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On Composition Ideals of Multilinear Mappings
and Homogeneous Polynomials

By

Geraldo Botelho∗, Daniel Pellegrino∗∗ and Pilar Rueda∗∗∗

Abstract

Given an operator ideal I, we study the multi-ideal I ◦ L and the polynomial
ideal I ◦ P. The connection with the linearizations of these mappings on projective
symmetric tensor products is investigated in detail. Applications to the ideals of
strictly singular and absolutely summing linear operators are obtained.

§1. Introduction

Since the 1983 paper by A. Pietsch [26], ideals of multilinear mappings
(multi-ideals) and homogeneous polynomials (polynomial ideals) between Ba-
nach spaces have been studied as a natural consequence of the successful theory
of operator ideals. Several ideals have been investigated and abstract methods
to generate ideals of multilinear mappings and polynomials have been intro-
duced (see [6, 20]).

A multilinear mapping A between Banach spaces is compact (weakly com-
pact) if and only if A can be written as A = u ◦ B where B is a multilinear
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mapping and u is a compact (weakly compact) linear operator. A similar char-
acterization holds for compact and weakly compact homogeneous polynomials
(see [25, 27]). So, given an operator ideal I, it is natural to consider the mul-
tilinear mappings A and the polynomials P which can be written as A = u ◦B

and P = u◦Q with u belonging to I. This is a particular case of the technique
known as composition ideals (see [20, 7.3]). In Section 2 we investigate the re-
sulting multi and polynomial (normed, Banach) ideals exploring the connection
with the linearizations of such mappings on the projective tensor product.

In Section 3 we consider the ideal of strictly singular linear operators,
an ideal which gained much importance with the Gowers-Maurey theory of
hereditarily indecomposable spaces. We provide examples, counterexamples
and prove some properties of the composition polynomial ideal generated by
the ideal of strictly singular operators.

In Section 4 we relate the composition multi-ideal generated by the ideal
of absolutely summing linear operators with some other well studied classes.
As consequences, a question raised by R. Alencar-M. C. Matos [2] is solved and
an application to dominated polynomials on C(K)-spaces is obtained.

§2. Background and Notation

Throughout this paper E1, . . . , En, E, F , G, G1, . . . , Gn will stand for
Banach spaces over K = R or C and n will always be a positive integer. By
L(E1, . . . , En; F ) and P(nE; F ) we denote the Banach spaces of all continuous
n-linear mappings from E1 × · · · × En to F and continuous n-homogeneous
polynomials from E to F , respectively, both of them with the usual sup norm.
If E1 = · · · = En = E we write L(nE; F ). If F = K we simply write
L(E1, . . . , En), L(nE) and P(nE). Given P ∈ P(nE; F ), by P̌ we mean the
continuous symmetric n-linear mapping associated to the polynomial P . By
AS we denote the symmetrization of the multilinear mapping A and by Â we
mean the polynomial generated by A, that is Â(x) = A(x, . . . , x). The n-th
polarization constant of the Banach space E is denoted by c(n, E), that is,

c(n, E) = inf{C > 0 : ‖P̌‖ ≤ C‖P‖, for all P ∈ P(nE)}.

For the general theory of multilinear mappings and homogeneous polynomials
we refer to S. Dineen [18].

By E1⊗̂π · · · ⊗̂πEn we denote the completed projective tensor product of
E1, . . . , En. If E1 = · · · = En = E we write ⊗̂n

πE. For the theory of topological
tensor products we refer to R. Ryan [28]. By ⊗̂n,s

π E and ⊗̂n,s
πs

E we denote the
n-fold completed symmetric tensor product of E endowed with the projective
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norm π and the projective s-tensor norm πs, respectively. The projective norm
π is well-known and the projective s-tensor norm πs is defined by

πs(z) = inf


k∑

j=1

|λj |‖xj‖n : k ∈ N, z =
k∑

j=1

λjxj ⊗ · · · ⊗ xj


for z ∈ ⊗n,sE. For the properties of πs and the general theory of symmetric
tensor products we refer to K. Floret [19].

An ideal of multilinear mappings (or multi-ideal) M is a subclass of the
class of all continuous multilinear mappings between Banach spaces such that
for all n ∈ N and Banach spaces E1, . . . , En and F , the components M(E1, . . . ,

En, F ) := L(E1, . . . , En, F ) ∩M satisfy:
(i) M(E1, . . . , En, F ) is a linear subspace of L(E1, . . . , En, F ) which contains
the n-linear mappings of finite type.
(ii) The ideal property: if A ∈ M(E1, . . . , En, F ), uj ∈ L(Gj , Ej) for j =
1, . . . , n and t ∈ L(F, H), then t ◦ A ◦ (u1, . . . , un) is in M(G1, . . . , Gn, H).

