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Abstract

We consider the Schrödinger equations with time dependent complex potentials.
Under suitable space-time decaying conditions on the potential we treat L2 decay-
nondecay of solutions and also develop a scattering theory.

§1. Introduction

We consider the Schrödinger equation

i∂tu − ∆u + V (x, t)u = 0, (x, t) ∈ Rn × R,(1)

where i =
√−1, ∂t = ∂/∂t, ∆ is the n-dimensional Laplacian and V (x, t) is a

complex potential which is bounded and continuous in Rn × R.
We choose the initial condition at t = 0,

u(x, 0) = f(x) ∈ L2,(2)

and restrict ourselves to solutions in L2. Here, for 0 ≤ p ≤ ∞, Lp = Lp(Rn) is
the usual Lp-space with norm

‖f‖Lp =
{∫

Rn

|f(x)|pdx

}1/p

(1 ≤ p < ∞), ‖f‖L∞ = ess sup
x∈Rn

|f(x)|.
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1184 Kiyoshi Mochizuki and Takahiro Motai

In the following we simply write
∫
Rn

=
∫

and omit the suffix L2 of ‖ · ‖L2

when p = 2.
Let U0(t) = e−it∆ be the unitary group in L2 which represents the solution

of the free equation
i∂tu0 − ∆u0 = 0.(3)

Then problem (1), (2) reduces to the integral equation

u(t) = U0(t)f + i

∫ t

0

U0(t − τ )V (·, τ )u(τ )dτ.(4)

For given f ∈ L2, this equation has a unique solution u(t) ∈ C(R; L2). We
denote by U(t, s) ∈ B(L2) the evolution operator which maps solutions at time
s to those at time t:

u(t) = U(t, s)u(s).

The unique existence of solutions of (4) implies that for each fixed s and t,
U(t, s) defines a bijection on L2.

In this paper, under suitable conditions on V (x, t), we shall treat decay-
nondecay of solutions, and develop a scattering theory.

As is easily seen (Lemma 1 (i)), we have

‖u(t)‖2 +
∫ t

0

∫
ImV (x, t)|u(x, τ)|2dxdτ = ‖u(s)‖2(5)

for any t > 0, where ImV (x, t) denotes the imaginary part of V (x, t). If
ImV (x, t) ≥ 0, then ‖u(t)‖ is decreasing with t, and a question rises whether it
decays or not as t goes to infinity.

The decay-nondecay problems of solutions have been studied for dissipa-
tive wave equations (see e.g. Mochizuki-Nakazawa [11]) based on the energy
identity corresponding to (5) and a space-time weighted energy estimate of free
solutions. In case of the Schrödinger equation, we can follow a similar line of
proof if the last estimate is replaced by the so-called Lp − Lq estimates of free
solutions.

The scattering theory compares solutions of (1) and (3) not only when
t → ∞ but also when t → −∞. So, the positivity of ImV (x, t) in (5) does
not work well, and it is necessary to obtain convenient space time estimates
of perturbed solutions. There are several works which treat time dependent
potentials. See Howland [2], Yafaev [12], Yajima [13], Kitada-Yajima [7] and
Jensen [3]. But their results are restricted to the case of real potentials. So, for
each fixed t the operator −∆ + V (x, t) becomes selfadjoint, and this fact plays
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Scattering for Schrödinger Equations 1185

an important role in their theory. In this paper, in place of the selfadjointness,
we require a smallness condition on V (x, t).

For time independent complex potentials, the smooth pertubation theory
has been developed by Kato’s classical paper [4] (see also Kato-Yajima [5]
and Mochizuki [8]) to treat small perturbations. This theory is based on the
weighted resolvent estimate, and is not available either in our time dependent
potential. In this paper, by solving the integral equation (4), we directly obtain
a necessary Lp−Lq estimate for perturbed problem (1). Note that in the recent
work of Mochizuki [9] the corresponding results on scattering have been shown
for wave equations with time dependent coefficient, where is used a space time
weighted energy estimate of pertubed solutions.

