Scalar Conservation Laws with Vanishing and Highly Nonlinear Diffusive-Dispersive Terms

By

Naoki Fujino*

Abstract

We investigate the initial value problem for a scalar conservation law with highly nonlinear diffusive-dispersive terms: $u_t + f(u)_x = \varepsilon(u_x^{2\ell-1})_x - \delta(u_x^{2\ell-1})_{xx}$ ($\ell \geq 1$). In this paper, for a sequence of solutions to the equation with initial data, we give convergence results that a sequence converges to the unique entropy solution to the hyperbolic conservation law. In particular, our main theorem implies the results of Kondo-LeFloch [15] and Schonbek [26], furthermore makes up for insufficiency of the results in Fujino-Yamazaki [9] and LeFloch-Natalini [22]. Applying the technique of compensated compactness, the Young measure and the entropy measure-valued solutions as main tools, we establish the convergence property of the sequence. The final step of our proof is to show that the measure-valued mapping associated to the sequence of solutions is reduced to an entropy solution and this step is mainly based on the approach of LeFloch-Natalini [22].

§1. Introduction and the Main Result

Consider the sequence $\{u^{\varepsilon}\}$ of smooth solutions of the Cauchy problem for a scalar conservation law in one space dimension with highly nonlinear diffusive-dispersive terms:

(1.1)
$$\partial_t u + \partial_x f(u) = \varepsilon \partial_x (\partial_x u)^{2\ell - 1} - \delta \partial_x^2 (\partial_x u)^{2\ell - 1}, \quad (x, t) \in \mathbf{R} \times (0, \infty),$$

(1.2) $u(x, 0) = u_0^{\varepsilon}(x), \quad x \in \mathbf{R},$

© 2007 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Communicated by H. Okamoto. Received December 20, 2006. Revised March 9, 2007. 2000 Mathematics Subject Classification(s): 35L65, 35L70, 35L75.

Key words: Scalar conservation laws, Entropy solutions, Young measure, Measure-valued solutions.

^{*}Graduate School of Mathematical Sciences, University of Tokyo, Tokyo 153-8914, Japan and Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8571, Japan.

where $\ell \geq 1$ and ε , $\delta = \delta(\varepsilon) \to 0+$. In this paper, we will show that the sequence $\{u^{\varepsilon}\}$ converge to the unique entropy solution to

(1.3)
$$u_t + f(u)_x = 0, \quad (x,t) \in \mathbf{R} \times (0,\infty),$$

(1.4) $u(x,0) = u_0(x), \quad x \in \mathbf{R}.$

To obtain the convergence property of $\{u^{\varepsilon}\}\)$, we assume that there exist the smooth solutions to Eqs. (1.1) and (1.2) defined on $\mathbf{R} \times (0, T^*)$ for some $T^* > 0$, vanishing at infinity and associated with smooth and compactly supported initial data u_0^{ε} and

(1.5)
$$\exists u_0 \in L^1(\mathbf{R}) \cap L^q(\mathbf{R}), \ \forall q > 1 \text{ s.t. } \lim_{\varepsilon \to 0} u_0^\varepsilon = u_0 \text{ in } L^1(\mathbf{R}) \cap L^q(\mathbf{R}).$$

In addition, we assume the following uniform boundedness concerning the initial data with some constant $C_0 > 0$ independent of ε :

(1.6)
$$||u_0^{\varepsilon}||_{L^2(\mathbf{R})} + ||u_0^{\varepsilon}||_{L^q(\mathbf{R})} + \delta^{\frac{1}{2\ell}} ||u_{0,x}^{\varepsilon}||_{L^{2\ell}(\mathbf{R})} \le C_0,$$

for $q \in \left(\frac{3\ell-1}{\ell}, \frac{3\ell^2+2\ell-1}{\ell}\right) \ (\ell \ge 1).$

On the other hand, we also assume for the flux function f(u) that f(u) is a given smooth function which satisfies the following growth condition:

(I)
$$\exists C_1 > 0, \ m > 1 \text{ s.t. } |f'(u)| \le C_1(1+|u|^{m-1}) \text{ for any } u \in \mathbf{R}.$$

When F is defined by F'(u) = f(u), we can replace the condition (I) by an assumption (I'):

(I')
$$\exists C_2 > 0, \ m > 1 \text{ s.t. } |F(u)| \le C_2(|u|^2 + |u|^{m+1}) \text{ for any } u \in \mathbf{R}.$$

Then, under the above assumptions, we show the following main result of the present paper:

Theorem 1.1. Suppose that a condition (I) and there exists a sequence $\{u^{\varepsilon}\}$ of the smooth solutions to Eqs. (1.1) and (1.2) defined on $\mathbf{R} \times (0, T^*)$, vanishing at infinity and associated with the initial data satisfying (1.5) and (1.6) with $m < q \left(q \in \left[\frac{3\ell^2 + 3\ell - 1}{2\ell}, 3\ell\right]\right)$. If $\delta = O\left(\varepsilon^{\frac{(\ell+1)(6\ell - m - 1)}{2(3\ell^2 - m\ell - q\ell + 3\ell - 1)}}\right)$, then the sequence $\{u^{\varepsilon}\}$ converge to the unique entropy solution $u \in L^{\infty}(0, T^*; L^q(\mathbf{R}))$ to Eqs. (1.3) and (1.4) in $L^k(0, T^*; L^p(\mathbf{R}))$ ($\forall k < \infty$ and $\forall p < q$).

Moreover if we assume that the sequence $\{u^{\varepsilon}\}$ of solutions to Eqs. (1.1), (1.2) is bounded in $L^{\infty}(0, T^*; L^q(\mathbf{R}))$, we obtain the same conclusion for any q > m $(m \in (1, 3\ell), \ \ell \ge 1)$ provided that $\delta = o\left(\varepsilon^{\frac{(\ell+1)(6\ell-m-1)}{2\ell(3\ell-m)}}\right)$. Namely it follows that

Theorem 1.2. Suppose that a condition (I) and there exists a sequence $\{u^{\varepsilon}\}$ of the smooth solutions to Eqs. (1.1) and (1.2) defined on $\mathbf{R} \times (0, T^*)$, vanishing at infinity and associated with the initial data satisfying (1.5) and (1.6). If the sequence is uniformly bounded in $L^{\infty}(0, T^*; L^q(\mathbf{R}))$ for some q > m $(m \in (1, 3\ell))$ and $\delta = o\left(\varepsilon^{\frac{(\ell+1)(6\ell-m-1)}{2\ell(3\ell-m)}}\right)$, then the sequence $\{u^{\varepsilon}\}$ converge to the unique entropy solution $u \in L^{\infty}(0, T^*; L^q(\mathbf{R}))$ to Eqs. (1.3) and (1.4) in $L^k(0, T^*; L^p(\mathbf{R}))$ ($\forall k < \infty$ and $\forall p < q$).

In the consideration of a convergence, the appropriate balance in the relation between ε and δ is claimed so that the sequence of solutions to the conservation laws with diffusion and dispersion terms converges to the solution to the hyperbolic conservation law. In fact, when $\delta = 0$, Eq. (1.1) is reduced to a parabolic equation. In this case, if $\varepsilon \to 0$ (with $\delta = 0$), it is rather trivial that the sequence $\{u^{\varepsilon}\}$ of solutions to Eq. (1.1) converges to the solution to (1.3) owing to the classical vanishing viscosity method. On the other hand, when $\varepsilon = 0$, then Eq. (1.1) is reduced to the generalized Korteweg-de Vries (KdV) equation [16]. If $\delta \to 0$ in the KdV equation, the sequence of the solutions to Eq. (1.1) does not converge to the solution to Eq. (1.3) in general (cf. [3, 4, 19, 20]).