If ‖ · ‖M : M → R
+ satisfies

(i’) (M(E1, . . . , En; F ), ‖·‖M) is a normed (Banach) space for all Banach spaces
E1, . . . , En and F and all n,
(ii’) ‖An : Kn → K : An(x1, . . . , xn) = x1 · · ·xn‖M = 1 for all n,
(iii’) If A ∈ M(E1, . . . , En, F ), uj ∈ L(Gj , Ej) for j = 1, . . . , n and t ∈ L(F, H),
then ‖t ◦ A ◦ (u1, . . . , un)‖M ≤ ‖t‖‖A‖M‖u1‖ · · · ‖un‖,

then (M, ‖ · ‖M) is called a normed (Banach) multi-ideal.
The multi-ideal M is said to be

• closed if each M(E1, . . . , En, F ) is a closed subspace of L(E1, . . . , En, F );
• symmetric (cf. [9, 21]) if AS ∈ M whenever A ∈ M.

An ideal of homogeneous polynomials (or polynomial ideal) Q is a sub-
class of the class of all continuous homogeneous polynomials between Banach
spaces such that for all n ∈ N and Banach spaces E and F , the components
Q(nE, F ) = P(nE, F ) ∩ Q satisfy:
(i) Q(nE, F ) is a linear subspace of P(nE, F ) which contains the n-homogene-
ous polynomials of finite type.
(ii) The ideal property: if u ∈ L(G, E), P ∈ Q(nE, F ) and t ∈ L(F, H), then
the composition t ◦ P ◦ u is in Q(nG, H).

If ‖ · ‖Q : Q → R+ satisfies
(i’) (Q(nE; F ), ‖ · ‖Q) is a normed (Banach) space for all E, F and n,
(ii’) ‖Pn : K → K : Pn(x) = xn‖Q = 1 for all n,
(iii’) If u ∈ L(G, E), P ∈ Q(nE, F ) and t ∈ L(F, H), then ‖t ◦ P ◦ u‖Q ≤
‖t‖‖P‖Q‖u‖n,
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then (Q, ‖ · ‖Q) is called a normed (Banach) polynomial ideal.
The polynomial ideal Q is said to be closed if each component Q(nE; F )

is a closed subspace of P(nE; F ).
The case n = 1 recovers the classical theory of (normed, Banach) operator

ideals, for which the reader is referred to [15].

§3. Composition Ideals

Actually, we consider only a particular case of the procedure called com-
position ideals to generate multi and polynomials ideals from a given operator
ideal.

Definition 3.1. Let I be an operator ideal.
(a) An n-linear mapping A ∈ L(E1, . . . , En; F ) belongs to I ◦ L - in this case
we write A ∈ I ◦ L(E1, . . . , En; F ) - if there are a Banach space G, an n-
linear mapping B ∈ L(E1, . . . , En; G) and an operator u ∈ I(G; F ) such that
A = u ◦ B.
(b) An n-homogeneous polynomial P ∈ P(nE; F ) belongs to I ◦P - in this case
we write P ∈ I ◦ P(nE; F ) - if there are a Banach space G, an n-homogeneous
polynomial Q ∈ P(nE; G) and an operator u ∈ I(G; F ) such that P = u ◦ Q.

It is obvious that continuous multilinear forms belong to I ◦L and contin-
uous scalar-valued homogeneous polynomials belong to I ◦ P.

Given A ∈ L(E1, . . . , En; F ) and P ∈ P(nE; F ) consider their lineariza-
tions

AL : E1⊗̂π · · · ⊗̂πEn −→ F, AL(x1 ⊗ · · · ⊗ xn) = A(x1, . . . , xn);

PL : ⊗̂n,s

π E −→ F, PL(x ⊗ · · · ⊗ x) = P (x);

PL,s : ⊗̂n,s
πs

E −→ F, PL,s(x ⊗ · · · ⊗ x) = P (x).

It is well known that ‖AL‖ = ‖A‖, ‖PL,s‖ = ‖P‖ and ‖PL‖ = ‖P̌‖ (see [19]).

Proposition 3.2. Let I be an operator ideal.
(a) The following are equivalent for A ∈ L(E1, . . . , En; F ):

(a1) A ∈ I ◦ L(E1, . . . , En; F ).
(a2) AL ∈ I(E1⊗̂π · · · ⊗̂πEn; F ).

(b) The following are equivalent for P ∈ P(nE; F ):
(b1) P ∈ I ◦ P(nE; F ).
(b2) PL ∈ I(⊗̂n,s

π E; F ).
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(b3) PL,s ∈ I(⊗̂n,s

πs
E; F ).

(b4) P̌ ∈ I ◦ L(nE; F ).
(b5) There is A ∈ I ◦ L(nE; F ) such that Â = P .

Proof. (a1) ⇒ (a2) Let A = u ◦ B with B ∈ L(E1, . . . , En; G) and u ∈
I(G; F ). For every xj ∈ Ej , j = 1, . . . , n,

(u ◦ BL)(x1 ⊗ · · · ⊗ xn) = u(BL(x1 ⊗ · · · ⊗ xn)) = u(B(x1, . . . , xn))

= A(x1, . . . , xn) = AL(x1 ⊗ · · · ⊗ xn),

showing that AL = u ◦BL (remember that both AL and u ◦BL are linear). So
AL ∈ I(E1⊗̂π · · · ⊗̂πEn; F ) by the ideal property.
(a2) ⇒ (a1) Let σn : E1×· · ·×En −→ E1⊗̂π · · · ⊗̂πEn be the canonical n-linear
mapping given by σn(x1, . . . , xn) = x1⊗· · ·⊗xn. The factorization A = AL◦σn

shows that A ∈ I ◦ L(E1, . . . , En; F ).

