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and Versal Galois Covers
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Abstract

In this article, we prove that two versal Galois covers for S4 and A5 introduced
in [17], [18] and [19] are birationally distinct to each other. As a corollary, we obtain
two non-conjugate embeddings of S4 and A5 into Cr2(C).

Introduction

Let X and Y be normal projective varieties defined over C, the field of
complex numbers. A finite surjective morphism π : X → Y is called Galois,
if the induced field extension C(X)/C(Y ) of the field of rational functions is
Galois. Given a finite group G, we simply call π : X → Y a G-cover if it is
Galois and Gal(C(X)/C(Y )) ∼= G. In [17] and [19], a notion called “versal
Galois covers” is introduced, of which the definition is as follows:

Definition 0.1. Let G be a finite group. A G-cover � : X → Y is
called a versal Galois cover for G or a versal G-cover if it satisfies the following
property:

For any G-cover π : W → Z, there exists a G-equivariant rational map
µ : W ��� X such that
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1112 Shinzo Bannai and Hiro-o Tokunaga

µ(W ) �⊂ Fix(X,G),

where Fix(X,G) := {x ∈ X | the stabilizer group at x, Gx �= {1}}.

Remark. The rational map µ induces a rational map µ : Z ��� Y .
Concerning this rational map µ, there exists a Zariski open set U such that (i)
U ⊂ dom(µ), dom(•) being the domain of a rational map •, and (ii) π−1(U) is
birationally equivalent to U ×Y X over U . (see [18], Proposition 1.2).

The notion of versal G-covers implicitly appeared in [12] and [13] as the
“pull-back” construction of G-covers, where Namba showed that there exists
a versal G-cover of dimension �(G) for any finite group G. Namba’s model,
however, has too large dimension for practical use.

For a finite subgroup G in GL(n,Z), Bannai and Tsuchihashi construct
versal G-covers of dimension n by using toric geometry in [1] and [19].

In [5], the notion of the essential dimension, edC(G), of G is introduced
and it is known that the following equality holds (see [5] and [18]):

edC(G) = min{dimX | � : X → Y is a versal G-cover}.

By Theorem 6.2 in [5], edC(G) = 1 if and only if G is either a cyclic group
or a dihedral group of order 2n (n: odd). As a next step, in [17], [18] and [19],
we study the case of edC(G) = 2 and give some explicit examples.

Among explicit examples in [17], [18], two different versal G-covers, �G,1 :
X1 → Y1 and �G,2 : X2 → Y2 are given for the cases when G is S4, the
symmetric group of 4-letters and A5, the alternating group of 5-letters (see §1
for description of X1 and X2). Here X1 and X2 are del-Pezzo surfaces which
are known to be rational. Moreover, by the definition of versal G-covers, there
exist G-equivariant rational maps µ1 : X1 ��� X2 and µ2 : X2 ��� X1 such that
µ1(X1) �⊂ Fix(X2, G) and µ2(X2) �⊂ Fix(X1, G). Under these circumstances, it
may be natural to raise a question as follows:

Question 0.1. Let G be either S4 or A5. Let �G,1 : X1 → Y1 and
�G,2 : X2 → Y2 be versalG-covers as above. Does there exist anyG-equivariant
birational map from X1 to X2?

In this note, we consider Question 0.1 and prove the following:

Theorem 0.1. There exists no G-equivariant birational map from X1

to X2
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Since both X1 and X2 are rational, their birational automorphism group
is the 2-dimensional Cremona group Cr2(C). For G = S4, A5, we have two
different embeddings ηi : G→ Cr2(C) (i = 1, 2) via G ⊂ Aut(Xi) ⊂ Cr2(C)(i =
1, 2). Our theorem implies that η1(G) is not conjugate to η2(G) in Cr2(C).
Combining Proposition 0.3 (i) in [18], we have the following corollary:

Corollary 0.1. Both S4 and A5 have at least 3 non-conjugate embed-
dings into Cr2(C).

