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Abstract

In this paper, for functions without compact supports, we established Carle-
man estimates for the two-dimensional non-stationary Lamé system with the stress
boundary condition.

81. Introduction and the Main Carleman Estimates

In this paper, for functions without compact supports, we establish Carle-
man estimates for the two-dimensional non-stationary Lamé system with stress

boundary condition:

(1.1)  P(x,D)u = (Py(z, D)u, Py(z, D)u)”

= ()58 — p(@) A0~ (u(F) + M) Vadiva
0

— (divu)VzAT) — (Vzu+ (V;u))Vau(@) = in Q = (0,7T) x O,
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T
2 2
B(z,D)u= anajl,anajg =g on (0,7) x 09,
(1.2) j=1 j=1
~ ou . ~ ou,
u(T,7) = 8—330(T7 z)=u(0,7) = 8—%(0,:3) =0,

where u = (uy,us)”, f = (f1, f2)7 are the vector functions, u” denotes the
transpose of the vector u, € is a bounded domain in R? with 09 € C3,z =
(70,7),7 = (x1,22) and (n1,n2)7 is the unit outward normal vector to 9%,

Ou; 5uk>

Ok = )\(E)(SjkdiVu + M(E) (axk .
J

The boundary condition in (1.2) describes the surface stress. In (1.1), the
coefficients p, 1, A € C?(€) are assumed to satisfy
(1.3)

p(T) >0, wu@ >0, wp@+AX2)>0, VZeQ, II)#0, Ve

Physically A and i are the Lamé coefficients of the isotropic medium occupying
the domain 2, and p is the density. A Carleman estimate is an inequality for so-
lutions to a partial differential equation with weighted L?-norm and is a strong
tool for proving the uniqueness for Cauchy problems or the unique continuation
of partial differential equations with non-analytic coefficients. Moreover Carle-
man estimates have been applied successfully to estimation of energy of solu-
tions (e.g., [KK]) and to inverse problems of determining coefficients by bound-
ary observations (e.g., [BuK], [K] as initiating works). As a pioneering work, we
refer to Carleman [Ca] which derived a Carleman estimate and used it to prove
the uniqueness in the Cauchy problem for a two-dimensional elliptic equation.
Since [Cal, the theory of Carleman estimates has been studied extensively. We
refer to Hormander [Ho] in the case where the symbol of a partial differential
equation is isotropic and functions under consideration have compact supports
(that is, they and their derivatives of suitable orders vanish on the boundary
of a domain). Later Carleman estimates for functions with compact supports
have been obtained for partial differential operators with anisotropic symbols
by Isakov ([Is]). For general results in the case of functions without compact
supports, see [Ta] and for hyperbolic equations, see [Im]. Our main task of
establishing a Carleman estimate for (1.1)—(1.2) is difficult twofold: Firstly, in
(1.1) the highest order derivatives are coupled and secondly (1.2) contains a
boundary condition of the non-Dirichlet type. First difficulty: As for Carleman
estimates for strongly coupled systems, there are not many works. In fact,
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all the above-mentioned works discuss single partial differential equations. As
long as the unique continuation is concerned, to our best knowledge, the most
general result for such systems of partial differential equations is Calderén’s
uniqueness theorem (see e.g., [E], [Zui]). However, the non-stationary Lamé
system does not satisfy all the conditions of that theorem. More precisely, the
eigenvalues of the matrix associated with the principal symbol of the Lamé sys-
tem change the multiplicities and at some points of cotangent bundle, they are
not smooth, which break the assumptions in the known Caledrén’s uniqueness
theorem. On the other hand, for proving the unique continuation, the Lamé
system can be decoupled (modulo low order terms) for example by introducing
a new function divu and applying to the new system the technique developed
for the scalar partial differential equations (see e.g., [EINT]). This method may
produce a Carleman estimate for the Lamé system, but the displacement func-
tion u is required to have a compact support, so that the method does not
work for (1.1) and (1.2) if u does not have a compact support. In [IY1] and
[IY3], we have established Carleman estimates for the Dirichlet case where the
stress boundary condition in (1.2) is replaced by u = g on (0,7) x Q. It is
known that there are two types of the interior waves for the Lamé system: the

longitudinal wave with the velocity ’\J“% and the transverse wave with the

velocity \/g . Thus a weight function in the Carleman estimate is assumed to

be pseudoconvex with respect to the two symbols (see Condition 1.1). Second
difficulty: The essential difference between the stress boundary condition and
the Dirichlet boundary condition which was studied by the authors in [[Y3]
and [IY4], is that the stress boundary condition requires us to deal with the
new phenomena - the Rayleigh boundary waves. In order to treat the bound-
ary waves, we have to additionally assume that a weight function is strictly
pseudoconvex with respect to the pseudodifferential operator whose principal
symbol is given by the Lopatinskii determinant (see Condition 1.2). Further-
more, from the practical point of view (e.g., in view of the seismology), the
stress boundary condition is very important and well describes the reality such
as the surface wave, so that the associated inverse problems and energy esti-
mation are highly requested to be studied. Under Conditions 1.1 and 1.2, we
state our main results - the Carleman estimates (Theorem 1.1 and Corollaries
1.1 and 1.2). Among applications of the Carleman estimates obtained in this
paper, we mention the sharp unique continuation/conditional stability results
for the Cauchy problem for (1.1), the exact controllability of the Lamé system
with stress boundary conditions by means of controls in a subdomain or on a
subboundary, and an inverse problem of determining the Lamé coefficients and
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the density by measurements in a subdomain. For the inverse problems, the
method in [BuK] and [K] can be validated by means of our Carleman estimates.
Thanks to our Carleman estimate for functions without compact supports, we
can establish the exact controllability and the stability over the whole domain
Q in the inverse problem with controls or measurements in a subdomain satis-
fying a related geometric optics condition (e.g., [BLR]). Those are longstanding
open problems in spite of the physical significance. However we will postpone
such applications to our forthcoming papers and we exclusively consider Car-
leman estimates in the two-dimensional spatial case. The higher dimensional
case is more difficult. Really, as is shown in [Y], in the case where the spatial
dimension is greater than two, the Lopatinskii determinant equals zero at some
point. Among related papers, we refer to Bellassoued [B1]-[B3], Dehman and
Robbiano [DR], and Imanuvilov and Yamamoto [IY2], where Carleman esti-
mates for the stationary Lamé system were obtained. Also see Weck [W] for
the unique continuation for the stationary Lamé system.

Throughout this paper, we use:

Notations. i = /—1, Z: the complex conjugate of z € C, & = (1,0), & =
(0,1), @ = (n1,n2), © = (xo,21,72) = (T0,T), T = (xl,xz) y = (yo,yl,yz)
y = (yo,yl) §=(£0,61,62), &' = (£0,&1), 0y, 0 = by, = By s Op,0 = ¢, = @;
baja, = OF, 2 e ® = 00,00,0, V = (024,00, 00,) or V = (0yy,0y,,0,,) if there
is no fear of confusion (Otherwise we will add the subscript or y). Vg =

(Op,,0s,), divu = 0,,uy + Op,us for u = (ug,uz)7?, D, = 3 Bu + 150y, b,
D’ = (DyovD ) D = (DyovDyuD ) Vy’ = (aumam) (DyoaD )
Dyj = 18(;-’ a = (060,061,042), aj € N+ U {0}’ 80{ = 8%88:?118@27 C = ( 7§07§1)’

S2- the two dimensional sphere: S% = {(;|¢| = 1}. For a domain Q in the z—
space, H™*(Q) is the Sobolev space of scalar-valued functions equipped with

the norm
1

2

lullmmey = | D " HN0%ulFag |
lo|<m
H™*(Q) = H™*(Q)x---x H™*(Q) is the corresponding space of vector-valued
functions u. Also we use the space

Wi (Q) = {u; D*u € LY(Q),Jal <m}, Nullwpy= D ID%llLeq)

q
o] <m

For a domain §2 in the Z-space, we will similarly define the Sobolev spaces
H#(Q) and H"#(Q). Let [A, B] = AB — BA, and let €(§) be a nonnegative
function such that e(§) — +0 as § — +0. By O(d1), we denote the conic
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neighbourhood of the point ¢* with [¢*] = 1: O(3,) = {g; ]‘fﬂ ¢ < 51},
Bs(y*) = {y; ly—y*| < &} is the ball centered at y* with radius §. £(X1, X2) is
the space of linear continuous operators from a normed space X; to a normed

space Xo, E} is the k X k unit matrix.

Our main purpose is to establish Carleman estimates for system (1.1)—(1.2)
for u having non-compact supports. Let w C  be an arbitrarily fixed open
set which is not necessarily connected. Denote by 7 and ¢, the outward unit
normal vector and the unit counterclockwise oriented tangential vector on 0%,
and we set % = Vzu -7 and g—’; = V;u - t. By Q. we denote the cylindrical
domain @, = (0,T) x w. We set

p1(,€) = p(@)EF — @) (EF+E5),  p2(2,€) = p(@)EF — (M@) +20(T)) (6 +£3).-

For arbitrary smooth functions ¢(z,£) and ¥(x,€), we define the Poisson
bracket by {¢, 1} = 25_, g—g% — %g—gpj). We assume that the coefficients
w, A, p and Q,w satisfy the following conditions:

Condition 1.1.  There exists a function ¢ € C%*(Q) such that
[Vo(2)] # 0 forz € Q\ Qu, and (i), (ii) and (1.6) hold:
(i)

(1.4) {pk, {pK, ¥} }(x,&) >0, Vke{1,2}

if € € R3\ {0} and x € Q \ Qu satisfy pr(z,€) = (Vepr, Vath) = 0.

(i)

(15) gls{pk(xag - stnﬂ/}(m))’pk(mag + stmd)(m))} > Oa Vk € {]-a 2}

if € €R3\ {0}, s >0 and x € Q\ Q. satisfy pr(z,& +isV(z)) =
(Vepr(x, & + sV (x)), Vb)) = 0.

On the lateral boundary we assume

A _—
VPl < it | 28] + YRGEE |28 v e [0,T] x (30 0)

(1.6)  { pi(z, V) <0, Vae[0,T]x (8 dw),
8e<0, 22£0 on[0,T] x (092\ dw).

Let ¢ satisfy Condition 1.1. We introduce the function ¢(x) by
(1.7) P(x) =™ 7 >1,

where the parameter 7 will be fixed below. In order to deal with surface waves,
we additionally need Condition 1.2 on the function ¢¥. We formulate that as-
sumptions below as (1.23), and for the statement, we need to introduce some
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boundary differential operators by means of a new local coordinate. For an
arbitrarily fixed point (29, 29) € 9, we set Z; = 1 — 20 and Ty = x5 — 9. We
consider (1.1) and (1.2) in the new coordinates (71,72). Since (1.1) and (1.2)
are invariant with respect to the translation by the constant vector (z?,x9), we
use the same notations x1, z2 instead of 77, 3. Therefore we may assume that
(0,0) € 9Q and that locally near (0, 0), the boundary 992 is given by an equation
29 — (z1) = 0, where £ = {(x1) is a C3-function. Moreover, since the function
il = Ou(zg, O~ '%) satisfies system (1.1) and (1.2) with f = Of(z, O~'7) for
any orthogonal matrix O, we may assume that

dl
7(0)= —
(0) da:1

(0) =0

We make the change of variables y = (yo,y1,92) = Y (2) = (z0, 21,22 — £(x1)).
Then we reduce equations (1.1) to

(1.8)
82’&1 82’&1 82’U1 82u1
Pi(y,DJu = p—mo — pu{ —2 — 2/ 1+ 0 (y1)]?) =t
1(y, D)u=p o u{ o f(yl)aylay2 + (L4 ¢ (y1)]7) o2 }
7y Q8L 9 (v Oy 9 (diva - 2\
+pul (y1)8y2 (A+p) on (dlvu 5y2€> + A+ p) 9 (dlvu 8y2£ 1
+Ki(y,D)ju=f;, ing,
(1.9)
8211/2 { 82U2 82U2 82U2
Py(y,D)u = p—sr — — 20 +(1+ ¢ 2—}
ol ()22 Z (o4 2 <di u a“%’)u?( Dju=/f, ing
a Y v - 5 9 = )
e y2 K Y2 Y2 2V 2

where we set

g= {y; y2 > 0,y € Y((OvT) X BE(OaO))}

with some € > 0, and we keep the same notations Py, P>, u, f after the change of
variables, and K ;(y, D)are first order differential operators with C''-coefficients.
We set P(y,D) = (Pi(y,D), P2(y,D)). In the new coordinates, the stress
boundary condition (1.2) has the form

(1.10)

n1(7) {/\(5) <% + %(—E’) + g—zz> +2u(Z) <Z—Zi + %(—é’))}
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(o Ouy D ,
@ { Gyt + Gy + 520}

(1.11)
~ 3%1 8u1 / 8uz 8uz
+n2(x){/\<8y1+ay2( €)+ay>+2()8y2}—gg.

Here we use the same notations ni,ns after the change of the variables. We
can solve system (1.10) and (1.11) with respect to (‘g,—zzl, g%) in the form:
(1.12)

ot o 0 -1

() = a0 (52) + e, 40)- <¢(0) : ) yeog,
dy2 3!/1 A+2p

and A(y;) is a C? matrix-valued function. By A; and Ay, we denote the first
rows of the matricesN A and A respectively, and the second by As and :4;:
Aj = (ajl,ajg) and Aj = (d;/l,&;g), ] = 1,2.

System (1.1) can be decoupled (up to lower order terms) if we consider as
a new unknown functions rot u and divu. The great advantage of dealing with
rot u, div u instead of u is that the divergence and the rotation solve the scalar
second order wave equations for which the theory of Carleman estimates- the
main machinery used in this paper- is well developed.

Below we need a formulae for rot u and div u in new coordinates. After the
change of variables, the functions z; = rotu = 0y, us — Oz,u; and 2o = divu
have the form

8uz 8’&2 ’ 8u1 8u1 8UQ 8u1 ,
— - 2 (y) — =—, =14 2 L),
oy Oy (v1) oy’ ) Oyr  Oy2  Oys (w1)

Using (1.12), we can transform these functions on the boundary as follows:

(1.13)  (rotu)(y) = z1(y)

z1(y) =

_ Ouy ou Oou , ~ ~
—/ A — —A — =/ A — A
8y1 (yl) 2(yl)ay1 1<y1)8y1 (yl) 2(y1)g 1(91)8
= bi1(y1, D)uy + biz(y1, D' )uz + Ci(y1)g, y € 9G,
where
(1.14) bii(y1, &) = (=" (y1)az1(y1) — a1 (y1))éa,

bi2(y1, &) =i(1 — azz(y1) ' (y1) — a12(y1))é1-
For the function z3(y), we have

(L15)  (@vu)) = 22() = 50+ Asln) g — € o) As (o)

+ Aa(y1)g — A1 (y1)gl (y1)
= bo1(y1, D")uy + baa(y1, D' )us + Ca(y1)g, y € 0G,
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where

(1.16) ba1(y1,€) = i(&1 + a1 (y1)& — £ (y1)ar (y1)61),
baz(y1,€) = iaz(y1)é — a12(y1)6l (41)),

and C; are C? matrix-valued functions. Denote

(1.17)
bi(y1, D') = (b11(y1, D), biz(y1, D))
ba(y1, D') = (b21(y1, D), baz(y1, D)),
ps(Y, 5,60, &1, &2) = —p(&o + 150y, ¢)
HO[(&1 + 158y, 0)° — 20/ (&1 + 150y, 9) (€2 + i50,,0) + (€2 +i50,,0)*|G],

where |G| =1+ (¢/(y1))?, B € {u, A+ 2u} and s is a positive parameter. The
roots of polynomial pg with respect to the variable &£ are

(118) F?B:(yusué-()ué-l) = _isay2¢+a§(y787§07§1)7

(119) a;(y787§07£1) = (61 * Zsfgﬁs)g (yl) :l:\/ rﬂ(y787§07§1)7

(1.20)  75(y, s, &0, &1)

(p(&0 +i50y,0)* — B(&1 + 50y, 6)?)|G| + B(&1 +isDy, §)*(£')*
pIGI? '

Henceforth, fix ¢* € R? such that [(*| = 1 arbitrarily, and set y* = (yo,0,0)
and v = (y*,¢*). Suppose that |rg(y)| > 26 > 0. In [IY3], it was shown that

there exists dg(0) > 0 such that for all §,d; € (0,d¢), there exists a constant
Cy > 0 such that for one of the roots of the polynomial (1.17), which we denote

Y

by Ig, we have
(1.21)
fImI‘E(y,s,fO,fl) Z SCI, Vy S BJ(ZJ0,0,0), (8,50751) € 0(51), |C| Z 1.