Now, let us explain the results of this paper for a typical example

V (x, t) = c(1 + r)−α(1 + |t|)−β (r = |x|)(6)

with c ∈ C and α, β ≥ 0.
In the next Section 2 we shall first show (Theorem 1) that L2 decay

‖u(t)‖ → 0 (t → ∞) occurs if we require

Imc > 0 and α + β ≤ 1(7)

Contrary to this condition, if we require

Imc > 0 and α + β > 1,(8)

then as will be seen (Theorem 2) ‖u(t)‖ does not in general decay as t → ∞.
In Section 3 we shall obtain space-time Lp−Lq estimates of u(t) (Theorem

3) based on similar estimates of free solutions. For this aim, we restrict ourselves
to complex potentials like

α

2
+ β > 1 and |c| is small if β = 0.(9)

Finally, in Section 4 these estimates are used to develop a scattering theory
(Theorem 4). As will be shown, the strong limit

Z± = s − lim
t→±∞U0(−t)U(t, 0)

exists under (9). Moreover, it gives a bijection on L2 if |c| in (9) is restricted
smaller. In this case the Mφller wave operator is obtained by W± = (Z±)−1

and the scattering operator is defined as follows:

S = (W+)−1W− = Z+(Z−)−1.
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Note that example (6) has been given in Yafaev [12] when c is real and
β > 0. His results include the following. The wave operator

W± = s − lim
t→±∞ U(0, t)U0(t)

exists if α + β > 1. It is in general incomplete, but becomes complete, i.e.,
the range of W± coincides with the whole space L2, if the stronger condition
α

2
+ β > 1 is required.

§2. L2 Decay and Nondecay of Solutions

In the following we distinguish the real and imaginary parts of V (x, t) by
VR(x, t) and VI(x, t), respectively:

V (x, t) = VR(x, t) + iVI(x, t).

Lemma 1. Let u(t) be the L2 solution of (1), (2).
(i) Assume that V (x, t) is bounded, continuous in Rn ×R. Then we have

1
2
‖u(t)‖2 +

∫ t

0

∫
VI(x, τ)|u|2dxdτ =

1
2
‖f‖2.

(ii) Assume further that ∂tVR(x, t) and ∇VI(x, t) are bounded, continuous
in Rn × R. Then we have

1
2

∫
{|∇u|2 + VR(x, t)|u|2}dx

∣∣∣∣
t

0

+
∫ t

0

∫ [
VI(x, t){|∇u|2 + VR(x, t)|u|2}

+Re{(∇VI(x, t) · ∇u)ū} − 1
2
∂tVR(x, t)|u|2

]
dxdt = 0

Proof. By a standard approximation procedure (see Remark given be-
low), we have only to show these identities for smooth u(t) ∈ C((0,∞); H2) ∩
C1((0,∞); L2). Here Hj (j = 1, 2) is the Sobolev space with norm

‖f‖2
Hj =

∫
{|f(x)|2 + |∇ju|2}dx < ∞.

(i) We multiply by ū on both sides of (1). Then

iutū −∇ · {(∇u)ū} + |∇u|2 + V (x, t)|u|2 = 0,(10)

where ut = ∂tu. Taking the imaginary parts, we have

1
2
∂t|u|2 − Im[∇ · {(∇u)ū}] + VI(x, t)|u|2 = 0.(11)
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Integration by parts on Rn × (0, t) then gives the desired identity.
(ii) We take the real parts of (10) and multiply both sides by VI(x, t).

Then

−VI(x, t)Im(utū) − Re[∇ · {VI(x, t)(∇u)ū}] + Re[{∇VI(x, t) · ∇u}ū]

+VI(x, t){|∇u|2 + VR(x, t)|u|2} = 0.

Next we multiply both sides of (1) by ūt and take the real parts. Then

−Re{∇ · (∇uūt)} +
1
2
∂t{|∇u|2 + VR(x, t)|u|2} − 1

2
∂tVR(x, t)|u|2

−VI(x, t)Im(uūt) = 0.

Getting together these equations, we have

1
2
∂t{|∇u|2 + VR(x, t)|u|2} − Re[∇ · {VI(x, t)(∇u)ū + (∇u)ūt}]

+Re[(∇VI(x, t) · ∇u)ū] − 1
2
∂tVR(x, t)|u|2

+VI(x, t){|∇u|2 + VR(x, t)|u|2} = 0.

Thus, integrating it on Rn × (0, t) gives the desired identity.