We recall several fundamental results for the convergence problem to the scalar conservation laws with diffusion and dispersion terms:

$$\partial_t u^{\varepsilon} + \partial_x f(u^{\varepsilon}) = R^{\varepsilon}, \quad u^{\varepsilon} = u^{\varepsilon}(x,t)$$

where $\varepsilon > 0$ and $R^{\varepsilon} = R^{\varepsilon}(u^{\varepsilon}, u_x^{\varepsilon}, u_{xx}^{\varepsilon}, \cdots) \to 0$ as $\varepsilon \to 0$. In particular, our main Theorem 1.1 includes previous results. For the linear diffusion and the linear dispersion terms as $\ell = 1$ in Eq. (1.1) i.e.

$$R^{\varepsilon} = \varepsilon u_{xx}^{\varepsilon} - \delta u_{xxx}^{\varepsilon}$$

a first convergence result is obtained by Schonbek [26] under the assumption that either $\delta = O(\varepsilon^2)$ for Burgers' type flux $\left(f(u) = \frac{u^2}{2}\right)$ and for the family of flux functions:

$$f(u) = -\frac{u^{2n+1}}{2h+1}, \quad h \ge 1,$$

or the stronger condition $\delta = O(\varepsilon^3)$ for general subquadratic flux functions f. This convergence result has been improved by Kondo-LeFloch [15] for the flux satisfying $|f'(u)| \leq M$ (for $\forall u \in \mathbf{R}, M > 0$). They give that the subsequence of solutions converges in $L^k(0, \infty; L^p(\mathbf{R}))$ ($1 < k < \infty$ and 1) to a weak $solution of the Cauchy problem (1.3), (1.4) under the assumption <math>\delta = O(\varepsilon^2)$.

Moreover they obtain that the limit is the unique entropy solution in the sense of Kružkov under the stronger condition $\delta = o(\varepsilon^2)$. They also give a convergence result for multidimensional conservation laws. Clearly, our result is extension to their works. See also a result for systems in Hayes-LeFloch [11].

As compared with the above results, there are the following results for the nonlinear diffusion and the nonlinear dispersion terms:

(1.7)
$$R^{\varepsilon} = \varepsilon b(u_x^{\varepsilon})_x - \delta \left((u_x^{\varepsilon})^{2\ell-1} \right)_{xx}, \quad \ell \ge 1$$

under the assumptions that f satisfies the growth condition (I) and moreover that a nondecreasing function b satisfies b(0) = 0, $b(\lambda)\lambda \ge 0$ (for $\forall \lambda \in \mathbf{R}$) and

(II)
$$C_3|\lambda|^{(2\ell+1)r} \le b(\lambda)\lambda \le C_4|\lambda|^{(2\ell+1)r}$$
 for any $|\lambda| \ge N$

where C_3 , C_4 , N > 0, $r \ge 1$. In the case as $\ell = 1$ in Eq. (1.7), LeFloch-Natalini [22] show that the sequence $\{u^{\varepsilon}\}$ is bounded in $L^{\infty}(0, T^*; L^q(\mathbf{R}))$ for $m < 5 - \frac{1}{r}(=:q)$ and obtain the convergence result that the sequence converges to the unique entropy solution $u \in L^{\infty}(0, T^*; L^q(\mathbf{R}))$ in $L^k(0, T^*; L^p(\mathbf{R}))$ ($k < \infty, p < q$) for $\delta = O(\varepsilon^{\frac{5-m}{r(5-m)-1}})$ ($r \ge 1$). In the case that $\ell \ge 1$ for Eq. (1.7), it is investigated by Fujino-Yamazaki [9]. In [9], we prove the same convergence property to [22] for $\delta = O(\varepsilon^{\frac{6\ell-m-1}{r(6\ell-m-1)-1}})$ ($m < q, \forall \ell \ge 1$). On the consideration to Eq. (1.7), the assumption (II) of the diffusion term is very important in the proof of their results in [9, 22]. From the assumption (II), the function b can not imply the identity function $b(\lambda) = \lambda$ because, as ℓ , r = 1 in (II), it follows that

(II')
$$C'_3|\lambda|^2 \le b(\lambda) \le C'_4|\lambda|^2 \text{ for any } |\lambda| \ge N$$

where C'_3 , C'_4 , N > 0. Comparing with this assumption for b in Eq. (1.7), the nonlinear power function $u_x^{2\ell-1}$ ($\forall u \in \mathbf{R}$) of the diffusion term in our scalar conservation law (1.1) imply the identity function as $\ell = 1$ clearly. On the other hand, observing the domain of q for the $L^q(\mathbf{R})$, it is that $(m <)q \in [4, 5)$ in [9, 22] and that $(m <)q \in [\frac{3\ell^2+3\ell-1}{2\ell}, 3\ell]$ ($\ell \ge 1$) in Theorem 1.1 of this paper. Therefore, in that sense, we can also consider the different results for q > m.

In this paper, we consider the scalar conservation laws with highly nonlinear diffusive-dispersive terms (1.1) without the assumptions (II) nor (II') by using the technique developed in [9, 22]. Especially, we make use of the compensated compactness, the measure-valued (m.-v.) solutions of the Cauchy problem which are investigated by, for example, DiPerna [8] and Szepessy [27]. Moreover the final step of the proof of the main result relies mainly on the

approach of LeFloch-Natalini [22]. To give convergence results Theorems 1.1, 1.2, we recall some elementary notions in Section 2 and we establish the uniform boundedness in $L^q(\mathbf{R})$ by a priori estimates of the solutions to Eq. (1.1) in Section 3. In the last section, owing to a priori estimates and boundedness obtained in Section 3, the convergence argument due to [22] is applied to Eqs. (1.1), (1.2).

§2. Preliminaries

Let us remind of the basic theory for Young measure and entropy measurevalued (m.-v.) solutions concisely. Following DiPerna [8], LeFloch-Natalini [22] and Szepessy [27], we state a generalization of the Young measure.

Proposition 2.1 ([8, 22, 27]). Suppose that the sequence $\{u^{\varepsilon}\}$ is bounded in $L^{\infty}(0, \infty; L^{q}(\mathbf{R}))$ and that $f \in C(\mathbf{R})$ satisfies the growth condition (I) for some $q' \in (0, q), C > 0$. Then there exists a subsequence $\{u^{\varepsilon'}\}$ and a probability measure-valued mapping $\nu = \nu_{(x,t)}$ defined on $\mathbf{R} \times (0, \infty)$, such that

(2.1)
$$f(u^{\varepsilon'}) \to \langle \nu_{(x,t)}, f \rangle := \int_{\mathbf{R}} f(\lambda) d\nu_{(x,t)}(\lambda) \text{ as } \varepsilon' \to 0$$

in $L^s(\mathbf{R} \times (0,\infty))$ for any $s \in (1, q/q')$.

A probability measure-valued mapping ν in Proposition 2.1 is called a *Young measure* associated with the subsequence $\{u^{\varepsilon'}\}$. For this Young measure ν , an entropy measure-valued (m.-v.) solution is defined as follows:

Definition 2.1 ([8, 27]). Suppose that $f \in C(\mathbf{R})$ satisfies the growth condition (I) and the initial data $u_0 \in L^1(\mathbf{R}) \cap L^q(\mathbf{R})$. If it follows that

(2.2)
$$\partial_t \langle \nu_{(x,t)}(\lambda), |\lambda - k| \rangle + \partial_x \langle \nu_{(x,t)}(\lambda), \operatorname{sgn}(\lambda - k)(f(\lambda) - f(k)) \rangle \leq 0$$

in $\mathcal{D}'(\mathbf{R} \times (0, \infty))$ for any $k \in \mathbf{R}$ and that

(2.3)
$$\lim_{T \to 0^+} \frac{1}{T} \int_0^T \int_K \langle \nu_{(x,t)}(\lambda), |\lambda - u_0(x)| \rangle dx dt = 0$$

for any compact sets $K \subseteq \mathbf{R}$, then a Young measure $\nu : \mathbf{R} \times (0, \infty) \to \operatorname{Prob}(\mathbf{R})$ associated with the subsequence $\{u^{\varepsilon'}\}$ is called an *entropy measure-valued* (m.v.) *solution* to Eqs. (1.3), (1.4).

Here we remark that it is not necessary to take a subsequence of $\{u^{\varepsilon}\}$. As a well-known fact, for an entropy m.-v. solution to Eqs. (1.3), (1.4), uniqueness

holds by [27]. Namely if ν and $\tilde{\nu}$ are entropy m.-v. solutions to Eqs. (1.3), (1.4), then there exists a function $w \in L^{\infty}(\mathbf{R}; L^1(\mathbf{R}) \cap L^q(\mathbf{R}))$ such that $\nu_{(x,t)} = \delta_{w(x,t)} = \tilde{\nu}_{(x,t)}$ for a.e. $(x,t) \in \mathbf{R} \times (0,\infty)$. This uniqueness of the entropy m.-v. solution implies $f(u^{\varepsilon}) \to \langle \nu_{(x,t)}, f \rangle$ in the sense of distributions. We introduce the convergence theorem as our main tool.

