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Klyachko’s Theorem in Semi-finite
von Neumann Algebras
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Abstract

Let A be a von Neumann algebra and A be the set of all τ -measurable operators.
For positive elements A and B in A we prove that

Z
K

µs(A + B) ds ≤
Z

I

µs(A) ds +

Z
J

µs(B) ds,

where µ(·) denotes the generalized s-number and I, J , and K are on an analogue of
the Klyachko list.

§1. Introduction

Recently, Klyachko [11] has shown that the possible eigenvalues α, β, γ of
Hermitian n× n matrices A, B, and C = A + B are characterized by a certain
list of inequalities togather with the trace equality

∑
γi =

∑
αi +

∑
βi. If

we set α = (α1, . . . , αn), β = (β1, . . . , βn), and γ = (γ1, . . . , γn) in decreasing
order, then this list of inequalities is of the form

(1)
∑
k∈K

γk ≤
∑
i∈I

αi +
∑
j∈J

βj

for certain subsets I, J , K of the same cardinality r, which are on the Klyachko
list, with r < n (i.e. This list includes 3n− 3 inequalities: α1 ≥ α2 ≥ · · · ≥ αn,
β1 ≥ β2 ≥ · · · ≥ βn, γ1 ≥ γ2 ≥ · · · ≥ γn.). We set λ(I) = (ir−r, . . . , i2−2, i1−1)
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1126 Tetsuo Harada

for I = {i1, . . . , ir}. Then (I, J, K) is on the Klyachko list exactly when the
Littlewood-Richardson coefficient C

λ(K)
λ(I) λ(J) is positive (cf. [6], [7], [8]). From

the solution of the saturation conjecture by Knutson-Tao [12], one can show
that this list is exactly what was conjectured by Horn [10].

There is a long history to find necessary conditions. Arrange the eigenval-
ues of a Hermitian matrix X in decreasing order: λ(X) = (λ1(X), . . . , λn(X)).
For example, in 1912 H. Weyl found

λi+j−1(A + B) ≤ λi(A) + λj(B) whenever i + j − 1 ≤ n.

Some other inequalities were found in 1949 by Ky Fan:
r∑

k=1

λk(A + B) ≤
r∑

k=1

λk(A) +
r∑

k=1

λk(B) for any r < n.

It is easy to check ({i}, {j}, {i + j − 1}) and ({1, . . . , r}, {1, . . . , r}, {1, . . . , r})
are on the Klyachko list.

There are some generalizations for the above inequality (1). Friedland
[4] proved the inequality (1) for positive compact operators. Bercovici-Li [2]
proved the inequality (1) for self-adjoint operators in II1 factors. Their meth-
ods are simple and useful, but we think that the same method cannot apply
for the continuous infinite case, since they used discrete and finite properties
respectively. In this paper, we will prove the inequality (1) by another method
for any positive τ -measurable operators. Of course, this result includes the
infinite case (in particular, the continuous infinite case). And also, when A

is a finite von Neumann algebra, we can prove the inequality (1) not only for
positive operators but also for bounded self-adjoint operators. More precisely,
Theorem 3.1 shows∫

J0

µs(A + B) ds ≤
∫

J1

µs(A) ds +
∫

J2

µs(B) ds

for positive operators A, B. Let C, D be bounded self-adjoint operators in A,
there exists a positive number x such that C + xI ≥ 0, D + xI ≥ 0. Therefore,
we get∫

J0

µs(C + D + 2xI) ds ≤
∫

J1

µs(C + xI) ds +
∫

J2

µs(D + xI) ds.

Since µs(C+xI) = λs(C)+x and m(J0) = m(J1) = m(J2) < ∞ (see Definition
2.4), the above inequality implies∫

J0

λs(C + D) ds ≤
∫

J1

λs(C) ds +
∫

J2

λs(D) ds.
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§2. Notation

In this section, we will collect some definitions and basic facts. Throughout
the paper, let A be a von Neumann algebra on a Hilbert space H with a faithful
normal semi-finite trace τ . Let A denote the set of all τ -measurable operators.

Definition 2.1 (τ -measurable operators). A densely-defined closed op-
erator A affiliated with A is said to be τ -measurable if for each ε > 0 there
exists a projection E in A such that E(H) ⊂ D(A) and τ (1 − E) ≤ ε. (Here,
D(A) denotes the domain of A.)

Let A be a closed densely-defined operator affiliated with A. Let |A| =∫∞
0

λ deλ(|A|) be the spectral decomposition. Then it is easy to check that A

is τ -measurable if and only if τ (1 − eλ(|A|)) < ∞ for λ large enough (cf. [3],
[14]).

