢ >1) and ¢ >
w (> m) for ¢ € [3@-5# 36] Corollary 3.1 holds for m < ¢
(ac [2242=1,3¢) 02 1),

84. Proof of the Main Result

Due to the uniform boundedness of a sequence {u®} in L>(0,7*; L1(R))
(Corollary 3.1) in the previous section, we can apply Theorem 2.1 as a conver-
gence tool if it is obtained that a Young measure v associated with a sequence
{uf} is an entropy m.-v. solution of the Cauchy problem (1.3), (1.4). To ac-
complish the objective, we show the proof of the main Theorem 1.1 by using
several uniform estimates for the sequence {u®} under the growth condition (I)
for m < ¢ (q € [?"ﬂg#, 34) and the assumptions (1.5), (1.6) for the initial
data ug.

Proof of Theorem 1.1. To apply the convergence Theorem 2.1, we will
show that a Young measure v associated with a sequence {u°} is an entropy
m.-v. solution. In other words, it is necessary to establish that a Young measure
v satisfies the entropy inequality (2.2) and the initial condition (2.3).

As first step, we consider for the entropy inequality (2.2). For any convex
smooth function n(u) : R — R such that n" and %" are uniformly bounded on
R, we consider the distribution

(4.1) A® = On(uf) + 0o (u®),

where the flux o : R — R is defined by o'(u) = f'(u)n’(u) for v € R. Then
A® converges to a nonpositive measure in D'(R x (0,7*)). In fact, we observe
that A® is decomposed as follows:

=1 2
= ' (u") {e ((u)*71), =6 ((u2)* 1), — F(u)a} + f () (u)ug
= en/(uf) ((u5)* 1), — on'(u") ((u5)* 7).,

)22 1)30 _n//(us um 25}

(u9)*7), ), — ") (ug)*), us }

I
<
—~
3\
—~
IS
™
~—
~—~ 80
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= < (7' () () ), — e ) ()
3 (g () WE) ), 4 6 () (W)), + 0 () ()% ),
ZIAl +A2 —|—A3—|—A4+A5
The estimate of each terms in A® hold for all smooth function § € C§°(R x
(0,7*)) (8§ > 0) below. Throughout a process of calculation, we omit the

upper-index ¢ for simplicity similarly to Section 3.
To begin with, consider the term A;. By an estimate (3.1) and Holder’s

inequality, we have
-
5/ /n'(u)uff‘lﬂcdmdt
o JR

1
p1(20-1) )
=ce (//supPO e dxdt) ||0mHLP1 (Rx(0,7))

25
20
(//supp 0 |uw| dxdt) Hew ‘ |Lp/1 (Rx(0,7%))

2(1

(4.2)  [(A1,0)| =

with some C' > 0 where -2 o+ p— = 1 with p;(2¢—1) = 2¢. We denotes by supp ¢
the support of  in R x (0, T*)
Next the second term A, is nonpositive:

(4.3) (Ag,0) = —¢ / / Yu2thdzdt < 0.

Using an estimate (3.1) again, we estimate the term As:

(4.4)  |(A3,0)] =6 Y210, dadt

1
P2
<Co (// |U:c|p2(2g_l)dxdt> HGWHLPQ(RX(O T+))
supp 0 )

2
2¢
<(C$ </[upp0 e dxdt) H0$ZE||LP/2(R,><(O,T*))

<Ce™ Tl

with some C' > 0 where p% + z% = 1 with py(2¢ — 1) = 2¢. In this case, when
2
:0<5222_21), A3 = 0in D'(R x (0,7*)) as e — 0.
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On the other hand, by applying an estimate (3.1) to A4, we find:

(4.5) [(A4,0)| = Yu20, dadt

T
SC(sHGmHLw(Rx(o,T*))/ /|uz|2€dxdt

0o JR
<Ce s

with some C' > 0 which includes § = o (g).

To deal with the last term As, we divide into £ > 1 and ¢ = 1. In the case
that ¢ > 1, remarking that (ugé_l)x = u2~2u,,, we combine the estimates
(3.1) and (3.5) as follows:

(4.6) |(As5,0)| = |0 (u3' 1), uzOdadt
< C5H9||LP3(Rx(o T+))
1
22
(// U2t 2, |2 dwdt) (// uw|2€dmdt)
supp@ supp 0
<O 35 T e
241 30—m
< (e~ 2 §st-m-1
with some C' > 0 where § + o, + p— =1 hence p3 = 25 (¢ > 1). In the case

that £ = 1, using the estimates (3.1)” and (3.5)’, it follows that

-
(5/ / 0" () uy iy, Odzdt
o Jr

< C6[|0]| e (rx (0,77))

X (// |ux|2dxdt> (// umzd:cdt>
supp 6 supp 0

<CO§-c"%.cm 35 m

13
<Ce 1 o5m

4.7)  [{As,0)] =

with some C > 0. Now paying attention to an exponent of § which are
yielded from inequalities (4.6) and (4.7), it holds that Z2=2- > 0 for m < g

(q € {%, 34 , £> 1). Hence inequalities (4.6) and (4.7) imply the con-

(4D (6—m—1)
dition § = o (5 20(30—m) )
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(L+1)(66—m—1)