Theorem 2.1 ([22]). Suppose that f satisfies the growth condition (I) and the initial data $u_0 \in L^1(\mathbf{R}) \cap L^q(\mathbf{R})$ for $q \ge 1$. Let ν be a Young measure associated with $\{u^{\varepsilon}\}$ which is an uniformly bounded sequence in $L^{\infty}(0, \infty; L^q(\mathbf{R}))$. If a Young measure ν is an entropy m.- ν . solution to Eqs. (1.3), (1.4), then the sequence $\{u^{\varepsilon}\}$ converge to the unique entropy solution $u \in L^{\infty}(0, \infty; L^q(\mathbf{R}))$ in $L^{\infty}(0, \infty; L^{q'}_{loc}(\mathbf{R}))$ (for any $q' \in [1, q)$) to Eqs. (1.3), (1.4).

To obtain our convergence results by applying Theorem 2.1, we should show that the uniform boundedness of a sequence $\{u^{\varepsilon}\}$ in $L^{q}(\mathbf{R})$ holds for q > m and that a Young measure ν is an entropy m.-v. solution to Eqs. (1.3), (1.4) in the following sections.

§3. A Priori Estimates

In this section, to establish the L^q boundedness, we give several a priori estimates of solutions to a scalar conservation law with highly nonlinear diffusive-dispersive terms (1.1) with initial data u_0^{ε} which are smooth functions with compact support and satisfy the assumptions (1.5) and (1.6). We suppose that there exists a sequence $\{u^{\varepsilon}\}$ of the smooth solutions to Eqs. (1.1), (1.2) defined on $\mathbf{R} \times (0, T^*)$, vanishing at infinity and associated with initial data u_0^{ε} for some $T^* \in (0, \infty]$.

Throughout the calculation of this section and for simplicity, we omit the upper-index ε and describe u^{ε} into u and so on. Referring to [9], as a first estimate, we find

Lemma 3.1. For every $T \in (0, T^*)$, We have

(3.1)
$$\int_{\mathbf{R}} u^2(x,T) dx + 2\varepsilon \int_0^T \int_{\mathbf{R}} u_x^{2\ell}(x,t) dx dt \le C_0,$$

and

(3.2)
$$\delta \int_{\mathbf{R}} u_x^{2\ell}(x,T) dx + 2\ell (2\ell-1)\varepsilon \delta \int_0^T \int_{\mathbf{R}} u_x^{2(2\ell-2)} u_{xx}^2 dx dt$$
$$\leq C_0 + 2\ell \int_{\mathbf{R}} F(u(x,T)) dx + 2\ell\varepsilon \int_0^T \int_{\mathbf{R}} f'(u) u_x^{2\ell} dx dt.$$

Proof. Multiplying Eq. (1.1) by u and integrating it in space, we find

$$\int_{\mathbf{R}} \left(\frac{u^2}{2}\right)_t dx = -\varepsilon \int_{\mathbf{R}} u_x^{2\ell} dx.$$

Integrating the above equation in time, We obtain

$$\frac{1}{2}\int_{\mathbf{R}}u^2(x,T)dx + \varepsilon \int_0^T \int_{\mathbf{R}}u_x^{2\ell}dxdt = \frac{1}{2}\int_{\mathbf{R}}u_0^2(x)dx.$$

From an assumption (1.6) of the initial data in L^2 norm, We arrive the first estimate (3.1).

In the same way, multiplying Eq. (1.1) by $f(u) + \delta(u_x^{2\ell-1})_x$ and integrating it in space, We have

$$\int_{\mathbf{R}} F(u)_t dx - \delta \int_{\mathbf{R}} \left(\frac{u_x^{2\ell}}{2\ell} \right)_t dx = -\varepsilon \int_{\mathbf{R}} f'(u) u_x^{2\ell} dx + (2\ell - 1)\varepsilon \delta \int_{\mathbf{R}} \left(u_x^{2\ell - 2} u_{xx} \right)^2 dx.$$

By integrating in time, We obtain

$$\delta \int_{\mathbf{R}} u_x^{2\ell} dx + 2\ell (2\ell - 1)\varepsilon \delta \int_0^T \int_{\mathbf{R}} \left(u_x^{2\ell - 2} u_{xx} \right)^2 dx dt$$
$$= \delta \int_{\mathbf{R}} u_{0,x}^{2\ell} dx - 2\ell \int_{\mathbf{R}} F(u_0) dx + 2\ell \int_{\mathbf{R}} F(u) dx + 2\ell \varepsilon \int_0^T \int_{\mathbf{R}} f'(u) u_x^{2\ell} dx dt$$

Hence We obtain an inequality (3.2) by the uniform bound of $u_{0,x}$ in the $L^{2\ell}$ norm.

Combining an assumption (I') and the uniform bound of u in $L^{\infty}(0, T^*; L^2(\mathbf{R}))$ derived by a estimate (3.1), we can replace by a following assumption; (I") $\exists C_5 > 0, m > 1$ s.t. $|F(u)| \leq C_5(1 + |u|^{m+1})$ for any $u \in \mathbf{R}$.

To estimate the solution u to Eq. (1.1) in the L^{∞} norm, we use the estimates (3.1), (3.2) and an assumption (I").

Lemma 3.2. Suppose $m \in (1, 6\ell - 1)$ $(\ell \ge 1)$, then there exists a constant C > 0 such that

(3.3)
$$\sup_{t \in (0,T^*)} ||u(\cdot,t)||_{L^{\infty}(\mathbf{R})} \le C\delta^{-\frac{1}{6\ell-m-1}}.$$

Proof. From the inequality (3.2) and an assumption (I"), we have

$$\delta \int_{\mathbf{R}} u_x^{2\ell}(x,T)dx + 2\ell(2\ell-1)\varepsilon\delta \int_0^T \int_{\mathbf{R}} u_x^{2(2\ell-2)} u_{xx}^2 dxdt$$

$$\leq C_0 + C \sup_{t \in [0,T]} ||u(\cdot,t)||_{L^{\infty}(\mathbf{R})}^{m-1} \left(||u(\cdot,T)||_{L^2(\mathbf{R})} + \varepsilon \int_0^T \int_{\mathbf{R}} u_x^{2\ell} dxdt \right)$$

with some C > 0. In view of an estimate (3.1), we get

(3.4)
$$\delta \int_{\mathbf{R}} u_x^{2\ell}(x,T) dx + 2\ell(2\ell-1)\varepsilon \delta \int_0^T \int_{\mathbf{R}} u_x^{2(2\ell-2)} u_{xx}^2 dx dt$$
$$\leq C \left(1 + \sup_{t \in [0,T]} ||u(\cdot,t)||_{L^{\infty}(\mathbf{R})}^{m-1} \right)$$

which implies for every $T \in (0, T^*)$ that

$$\delta^{\frac{1}{2\ell}} ||u_x(\cdot, T)||_{L^{2\ell}(\mathbf{R})} \le C \left(1 + \sup_{t \in [0,T]} ||u(\cdot, t)||_{L^{\infty}(\mathbf{R})}^{m-1} \right)^{\frac{1}{2\ell}} \text{ with some } C > 0.$$