Definition 2.2 (The generalized s-number, The spectral scale). For a
self-adjoint element A ∈ A, the distribution function ds(A) is defined by

ds(A) = τ (e(s,∞)(A)),

where e(s,∞)(A) is the spectral projection of A corresponding to the interval
(s,∞).

The generalized s-number is defined by

µt(A) = inf{s : ds(|A|) ≤ t} (0 < t < ∞)

while the spectral scale is defined by

λt(A) = inf{s : ds(A) ≤ t} (0 < t < ∞).

The above definitions correspond to the decreasing rearrangement of the
eigenvalues of |A|, and A respectively. (When e[0,∞)(A) = ∞, λt(A) does not
necessarily correspond to the decreasing rearrangement of the eigenvalues of A.
Therefore, we use the spectral scale only for elements in a finite von-Neumann
algebra.) Of course, for positive operators, both definitions are the same.

If A is a τ -measurable operator, then we have ds(|A|) < ∞ for s large
enough and lims→∞ ds(|A|) = 0 as noted before. Moreover, µt(A), λt(A) are
non-increasing and right continuous on (0,∞). See [3], [15] for detailed prop-
erties of the above functions.

Definition 2.3 (Continuous flag).
Let {es}s∈[0,∞) be a net of projections in A satisfying the following condi-

tions.
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(i) τ (es) ≤ s

(ii) If s ≤ t, then, es ≤ et

Then, we call {es}s∈[0,∞) a continuous flag on A.

Definition 2.4 (Admissibility).
Let J be a measurable set in [0, τ (1)). (Here, m denotes Lebesgue mea-

sure.) For a continuous flag {es}, ΩJ ({es}, τ ) is the set of projections in A

defined by

ΩJ ({es}, τ ) = {p ∈ Aproj.; τ (p) = m(J), τ (1 − p) = m(Jc), τ (p ∧ es) ≥
m{J ∩ [0, s]} (for all s ∈ [0, τ (1)) )}.

Let J0, J1, J2 be Lebesgue measurable sets in [0, τ (1)) such that m(J0) =
m(J1) = m(J2) and m(Jc

0) = m(Jc
1) = m(Jc

2). A triple (J0, J1, J2) is called ad-
missible for continuous flags ({es}, {fs}, {gs}), if the following condition holds:

ΩJ0({es}, τ ) ∩ (ΩJc
1
({fs}, τ ))⊥ ∩ (ΩJc

2
({gs}, τ ))⊥ �= ∅,

where (ΩJc
1
({fs}, τ ))⊥ = {1− p; p ∈ ΩJc

1
({fs}, τ )}. Of course, when τ (1) < ∞,

the above requirements for the complement of sets are automatically met.

Definition 2.5. For A ∈ A we set

SG(A) = inf
ξ∈H\{0}

||Aξ||
||ξ|| .

Proposition 2.1. Let A, B be operators in A.

1. ||Aξ|| ≥ SG(A) · ||ξ|| for ξ ∈ H.

2. SG(AB) ≥ SG(A) · SG(B).

3. SG(A) = ||A−1||−1, if A is invertible.

Proof. 1. follows immediately from the definition of SG(·).
2., 3. From the definition, we have

SG(AB) = inf
ξ∈H\{0}

||ABξ||
||ξ||

≥ inf
ξ∈H\{0}

SG(A) · ||Bξ||
||ξ||

= SG(A) · SG(B),
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SG(A) = inf
ξ∈H\{0}

||Aξ||
||A−1(Aξ)||

= inf
ξ∈H\{0}

( ||A−1(Aξ)||
||Aξ||

)−1

=

(
sup

ξ∈H\{0}

||A−1ξ||
||ξ||

)−1

(by A(H) = H).

Definition 2.6. Let A be an operator in A and E be a projection in A.
Then the restriction of SG(A) for a projection E (denote it SG(A)E) is

SG(A)E = inf
ξ∈E(H)\{0}

||Aξ||
||ξ|| .

For this restriction SG(·)E, an anologue of Proposition 2.1 is valid.

Proposition 2.2. Let A, B be operators in A and E, F be projections
in A.

1. ||Aξ|| ≥ SG(A)E · ||ξ|| for ξ ∈ E(H).

2. SG(AB)E ≥ SG(A)E · SG(B)E .

3. If E(H) is an invariant subspace of A and AE is invertible as an element in
B(E(H)). then SG(A)E = ||(EAE)−1||−1

E . Here, ||·||E is the usual operator
norm in B(E(H)).

