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Introduction

The ground field k is algebraically closed and of characteristic zero. The
goal of this paper is to extend the standard invariant-theoretic design, well-
developed in the reductive case, to the setting of non-reductive group represen-
tations. This concerns the following notions and results: the existence of generic
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1200 Dmitri I. Panyushev

stabilisers and generic isotropy groups for (finite-dimensional rational) repre-
sentations; structure of the fields and algebras of invariants; quotient morphisms
and structure of their fibres. One of the main tools for obtaining non-reductive
Lie algebras is the semi-direct product construction. There is a number of arti-
cles devoted to the study of the coadjoint representations of non-reductive Lie
algebras; in particular, semi-direct products, see e.g. [31, 30, 32, 33, 41, 48].
In this article, we consider such algebras from a broader point of view. In par-
ticular, we found that the adjoint representation is an interesting object, too.
Our main references for Invariant Theory are [5] and [46]. All algebraic groups
are assumed to be linear.

If an algebraic group A acts on an affine variety X, then k[X]A stands for
the algebra of A-invariant regular functions on X. If k[X]A is finitely gener-
ated, then X//A := Spec k[X]A, and the quotient morphism πA : X → X//A is
the mapping associated with the embedding k[X]A ↪→ k[X]. If k[X]A is poly-
nomial, then the elements of any set of algebraically independent homogeneous
generators will be referred to as basic invariants .

Let G be a connected reductive algebraic group with Lie algebra g. Choose a
Cartan subalgebra t ⊂ g with the corresponding Weyl group W. The adjoint
representation (G : g) has a number of good properties, some of which are listed
below:

• The adjoint representation is self-dual, and t is a generic stabiliser for
it;

• The algebra of invariants k[g]G is polynomial;
• the restriction homomorphism k[g] → k[t] induces the isomorphism

k[g]G � k[t]W (Chevalley’s theorem);
• The quotient morphism πG : g → g//G is equidimensional and the fibre

of the origin, N := π−1
G (πG(0)), is an irreducible complete intersection. The

ideal of N in k[g] is generated by the basic invariants;
• N is the union of finitely many G-orbits.

Each of these properties may fail if g is replaced with an arbitrary algebraic
Lie algebra q. In particular, one have to distinguish the adjoint and coadjoint
representations of q. As usual, ad (resp. ad∗) stands for the adjoint (resp.
coadjoint) representation. Write Q for a connected group with Lie algebra q.

First, we consider the problem of existence of generic stabilisers for ad
and ad∗. (See § 1 for precise definitions). It turns out that if (q, ad ) has a
generic stabiliser, say h, then h is commutative and nq(h) = h. This yields
a Chevalley-type theorem for the fields of invariants: k(q)Q � k(h)W , where
W = NQ(h)/ZQ(h) is finite. We also notice that (q, ad ) has a generic stabiliser
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if and only if the Cartan subalgebras of q are commutative. If (q, ad∗) has a
generic stabiliser, say h, then h is commutative, dimNQ(h) = dim(q∗)h, and
k(q∗)Q � k((q∗)h)NQ(h). But unlike the adjoint case, the action (NQ(h) : (q∗)h)
does not necessarily reduce to a finite group action. We prove that under a
natural constraint the representation of the identity component of NQ(h) on
(q∗)h is the coadjoint representation.

Our main efforts are connected with the following situation. Suppose that
(q, ad ) or (q, ad∗) has some of the above good properties and V is a (finite-
dimensional rational) Q-module. Form the Lie algebra q � V . It is the semi-
direct product of q and V , V being a commutative ideal in it. The corresponding
connected algebraic group is Q � V . (See Section 4 for the details.) Then we
want to realise to which extent those good properties are preserved under this
procedure. This surely depends on V , and we are essentially interested in two
cases:

(a) q is arbitrary and V = q or q∗ (the adjoint or coadjoint q-module);
(b) q = g is reductive and V is an arbitrary G-module.

For (a), we prove that if (q, ad ) has a generic stabiliser, then so do (q � q, ad )
and (q � q∗, ad ). Furthermore, the passages q � q � q and q � q � q∗ does
not affect the generalised Weyl group W , and both fields k(q � q)Q�q and
k(q � q∗)Q�q∗

are purely transcendental extensions of k(q)Q. It is also true
that if (q, ad∗) has a generic stabiliser, then so does (q � q, ad∗).

For (b), we prove that (g �V, ad ) always has a generic stabiliser. But this
is not the case for ad∗. Recall that any g-module V has a generic stabiliser.
The following result seems to be quite unexpected. Suppose generic G-orbits
in V are closed (i.e., the action (G : V ) is stable), then (g � V, ad∗) has a
generic stabiliser if and only if V is a polar G-module in the sense of [11]. The
assumption of stability is relatively harmless, since there are only finitely many
G-modules without that property. On the other hand, the hypothesis of being
polar is quite restrictive, because for any G there are only finitely many polar
representations.

One of our main observations is that there are surprisingly many nonreduc-
tive Lie algebras a and a-modules M such that k[M ]A is a polynomial algebra.
Furthermore, the basic invariants of k[M ]A can explicitly be constructed using
certain modules of covariants. This concerns the following cases:

– If g is reductive and V is an arbitrary g-module, then one takes a = M =
g � V ;

– If the action (Q : V ) satisfies some good properties, then one takes a =
q�q andM = V �V . Furthermore, the passage (q, V ) �→ (q̂ = q�q, V̂ = V �V )
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can be iterated.

The precise statements are given below.

0.1 Theorem. Let V be an arbitrary G-module. Set q = g � V , Q =
G� V , and m = dimV t. Notice that 1 � V is a commutative normal subgroup
of Q (in fact, the unipotent radical of Q). Then

(i) k[q]1�V is a polynomial algebra of Krull dimension dim g +m. It is freely
generated by the coordinates on g and the functions F̂i, i = 1, . . . ,m, asso-
ciated with covariants of type V ∗.