Hence by the Hölder's inequality and the estimate (3.1) again, we have for $\forall t_1 \in [0,T]$

$$\begin{split} |u(x,t_{1})|^{3} &\leq 3 \int_{-\infty}^{x} |u^{2}(y,t_{1})u_{x}(y,t_{1})| dy \\ &\leq 3 \left(\int_{\mathbf{R}} |u|^{2p} dy \right)^{\frac{1}{p}} \left(\int_{\mathbf{R}} |u_{x}|^{2\ell} dy \right)^{\frac{1}{2\ell}} \\ &\leq 3\delta^{-\frac{1}{2\ell}} \left(\sup_{t_{1} \in [0,T]} ||u(\cdot,t_{1})||^{2p-2}_{L^{\infty}(\mathbf{R})} \int_{\mathbf{R}} |u|^{2} dy \right)^{\frac{1}{p}} \delta^{\frac{1}{2\ell}} ||u_{x}(\cdot,t_{1})||_{L^{2\ell}(\mathbf{R})} \\ &\leq C\delta^{-\frac{1}{2\ell}} \sup_{t_{1} \in [0,T]} ||u(\cdot,t_{1})||^{\frac{2p-2}{p}}_{L^{\infty}(\mathbf{R})} \left(1 + \sup_{t_{1} \in [0,T]} ||u(\cdot,t_{1})||^{m-1}_{L^{\infty}(\mathbf{R})} \right)^{\frac{1}{2\ell}} \\ &\leq C\delta^{-\frac{1}{2\ell}} \sup_{t_{1} \in [0,T]} ||u(\cdot,t_{1})||^{\frac{1}{\ell}}_{L^{\infty}(\mathbf{R})} \left(1 + \sup_{t_{1} \in [0,T]} ||u(\cdot,t_{1})||^{m-1}_{L^{\infty}(\mathbf{R})} \right)^{\frac{1}{2\ell}} \end{split}$$

with some C > 0 where $p = \frac{2\ell}{2\ell-1}$. Therefore, for $\forall t \in (0, T^*)$, we have

$$\sup_{t \in (0,T^*)} ||u(\cdot,t)||_{L^{\infty}(\mathbf{R})}^{6\ell} \le C\delta^{-1} \sup_{t \in (0,T^*)} ||u(\cdot,t)||_{L^{\infty}(\mathbf{R})}^2 \left(1 + \sup_{t \in (0,T^*)} ||u(\cdot,t)||_{L^{\infty}(\mathbf{R})}^{m-1}\right)$$

with some C > 0. Here we describe $h := \sup_{t \in (0,T^*)} ||u(\cdot,t)||_{L^{\infty}(\mathbf{R})}$, and consider the algebraic inequality $h^{6\ell} \leq C\delta^{-1}h^2(1+h^{m-1})$. Therefore we obtain the uniform estimate (3.3).

Substituting the uniform boundedness (3.3) of u in the L^{∞} norm into the inequality (3.4), we can easily obtain

Lemma 3.3. For any $T \in (0, T^*)$ and $m \in (1, 6\ell - 1)$ $(\ell \ge 1)$, there exists a constant C > 0 such that

$$\int_{\mathbf{R}} u_x(x,T)^{2\ell} dx + 2\ell (2\ell-1)\varepsilon \int_0^T \int_{\mathbf{R}} u_x^{2(2\ell-2)} u_{xx}^2 dx dt \le C\delta^{-\frac{2(3\ell-1)}{6\ell-m-1}}.$$

We remark that this inequality implies

(3.5)
$$\int_{\mathbf{R}} u_x(x,T)^{2\ell} dx + \varepsilon \int_0^T \int_{\mathbf{R}} u_x^{2(2\ell-2)} u_{xx}^2 dx dt \le C\delta^{-\frac{2(3\ell-1)}{6\ell-m-1}}$$

with some C > 0.

Utilizing some estimates obtained in this section, the uniform boundedness of the sequence $\{u^{\varepsilon}\}$ in $L^q(\mathbf{R})$ for $q \in \left(\frac{3\ell-1}{\ell}, \frac{3\ell^2+2\ell-1}{\ell}\right)$ $(\ell \ge 1)$ is established. For some technical reasons, we divide our proof into $\ell > 1$ and $\ell = 1$.

Proposition 3.1. Suppose the condition (I) for $m < \frac{3\ell^2 - q\ell + 3\ell - 1}{\ell} \left(q \in \left(\frac{3\ell - 1}{\ell}, \frac{3\ell^2 + 2\ell - 1}{\ell} \right), \ \ell > 1 \right)$ and the uniform bound (1.6) for the initial data, then the sequence $\{u^{\varepsilon}\}$ of solutions to Eqs. (1.1), (1.2) is uniformly bounded in $L^q(\mathbf{R})$ with respect to $t \in (0, T^*)$ provided that $\delta = O\left(\varepsilon^{\frac{(\ell+1)(\ell\ell - m-1)}{2(3\ell^2 - m\ell - q\ell + 3\ell - 1)}}\right).$

Proof. To show the uniform boundedness of the sequence $\{u^{\varepsilon}\}$ in $L^{q}(\mathbf{R})$, we obtain a priori estimate of the solutions in $L^{q}(\mathbf{R})$. We set $\rho(u) := |u|^{q}$ for $q \in \left(\frac{3\ell-1}{\ell}, \frac{3\ell^{2}+2\ell-1}{\ell}\right)$ $(\ell > 1)$. Multiplying Eq. (1.1) by $\rho'(u)$ and integrating in space and time, we find

(3.6)
$$\int_{\mathbf{R}} \rho(u(x,T))dx + \varepsilon \int_{0}^{T} \int_{\mathbf{R}} \rho''(u)u_{x}^{2\ell}dxdt$$
$$= \int_{\mathbf{R}} \rho(u_{0}(x))dx + \delta \int_{0}^{T} \int_{\mathbf{R}} \rho'(u)_{x} \left(u_{x}^{2\ell-1}\right)_{x} dxdt.$$

Applying inequalities (3.1), (3.3) and (3.5), we estimate the second term in the right-hand side of Eq. (3.6):

$$\begin{aligned} \left| \delta \int_0^T \int_{\mathbf{R}} \rho'(u)_x \left(u_x^{2\ell-1} \right)_x dx dt \right| \\ &\leq \left| (2\ell-1)\delta \int_0^T \int_{\mathbf{R}} \rho''(u) u_x \cdot u_x^{2\ell-2} u_{xx} dx dt \right| \\ &\leq C\delta \int_0^T \int_{\mathbf{R}} |u|^{q-2} |u_x| |u_x^{2\ell-2} u_{xx}| dx dt \end{aligned}$$

$$\leq C\delta \left(\int_{0}^{T} \int_{\mathbf{R}} |u|^{p_{1}(q-2)} dx dt \right)^{\frac{1}{p_{1}}} \left(\int_{0}^{T} \int_{\mathbf{R}} |u_{x}|^{2\ell} dx dt \right)^{\frac{1}{2\ell}} \left(\int_{0}^{T} \int_{\mathbf{R}} |u_{x}^{2\ell-2} u_{xx}|^{2} dx dt \right)^{\frac{1}{2}} \\ \leq C\delta \left(\sup_{t' \in (0,T)} ||u(\cdot,t')||^{p_{1}(q-2)-2} \int_{0}^{T} \int_{\mathbf{R}} |u|^{2} dx dt \right)^{\frac{1}{p_{1}}} \cdot \varepsilon^{-\frac{1}{2\ell}} \cdot \varepsilon^{-\frac{1}{2}} \delta^{-\frac{3\ell-1}{6\ell-m-1}} \\ \leq C\delta \sup_{t' \in (0,T)} ||u(\cdot,t')||^{\frac{\ell(q-3)+1}{\ell}} \cdot T^{\frac{1}{p_{1}}} \cdot \varepsilon^{-\frac{\ell+1}{2\ell}} \delta^{-\frac{3\ell-1}{6\ell-m-1}} \\ \leq CT^{\frac{\ell-1}{2\ell}} \varepsilon^{-\frac{\ell+1}{2\ell}} \delta^{1-\frac{\ell(q-3)+1}{\ell(6\ell-m-1)} - \frac{3\ell-1}{6\ell-m-1}} \\ \leq CT^{\frac{\ell-1}{2\ell}} \varepsilon^{-\frac{\ell+1}{2\ell}} \delta^{\frac{3\ell^{2}-m\ell-q\ell+3\ell-1}{\ell(6\ell-m-1)}}$$

with some C > 0 where $\frac{1}{p_1} + \frac{1}{2\ell} + \frac{1}{2} = 1$ (i.e. $p_1 = \frac{2\ell}{\ell-1}$) for $\ell > 1$. Substituting this estimate into Eq. (3.6), we obtain the uniform estimate in the $L^q(\mathbf{R})$ under the condition (I) for $m < \frac{3\ell^2 - q\ell + 3\ell - 1}{\ell}$. Namely there exists a constant C > 0 such that, for any $q \in \left(\frac{3\ell-1}{\ell}, \frac{3\ell^2 + 2\ell - 1}{\ell}\right)$ $(\ell > 1)$,