4. SG(E)E = 1, if E =\ 0.

5. SG(A)E ≥ SG(A)F , if E ≤ F .

Proof. 1., 2. are trivial (as in the proof of Proposition 2.1).
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3. We compute

SG(A)E = inf
ξ∈E(H)\{0}

||Aξ||
||ξ||

= inf
ξ∈E(H)\{0}

||EAEξ||
||ξ||

= inf
ξ∈E(H)\{0}

||EAEξ||
||(EAE)−1EAEξ||

=

(
sup

ξ∈E(H)\{0}

||(EAE)−1EAEξ||
||EAEξ||

)−1

=

(
sup

ξ∈E(H)\{0}

||(EAE)−1ξ||
||ξ||

)−1

= ||(EAE)−1||−1
E .

4. SG(E)E = infξ∈E(H)\{0}
||Eξ||
||ξ|| = 1.

5.

SG(A)E = inf
ξ∈E(H)\{0}

||Aξ||
||ξ||

≥ inf
ξ∈F (H)\{0}

||Aξ||
||ξ||

= SG(A)F .

§3. Main Theorem

Proposition 3.1. For A ∈ A we have

µt(A) = inf{||AE||; E is a projection in A with τ (1 − E) ≤ t}
= sup{SG(A)E; E is a projection in A with τ (E) ≥ t}.

Proof. The first equality is shown in [3]. We show the second equality.
Let us denote the supremum in this proposition by α. If α = 0, then we have
µt(A) ≥ α. So we can assume α > 0. Then, for a sufficiently small ε > 0, there
exists a projection E with τ (E) ≥ t such that

0 < α − ε < SG(A)E.
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If ξ ∈ E(H) ∩ e[0,α−ε](|A|)(H), ||ξ|| = 1, then we have

(A∗Aξ|ξ) = ||Aξ||2 ≥ SG(A)2E > (α − ε)2,

(A∗Aξ|ξ) = || |A| e[0,α−ε](|A|)ξ||2 ≤ (α − ε)2.

Therefore E ∧ e[0,α−ε](|A|) = 0, and we compute

E = E − E ∧ e[0,α−ε](|A|)
∼ E ∨ e[0,α−ε](|A|) − e[0,α−ε](|A|)
≤ 1 − e[0,α−ε](|A|)
= e(α−ε,∞)(|A|).

We thus get

τ (e(α−ε,∞)(|A|)) ≥ τ (E) ≥ t, α − ε ≤ µt(A).

On the other hand, set E = e[µt(A),∞)(|A|). If µt(A) = 0, then we have
µt(A) ≤ α. So we can assume µt(A) > 0. As τ (E) ≥ t and SG(A)E ≥ SG(|A|)E

(Let A = u|A| be the polar decomposition. Since E(H) ⊂ |A|(H), we have
SG(u)E = 1.), we get

α ≥ SG(|A|)E

= ||(E|A|E)−1||−1
E

=

∥∥∥∥∥
∫

[µt(A),∞)

λ−1deλ(|A|)
∥∥∥∥∥
−1

E

≥ µt(A).

Proposition 3.2. Let A be a positive operator in A. Let J be a mea-
surable set in [0, τ (1)), and p be a projection in A.

1. If τ (p ∧ e(µs(A),∞)(A)) ≥ m{J ∩ [0, s]}, then µm{J∩[0,s]}(pAp) ≥ µs(A).

2. If τ (R(pe(µs(A),∞)(A))) ≤ m{J ∩ [0, s]}, then µm{J∩[0,s]}(pAp) ≤ µs(A).
Here, R(pe(µs(A),∞)(A)) denotes the range projection of pe(µs(A),∞)(A).

Proof. 1. If µs(A) = 0, then it is trivial. So we can assume µs(A) > 0.
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From Proposition 2.2, we compute

µm{J∩[0,s]}(pAp) ≥ SG(pAp)p∧e(µs(A),∞)(A)

≥ SG(p)p∧e(µs(A),∞)(A) · SG(A)p∧e(µs(A),∞)(A)

≥ SG(A)e(µs(A),∞)(A)

=

∥∥∥∥∥
∫

(µs(A),∞)

λ−1 deλ(A)

∥∥∥∥∥
−1

e(µs(A),∞)(A)

≥ µs(A).

2. Consider the set of τ -measurable operators pAp. Since pAp is in A,

µt(pAp) = inf{||pApE||; E is a projection in pAp with τ (p − E) ≤ t}.