(b1) ⇒ (b2) As in the proof of (a1) ⇒ (a2), PL = u ◦ QL if P = u ◦ Q.
(b2) ⇒ (b1) Consider the canonical polynomial

δn : E −→ ⊗̂n,s
π E : δn(x) = x ⊗ · · · ⊗ x ; δn ∈ P(nE; ⊗̂n,s

π E).

The factorization P = PL ◦ δn shows that P ∈ I ◦ P(nE; F ).
(b2) ⇔ (b3) This equivalence follows from the inequalities π ≤ πs ≤ c(n, E)π,
which hold on ⊗n,sE (see [19, p. 162]).
(b2) ⇒ (b4) Let Sn : ⊗̂n

πE −→ ⊗̂n,s

π E be the symmetrization operator, that is

Sn(x1 ⊗ · · · ⊗ xn) =
1
n!

∑
τ∈∆n

xτ(1) ⊗ · · · ⊗ xτ(n),

where ∆n is the set of all permutations of {1, . . . , n}. For every x1, . . . , xn ∈ E,
using that P̌L and PL coincide on ⊗̂n,s

π E and that P̌ is symmetric we obtain

(PL ◦ Sn ◦ σn)(x1, . . . , xn) = PL(Sn(σn(x1, . . . , xn))) = PL(Sn(x1 ⊗ · · · ⊗ xn))

= PL

(
1
n!

∑
τ∈∆n

xτ(1) ⊗ · · · ⊗ xτ(n)

)

= P̌L

(
1
n!

∑
τ∈∆n

xτ(1) ⊗ · · · ⊗ xτ(n)

)

=
1
n!

∑
τ∈∆n

P̌L

(
xτ(1) ⊗ · · · ⊗ xτ(n)

)
=

1
n!

∑
τ∈∆n

P̌
(
xτ(1), . . . , xτ(n)

)
= P̌ (x1, . . . , xn),
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showing that P̌ = PL ◦Sn ◦σn. PL ∈ I(⊗̂n,s

π E; F ) by assumption, so PL ◦Sn ∈
I(⊗̂n

πE; F ). The factorization P̌ = (PL ◦Sn) ◦σn yields that P̌ ∈ I ◦L(nE; F ).
(b4) ⇒ (b5) This is obvious with A = P̌ .
(b5) ⇒ (b1) There is u in I such that A = u ◦ B. So P = Â = u ◦ B̂.

Proposition 3.3. Let I be a (closed) operator ideal. Then:
(a) I ◦ L is a symmetric (closed) multi-ideal.
(b) I ◦ P is a (closed) polynomial ideal.

Proof. That I ◦ L and I ◦ P are (closed) ideals is folklore. Let us prove
that I ◦ L is symmetric: given A ∈ I ◦ L(nE; F ), by Proposition 3.2 ((b5) ⇒
(b1)) we know that Â ∈ I ◦ P(nE; F ), so AS = (Â)∨ ∈ I ◦ L(nE; F ) by ((b1)
⇒ (b4)) of the same proposition.

Let K and W be the closed operator ideals formed by all compact and
weakly compact linear operators, respectively. By PK and PW we mean the
classes of all compact and weakly compact polynomials, respectively. The
equalities PK = K ◦ P and PW = W ◦ P were proved by R. Ryan [27] (their
multilinear analogues were proved by A. Pe�lczyński [25]). The equivalences
P ∈ K ◦ P ⇐⇒ P̌ ∈ K ◦ L and P ∈ W ◦ P ⇐⇒ P̌ ∈ W ◦ L follow from a
combination of [25, Proposition 3] and [28, Lemma 4.1]. Our results extend
this fact to arbitrary operator ideals.

Next we show that I ◦ L and I ◦ P extend typical linear behavior to the
nonlinear context. The identity operator on a Banach space E is denoted by
idE . Given an operator ideal I and a Banach space F , it is clear that

idF ∈ I(F ; F ) ⇐⇒ I(E; F ) = L(E; F ) for every E.

Lemma 3.4. Let I1, I2, I be operator ideals, n ∈ N and E, E1, . . . , En,

F be Banach spaces.
(a) If I1◦L(E1, . . . , En; F ) ⊆ I2◦L(E1, . . . , En; F ), then I1(Ej ; F ) ⊆ I2(Ej ; F )
for every j = 1, . . . , n. In particular, If I ◦ L(E1, . . . , En; F ) = L(E1, . . . , En;
F ), then I(Ej ; F ) = L(Ej ; F ) for every j = 1, . . . , n.
(b) If I1 ◦P(nE; F ) ⊆ I2 ◦P(nE; F ), then I1(E; F ) ⊆ I2(E; F ). In particular,
if I ◦ P(nE; F ) = P(nE; F ), then I(E; F ) = L(E; F ).