Set

Bu(y',s, D) By, s, D)
1.22 B(y', s, D) = . Y 0
( ) (y 757 ) <Bgl(yl,$,D/) 622(y/’ S,D/) ’ y E g7
where

Bi1(y',s,D') = —,onJ0 + picgf (y', 0,5, D")b11(y1, D)
—(A+2u){iDy, — £'(y1)ia} o, (¥, 0,5, D) }bor (y1, D),
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Bia(y', 5, D') = —(A + 2u){iDy, — '(y1)ia}, 5, (¥, 0,5,D"))}b22(y1, D’)
+uia (y', 0,5, D")bia(y1, D),

Bgl(y/, S, D/) = —()\ —+ 2@)io¢j\'+2u(y', 0, S, D/)bzl (yl, D/)
_p“(iDZh - El(yl)ia; (y/v 0,s, D/))bll(ylz D/)z

Bos(y',5,D') = —pD2 — (A + 2p)iaf 5, (4, 0,5, D )bas(y1, D)

—u(iDy, — € (1n)ia;t (3, 0,5,D"))b12(y1,D").

Remark 1. For readers’ convenience we derive the boundary operator
B(y', s, D). We rewrite equations (1.1) on the boundary in the form

0%uq 0 [Ous Ouy 0
— | = (A +2u)=—di lot. =
Py dy2 + u@xg <8x1 6@) (A+2u) 0z vu o h
0us 0 [Ous Oug 0
— — U= A+ 2p)—di lot. =
r Oy? How ((“)xl xo > (A+2u) Dy tlot. = f
Next we make the change of variables in the above equations. Observing that
d o o .
For — By — €’(y2)dy2, 3e; — 3y, We obtain
0%uy 0z (8z2 8z2 )
- Tt — (A +2 — - +lot. =
"o ey M5y, S
and

8%us (82’1 82’1 ) 0z
i —_— = — (A +2u)=— +l.ot. = fo.
oy oy O A+ 23 oy, Ot =L

By (1.13) and (1.15), we have

0? 0 0 029

6U21+ (9—2:_()\+2 ) (8—y1(b21(yl>D/)u1 + baa(y1, D' )uz) — glf)y >+l ot.=fi
and

82u2

i 78 0z 0z -
bia (1, D'Yun + bra(ys, D' ua) — 0o ) — (0 2p) 22 4ot = .
"oy M<8y1( 1y, D+ biz(an, DJua) 8:1/2) M 20) g, Thot = 1

Setting v = ue®*?, w = ze*? we obtain

— pD} vy + piDy,wy — i(A + 20) (Dy, (ba1 (y1, D' )vy
+ baa(y1, D' )va) — £'Dy,we) + lot. = F
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and

— pD2 vy + p(Dy, (b1 (y1, D)1 + bra(y1, D')v2) — €Dy, wy)

Yo

— (A +2p)Dy,ws + Lo.t. = F.

Later, provided that symbols af and af o, are smooth at a small conic neigh-
bourhood, we will be able to prove that the functions D, w; 704: (y',0,s, D" )w;
and D, wo faj\'_s_%(y’, 0, s, D")ws are bounded in terms of the right hand side of
(1.24). Thus substituting in the above equations instead of D,,w; and D, w,
functions at (y',0, s, D) (b11(y1, D)1 + bia(y1, D')vz) and a;\r+2u(y’,0,s,D')
“(b21(y1, D")vy + baa(y1, D' )va), we obtain the operator B(y', s, D’).

Now we formulate a condition which allows us to observe the surface waves.
For this purpose, we use the operator B which was introduced in the local
coordinates. For an arbitrary point 2° = (2, 29,29) € [0,7] x (9Q \ dw), we
rotate and translate 2 such that after the rotation and the translation, the
normal vector to the boundary at 2 is (0,0, —1). Then by Y(x), we denote the
transform involved with the rotation and the translation. Now we are ready to
state the condition:

Condition 1.2.  Let z € [0,7] x (9Q\ 0w) be an arbitrary point and
y = Y(z). We assume that

1

(1.23) It 3 ddetB(y,5,&,1) DdetB(y', 5, €0, &1)

>0
8yj 8€J

V2]

Jj=0

fOT' any (%5,50,51) € {(yasag()agl) S 8g X 52; det B(y/,S,Emgl) = Oa s >
07 Yo € (OvT)’ Im]-—‘—ﬁi_(ylvoasag()agl)/s Z 07 Vﬂ S {N;A+ 2;“’}; 50 7& 0}

Now, under Conditions 1.1 and 1.2, we are ready to state our Carleman
estimates:

Theorem 1.1.  We assume (1.3), Conditions 1.1 and 1.2. Let f €
H'(Q), g € H%((‘)Q) and let the function ¢ be given by (1.7). Then there
exists T > 0 such that for any T > T, we can choose so(7) > 0 such that for
any solution u € H(Q)N L?(0,T; H*(Q)) to problem (1.1)~(1.2), the following
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estimate holds true:

(1.24)
: 4-2|al| a2 25¢ s¢ du s¢ ?
Zs |0Sul“e”*?dx + s ||| ue®”, e , )
Q5% O )l (aq)xHb - (0)
2
<O | el e ) + l18e™ I35 . ) + / > st oguPe?de |
“ |a|=0
Vs > so(T),

where the constant C = C(1) > 0 is independent of s.
Remark 2. In (1.3), the final condition is relaxed as
AZ) #0, VIe(0Q)\ow).
Assume in addition that
(1.25) 02,0(0,-) >0 and 0,,6(T, ) <0 on ).

Then we can formulate Carleman estimates in the situations when the right
hand side of equation (1.1) belongs to the spaces L2(Q) or H™(Q).

Corollary 1.1.  We assume (1.3), (1.25), Conditions 1.1 and 1.2. Let
f e L?(Q), g = 0 and let the function ¢ be given by (1.7). Then there exists
7T > 0 such that for any 7 > T, we can choose so(T) > 0 such that for any
solution u € H'(Q) to problem (1.1)~(1.2), the following estimate holds true:

[ue?[[mre (@) < C(lIfe?|L2 (@) + [ue™ s (qu))s Vs = so(7).
Here C = C(7) > 0 is independent of s.

Corollary 1.2.  We assume (1.3), (1.25), Conditions 1.1 and 1.2. Let
f=f+ 3 (0,8 where fo,f1,f, € L*(Q), -, € H (Q), suppf_; C Q,
g = 0, and let the function ¢ be given by (1.7). Then there exists T > 0
such that for any T > T, we can choose so(1) > 0 such that for any solution
u € HY(Q) to problem (1.1)~(1.2), the following estimate holds true:

2

[ue*?|| 2y < C | If-1e™llm-1q) + D Ifie*llL2 (@) + lue*ll 2oy | »
=0

Vs > so(7).

Here C = C(7) > 0 is independent of s.
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Similarly to Theorems 2.2 and 2.3 in [IY3], we can derive Corollaries 1.1
and 1.2 from Theorem 1.1, and we omit the arguments. The rest of this section
is devoted to describing a sufficient condition for inequality (1.23) in Condition
1.2 which is convenient for the applications to inverse problems, etc.

For any fixed & € 012, we define a cubic polynomial in ¢ by
(1.26)

Then we can directly verify that H'(¢) > 0if ¢ < 0, H(0) < 0, H (%(5:)) =

’;—j(i‘) > 0 and H” (g—’p‘(i)) = 0. Therefore we can prove that H(t) = 0

possesses a unique simple root ¢ in the interval (O, (%) (E)) for any = € 09,

and by C = C(Z) we denote this root. Moreover if there exists another real

root, then it is greater than (%) (7).

Remark 3. By means of the Cardano formula, we can compute C = C(Z)
explicitly. We set

2 3
~ W, . ~ 7 16u -
a1 =-8=(2), ay=24—~ — ———(2),
p p?  pA(A+2p)
~ 16p3(A +p) -
3 = _M(l‘)-
PPN+ 2p)
That is, H(t) =t + a1t + dat + az. Moreover we put
~ @’ a@a  az o~ 1 2
bl:ﬁ_ 6 +7, 5225(3(12—a1 ),
~ ~92 ~3 ~ ~ ~
bs = by +by , by =sign(by)|ba|?.
Then we have: ~ )
C= f% — 21;1 cosh (3)
by

if l% > 0 and b~2 < 0, where 6 solves the equation: coshf = 2.

4

C = f% — QZ;:Lsinh (g)

if b~2 > 0, where 6 solves the equation: sinh f = 5;3. If b~2 < 0 and l;), <0, then
4
we define C by the one of the three zeros of the polynomial H which belongs
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to the interval [0, u/p(Z)]: t1 = =% — 2bycos (§), t2 = — % + 2by cos (T — 9),
by

t3 = —“—g + 21;1 cos (% + g), where 6 solves the equation: cosf = =5 In terms
4
of C(Z), we can state one sufficient condition:

Proposition 1.1.  Let ¢ € C?(Q), and
(127 0.y 0(0) % V@ 5o (2) # 0

for any x € [0,T] x (02 Ow). Then there exists 79 > 0 such that Condition
1.2 holds for ¢ = e™ if T > 7.

Proof of Proposition 1.1. For this, it suffices to prove : Let v € C?(Q)
satisfy Oy,1p # 0 on Q, and for (29,29) € 90\ w, let the local coordinate
¥ = (y1,y2) be introduced by the local representation xs = £(x1) of 0N. We

assume
Oy (y*) £ VC(0)0y, Y(y™) # 0
for any (29,29) € 9Q\ Ow and yo € (0,T). Then there exists 7o > 0 such that
Condition 1.2 holds for the function ¢ = ™% if T > 7.
We recall that y*' = (y0,0). The principal symbol of the operator B at
the point y*' is

Bly”.¢') - < —p(0)G +2u(0)G} —2u<o>a:<y*,<>a> |

20(0)af,, (YOGt —p(0)C3 + 20(0)C3

where ¢ = (s,£0,&1) € S? and ZJ = +ispy, (y*). Obviously
(1.28)

2
detBly”.0) = 0 (-G + 22 OF ) + 2000 07 o 7. O

We study the structure of the set
(1.29) v {c € R\ {0}; det B(y™, ) = 0,

Tt (v* F"r *7

Im u,(y aC) 207 Im )\+2u(y C) >0}
S 5

We have

Lemma 1.1.  Let (1.3) hold true and let 0y, ¢(y*) # 0. Then

U Co,UW,, dist (‘111,\1/2) > 0,
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where \111 ={¢= ( ,€0,61) € 5% & +isdy, (y*) =0} and Uy = {( € 52 & +
+ *
sy (y°) = B/CO) (&1 + sy, (y7), Im 20 > o DO 5 gy

Proof. We can directly see from the definition that dist (¥, ¥5) > 0.
Taking into account that (o} (y*,¢))? = 5(0)¢§ — (f, we obtain

c{ces@ F3.3) = (40—2 ()41)

We fix p(0) and by to = t2(A(0), #(0)) and t3 = ¢3(A(0), 4(0)), we denote the
roots of H(t) with & = (0,0) which are distinct from C(0). Then we have

0
to,t3 > &

p(0)

if they are real. Therefore, noting that ]-'(Eg, 612) = ZngH(t) with Eg = tE%, we
have only to prove that

(1.30)  detB(y*',¢) #0
if (8o +isdy, (v"))? = t; (&1 +isgy, (v7))?, vj € {2,3}.

Moreover we have only the two cases: ta,t3 € R or ta,t3 € C\ R. First we
~ N2 o~ 2
consider the case of t5,t3 € R. Really ((02 - 2%(0)(12) =(} <tj - 2%(0)) and

) = VG t5(p/ 1) (0) — 1) = sign(ey, (y*))C\/ 45 (0/1)(0) — 1,

where we used the fact that ¢;(p/p)(0) —1 > 0 and a part of the assumption
(1.6) which guarantee that ¢y, (y*) # 0. If t;p(0) /(A + 21)(0) — 1 > 0, then

o 10, (v €) = sign(@y, (v)iy/t0(0)/ (A + 212) (0) — 1

and we have

det Bly™', ) = Z;*{p2<o> (- 22 0)

42 01/t (p/ ) (0) — 1 xy/t;(0)/ A+2u)(0)—1}#0.
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1£;p(0)/ (M211) (011 <0, then a, (v C) = isign(€1)Coy/~; p(0) /(A 272) (0) +1
and

_ 2
det B(y*’,¢) = &t {p2<o> (tj - 2‘5(0))

+ 4ip?(0)sign (& )sign(y, (v \/th )/p(0) — 1\/ tip(0)/ (A +2u)(0) + 1}
#0.

+
Note that if & = 0 then ImF*:Z“ (y*,¢) < 0. Next we will consider the case

oft; R, j = 2,3. We set pg = p(0). Henceforth in place of H(t) defined by
(1.26), we consider

8bs ., (24b2 16b° ) 166%(a + b)

1.31 Ht)=t3— —t*+ — —
(131) B = A Rarm) Rt

for all (a,b) € R? such that a,b > 0. We note that if we set a = A\(0) and
b = p(0), then this coincides with H(t) by (1.26). Moreover, without fear of
confusion, by ta = t2(a,b) and t3 = t3(a,b), we may denote the roots which are
not in the interval [0, p%} of H(t) defined by (1.31). We set z = (20, 21) € C?
and for factorizing .7-'(&2,512) with A(0) = a, p(0) = b and p(0) = po, we
introduce two functions

b \2  »?
H*<z>=( —2%%) e O

and ajj(z) =, /%% 23 — 27 with 3 € {a + 2b,b}. Henceforth we set

Domoz;r = {z = (20,21); Po

623—2«%91&}.

For z € Dom aﬂ, we take the complex root /2 5 022 — 27 in such a way that

Imaﬁ( z) > 0. We set Dom H™ = DomH~ = Domaj N Dom o

at2b In order

to prove Lemma 1.1 it suffices to show that
(1.32) H™ (29 (M0),1(0),21)) =0, Vje {23}
if

29 (a,b,21) = (£1/tj(a,b)z1,21) € DomH'  for j € {2,3}, 2, € C.
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In fact, if (1.32) will be proved, then we have (1.30) in the following manner:
Assume contrarily that det B(y*',¢) = 0. Then, in terms of (1.28), we obtain

PP 2O ~ FE .l =

G =, "G, which contradicts that (o = ;¢ , j = 2,3 where t; € C \R.
Proof of (1.32). Let d2 > 0 be an arbitrary but fixed number. We intro-

duce the sets

II; = {(a,b); a,b > 62, there exists z; € C with |z1]| = 1 such that
HT (29 (a,b,2,)) =0 for j =2 or j =3}

and

H2 = {(a,b); a,b > (52,
HY (29 (a,b,2,)) #0 for any z; € C with |z| =1 and any j € {2,3}
such that z)(a, b, z;) € DomH*}.

In order to prove (1.32) it suffices to prove that II; = () because we have either
(a,b) € TI; or (a,b) € T5. Let (@,b) € M. Such a point exists because there
exist ap, by such that ¢;(ag, bp) € R for j = 2,3 and then we have already shown
that det B(y*', (") # 0, so that (ag, bo) € Il in terms of (1.28) and the definition
of H*. Assume contrarily that the set IT; # (. Then dist (@, ), I1;) > 0. There
exist sequences {(an,b,)}02; C Iy and {z1,}32, € C such that |z,]| = 1,

-~

hm’ﬂ*’OO (anu bn) = (aa b)7 hmnﬂoo Zl,n - /2\17

-~

dist ((a,b), (@, b)) = dist ((a, b), 1)

and H*(z/1,,) = 0, where we set

zjln = (i\/ tjl (an; bn)zl,n, Zl,n),

for some j; € {2,3} and some z1 ,, € C with |21 ,,| = 1.

Let us show that there exists 2; € C such that |2,| = 1 and Z = (44/t;, (4, b)),

Z1) € DomH™. Really if Z = (£4/1, (@,0)%1,%1) € DomH™, then we can take
z = 7. On the other hand, if Z ¢ DomH*, then

zdZ Domal or Z¢ Domoal .
b a+2b

Let us assume for example that

Eq_lDomo%'.
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Then \/t;, (@b)po/b—1 = re and \/tjl (@,b)po/(@+2b) —1 = roet® . Since

the imaginary part of ¢;, is not zero, we have bo # 0 (mod 27). Then either

H (@) =0 for B € {b,a+ 2b} with z = (4/t;, (@ 0)51,51), 7 = e= @+00),

or

H*(Z) =0 for B € {b,a+2b} with z = (+1/t;, (@, b)Z1,%1),
% = 6—71'(§+§0)+m.

On the other hand, we have

(1.33) [(@,b), (@,b)) = {t(a,b) + (1 —t)(@,b); 0 < t <1} C Ils.