Therefore,

µm{J∩[0,s]}(pAp) ≤ ||pAp(p −R(pe(µs(A),∞)(A)))||
= ||pAp(p ∧ e[0,µs(A)](A))||
= ||pA(p ∧ e[0,µs(A)](A))||
≤ ||A(p ∧ e[0,µs(A)](A))||
= ||Ae[0,µs(A)](A)(p ∧ e[0,µs(A)](A))||
≤ ||Ae[0,µs(A)](A)||
≤ µs(A).

Proposition 3.3. Let A be a positive operator in A and J be a Lebesgue
measurable set in [0, τ (1)). Let p be a projection in A with m(J) = τ (p). Then,

∫
J

µm{J∩[0,s]}(pAp) ds =
∫ τ(p)

0

µs(pAp) ds = τ (pAp).

Proof. It suffices to prove that µm{J∩[0,s]}(pAp) and µs(pAp) have the
same distribution function. At first we claim that

m{s ∈ J ; µm{J∩[0,s]}(pAp) > t} = m{J ∩ [0, α]} (t > 0)

with α = sup{s ∈ J ; µm{J∩[0,s]}(pAp) > t}.
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Let u be an element in J such that µm{J∩[0,u]}(pAp) > t, then

m{s ∈ J ; µm{J∩[0,s]}(pAp) > t} ≥ m{J ∩ [0, u]}.
(since µt is decreasing for s ≤ u, µm{J∩[0,s]}(pAp) > t)

From the definition of α there exists {αj} in {s ∈ J ; µm{J∩[0,s]}(pAp) > t}
such that αj ↗ α.

Therefore, we have m{s ∈ J ; µm{J∩[0,s]}(pAp) > t} ≥ m{J ∩ [0, αj ]} (for
all j). Taking the limj→∞ of the both sides, we get

m{s ∈ J ; µm{J∩[0,s]}(pAp) > t} ≥ m{J ∩ [0, α]}.
Conversely, from the definition of α, we obviously have

m{s ∈ J ; µm{J∩[0,s]}(pAp) > t} ≤ m{J ∩ [0, α]}.
Finally, we will prove that m{J ∩ [0, α]} = m{s; µs(pAp) > t}. Clearly,

m{J ∩ [0, αj ]} ≤ m{s; µs(pAp) > t}.
(since µm{J∩[0,αj ]}(pAp) > t)

So we get
m{J ∩ [0, α]} ≤ m{s; µs(pAp) > t}.

On the other hand, we set

β = sup{s; µs(pAp) > t}.
Since µs is decreasing, m{s; µs(pAp) > t} = β

If β = ∞, then α = τ (p) = m(J) = ∞. Therefore, we get the conclusion. So
we can assume β < ∞. When we set

f(x) = m{J ∩ [0, x]} (x ∈ [0, τ (1)) ),

f is a measurable function on [0, τ (1)). Futhermore, f is a continuous finction
on [0, τ (1)).

Indeed, if xj → x, then

lim
j→∞

m{J ∩ [0, xj ]} = lim
j→∞

∫ τ(1)

0

χJ∩[0,xj ] dm

=
∫ τ(1)

0

lim
j→∞

χJ∩[0,xj ] dm

(by the dominated convergence theorem)

= m{J ∩ [0, x]}.
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Since f(0) = 0, f(τ (1)) = m(J) = τ (p), f attains any value in [0, τ (p)].
Therefore, for all ε > 0, there exists x such that

m{J ∩ [0, x]} = β − ε.

When we set y = sup{J ∩ [0, x]},

{J ∩ [0, x]} = {J ∩ [0, y]}.

From the definition of y, there exists {yj} in {J ∩ [0, x]} such that yj ↗ y. We
get

lim
j→∞

m{J ∩ [0, yj ]} = m{J ∩ [0, x]} = β − ε.

As m{J ∩ [0, yj ]} ≤ β − ε, we have µm{J∩[0,yj ]}(pAp) > t. Therefore we get

m{J ∩ [0, α]} ≥ lim
j→∞

m{J ∩ [0, yj ]} = β − ε (from the definition of α, yj ≤ α)

The proof is complete since ε is arbitrary.

Proposition 3.4. Let A be a positive operator in A. Let J be a mea-
surable set, and p be a projection in A.

1. If p ∈ ΩJ({e(µs(A),∞)(A)}, τ ), then τ (pAp) ≥ ∫
J

µs(A) ds.