(ii) k[q]Q is a polynomial algebra of Krull dimension dim t + m. It is freely
generated by the basic invariants of k[g]G and the same functions F̂i, i =
1, . . . ,m.

(iii) max dimx∈q Q·x = dim q − dim q//Q;

(iv) If π : q → q//Q is the quotient morphism and Ω := {x ∈ q | dπx is onto},
then q \ Ω contains no divisors.

Given a q-module V , the space V × V can be regarded as q � q-module in a
very natural way. Write V̂ or V � V for this module.

0.2 Theorem. Suppose the action (Q : V ) satisfies the following condi-
tions :

(1) k[V ]Q is a polynomial algebra;
(2) max dimv∈V Q·v = dimV − dimV//Q;
(3) If πQ : V → V//Q is the quotient morphism and Ω := {v ∈ V |

(dπQ)v is onto}, then V \ Ω contains no divisors.
Set q̂ = q � q and Q̂ = Q� q. Then

(i) k[V̂ ]1�q is a polynomial algebra of Krull dimension dimV + dimV//Q,
which is generated by the coordinates on the first factor of V̂ and the poly-
nomials F̂1, . . . , F̂m associated with the differentials of basic invariants in
k[V ]Q;

(ii) k[V̂ ]Q̂ is a polynomial algebra of Krull dimension 2dimV//Q, which is
freely generated by the basic invariants of k[V ]Q and the same functions
F̂i, i = 1, . . . ,m.

(iii) The Q̂-module V̂ satisfies conditions (1)–(3), too.
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Since the adjoint representation of a reductive Lie algebra g satisfies the above
properties (1)–(3), one may begin with q = g = V , and iterate the procedure
ad infinitum. For the adjoint representation of a semisimple Lie algebra, the
assertion in part (ii) is due to Takiff [40]. For this reason Lie algebras of the
form q � q are called Takiff (Lie) algebras. We will also say that the q̂-module
V̂ is the Takiffisation of the q-module V . But (g, ad ) is not the only possible
point of departure for the infinite iteration process. In view of Theorem 0.1,
the algebras q = g � V and their adjoint representations can also be used as
initial bricks for the Takiffisation procedure.

If k[V ]Q is polynomial, then it is natural to study the fibres of the quotient
morphism πQ. The null-cone, N(V ) = π−1

Q (πQ(0)), is the most important fibre.
For instance, k[V ] is a free k[V ]Q-module if and only dimN(V ) = dimV −
dimV//Q, i.e., πQ is equidimensional. We consider properties of null-cones
arising in the context of semi-direct products and their representations.

For q = g � V , as in Theorem 0.1, a necessary and sufficient condition
for the equidimensionality of πQ is stated in terms of a stratification of N
determined by the covariants on g of type V ∗. Using this stratification and
some technique from [27] and [22], we prove the following:

If N(q) is irreducible, then (i) πQ is equidimensional; (ii) the morphism
κ : q → q defined by κ(x, v) = (x, x·v), x ∈ g, v ∈ V , has the property that
the closure of Im (κ) is a factorial complete intersection and its ideal in k[q] is
generated by the polynomials F̂i, i = 1, . . . ,m, mentioned in Theorem 0.1. This
is a generalisation of [22, Prop. 2.4]. Similar results hold for the Takiffisation
of G-modules V having good properties, as in Theorem 0.2. In this case,
conditions of equidimensionality for πĜ : V̂ → V̂ //Ĝ are stated in terms of a
stratification of N(V ) determined by the covariants on V of type V ∗. See § 8
for the details.

In general, it is difficult to deal with the stratifications of N and N(V ), but,
for isotropy contractions and Z2-contractions of reductive Lie algebras, explicit
results can be obtained. Let h be a reductive subalgebra of g and g = h ⊕ m

a direct sum of h-modules. Then h � m is called an isotropy contraction of g.
If g = h ⊕ m is a Z2-grading, then we say about a Z2-contraction. (The word
“contraction” can be understood in the usual sense of deformation theory of
Lie algebras.) Semi-direct products occurring in this way have some interesting
properties. As a sample, we mention the following useful fact: ind (h � m) =
ind g + 2c(G/H), where ind (.) is the index of a Lie algebra and c(.) is the
complexity of a homogeneous space. In particular, ind (h � m) = ind g if and
only if H is a spherical subgroup of G.
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Our main results on the equidimensionality of quotient morphisms and
irreducibility of null-cones are related to the Z2-contractions of simple Lie al-
gebras. Given a Z2-grading g = g0⊕g1, Theorem 0.1 applies to the semi-direct
product k = g0 � g1, so that k[k]K is a polynomial algebra of Krull dimension
rk g. Using the classification of Z2-gradings, we prove that N(k) is irreducible.
Therefore the good properties discussed in a preceding paragraph hold for the
morphism κ : k → k, κ(x0, x1) = (x0, [x0, x1]). Our proof of irreducibility of
N(k) basically reduces to the verification of certain inequality for the nilpotent
G0-orbits in g0. Actually, we notice that one may prove a stronger constraint
(cf. inequalities (9.8) and (9.9)). This leads to the following curious result:
Consider k̃ = g0 � (g1 ⊕ g1). (In view of Theorem 0.1, k[̃k]K̃ is polynomial.)
Then πK̃ is still equidimensional, although N(k̃) can already be reducible.

To discuss similar results for the Takiffisation of q-modules, i.e., q̂-modules
V̂ , one has to impose more constraints on V . We also assume below that q = g

is reductive.