Remark. Let uj (j = 1, 2, . . .) be the solution of the modified equation

uj(t) = U0(t)(hj ∗ f) + i

∫ t

0

U0(t − τ ){hj ∗ V (·, τ )(hj ∗ u(τ ))}dτ,

where hj(x) ∈ C∞
0 is a series of functions satisfying hj → δ (delta function)

as j → ∞, and h ∗ g means the convolution of h and g. Then as is proved in
Ginibre-Velo [1] (cf., also Mochizuki-Motai [10]), uj(t) → u(t) in C(R : L2)
if f ∈ L2 and V (x, t) satisfies conditions of (i). Moreover, uj(t) → u(t) in
C(R : H1) if f ∈ H1 and V (x, t) satisfies the conditions of (ii).

We shall show that L2-decay of solutions occurs under the following con-
dition.

(A1) V (x, t) satisfies

VI(x, t) ≥ φ(|x| + t),

|∇VI(x, t)| + ∂tVR(x, t) ≤ C1VI(x, t) + η(t),
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where φ(σ) is a positive, bounded continuous function of σ ≥ 0 such that
∫ ∞

0

φ(σ)dσ = ∞,

C1 is a positive constant and η(t) is a positive L1 function of t ≥ 0.
Note that potential (6) with (7) satisfies the above condition. In fact, we

have
Imc(1 + |x|)−α(1 + t)−β ≥ Imc(1 + |x| + t)−α−β,

|∇VI(x, t)| + ∂tVR(x, t) ≤
{

α(1 + |x|)−1 − β
Rec
Imc

(1 + t)−1

}
VI(x, t).

So, (A1) is satisfied with φ(σ) = Imc(1+ σ)−α−β, C1 = α + β
|Rec|
Imc

and η(t) ≡
0.

Lemma 2. Under (A1), there exists C2 > 0 such that

‖∇u(t)‖2 +
∫ t

0

∫
VI(x, t)|∇u|2dxdt ≤ C2‖f‖2

H1 for any t > 0.

Proof. Since VR(x, t) is bounded, it follows from Lemma 1 (i) that

1
2

∫
|VR(x, t)||u|2dx +

∫ t

0

VI(x, t)|VR(x, t)||u|2dxdt ≤ C‖f‖2.

On the other hand, by the second inequality of (A1) and Lemma 1 (i) we have
for any 0 < ε < 1,

∫ t

0

∫ [
VI(x, t)|∇u|2 + Re{(∇VI(x, t) · ∇u)ū} − 1

2
∂tVR(x, t)|u|2

]
dxdt

≥
∫ t

0

∫ [{(1 − ε)VI(x, t) − εη(t)}|∇u|2 − Cε{C1VI(x, t) + η(t)}|u|2] dxdt

≥
∫ t

0

∫
{(1 − ε)VI(x, t) − η(t)}|∇u|2dxdt − Cε

(
1
2
C1 + ‖η‖L1

)
‖f‖2.

These inequalities and the identity of Lemma 1 (ii) show

‖∇u(t)‖2 +
∫ t

0

∫
{(1 − ε)VI(x, t) − η(t)}|∇u|2dxdt ≤ C‖f‖2

H1 .

In this inequality, we first apply the Gronwall inequality to obtain

‖∇u(t)‖2 ≤ C(‖η‖L1)‖f‖2
H1 .
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Then we have ∫ t

0

∫
η(t)|∇u(t)|2dxdt ≤ C(‖η‖L1)‖η‖L1‖f‖2

H1 ,

and the assertion of the lemma is concluded.

Theorem 1. Assume (A1). Let f ∈ H1 and also
√

ϕ(r)f ∈ L2, where

ϕ(σ) =
∫ σ

0

φ(s)ds + 1 and r = |x|. Then

1
2
‖
√

ϕ(· + t)u(t)‖2 +
∫ t

0

∫
ϕ(r + t)VI(x, t)|u|2dxdt

≤ 1
2
‖
√

ϕ(·)f‖2 + 2(1 + C2)‖f‖2
H1

for any t > 0. ϕ(σ) being increasing to ∞ as σ → ∞, this implies

‖u(t)‖2 ≤ ϕ(t)−1{‖
√

ϕ(·)f‖2 + 2(1 + C2)‖f‖2
H1} → 0 as t → ∞.