Proof. (a) Let v ∈ I1(Ej ; F ). For i �= j, fix 0 �= ai ∈ Ei, ϕi ∈ (Ei)′ with
ϕi(ai) = 1 and define A ∈ L(E1, . . . , En; F ) by

A(x1, . . . , xn) = ϕ1(x1) · · ·ϕj−1(xj−1)ϕj+1(xj+1) · · ·ϕn(xn)v(xj).
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Letting C(x1, . . . , xn) = ϕ1(x1) · · ·ϕj−1(xj−1)ϕj+1(xj+1) · · ·ϕn(xn)xj we have
that C ∈ L(E1, . . . , En; Ej) and A = v◦C. Hence A ∈ I1◦L(E1, . . . , En; F ), so
by assumption A ∈ I2 ◦ L(E1, . . . , En; F ). Let A = u ◦ B, where u ∈ I2(G; F )
and B ∈ L(E1, . . . , En; G). For every x ∈ Ej ,

v(x) = A(a1, . . . , aj−1, x, aj+1, . . . , an)

= (u ◦ B(a1, . . . , aj−1, ·, aj+1, . . . , an))(x),

hence we find that v = u ◦ B(a1, . . . , aj−1, ·, aj+1, . . . , an), so v ∈ I2(Ej ; F ) as
u belongs to I2.
(b) Given v ∈ I1(E; F ), fix 0 �= a ∈ E and ϕ ∈ E′ with ϕ(a) = 1 and define
P ∈ P(nE; F ) by P (x) = ϕ(x)n−1v(x). Letting R(x) = ϕ(x)n−1x we have that
R ∈ P(nE; E) and P = v ◦ R. Hence P ∈ I1 ◦ P(nE; F ), so by assumption
P ∈ I2 ◦ P(nE; F ). Let P = u ◦ Q, where u ∈ I2(G; F ) and Q ∈ P(nE; G).
Since P̌ = u ◦ Q̌, for every x ∈ E,

(u ◦ Q̌(a, . . . , a, ·))(x) = u(Q̌(a, . . . , a, x)) = P̌ (a, . . . , a, x)

=
1
n

(v(x) + (n − 1)ϕ(x)v(a)).

Therefore, n(u◦Q̌(a, . . . , a, ·)) = v+(n−1)ϕ(·)v(a). It follows that v ∈ I2(E; F )
as u belongs to I2 and ϕ(·)v(a) is a finite rank operator.

In Remark 4.4 we shall see that the converse of Lemma 3.4 does not hold.

Proposition 3.5. Let I be an operator ideal and F be a Banach space.
The following are equivalent :
(a) idF ∈ I(F ; F ).
(b) I ◦L(E1, . . . , En; F ) = L(E1, . . . , En; F ) for every n and every E1, . . . , En.
(c) I ◦ L(E1, . . . , En; F ) = L(E1, . . . , En; F ) for some n and every E1, . . . , En.
(d) I ◦ P(nE; F ) = P(nE; F ) for every n and every E.
(e) I ◦ P(nE; F ) = P(nE; F ) for some n and every E.

Proof. It is obvious that (a) implies all the others. (b) =⇒ (c) and (d)
=⇒ (e) are obvious too. (c) =⇒ (a) and (e) =⇒ (a) follow from Lemma 3.4 (a)
and (b), respectively.

Let I be a closed operator ideal. By Proposition 3.3, I ◦ L and I ◦ P
become Banach multi and polynomial ideals, respectively, with respect to the
usual sup norm. For arbitrary ideals, we proceed as follows.
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Definition 3.6. Let I be a normed operator ideal.
(a) For A ∈ I ◦ L(E1, . . . , En; F ), define

‖A‖I◦L := inf{‖u‖I‖B‖ : A = u ◦ B, B ∈ L(E1, . . . , En; G), u ∈ I(G; F )}.

(b) For P ∈ I ◦ P(nE; F ), define ‖P‖I◦P,1 := ‖P̌‖I◦L and

‖P‖I◦P,2 := inf{‖u‖I‖Q‖ : P = u ◦ Q, Q ∈ P(nE; G), u ∈ I(G; F )}.

Proposition 3.7. Let I be a normed (Banach) operator ideal.
(a) ‖ · ‖I◦L makes I ◦ L a normed (Banach) multi-ideal. Moreover, ‖A‖I◦L =
‖AL‖I for every A ∈ I ◦ L(E1, . . . , En; F ).
(b) Both ‖ · ‖I◦P,1 and ‖ · ‖I◦P,2 make I ◦ P a normed (Banach) polynomial
ideal. Moreover, for every P ∈ I ◦ P(nE; F ),

‖P‖I◦P,1 = ‖PL‖I = inf{‖A‖I◦L : A ∈ I ◦ L(nE; F ) and Â = P},

‖P‖I◦P,2 = ‖PL,s‖I and

‖P‖I◦P,2 ≤ ‖P‖I◦P,1 ≤ c(n, E)‖P‖I◦P,2.

Proof. It is also folklore that ‖ · ‖I◦L is a multi-ideal (complete) norm
and that ‖ · ‖I◦P,1 and ‖ · ‖I◦P,2 are polynomial ideal (complete) norms. We
keep the notation introduced in the proof of Proposition 3.2. Let A ∈ I ◦
L(E1, . . . , En; F ). If A = u ◦ B with B ∈ L(E1, . . . , En; G) and u ∈ I(G; F ),

‖AL‖I = ‖(u ◦ B)L‖I = ‖u ◦ BL‖I ≤ ‖u‖I‖BL‖ = ‖u‖I‖B‖.