In fact, noting that {(a,b); a,b > d2} is convex and is contained in II; U IIs,

~ -~

we see that [(a,b),(@,b)) C II; UIl;. Assume contrarily that there exists

~ ~

(a*,b*) € II; such that (a*,b*) is in the open segment ((a,b), (a,b)). Then

~ -~

dist ((a, b), (a*,b*)) < dist ((a,b), (a,b)) = dist ((a,b),II;), which is a contra-

~ ~

diction. Thus we have proved that [(a,b), (a,b)) C II5. We set (ae,be) =

~ -~

e(a,b) + (1 — e)(a, b). Then, for sufficiently small € > 0, we have

z. = (im%,%) € DomH™.

Then, by (1.33), we have lim._,;oH (2.) = H(z) = 0. Moreover by the
choice of z, we have H*(z) = 0. Hence H*(Z) = 0. This implies that ¢;, (af) =
i—f but this is impossible because the left hand side is not real and the right
hand side is real. Thus we have a contradiction. Thus the proof of Lemma 1.1
is complete. O

Now we proceed to

Completion of Proof of Proposition 1.1. Let C(0) € [0, (u/p)(y*)]
be the zero of the polynomial H. By Lemma 1.1, for any ¢ € S?, the set of all
the possible solutions to the equation

F+
det B(y™',() =0, Im—(y".0) >0, V5 € {u. A+ 2}, &0 #0

is given by the formula

S0 + 159y, (") £ V/C(0) (&1 + sy, (v7)) = 0.
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Let (¢f,s*) € S' be an arbitrary but fixed point. Let z§ = & + is* ¢y, (y*)
with some &5 # 0 and 2§ = & +is*¢,, (y*) satisfy 25 = £/C2; and Im —+(y ,
$*,85,€5) >0 for Be{pu, A+ 2u}. Consider the following function J(y', 29, 21) =
det B(y', 5,£0,€1), 20 = &0 + 150y, (¥*), 21 = &1 + sy, (y*). Applying the im-
plicit function theorem (keeping in mind that J, (0, z§, 27) # 0), we see that
there exists a function (', z1) which is defined in a neighbourhood of (y*, z7)
and analytic in z; such that (y',q(y’,21),21) is a solution to the equation
J(y', 20, 21) = 0. Note that

(1.34) q(y*, z1) = £VC(0)z

Set T(y/a S, 50) 51) = 60 + Z-S(byo (y) - Q(ylv gl + i3¢y1 (y)) Since

det B(y/, S, 607 51) = T(y/, 5 60’ 61) X det(:[j,(y57 Z;?g;fl)

=7y, s,8,&)7Y s, &0, &),

where 7 is smooth and not equal to zero, Condition 1.2 is equivalent to

1 : 57"(9'75750,51) 87"(]/,8,50,51)
Imgz

> 0.
Oy Oy,

k=0

Computing the left hand side of this inequality, we obtain

! I 18T(y/787507€1) ar(y/787£07£1)
Z m; 6{ ) ‘(Y*,&Em&)
k Yk
1 .
=Im _{Zsﬁbyoyo (¥Y") = @yo (Y0, 0, &1 + is¢y, (¥7)) £/C(0)isgyyy, (¥
:F V 25¢yoy1 qzn (y07 0 51 + st)yl :F V 7’8¢y1y1
:éyoyo y") £vC ¢yoy1 y*)+C(0 )¢y1y1 (y*)
1
—Im - (Qyo(y070 &1 +isdy, (v7)) £/ C(0)qy, (0, 0,81 +isgy, (¥7)))-
. .. . % Jy, (0,25,27) *
By the implicit function theorem, gy, (vo,0,2]) = —% = mp(& +

is* ¢y, (y*)), k = 0,1, where a number m; depends on the sign in formula
(1.34). Using this formula we obtain

ilm VO3 60.81) (05,0, 61)
S afk 8yk (y*,5,£0,61)

=TO(T(Pyo (¥7) T/ C(0)3y, (¥ +wyoyo( )
+/C(0)Yyqy, (¥7) + C(0)1hy, 4, (y ) = (Mo, (¥*) £/ C(0)m1¢y, (v
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Obviously under condition (1.27), for all sufficiently large 7 > 0, inequality
(1.23) holds true at the point y*'. The proof of Proposition 1.1 is completed. [

§2. Proof of Theorem 1.1 (the beginning)

We shall prove Theorem 1.1 in several steps. Our proof is based on de-
coupling of the Lamé system into the scalar acoustic equations for rot u and
divu. Then we apply the standard procedure (e.g., [HO]) to these equations
for obtaining a Carleman estimate. Finally we analyze the boundary integrals,
which appear in the previous steps by means of the microlocalization technique.

First we show that it suffices to consider the case when displacement has
a support in a ball of a small radius (Lemma 2.1). The strategic goal is a
priori estimates for the traces of displacement and its normal derivative on
the boundary. For overcoming the difficulties caused by non-compact supports
of u, we shall argue microlocally and the argument is lengthy but based on
standard source books ([Ku], [T1], [T2]). The estimates for u and 9,u are of
two types. Outside of the set Wy (see Lemma 1.1) in the cotangent bundle
we have estimate (3.1) while in a neighbourhood of this set we have a weaker
estimates (5.2), (5.3).

In order to prove estimate (3.1) we shall separate several cases correspond-
ing to that the roots 7,(y) and rx42,(7) defined by (1.20) are zero or non-zero.
In Section 3 we consider the case 7,(y) = 0 and Section 4 is devoted to the case
Tat2,(7) = 0. Finally in Section 5 we consider the remaining case r,(y) # 0
and 7512, (7) # 0 and obtain estimate (1.24).

First we show that it suffices to consider only the case where the support of
u is located in a small neighbourhood of an arbitrary point y* = (y,0,0) € Q.

Lemma 2.1.  Under the conditions of Theorem 1.1 it suffices to prove
(1.24) under the assumption that

(2.1) suppu C Bs(y™*),

where § > 0 is an arbitrary small number and y* is an arbitrary point in Q.

Proof of Lemma 2.1. Let us consider the finite covering of Q by balls

B;s(y7;). Let e € C5°(Bas(0)) be a non-negative function such that e|g, (o) =1
25

and e(z) < 1 for all z € By;(0) \ Bs5(0) and let e € C5°(B25(0)) be a non-

negative function such that €|z, (o) = 1 and é(z) < 1forallz € B2;(0)\Bgs(0).
8
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We set ej(z) = e(z —yj) and €;(x) = e(x —yj). For the function e;u we have
the following boundary condition

(2.2) B(z,D)eju = —[e;,Blu+e;g.
Let ¢j(z) = ¢(x) +€(€j(x) — 1), ¢j(z) = e™¥i(*) and € € (0, 1). The function 1;

satisfies Condition 1.1 and Condition 1.2 for all sufficiently small e. Applying
Carleman estimate (1.24) to the equation P(x, D)e;u = e;f — [e;, P]u, we have
/ Z si 2\a||aa |2 2S¢d(E +s

<ue g;e ¢)
@ Jal=0

2
<CIZ/ Z 51721009 e 2?5 P dx

Bs(¥5) |a)=0

ou
<u€5¢€j, %ejesd’) 3 )
H2°(0Q)xH2*(0Q)

sz/ Z §A=2101| gorye, 262503
j Bas(y;

) |al=0

. Ou ,
(ue‘“f)ﬂ €5, ?ejes%)
7l

<Cs<||fes¢||§1m(Q) +llge™ |12 5, *(6Q) +ZII ¢j, B(x, D)Jue*|2 4

(2.3)
2

H3*(0Q)xH?* (6Q)

2
+s

2
+s

H3 *(0Q)xH2*(3Q)

*(0Q)

—I—ZH e;, Plue’ HH“(Q)-F/ Z st 2| goul2e 23¢d:v> Vs > sp.
Qu |a|=0
Note that ||[ej,P]ueS¢f||ill,s(Q) = ||[ej,P]ue5¢J'\|¥{1,S(326(y*‘)\356(y,§)). More-
J 1 J

over thanks to our choice of the functions 1j, we have ¢;(x) < ¢(x) for all
z € Bas(y;)\ B s 5(¥;). Therefore increasing sy if necessary, we have

ZH[ew Plue’ ¢J||H15(Q < —/ Z 4=2lad | goy|?e2 5Py, Vs > sg.

J \oz\ 0

Hence the fourth term on the right hand side of (2.3) can be absorbed into
the left hand side, so that we obtain (1.24). Thus the proof of Lemma 2.1 is
completed. O



CARLEMAN ESTIMATE FOR LAME SYSTEM 1043

Without loss of generality, we may assume that p = 1. Otherwise we
introduce new coefficients uy = p/p, A1 = A/p. We can directly prove that the
functions rot u = 0y, ug — Oy, uy and divu = Oy, uq + Oy, uo satisfy the equations

(2.4) 8§0r0t u—pArotu=m; inQ, Bgodivu—()\+2u)Adivu =my inQ,

my = My (x, D)rotu+ My(z, D)divu + M (x, D)u + rot f,
mo = M3(x, D)rot u + My(x, D)divu + Mas(x, D)u + divf.

Here and henceforth M, (z, D), Ms(z, D), M;(z, D), j = 1,2,3,4, Ej(y,D),
K i(y, D), etc. denote first order differential operators with L*>-coefficients, if
they are not specified.

If y* € @, then we take § > 0 sufficiently small and we can assume
Bs(y*) N 0Q = 0. In that case, directly by means of (2.4), we have (1.24).
Therefore, thanks to Lemma 2.1, we have to concentrate on the case y* € 9Q).

Henceforth without loss of generality, we assume that

v = (4,0,0), y*' = (y5,0).

Below we will apply to equations (2.4) a Carleman estimate for the scalar
equations. Since the functions divu and rot u do not have compact supports,
some boundary integrals in this estimates will appear. In order to estimate
these boundary integrals, it is convenient to use a weight function ¢ such that
©vlaa = ¢loa and p(x) < ¢(x) for all z in a neighborhood of Q. We construct
such a function ¢ locally near the boundary 9€:

b
VN

where N > 0 is a large positive parameter and ¢; € C(Q) satisfies

(2.5) o) = @, f(z) = P(a) (@) + NE (),

Gi(2") >0 Va' €Q, liloa =0, Vli]oa #0.

Denote Q1 = {2' € Q;0 < dist(2’,0Q) < +z }. Obviously for any fixed € > 0,
N
there exists Ny > 0 such that

(2.6) p(x) < ¢(x), YV € [0,T] x Q#, N € (Ng, 00).

Our goal is to prove an analogue of (1.24) for the weight function ¢ instead of
¢. We make the additional assumption

(2.7) suppu C Bs(y*) NG =R? x [0,1/N?].
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Below in order to simplify the notations we denote the functions ¢ (z(y)),
o(z(y)), p(x(y)) as ¥ (y), 6(y), ¢(y). Therefore

d(y) = ¢(y) ondg
and for some N > N; we have

o(y) < oly) Vyeg.
We need the following proposition:

Proposition 2.1.  Let (2.7) holds true. There exist T > 1 and Ny > 1
such that for any T > T, there exists so(T, N) > 0 such that for any function
u € H*(Q) satisfying (1.8) and (1.9), we have

N||ues“"\|%{2,s(Q) < Cy <N|fes"°||%2(Q) + s||(rotu, divu)es“"H%p,s(Q)

ou
s
+N H (u, 8ﬁ) e

and Cy is independent of N, s.

2

3 1 ) SZSO(TyN)a Nle
H?*(0Q)xH?* (0Q)

We give the proof of this proposition in Appendix I. Thanks to Lemma
2.1 we can work with the variable y instead of z. By (1.8) and (1.9) on the
boundary 9G, we have

(2.8)

~Ot i (divu = FL00) ) + )t )

~h e+ S - SO0 e+ 0+ ) SR - Rl D)
and
29) S = (G5 2 ) o ) ) G~ o
forn 0P 5 w0 (502 - S80) - Rut D

Here and below by K;(y, D) we denote a general first order differential
operator with C! coefficient. By (1.12) we know that

(2.10)
dur _ ouN L d Ouz _ LR
o= (i) g2 ) + (Erl) 52 = (a5 ) + (Balon) )



CARLEMAN ESTIMATE FOR LAME SYSTEM 1045

Hence
2
0 (5%

0%u , ou 0~
(2.11) EN: T (Al(y1)7 3—%) + <A1(Z/1)7 6_y1> + 6_y1(A1(y1)’g)’

0%us ( BZu) ( , 8u> 0 , ~
— (A1), 2 4 (AL, 22 ) + L (Aa(), ).
3y28y1 2 (yl) 6y% 2 (yl) 8y1 ( 2 (yl) g)

Using these equations we may transform (2.8) and (2.9) to
(2.12) Bi(y',D')u

9%uq 9%uq , 9%u ou
= = _ Z 1 _9 A - Al Z=
02 { B2 ' (y1) ( 1(y1), 8y%> + < 1(v1), 0@/1))}
_|_

I
+ " (y1) (Al(yl), a—ul) - (A M)a_u;

32u1 2
=fi+pd 40 - A+ p)l
1 N( | ‘ )8y§ 8y% ( ,LL)
32u1 2 — ’
+ A+ )5 [+ Ks(y, D )u+Rui(y, D)g
and
(2.13)
Ba(y', D' )u

225w (w0 22) (50 2)
—M”(yﬂ(Az(yl)»g—u)_( ){( 1), ?) </( )3;;)}

82 82U2 8U1
= 1 !
forn 0BG+ 0 (S0 - T

+Ks(y, D')u + Ro(y, D)g.

Here R4 (y, D),MRa(y, D) are first order differential operators with C! coeffi-
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cients. Set

/ _ Bll(y7§) Bl2(y7§)
Bly.&) = <321(y7§) ng(@/,f)) ’

QW) = (AT AT~ w)l )
—(A+wl(y) A+ 2p) + pl€ (1)1 )

In terms of the new notations, we may rewrite (2.12) and (2.13) as

(2.14)
B(y',D')u=Q'B(y',D')u
=-D2 u+Q M(y,0) + QR (y, D), Ro(y, D))g, y € IS

Note by (1.12) that the principal symbol of the operator B is given by

(2.15)
—62+(M(0)+2u(0)— 2251 (0))€3

o 0
B(y /af) = #(0) 7637)\(0)5% Vf e R"” \05
0 F2m)(0)

and that

_ [ #(0) 0
Qw*‘(o u+amm0‘

In the y-coordinate, equations (2.4) for z; = rot u and 29 = div u have the form

(2.16) P, (y,D)z1 = Djz1 — (D321 — 20 (y1) D1 Dozy + (1 + [/ (y1)[*) D321)
— pil" (y1)Dazy = my,

(217) P)\_‘_Q#(y, D)ZQ = D%ZQ - ()\ + QILL)(D%ZQ — 2£/(y1)D1D222
+ (1410 (y1)[P) Diza) — (A + 20)il" (y1) D222 = mo.

After the change of the coordinates, we use the same letters my, mg as in (2.4).

We consider a finite covering of the unit sphere S? = {(s,&,&1); 8% +
€+ ¢ = 1}. That is, S? C UK(él){( ,€0,61) € S?%|¢C — (3| < 61} where
¢ € S?, and by {x,(¢ ¢)}i<v<k(s,) We denote the corresponding partition of
unity: ZK(&) ,(¢) =1 for any ¢ € S% and supp x, C {¢ € S%;|¢ — | < 61}
Henceforth we extend y, to the set {¢;|(|] # 1} as the homogeneous function
of the order zero in C°°(R3 \ {0}) such that

< 51} .

supp x», C O(01) = { ’ICI
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Moreover we set

Pp,,s(y? SvD) = Pu(y7 D) :D;[Q/O - M(Diz - 2él(yl)Dleyz + (1 + |£l(y1)|2)D12/2)

7,U'Z‘€N (yl)Dyz

P)\+2p,,s(yv S, D) = P)\+2u(yv D) :Dgz;o - ()‘ + 2:“’)(D72;2 - 2€/(?/1)Dy1 Dy2
+(1L+ 1€ (y1))Dy,) = (A + 20)il" (y1) Dy,

Under some condition, we can factor the operator P, as a product of two
pseudodifferential operators.

Proposition 2.2.  Let § € {u, A + 2u} and |rg(y,¢)| > 5> 0 for all
(y,¢) € Bs(y*) xO(261). Then we can factor the operator Pg  into the product
of two pseudodifferential operators:

(2.18)
Pﬁ,sXy(S, DI)V :ﬂ|G|(Dy2 - Fg(yv S, D/))(Dyz - Fg(ya S, D/))XV(Sa D/)V
+T3V,

where supp V' C Bs(y*) NG and
Ty € L(L*(0,1; H'*(R%)); L*(0,1; L*(R?))).
Let us consider the equation

(Dy, — FE(Z/, Sy D/))XV(Sv D/)V =4q, V|y2: =0, supp V C Bs(y")Ng.