By the estimates (4.2)—(4.7),ifd = o (E 2E(30=m) ), then A® converges to
a nonpositive measure in D’'(R x (0,T7*)) as ¢ — 0. In particular, one can verify
(£+1)(66—=m—1) (£4+1)(6£6—m—1)

that 6 = O 52(3’52mff1’~’+3’51>> implies § = o (E 20(30=m) ) Combining the

convergence property of A® and that n(u) — (v,n), o(u) — (v,o) in D/(R x
(0,7%)) as € — 0 which are obtained by owing to Proposition 2.1, it follows
that

(48) 8t<V(a:,t)()‘)a 77()‘» + 81<V(a:,t)()‘), U()‘)> < 0

for any convex entropy pairs such that n’ and n”” are uniformly bounded on R.
Therefore, by the regularization of |u — k| (for all k& € R), the inequality (2.2)
follows.

Next, in the rest of this paper, we give a proof that the initial condition
(2.3) is satisfied by the argument due to DiPerna [8] and Szepessy [27].

Let g be a function g(A) = |A|" for r € (1,2) and {¢,} C C(R) be a
sequence of test functions such that

lim ¢n = g'(uo) in L (R)

n—oo

where % + % = 1. Furthermore we set

G(A Xo) = g(A) — g(Xo) — 9/(/\0)()\ — Ao)-

Following a detailed discussion in [9, 22], by the Cauchy-Schwarz inequality
and the Jensen inequality, we can easily check

T 2
(4.9) (% | [ tren.a- uo<x>|>dxdt>

C T
<K / / Wy V), G\, ug(2)))dadt
T Jo Jk
Cx [T
< — <V(x,t)()‘)a UO(x) - )‘>¢ndmdt
T Jo Jr
+Cx|uol| -y |9 (w0) — Pullr (r)
for any compact set K C R. From the definition of ¢, it follows that
19 (u0) = énll gy — 0 as n — o0

which indicates that the second term in the right-hand side of the inequality
(4.9) tends to zero as n — oo. Consequently, it is sufficient to show that the
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first term of the right-hand side of Eq. (4.9) tends to zero as the upper bound
at t =01i.e.

1T
(4.10) i /0 /R Vo) (N)s o () — Nyudadt < 0

so as to prove the initial condition (2.3). From the definition of the Young
measure v, it holds that

T
% /O / (Voty (V) o (@) — A) bt

—Ell_rz%T/ / uo(x) —u®(z,t))ppdxdt

= Ellil(l) T/ / ug () ppdadt — ilin T/ / t)ppdxdt

i (/ (uo(@) — us(@ ))¢ndx+/ ol )%dx)

7511_1)1(13 T/ / (z,t)ppdadt

= lim (uo( ) —ug(z))ppdr — lim = / / (x,t) ())pndadt

e—0 e—=0T

zfg]%T/ /</5‘u xsds)an( Vdadt.

where we use an assumption (1.5) for the initial data. Here, by the growth
condition (I) and the definition of ¢,,, we remark that |f(u)| < C(|u| + |u|™)
(C > 0) and [g ¢pndz < Cy, and set

_ ;/OT/R </0t 8su€(x,s)ds) b (2)ddt.

Owing to the uniform boundedness of a sequence {uf} in L>(0,T*; L(R) N
L%(R)) for ¢ > m (an estimate (3.1), Corollary 3.1) and the same argument as
the inequalities (4.2), (4.4), we can estimate I'® as follows:

I

% /O T/R ( /0 bt (a s)ds) b () dadt

%/OT/R(/;(—&CJC(U)—F58( 2)2-1 592 (g )2 s) b () derdt




CONSERVATION LAW WITH NONLINEAR TERMS 1021

T t
= % /O /R /O (F(u)0utpn — e(ug)** 1 Outhy — 0(us)* 1026y ) dsdwdt

-1

c (T t 1 2
0 JRJO

c r ! 12 % 2 %
<= [ dt | ds |u|“dx |0x | dx
T Jo 0 R R
c (T t _ 3 ~ i
+*/ dt/ds </ u€|qux) </ |81¢)nq/dx>
T Jo 0 R R

24—1

+Ce® + Ce™ =

T t
§0n1T+€-0n2/ dt/ds (/ |u5|qda:> + Ce 4 Cem o4
T 0 0 R

-1

<C,T + Ce3 + Ce™ 5

Q|-

with some C' > 0 where % + é = 1 with m¢g = ¢ (> m). When ¢ — 0 with

0= o(fs%)7 we obtain that limsup,_, |I'°| < C,,T. Hence we arrive at

T
1 / / Vo) (N)s 0 () — Npudadt < C, T,
T 0 R

which implies the inequality (4.10), accordingly, we establish that the initial
condition (2.3) is satisfied.

Consequently Young measure v is an entropy m.-v. solution to Egs. (1.3)
and (1.4). Applying Theorem 2.1, the sequence {u®} of solutions to Egs. (1.1)
and (1.2) converges to the unique entropy solution v € L>(0,7*; LY(R)) to
Egs. (1.3) and (1.4) in L*(0,T*; L?(R)) (Vk < co and Vp < q). This completes
the proof of Theorem 1.1. O
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