Taking the infimum over all such factorizations we have that ‖AL‖I ≤ ‖A‖I◦L.
It follows that ‖AL‖I = ‖A‖I◦L because A = AL ◦ σn and ‖σn‖ = 1. Let
P ∈ I ◦ P(nE; F ) and let in : ⊗̂n,s

π E −→ ⊗̂n
πE be the formal inclusion. Since

P̌ = PL ◦ Sn ◦ σn, we have that P̌L = PL ◦ Sn. By [19, p. 162] we know that
‖Sn‖ = 1, so

‖P‖I◦P,1 = ‖P̌‖I◦L = ‖P̌L‖I = ‖PL ◦ Sn‖I ≤ ‖PL‖I‖Sn‖ = ‖PL‖I
= ‖P̌L ◦ in‖I ≤ ‖P̌L‖I‖in‖ = ‖P̌L‖I = ‖P̌‖I◦L = ‖P‖I◦P,1.

Now let A ∈ I ◦L(nE; F ) be such that Â = P . For every σ ∈ ∆n, consider the
n-linear mappings

Bσ : E × · · · × E −→ ⊗̂n

πE ; Bσ(x1, . . . , xn) = xσ(1) ⊗ · · · ⊗ xσ(n).

Aσ : E × · · · × E −→ F ; Aσ(x1, . . . , xn) = A(xσ(1), . . . , xσ(n)).
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It is easy to check that (Aσ)L = AL ◦ (Bσ)L, so, for every σ ∈ ∆n, (Aσ)L

belongs to I and

‖(Aσ)L‖I ≤ ‖AL‖I‖(Bσ)L‖ = ‖AL‖I‖Bσ‖ = ‖AL‖I .

From P̌ = AS = 1
n!

∑
σ∈∆n

Aσ we have

‖P‖I◦P,1 = ‖P̌‖I◦L =

∥∥∥∥∥ 1
n!

∑
σ∈∆n

Aσ

∥∥∥∥∥
I◦L

≤ 1
n!

∑
σ∈∆n

‖Aσ‖I◦L

=
1
n!

∑
σ∈∆n

‖(Aσ)L‖I ≤ 1
n!

∑
σ∈∆n

‖AL‖I = ‖AL‖I = ‖A‖I◦L,

for every A ∈ I ◦ L(nE; F ) such that Â = P . Therefore,

‖P‖I◦P,1 ≤ inf{‖A‖I◦L : A ∈ I ◦ L(nE; F ) and Â = P}.

The reverse inequality is obvious as P̌ ∈ I ◦ L(nE; F ) and ̂̌P = P . The
argument used to prove that ‖AL‖I = ‖A‖I◦L can be repeated to prove that
‖PL,s‖I = ‖P‖I◦P,2. The estimates ‖P‖I◦P,2 ≤ ‖P‖I◦P,1 ≤ c(n, E)‖P‖I◦P,2

follow easily from the ideal property, the already proved identities ‖P‖I◦P,1 =
‖PL‖I , ‖P‖I◦P,2 = ‖PL,s‖I and the already mentioned inequalities π ≤ πs ≤
c(n, E)π.

Sometimes these new norms coincide with the usual sup norms:

Corollary 3.8. If either
(a) I is a closed operator ideal, A ∈ I◦L(E1, . . . , En; F ) and P ∈ I◦P(nE; F ),
or
(b) I is an arbitrary normed operator ideal, A ∈ L(E1, . . . , En) and P ∈ P(nE),
then ‖A‖I◦L = ‖A‖, ‖P‖I◦P,1 = ‖P̌‖ and ‖P‖I◦P,2 = ‖P‖.

Proof. In both cases, Proposition 3.7 gives

‖A‖I◦L = ‖AL‖I = ‖AL‖ = ‖A‖,

‖P‖I◦P,1 = ‖PL‖I = ‖PL‖ = ‖P̌‖,
‖P‖I◦P,2 = ‖PL,s‖I = ‖PL,s‖ = ‖P‖.
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§4. Strictly Singular Polynomials

An operator u ∈ L(E; F ) is strictly singular, in symbols u ∈ SS(E; F ),
if for every infinite-dimensional subspace G of E, the restriction of u to G,
u|G : G → u(G), is not an isomorphism; or, equivalently, if for every infinite-
dimensional subspace G of E and every ε > 0, there is x ∈ G such that
‖u(x)‖ < ε‖x‖.

For the closed ideals K and W we have already mentioned that a polyno-
mial P is compact (weakly compact) if and only if P ∈ K ◦ P (P ∈ W ◦ P).
Since the ideal of all strictly singular linear operators, denoted by SS, is closed,
the following definition is quite natural:

Definition 4.1. Let P ∈ P(nE; F ). We say that P is strictly singular
if P ∈ SS ◦ P(nE; F ).