0.3 Theorem. Suppose the G-module V satisfies conditions (1)–(3) of
Theorem 0.2 and also the following two conditions :

(4) N(V ) := π−1
G (πG(0)) consists of finitely many G-orbits ;

(5) N(V ) is irreducible and has only rational singularities.
For πĜ : V̂ → V̂ //Ĝ and N(V̂ ) = π−1

Ĝ
(πĜ(0)), we then have, in addition to the

conclusions of Theorem 0.2,

(i) N(V̂ ) is an irreducible complete intersection and the ideal of N(V̂ ) in k[V̂ ]
is generated by the basic invariants in k[V̂ ]Ĝ;

(ii) πĜ is equidimensional and k[V̂ ] is a free k[V̂ ]Ĝ-module.

For G semisimple, conditions (2) and (3) are satisfied for all V , therefore the
most essential conditions are (4) and (5). The main point here is to prove
the irreducibility. The crucial step in proving this theorem is the use of the
Goto-Watanabe inequality [25, Theorem 2’] which relates the dimension and
embedding dimension of the local rings that are complete intersections with
only rational singularities, see § 10. (We refer to [18] for the definition of rational
singularities.) For V = g, the idea of using that inequality is due to M. Brion.
The irreducibility of N(ĝ) was first proved by F. Geoffriau [16] via case-by-
case checking. Then, applying the Goto-Watanabe inequality, Brion found a
conceptual proof of Geoffriau’s result [6]. Our observation is that Brion’s idea
applies in a slightly more general setting of the Takiffisation of representations
(G : V ) satisfying conditions (1)–(5).



�

�

�

�

�

�

�

�

Semi-Direct Products of Lie Algebras 1205

The irreducibility of N(ĝ) is equivalent to that a certain inequality holds
for all non-regular nilpotent elements (orbits). Here is it:

dim zg(x) + rk (dπG)x > 2rk g if x ∈ N \ N reg .

Using case-by-case checking, we prove a stronger inequality

dim zg(x) + 2rk (dπG)x − 3rk g � 0 for all x ∈ N .

It seems that the last inequality is more fundamental, because it is stated more
uniformly, can be written in different equivalent forms, and has geometric ap-
plications. For instance, if g = g0 ⊕ g1 is a Z2-grading of maximal rank and
ĝ1 = g1 � g1, then the equidimensionality of πĜ0

: ĝ1 → ĝ1//Ĝ0 is essentially
equivalent to the last inequality. This result cannot be deduced from Theo-
rem 0.3, because N(g1) is not normal. Furthermore, N(ĝ1) can be reducible.

Our methods also work for generalised Takiff algebras introduced in [33].
The vector space q∞ := q ⊗ k[T] has a natural Lie algebra structure such
that [x ⊗ Tl, y ⊗ Tk] = [x, y] ⊗ Tl+k. Then q�(n+1) =

⊕
j�n+1

q ⊗ Tj is an

ideal of q∞, and the respective quotient is a generalised Takiff Lie algebra,
denoted q〈n〉. Write Q〈n〉 for the corresponding connected group. Clearly,
dim q〈n〉 = (n + 1) dim q and q〈1〉 � q � q. We prove that if (Q : q) satisfies
conditions (1)–(3) of Theorem 0.2, then the similar conclusions hold for the
adjoint action (Q〈n〉 : q〈n〉). In particular, k[q〈n〉]Q〈n〉 is a polynomial algebra
of Krull dimension (n+ 1) dim q//Q.

For q = g semisimple, our methods enable us to deduce the equidimension-
ality of πG〈2〉 : g〈2〉 → g〈2〉//G〈2〉 from the same fact related to the semi-direct
product g � (g ⊕ g). However, it was shown by Eisenbud and Frenkel that
πG〈n〉 : g〈n〉 → g〈n〉//G〈n〉 is equidimensional for any n, see [24, Appendix].
Their proof exploits the interpretation of N(g〈n〉) as a jet scheme and uses the
deep result of Mustaţă concerning the irreducibility of jet schemes [24, Theo-
rem 3.3].

§1. Preliminaries

Algebraic groups are denoted by capital Latin letters and their Lie alge-
bras are denoted by the corresponding lower-case Gothic letters. The identity
component of an algebraic group Q is denoted by Qo.
Let Q be an affine algebraic group acting regularly on an irreducible variety X.
Then Qx stands for the isotropy group of x ∈ X. Likewise, the stabiliser of x
in q = LieQ is denoted by qx. We write k[X]Q (resp. k(X)Q) for the algebra
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of regular (resp. field of rational) Q-invariants on X. A celebrated theorem of
M. Rosenlicht says that there is a dense open Q-stable subset Ω̃ ⊂ X such that
k(X)H separates the Q-orbits in Ω̃, see e.g. [5, 1.6], [46, 2.3]. In particular,
trdeg k(X)Q = dimX − max dimx∈X Q·x. We will use Rosenlicht’s theorem in
the following equivalent form:

1.1 Theorem. Let F be a subfield of k(X)Q. Then F = k(X)Q if and
only if F separates the Q-orbits in a dense open subset of X.

We say that the action (Q : X) has a generic stabiliser , if there exists a dense
open subset Ω ⊂ X such that all stabilisers qξ, ξ ∈ Ω, are Q-conjugate. Then
each of the subalgebras qξ, ξ ∈ Ω, is called a generic stabiliser. The points of
such an Ω are said to be generic. Likewise, one defines a generic isotropy group,
which is a subgroup of Q. Clearly, the existence of a generic isotropy group
implies that of a generic stabiliser. That the converse is also true is proved
by Richardson [34, § 4]. The reader is also referred to [46, §7] for a thorough
discussion of generic stabilisers. If Y ⊂ X is irreducible, then Y reg := {y ∈
Y | dimQ·y = maxz∈Y dimQ·z}. It is a dense open subset of Y . The points of
Y reg are said to be regular. Of course, these notions depend on q. If we wish
to make this dependence explicit, we speak about q-generic or q-regular points.
Since Xreg is dense in X, all generic points (if they do exist) are regular. The
converse is however not true.