(3.7)
$$\sup_{t \in (0,T^*)} ||u(\cdot,t)||_{L^q(\mathbf{R})}^q \le C \left(1 + T^{\frac{\ell-1}{2\ell}} \varepsilon^{-\frac{\ell+1}{2\ell}} \delta^{\frac{3\ell^2 - m\ell - q\ell + 3\ell - 1}{\ell(6\ell - m - 1)}} \right).$$

From the structure of this a priori estimate (3.7), it follows Proposition 3.1 directly. $\hfill \Box$

When $\ell = 1$, we can replace the estimates (3.1), (3.3), (3.5) by following estimates respectively:

(3.1)'
$$\int_{\mathbf{R}} u^2(x,T)dx + 2\varepsilon \int_0^T \int_{\mathbf{R}} u_x^2(x,t)dxdt \le C_0,$$

(3.3)'
$$\sup_{t \in (0,T^*)} ||u(\cdot,t)||_{L^{\infty}(\mathbf{R})} \le C\delta^{-\frac{1}{5-m}},$$

(3.5)'
$$\int_{\mathbf{R}} u_x(x,T)^2 dx + \varepsilon \int_0^T \int_{\mathbf{R}} u_{xx}^2 dx dt \le C\delta^{-\frac{4}{5-m}}.$$

Hence for $q' \in (2,4),$ the uniform boundedness of the sequence $\{u^\varepsilon\}$ of solutions to

(1.1)'
$$\partial_t u + \partial_x f(u) = \varepsilon \partial_x^2 u - \delta \partial_x^3 u, \quad (x,t) \in \mathbf{R} \times (0,\infty)$$

in $L^{q'}(\mathbf{R})$ is obtained as follows:

Proposition 3.2. Suppose the condition (I) for m < 5 - q' ($q' \in (2, 4)$) and the uniform bound (1.6) for the initial data, then the sequence $\{u^{\varepsilon}\}$ of solutions to Eqs. (1.1)', (1.2) is uniformly bounded in $L^{q'}(\mathbf{R})$ with respect to $t \in (0, T^*)$ provided that $\delta = O\left(\varepsilon^{\frac{5-m}{5-m-q'}}\right)$.

Proof. In the same way of proof of Proposition 3.1, we set $\tilde{\rho}(u) := |u|^{q'}$ for $q' \in (2, 4)$, and multiply Eq. (1.1)' by $\tilde{\rho}'(u)$. Integrating it in space and time, we get

(3.8)
$$\int_{\mathbf{R}} \widetilde{\rho}(u(x,T))dx + \varepsilon \int_{0}^{T} \int_{\mathbf{R}} \widetilde{\rho}''(u)u_{x}^{2}dxdt$$
$$= \int_{\mathbf{R}} \widetilde{\rho}(u_{0}(x))dx + \delta \int_{0}^{T} \int_{\mathbf{R}} \widetilde{\rho}''(u)u_{x}u_{xx}dxdt.$$

Thus using (3.1)', (3.3)' and (3.5)', we can obtain the estimate for the second term in the right-hand side of Eq. (3.8):

$$\begin{aligned} \left| \delta \int_0^T \int_{\mathbf{R}} \tilde{\rho}''(u) u_x u_{xx} dx dt \right| \\ &\leq C \delta \int_0^T \int_{\mathbf{R}} |u|^{q'-2} |u_x| |u_{xx}| dx dt \\ &\leq C \delta \sup_{t' \in (0,T)} ||u(\cdot,t')||_{L^{\infty}(\mathbf{R})}^{q'-2} \left(\int_0^T \int_{\mathbf{R}} |u_x|^2 \right)^{\frac{1}{2}} \left(\int_0^T \int_{\mathbf{R}} |u_{xx}|^2 \right)^{\frac{1}{2}} \\ &\leq C \delta \cdot \delta^{-\frac{q'-2}{5-m}} \cdot \varepsilon^{-\frac{1}{2}} \cdot \varepsilon^{-\frac{1}{2}} \delta^{-\frac{2}{5-m}} \\ &\leq C \varepsilon^{-1} \delta^{\frac{5-m-q'}{5-m}} \end{aligned}$$

with some C > 0. Therefore substituting this estimate into Eq. (3.8), it follows that there exists a constant C > 0 such that, for any $q' \in (2, 4)$,

(3.9)
$$\sup_{t \in (0,T^*)} ||u(\cdot,t)||_{L^{q'}(\mathbf{R})}^{q'} \le C \left(1 + \varepsilon^{-1} \delta^{\frac{5-m-q'}{5-m}}\right).$$

which gives Proposition 3.2 for m < 5 - q'.

Combining Propositions 3.1 and 3.2, for any $\ell \geq 1$, we arrive at the uniform boundedness of the sequence $\{u^{\varepsilon}\}$ in $L^{q}(\mathbf{R})$.

Corollary 3.1. Suppose the condition (I) for $m < \frac{3\ell^2 - q\ell + 3\ell - 1}{\ell}$ $\left(q \in \left(\frac{3\ell - 1}{\ell}, \frac{3\ell^2 + 2\ell - 1}{\ell}\right), \ \ell \ge 1\right)$ and the uniform bound (1.6) for the initial data,

then the sequence $\{u^{\varepsilon}\}$ of solutions to Eqs. (1.1), (1.2) is uniformly bounded in $L^{q}(\mathbf{R})$ with respect to $t \in (0, T^{*})$ provided that $\delta = O\left(\varepsilon^{\frac{(\ell+1)(6\ell-m-1)}{2(3\ell^{2}-m\ell-q\ell+3\ell-1)}}\right).$

Due to the fact that $\left[\frac{3\ell^2+3\ell-1}{2\ell}, 3\ell\right] \subset \left(\frac{3\ell-1}{\ell}, \frac{3\ell^2+2\ell-1}{\ell}\right) \ (\ell \ge 1)$ and $q > \frac{3\ell^2-q\ell+3\ell-1}{\ell}$ (>m) for $q \in \left[\frac{3\ell^2+3\ell-1}{2\ell}, 3\ell\right]$, Corollary 3.1 holds for m < q $\left(q \in \left[\frac{3\ell^2+3\ell-1}{2\ell}, 3\ell\right], \ \ell \ge 1\right)$.

§4. Proof of the Main Result

Due to the uniform boundedness of a sequence $\{u^{\varepsilon}\}$ in $L^{\infty}(0, T^*; L^q(\mathbf{R}))$ (Corollary 3.1) in the previous section, we can apply Theorem 2.1 as a convergence tool if it is obtained that a Young measure ν associated with a sequence $\{u^{\varepsilon}\}$ is an entropy m.-v. solution of the Cauchy problem (1.3), (1.4). To accomplish the objective, we show the proof of the main Theorem 1.1 by using several uniform estimates for the sequence $\{u^{\varepsilon}\}$ under the growth condition (I) for m < q $\left(q \in \left[\frac{3\ell^2 + 3\ell - 1}{2\ell}, 3\ell\right]\right)$ and the assumptions (1.5), (1.6) for the initial data u_0^{ε} .

Proof of Theorem 1.1. To apply the convergence Theorem 2.1, we will show that a Young measure ν associated with a sequence $\{u^{\varepsilon}\}$ is an entropy m.-v. solution. In other words, it is necessary to establish that a Young measure ν satisfies the entropy inequality (2.2) and the initial condition (2.3).