1
N2
For solutions of this problem we have an a priori estimate:

Proposition 2.3.  Let 8 € {u, A + 2u} and |rg(y,¢)| > 5> 0 for all
(y,¢) € Bs(y*) x O(281). Then there exists a constant Cs > 0 independent of
N such that

(2.19) VX0 (s, D)V lyp=ollz2(r2) < Csllallz2(g)-

The proofs of Propositions 2.2 and 2.3 can be found for example in [IY3].
Next we consider the equation

(Dyz - Fg(ya S,D,))XV(S,D,)U) =9, w|y2=1/N2 = 07 supp w C Bé(y*) N g

We have
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Proposition 2.4.  Let § € {p, A+ 2u} and |rg(y, )| > 5>0 for all
(4,¢) € Bs(y*) x O(é1), s* # 0, or Imaj () # 0 and supp x,, C O(81). Then
for sufficiently small §, 91 there exists a constant Cg > 0 independent of N such
that

1 1
220) s Dl -0) < Co ( e lolcioy + 53 N0l 5. )

For the proof of this proposition, we can use the exactly same arguments
as in [IP], and we give it in Appendix II for completeness.

Let 5 € {u, A\ +2u} and w = w(y) satisfy a scalar second order hyperbolic
equation

o

P s(y,s,D)w=¢q ing, 90s lyo=1/N2 = W[y,=1/n2 =0, suppw C Bs(y™).

Next we remind main facts related to the Carleman estimates with bound-

ary for the operator Pg (y, s, D). Set L1 g(y,s, D) = Pﬁ‘s(y’s’D);Pﬁ’S(%s’D) and

L_3(y,s,D) = Pﬁ’S(y’S’D);Pﬁ’S(y’S’D), where Pj  is the formally adjoint oper-

ator to Pg s. One can easily check that the principal part of the operator L_ g

is given by formula

. ow
L_ 5(y,s, D)W = —2s¢py, 8_3/0

ow , ow Ow R 17
+4 {28% o 2t (y1) (‘Pyz o + @y 8y2> +25(1+ (€'(y1))")Pys s }
+l.o.t.

Obviously L. 5(y,s,D)w + L_ 5(y,s,D)w = q. For all s € R! the following
equality holds true:

(2.21) Sp(0) + || L- 5(y, 5, D) F2(g) + 1 L+,5(ys 5, D) 2g)
+Re /g (L L g8, D)y = a2,
where

(2.22)
$15() = /8 (1.0, ~10) (7. V. T

- Sgﬁ,@ (y7 VQD, V‘P)|ﬁ|2)dyody1 + Re /ag ’ﬁﬁ(yﬂ V{D, _€2)L*,ﬁ(yv S, D)wdy()dylv
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and

Py, £, €) = Eoo — B(E1EL — £(y1) (12 + E261) + (1 + | (1) *)262).

We note that by (2.5) ¢y, |og = ¢y, log for k& € {0,1}. Therefore on 0G the
function V¢ is independent of N and |V¢(y') — Vo (y')| < C7 A/N where the
constant C7 is independent of N. In particular, for all sufficiently large N, we
have (1.6) for the function 1.

It is convenient for us to rewrite (2.21) in the form

Ss(@) = 39 (@) + 25 (@),

1)~ / o OW
Yu/(w) = Re 2s —
5 (W) o By )8y2

ow ow ow
x{(ﬂ(w)a;“lsoyl 3+ 007 S (v) — G (y*))}dyodyl
ow

. . N
+/yzzosﬁ(y )y, (¥ ){ E - B(y") ( o >

—s(2, (y") = Bly")(en, (y*) + 92, (y*)))lﬁlz}dyodyy

(3%)
— W
A2
where €(0) — 0 as § — +0. It is known (see e.g., [Im]) that there exists a
parameter 7 > 1 such that for any 7 > 7 there exists so(7) such that

o
Oy2

Then

2
(2.23) =0 (@)] < e(8)s

)

L2(8G) x H':5(8G)

1 ~ 1 ~
(2.24) ZHL—,ﬁ(y, 8, D)W|72(g) + Z||L+,B(y7 8, D)W 72 (g
+Re([Ly,p, L 6]@, @) 2(g) + Cssl|@| 12 (06) 9y Dl 2 00)
> 098”’[17”%{15(9) Vs > 80(7'),
where Cg > 0 is independent of s. Combining (2.21) and (2.24), we arrive at
(2.25)
1 . 1 s
ZHL—,ﬁ(ya SrD)wHL?(g) + Z||L+,B(y’ 5, D)w||L2(g)
+C9s(|@| 71,5 (g) + Tp(@)

<Cio(llgl =g + sll@ll209) 18y, @l L2(06) + 101|315 06))s Vs > s0(7).
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We finish this section by recalling some results of calculus of pseudodiffer-
ential operators with symbols of limited smoothness. Let

C*STy = {al,5,€); 1050 al, 5,€)| < cap(L+ (& 5)P), |l <k}

for some compact set K C  we have a(x,s,£) =0 for z ¢ K.

For every symbol a(x, s,£) € C’kaO we introduce the operator a(z, s, D)u =
Jan alz, 5,£)0(€)e! @ dE. Tt is known (see [T2]) that a(x, s, D) € L(H)*(Q),
H™*(R)) for m € (—k, k). Here @ is the Fourier transform.

For the operators with nonsmooth symbols, we have the Garding inequal-
ity: Let p(x,s,§) € 05512”3, ¢ > m and there exists C > 0 such that if
Re p(x,s,&) > C|(&, s)|™ for all large |(&, s)|, then

Re(p(x, 5, D)u,u) p2() < Colltl|Fmsze() — Cillull7zq

for any u such that supp u C K.
We say that a symbol a(z,s,&) € C*SY if a(x,s,£) € CFST; and

a(x,s, &) = Zajxsﬁ v|(s,€)] > 1

7>0

where a(z,s.€) ~ S a;(x,5.€) € CHSTY.
The following proposition will be very useful.

Proposition 2.5 [T2].  Let A;(z,s,£)€CS?), B(x,s,£)€C'S". Then

Aj(x,s,D)B(z,s,D)=Cj(z,s,D)+ R; je{0,1},
Cjlx,s,8) = Aj(z,5,§) Bz, 5,8)

and
Ro: H'T0* — HYS Ry HM® — L2

We argue microlocally to obtain the Carleman estimate for the function
X (D', s)(ue®?). In Section 3, we consider the case where the support of the
function x, is in a neighbourhood of ¢* such that r,(y*,{*) = 0. The case
Ta+2u(y*,¢*) = 0 is discussed in Section 4. In Section 5, we consider the
case of 7,(y*,(*) # 0 and 7x42,(y*,(*) # 0. Hence all the possible cases are
covered. Finally, for completing the proof of Theorem 1.1, we combine all these
microlocal estimates.
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§3. Case r,(y)=0

In this section we treat the case where supp x,, C O(41) and r, () = 0 for
v = (y*,¢*) € G x S%. Throughout this paper, we use the following notations:

z(y) = (z1(y), 22(y)) = (rotu,divu)(z), u= (ur,us), v=(v1,v9).

Henceforth (s, &', y2) is the Fourier transform of v(s, yo, y1,y2) with respect to
Yo, Y1, and we set w, = (w1, wa,) = X (s, D )w. This section is devoted to
the proof of the following lemma.

Lemma 3.1.  Lety = (y*,(*) € G x S? be a point such that r,(v) =0
and supp x, C O(61). Then for all sufficiently small §; > 0, we have

( ov,, 82vu)
VV7 a a9 92
0ya 8y§

< C(H"”%ﬂs(g) + ||few‘|%11,s(g) + s||ges"°||%{1,s(ag)),

(3.1)
2

2
NS st oov, |Ra gy +
|a]=0

H2:5(9G) x H1*(3G) x L2 (9G)

where C' is independent of s, N.

Proof. There exists a constant C; > 0 such that

(32) 165 — 5*¢5, (y") — (0)€T + n(0)s” 2y, (v)]
< Cioi(€ol* + 16l +5%), V¢ € O®6y).
We recall that by (2.21)—(2.25) there exist constants Cy, C3 > 0 such that

awl,u w
8y2 s W1v
where €(J) — 0 as § — +0. Note that Z,(}) can be written in the form

(3.4)

M (wy,) = /BQ (8#2(0)% (y")

(3.3) Casllwi |3 gy + 55
2
< Cs]| Puswiliz(g) +e()s

i

L2(9G)x H1:5(8G)

8w17y

0ya

2
+ 512 (0)3, (y*)lw17ul2> s

8w17u
Oy2

Owy o, w1,
+Re /8 . 251(0) (u(O)sﬁyl(y*) LY (y) >d2

o 0o
2dy

+ /Og s11(0)py, (¥ (&5 — m(0)€F — sy, (v*) + s*u(0)y, (v*)) @10

=J1+Jo + Js.
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Note that 12, (7) # 0. Really if 7y y2,,(7) = 0 then %@0 +is* cpyo( )2
—(& +is*py, (y*))? = 0. On the other hand since () = 0 we have £ (0) L(&r+
iy, (¥*))? — (& + 5"y, (y*))* = 0. Hence & + is* 0y, (y*) = 0 and & +
15"y, (y*) = 0. Since |(*| = 1, these equalities imply

Pr(y) =0, ¢, (y) =0, §E=&=0, s =1
This contradicts assumption (1.6) which states adi # 0. Therefore x40, (7) # 0
and factorization (2.18) holds true. We set VA+2u (Dy, —Fj\'ﬂu(y, s, D"))wa,,.
Then
Paiop,s(y, 8, D)wa,y = (A +201)|G|(Dyy — Tx 19, (458, D) Vi, + Drgopwa,

where Thio, € E(Hl’s(g),Lz(g)). Therefore Proposition 2.3 immediately
yields

(3.5) \/§||(Dy2 - A+2#(y78 D’ ))w2,u|y2:O”L2(89)
< Ca(||Prs2u, @) + IIwllas(g))-
Now we have to estimate Eﬁ}). First we note that
82’1 82’UQ 82’U1 82U2
3.6 — — 4
( ) 8 |y2 =0 = 3y18y2 8y% 8y§ (yl)

(2 st 2

2 2
8U1_8UQ,

0 ~
— (A _
+ 8y1( 2(y1)7g) ay% ay% ¢ (yl)a

82’2 82u1 82U2 82’U1 ,
—— + —
Yo 0y10y2 Y3 dy3 )

0%u , Ju
= (Al(yl)a a—y2> + (Al(y1)7 5_311)
1

2 2
8UQ 8u1,

9 -
+8_yl(A1(y1) g) + 2 _8—y§€(y1)'

|y2:0 =

We may rewrite (3.6) and (3.7) as

9z1
() =~ A)DE, v = A Dy + /G5 D)) — 1D v
e

where we used the notations

_ (a1 a2 _ -1 —(y)
A(yl) - <a11 a12> ’ I(yl) - (_Z/(yl) 1 ) )
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_ (0 0
A(O) - < )\+O _1> )

a;; are the elements of the matrix A introduced in (1.12) and K(y’, s, D’) stands
for some first order differential operator. Therefore

9z

38 e (52 ) = <17 o) AGD v i1 ) A (D,

Oy2
+17 (Y1) R(Y', s, D')(ge™?) — D, v

312
Using the definition of the operator FIH# (y,s,D’), we have

0
(3.9) xu(s,D") (Q—Zew) = Xu (8, D")iDy,ws = iDy,wa,, + i[Xy, Dy,]22

ZV)\—:-ZH (yla O) - [Xm 59%2]“’2 + Z‘a:\‘—+2u (y/a 0, S, D/)(b21(y1’ Dy1 )ULV
+ ba2(y1, Dy, Jv2 + [, b2(y, D)V + xu(Ca(y1)ge™®)).

Here we recall that by and byy are defined by (1.16). Applying to the both
sides of (3.8) the operator y, and substituting (3.9) into (3.8), we can obtain

(3.10) D v, = f— il ' (y1)Dy,ws 6 + Ry, s, D)y,
where we recall that éi = (1,0), and we set

f= —xo, 71
0
< Vil (0, 0)+iad (1, 0,5, D')x, (Ca(yr)ge™?) — [xu,swyZ]wer[xmbz}V)
v =T A)D2, =i (1) A (y1)Dy, v + X0 (I (1) R, 5, D) (ge™%))
- [Xual 1Dyz] _[XVaDZQ]va

R(y',s,D")v,
=I""(y1)

0 0
X . . Vu
<_laj\_+2u(y/a 07 S, D/)b21(y15 D’l/1) _Za;\‘r+2# (y/’ 0) S, Dl)b22 (yla Dy1))
71—1(y1)A(y1)D12!1 v, = I (y1) A’ (y1)Dy, Vo,

Wy, = (’LULV,’LUQ,V), Vy = (UI,V7U2,11)7 vy = XV(S7D/)V'
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By (2.14) and (3.10), we obtain

(3.11)  xu(s,D")B(y',D")v
= XV(Sv D/)(Q_lfes¢) + XV(Sa Dl)(Q_lesw(%l (yv D)a 9({2(y? D))g)
— [xw, Diz]v —f il (y1)Dy, w1 €1 — R(y',s,D')v, y € dG.
Next we note that
(3.12)

et (Bly™ €+ Vol ")+ ROy o7 €)= (g (€67 (7))

(A+2u

Really by (2.15)

(€5 +is" ey D2+ (A0 +20(0) - 22 0)) (61 +is" 0y (7)) o
n(0)
0 — (g5 +is oy (Y NZ=A0)(E1+is* oy (v*))?
GFZ(0)

Since 1, (y) = 0 we have (£5 + is*p, (y*))* = w(0)(&1 + is @y, (y*))? which
implies

B . . 2(A+p) (0) 0
(3.13) By, & +is*V'o(y")) = (&1 +is* gy, (y*))? ( R (4t 2) )
0~ (0
and
A+ p
A+ 2u

axtou(7) = isign(¢] (0)(&F + 5™y, (¥7))*.

Moreover by (1.16)

0 0
<*iai+2“(y*, S*a g*l)b2l(y*’ 5* + 7‘.'S*vltt"(y*)) 7iaj:+2u(y*a S*wg*/)b22(y* s 6* + Z-S*Vlép(y*))>

0 0
:(isign@r 2 (0) 534 (0) (&7 +i5™ ¢y, (y7))? o)

and

Thus
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_L(Q) 0

A2p * - % 1) 2
o (&5 +is™ @y, (¥))%
isign(&7) s/ ais (0) 1) "

(3.14) R(y*,¢") = (

In terms of (3.13) and (3.14), we easily obtain (3.12). Set

S, 5,60,&1) = B(y', & +isV'o(y)) + R(Y', 5,€).

Let S(y', s, D’) be the corresponding pseudodifferential operator. Then

(3.15)  S(y,s,D")v, + [xv, B(y,D)]v
=xu(Q'fe*?) =[x, D2 Iv + xu(Q ™' e** (R (y, D), Ra(y, D))g)
_?_’_ il—l(yl)Dy2w17V51-

Since we can directly verify that detS(y*’,s*,£*') # 0, we have

<V ovy 52Vu)
" oyy” Y3

< Cs(sllfe*?|[F2ag) + sllge™ 3122 ag) + 51 VIIE- (a0

(3.16) s

H?2:2(0G)xHY¢(0G)xL2(9G)

+J,+ s||VA12H(~,0)||i2(ag))'

Note by (3.2) that for any € > 0 there exists d2(€) > 0 such that

2
ov, 0%v,

Vv, 53 3
( dya’ Oy3 ) H2:$(8G) x HL:$(8G) x L2(8G)
+ Cos(llge™ [I3g1.e oy T IVIlE1eo))s V¢ € O(02(e)).

(3.17) J3 <es

In order to estimate the term J5, we consider two cases. First we assume that
s* # 0. Then by (1.18)—(1.20) and r,(y) = 0, for given € > 0, there exists dy
such that if § € (0, dp), then

(3.18) |1(0)€1py, (Y7) = Sowo ()| < €l¢l, VC € O(9).

By this inequality, we obtain

(V Ovy 32%)
Vs 6y2 Y 6y§

+ C7S(||g€w||%{1,s(ag) + HVH%{Ls(ag))-

2
(3.19) Jy < es

H25(0G) xH*(8G) xL2(8G)

Second let us assume that s* = 0. We solve equation (3.15) with respect to the
variable v, :
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(3.20) v, = S(¢/, 5, D") (= [xw, B(y, D)Iv — [xv, D}, v + X, (Q ™ fe*?)
+x0(Q7H (Rily, D), Ra(y, D))ge*?) — £ + il (y1)Dy,w1,,€1) + T,

where S(y/,s,D')~! is the bounded operator from L?(9G) into H?*(9G) such

that the principal symbol of the operator S(y’, s, D’) ! is the inverse matrix to

the matrix S(y', s,&0,&1) and T € L(HY*(0G), H**(0G)). Therefore on G we
have

(3.21)
w1,v

O
:i(/.L(O)gOyl (y*)Dyl — Pyo (y*)Dyo)bl (yla D/) X {S(y/’ 5, D/)_l(—[Xw B(yv D)}V

+x0 (@ fe*) — [xu, D21V + X0 (Q ™ (R1(y, D), Ra(y, D))ge*?)