If Q is reductive and X is smooth, then (Q : X) always has a generic
stabiliser [34]. One of our goals is to study existence of generic stabilisers in
case of non-reductive Q. Specifically, we consider the adjoint and coadjoint
representations of Q. To this end, we recall some standard invariant-theoretic
techniques and a criterion for the existence of generic stabilisers.

Let ρ : Q → GL(V ) be a finite-dimensional rational representation of Q
and ρ̄ : q → gl(V ) the corresponding representation of q. For s ∈ Q and v ∈ V ,
we usually write s·v in place of ρ(s)v. Similarly, x·v is a substitute for ρ̄(x)v,
x ∈ q. (But for the adjoint representation, the standard bracket notation is
used.) It should be clear from the context which meaning of ‘·’ is meant. Given
v ∈ V , consider

U = V qv = {y ∈ V | qv·y = 0} ,
the fixed point space of qv. Associated to U ⊂ V , there are two subgroups of
Q:

N(U) = {s ∈ Q | s·U ⊂ U}, Z(U) = {s ∈ Q | s·u = u for all u ∈ U}.
The following is well known and easy.
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1.2 Lemma.

(i) LieZ(U) = qv and Z(U) is a normal subgroup of N(U);

(ii) N(U) = NQ(Z(U)) = NQ(qv).

It is not necessarily the case that Z(U) is connected; however, Z(U) and Z(U)o

have the same normaliser in Q.

1.3 Lemma. If y ∈ Ureg (i.e., qy = qv), then Q·y ∩ U = N(U)·y and
q·y ∩ U = nq(qv)·y.

Proof. 1. Suppose s·y ∈ U for some s ∈ Q. Then qs·y = qv = qy. Hence
s ∈ NQ(qv), and we refer to Lemma 1.2.

2. Suppose s·y ∈ U for some s ∈ q. Then 0 = qv(s·y) = [qv, s]·y. Hence
[qv, s] ⊂ qy = qv.

Set Y = Q·U . It is a Q-stable irreducible subvariety of V .

1.4 Proposition. The restriction homomorphism (f ∈ k(Y )) �→ f |U
yields an isomorphism k(Y )Q ∼−→ k(U)N(U) = k(U)N(U)/Z(U).

Proof. This follows from the first equality in Lemma 1.3 and Rosenlicht’s
theorem.

1.5 Example. Let G be a semisimple algebraic group with Lie algebra
g, and v = e ∈ g a nilpotent element. Then ge = zg(e) is the centraliser
of e and U = {x ∈ g | [x, zg(e)] = 0} =: dg(e) is the centre of zg(e). Here
N(U) = NG(zg(e)) is the normaliser of zg(e) in G. Letting Y = G·dg(e), we
obtain an isomorphism

k(Y )G � k(dg(e))NG(zg(e)) .

It is known that dg(e) contains no semisimple elements [9], so that Y is the
closure of a nilpotent orbit and hence k(Y )G = k. It follows that NG(zg(e))
has a dense orbit in dg(e). This fact was already noticed in [30, § 4]. Actually,
the dense G-orbit in Y is just G·e.
Clearly, if Q·U = V , then (Q : V ) has a generic stabiliser and v is a generic
point. A general criterion for this to happen is proved in [14, § 1]. For future
reference, we recall it here.
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1.6 Lemma (Elashvili). Let v ∈ V be an arbitrary point. Then Q·V qv

is dense in V if and only if V = q·v + V qv .

The existence of a non-trivial generic stabiliser yields a Chevalley-type theorem
for the field of invariants. Indeed, it follows from Proposition 1.4 that if (Q : V )
has a generic stabiliser, v ∈ V is a generic point, and U = V qv , then

(1.7) k(V )Q � k(U)N(U) = k(U)N(U)/Z(U) .

In this context, the group W := N(U)/Z(U) is called the Weyl group of the
action (Q : V ). Notice that this W is not necessarily finite.

The corresponding question for the algebras of invariants is much more
subtle. The restriction homomorphism f �→ f |U certainly induces an embed-
ding k[V ]Q ↪→ k[U ]N(U)/Z(U). However, if Q is non-reductive, then it is usually
not onto.

§2. Generic Stabilisers (centralisers) for the Adjoint
Representation

In what follows, Q is a connected algebraic group. In this section, we
elaborate on the existence of generic stabilisers and its consequences for the
adjoint representations Ad : Q→ GL(q) and ad : q → gl(q).

For x ∈ q, the stabiliser qx is nothing but the centraliser of x in q, so that
we write zq(x) in place of qx. The centraliser of x in Q is denoted by ZQ(x). If
(q, ad ) has a generic stabiliser, then we also say that q has a generic centraliser .
By Lemma 1.6, a point x ∈ q is generic if and only if

[q, x] + qzq(x) = q .

Since qzq(x) is the centre of the Lie algebra zq(x) and dim[q, x] = dim q −
dim zq(x), one immediately derives

2.1 Proposition. An algebraic Lie algebra q has a generic centraliser if
and only if there is an x ∈ q such that

zq(x) is commutative and(2.2)

[q, x] ⊕ zq(x) = q.(2.3)

Equality (2.3) implies that Im (adx) = Im (adx)2. The latter is never satisfied
if adx is nilpotent and Im (adx) �= 0. That is, if q is nilpotent and [q, q] �= 0,
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then q has no generic centralisers. It also may happen that neither of the
centralisers zq(x) is commutative. (Consider the Heisenberg Lie algebra Hn

of dimension 2n + 1 for n � 2.) On the other hand, if there is a semisimple
x ∈ q such that zq(x) is commutative, then the conditions of Proposition 2.1
are satisfied, so that a generic centraliser exists. [Warning: this does not imply
that the semisimple elements are dense in q.]