Our results could be found in old literatures such as [10] and [20], but we
would like to emphasize that our question comes from the study of versal G-
covers, which is a rather new notion. Also conjugacy classes of finite subgroups
of Cr2(C) have been studied by several mathematicians ([2], [3], [4], [6], [8]).
The notion of versal G-covers may add another interest to this subject.

This article goes as follows. We first give a detailed description of the
versal G-covers �G,i : Xi → Yi (i = 1, 2) in §1. In §2, we explain our main
tool, “Noether’s inequality,” which plays an important role in [8] and [9]. We
prove Theorem 0.1 in §3. In §4, we consider rational maps between X1 and X2

in the case of G = S4.

§1. Versal S4- and A5-covers: Two Examples

§1.1. Versal S4-covers

Let S4 be the symmetric group of 4-letters. Put σ = (12), τ = (123), λ1 =
(13)(24), λ2 = (12)(34)

Let ρ : S4 → GL(3,C) be a faithful irreducible representation as follows:

σ �→


0 1 0

1 0 0
0 0 1


 , τ �→


0 0 1

1 0 0
0 1 0


 ,

λ1 �→


−1 0 0

0 1 0
0 0−1


 , λ2 �→


−1 0 0

0 −1 0
0 0 1


 .

Versal S4-cover �S4,1 : X1 → Y1

Let X1 be a surface in P1 × P1 × P1 defined by the equation

x0y0z0 − x1y1z1 = 0,
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where ([x0, x1], [y0, y1], [z0, z1]) denotes the homogeneous coordinates. Put x =
x1/x0, y = y1/y0, z = z1/z0. Define an S4-action on P1 × P1 × P1 as follows:

σ(x, y, z) = (x, y, z)ρ(σ−1) = (y, x, z),

τ (x, y, z) = (x, y, z)ρ(τ−1) = (z, x, y),

λ1(x, y, z) = (x, y, z)ρ(λ−1
1 ) = (−x, y,−z),

λ2(x, y, z) = (x, y, z)ρ(λ−1
2 ) = (−x,−y, z).

The defining equation of X1 is invariant under this S4-action. Hence S4 acts on
X1. Put Y1 = X1/G and denote the quotient morphism by �S4,1 : X1 → Y1.
By [17] and [19], �S4,1 : X1 → Y1 is a versal S4-cover.

We look into some properties of X1 with respect to this S4-action for later
use. We first remark that X1 is a del-Pezzo surface of degree 6, i.e., X1 is
obtained by blowing-up at distinct 3 points of P

2.

Lemma 1.1. The divisor of X1 given by x0y0z0 = 0 is a cycle of
rational curves C1, C2, . . . , C6. Each Ci is a smooth rational curve with C2

i =
−1.

Proof. Let p12 : P1 ×P1 ×P1 → P1×P1 be the projection to the product
of the first two factors. By its defining equation, we infer that the restriction
of p12 to X1 is the blowing-up of P1 ×P1 at ([1, 0], [0, 1]) and ([0, 1], [1, 0]). Our
statement easily follows from this observation.

Lemma 1.2. Let Pic(X1) be the Picard group of X1. Then the S4

invariant part PicS4(X1) = Z(−KX1).

Proof. −KX1 ∼ ∑6
i=1 Ci where ∼ denotes linear equivalence, and one

can easily check that the divisor class in the right hand generates PicS4(X1).

For x ∈ X1, we put dx = �OS4(x), where OS4(x) denotes the orbit of x.
For later use, we study points with dx < 6.