8’11]1,,,
dyo

1(0)y, (v7) — Py (y7)

—ff + ilil(yl)Dygwl,ugl) + TV}
+i(1(0)py, () Dy, — 230 (y) Dy ) (X balv — X0, (Crge*?)).

By M we denote the pseudodifferential operator with the symbol

M(y',s,€)
=(oyo (¥*)€0 — 1(0)py, (¥ )E1)b1 (Y, € +isV'0)S (Y, 5, ) T H(yr)éh.

Since by1(y*', &) = 0 and by (y*', &') = 2i&;, we have Re M(y*', s*,£5,£5) = 0.
Therefore, by Garding’s inequality, we see

(3.22)
8’11]1,,, * * / / / N—1;,7—12 awLV
Re [ =5 2 (u(0) 0y, (%)), — a0 ()0, Joa (¢, D) Sy, 5, D)1l -1, =5 12 d5
ag 0Y2 Y2
o ( ov, 82v,,> 2
Z —€|[| Vv, 35— .
dy2" dy3 H2:5(9G)x H' (8G) x L2 (8G)
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On the other hand

(3.23)
8[| (1£(0) 0y, (¥7)Byy — 9o (¥7) 0y )01 (y', D)
x{S(/,5,D") " (=[xv, B(y,D) = D |v
+x0 (@ (R1(y, D), Ra(y, D))ge™?) + £ + x0, (Q ' £e°%)) + Tv}
+1(1(0)py, (¥ ") Dyy — ©yo (¥7) Dy )([xu,bl]v — xv(Crge* ) H 32 00
<s|IS@',s,D") " (~[xv, By, D) — D}, ]v
Q7 (Ru(y. D). Ra D)e™) + 4 x(Q~£e"9)) + TV [z 09)
+5] (1(0) @y, (Y*) Dy, — @y () Dyo ) ([xors 1]V = X (C186)) 720
< sl =[x, By, D) = DL, v + x (Q ' (Ru(y, D), Ra(y, D))ge*?)
+H 4 X (Q7 ™) + TV |72 a6
+5[1(1(0)py, (v") Dy, — @y () Dy ) (x> b1]v = x0(Cr8e°) 7200

<Os([[Prt2u,sw2,0 [ F2(g) + 8l VIEre ag) + slIE*? 206y + sllge® s ag))-

(
(

Here we recall that C is defined in (1.13). Inequalities (3.22) and (3.23) imply

( ov, 82v,,>
Vu, 5 a2
ya " Oy; H2:5(8G) xH#(8G) x L2 (8G)

+ CQ(SHV”%_Ila(ag) + ||f€8w||%_11,s(g) + S||g€sw‘|%1,s(ag)).

2
(3.24) Jy < es

By (3.5), (3.16), (3.17), (3.19) and (3.24), there exist constants C1g > 0 and

C11 > 0 such that
(V Ovy 32%)
" Oyy” Oyl

- 011(5‘|V||%{1,s(3g) + ||f€s<p‘|%llvs(g) + 5||g€w||f{175(ag) + ||W‘|%11,s(g))~

2
(3.25) () (w1,) > Cios

H?:(0G) xH'*(8G) xL?(9G)

By (3.3) and (3.25), we obtain

(3.26)

(3]
Vy, m—
A5 H2:5(8G) x H5 (8G) x L2 (9G)

<Cr20/s|vllmrsag) + ||f€sq’||H1vS(g) +Vsllge*? larsag) + Wllars(g))-
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Note that

(3.27) /s

(o2 )|
Wa,y, —
92 ) |l grs(og)x 12(59)

ov, 0%v,
< Cug H(V”’e>’ i) V3l o0y
Y2 OY3 H25(9G) x HL#(8G) x L2 (9G)

< Cul/sllvlarsag) + Ife* [l (g) +V/sllge™ lursag) + [[Wlla1(g))-
By (3.27), (2.24) and (2.25) with 8 = A + 2, we have
(3.28) Vsllwallms(g)

< CisWslvlimsag) + Ife™ mre(g) +V/sllge™ llrr - (ag) + [IWlla2+(g))-
Therefore combining (3.26) and (3.28), we obtain
( ov, 0%v,

Vs|[wy|lmreg) +Vs

Vo, > 3 35
dy2” y3 )HHz‘s(ag)wa(ag)xL2(ag)

<Ci60/sl[Vlmrsag) + Ife*?llmrs o) +V/sllge> |l ag) )
Vs > so(r,N), N > Nj.

This inequality and Proposition 2.1 imply (3.1). Thus the proof of Lemma 3.1
is completed. O

§4. Case ryy2,(7) =0
In this section, we will prove

Lemma 4.1.  Lety = (y*,(*) € 9GxS? be a point such that ryi2,(y) =
0 and suppx, C O(61). Then for all sufficiently small 61 > 0, estimate (3.1)
holds true.

Proof. By (1.19) and (1.20), there exist o > 0 and C; > 0 such that for
all 61 € (0, dp) we have

(4.1) & < Ci(E +5%), Ve o).

We note that if r,(y) =0, then {§ = &f =0, s* = L and ¢, (y*) = ¢y, (y*) = 0.

By (1.6) this is impossible. Therefore r,, () # 0 must hold true.

|50y €6 Puo (¥ ") —E1 oy (¥7)]
NETIOI

Then by decreasing the parameter §;, we can assume that for some constant

Cy >0

Case A. Assume that s* = 0 and ¢, (y*) >

(4.2) Qs <Ol Ve O
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Then there exists a constant C3 > 0 such that
—ImT}; (y,¢) > Css,  ¥(y,¢) € Bs(y") x O(61),

provided that |§| 4+ |01] is sufficiently small. We set VHjE = (D, — I‘ff(y,s,
D'))wy,,. Then we can represent P, ; as

P;L,s(yv S, D)wl,u = ,LL|G‘(Dyz - Fi(yv S, D/))Vﬂi + Tjwl,vv

where Tf € L(HY#(G), L?*(G)). This decomposition and Proposition 2.3 imme-
diately imply

H\/E(Dyz - F;T (y, s, D'))w17y|y2:0||[,2(ag)

(4.3)
<Ca([|1Puswrpllzz(g) + 1Wller s g))-

This inequality implies
(4.4)
Vsl Dy, w1 ol 22 (ag) +Vslwiwllmre a9y < Os((|Puswrwllnz gy + [[Wllare(g))-

Next we need the estimate for (V,,, g—;’;, 8;;'2” ) We may rewrite equations (2.8)
2

and (2.9) as

(4.5) —Diovl — (A 2p) (1D, —il' (y1)Dy, )wa+ piDy, wy +K7(y,D)v = fre%,

(4.6) —D2 vy~ (A+242)iD,,ws—u(iDy, —'(11)iDy, wr + K (3. D)v = fac™?,
where I~(7 and IN(S are first order differential operators. Furthermore, setting

q1 = flGSSD - uiDy2w1 - I?7(y7 D)Va
@2 = f26%° + p(iDy, — £'(y1)iDy, w1 — Ks(y, D)v,

we rewrite (4.5) and (4.6) as

(47 {—Dzovl — (A4 2up)(iDy, —il'(y1)Dy, )w2 = q1,

_Digfl)z — (A +2p)iDy,ws = ¢o.
Using (4.7) we get rid of the term D,,ws in (4.6):

(4.8)
— D} v1 — (A+ 2u)iDy, (ba1 (y1, Dy, Jv1 + baz(y1, Dy, Jv2) — £ (y1)D3 2
=q + U (y1)g2 + Ko(y', D)g.
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Using (1.13), we obtain
(4.9)
Dy, b11(y', Dy, )v1 + Dy, b1a(y', Dy, Jva = Dy, w1 ]y,=0 + Kio(y', D’)(ge™?).

Here and henceforth I?g and K 10 are first order differential operators.
Set

K(y', D)

_ _D12/0 - ()‘ + QM)iDyl b21 (yI7 Dy1) _()‘ + 2/’(‘)iDy1 b22 (yI7 Dyl) - El(yl)DZO )
Dyl bll(yI7 Dy1) Dyl b12(y/a Dyl)

By (4.8) and (4.9), we have
K(y',D')v = m,

where m= (g1 + ¢ (y1)q2 + Ko (v, D")g, Dy, wq |y2:0+l~(10(y’, D’)(ge*?)). There-
fore

K:(y/a D/)VV = XV(57 D/)m - [XV(57 D/)v K]V7
and since det K(0,¢*) # 0 if A(0) # 0, we have
Vy = K_l(ylv D/)(X,,(S, D'm — [x,(s, D), Kv) + T(y', s, D) vy,

where T € L(H'#(R?), H*>*(R?)). Hence

(4.10) Vs

(558 )|
" Oy’ dy3 H2:$(8G) x HL:$(8G) x L2(8G)

<Cs (\/EIVIHM(GQ) + 1fe*? [l (o) +Vsllge* 1+ (ag)

(B

, W1,p
Y2

L2(8Q)><H1v°‘(8g)>.

By (2.25) with 8 = A+ 2u and 8 = 2u, we obtain

<V vy 52%)
" oyy” Y3

< 07(5||V‘|%{1,s(ag) + ||W||%{1,s(g) + ||f€w||%llvs(g) + 3||g€s<p“%{1,s(ag))-

2

(4.11)  s[lwy[|Fregy + 5

H?25(0G)xH*(0G)xL2(9G)

Applying Proposition 2.1 we obtain (3.1).
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Next we need to consider two more cases. Using the definition of the

operator I‘j{+2u(y, s, D', we have
/ 8Z1 sp Y7+,
(4.12) Xv (s, D) o’ )= VI (', 0) = [xws sy, Jwn

+ ia:(ylv Oa S, D/)(bll(y/a Dy1 )’Ulyy + blg(y/, Dy1 )1)271/
+ [Xuv bl]V + Xy(al (yl)ges‘/’)).

Here we recall that the operators ba; and byg are defined by (1.16). Substituting
(4.12) into (3.8), we can obtain

(4.13) D2 v, = fy — il "' (y1)Dy,ws,,& + R(y', 5, D')v,,
where we recall that é5 = (0,1), and we set

f -

XVI_l(yl) (iVN+ (y/’ 0) + ia: (y/a 0,s, D/)él (yl)ge&p - [Xl/a S@yz]wl + [lea bl}v)
0

+Dxvs =T M A1) D, — T (y1) A (y1)Dy, Iv
+XV(Iil(y1)ﬁ(y/a S, D)geS@) - i[XV? IilDyz]wlé’l - [Xl/a DZQ]V7

and

R(y',s,D")v,

_7-1 _ia/—r(y/aorSvD/)bll(ylszn) —ia;’(y’,o,s,D’)blg(y’,Dyl)
- (yl) 0 0 Vy

I (y1) A(1)D;, v — T (y1) A (y1)Dy, v
By (2.14) and (4.13), we obtain
(4.14) xu (s, DYB(y,D')v = xu, (s, D')(Q ™ '£e*¥)

+ XV(Q_I(%l (ya D), mQ(yv D))ge&p)
- [Xl/? D:LQJQ]V - (fo - il_l(yl)Dyzwluéb + R(y/a S, D/)VI/)'

Next we note that for the principal symbol of the operator II(y', s, D’)
B(y',s,D") + R(y',s,D’) we have

(4.15) T(y) = TI(y) = (%(0)(592 —2\/%15TI£1*|> 7

0 o (0)(E7)?
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where I=sign(5¢y, (v*) —1(0)& ¢y, (v*))- Really, since byy (y*', & +is* oy, (v*
=0 and bi2(y*', & +is* @y, (y*)) = 2i we have

@ w — )"“‘
wio) (™ ):(3 W (O)I>§TI£TI

and

(4.17) (—1_1(0)A(0 &+ B(v)
A(A+p)
(4 )

(A+2p)
_ *\ 2 ,u( ) O

By (4.16) and (4.17), formula (4.15) follows immediately.

Case B. Assume that s* =0 and
|ty €6Pue (V) — 50y, (7))
AHL(0)[¢5

(4.18) 0y (y") <

Note that in this case we still have (4.2). Then, since s* = 0, we see that

Reru(y*,¢*) > 0. Hence

IH(y*,¢") =I|\/Reru(y*,¢*)|, T =sign(&oy, (y") — 1(0)&5 ey, (¥9)).
Therefore
Ly, ¢ ((0)py, (y*)ET — 040 (¥")E5)

(4.19)
Re 7, (y*, ¢*)| (11(0)py, (y)ET — ¢y (¥)E5) <0

We note that by (4.15)

Ows ,, ows
4.20 wy, = Ri(y',s, D’ Y g3, we, = Ro(y, s, D’ Yt qa,
120 i = R0, D) gy = B0, D) 2 g
where
2N (0)u(0) N0
@21)  Riy) =~ OOy () = 2Oy

(A +20)2(0)€; (A +2p)(0) 7|
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and

(422)  Vs|(g3qa) ler = (a6) < Cs/s(|Vlmr = (ag) + [[Wllere ()
+ [|fe*? |l gy +V/sllge*? s (ag))-
Consider two cases. First let
Py (Y ENTH(y*,¢*) >0
This inequality and (4.18) yield that |£§wy, (¥*)| > 1§50y, (¥5)]- If £5 oy, (¥*) >
0, then I'f (y*,¢*) = [/r.(7)| and &gy, (y*) > 0. Hence by (1.6)

* Y ( * * * Y0
[on ()t — 228065 g, (g + 2080 6

@UZ(y )> At = A+H
b (0) ¢ 0)l¢;]

This contradicts (4.18). If 5wy, (y*) < 0, then I'f (y*,¢*) = —[\/ru(7)] and
&y, (y*) < 0. Therefore

*\ ¢k y )& * ¢k y
|y, (y)ET — % _ Pu (y")étr — wi(g; )fo

2R (0)l€7 | S (OIS]

y (1.6) this again contradicts (4.18). As the second case, one has to con-

sider (gy, (y*)&0)T) (v*,¢*) < 0. Similarly to (3.4), we note that Zg\lm

Oy (¥*) >

can be
written in the form

(4.23)

1
E&—O)—Q;L (’IUQ’,,)

* 8’11} 4 ? *
-/ {S(A+2u)2(0)90y2(y ) |22 |1 530+ 20 (0) Sy >w§,y}dz
oG Y2
511)2,, aQUQy anu
s * Vo % 5 dE
#ie [ 2502000 52 0+ 20000 ) G2~ ) 52 |

+ / SO 200 (0)y (Y IEE — (A + 20)(0)E — 262, (")
oG

s* (A +21)(0)¢y, (v*)
=Jy + Jo + Js.

Using (4.20) and (4.22), we can transform .J, as

8’(1)27,, (—i)X

(4.24) J, =Re /8g 25(\ 4 21)(0) T

Ows .,
{(A+21)(0)py, (y*) Dy, — 4o (y*) Dy, } Ra(y, s, D’)Tyz’dﬁ + I,
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where

2

( ov, 82v,,>
Vu, 7> a2
dy2 "~ Oy; H25(9G) x HY#(9G) x L2 (9G)

+09(||f€w||%11vs(g) + 3||g€w||%{175(ag))-

Note that for the symbol of the operator we have

(4.25) (=) { A+ 20)(0)py, (Y7)ET — uo (v)E0 } Ra(7)”

= (_Z) {()‘ + 2:“)(0)@’1/1 (y )51 — Pyo (y )50} ()\ + QHJ)(O”&-T‘
_ e v 2A(O)
—_{()‘4"2:“)(0)902/1(}’ )51 _‘Pyo(y )60} (>\+2N)(O)‘§>{|

- _{H(O)%n (y )gl ‘Pyo(y )50} (/\+ 2,“/)(0)‘5“

A+ )(0) (g, (y)ENTL (v, C7) > 0.

By (4.25), (4.24) and Géarding’s inequality, we obtain

awl,l,
, W1y, W2y
Yo

- Cll(erwH%{l,s(g) + ||V||%12,s(g))
( ov, (“)2v,,) 2
Vv, 3> . 2
dy2 "~ Oy;
Now we estimate J5. By (1.18)—(1.20) there exists a constant Cy5 > 0 such that

(4.27) 166 — 5705, (v") — (A +20)(0)EF + s> (A + 21) (0) 3, (v°))|
§ C‘1251(5(2) + g% + 82), VC S 0(51)a

8’11]2,,, w
8:1/2 s W2,v

where ¢(d;) — 0 as §1 — 0. By (4.26) and (4.28), we can choose constants
C14,Ci5 > 0 such that
< ov, 82v,,)
Vv, 5> 2
Oy~ Oy

—C1s(||f€w||%11‘s(g) + s||ges“”||%{1,s(ag) + ||V||%12:s(g))~

2

(4.26) Jy > Chos

L2(8G)x H1:5(9G) x H1:3(8G)

— €S

H?(0G)xH5(0G)xL2(9G) .

which yields

2
(428) |J3‘ S 0136(51)

)

L2(8G)x H1:=(8G)

2
Eg\llgu(wz,u) > Chas

H2:5(0G) x H15(8G) x L2 (9G)
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This inequality immediately implies (4.11). Applying Proposition 2.1 we obtain
(3.1).