Proof. We multiply by ϕ(r + t) on both sides of (11) and integrate over
Rn × (0, t). Since ϕ(r) = O(r) as r → ∞, there exists a sequence Rk → ∞
(k → ∞) such that

lim
k→∞

Im
∫ t

0

∫
|x|=Rk

ϕ(∂ru)ūdSdt = 0,

and it follows that

1
2
‖
√

ϕ(· + t)u(t)‖2 +
∫ t

0

∫ {
−1

2
φ|u|2 + Im(φurū) + ϕVI |u|2

}
dxdτ

=
1
2
‖
√

ϕ(·)f‖2.

By means of the first inequality of (A1), this and Lemmas 1 (i) and 2 show the
theorem.

Next, in order to treat L2 nondecay of solutions, we require in contrast to
(A1) the folowing condition.

(A2) V (x, t) satisifes

VI(x, t) ≥ 0, |V (x, t)| ≤ C3VI(x, t) + η(t)

and also
|V (x, t)| ≤ ξ(x) + η1(t),
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where C3 is a positive constant, η(t) and η1(t) are positive L1 function of t > 0
and ξ(x) is a positve function of x ∈ Rn such that

ξ(x) ∈ Lq(Rn), for some 1 ≤ q < n.

Note that potential (6) with (8) satisfies this condition. In fact, it follows
from the Young inequality that

(1 + r)−α(1 + t)−β ≤ α

α + β
(1 + r)−α−β +

β

α + β
(1 + t)−α−β.

Since α + β > 1, we can choose ξ(x) = ε(1 + r)−α−β for
n

α + β
< q < n, where

ε is any positive constant if β > 0 and ε = |c| if β = 0.
We use the following well known property of free solutions.

Lemma 3. Let 2 ≤ p ≤ ∞ and put
1
p′

= 1 − 1
p
. Let u0(t) be the solu-

tion of the free equation (3) with initial condition

u0(x, 0) = f0 ∈ Lp′
.

Then we have
‖u0(t)‖Lp ≤ (4π|t|)n/p−n/2‖f0‖Lp′ .

Theorem 2. Assume (A2). Then for each 0 �= f ∈ L2 ∩ L2q/(q+1),
there exists s0 > 0 such that for all s > s0,

U(t, 0)[U(0, s)U0(s)f ] = U(t, s)U0(s)f �→ 0 as t → ∞.

Proof. Let u(t) and u0(t) be nontrivial L2−solutions of (1) and (3), re-
spectively. Then

i∂t(u(t), u0(t)) = (∆u(t) − V u(t), u0(t)) − (u(t), ∆u0(t)),

where (·, ·) is the innerproduct of L2. Integrating both sides over [s, t], we have

(u(t), u0(t)) − (u(s), u0(s)) − i

∫ t

s

(V u(τ ), u0(τ ))dτ = 0.

By the Schwarz inequality

|(u(t), u0(t)) − (u(s), u0(s))|(12)

≤
{∫ t

s

∫
|V ||u|2dxdτ

}1/2{∫ t

s

∫
|V ||u0|2dxdτ

}1/2

.
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The second inequality of (A2) and Lemma 1 (i) show

∫ t

s

∫
|V ||u|2dxdτ ≤

∫ t

s

∫
{C3VI(x, τ) + η(τ )}|u|2dxdτ

≤
(

C3

2
+

∫ t

s

η(τ )dτ

)
‖u(s)‖2.

On the other hand, the third inequality of (A2) combined with the Hölder
inequality shows

∫ t

s

∫
|V ||u0(τ )|2dxdτ ≤ ‖ξ‖Lq

∫ t

s

‖u0(τ )‖2
L2q′dτ +

∫ t

s

η(τ )dτ‖u0(s)‖2.(13)

Thus, it follows from Lemma 3 that

|(u(t), u0(t)) − (u(s), u0(s))| ≤
(

C3

2
+

∫ t

s

η(τ )dτ

)1/2

‖u(s)‖×(14)

×
{

C2
4‖ξ‖Lq

∫ t

s

τ−n/qdτ‖u0(0)‖2
L2q/(q+1) +

∫ t

s

η1(τ )dτ‖u0(0)‖2

}1/2

,

where we have used the equalities

2
(

n

2
− n

2q′

)
=

n

q
, 1 − 1

2q′
=

q + 1
2q

.

Now, for every nonzero f0 ∈ L2 ∩ L2q/(q+1), let u0(t) = U0(t)f0 and

u(t) = U(t, s)U0(s)f0 = U(t, 0){U(0, s)U0(s)f0}.