Lemma 1.3. (i) There are no points with dx = 1, 2, 5.
(ii) There are exactly 12 points with dx = 4 as follows :

R11(1, 1, 1), R12(1,−1,−1), R13(−1,−1, 1), R14(−1, 1,−1),
R21(ω, ω, ω), R22(ω,−ω,−ω), R23(−ω,−ω, ω), R24(−ω, ω,−ω),

R31(ω2, ω2, ω2), R32(ω2,−ω2,−ω2), R33(−ω2,−ω2, ω2), R34(−ω2, ω2,−ω2),
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where the coordinates mean the affine coordinates (x, y, z) and ω =
exp(2π

√−1/3). These 12 points are divided into three S4-orbits.
(iii) There are exactly 6 points with dx = 3 as follows :

P1([0, 1], [1, 0], [0, 1]), P2([1, 0], [0, 1], [0, 1]), P3([0, 1], [0, 1], [1, 0]),
Q1([1, 0], [1, 0], [0, 1]), Q2([1, 0], [0, 1], [1, 0]), Q3([0, 1], [1, 0], [1, 0]).

These 6 points are divided into two S4-orbits.

Proof. Note that τ acts on the divisor x0y0z0 = 0 freely and the sub-
group 〈λ1, λ2〉 has no fixed points on the affine surface xyz = 1. Taking these
observation into account, we can easily check the above statement by direct
computation.

Lemma 1.4. The divisors on X1 given by the equations x1 = ωix0

(i = 0, 1, 2) are rational curves with self-intersection number 0.

Proof. By the proof of Lemma 1.1, we infer that the divisors as above
come from those in P

1 × P
1 with self-intersection number 0 and all of these

divisors in P1 × P1 do not pass through ([1, 0], [0, 1]) and ([0, 1], [1, 0]). This
implies our statement.

Versal S4-cover �S4,2 : X2 → Y2

Let [t0, t1, t2] be homogeneous coordinates of P2. Define a S4 action on
P

2 by g([t0, t1, t2]) = [t0, t1, t2]ρ(g−1), g ∈ S4. By Proposition 4.1 (ii) in [17],
we have a versal S4-cover P

2 → P
2/S4. Put X2 = P2, Y2 = P

2/S4 and let
�S4,2 : X2 → Y2 be the quotient morphism.

§1.2. Versal A5-covers

We first start with the following lemma.

Lemma 1.5. Let S be a smooth projective surface on which A5 acts
faithfully on S. Let dx be the number of points of OA5(x). Then there exists
no point x on S with dx < 5.

Proof. Case dx = 1. Assume that there exists a point x with dx = 1.
Then we have a non-trivial homomorphism η : A5 → GL(TxS), where TxS is
the tangent plane at x. Since A5 is simple, η is injective. This contradicts the
non-existance of 2-dimensional faithful representations.
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Case dx = 2, 3 or 4. Assume that such a point exists. Then we have a
non-trivial homomorphism from A5 to the symmetric group of either 2, 3 or
4 letters. The kernel of this homomorphism is a non-trivial normal subgroup,
which is a contradiction.

Versal A5-cover �A5,1 : X1 → Y1

Let X̃ = P1 × · · · × P1 be the product of five copies of P1. Put pi =
[pi0, p

i
1] ∈ P

1. We define an S5-action on X̃ by permutation of coordinates as
follows:

σ · (p1, . . . , p5) := (pσ(1), . . . , pσ(5))

for a point (p1, . . . , p5) ∈ X̃ and σ ∈ S5. Note that S5 acts on {1, 2, 3, 4, 5}
from the right. Let �̃ : X̃ → X̃/S5 be the quotient morphism.

Lemma 1.6. �̃ : X̃ → X̃/S5 is a versal S5-cover.

Proof. Let π : Z → W be an arbitrary S5-cover. Since C(Z) can be
regarded as a splitting field of a certain algebraic equation of degree 5 over
C(W ), there exist rational functions ϕ1, . . . , ϕ5 such that ϕσi (:= ϕi ◦σ) = ϕσ(i)

for σ ∈ S5 (Note that ϕστi = (ϕσi )
τ = ϕτσ(i) = ϕτ(σ(i)) = ϕτσ(i)). Define a

rational map µZ/X̃ : Z ��� X̃ by p ∈ Z �→ (ϕ1(p), . . . , ϕ5(p)). For σ ∈ S5, we
have

(µZ/X̃ ◦ σ)(p) = (ϕσ1 (p), . . . , ϕσ5 (p))

= (ϕσ(1)(p), . . . , ϕσ(5)(p))

= σ · (ϕ1(p), . . . , ϕ5(p))

= σ · µZ/X̃(p).