Examples 4.2 (Strictly singular polynomials). It is plain that every
scalar-valued continuous homogeneous polynomial is strictly singular. More
generally we have that every compact homogeneous polynomial is strictly sin-
gular: PK = K◦P ⊆ SS◦P because compact linear operators are strictly singu-
lar. In particular, every homogeneous polynomial from c0 to �p, 1 ≤ p < +∞,
is strictly singular ([3, p. 216]); and, for nq < p, every n-homogeneous poly-
nomial from �p to �q is strictly singular ([1, Theorem 4.2]). The existence of
non-compact strictly singular polynomials is an easy consequence of Corollary
4.6.

Examples 4.3 (Non-strictly singular polynomials).
(a) Consider the bilinear mapping

A : �2 × �2 −→ �1 ; A((xj), (yj)) = (xjyj).

Let (ej) be the standard unit vectors of �2, and let D be the closed span of the
diagonal vectors ej ⊗ ej in �2⊗̂π�2. By [28, Example 2.10], extending to �1 the
linear operator

(λ1, . . . , λk, 0, 0, . . . , ) �→ I((λ1, . . . , λk, 0, 0, . . . , )) :=
k∑

j=1

λj ej ⊗ ej

we obtain an isometric isomorphism I : �1 −→ D. For every x =
∑k

j=1 λj ej ⊗
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ej ∈ D,

(I ◦ AL)(x) = I

AL

 k∑
j=1

λj ej ⊗ ej

 = I

 k∑
j=1

λjAL(ej ⊗ ej)


= I

 k∑
j=1

λjA(ej , ej)

 = I

 k∑
j=1

λjej


=

k∑
j=1

λj ej ⊗ ej = x,

showing that I ◦ AL|D is the identity on D, hence an isomorphism. There-
fore, AL|D = I−1 ◦ I ◦ AL|D is an isomorphism as well, proving that AL is not
strictly singular. So, A /∈ SS ◦ L(2�2; �1). By Proposition 3.2 it follows that
Â /∈ SS ◦ P(2�2; �1).
(b) Given n ∈ N and an infinite-dimensional Banach space E, consider the
canonical polynomial δn ∈ P(nE; ⊗̂n,s

π E) defined in the proof of Proposition 3.2.
It is clear that (δn)L is the identity operator on ⊗̂n,s

π E, hence not strictly sin-
gular as the identity operator on an infinite-dimensional space is never strictly
singular. Therefore, δn /∈ SS ◦ P(nE; ⊗̂n,s

π E).

Remark 4.4. Since �1 and �2 do not have isomorphic infinite-dimensional
closed subspaces, SS(�2; �1) = L(�2; �1). By Example 4.3(a) we know that SS◦
P(2�2; �1) �= P(2�2; �1) (therefore SS ◦ L(2�2; �1) �= L(2�2; �1)), so the converse
of Lemma 3.4 does not hold true.

Recall that the Banach spaces E and F are called totally incomparable if
they do not have isomorphic infinite-dimensional closed subspaces. It is well
known that any two different spaces of the family {c0, �p, 1 ≤ p < +∞} are
totally incomparable.

Proposition 4.5. Let n ∈ N and E and F be Banach spaces such that
⊗̂n,s

π E and F are totally incomparable. Then P(nE; F ) = SS ◦ P(nE; F ).

Proof. Given P ∈ P(nE; F ), PL ∈ L(⊗̂n,s

π E; F ), which is strictly singular
by assumption.

Corollary 4.6. P(n�1; �p) = SS ◦ P(n�1; �p) and P(n�1; c0) = SS ◦
P(n�1; c0) for every n and every 1 < p < +∞.
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Proof. By [28, Exercise 2.6] we know that, for every n, ⊗̂n

π�1 is isomet-
rically isomorphic to �1. So ⊗̂n

π�1 and �p, 1 < p < +∞ (or c0) are totally
incomparable. The result follows from Proposition 4.5.

By Proposition 3.5 we know that Corollary 4.6 is no longer true for p = 1.
Besides being a partial converse of Proposition 4.5, the next result provides
nice consequences on the existence of non-strictly singular polynomials.

Proposition 4.7. Let n ∈ N and E and F be Banach spaces. If P(nE;
F ) = SS ◦ P(nE; F ), then no infinite-dimensional subspace of F is isomorphic
to any complemented subspace of ⊗̂k,s

π E, k = 1, . . . , n.

Proof. Since ⊗̂k,s
π E is a complemented subspace of ⊗̂n,s

π E [4, Corollary
4], it suffices to show that no infinite-dimensional subspace of F is isomorphic
to any complemented subspace of ⊗̂n,s

π E. Assume that there exist an infinite-
dimensional subspace X of F , a complemented subspace Y of ⊗̂n,s

π E and an
onto isomorphism u : Y −→ X. Let pY : ⊗̂n,s

π E −→ Y be a projection onto Y .
Consider the chain

E
δn−→ ⊗̂n,s

π E
pY−→ Y

u−→ X
iX−→ F,

where δn is the canonical polynomial defined in the proof of Proposition 3.2 and
iX : X −→ F is the formal inclusion. Defining Q := iX◦u◦pY ◦δn ∈ P(nE; F ) it
follows that QL = iX ◦u◦pY , which is not strictly singular because iX ◦u◦pY |Y
is an isomorphism onto its range. Thus Q /∈ SS ◦ P(nE; F ).