As first step, we consider for the entropy inequality (2.2). For any convex smooth function $\eta(u) : \mathbf{R} \to \mathbf{R}$ such that η' and η'' are uniformly bounded on \mathbf{R} , we consider the distribution

(4.1)
$$\Lambda^{\varepsilon} := \partial_t \eta(u^{\varepsilon}) + \partial_x \sigma(u^{\varepsilon}),$$

where the flux $\sigma : \mathbf{R} \to \mathbf{R}$ is defined by $\sigma'(u) = f'(u)\eta'(u)$ for $u \in \mathbf{R}$. Then Λ^{ε} converges to a nonpositive measure in $\mathcal{D}'(\mathbf{R} \times (0, T^*))$. In fact, we observe that Λ^{ε} is decomposed as follows:

$$\begin{split} \Lambda^{\varepsilon} &= \eta(u^{\varepsilon})_t + \sigma(u^{\varepsilon})_x \\ &= \eta'(u^{\varepsilon})u_t^{\varepsilon} + \sigma'(u^{\varepsilon})u_x^{\varepsilon} \\ &= \eta'(u^{\varepsilon})\left\{\varepsilon\left((u_x^{\varepsilon})^{2\ell-1}\right)_x - \delta\left((u_x^{\varepsilon})^{2\ell-1}\right)_{xx} - f(u^{\varepsilon})_x\right\} + f'(u^{\varepsilon})\eta'(u^{\varepsilon})u_x^{\varepsilon} \\ &= \varepsilon\eta'(u^{\varepsilon})\left((u_x^{\varepsilon})^{2\ell-1}\right)_x - \delta\eta'(u^{\varepsilon})\left((u_x^{\varepsilon})^{2\ell-1}\right)_{xx} \\ &= \varepsilon\left\{\left(\eta'(u^{\varepsilon})(u_x^{\varepsilon})^{2\ell-1}\right)_x - \eta''(u^{\varepsilon})(u_x^{\varepsilon})^{2\ell}\right\} \\ &- \delta\left\{\left(\eta'(u^{\varepsilon})\left((u_x^{\varepsilon})^{2\ell-1}\right)_x\right)_x - \eta''(u^{\varepsilon})\left((u_x^{\varepsilon})^{2\ell-1}\right)_x u_x^{\varepsilon}\right\} \end{split}$$

CONSERVATION LAW WITH NONLINEAR TERMS

$$= \varepsilon \left(\eta'(u^{\varepsilon})(u_x^{\varepsilon})^{2\ell-1} \right)_x - \varepsilon \eta''(u^{\varepsilon})(u_x^{\varepsilon})^{2\ell} -\delta \left(\eta'(u^{\varepsilon})(u_x^{\varepsilon})^{2\ell-1} \right)_{xx} + \delta \left(\eta''(u^{\varepsilon})(u_x^{\varepsilon})^{2\ell} \right)_x + \delta \eta''(u^{\varepsilon}) \left((u_x^{\varepsilon})^{2\ell-1} \right)_x u_x^{\varepsilon} =: \Lambda_1 + \Lambda_2 + \Lambda_3 + \Lambda_4 + \Lambda_5.$$

The estimate of each terms in Λ^{ε} hold for all smooth function $\theta \in C_0^{\infty}(\mathbf{R} \times (0, T^*))$ ($\theta \geq 0$) below. Throughout a process of calculation, we omit the upper-index ε for simplicity similarly to Section 3.

To begin with, consider the term Λ_1 . By an estimate (3.1) and Hölder's inequality, we have

$$\begin{aligned} (4.2) \qquad |\langle \Lambda_1, \theta \rangle| &= \left| \varepsilon \int_0^{T^*} \int_{\mathbf{R}} \eta'(u) u_x^{2\ell-1} \theta_x dx dt \right| \\ &\leq C \varepsilon \left(\iint_{\mathrm{supp}\,\theta} |u_x|^{p_1(2\ell-1)} dx dt \right)^{\frac{1}{p_1}} ||\theta_x||_{L^{p_1'}(\mathbf{R} \times (0,T^*))} \\ &\leq C \varepsilon \left(\iint_{\mathrm{supp}\,\theta} |u_x|^{2\ell} dx dt \right)^{\frac{2\ell-1}{2\ell}} ||\theta_x||_{L^{p_1'}(\mathbf{R} \times (0,T^*))} \\ &\leq C \varepsilon \cdot \varepsilon^{-\frac{2\ell-1}{2\ell}} \\ &\leq C \varepsilon^{\frac{1}{2\ell}} \to 0 \ (\varepsilon \to 0) \end{aligned}$$

with some C > 0 where $\frac{1}{p_1} + \frac{1}{p'_1} = 1$ with $p_1(2\ell - 1) = 2\ell$. We denotes by $\sup \theta$ the support of θ in $\mathbf{R} \times (0, T^*)$.

Next the second term Λ_2 is nonpositive:

(4.3)
$$\langle \Lambda_2, \theta \rangle = -\varepsilon \int_0^{T^*} \int_{\mathbf{R}} \eta''(u) u_x^{2\ell} \theta dx dt \le 0.$$

Using an estimate (3.1) again, we estimate the term Λ_3 :

$$(4.4) \quad |\langle \Lambda_3, \theta \rangle| = \left| \delta \int_0^{T^*} \int_{\mathbf{R}} \eta'(u) u_x^{2\ell-1} \theta_{xx} dx dt \right|$$

$$\leq C \delta \left(\iint_{\operatorname{supp} \theta} |u_x|^{p_2(2\ell-1)} dx dt \right)^{\frac{1}{p_2}} ||\theta_{xx}||_{L^{p'_2}(\mathbf{R} \times (0,T^*))}$$

$$\leq C \delta \left(\iint_{\operatorname{supp} \theta} |u_x|^{2\ell} dx dt \right)^{\frac{2\ell-1}{2\ell}} ||\theta_{xx}||_{L^{p'_2}(\mathbf{R} \times (0,T^*))}$$

$$\leq C \varepsilon^{-\frac{2\ell-1}{2\ell}} \delta$$

with some C > 0 where $\frac{1}{p_2} + \frac{1}{p'_2} = 1$ with $p_2(2\ell - 1) = 2\ell$. In this case, when $\delta = o\left(\varepsilon^{\frac{2\ell-1}{2\ell}}\right), \Lambda_3 \to 0$ in $\mathcal{D}'(\mathbf{R} \times (0, T^*))$ as $\varepsilon \to 0$.

On the other hand, by applying an estimate (3.1) to Λ_4 , we find:

(4.5)
$$|\langle \Lambda_4, \theta \rangle| = \left| \delta \int_0^{T^*} \int_{\mathbf{R}} \eta''(u) u_x^{2\ell} \theta_x dx dt \right|$$
$$\leq C \delta ||\theta_{xx}||_{L^{\infty}(\mathbf{R} \times (0,T^*))} \int_0^{T^*} \int_{\mathbf{R}} |u_x|^{2\ell} dx dt$$
$$\leq C \varepsilon^{-1} \delta$$

with some C > 0 which includes $\delta = o(\varepsilon)$.

To deal with the last term Λ_5 , we divide into $\ell > 1$ and $\ell = 1$. In the case that $\ell > 1$, remarking that $(u_x^{2\ell-1})_x = u_x^{2\ell-2}u_{xx}$, we combine the estimates (3.1) and (3.5) as follows:

$$(4.6) |\langle \Lambda_5, \theta \rangle| = \left| \delta \int_0^{T^*} \int_{\mathbf{R}} \eta''(u) \left(u_x^{2\ell-1} \right)_x u_x \theta dx dt \right| \\ \leq C \delta ||\theta||_{L^{p_3}(\mathbf{R} \times (0,T^*))} \\ \times \left(\iint_{\sup p \theta} |u_x^{2\ell-2} u_{xx}|^2 dx dt \right)^{\frac{1}{2}} \left(\iint_{\sup p \theta} |u_x|^{2\ell} dx dt \right)^{\frac{1}{2\ell}} \\ \leq C \delta \cdot \varepsilon^{-\frac{1}{2}} \delta^{-\frac{3\ell-1}{6\ell-m-1}} \cdot \varepsilon^{-\frac{1}{2\ell}} \\ \leq C \varepsilon^{-\frac{\ell+1}{2\ell}} \delta^{\frac{3\ell-m}{6\ell-m-1}}$$

with some C > 0 where $\frac{1}{2} + \frac{1}{2\ell} + \frac{1}{p_3} = 1$ hence $p_3 = \frac{2\ell}{\ell-1}$ $(\ell > 1)$. In the case that $\ell = 1$, using the estimates (3.1)' and (3.5)', it follows that

$$(4.7) \qquad |\langle \Lambda_5, \theta \rangle| = \left| \delta \int_0^{T^*} \int_{\mathbf{R}} \eta''(u) u_x u_{xx} \theta dx dt \right| \\ \leq C \delta ||\theta||_{L^{\infty}(\mathbf{R} \times (0, T^*))} \\ \times \left(\iint_{\mathrm{supp}\,\theta} |u_x|^2 dx dt \right)^{\frac{1}{2}} \left(\iint_{\mathrm{supp}\,\theta} |u_{xx}|^2 dx dt \right)^{\frac{1}{2}} \\ \leq C \delta \cdot \varepsilon^{-\frac{1}{2}} \cdot \varepsilon^{-\frac{1}{2}} \delta^{-\frac{2}{5-m}} \\ \leq C \varepsilon^{-1} \delta^{\frac{3-m}{5-m}}$$

with some C > 0. Now paying attention to an exponent of δ which are yielded from inequalities (4.6) and (4.7), it holds that $\frac{3\ell-m}{6\ell-m-1} > 0$ for m < q $\left(q \in \left[\frac{3\ell^2+3\ell-1}{2\ell}, 3\ell\right], \ \ell \geq 1\right)$. Hence inequalities (4.6) and (4.7) imply the condition $\delta = o\left(\varepsilon^{\frac{(\ell+1)(6\ell-m-1)}{2\ell(3\ell-m)}}\right)$.