Hence µZ/X̃ is S5-equivariant. Since π : Z → W is an S5-cover, if we choose
a point p in general, the S5-orbit of (ϕ1(p), . . . , ϕ5(p)) has 120 distinct points.
This means µZ/X̃(Z) �∈ Fix(X̃, S5).

Let ψ1 and ψ2 be rational functions on X̃ given by

ψ1 =

(x4 − x1)(x2 − x3)
(x4 − x3)(x2 − x1)

ψ2 =
(x5 − x1)(x2 − x3)
(x5 − x3)(x2 − x1)

where xi = pi1/p
i
0.
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We can check

ψ
(12)
1 = −ψ1 + 1, ψ

(12)
2 = −ψ2 + 1

ψ
(12345)
1 =

ψ2 − 1
ψ2 − ψ1

, ψ
(12345)
2 =

1
ψ1
,

where ψσi (p1, . . . , p5) = ψi(σ · (p1, . . . , p5)) = ψi(pσ(1), . . . , pσ(5)). The subfield
C(ψ1, ψ2) of C(X̃) is S5-invariant and the S5 action induced on C(ψ1, ψ2) by
that on C(X̃) is faithful. Using this action, we have a birational S5 action on
P

2. Explicitly the birational maps σ1 and σ2 induced by (12) and (12345) are
given as follows:

σ1 = (12) : [s0, s1, s2] �→ [s0, s0 − s1, s0 − s2]
σ2 = (12345) : [s0, s1, s2] �→ [s1(s2 − s1), s1(s2 − s0), s0(s2 − s1)],
σ−1

2 = (15432) : [s0, s1, s2] �→ [s2(s0 − s1), s0(s0 − s1), s0(s2 − s1)]

where [s0, s1, s2] denotes a homogeneous coordinate of P2 and we put ψ1 =
s1/s0 and ψ2 = s2/s0. As {(12), (12345)} are generators of S5, the birational
S5 action on P

2 as above is given by some compositions of σ1 and σ2. Note
that σ1 is an automorphism of P

2. σ2 has three base points [1, 0, 0], [0, 0, 1] and
[1, 1, 1]. σ−1

2 also has three base points [0, 1, 0], [0, 0, 1] and [1, 1, 1].
Let X1 be the surface obtained by blowing up P2 at [1, 0, 0], [0, 1, 0], [0, 0, 1]

and [1, 1, 1]. As σ1 and σ2 are lifted to automorphisms on X1, the birational
action on P2 as above induces an S5-action on X1. By restricting this action
to the subgroup A5, the alternating group of 5 letters, we also have an A5

action on X1. Let Y1 = X1/A5 and let �A5,1 : X1 → Y1 be the quotient
morphism. Since edC(A5) = 2, by Proposition 1.4 in [18] and the lemma below,
�A5,1 : X1 → Y1 is a versal A5-cover.

Lemma 1.7. Let G be a finite group, let ϕ1 : X ′ → Y ′ be a versal
G-cover, and let X be a normal projective variety of dimension edC(G) on
which G acts faithfully. If there exists a G-equivariant dominant rational map
γ : X ′ ��� X, then the quotient morphism ϕ2 : X → X/G with respect to the
G-action gives rise to another versal G-cover.

Proof. Let Vreg be a vector space with the G-action given by the left
regular representation, i.e.,

h


∑
g∈G

agg


 :=

∑
g∈G

aghg,
∑
g∈G

agg ∈ Vreg, h ∈ G.
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Put N = �(G). One can can consider Vreg as an affine open subset of the pro-
jective space PN = P(C ⊕ Vreg). As the G-action on Vreg canonically extends
to PN , we have a G-cover PN → PN/G. Hence there exists a G-equivariant ra-
tional map µreg : PN ��� X ′ such that µreg(PN ) �⊂ Fix(X ′, G). The restriction
µreg to Vreg gives rise to a G-equivariant rational map from Vreg to X ′. We
denote it by µ′. Thus we have a G-equvariant rational map γ ◦µ′ : Vreg ��� X.
By Theorem 3.2 in [5] and since dimX = edC(G), γ ◦ µ′ is dominant. Choose
a point a ∈ Vreg such that

• γ ◦ µ′ is defined at a and

• the G-orbit of γ ◦ µ′(a) has N distinct points.