2.4 Lemma. Let x ∈ q be a generic point. Then nq(zq(x)) = zq(x).

Proof. Assume that nq(zq(x)) �= zq(x). In view of Eq. (2.3), there is then
a nonzero y ∈ nq(zq(x)) ∩ [q, x]. That is, y = [s, x] for some s ∈ q. Then

[y, zq(x)] = [[s, zq(x)], x] ⊂ [q, x]

and hence [y, zq(x)] = 0. Thus, y ∈ zq(x) ∩ [q, x] = 0, and we are done.

Recall that a subalgebra h of q is called a Cartan subalgebra if h is nilpotent
and nq(h) = h. Every Lie algebra has a Cartan subalgebra, and all Cartan
subalgebras of q are conjugate under Q, see [37, Ch. III].

2.5 Proposition. An algebraic Lie algebra q has a generic centraliser if
and only if the Cartan subalgebras of q are commutative.

Proof. If q has a generic centraliser, then, by Lemma 2.4, such a cen-
traliser is a (commutative) Cartan subalgebra. Conversely, any Cartan subal-
gebra of q is of the form h = {y ∈ q | (adx)ny = 0 for n� 0} for some x ∈ q

[37, Ch. III.4, Cor. 2]. Therefore, the commutativity of h implies that h = zq(x)
and adx is invertible on [q, x].

As is already mentioned, the existence of a generic centraliser implies that
of a generic isotropy group. For this reason, we always assume that a generic
point x has the property that ZQ(x) is a generic isotropy group. (This is only
needed if a generic isotropy group is disconnected.)

2.6 Theorem. Suppose q has a generic centraliser. Let x ∈ q be a
generic point such that ZQ(x) is a generic isotropy group. Then (i) Z(zq(x)) =
ZQ(x) and (ii) k(q)Q � k(zq(x))W , where W = NQ(zq(x))/ZQ(x) is a finite
group.

Proof. (i) Since x ∈ zq(x), we have Z(zq(x)) ⊂ ZQ(x). Hence one has
to prove that ZQ(x) acts trivially on zq(x). Assume that the fixed point space
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of ZQ(x) is a proper subspace of zq(x), say M . Since dimQ·M � dim[q, x] +
dimM < dim q, Q·M cannot be dense in q, which contradicts the fact that
ZQ(x) is a generic isotropy group.

(ii) This follows from Eq. (1.7) and Lemma 2.4.

Below, we state a property of generic points related to the dual space q∗.

2.7 Proposition. Let x ∈ q be a generic point, as in Theorem 2.6.
Then

(i) q∗ = x·q∗ ⊕ (q∗)x = x·q∗ ⊕ (q∗)zq(x) and (ii) (q∗)ZQ(x) = (q∗)zq(x).

Proof. (i) We have [q, x]⊥ = (q∗)x and zq(x)⊥ = x·q∗. Hence the first
equality follows from Eq. (2.3).

The second equality means that (q∗)x = (q∗)zq(x). Clearly, (q∗)x ⊃ (q∗)zq(x).
Taking the annihilators provides the inclusion [q, x] ⊂ [q, zq(x)]. Then using
Eq. (2.2) and (2.3) yields

[q, zq(x)] ⊂ [zq(x) + [q, x], zq(x)] = [[q, x], zq(x)] = [[q, zq(x)], x] ⊂ [q, x].

(ii) In view of (i), (q∗)zq(x) is identified with (zq(x))∗. Hence the assertion
stems from Theorem 2.6(i).

Thus, the very existence of a generic centraliser implies that q has some
properties in common with reductive Lie algebras. For instance, the Weyl
group of (Q : q) is finite, and the decomposition of q∗ with respect to a generic
element x ∈ q is very similar to that of q. It will be shown below that there is
a vast stock of such Lie algebras.

§3. Generic Stabilisers for the Coadjoint Representation

In this section, we work with the coadjoint representations of Q and q.
Usually, we use lowercase Latin (resp. Greek) letters to denote elements of q

(resp. q∗). By Lemma 1.6, a point ξ ∈ q∗ is generic if and only if

q·ξ + (q∗)qξ = q∗ .

As was noticed by Tauvel and Yu [41], taking the annihilators yields a simple
condition, entirely in terms of q. Namely, ξ is generic if and only if

(3.1) qξ ∩ [q, qξ] = {0} .
Below, we assume that (q, ad∗) has a generic stabiliser and thereby Eq. (3.1) is
satisfied for some ξ. This readily implies that qξ is commutative and nq(qξ) =
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zq(qξ). However, unlike the adjoint representation case, qξ can be a proper
subalgebra of zq(qξ). In other words, the Weyl group of (Q : q∗) is not neces-
sarily finite. Our goal is to understand what isomorphism (1.7) means in this
situation. Set h = qξ and U = (q∗)qξ . Then we can write

k(q∗)Q � (k(U)ZQ(h)o

)NQ(h)/ZQ(h)o

.

That is, one first takes the invariants of the connected group ZQ(h)o, and then
the invariants of the finite group NQ(h)/ZQ(h)o.

3.2 Lemma. dimU = dim zq(h).

Proof. By Lemma 1.3 and Eq. (3.1), we have q·ξ∩U = zq(h)·ξ. Equating
the dimensions of these spaces yields the assertion.

In view of this equality, it is tempting to interpret U as the space of the
coadjoint representation of zq(h) = LieZQ(h)o. However it seems to only be
possible under an additional assumption on h.

3.3 Definition. We say that a subalgebra h is near-toral if [q, h]∩zq(h) =
{0}.
This condition is stronger than (3.1). It is obviously satisfied if h is a toral Lie
algebra (=Lie algebra of a torus).
Recall that the index of (a Lie algebra) q, ind q, is the minimal codimension of
Q-orbits in q∗. Equivalently, ind q = trdeg k(q∗)Q. If ind q = 0, then q is called
Frobenius .