We can show that this u(t) does not decay as t → ∞. In fact, contrary to the
conclusion, assume that ‖u(t)‖ → 0 as t → ∞. Then letting t → ∞ in (14), we
obtain

‖U0(s)f0‖ ≤
(

C3

2
+

∫ ∞

s

η(τ )dτ

)1/2

×

×
{

C2
4‖ξ‖Lq

∫ ∞

s

τ−n/qdτ‖f0‖2
L2q/(q+1) +

∫ ∞

s

η1(τ )dτ‖f0‖2

}1/2

,

Since ‖U0(s)f0‖ is independent of s, this leads to a contradiction if s is chosen
sufficiently large.
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§3. Space-time Lp − Lq Estimates

In this section we first summarize space-time Lp − Lq estimates of free
solutions, and then use it to obtain similar estimates of perturbed solutions.

Lemma 4. Let n ≥ 3 and let
n − 2
2n

≤ 1
p
≤ 1

2
and

1
r

=
n

2

(
1
2
− 1

p

)
.

Then there exists C5 > 0 such that
∥∥∥∥
∫ t

0

U0(t − τ )h(τ )dτ

∥∥∥∥
Lr(R±;Lp)

≤ C5‖h‖Lr′ (R±;Lp′ ).

As is well known this lemma is a direct from Lemma 3 if
1
p

>
n − 2
2n

. At

the end point
1
p

=
n − 2
2n

, it is due to Keer-Tao [6].

As a corollary of this lemma we have the following

Lemma 5. Let n, p and r be as in Lemma 4. Then
(i) For any t ∈ R±,

∥∥∥∥
∫ t

0

U0(−τ )h(τ )dτ

∥∥∥∥ ≤
√

2C5‖h‖Lr′ (R±;Lp′ ).

(ii) For f0 ∈ L2, we have U0(t)f0 ∈ Lr(R±; Lp) and

‖U0(·)f0‖Lr(R±;Lp) ≤
√

2C5‖f0‖.

Now, we return to the perturbed problem. We obtain similar estimates of
perturbed solutions requiring the following condition on V (x, t).

(A3) V (x, t) satisfies

V (x, t) ∈ Lν(R; Lq),

where
0 ≤ 1

q
≤ 2

n
and

1
ν

= 1 − n

2q
.

Moreover, V (x, t) satisfies the smallness condition

C5‖V ‖L∞(R±;Ln/2) < 1 when ν = ∞,(15)

where C5 is a constant given in Lemma 4.
Note that potential (6) with (9) satisfies this condition (A3) if we choose

1
q

= 0 when α = 0,
1
q

=
2
n

when β = 0 and
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max{0, 2(1 − β)}
n

<
1
q

<
min{α, 2}

n
when α, β > 0.

For 1 ≤ γ, µ ≤ ∞ and ±s ≥ 0, we put

Y γ,µ
±,s = Lγ(R±,s; Lµ),

where R+, s = [s,∞) for s ≥ 0 and R−, s = (−∞, s] for s ≤ 0. The space
Y γ,µ
±,0 = Lγ(R±; Lµ) is already used in this Section. By (A3) we have V (x, t) ∈

Y ν,q
±,s for any ±s ≥ 0. Moreover, as we see from (15), there exists ±s ≥ 0 such

that
C5‖V ‖Y ν,q

±,s
< 1.(16)

In the following we fix such an s, and choose the pair {p, r}, related to
{q, ν}, as follows:

1
p

=
1
2

(
1 − 1

q

)
, and

1
r

=
1
2

(
1 − 1

ν

)
.(17)

As is easily seen, the condition for {q, ν} in (A3) is equivalent to that for {p, r}
in Lemma 4.

Theorem 3. Let n ≥ 3 and assume (A3). Then for each f ∈ L2,
(i) The integral equation

u(t) = U0(t − s)f + i

∫ t

s

U0(t − τ )V (τ )u(τ )dτ

has a unique solution in u(t) ∈ Y r,p
±,s.