Let π : Z →W be an arbitrary G-cover. By Lemma 3.4 in [5], there exist
an affine subvariety Y of Vreg such that the G-action of Vreg induces a faithful
G-action on Y and a G-equivariant dominant rational map g : Z ��� Y . Now
choose a point ã ∈ Z such that

• g is defined at ã and

• the G-orbit of g(ã) has N distinct points.

By Lemma 3.2 (a) in [5], there exists a G-equivariant morphism α : Vreg →
Vreg such that α(g(ã)) = a. Consider the rational map µZ/X := γ ◦ µ′ ◦ α ◦ g :
Z ��� X. Then (i) µZ/X is G-equivariant and (ii) the G-orbit of µZ/X(ã) has
N distinct points, i.e., µZ/X(Z) �⊂ Fix(X,G).

Versal A5-cover �A5,2 : X2 → Y2

Let ρ′ : A5 → GL(3,C) be any faithful irreducible representation. Define a
A5 action on P

2 by g([t0, t1, t2]) = [t0, t1, t2]ρ′(g−1), g ∈ A5. By Proposition 4.1
(ii) in [17], we have a versal A5-cover P2 → P2/A5. Put X2 = P2, Y2 = P2/A5

and let �A5,2 : X2 → Y2 be the quotient morphism.

§2. Noether’s Inequality

In this section we explain Noether’s inequality in our setting. The proof is
identical to the proof of the general form of Noether’s inequality given in [9].
We only need to keep in mind that we are using G-invariant linear systems.

Let X and X ′ be smooth projective surfaces with G-action. Let KX (resp.
KX′) be the canonical linear system of X (resp. X ′). Let Φ: X ��� X ′ be a G-
equivariant birational map. Let HX′ be a G-invariant variable linear system of
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divisors on X ′ which does not have any fixed components. Let HX = Φ−1(HX′)
be the proper inverse image of HX′ . Note that χ is G-equivariant, so HX is
also G-invariant.

Let η : XN → X be the G-equivariant resolution of indeterminacies of [14].
It is a composition of G-equivariant blow-ups along smooth centers, which are
blow-ups along 0-dimensional G-orbits OG(x) in our case. Let ψ = Φ ◦ η.

η : XN XN−1 . . . X1 X0 = X�ηN,N−1 �ηN−1,N−2 �η2,1 �η1,0

XN

X X ′
�

η
�

�
��

ψ

� � � � � � ��
Φ

ηi+1,i is a blow-up along a 0-dimensional G-orbit O(xi). Let ηj,i = ηj,j−1 ◦ · · · ◦
ηi+1,i (N ≥ j > i + 1 ≥ 1), ηN,N = idXN

. Let HXN
be the proper transform

of HX′ on XN . Let H• and K• be a member of H• and K• respectively, where
• = X, XN , and X ′. Then we have

HXN
= η∗HX −

N−1∑
i=0

r(xi)η∗N,i+1(Ei+1)

KXN
= η∗KX +

N−1∑
i=0

η∗N,i+1(Ei+1)

where r(xi) is the multiplicity of a base point xi ∈ O(xi) (a point in the center
O(xi) of the blow-up ηi+1,i) of HX , and Ei is the exceptional divisor of ηi,i−1.
We note that Ei is a disjoint union of (−1)-curves corresponding to the points
in O(xi), and r(xi) = r(xj) if O(xi) = O(xj) since HX is G-invariant.

Definition 2.1. Given a linear system H and an integer m, x is called
a maximal singularity of H + mK if x is a base point of H with multiplicity
r(x) > m.