3.4 Theorem. Suppose the generic stabiliser h is near-toral. Then

(i) [q, h] ⊕ zq(h) = q and U � zq(h)∗;

(ii) ind q = ind zq(h) = dim h and h is the centre of zq(h)

Proof. (i) It is easily seen that [q, h]⊥ = (q∗)h = U . Therefore Defini-
tion 3.3 says that zq(h)⊥ + U = q∗. From Lemma 3.2, it then follows that this
sum (of zq(h)-modules) is direct. Hence U � q∗/zq(h)⊥ � zq(h)∗.

(ii) Since ξ is generic and hence regular in q∗, we have ind q = dim h.
For ν ∈ Ureg, we have U ∩h⊥ = U ∩ q·ν = zq(h)·ν. In particular, dim zq(h)·ν =
dimU − dim h. Hence almost all ZQ(h)-orbits in U are of codimension dim h.
This also means that the centre of zq(h) cannot be larger than h.

3.5 Corollary. If the generic stabiliser h is near-toral, then k(q∗)Q �
(k(zq(h)∗)ZQ(h)o

)F , where F = NQ(h)/ZQ(h)o is finite. That is, one first takes
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the invariants of the coadjoint representation for a smaller Lie algebra and then
the invariants of a finite group.

Under the assumption that h is near-toral, s := zq(h) has the property that
ind s = dim z(s). The following results present some properties of such algebras.

3.6 Proposition. Suppose ind s = dim z(s). Then
1. The closure of any regular S-orbit in s∗ is an affine space.
2. If z(s) is toral, then s/z(s) is Frobenius.

Proof. 1. If y ∈ (s∗)reg, then sy = z(s) and hence s·y = z(s)⊥. Hence all
points of the orbit S·y have one and the same tangent space. Therefore S·y is
open and dense in the affine space y + z(s)⊥.

2. Since z(s) is reductive, one has a direct sum of Lie algebras s = r� z(s),
and ind r = ind s − ind z(s) = 0.

It is not, however, always true that s/z(s) is Frobenius. For instance, the
Heisenberg Lie algebra Hn has one-dimensional centre and indHn = 1. But
Hn/z(Hn) is commutative, so that ind (Hn/z(Hn)) = 2n.

3.7 Examples. 1. Let b be a Borel subalgebra of a simple Lie algebra
g. Then (b, ad∗) has a generic stabiliser, which is always a toral Lie algebra,
see e.g. [41]. If h is such a stabiliser, then by Proposition 3.6, zb(h)/h is a
Frobenius Lie algebra. It is not hard to compute this quotient for all cases in
which h �= 0.

• If g = sln, then dim h =
[

n−1
2

]
and zb(h)/h � b(sl2)[n/2].

• If g = so4n+2, then then dim h = 1 and zb(h)/h � b(so4n).
• If g = E6, then dim h = 2 and zb(h)/h � b(so8).
2. If g = sln or sp2n and s is a seaweed subalgebra of g, then a generic

stabiliser for (s, ad∗) always exists, and it is a toral subalgebra [31]. For in-
stance, let p ⊂ gl2n be a maximal parabolic subalgebra whose Levi part is
gln � gln. Then a generic stabiliser for (p, ad∗) is n-dimensional and toral, and
zp(h)/h � b(sl2)n.

3. There are non-trivial examples of Lie algebras such that a generic
stabiliser for ad∗ exists, is near-toral, and equals its own centraliser, but it is
not toral. Let e be a nilpotent element in g = sln and q = zg(e). Then a
generic stabiliser for the coadjoint representation of q exists, see [48]. If h is
such a stabiliser, then the description of h given in [48, Theorems 1 &5] shows
that zq(h) = h. Hence, by Corollary 3.5, k(q∗)Q is the field of invariants of a
finite group.
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§4. Semi-Direct Products of Lie Algebras and Modules of
Covariants

In this section, we review some notions and results that will play the
principal role in the following exposition.

(I) Recall a semi-direct product construction for Lie groups and algebras.

Let V be a Q-module, and hence a q-module. Then q × V has a natural
structure of Lie algebra, V being an Abelian ideal in it. Explicitly, if x, x′ ∈ q

and v, v′ ∈ V , then

[(x, v), (x′, v′)] = ([x, x′], x·v′ − x′·v) .

This Lie algebra is denoted by q � V or q ⊕ εV . Accordingly, an element of
this algebra is denoted by either (x, v) or x+ εv. Here ε is regarded as a formal
symbol. Sometimes, e.g. if V = q, it is convenient to think of ε as element of
the ring of dual numbers k[ε] = k ⊕ kε, ε2 = 0. A connected algebraic group
with Lie algebra q � V is identified set-theoretically with Q× V , and we write
Q� V for it. The product in Q� V is given by

(s, v)(s′, v′) = (ss′, (s′)−1·v + v′) .

In particular, (s, v)−1 = (s−1,−s·v). The adjoint representation of Q � V is
given by the formula

(4.1) (Ad (s, v))(x′, v′) = (Ad (s)x′, s·v′ − x′·v) ,

where v, v′ ∈ V , x ∈ q, and s ∈ Q.

Note that V can be regarded as either a commutative unipotent subgroup of
Q � V or a commutative nilpotent subalgebra of q � V . Referring to V as
subgroup of Q� V , we write 1 � V . A semi-direct product q � V is said to be
reductive if q is a reductive (algebraic) Lie algebra.

(II) Our second important ingredient is the notion of modules of covari-
ants.

Let A be an algebraic group, acting on an affine variety X, and V an A-module.
The set of all A-equivariant morphisms from X to V , denoted MorA(X,V ), has
a natural structure of k[X]A-module. This k[X]A-module is said to be the mod-
ule of covariants (of type V ). It is easily seen that MorA(X,V ) can be identified
with (k[X] ⊗ V )A. For any x ∈ X, we denote by εx the evaluation homomor-
phism MorA(X,V ) → V , which takes F to F (x). Obviously, Im (εx) ⊂ V Ax .