(ii) This solution belongs to C(R±,s; L2) and coincides with U(t, s)f .
Moreover, we have

‖u‖Y r,p
±.s

≤
√

2C5

1 − C5‖V ‖Y ν,q
±,s

‖f‖(18)

and ∥∥∥∥
∫ t

s

U0(−τ )V (τ )u(τ )dτ

∥∥∥∥ ≤
2C5‖V ‖Y ν,q

±,s

1 − C5‖V ‖Y ν,q
±.s

‖f‖.(19)

Proof. (i) For g(t) ∈ Y r,p
±,s, we put

Φ±,sg(t) =
∫ t

s

U0(t − τ )V (τ )g(τ )dτ, t ∈ R±.

By Lemma 4 we have∥∥∥∥
∫ t

s

U0(t − τ )V (τ )g(τ )dτ

∥∥∥∥
Y r,p
±,s

≤ C5‖V g‖
Y r′,p′
±,s

.
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Here
‖V g‖

Y r′,p′
±,s

≤ ‖V ‖Y ν,q
±,s

‖g‖
Y

r′ν/(ν−r′),p′q/(q−p′)
±,s

,

and (17) implies that
p′q

q − p′
= p and

r′ν
ν − r′

= r. Thus, the above inequality

proves that

‖Φ±,sg‖Y r,p
±,s

≤ C5‖V ‖Y ν,q
±,s

‖g‖Y r,p
±,s

,(20)

Now, for f ∈ L2 we define {uk(t)} successively as follows:

u0(t) = U0(t − s)f, uk(t) = u0(t) + iΦ±,suk−1(t).

u0(t) ∈ Y r,p
±,s by Lemma 5 (ii), and hence, each uk(t) ∈ Y r,p

±,s by (20). Moreover,
since

‖un − un−1‖Y r,p
±,s

≤
(
‖Φ‖B(Y r,p

±,s)

)n

‖u0‖Y r,p
±,s

and ‖Φ±,s‖B(Y r,p
±,s) < 1 by (16) and (20), we see that {un(t)} converges in Y r,p

±,s

as n → ∞.
It is obvious that the limit u = u(t) is the desired solution of the integral

equation.
(ii) It follows from Lemma 5 (i) that
∥∥∥∥
∫ t

s

U0(−τ )V (τ )u(τ )dτ

∥∥∥∥ ≤
√

2C5‖V u‖
Y r′,p′
±,s

≤
√

2C5‖V ‖Y ν,q
±,s

‖u‖Y r,p
±,s

.(21)

This and the integral equation show that the solution u(t) is in C(R±,s; L2).
Since the integral equation has a unique solution in C(R±,s; L2), this u(t) coin-
cides with U(t, s)f . Moreover, inequality (18) easily follows from the definition

u(t) = u0(t) +
∞∑

k=1

{uk(t) − uk−1(t)}

if we note ‖u0‖Y r,p
±,s

≤ √
2C5‖f‖.

Inequality (19) follows from (18) combined with (21).

§4. Scattering

Our results on scattering are summarized in the following theorem.

Theorem 4. Let n ≥ 3 and assume (A3). Then
(i) For every f ∈ L2 there exists f±

0 ∈ L2 such that

‖U(t, 0)f − U0(t)f±
0 ‖2 → 0 as t → ±∞.
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We put
Z± = s − lim

t→±∞U0(−t)U(t, 0).

Then Z± defines a nontrivial bounded operator on L2.
(ii) If (15) in (A3) is replaced by the stronger condition

3C5‖V ‖L∞(R±;Ln/2) < 1 when ν = ∞,(22)

then Z± gives a bijection on L2. Thus, the scattering operator

S = Z+(Z−)−1 : f−
0 → f+

0

is well defined and also gives a bijection on L2.

Proof. (i) We put u(t) = U(t, s)f and u0(t) = U0(t − s)f0. Then as in
the proof of Theorem 2 we have

(u(t), u0(t)) − (u(σ), u0(σ)) − i

∫ t

σ

(V (τ )u(τ ), u0(τ ))dτ = 0(23)

for any σ, t ∈ R±,s. It follows from (A3) and Lemma 5 that

∣∣∣∣
∫ t

σ

∫
|V ||u0|2dxdτ

∣∣∣∣
1/2

≤ ‖V ‖1/2

Y ν,q
±,s

‖u0‖Y 2ν′,2q′
±,s

(24)

≤
√

2C5‖V ‖1/2

Y ν,q
±,s

‖f0‖,

where we have used the equalities

1
2q′

=
1
2

(
1 − 1

q

)
=

1
p
,

1
2ν′ =

1
r
.