2. If p ∈ (ΩJc({e(µs(A),∞)(A)}, τ ))⊥, then τ (pAp) ≤ ∫
J

µs(A) ds.

Proof. 1. Proposotions 3.2 and 3.3 show the result.
2. From the Definition of (ΩJc({e(µs(A),∞)(A)}, τ ))⊥,

τ ((1 − p) ∧ e(µs(A),∞)(A)) ≥ m{Jc ∩ [0, s]} (for all s ∈ [0, τ (1)) ).

By substracting the both sides from s, we have

s − τ ((1 − p) ∧ e(µs(A),∞)(A)) ≤ s − m{Jc ∩ [0, s]} (for all s ∈ [0, τ (1)) ).

We note

s − τ ((1 − p) ∧ e(µs(A),∞)(A))

≥ τ (e(µs(A),∞)(A)) − τ ((1 − p) ∧ e(µs(A),∞)(A))

= τ (e(µs(A),∞)(A) − (1 − p) ∧ e(µs(A),∞)(A))

= τ ((1 − p) ∨ e(µs(A),∞)(A) − (1 − p))

= τ (R(pe(µs(A),∞)(A))),
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and

s − m{Jc ∩ [0, s]}
= m{[0, s]} − m{Jc ∩ [0, s]}
= m{J ∩ [0, s]}.

Using Propositions 3.2 and 3.3, we get

τ (pAp) ≤
∫

J

µs(A) ds.

Theorem 3.1. Let A and B be positive operators in A. Let J0, J1

and J2 be measurable sets with m(J0) = m(J1) = m(J2) and m(Jc
0) = m(Jc

1) =
m(Jc

2). If a triple (J0, J1, J2) is admissible for ({e(µs(A+B),∞)(A + B)},
{e(µs(A),∞)(A)}, {e(µs(B),∞)(B)}), then∫

J0

µs(A + B) ds ≤
∫

J1

µs(A) ds +
∫

J2

µs(B) ds.

Proof. If p ∈ ΩJ0({e(µs(A+B),∞)(A+B)}, τ )∩ (ΩJc
1
({e(µs(A),∞)(A)}, τ ))⊥

∩(ΩJc
2
({e(µs(B),∞)(B)}, τ ))⊥, then

τ (p(A + B)p) ≥
∫

J0

µs(A + B) ds (by Proposition 3.4 ).

On the other hand, since p ∈ (ΩJc
1
({e(µs(A),∞)(A)}, τ ))⊥, Proposition 3.4 shows

τ (pAp) ≤
∫

J1

µs(A) ds.

Similarly, for an operator B we get

τ (pAp) ≤
∫

J2

µs(B) ds.

Therefore, we obtain∫
J0

µs(A + B) ds ≤ τ (p(A + B))

= τ (pA) + τ (pB)

≤
∫

J1

µs(A) ds +
∫

J2

µs(B) ds.
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Lemma 3.1. For J = [0, r] we have

ΩJc({e(µs(A),∞)(A)}, τ )⊥ = {p ∈ Aproj.; τ (p) = r}.

Proof. Let p be a projection with τ (p) = r. It is enough to prove that

τ ((1 − p) ∧ e(µs(A),∞)(A)) ≥ m{[0, s] ∩ [0, r]c}.

If s ≤ r, it is trivial. When r < s < ∞, we get

τ (R(e(µs(A),∞)(A)p)) = τ (R(pe(µs(A),∞)(A)))

≤ τ (p)

= r

= m{[0, s] ∩ [0, r]}.

By substracting the both sides from s, we get the conclusion.

From Theorem 3.4 and Lemma 3.1 we obtain

Ω[0,r]({e(µs(A+B),∞)(A + B)}, τ ) ∩ (Ω[0,r]c({e(µs(A),∞)(A)}, τ ))⊥

∩(Ω[0,r]c({e(µs(B),∞)(B)}, τ ))⊥ = Ω[0,r]({e(µs(A+B),∞)(A + B)}, τ ).

When A has no minimal projection, Ω[0,r]({e(µs(A+B),∞)(A + B)}, τ ) is not an
empty set, because e(µr(A+B),∞)(A + B) is inclueded. Since we can always
embed A into A ⊗ L∞

([0,1];dt), we get the inequality

∫ r

0

µs(A + B) ds ≤
∫ r

0

µs(A) ds +
∫ r

0

µs(B) ds (for all r ∈ [0, τ (1)) ).

This inequalty was found by Ky Fan when A = Mn(C). For a general von
Neumann algebra with a faithful semifinite normal trace several proofs are
known (cf. [3], [9]).
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