Assume for a while that A = G is reductive. Then the algebra k[X]G is
finitely generated and MorG(X,V ) is a finitely generated k[X]G-module, see
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e.g. [5, 2.5], [46, 3.12]. A review of recent results on modules of covariants in
the reductive case can be found in [42]. The following result is proved in [29,
Theorem 1].

4.2 Theorem. If G·x is normal and codim G·x(G·x \ G·x) � 2, then
Im (εx) = V Gx .

Let greg be the set of regular elements of g and T a maximal torus of G. The
following fundamental result is due to Kostant [21, p. 385].

4.3 Theorem. Let V be a G-module. Then dimV Gx = dimV T for any
x ∈ greg and MorG(g, V ) is a free k[g]G-module of rank dimV T .

In particular, if V T = 0, then there is no non-trivial G-equivariant mappings
from g to V . These modules of covariants are graded, and the degrees of
minimal generating systems are uniquely determined. These degrees are called
the generalised exponents of V . The multiset of generalised exponents of a
g-module V is denoted by g-expg(V ). Similar results hold if g is replaced with
a “sufficiently good” G-module, see [47, Ch. III, § 1] and [36, Prop. 4.3, 4.6].
Namely,

4.4 Theorem. Let Ṽ be a G-module such that k[Ṽ ]G is a polynomial
algebra and the quotient morphism π : Ṽ → Ṽ //G is equidimensional. Then
MorG(Ṽ , V ) is a free k[Ṽ ]G-module for any G-module V . Furthermore, if (G :
Ṽ ) is stable, then the rank of MorG(Ṽ , V ) equals dimV H , where H is a generic
isotropy group for (G : Ṽ ).

An action (G : V ) is said to be stable, if the union of closed G-orbits is dense
in V (see [46, 7.5] and [44] about stable actions). If (G : V ) is stable, then a
generic stabiliser is reductive and k(V )G is the quotient field of k[V ]G.

In some cases, a basis for free modules of covariants can explicitly be
indicated. For any f ∈ k[V ], the differential of f can be regarded as a covector
field on V : v �→ dfv ∈ V ∗. Starting with f ∈ k[V ]G, one obtains in this way a
covariant df ∈ MorG(V, V ∗). The following result of Thierry Vust appears in
[47, Ch. III, § 2].

4.5 Theorem. Let a G-module Ṽ satisfy all the assumptions of The-
orem 4.4. Suppose also that NG(H)/H is finite. Let f1, . . . , fm be a set
of basic invariants in k[Ṽ ]G. Then MorG(Ṽ , Ṽ ∗) is freely generated by dfi,
i = 1, . . . ,m.

(III) Here we point out a connection between modules of covariants and
invariants of semi-direct products.
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For F ∈ MorA(X,V ), define the polynomial F̂ ∈ k[X × V ∗]A by the rule
F̂ (x, ξ) = 〈F (x), ξ〉, where 〈 , 〉 : V × V ∗ → k is the natural pairing.

4.6 Lemma. Consider the Lie algebra q � V and the k[q]Q-module
MorQ(q, V ∗). Then for any F ∈ MorQ(q, V ∗), we have F̂ ∈ k[q � V ]Q�V .

Proof. Clearly, F̂ is Q-invariant. The invariance with respect to 1 � V -
action means that

〈F (x), v〉 = 〈F (x), v + x·v′〉
holds for any x ∈ q and v, v′ ∈ V . To this end, we notice that 〈F (x), x·v′〉 =
〈x·F (x), v′〉, and x·F (x) = 0, since F : q → V ∗ is a Q-equivariant morphism.

The point is that F̂ turns out to be invariant with respect to the action of
the unipotent group 1 � V .

§5. Generic Stabilisers and Rational Invariants for Semi-Direct
Products

Given Q and V , one may ask the following questions:

(Q1) When does a generic centraliser for q � V exist? What are invariant-
theoretic consequences of this?

It is easily seen that the existence of a generic centraliser for q is a necessary
condition. We will therefore assume that this is the case.

5.1 Theorem. Let x ∈ q be a generic point. Suppose V x = V ZQ(x) and
V x ⊕ x·V = V . Then

(i) each point of the form x + εv, v ∈ V zq(x), is generic and zq(x) ⊕ εV zq(x)

is a generic centraliser for q � V .

(ii) trdeg k(q � V )Q�V = trdeg k(q)Q + dimV zq(x);

(iii) The Weyl groups of (q, ad ) and (q � V, ad ) are isomorphic;

(iv) k(q � V )Q�V is a purely transcendental extension of k(q)Q.

Proof. Set h = zq(x), R = Q � V , and r = q � V . It follows from the
assumptions that V x = V h.
(i) Let v ∈ V h be arbitrary. Let us verify that Proposition 2.1 applies here. A
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direct calculation shows that zr(x+ εv) = h ⊕ εV h and this algebra is commu-
tative. Next,

[r, x+ εv] = {[z, x] + ε(z·v) | z ∈ q} + ε(x·V ) .

Notice that q·v = ([q, x] ⊕ h)·v = [q, x]·v = x·(q·v) ⊂ x·V . Hence z·v ⊂
x·V for any z ∈ q and [r, x + εv] = [q, x] ⊕ ε(x·V ). Therefore the equality
[r, x+ εv] ⊕ zr(x+ εv) = r is equivalent to that V x ⊕ x·V = V .

(ii) By part (i), h̃ := h ⊕ εV h is a generic centraliser for r. Since
trdeg k(q)Q = dim h, the claim follows.

(iii) Using formula (4.1), one easily verifies that NR(h̃) = NQ(h)�V h and
ZR(h̃) = ZQ(h) � V h. Hence using Theorem 2.6, we obtain

W̃ = NR(h̃)/ZR(h̃) � NQ(h)/ZQ(h) = W .