Lemma 2.1. [Noether’s Inequality ] Under the notation above,
(i) Suppose that HX′ +mKX′ = ∅ then either there exists a 0-dimensional

G-orbit OG(x) consisting of maximal singularities, or the adjoint linear system
HX +mKX is empty on X.

(ii) If there exists a variable family of curves C′ such that (HX′ +mKX′)C ′

< 0 then either there exists a 0-dimensional G-orbit of maximal singularities,
or else there is a curve C ⊂ X such that (HX +mKX)C < 0.
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Proof. (i) We have

HXN
+mKXN

= η∗(HX +mKX) +
N−1∑
i=0

(m− r(xi))η∗N,i+1(Ei+1)(2.1)

Then by applying ψ∗ to both sides, we have

HX′ +mKX′ = ψ∗(HXN
+mKXN

)

= ψ∗η∗(HX +mKX) + ψ∗

(
N−1∑
i=0

(m− r(xi))η∗N,i+1(Ei+1)

)

Since HX′ +mKX′ = ∅ by hypothesis the right hand side cannot be an effective
divisor, hence r(xi) > m for at least one i, or else HX +mKX = ∅.

(ii) ψ∗(HX′ +mKX′) = (HXN
+mKXN

) + F where F is the exceptional
divisor of ψ. Then ψ∗C′F = 0. Then we have (HXN

+ mKXN
)ψ∗C′ < 0.

Suppose that r(xi) ≤ m for all i. Then by intersecting both sides of (2.1) with
C ∈ ψ∗C′ we find that η∗(HX +mKX)ψ∗C′ < 0. Hence (HX +mKX)η∗ψ∗C′ <
0. A general member C ′ of η∗ψ∗C′ may be reducible but we have (HX +
mKX)C < 0 for at least one irreducible component of C ′.

§3. Proof of Theorem 0.1

§3.1. The case of S4

Suppose that there exists an S4-equivariant rational map Φ : X1 ��� X2(=
P2). Let Λ be the complete linear system given by the class of line L on X2,
and let Φ−1(Λ) be the proper inverse image of Λ. Since the map Φ is given by
Φ−1(Λ), Φ−1(Λ) has no fixed components. Also Φ−1(Λ) is S4-invariant. Hence
any element H ∈ Φ−1(Λ) is linearly equivalent to −aKX1 for some a ≥ 1. Now
apply Lemma 2.1 to Λ+aKX2 and Φ−1(Λ)+aKX1 . Then Φ−1(Λ)+a(KX1) must
have an S4-orbit consisting of maximal singularities. Let r be the multiplicity
of the points of O(x) in Φ−1(Λ). As any element in Φ−1(Λ) passes through
OS4(x) with multiplicity r, we have a2K2

X1
≥ r2d, d being �(OS4(x)); and we

have d < K2
X1

= 6. Hence OS4(x) is one of the orbits described in Lemma 1.3.

Lemma 3.1. The points in the orbit OS4(x) with d = 4 can not be
maximal singularities of Φ−1(Λ) + aKX1 .

Proof. Let Ei be the divisor on X1 given by x1 = ωix0 (i = 0, 1, 2) as
in Lemma 1.4. Suppose that O((ωi, ωi, ωi)) are maximal singularities, and let
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q : X̂1 → X1 be the blowing-up at O((ωi, ωi, ωi)). Then the linear system
q∗(Φ−1(Λ))− r(Ri1 +Ri2 +Ri3 +Ri4) does not have any fixed components (we
identify Rij (j = 1, 2, 3, 4) with the exceptional curves). Let Ēi be the proper
transform of Ei. Then

−aq∗KX1 − r
4∑
j=1

Rij


 Ēi = 2a− 2r < 0.

This means that Ēi is a fixed component of q∗(Φ−1(Λ))−r(Ri1+Ri2+Ri3+Ri4).

Lemma 3.2. The points in the orbit OS4(x) with d = 3 can not be
maximal singularities of Φ−1(Λ) + aKX1 .