By the estimates (4.2)–(4.7), if $\delta = o\left(\varepsilon^{\frac{(\ell+1)(6\ell-m-1)}{2\ell(3\ell-m)}}\right)$, then Λ^{ε} converges to a nonpositive measure in $\mathcal{D}'(\mathbf{R} \times (0, T^*))$ as $\varepsilon \to 0$. In particular, one can verify that $\delta = O\left(\varepsilon^{\frac{(\ell+1)(6\ell-m-1)}{2(3\ell^2-m\ell-q\ell+3\ell-1)}}\right)$ implies $\delta = o\left(\varepsilon^{\frac{(\ell+1)(6\ell-m-1)}{2\ell(3\ell-m)}}\right)$. Combining the convergence property of Λ^{ε} and that $\eta(u) \to \langle \nu, \eta \rangle$, $\sigma(u) \to \langle \nu, \sigma \rangle$ in $\mathcal{D}'(\mathbf{R} \times (0, T^*))$ as $\varepsilon \to 0$ which are obtained by owing to Proposition 2.1, it follows that

(4.8)
$$\partial_t \langle \nu_{(x,t)}(\lambda), \eta(\lambda) \rangle + \partial_x \langle \nu_{(x,t)}(\lambda), \sigma(\lambda) \rangle \le 0$$

for any convex entropy pairs such that η' and η'' are uniformly bounded on **R**. Therefore, by the regularization of |u - k| (for all $k \in \mathbf{R}$), the inequality (2.2) follows.

Next, in the rest of this paper, we give a proof that the initial condition (2.3) is satisfied by the argument due to DiPerna [8] and Szepessy [27].

Let g be a function $g(\lambda) = |\lambda|^r$ for $r \in (1,2)$ and $\{\phi_n\} \subseteq C_0^{\infty}(\mathbf{R})$ be a sequence of test functions such that

$$\lim_{n \to \infty} \phi_n = g'(u_0) \quad \text{in} \quad L^{r'}(\mathbf{R})$$

where $\frac{1}{r} + \frac{1}{r'} = 1$. Furthermore we set

$$G(\lambda, \lambda_0) := g(\lambda) - g(\lambda_0) - g'(\lambda_0)(\lambda - \lambda_0).$$

Following a detailed discussion in [9, 22], by the Cauchy-Schwarz inequality and the Jensen inequality, we can easily check

(4.9)
$$\left(\frac{1}{T}\int_{0}^{T}\int_{K}\langle\nu_{(x,t)}(\lambda),|\lambda-u_{0}(x)|\rangle dxdt\right)^{2} \\ \leq \frac{C_{K}}{T}\int_{0}^{T}\int_{K}\langle\nu_{(x,t)}(\lambda),G(\lambda,u_{0}(x))\rangle dxdt \\ \leq \frac{C_{K}}{T}\int_{0}^{T}\int_{\mathbf{R}}\langle\nu_{(x,t)}(\lambda),u_{0}(x)-\lambda\rangle\phi_{n}dxdt \\ +C_{K}||u_{0}||_{L^{r}(\mathbf{R})}||g'(u_{0})-\phi_{n}||_{L^{r'}(\mathbf{R})}$$

for any compact set $K \subseteq \mathbf{R}$. From the definition of ϕ_n , it follows that

$$||g'(u_0) - \phi_n||_{L^{r'}(\mathbf{R})} \to 0 \text{ as } n \to \infty$$

which indicates that the second term in the right-hand side of the inequality (4.9) tends to zero as $n \to \infty$. Consequently, it is sufficient to show that the

first term of the right-hand side of Eq. (4.9) tends to zero as the upper bound at t = 0 i.e.

(4.10)
$$\lim_{T \to 0^+} \frac{1}{T} \int_0^T \int_{\mathbf{R}} \langle \nu_{(x,t)}(\lambda), u_0(x) - \lambda \rangle \phi_n dx dt \le 0$$

so as to prove the initial condition (2.3). From the definition of the Young measure ν , it holds that

$$\begin{split} &\frac{1}{T} \int_0^T \int_{\mathbf{R}} \langle \nu_{(x,t)}(\lambda), u_0(x) - \lambda \rangle \phi_n dx dt \\ &= \lim_{\varepsilon \to 0} \frac{1}{T} \int_0^T \int_{\mathbf{R}} (u_0(x) - u^\varepsilon(x,t)) \phi_n dx dt \\ &= \lim_{\varepsilon \to 0} \frac{1}{T} \int_0^T \int_{\mathbf{R}} u_0(x) \phi_n dx dt - \lim_{\varepsilon \to 0} \frac{1}{T} \int_0^T \int_{\mathbf{R}} u^\varepsilon(x,t) \phi_n dx dt \\ &= \lim_{\varepsilon \to 0} \left(\int_{\mathbf{R}} (u_0(x) - u_0^\varepsilon(x)) \phi_n dx + \int_{\mathbf{R}} u_0^\varepsilon(x) \phi_n dx \right) \\ &- \lim_{\varepsilon \to 0} \frac{1}{T} \int_0^T \int_{\mathbf{R}} u^\varepsilon(x,t) \phi_n dx dt \\ &= \lim_{\varepsilon \to 0} \int_{\mathbf{R}} (u_0(x) - u_0^\varepsilon(x)) \phi_n dx - \lim_{\varepsilon \to 0} \frac{1}{T} \int_0^T \int_{\mathbf{R}} (u^\varepsilon(x,t) - u_0^\varepsilon(x)) \phi_n dx dt \\ &= -\lim_{\varepsilon \to 0} \frac{1}{T} \int_0^T \int_{\mathbf{R}} \left(\int_0^t \partial_s u^\varepsilon(x,s) ds \right) \phi_n(x) dx dt. \end{split}$$

where we use an assumption (1.5) for the initial data. Here, by the growth condition (I) and the definition of ϕ_n , we remark that $|f(u)| \leq C(|u| + |u|^m)$ (C > 0) and $\int_{\mathbf{R}} \phi_n dx < C_n$, and set

$$\Gamma^{\varepsilon} := \frac{1}{T} \int_0^T \int_{\mathbf{R}} \left(\int_0^t \partial_s u^{\varepsilon}(x, s) ds \right) \phi_n(x) dx dt.$$

Owing to the uniform boundedness of a sequence $\{u^{\varepsilon}\}$ in $L^{\infty}(0, T^*; L^2(\mathbf{R}) \cap L^q(\mathbf{R}))$ for q > m (an estimate (3.1), Corollary 3.1) and the same argument as the inequalities (4.2), (4.4), we can estimate Γ^{ε} as follows:

$$\begin{aligned} |\Gamma^{\varepsilon}| \\ &= \left| \frac{1}{T} \int_{0}^{T} \int_{\mathbf{R}} \left(\int_{0}^{t} \partial_{s} u^{\varepsilon}(x,s) ds \right) \phi_{n}(x) dx dt \right| \\ &= \left| \frac{1}{T} \int_{0}^{T} \int_{\mathbf{R}} \left(\int_{0}^{t} \left(-\partial_{x} f(u^{\varepsilon}) + \varepsilon \partial_{x} (u^{\varepsilon}_{x})^{2\ell-1} - \delta \partial^{2}_{x} (u^{\varepsilon}_{x})^{2\ell-1} \right) ds \right) \phi_{n}(x) dx dt \end{aligned}$$