Corollary 4.8.
(a) P(n�np; �p) �= SS ◦ P(n�np; �p) for every n ∈ N and every 1 ≤ p < +∞.
(b) Let 1 ≤ p < +∞ and let E be such that �p is a quotient of E. Then
P(nE; �1) �= SS ◦ P(nE; �1) for every n ≥ p.

Proof. (a) Since �p is a complemented subspace of ⊗̂n,s
π �np (see [5, The-

orem 13]), the result follows from Proposition 4.7. The case p = 1 also follows
from an easy adaptation of [28, Example 2.10] and Example 4.3(a). Actually,
the polynomial P ((xj)∞j=1) = (xn

j )∞j=1 does not belong to SS ◦ P(n�n; �1).

(b) For n ≥ p, �∞ is a subspace of P(nE) =
(
⊗̂n,s

πs
E
)′

by [18, Corollary 1.56].
So by [22, Proposition I.2.e.8] it follows that �1 is a complemented subspace of
⊗̂n,s

πs
E. The result follows again from Proposition 4.7 as ⊗̂n,s

π E and ⊗̂n,s

πs
E are

isomorphic.
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§5. Absolutely Summing Multilinear Mappings

Let Π(E; F ) denote the space of all absolutely summing linear operators
from E to F . In this section we shall establish relationships between the multi-
ideal Π◦L and other three already investigated classes of multilinear mappings
which generalize the absolutely summing linear operators.

Definition 5.1. An n-linear mapping A ∈ L(E1, . . . , En; F ) is said to
be
• semi-integral [2, 7, 13] if there are C ≥ 0 and a regular Borel probability
measure µ on BE

′
1
×· · ·×BE′

n
such that for every (x1, . . . , xn) ∈ E1×· · ·×En,

‖A(x1, . . . , xn)‖ ≤ C ·
∫

B
E

′
1
×···×B

E
′
n

|ϕ1(x1) · · ·ϕn(xn)|dµ(ϕ1, . . . , ϕn).

• dominated [6, 7, 8, 10, 24] if (A(x1
j , . . . , x

n
j ))∞j=1 is absolutely 1

n -summable in
F whenever (xk

j )∞j=1 are weakly summable in Ek, k = 1, . . . , n.
• strongly summing [11, 17] if there is C ≥ 0 such that for every k ∈ N and
every xi

1, . . . , x
i
k ∈ Ei, i = 1, . . . , n,

k∑
j=1

‖A(x1
j , . . . , x

n
j )‖ ≤ C · sup

T∈BL(E1,...,En)

k∑
j=1

|T (x1
j , . . . , x

n
j )|.

Strongly summing multilinear mappings were introduced by V. Dimant [17] for
real Banach spaces, but complex scalars work for our purposes as well. The
spaces of all semi-integral, dominated and strongly summing n-linear mappings
from E1 × · · · ×En to F are denoted by Lsi(E1, . . . , En; F ), Ld(E1, . . . , En; F )
and Lss(E1, . . . , En; F ), respectively. These spaces become Banach spaces with
the semi-integral, dominated and strongly summing norms, which definitions
can be found in [2], [24] and [17], respectively.

R. Alencar-M. C. Matos [2] introduced a reasonable crossnorm σ such that
Lsi(E1, . . . , En) is isometrically isomorphic to (E1 ⊗σ · · · ⊗σ En)′ [2, Theorem
4.8]. When we consider the linearization AL of a semi-integral mapping A ∈
Lsi(E1, . . . , En; F ) defined on E1⊗̂σ · · · ⊗̂σEn, it will be denoted Aσ

L. As to
vector-valued mappings we have:

Theorem 5.2.
(a) ([2, Proposition 4.10]) Let A ∈ L(E1, . . . , En; F ). If Aσ

L : E1⊗̂σ · · · ⊗̂σEn

−→ F is absolutely summing, then A is semi-integral.
(b) ([2, Corollaries 5.8 and 5.9]) Let K1, . . . , Kn be compact Hausdorff spaces,
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F be an arbitrary Banach space and A ∈ L(C(K1), . . . , C(Kn); F ). Then, A

is semi-integral if and only if Aσ
L : C(K1)⊗̂σ · · · ⊗̂σC(Kn) −→ F is absolutely

summing.

The next five results show that, like the operator ideal Π, the multi-ideal Π◦
L is neither very small nor very large. We begin with the following combination
of Lemma 3.4 with the Weak Dvoretzky-Rogers Theorem [16, Theorem 2.18]:

Proposition 5.3 (Dvoretzky-Rogers-type theorem). The following as-
sertions are equivalent for a Banach space E:
(a) Π ◦ L(nE; E) = L(nE; E) for every n ∈ N.
(b) Π ◦ L(nE; E) = L(nE; E) for some n ∈ N.
(c) E is finite-dimensional.

Proposition 5.4 (Grothendieck-type theorem). Π ◦ L(E1, . . . , En; F )
= L(E1, . . . , En; F ) for every n, any L1-spaces E1, . . . , En and any L2-space
F .