On the other hand, by (A3) and Theorem 3 (ii) we similarly have

∣∣∣∣
∫ t

σ

∫
|V ||u|2dxdτ

∣∣∣∣
1/2

≤
√

2C5‖V ‖1/2

Y ν,q
±,s

1 − C5‖V ‖Y ν,q
±,s

‖f‖.(25)

Now we have from (23) and (24)

|(U0(s − t)U(t, s)f − U0(s − σ)U(σ, s)f, f0)|

≤
∣∣∣∣
∫ ±∞

σ

∫
|V (τ )||u(τ )|2dτ

∣∣∣∣
1/2√

2C5‖V ‖1/2

Y ν,q
±,s

‖f0‖.
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Since ∣∣∣∣
∫ ±∞

σ

∫
|V ||u|2dxdτ

∣∣∣∣
1/2

→ 0 as σ → ±∞,

this shows the existence of the strong limit

Z±(s) = s − lim
t→±∞U0(s − t)U(t, s)

in L2, and we also have

Z± = s − lim
t→±∞U0(−t)U(t, 0) = U0(−s)Z±(s)U(s, 0).

The nontriviality of Z± is easily verified if we use (18) and follow the proof of
Theorem 2.

(ii) To verify the assertions, we have only to show that Z±(s) is a bijection
on L2. For this aim we use the following inequality due to (23), (24) and (25).

|(U0(s − t)U(t, s)f − U0(s − σ)U(σ, s)f, f0)|

≤
2C5‖V ‖Y ν,q

±,s

1 − C5‖V ‖Y ν,q
±,s

‖f‖‖f0‖.

We put σ = s and let t → ±∞. Then it follows from this inequality that

|({Z±(s) − I}f, f0)| ≤
2C5‖V ‖Y ν,q

±,s

1 − C5‖V ‖Y ν,q
±,s

‖f‖‖f0‖.

Since
2C5‖V ‖Y ν,q

±,s

1 − C5‖V ‖Y ν,q
±,s

< 1,

this implies ‖Z± − I‖B(L2) < 1 and the proof is completed.

References

[1] J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equation I, J. Functional
Analysis 32 (1972), 1–32.

[2] J. S. Howland, Stationary scattering theory for time dependent Hamiltonians, Math.
Ann. 207 (1974), 315–335.

[3] A. Jensen, Results in Lp(Rd) for the Schrödinger equation with time-dependent poten-
tial, Math. Ann. 299 (1994), 117–125.

[4] T. Kato, Wave operators and similarity for some non-selfadjoint operators, Math. Ann.
162 (1965/1966), 258–279.



�

�

�

�

�

�

�

�

Scattering for Schrödinger Equations 1197

[5] T. Kato and K. Yajima, Some examples of smooth operators and the associated smooth-
ing effect, Rev. Math. Phys. 1 (1989), no. 4, 481–496.

[6] M. Keel and R. Tao, Endpoint Strichartz estimates, Ameri. J. Math. 120 (1998), no. 5,
955–980.

[7] H. Kitada and K. Yajima, A scattering theory for time-dependent long-range potentials,
Duke Math. J. 49 (1982), no. 2, 341–376.

[8] K. Mochizuki, Eigenfunction expansions associated with the Schrödinger operator with
a complex potential and the scattering inverse problem, Proc. Japan Acad. 43 (1967),
638–643.

[9] , On scattering for wave equations with time dependent coefficients, Tsukuba J.
Math. 31 (2007), no. 2, to appear.

[10] K. Mochizuki and T. Motai, The scattering theory for the nonlinear wave equation with
small data. II, Publ. Res. Inst. Math. Sci. 23 (1987), no. 5, 771–790.

[11] K. Mochizuki and H. Nakazawa, Energy decay and asymptotic behavior of solutions to
the wave equation with linear dissipation, Publ. Res. Inst. Math. Sci. 32 (1996), no. 3,
401–414.

[12] D. R. Yafaev, On the violation of the unitarity in time dependent potential scattering,
Soviet Math. Dokl., 19 (1973), 1517–1521.

[13] K. Yajima, Scattering theory for Schrödinger equations with potentials periodic in time,
J. Math. Soc. Japan 29 (1977), no. 4, 729–743.