Proof. Suppose that O(P1) = {P1, P2, P3} are maximal singularities. We
may assume that the irreducible component C1 in the divisor x0y0z0 = 0 passes
through P1. Let q : X̂1 → X1 be the blowing-up at O(P1). Then the linear
system q∗(Φ−1(Λ))− r(P1 +P2 +P3) does not have any fixed components (we
identify Pj (j = 1, 2, 3) with the exceptional curves). Let C̄1 be the proper
transform of C1. Then

−aq∗KX1 − r

3∑
j=1

Pj


 C̄1 = a− r < 0.

This means that C̄1 is a fixed component of q∗(Φ−1(Λ)) − r(P1 + P2 + P3).

By Lemmas 3.1 and 3.2, Theorem 0.1 for S4 follows.

§3.2. The case of A5

By the same argument as in the previous case, the existence of Φ implies the
existence of an A5-orbit OA5(x), x ∈ X1 with �(OA5(x)) < 5. This contradicts
Lemma 1.5.

§4. A Remark for Versal S4-covers �S4,1 : X1 → Y1 and
�S4,2 : X2 → Y2

By the definition of versality, there exist S4-equivariant rational maps µ1 :
X1 ��� X2 and µ2 : X2 ��� X1 such that µ1(X1) �⊂ Fix(X2, G) and µ2(X2) �⊂
Fix(X1, G). Note that both of µi (i = 1, 2) are dominant as there exists no
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1-dimensional versal S4-cover. In this section, we give examples of such µi
(i = 1, 2) such that

(i) both field extensions C(X1)/C(X2) and C(X2)/C(X1) induced by µ1

and µ2, respectively, are cyclic extension of degree 3, and

(ii) the field extension C(X2)/(µ2 ◦ µ1)∗(C(X2)) is Galois and its Galois
group is ismorphic to (Z/3Z)⊕2.

Let ([x0, x1], [y0, y1], [z0, z1]) be homogeneous coordinates for X1 ⊂ P1 ×
P1 × P1. C(X1) = C(y, z) where y = y1/y0 and z = z1/z0. Let [t0, t1, t2] be
homogeneous coordinates for X2 = P2. C(X2) = C(u, v) where u = t1/t0 and
v = t2/t0. We construct µ1 and µ2 as follows.

Define µ2 : X2 ��� P1 × P1 × P1 by

µ2([t0, t1, t2]) = ([t0t1t2, t30], [t0t1t2, t
3
1], [t0t1t2, t

3
2])

It can be checked immediately that µ2 is an S4-equivariant rational map,
µ2(X2) ⊂ X1 and µ2(X2) �⊂ Fix(X1, S4). We have µ∗

2(y) = u2/v, µ∗
2(z) = v2/u.

Let θ = u/v. Then C(X2) = µ∗
2(C(X1))(θ) and θ3 = µ∗

2(y)/µ
∗
2(z) ∈ µ∗

2(C(X1)).
Hence [C(X2) : µ∗

2(C(X1))] = 3. This means that µ2 is a rational map of degree
3 as desired.

Define µ1 : X1 ��� X2 by

µ1([x0, x1], [y0, y1], [z0, z1]) = [x1/x0, y1/y0, z1/z0]

It can be checked immediately that µ1 is an S4-equivariant rational map and
µ1(X1) �⊂ Fix(X2, S4). We have (µ1◦µ2)∗(u) = u3 and (µ1◦µ2)∗(v) = v3. This
implies that C(X2)/(µ1◦µ2)∗(C(X2)) is Galois, [C(X2) : (µ1◦µ2)∗(C(X2))] = 9
and Gal(C(X2)/(µ1 ◦µ2)∗(C(X2))) = (Z/3Z)⊕2. Hence [C(X1) : µ∗

1(C(X2))] =
3. This means that µ1 is a rational map of degree 3 as desired.

Remark. It may be an interesting question to consider if there exists a
simple relation between X1 and X2 in the case of A5 as above.
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