Proof. Let A ∈ L(E1, . . . , En; F ). With the help of [14, Ex 23.17(c)] it is
easy to see that E1⊗̂π · · · ⊗̂πEn is an L1-space. So, AL is a linear operator from
an L1-space into an L2-space, which is absolutely summing by Grothendieck’s
Theorem [16, Theorem 3.1].

Proposition 5.5 (Lindenstrauss-Pe�lczyński-type theorem). The follow-
ing assertions are equivalent for an infinite-dimensional Banach space E with
unconditional basis.
(a) Π ◦ L(nE; F ) = L(nE; F ) for every n ∈ N.
(b) Π ◦ L(nE; F ) = L(nE; F ) for some n ∈ N.
(c) E is isomorphic to �1(Γ) for some Γ and F is isomorphic to a Hilbert space.

Proof. Supposing (b), by Lemma 3.4 we find that Π(E; F ) = L(E; F ),
so the Lindenstrauss-Pe�lczyński Theorem [23, Theorem 4.2] gives (c). The
implication (c) =⇒ (a) follows from Proposition 5.4 and (a) =⇒ (b) is obvious.

By LW(E1, . . . , En; F ) we mean the closed subspace of L(E1, . . . , En; F )
formed by the weakly compact mappings and by J the ideal of all integral
multilinear mappings (see, e.g., [12, Definition 2.1]).

Proposition 5.6. J ⊆ Π ◦ L ⊆ (Lss ∩ LW).
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Proof. Let A ∈ J (E1, . . . , En; F ). By ε we denote the injective norm and
by Aε

L the linearization of A defined on E1⊗̂ε · · · ⊗̂εEn. By [12, Proposition
2.2] we know that Aε

L is integral, hence absolutely summing by [16, Proposition
5.5]. Consider the diagram

E1 × · · · × En
A−−−−→ F

σn

� �Aε
L

E1⊗̂π · · · ⊗̂πEn
iε
n−−−−→ E1⊗̂ε · · · ⊗̂εEn

where iεn is the natural map. We know that iεn is continuous because ε ≤ π on
E1 ⊗ · · · ⊗ En. From AL = Aε

L ◦ iεn it follows that AL is absolutely summing,
so A belongs to Π ◦ L. Now let B ∈ Π ◦ L(E1, . . . , En; F ). Then B = BL ◦ σn,
where BL is absolutely summing, hence weakly compact [16, Theorem 2.17].
The continuity of σn and the weak compactness of BL yield that B is weakly
compact. B is strongly summing by [17, p. 188].

Proposition 5.7. Let K1, . . . , Kn be compact Hausdorff spaces. For n-
linear mappings from C(K1) × · · · × C(Kn) to an arbitrary Banach space, we
have

Ld ⊆ Lsi ⊆ Π ◦ L ⊆ (Lss ∩ LW).

Proof. The first inclusion holds for multilinear mappings on arbitrary Ba-
nach spaces (see [7, Proposition 3.3(a)]). Given A ∈ Lsi(C(K1), . . . , C(Kn); F ),
AL = Aσ

L ◦ iσn where iσn : C(K1)⊗̂π · · · ⊗̂πC(Kn) −→ C(K1)⊗̂σ · · · ⊗̂σC(Kn) is
the natural map. iσn is continuous as σ ≤ π on E1 ⊗ · · · ⊗ En and Aσ

L is abso-
lutely summing by Theorem 5.2, so AL is absolutely summing as well by the
ideal property, that is A ∈ Π ◦ L(C(K1), . . . , C(Kn); F ).

A polynomial P ∈ P(nE; F ) is dominated if (P (xj))∞j=1 is absolutely 1
n -

summable in F whenever (xj)∞j=1 is weakly summable in E. Contrary to the
linear case, there are dominated polynomials which fail to be weakly compact
[6, Proposition 46(d)]. But these polynomials are not defined on C(K)-spaces:

Corollary 5.8. Every dominated n-linear mapping from C(K1)×· · ·×
C(Kn) into an arbitrary Banach space is weakly compact. In particular, ev-
ery dominated homogeneous polynomial from a C(K)-space into an arbitrary
Banach space is weakly compact.

Proof. The multilinear case is immediate from Proposition 5.7. The poly-
nomial case follows because a polynomial P is dominated (weakly compact,
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respectively) if and only if P̌ is dominated (weakly compact, respectively) (see
[6, Proposition 45] and [25, Proposition 3]).

Remark 5.9. (On a question of Alencar and Matos) In [2, Remark 4.11],
the authors say that they do not know whether or not the converse of Theorem
5.2(a) holds true (or, equivalently, whether or not the ‘only if’ part of Theorem
5.2(b) holds for semi-integral mappings on arbitrary Banach spaces). Suppose
that the answer is yes. In this case, a repetition of the proof of Proposition
5.7 yields that the inclusions Ld ⊆ Lsi ⊆ Π ◦ L ⊆ (Lss ∩ LW) hold true for
multilinear mappings on arbitrary Banach spaces. But this is not the case as,
reasoning as in the proof of Corollary 5.8, the existence of dominated non-
weakly compact polynomials implies the existence of dominated non-weakly
compact multilinear mappings. So the question is solved negatively.
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