Case C. Assume that s* # 0. If §; > 0 is small enough, then there exists
a constant Cig > 0 such that

(4.29) [0y, (v*) = (A + 210) (0)1py, (¥7)[* < 67C16 (€7 + 5%).
By (2.24) and (2.25), there exist constants C17 > 0 and Cyg > 0 such that

(4.30)
S0, (wa,0) + Crrsllws, 31,06y < Cas(1ParonswalFaig) + IVllEes(g)

8’(1)27,, w ?
3y2 > W2 v
where ¢(§) — 0 as 6 — +0. By (4.27) and (4.29), we have

an,u w
8y2 s W2,v

where €(d1) — 0 as 6; — 0. By (4.31) we obtain from (4.23) that there exists
a constant Cyy > 0 such that

+e€

)

L2(8G)x H1.#(9G)

2
(4.31) | J2 + Js| < Choe(61)

)

L2(8G)x H:#(9G)

dwa, |?
1 * 2,v
(4.32) S\, (W) > Cao /8g {S(A +21)(0) 0y, (y%) s
3 2 3 [k 2
+ 57 (A +20)7(0) ¢, (y ) w2, }dE
| (5 e
— € , W2,y .
Ay2 L2(8G)x H5(8G)
In terms of (1.9), we can represent
(4.33) Dfmvgm — 2,uD31U27,, +Tsv, +Tgv + T7(fes¢, gem)

- ()\ + 2,“/)Dy2w2,1/ + XV(S7 D/)(fQGSSD)v Y < agv

where we have estimates:

1T5vullLz(agy < €(8)[vullmz:(ag) [T6vllL2(ag) < Corll Ve =(ag),
IT7(£e°?, ge*) |12 (ag) < Carll(fe°?, ge*®)lIL20g) x b1+ (99)
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where €(0) — 40 as 6 — +0. On the other hand, by rx;2,(y) = 0, we have
(6 + ipua (y)5)2 — (A 20) (0)(€] + gy, (y*)s7)? = 0, that is,

(&6 +it0ye (y*)5")? = 20(0) (&] + oy, (y*)s™)* = MO)(E] + gy, (v)s*) £ 0
by the final condition in (1.3). Therefore, from (4.1) and (4.33) we obtain

an,V
y2

(4.34) IV/5vs | 120 56) < Cho {Hf

L2(99)
+ Vsvlarag) + ||\/5f2€w||L2(ag)}

2
b es ( ov, 0°v,

Vv, 33 35 .
Oy2 51/% )HH%S(ag)levs(ag)xLQ(ag)

Thanks to (1.12), (1.15) and the fact that £ + is* @y, (y*) # 0, we have

(4.35)
Vsllvrull 2. (ag)
<Cos {\/g

(r“)’wg,l,

90 + [Vl agy + Ife? e ) +\/§||g€s¢||HLs(ag)

L2(0G)

( ov, 82v,,> H
Vv, 3 2 .
W2 Y3 ) |z (9g) x 1+ (9G)x L2 (89)

+6((5, (51 )\/g

Consequently (4.34), (4.35), (1.12), (1.8) and (1.9) imply

]
7oy Oy H2#(3G) xH!:*(9G) x L2(9G)

(4.36) Vs

awl,v
y2

<Cyy {\/g

L2(99)
Vsl Vllgreag) + [1fe? gre(g) +\/§||g65“’||H1vs(ag)}-

By (4.32) and (4.36)

2
Eg\l_i)_gu (w2,u) Z C’255

<V vy 52%)
" oy’ Y3

—Czs(SHVH%{lvs(ag) + ||f€w‘|%11:s(g) + S||g€w||%{1vs(ag))~

H2:5(0G) x H15(8G) x L2 (9G)
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Hence, from this inequality and (2.25) with 8 = A + 2u, we obtain

2
(4.37) /s <Vwav,’av;>H
QY2 0y3 ) |lm2 (o) xH # (9G) 12 (09)

< Cos/s||VIimreag) + Ife*? [l (g) +V/5118e™ [+ ag))-
By (4.37) and (2.25) with 8 = u, we have

ov, 03%v,
( " Dy’ O3 )HH2‘S(39)><H1’5(69)><L2(89)

+Vsl|wa || 10 (g)

Vs V5[ W lll1e(g)

<Cor(/s|[Vlmrs(ag) + Ife*? s o) +V/sllge** [l ag) )

Finally using Proposition 2.1, we obtain (3.1). The proof of Lemma 4.1 is
completed. O

§5. Case 7,(7) #0 and 7y42,(7) #0

In this section, we consider the case where

(5.1) ru(y™ ¢ # 0 and [ragau(y™, ¢7)| # 0.

Denote

H**(9G) = {u(yo, 1) € L*(R?); |Jull® 4 - 00)

/R L+ 55+ €ol® + 16 ) déodes < oo},

where we set 4(o,&1) = g2 u(yo, y1)e e~ vot+&1v1) gy dyyy . We have

Lemma 5.1.  Let (5.1) hold at v = (y*,¢*) and let suppx, C O(d1)
where 01 1s a sufficiently small positive number. If (* € Vo, then we have

1 S
(5.2) [V llez.s (o) < Cl{s_i(”fe llars(g) + [IVIE=(g))

1 1
+ 5% |ge”® [lg1.sag) + Si”V”HlS(Q)}
and

(5.3) Vs

ov,
(V”’ 8—> H 3 1 < Co/s||vllmrsag) + Wil (g)
Y2/ ll|m2#(06)xHz *(9G)

+ 1€ lep o @) + g™l 5.0 o)

If * ¢ Wy, then estimate (3.1) hold true.
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We recall that the sets ¥, Uy and Uy are defined by (1.29) and Lemma
1.1.

Proof. Thanks to (5.1) and Proposition 2.2, decomposition (2.18) holds
true for 8 = p and 8 = \ 4 2u. Therefore we have

(5'4) (Dyz - F: (yv S, D/))wlyv|y2:0 - V,qu(a O)’

(5.5) (Dy, — F)\+2#(yv s, D' ))U’Z,V‘yz:O = VA++2;L('7 0).
By Proposition 2.3 we have the a priori estimate:
(5.6) V[V (5 0) 22 06) +V/s [ Vaa, (5 0)ll 22 a0)
< Cs([[Prtapswzllz2(g) + |1 Puswillzz(gy + |Wller s g))-
System (1.1) can be written in the following form:

0%y n Jrotu Odivu

At} —(A+2 —

Oz # O0xs (A+2p) Oxy s
0%us Jrotu Odivu

g _ —(A+2 —

Oz # 0x1 (A+2p) Oxs 2

where m = (my,ms) = (Vzu + (Vzu)?)Vzu(Z) + f. In y— coordinates these
equations can be written as:

0%uy 0z o 0

- _ 2 / =
8y0 + ,LLB ()\ + ) (ayl J4 ay2) z9 my,
8%us ( 0 0 ) 0z
Tu (L _p 2 Ao 22—,
o3 a o 0y ~ )8 Y2 -

Here we still keep the same notations for u and m in the new coordinates. The
above equations can be written in the form:

—Diovl + wiDy, w1 — (A + 2p)i(Dy, — £'Dy, )wy = mye®?,
*Dio’Ug —ipu(Dy, — Dy, )wy — (A + 2p)iDy,we = mae®?.

Applying to these equations the operator x, (s, D) we obtain

(5.7) —D? vi, + piDy,wi, — (A4 2)i(Dy, — £'Dy, )ws,, = ha,

(5.8) —D} va, — ip(Dy, — £'Dy,)wi, — (A + 20)iDy,wa,, = h.
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Here hy = v, (5, D')(m1e) + [y D3, Jor + Dy . Jur = (0 +20)i(D,,
U'Dy,), xolwa, ha = xu (s, D')(mae*?) + [x., Dy Joa — i[p(Dy, — €'Dy,), xoJwi —
[(A+2u)iDy,, x,]Jws. Finally using (5.4) and (5.5) we arrive at the system
(5.9)
_Dzo’ul,u + /LZO[I (y7 S, Dl)wl,u - (>‘ + 2N)Z(Dy1 - gla;\r_‘_Z# (y7 S, Dl))wZ,u
=hy —ipV —i(A+ 2u)€'V>\':_2M on G,

(5.10)
_Diovz,y —in(Dy, — C'af (y,5,D"))wiy — (A + 2u)ia1‘+2u(y, s, D"ws,,
=hy —ipl'VF — (A +2u)Vih,, ong.
We set hy = hy — ipVE—i(A+2p) 0V 2 hy = hgy — ipl' Vi — (N +2p)i VA+2M
By (1.13)—(1.16) we have
(5.11) —D2 vy + picf (y, s, D )b11(y , D)oy,
— (A +2u)i(Dy, —l'ay,y,(y. 5, D))bar(y', D)oy
+ ,U/LO(I (y7 s Dl)b21 (ylv D/)U2 v
(A 2Dy, — (v 5. D )bn(y. D Yny = 41 on G,

(512) - D2 U2 v ZN(D ZI :(ya S D,))bll( )vl v
()‘ + QM)ZOQ\+2#(:U, S, D )b21 (y ) )UI,V
- W(Dyl —la I(Z/, s, D’ ))521( /)112,11
- (A + 2u)ia;\"+2#(y, s, D")baa(y’ , D' )va, = g2 on g,
with
@1 = hy + pict (y, 5, D")([xv, b1y, D)IC1 (y)ge™?)
—(A+20)i(Dy, — a0, (y: 5, D)) ([xw, b2(y', D)]Ca(y)ge™?),
g2 =ha —ip(Dy, — '} (y, 5, D) ([x0, b1 (y', D)C1(y)ge™)
—(A+2p)iaf o, (Y5, D) ([xws ba(y', D)]Ca(y)ge™?).
By (5.11), (5.12) and (1.22) we have :
(5.13) B(y',s,D')v, =q, ¥y €9G,
where we recall that the operator B(y', s, D’) is defined by (1.22) and we set

(5.14)  a="Ti(ge**) + To(f(y',0)e*?) + T3v + G(y) (V,S (,0), Vi, (. 0)),
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T, T3 € LH(0G),L%(0G)), T, € L(L*0G),L*(8G)) and G(y) is a C*
matrix-valued function.
Now we consider the following three cases.

Case A. Let detB(vy) # 0 and ¢* ¢ U. In that case, there exists a
parametrix of the operator B(y', s, D) which we denote by B~1(y/, s, D'), and
we have

(5.15) v, =B7'(y,s,D")a+ Kv,,
where
K € L(H"#(0G),H**(dG)) and B~l(y,s, D') € L(L*(dG), H**(9G)).
Then
(5.16) [Vollg2:a0) < Calllallz2(og) + [[VIEr=(ag))-

This estimate and (2.10) imply

ov,
Oy2

< Cs(|lallLzagy + V= a0) + g€ 11 (a6))-

(5.17) ‘
H'*(0G)

Next (2.14) and (5.16), (5.17) give us
(5.18)
H(‘?zvy

92 < Cs(llallLzagy + IVlersag) + ||ges¢||H1=s(ag) + ||f€s¢||L2(ag))~
2

L2(9G)
Finally taking into account
lallLzag) < C7(||f€s¢HL2(89) + ||g€s¢||H1vs(ag) +[vllarsag))

we obtain from (5.16)—(5.18)

(5.19)
|13 (w1 ,0) [+ Z a2 (w2,,)] < Cs(erw||%{1vs(g)+3||V||%1115(ag)+5||g€s¢||%{1vs(ag))-

Inequalities (2.25) and (5.19) yield

(v vy 52%)
vy 6y27 ay%

< CQ(erSWH%{LS(g) + SHVH%{LS(ag) + 3||ges¢\|%11:s(ag))-

2
(5.20) s||w,,||%{1,s(g) +s

H2:°(8G) x HL* (8G) x L2 (9G)
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By (5.20) and Proposition 2.1 we obtain (3.1).
+ +
If det B(y) = 0 and ¢* ¢ U then either Im%‘(fy) < 0 or Imrx%('y) < 0.
+
In the first case: Im%‘(’y) < 0, we have

(5.21) Vllwillanesag) +v/sll (b1 + b12) (Y1, 8, D) Vo [k ag)
< Cro(PrgapswzllLzgy + 1 BuswillLzg) + [[wllers(g))-
Next we consider the operator ®(y', s, D’) given by
by, s,D' v, = (—Dioul,,, — (A +2p)i(Dy,
_élai_+2u(y7 S, D/))bQ(ylv D)qu A(Sv D/)bl (y/a D)vv) = (Q?n q4)a

where A is the pseudodifferential operator with the symboly/1 4 s2 + &2 + &£7.
By (5.21) and (5.14), we have

(5.22)
Vsll(g3: q4) 20y < Crill|Pasau,swzllr2(g) + | Puswillzzg) + [Wllars g
Jr\/§(||f68¢||L2(8g) + ||ges¢||H1as(ag) + [[v[lH1s 0g)))-

Next we observe that since the principal symbol of the operator ®(v) # 0 we
have

(5.23) [V llaz.s ag) < Crz2(lldllLz(ag) + [IVIIats(ag))-
Then repeating the arguments (5.17)—(5.20) we obtain (3.1).

+
IM4ou
S

In the second case: Im (7) <0, we have

(5.24) Vsllwallmrs (ag) +V/sl (b21 + ba2) (1, 8, D)o |12 (a6)
< Cua([[Pasapswzllzz(g) + 1P swilli2(g) + Wllere(g))-
Next we consider the operator ®(y/, s, D’) given by
®(y',s,D")v,
-D? vy, —ip(Dy,, — Coif (y,,D'))bi(y', D)vy, A(s, D")ba(y', D)vy)

By (5.24) and (5.14) we have

(5.25)
Vs[l(g5, 96) L2 (0g) < CrallPryop,swallL2(g) + |1 Puswill 2oy + [Wlles (o)
+\/§(||f€s¢||L2(ag) + ||g€s¢||H1w3(ag) + V[l ag)))-
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Next we observe that since the principal symbol of the operator ®(7) # 0 we
have

(5.26) Vol a9) < Crs(lldllezag) + [1VIlmt+(ag))-

Then repeating the arguments (5.17)—(5.20), we obtain (3.1).

Now we have consider the case where (* € W. In order to treat this
case, we will use the Calder6n method. First we introduce the new variables
U = (U1,Us,Us3,Us), where (Up,Us) = A(s,D')v,(Us,Us) = Dy,v. Then
problem (1.8)—(1.9) can be written in the form:

(5.27)

D,,U=M(y,s,D)VU+F inR?x[0,1], B(y,s, D)U(y)|yp=0 = ge*,
where F' = (0, P(y,D)v) and we set D = (D,,,D,,,D,,), D, = %a%j
is¢y, and M(y, s, D’) is the matrix pseudodifferential operator whose principal
symbol M; (y, () is given by formula (see [Y]):

0 A FEs .
M — _ E
1(y,€) <§.1.7‘[21“1_1 &.17‘{22> 18Py, L4,

where Ay = ], Moy (y, & +isVyp) = ((§0 + ispy,)? — p(&1 + isey,)?) Bz —
(A + w70, Mo (y, &) = —(\+ p)(07G + GT0) — 2ufGT E», A = A(y) =
A+ p)GTG + p|G|*Es, G(y1) = (—0'(y1),1), 0 = (&1 + ispy,,0). Hence and

henceforth, g7 denotes the transpose of the vector 6. For the stress boundary
conditions, we have

B(y/a S, D/)U = (Bl(yla S, D/)v BQ(y/a S, D/))U = gesw,
where
NGTH + TG + pfGT By
V12 ’

Case B. Let det B(y) = 0 and ¢* € ¥5. We introduce the matrix symbol
K(yl’ S, §0a 51) by formula

Bl(ylvsvgl) = Bg(y/,S,D/) :A(y/,O).

(5.28) K(y',¢) =

_ 1 Baa(y',¢)  —Bi2(y',¢)
L+ 82+ + &7 '

—Bx1(y',¢)  Bu(y', ()

Applying the pseudodifferential operator K(y', s, D’) to equation (5.13), we
have

(5.29) K(y',s,D)B(y',s,D')vy, = K(y', 5, D')q.
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The principal symbol of the operator K(y', s, D')B(y',s,D’) is given by the
formula K(y',)B(y',¢) = detB(y',()E4/|¢|?. Note that if (* € Wy, then
a3(7) = (452C(0) ~ V(& +is"e(y")* # R} for § € {u(0), (A + 2)(0)}.
Therefore Im «; (v) < 0 and Im a;,,(v) < 0. Hence we may rewrite estimate

m
(5.6) in the form

+ [V,

(530) VG0 P Y0 IS

H3°(8G)
< Ci6([|Payap.swallL2(g) + 1P swillz2(g) + [Wllae(g))-

Thanks to (5.14), (5.30) and Condition 1.2, applying Theorem 1.1 (Chapter 8)

from [E] we have estimate (5.3).