CONSERVATION LAW WITH NONLINEAR TERMS

$$\begin{split} &= \left| \frac{1}{T} \int_{0}^{T} \int_{\mathbf{R}} \int_{0}^{t} (f(u^{\varepsilon}) \partial_{x} \phi_{n} - \varepsilon(u_{x}^{\varepsilon})^{2\ell-1} \partial_{x} \phi_{n} - \delta(u_{x}^{\varepsilon})^{2\ell-1} \partial_{x}^{2} \phi_{n}) \, ds dx dt \\ &\leq \frac{C}{T} \int_{0}^{T} \int_{\mathbf{R}} \int_{0}^{t} (|u^{\varepsilon}| + |u^{\varepsilon}|^{m}|) \, |\partial_{x} \phi_{n}| ds dx dt + C \varepsilon^{\frac{1}{2\ell}} + C \varepsilon^{-\frac{2\ell-1}{2\ell}} \delta \\ &\leq \frac{C}{T} \int_{0}^{T} dt \int_{0}^{t} ds \left(\int_{\mathbf{R}} |u^{\varepsilon}|^{2} dx \right)^{\frac{1}{2}} \left(\int_{\mathbf{R}} |\partial_{x} \phi_{n}|^{2} dx \right)^{\frac{1}{2}} \\ &\quad + \frac{C}{T} \int_{0}^{T} dt \int_{0}^{t} ds \left(\int_{\mathbf{R}} |u^{\varepsilon}|^{m\bar{q}} dx \right)^{\frac{1}{q}} \left(\int_{\mathbf{R}} |\partial_{x} \phi_{n}|^{\bar{q}'} dx \right)^{\frac{1}{q'}} \\ &\quad + C \varepsilon^{\frac{1}{2\ell}} + C \varepsilon^{-\frac{2\ell-1}{2\ell}} \delta \\ &\leq C_{n_{1}} T + \frac{C}{T} \cdot C_{n_{2}} \int_{0}^{T} dt \int_{0}^{t} ds \left(\int_{\mathbf{R}} |u^{\varepsilon}|^{q} dx \right)^{\frac{1}{q}} + C \varepsilon^{\frac{1}{2\ell}} + C \varepsilon^{-\frac{2\ell-1}{2\ell}} \delta \\ &\leq C_{n} T + C \varepsilon^{\frac{1}{2\ell}} + C \varepsilon^{-\frac{2\ell-1}{2\ell}} \delta \end{split}$$

with some C > 0 where $\frac{1}{\tilde{q}} + \frac{1}{\tilde{q}'} = 1$ with $m\tilde{q} = q$ (> m). When $\varepsilon \to 0$ with $\delta = o(\varepsilon^{\frac{2\ell-1}{2\ell}})$, we obtain that $\limsup_{\varepsilon \to 0} |\Gamma^{\varepsilon}| \leq C_n T$. Hence we arrive at

$$\frac{1}{T} \int_0^T \int_{\mathbf{R}} \langle \nu_{(x,t)}(\lambda), u_0(x) - \lambda \rangle \phi_n dx dt \le C_n T,$$

which implies the inequality (4.10), accordingly, we establish that the initial condition (2.3) is satisfied.

Consequently Young measure ν is an entropy m.-v. solution to Eqs. (1.3) and (1.4). Applying Theorem 2.1, the sequence $\{u^{\varepsilon}\}$ of solutions to Eqs. (1.1) and (1.2) converges to the unique entropy solution $u \in L^{\infty}(0, T^*; L^q(\mathbf{R}))$ to Eqs. (1.3) and (1.4) in $L^k(0, T^*; L^p(\mathbf{R}))$ ($\forall k < \infty$ and $\forall p < q$). This completes the proof of Theorem 1.1.

References

- P. Baiti, P. G. LeFloch and B. Piccoli, Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems, J. Differential Equations 172 (2001), no. 1, 59–82.
- [2] N. Bedjaoui and P. G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. I. Nonconvex hyperbolic conservation laws, J. Differential Equations 178 (2002), no. 2, 574–607.
- [3] J. L. Bona and M. E. Schonbek, Travelling-wave solutions to the Korteweg-de Vries-Burgers equation, Proc. Roy. Soc. Edinburgh Sect. A 101 (1985), no. 3-4, 207–226.
- [4] J. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London Ser. A 278 (1975), no. 1287, 555–601.
- [5] G. Q. Chen and Y. G. Lu, A study of approaches to applying the theory of compensated compactness, Kexue Tongbao (Chinese) 33 (1988), no. 9, 641–644.

- [6] G. Q. Chen and Y. G. Lu, Convergence of the approximate solutions to isentropic gas dynamics, Acta Math. Sci., (English Ed.) 10 (1990), no. 1, 39–45.
- [7] G. M. Coclite and K. H. Karlsen, A Singular limit problem for conservation laws related to the Camassa-Holm shallow water equation, Comm. Partial Differential Equations 31 (2006), no. 8, 1253–1272.
- [8] R. J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal. 88 (1985), no. 3, 223–270.
- [9] N. Fujino and M. Yamazaki, Hyperbolic conservation laws with nonlinear diffusion and nonlinear dispersion, J. Differential Equations 228 (2006), no. 1, 171–190.
- [10] B. T. Hayes and P. G. LeFloch, Non-classical shocks and kinetic relations: scalar conservation laws, Arch. Rational Mech. Anal. 139 (1997), no. 1, 1–56.
- [11] _____, Nonclassical shocks and kinetic relations: strictly hyperbolic systems, SIAM J. Math. Anal. **31** (2000), no. 5, 941–991 (electronic).
- [12] _____, Nonclassical shocks and kinetic relations: finite difference schemes, SIAM J. Numer. Anal. 35 (1998), no. 6, 2169–2194 (electronic).
- [13] E. Hopf, The partial differential equation $u_t + uu_x = \mu u_{xx}$, Comm. Pure Appl. Math. **3** (1950), 201–230.
- [14] D. Jacobs, B. McKinney and M. Shearer, Travelling wave solutions of the modified Korteweg-de Vries-Burgers equation, J. Differential Equations 116 (1995), no. 2, 448– 467.
- [15] C. I. Kondo and P. G. Lefloch, Zero diffusion-dispersion limits for scalar conservation laws, SIAM J. Math. Anal. 33 (2002), no. 6, 1320–1329 (electronic).
- [16] D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine 39 (1895), 422–443.
- [17] S. N. Kružkov, First order quasilinear equations in several independent variables, Mat. Sb. (N.S.) 81 (123) (1970), 228-255; Math. USSR Sb. 10 (1970), 217-243.
- [18] P. D. Lax, The zero dispersion limit, a deterministic analogue of turbulence, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 1047–1056.
- [19] P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-de Vries equation. II–III, Comm. Pure Appl. Math. 36 (1983), no. 3, 253–290, no, 5, 571–593, no. 6, 809–829.
- [20] _____, The zero dispersion limit for the Korteweg-de Vries KdV equation, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 8, 3602–3606.
- [21] P. G. LeFloch, An introduction to nonclassical shocks of systems of conservation laws, in An introduction to recent developments in theory and numerics for conservation laws (Freiburg/Littenweiler, 1997), 28–72, Springer, Berlin.
- [22] P. G. LeFloch and R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Anal. 36 (1999), no. 2, Ser. A: Theory Methods, 213–230.
- [23] P. G. Lefloch and C. Rohde, High-order schemes, entropy inequalities, and nonclassical shocks, SIAM J. Numer. Anal. 37 (2000), no. 6, 2023–2060 (electronic).
- [24] P. G. LeFloch and M. D. Thanh, Nonclassical Riemann solvers and kinetic relations. III. A nonconvex hyperbolic model for van der Waals fluids, Electron. J. Differential Equations 2000, No. 72, 1–19. (electronic).
- [25] Y. Lu, Hyperbolic conservation laws and the compensated compactness method, Chapman & Hall/CRC, Boca Raton, FL, 2003.
- [26] M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations 7 (1982), no. 8, 959–1000.
- [27] A. Szepessy, An existence result for scalar conservation laws using measure valued solutions, Comm. Partial Differential Equations 14 (1989), no. 10, 1329–1350.