Now we need to show that estimate (5.2) holds true. By (* € Wy, the
matrix M;j(v) has four distinct eigenvalues given by (1.18)—(1.20). Following
[T1], in terms of the change of variables W = S~!(y, s, D')U, we can transform
system (5.27) to

(5.31) Dy, W = M(y, s, D')W +T(y,s, D)W +F,
where

(5.32)  |IFllp2@ymrsag)) < Crr(|P(y, D)Vl gy + IVIL2@emr s ag)))-

Here the matrix M has the form

— (M0 0 (T2, Q) 0
M(yvg) - < +0 M,(y, C)) 5 M:i:(y7C) - ( At 0 Fi(y,()) )

and the operator T(y,s, D) € L*(0,1; L(L*(G),L*(G))). We represent the
symbol S in the form S = (s}, s3,s7,s5 ). Here Ay = | (s,o,¢1) |,
sli =((§—|— af\[”NG)Al_l, af+2u(§+ a)j\[+2MG)A1_2),
sy =((ag; (&1 +ispy, —ail), —(& +ispy, —agl))AT?,
Ay (og (€ sy, — al), = (&1 + sy, — i l))AL?),
are the eigenvectors of the matrix M (y, (), ¢ € S?, which corresponds to the

eigenvalues Ff—s-?u and I‘f. Now using the standard arguments (see e.g., §4 of
Chapter 7 in [Ku]), we can estimate the last two components of W as follows

(5.33) (W3, Wa)llmrs gy < Cis(|1P(y, D)VllL2(g) + [IVIIE15(g)),

where the constant Cg is independent of N. Now we need the estimate for the
first two components of vector W. Henceforth we set j(8) = 2 if § = p and

J(B)=1if B =X+ 2u.
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There are the following two possibilities (i) and (ii): (i) Im FE(’y) > 0 for

any 3 € {p, A+ 2u}.
Then, by the same argument (see e.g., [Ku|, pp. 241-247), we have

(5.34)
IW;s) 226y < Cro(lP(y, D)VllLa(gy + [IWjes) (5 0) g2 o) + 1V [[ers(g))-

Combining this inequality with a priori estimate (5.3), we have

(5.35)  [IWj(a llers gy < Cao([|P(y, D)vl|Lz(gy + [VIE1s0g) + 8™ (115 (ag)

]' S
+ﬁ(||w||H1v5(g) +£e™ o) + [VIa1(9))-

(ii) There exists B € {u, A+ 2u} such that ImFE(*y) =0.
Applying Proposition 2.4, we obtain

IW; () lle= (g
1 1
<Ca (ﬁ(lp(yaD)V”Hl’s(g) + [Ivllez(g)) + 57 ||Wj(6)('»0)||H;,3(8g)> :
Combining this inequality with a priori estimate (5.3), we have

(5.36)

1
IW;)lars(g) < Caz {ﬁ(IP(y, D)v|gs(g) + [VIa2:6))

_1, s 1 1 1 s
+s7Tlge 3.0 gy T 5T (IVIE12(00) JrﬁHWHHl»S(g) +ﬁ||f€ g"|H1=s(g))}-

In view of (5.33), (5.34) and (5.36), we obtain (5.2).

Case C. det B(y) = 0 and ¢* € ¥;. In that case we have
(5.37) =0, 50, (y") = 0.
Then we can assume that
(5.38) ImI(7) =ImTY,, (7) > 0.
In fact, if

(5.39) ImT}(y) = ImIY,,,(7) <0,
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then the situation is simple because we have the decomposition
P,B s(yus D)wj /8|G|( P;:(yﬂsle))Vﬂi+Tuiwj(ﬂ),'/’

where T € L(H(G),L*(9)), B € { A +2u}, j(6) = 1 for f = p and
j(8) = 2 for B = A+ 2u. This decomposition, (5.39) and Proposition 2.3 imply

(5.40) IV$(Dy, =5 (y, 8, D"))wj(8) 0 lya=oll L>(90)
< Coz(|1Psswicpywllzz(g) + IVIE2s(g))-

Obviously
- V;j_('? 0) + Vp_(" 0) = (Oé:(y/, 0,s, D/)
—Oé; (y/7 0,s, Dl)){(bll(y/a Dyl) + le(y/7 Dyl))vl/ + 61 (yl)ges¢} on 99

and

VAtQﬂ( 0) + Vaiau(-,0) = (a;\r+2#(y/= 0,s,D")
— 0540, (45 0,8, D)){(b21(y', Dy, ) + boa(y', Dy, ) ) v + Ca(y1)ge™*}  on 9G.
Since ozg(y*7 (") —ag(y*, (") = 2y/ru(y*, ¢*) # 0 and the determinant of the

matrix

20/ (y*, ()b (Y, € +is™ oy, (v*))  2¢/ru(y*, CF)bia(y™, € +is* oy, (v7))
20/ (y*, CF)bar (Y, € +is™ oy, (v*))  2¢/Tu(y*, ()b (y™, £ +is* oy, (v7))

is not equal to zero, by (5.38) and Garding’s inequality, we obtain

< ov, 03%v,
Vo, 53—

(5.41) Vs ; ) H
2" 03 ) llsazs (96) xbats (9G) x L2 (80)

< Cou([I£e°® [lgrs gy +V/5)|8€™ i1+ (ag) + [IV]| 512+ gy)-

In terms of (5.41) and (2.25), we obtain (3.1).
The matrix M;(7y) has only two eigenvalues given by (1.18)—(1.20). More-
over it is known that the Jordan form of the matrix Mj(y) has two Jordan

blocks of the form:
ME - () il _
0 ()

Following [T1], in terms of the change of variables W = S~1(y, s, D')U, we can
transform system (5.27) to the form

(5.42) Dy, W = M(y, s, D)W +T(y,s, D)W +F,
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(5.43) By, s, D)W = ge?,
where

(| 212 90y) < Cos(| Py D)VImre(g) + V2 @im - (0g))
and the principal symbol of the operator B is defined by formula
(5.44) B(y's.¢) =B(y,5,)5(/,0,5,8).

Here the matrix M has the form

—~ - M. (y,() 0 _ Fi u(y?g) m1i2(y7C)
M(:%C) - < +O M_(y,C)> s Mi(y?g) - < )\+20 Ff(y,@)) )

and the operator T'(y,s, D’) € L>(0,1; L(H"*(G),H"*(G))). We describe the
construction of the pseudodifferential operator S. We write the symbol S in
the form S(y,s,&') = (s7, 54, 57,55 ). Here st = ((9+ai_2#G)Afl,ai_2u(9+
ai_Q#G)AfQ) are the eigenvectors of the matrix M (y, () on the sphere ¢ € S?
which corresponds to the eigenvalue I‘fwu(y, s,&") and the vectors SQi are given

by

1 _

sét(yasvgl) = Eisia Ei = 2_ (Z - Ml(y7c)) 1dZ,

™ Jo+
where C* are small circles oriented counterclockwise and centered at I‘f(y),
and s* solves the equation M, (7)s* — [ (y)s* = s7°(7). By (5.38) the circles
C?* can be taken such that the disks bounded by these circles do not intersect.
Note that the vectors s?[ € C?(Bs x Og,) are homogeneous functions of the
order zero in (s,&g,&1). Now, similarly to (5.34), we can estimate the last two

components of W as follows

(5.45) (W3, W)l < Co(|P(y, D)Vl g) + VIa2s(g));

H3*(00)

where the constant Csyg is independent of N. Now we need to estimate the first
two components of the vector W on 0G. We can decompose the boundary
operator B(y',s, D) = (BT (y/,s,D'),B~(y/,s,D’)) such that

(546) ]E+(yla S, D/)(Wl’ WQ) = 7I§_(yla S, D/)(WB, W4) + gesqﬁ’

where B (i, ¢) = (B1(v/,¢), A(y/,0))S4(5/,0,¢), By is the principal symbol of
the boundary operator B and S, = (s}, s3). At the point 7 the vectors s1, so

are given explicitly by

= (& +is gy, (y"), isign(&7) (&5 +is 0y, (¥7)))



CARLEMAN ESTIMATE FOR LAME SYSTEM 1077

() = [ 5S8R & +isToy (v7) o
1 () (77, AL 77>,

= et L isign (&7
T 2 (ff)2+(s*)2()\+u)(0)( gn(é7), 1),

3() = <g e e (R 6 i (V)T m) .
Therefore
(5.47)
detB ) = @((%))i((g a4 —Jisf)(fm&f(i)?y»)

22X +4p

(& +istoy (v)) <u T ) (0) #0.

By (5.44)—(5.47) and Garding’s inequality, we obtain

(5.48) NE

( ov, 82vy)H

Vu, 57— a2

Oy2" 9y3 ) |lm2(0g)x 11+ (99) xL2(99)
< Cor([[P(y, D)vlmrs gy + IVIE24(g))-

This inequality implies (5.19). Then from (2.25) and Proposition 2.1 we obtain
(3.1). O

Now we will proceed to

Completion of the proof of Theorem 1.1. Microlocally we obtain two
types of estimates: If (* € Uy, then we have estimate (5.2), while if (* ¢ U,
then we have estimate (3.1). By O¥5(d3), we denote the da-neighbourhood of
the set ¥y in S2. We take the parameter &, sufficiently small. From the covering
of the set OW(126,) by balls with radius 452, we take the finite subcovering
{Bus,(¢j) }jery, ¢ € ¥a. Let {x,}ver, be a partition of unity associated with
this subcovering. For the set m, we take the finite covering by
balls with radius d2. Let {x.,}.er, be a partition of unity associated with
this subcovering. We extend the functions x, as a homogeneous functions of
order zero to a function in C*°(R?). Since Wy C OWy(12462) U 52\ OV,(302),
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it follows from (5.2) and (3.1) that

(549) IVlereo) <Cla 3 Ivliae
reT UY,

11 .
< O {, (4 25 ) 1P DI + el g

2
1 1 _ ~ ~
+ (N + —_> Z 52 |a||agV|L2(g)}, VN Z N, S Z So(N)

1
4
%7 1al=0

Fixing the parameters N and so(NN) sufficiently large, we obtain

(5:50)  [[Vllz2e(g) < Coo(IP(y, DYVllrreg) + 8™l 5g))s 75 > s0.
Combination of (5.50) with estimates (5.3) and (3.1), yields

ov, 0%v,
50 Ve |(va e T )|

2" Y3 ) llmze(9g) xH1+(96) x L2 (9G)

< Cao(IP(y, D)vierre(g) + 186 g3 e og)): ¥ € T2
and
(5.52)
VallVullyz - g, < Cor(IP(w, D)VIme() + 8™l 1.0 ) F¥ € 11

Estimates (5.51) and (5.52) yield
(6:58) VAl g o0 < CoalIPE DIV ) + 8% g - o))

where we used ¢ = ¢ on 0f). We note that estimate (5.53) is obtained under

additional assumption (2.7). Now we will get rid of (2.7). For this, we consider

the function Au instead of the function u, where 6 is a smooth cut-off function

such that flo , = 1and 0o | \o
Nz

1
AN2 2

2N
and prove

654 Vsl

1
Ts ||ues¢\|H2ws(g)

< Can (166 llwo) + 186 g g, + 7 )

H?2%(9G
v52807

= 0. Then it suffices to modify (5.53)
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where we used the fact that p(z) < ¢(z) in (0,7) x (92 1 \(2411V ) (see (2 6)).
Next by Lemma 5.1 we note that the analogues to estmates (5.3) and (5.2)
hold true for the weight function ¢ instead of ¢:
(5:55) V3l () a2 ) VX0 (0™ g3 0 o,

< Caa(l[ue*llgz(g) + 6™ lere() + 18"l y34.0 ) F¥ € 11

Let y_1; and x_» be C>-functions on the sphere S? such that y_; €
Ceo(OTs(F0a)), x—2 € Cgo(S* \ OV2(382)) and Xx—i1log,(iss,) = L
X—2|s2\0w,(8s,) = 1. Hence we have [x_1(s, )] + [x—2(s,¢')] = 1 for all
¢ € S% We extend the functions y_; and Y_o as homogeneous functions of
order zero to functions in C*°(R?). By (1.8) and (1.9), we have

(5.56) AT'P(y,D)x_1v + [x-1, A7 P(y,D)]lv = x _1A™ fe*.
Note that we can estimate

(5.57)  [Ix-1,A7 Py, D)]v]lis(g) < Cas([ue® [z () + [[e°? | mre (g))-

Hence applying estimate (5.55) and (5.57) to (5.56), we obtain.

(5.58) Vslx-1(s, D')(ue*?) || g2.5 ()

< Cao(|[ue*|lsrz(g) + 6™ [r2(0) + 18"l 52,0 )

Setting ﬁ@s(y, s,D) = Ps s(y,s,D), we have

1
BA+[E (y1)]*)

- ~ 1
P, ; 7D — aD/ — 7P s = X- 2RI
My (y S )X 2(8 )wl + [X 2 oy ]wl X 2 (/_]/(1—1— |£l(y1)|2)ql>
and
Piops(y, 8, D)X—2(8, D' )ws + [X—2, Prsop,swe
1
e (<A+ 20 (1+ 1)) * > '

Note that

12 (x—2(s, D")w1)| + [Exp2u(x—2(5, D )ws)]

s|[x—2(s,D") (g;; w)

L2(8G) xHY#(9G) .
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Combining this inequality with (2.25) we have
(5.59)  v/3lx=2(s, D )Wll1.-(g) < css{nfeWHHu(g) + I8¢ g3 e o)
+ | Ix=2, Puslwillz2(g) + [I[X—2: Paxt2u,s]wallL2(g)

+Vs || x—2(s, D") (awv‘”)

Thanks to the estimates

L2(9G) xH'*(8G) }

Ix=2, Puslwillzzgy + Il Ix-2, Patap,slwzllL2(g)
<Cso(|[fe* ;1.2 gy + IWller+(g))

s (35

and

L2(8G)xHY*(8G)
1 S S S
§C4o{ﬁllfe e (g) + 0|l ag) + Ix—2(s, D) (ue ¢)||H2‘S(BQ)}a

we obtain

(5.60) V/5lx—2(5. D) Wllez1.(q)
< Cln (16" gr1- @) + 186 g 0 gy + 11 = X205, D)Wl g

+Vs([[ue*|[grs gy + lx—2(s, D )ue*? |2« (ag)))-
Estimating the last term on the right hand side of (5.60), we obtain

(5.61) Vsl[x—2(s, D' )W|lm.2(g)
< Car(lfe™ 2 (0) + 186" g3« g, + 1(1 = X2(5, D) Wler(3))-

Since X —1lsupp(1—x_») = 1, by (5.55) we have

(1 = x—2(s, D))Wllerr.(g) < Ix=1(5, D )Wller.2 ()
<Ca2([x-1(s, D")(ue*®) |z (g) + [[ue*[rre(g))

1 S
<Cus 7= (e o) + 1w +(6) + 186"l 3.0 o, ) -

Hence, using this estimate and (5.58), we obtain from (5.61)

(5.62) V3l

1 S
<Cu (||fes¢||ms<g> H 186 g« g, + 75 e ¢||Hz‘s<g>>-
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We can rewrite equation (1.1) as

0%u
p(Z) 5= — u(@)Au
Oxd

=(u(@) + \@))Vzdivu + (divu)VzAZ) + (Vau+ (V) Vau(@) + £

Applying to each component of this system the Carleman estimate for hyper-
bolic equations we have

slue*? (g gy < Cas/s|fe*? |2 (g
+/sl[ue?|[gs gy + Vsl (div n)e*?[|ga gy + sllue®?| g ag))-

Estimating the term with divu on the right hand side of this inequality by
(5.62), we obtain

(5.63)

slue*®(lge(g) < Cas([[f6°[|mrs () + llge™ | s .- 0a T sllue®®||g.s ag))-

We set rot*v = (88—;’2, 7867“1). Then we have
—Azu = —Au =rot*rot u — Vz(div u).

Therefore we obtain

(5.6

4)
2
Z 9.1 w)e*?||Lz(q) < C47(||11€S¢||L2 oY =00y T slue*||grs))-

In view of equations (1.8) and (1.9), we can estimate 92 (ue*?):

(5.65) (|07, (ue*?)[L2(g)
2
<Cis > >IN0 (ue?) |2y + (1|2 g)

|a|=0,a=(0,a1,cx2)
Hence (5.54) and (5.63)—(5.65) yield

(5.66)
1 S
[ue’?|[gz.e(g) < C49{|fe “llezrsg) + 18 llgg.e g ﬁllue ¢||H2=S(g)}'

Estimate (5.66) implies (1.24). Thus the proof of Theorem 1.1 is completed. [J
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Appendix I. Proof of Proposition 2.1

Let 2 € [0,7] be arbitrary fixed.
First we choose Ny > 0 sufficiently large such that

(1) Vip(z) #£0, Vze Q#, xg € [0,T].
The existence of such Ny follows from condition (1.6).
Let rot*v = ((r;d—gfz, —59:1 ). Using the well-known formula rot*rot = —Az +

Vzdiv, we obtain
Azu = —rot*(rot u) + Vz(divu) in Qﬁ

The function v = ue®¥ satisfies equations

(2) Liv+Lov=gq, inQ_, viga , =0,
N2 ~NZ
where L1v = —Azv — s?|Vzp|?v, Lov = 25 Zi:l Vi, P + $(Azp)v and

qs = (rot*rot u — Vz(divu))e®?. Taking the L? norms of the right and the left
hand sides of the first equation in (2), we obtain

) n HL?"”;(Q ) +2(L1V,L2v)L2<QN1§) = IIqSII;(Qﬁ)

N2

[L1v]?
L (n
N2
After integrations, we will arrive at the formula:
2

(3) (L1V,L2V)L2 <Q . > :/ {28 Z ijvxk(pxjxk
Nz R,

k.j=1

2
. S 82A55 ~
+ 3 (div(|Vao2Vae) — [Vap2Az)|v|2 — = v Vi
2 j=1 &Bj
2
(Vag, f)do

_/ (8—X,L2v> da’+5/ Ov
a0 \ O o0

on
s / (V. )5 Vapl|v[2do.
oN

Denote ¢1(x) = () — €1 (z). Then
2

div(|Vzp Vap) = Ve Az0 =2 Y @0y Pa, Para;
k=1

2
=20° > 705,01 + 2N 0104, 01)* (D, 01 + 2N 010, 11)?
k,j=1
+7% (D01 + 2N 0105, 01) (05,001 + 2N€15xj€1)(5§kmj¢1
2N (04 1), 01 + 2N G5, 01).

TET
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Since (Vzw1, Vzl1) > 0 on 0f, there exists a constant C; > 0 independent of
N, 7, s, such that
(4) div(|Vzel*Vap) — [Vapl?Azp > 20°74Vagn |* + CLNT 0* + 0°0(77).

On the other hand,

(5) Z sz Vzksazjxk = Tz(vivv VEQZ)2§0

Jl

TP
+27 Z Vi, Vi, (V2 +N€18§jxk€1)gof N Z vzjvzkaiﬂkﬁl
k=1 k=1

+ NT(V;V, Vgél)zgp

Note that there exists a constant Cy > 0, independent of IV, such that

Cy
N < =
(6) INGD wk&”cO(n‘g) !

By (3)—(6) we obtain

(7)

1Z1v]2
L2<Q Q

N2

LoV +/ (26° 7| Vathi | + Cy N3 v[2dz
) o) h,

N
2
L%@ﬂ)) '

Multiplying the first equation in (2) by sNyv and integrating by parts, we
obtain

®)
sN
/ {stowngHZN(A Delv? — |Vl v|2dwso|v|}

2

{ (8%SN<PV) (32<pN—|— %) (Vgggo,ﬁ)|v2} do

_/ gssNovdz.
Q1

N2

N2

—5704/ ©|Vzv|?dx
Q1

N2

ov
on

<||gs||? + Cs | s]|v|%.s +s
<llq ||L2(Q%) 5 < VI (89)
N
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Next we note that
Azp = (|V512\27'2 + 7Az1p1 4 2T N| Vb1 |? + 27Nl Azl1) @ > CeTNop.

This inequality and (8) imply

1 ~

© [ (sVelVavi o gVl - 8 el i
~
ov||?
< Csllas? +Co | slvIHrson) +5 :
() O 97l ooy
In view of (7) and (9), we obtain
1
10 L 2 + L 2 +/ <_ 3 4Vf 4
L TR S C
N2 N2 ~NZ

—|—C’3N7'3<p3>v|2d5—|—sN/ ©|Vzv|?dz
Q.
2

ov
on

< Crllas|?
L2<Q

L?(GQ)) '

—A§62282|V5Qp|2v in Q%, 62|8Q 1 =0.
~ 1

N2

+Cy <3||V||H1 o) T8
=)
Let v = v + vy where

—Azvi=Livin Q. vilpa, =V,
N m

By standard a priori estimates for the Laplace operator, we have

v <
(11) IVl . <97> < 09(\|L1VIIL2( ) VI3 o0
N2 N2

VN, _ 5
e < C1oV'N|52|Vzep|? :
ﬁ”VZHHQ(“Nz) < C1oV'N||52 [Vl VIILz(QN12>

where Cg, C1p > 0 are independent of N. Taking so(7, N) > N, from (9)—(12)
we obtain

(12)

2

(13) NS w2 g

|a|=0,a=(aq,x1,0)

ov
on

<Cn{||(dlvu) e*?||720) + S IVIEa0) + 57 00)
L2(8Q

2
+ N|v ILZ(OTHQ(QQ))}
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By (1.8) and (1.9), we estimate the norm of 92 u:

(14) JVK%JﬂéﬂﬁqQﬁSCu{|@WUFWW§um+SwV@vﬂmm

2

ov

o

+ 52

2 sp |12
L2(0Q) NI a1 oy NI ||L2(Q>}'

Finally we note
(15)  Ns*[(nw)e™ |2y < Cra(N[|(87,0)e* (72 () + * Nue*? [ 2 )
and

(16) N‘laﬂﬂkrg‘VHiZ(Q)

VY
" on

Thus the proof of Proposition 2.1 is completed. O

2
<Cu (NHangHiz(Q) + 102, vz + ‘ s ) > :
H?2°(0Q)xH?2*(8Q)

Appendix II. Proof of Proposition 2.4

Let us consider the following problem

0 ~i. . .
(1) L*p = <_5‘—yg - l";’ (v, s, D')) p=ix,w ing,
where 5 € {u, A+ 2u} and fg* is the operator which is formally adjoint to
fg = iFI'B". We have

Lemma 1.  There exist constants C1 > 0 and sg > 0 such that for every
s > so, there exists p satisfying (1) and

@) gﬂW@+ﬁ/ ImMWWS&/Wm%y
g Gn{y>=0} g

Proof of Lemma 1. For € > 0, let us consider the functional:

11 dp 2
% / .
2_€H3_?J2 + T3 (y, s, D)p +ixyw

1
@) ) = 5lpliag) + :
L*(9)

Notice that there exists p such that J.(p) is finite and, for example, we can set
p = 0. We consider the minimization problem

(4) ’;%9 Je(p),



1086 OLEG YU. IMANUVILOV AND MASAHIRO YAMAMOTO

where

(5) U= {p € L*(9); g— +T5"(y,5, D )p + ixyw € L2(Q)} :

There exists a minimizing sequence {p, }°°; such that p,, € U and

Then the sequences {p,} and {gz;z + fJ“*(y, s, D"p,, + x,w} are bounded in
L?(G). Therefore F+ *(y,s, D’ )pn is bounded in L? (0, 3z; H~"*(R?)) and ap"
n € N are bounded in L? (0, 5z; H 1*(R?)). Consequently we can extract a

subsequence, still denoted by {p,, }2°; such that

(1) pn — pe weakly in L*(G),

5Pn ape . 2 1 —1 2

AL kl L?(0,—;H (R

a n * e .
s +T5%(y, 5, D )pn + ixs P + 15" (Y, s, D)pe + ixpw

y> 0ya

weakly in L? (0 m,H (R2)>.

On the other hand, as ‘

Opy | T , .
a% +T57(y, 8, D' )pn + ZX”wHLz(g) remains bounded,

we have

apn + *
+ F ,s, DNp,,
s (y )p

0 .
zf 5’ (ya S, Dl)pe + Xy W

weakly in L?(G). Then p, is a minimizer of J, that is, p. € U and

®) J(po) = min J. (o).

Writing the first order optimality conditions, we have for every r € H(G):

(9) (Je(pe),r) = 0.

Let us define g, by

1 8}75 g ) .
(10) ge =~ (ay2 + 157" (y, s, D' )pe + zxyw) :

In view of (9), for every r € H(G), we see:

(11) / perdy + / qe (ﬁ +T57(y.s, D’)?‘) dy = 0.
g g \9y2
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Then ¢, satisfies the following problem

8 € - .
(12) 852 —T5(y,5,D")gc =pc in G,
1
(13) qe(ylao) = 07 qe (yla W) = Oa Vy/ S R2-

Denote Ly = 3(— F+ F+ *)and Ly =
(12) and (13) as follows

= ay %(f;* —IN“E) Then we can rewrite

. 1
(14) LQG = (Ll + L2)qe = Pe 1N g; QG(ylvo) = Oa Ge (ylv W) = 0) y/ S RQ'
There exist constants Cs > 0 and sg > 0 such that

(15)  IL1gellf2(g) + I1L2gellZ(g) +SN/g lacl?dy < Collpella(gy. Vs > so.

Notice that L1g. € L*(G) implies g. € L? (0, x; H'(R?)), which implies gg; €
L?(G) from (12). Now it follows from definition (10) of ¢. that p. satisfies
Ipe

+ 5" (y, 5, D')pe = €qe — ixuw,

which can be written as

(17) (L2 — L1)pe = 52 + 5" (y,5,D')pe = eqe — ixyw
Multiplying (17) by ¢. in L?*(G) and using the boundary conditions for ¢, we
obtain
(18) —/pe(Ll +L2)qedy=6/ lge[*dy — / Xy Wiedy,
g g g
so that
/ peldy + 6/ lg|*dy = / ixywedy
g g g
and

(19) IE ( / |W|2dy); ( / |q€|2dy>%
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Therefore we obtain the first estimate on p,
(20) S/ pel*dy < 04/ Ixvw|*dy.
g g
Let us now notice from (12) and (13) that we have

0q.
pe(y',0) = D0, (y',0), ¥ € R

Let 60 = 6(y2) € C*°[0, 5z] such that 0 < 6 < 1, #(0) = 1 and f(5z) = 0. We

have

o0 00 .
(21) (Ll + L2)(0q€) = 0(L1 + LQ)(QE) + 54 = ope + 5—¢ In g,
y> Y2

/ _ /L _ 8(0(]6) / L _ / 2
22) (0a)(/0) =0, 0 (o' 3 ) =0 O (v, g ) =0 v e B

Now we apply the operator (Ls — L1) to the first equation, so that

(23) (L= L0)(La + L0)(00) = (Ls — L1)(0p) + (Lo — Ly) ( %6 )

3—y2qe
00 00 020
=0(Ly — L e) + =—pc +=—(La — L1)qc + =—5¢e.
(L2 — L1)(pe) a” ayg( 2 — Li)q o2
Then we have
(24) L3(0qe) — L3(0qe) + [La, L1)(0qc)
00 00 %6

= efge — i0x,w + Lo — L1)qe + 554
Y3

—De _|_ -
ay2p 3y2(

We now take the scalar product in L?(G) of this equation with Ly(6g.) and take
the real part. Henceforth we give the computations of the successive terms. We
can calculate the first term as follows.

(25) (Lg(gqe)’le(gqe))Lz(g) = (ain(LQ(QQe))yL2(9qe)>L2(g)

1, ~ T+, *
- _((Fg(y,S,D/) - F;’ (y,3,D/))LQ(GC]e),L2(9‘15))L2(g)

2
= —[L2(0gc) (-, 0) |72 2y — (L2(0ge), L5 (0qc)) 12 (g)
dqc 2
__ H Y0 (al0a0), 300 )
Y2 L2(R2)
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Therefore we have

2
0q.

0y ;

(26) Re(L§(9q6)7L2(9qe))L2(g) = —% H

L2(R?) .
Now for the second term

(27)
2Re (L7 (04c), L2(0qc)) L2(g) = (LT(04c), La(04c)) 12(g) + (L2(04c), Li0ge) 2 (g)
= — (L2L3(0qc), (0ge)) 22(g) + (LTL2(0gc), (04c)) 2 (g)
=(L1[L1, L2](0qc), (09e)) L2(g) + ([L1, L2]L1(0ge), (0ge)) 12(g)
=2Re ([L1, L2](0qc), L1(0gc)) 12(g)-

Here we notice that ([L1, La]u,v)r2(g) = (u, [L1, L2]v)2(g)-
We have already seen that

(28) [L1, Lo] = (N + 1)K (s),

where K € C([0,1]; L(HY*(R?), L?(R?))) is some operator. Therefore
(29)  [Re (L3(6a.), L(000)120)| < 1000 romm oy L1 00 ().
We already know from (15) that

(30) 1L1(0ge)llz2(g) < [1L1gellr2(g) < Csllpellz2(g)

and from the definition of L

(31)

||0LIE||L2(0,#;H1,5(R2)) < ”quL2(O,ﬁ;H1v3(R2)) < OG(||L1L]6||L2(Q) + SHQEHL"’(Q))-
Using again (15), we obtain

(32) IRe (L{(0gc), La(04)) 12(0)| < Crv/spell7z gy + Csllpelliz(g)s

so that we have

(33) IRe (L3 (6ge), L2(0q¢)) L2(g)| < Csv/slIpell7z(g)

for s > sg.
Concerning the third term, we have

(34) |Re([L2, L1](0gc), L2(0ge)) 2(g)| < [1[L2s L1](0ge) [l 226y | L2(0ge) | 2(g) -
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Using the form of [Lo, L] we obtain

(35) |Re ([L2, L1](0qe), L2(0qc)) L2(g)|
< 09N||9q€||L2(o,ﬁ;H1,s(R2)) [ L2(0gc) HL2(Q)

and, since Lo(6¢c) = 0L2q. + %qé, from (15) and (31) we have

(36) [Re ([La, L1](0qc), L2(0gc) 12(0)| < Crov/sllpelliz(g) + C1oN?Ipeli2(g)
<Cuvs|pellzz(g)

for s > sg and sg > N8 4 1.
On the other hand, for the right hand side of (24), we have

00 00 020
Re [ €0qc —ixpow + —pe + — (Lo — L1)qe + —5¢qe, L2(0q.
( Ge = Xvpw + 5P 8y2( o —Li)g Tk o Q)>L2(g)

<Crzellgellz2 () IPell 2oy + CrallxvwllL2(g)llpellz2(g) + Crzllpelliz(g)-

Therefore we obtain

(37)

00 00 020
Re | efqc — Oixpw + =—pe + =— (Lo — L1)qe + =Ge, L2(0qc
(e q % 3y2p 8y2( 2 1)¢q 3y§q 2(0q )>L2(g)

<Cu3|pell22(g) + Cuslxuwll L2 (o) el L2 (g)-

Putting together (28), (33), (36) and (37), we obtain the following estimate:

2

0q.
-0
ayQ( )

o |

< Crav/slIpelliz gy + Crallxowl 2@y lIpell L2 () -
L2(GNn{y2=0})

Now combining (15), (20) and (38), we can easily obtain

@) s [y s [ 0Py < Cus [ voulay

which is estimate (2) for p..

Now p. and ggg + I‘Jﬁ“*(y,s,D’)p6 are bounded in L?(G) uniformly in e.

After extraction of a subsequence (still denoted by p.), we can assume that

(40) pe —p weakly in L*(G),

Ope Op . 2 1 —1/m2
- kl L —H (R
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so that
pe(-,0) = p(-,0) weakly in H ™7 (R?).

Since p(+,0) remains bounded in L?(R?), we also have p.(-,0) — p(-,0) weakly
in L2(G N {y2 = 0}). By (15) and (40), we easily see that p satisfies

which is (1), and from (39) we see that
8/ \pIZder\/E/ p(y',0)]*dy" < Cw/ owl*dy,
g Gn{y2=0} g
which is (2). The proof of Lemma 1 is now completed. O
We take the scalar product of equation (1) and the function y,w in L*(G)
||qu||2Lz(g) = (9,p)r2(g) + (-, 0), xow(-,0)) L2 (r2).
Applying estimate (2) to this equality, we have
||Xvw||2L2(g)
1 1
< Cir | =gl Ixvwlizzg) + = lxow(, 0)l[ 2@ Ixvwl L2(g) ) -
Vs 54
Therefore
1
1) Vslxwliag < Cizlllgllzag) + ¥ xow(-, 0)lr2me), Vs = so.

If s* # 0, then estimate (41) imply (2.20) immediately. If Im a™ () # 0, then
we obtain

1 1
||qu||L2(0)ﬁ;H1,s(R2)) <Cis (\/§||9||H1,s(g) + 51 ||qu(',0)|H;,s(R2)> :
Thus the proof of Proposition 2.4 is finished. O
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