(iv) Here we may work entirely with invariants of W . In view of (iii)
and Theorem 2.6, it suffices to prove that k(h)W ↪→ k(h ⊕ V h)W is a purely
transcendental extension. Actually, a transcendence basis of k(h ⊕ V h)W over
k(h)W can explicitly be constructed. This follows from Theorem 5.2 below,
since the representation of W on h is faithful.

The following result concerns fields of invariants of reductive algebraic
groups.

Recall from § 4(III) that one may associate the invariant F̂ ∈ k[V1 × V2]G

to any F ∈ MorG(V1, V
∗
2 ). If D is a domain, then we write D(0) for the field of

fractions.

5.2 Theorem. Let ρi : G → GL(Vi), i = 1, 2, be representations of a
reductive group G. Set m = dimV2 and J = k[V1]G. Suppose that a generic
isotropy subgroup for (G : V1) is trivial, and (G : V1) is stable. Then

(i) dimJ(0) MorG(V1, V
∗
2 ) ⊗J J(0) = m;

(ii) Let F1, . . . , Fm ∈ MorG(V1, V
∗
2 ) be covariants such that {Fi ⊗ 1 | i =

1, . . . ,m} form a basis for the J(0)-vector space in (i). Then k(V1⊕V2)G =
k(V1)G(F̂1, . . . , F̂m). In other words, any such basis for MorG(V1, V

∗
2 ) ⊗J

J(0) gives rise to a transcendence basis for the field k(V1⊕V2)G over k(V1)G.

Proof. (i) Because (G : V1) is stable, J(0) = k(V1)G. Since MorG(V1, V
∗
2 )

is a finitely-generated J-module, M = MorG(V1, V
∗
2 ) ⊗J J(0) is a finite-

dimensional J(0)-vector space. By the assumptions, there is an x ∈ V1 such
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that the isotropy group Gx is trivial and G·x = G·x. Then by Theorem 4.2,

(�) the evaluation map εx : MorG(V1, V
∗
2 ) → V ∗

2 = (V ∗
2 )Gx is onto.

Hence dimM � m. On the other hand, it cannot be greater than m.
(ii) In view of Theorem 1.1, it suffices to prove that k(V1)G(F̂1, . . . , F̂m)

separates the generic G-orbits in V1 ⊕ V2. First, the field k(V1)G separates the
generic G-orbits in V1. Therefore, for generic points (x1, x2), xi ∈ Vi, the first
coordinate is determined uniquely up to G-conjugation by the values f(x1),
where f runs over k(V1)G. By condition (�), F1(x1), . . . , Fm(x1) form a basis
for V ∗

2 if x1 is generic. Hence given a generic x1 and arbitrary values of the
invariants F̂i, the second coordinate (i.e., x2) is uniquely determined.

Remarks. 1. Most of the assumptions of Theorem 5.2 are always satisfied
if G is either finite or semisimple. For G finite, it suffices to only require that
ρ1 is faithful. For G semisimple, it suffices to require that a generic isotropy
group of (G : V1) is trivial.

2. The assertion that the field extension in (ii) is purely transcendental
is known, see e.g. [12, p. 6]. But the explicit construction of a transcendence
basis via modules of covariants seems to be new.

The following assertion demonstrates important instances, where Theorem 5.1
applies.

5.3 Proposition. Theorem 5.1 applies to the following q-modules V :
1. q is an arbitrary Lie algebra having a generic centraliser and V is

either q or q∗.
2. q = g is reductive and V is an arbitrary g-module.

Proof. 1. For q � q, the conditions of Theorem 5.1 are satisfied in view
of Proposition 2.1 and Theorem 2.6. For q � q∗, these conditions are satisfied
in view of Proposition 2.7.

2. Here x ∈ g is a regular semisimple element and ZG(x) is a maximal
torus. Therefore V x is the zero weight space of V and x·V is the sum of all
other weight spaces.

Remark. For the semi-direct products as in Proposition 5.3(2), we are
able to describe the polynomial invariants, see § 6.

A Lie algebra is said to be quadratic whenever its adjoint and coadjoint repre-
sentations are equivalent. It is easily seen that q � q∗ is quadratic for any
Lie algebra q. For, if 〈 , 〉 is the pairing of q and q∗, then the formula
(x1 + εξ1, x2 + εξ2) = 〈x1, ξ2〉+ 〈x2, ξ1〉 determines a non-degenerate symmetric
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q�q∗-invariant form. For q�q∗, there is no difference between the adjoint and
coadjoint representations. So, previous results of this section describe some
properties of the coadjoint representation of q � q∗ as well. However, for an
arbitrary V the adjoint and coadjoint representation of q�V are very different.
Hence our second problem is:

(Q2) When does a generic stabiliser for (q�V, ad∗) exist? What are invariant-
theoretic consequences of this?

This problem is quite different from (Q1). It seems to be more involved and
restrictive.

Set r = q�V and R = Q�V . The dual space r∗ is identified with q∗⊕V ∗,
and a typical element of it is denoted by η = (α, ξ). For (s, v) ∈ r, the coadjoint
representation is given by

(5.4) (ad ∗
r (s, v))(α, ξ) = (ad ∗

q(s)(α) − v∗ξ, s·ξ) .

Here the mapping ((s, ξ) ∈ q × V ∗) �→ (s·ξ ∈ V ∗) is the natural q-module
structure on V ∗, and ((v, ξ) ∈ V × V ∗) �→ (v∗ξ ∈ q∗) is the moment mapping
with respect to the symplectic structure on V × V ∗.

To describe the stabiliser of any point in r∗, we need some notation. For α ∈ q∗,
let Kα denote the Kirillov form on q associated with α, i.e., Kα(s1, s2) =
〈α, [s1, s2]〉. Then ker(Kα) = qα, the stabiliser of α. If h is a subalgebra of q,
then Kα|h can also be regarded as the Kirillov form associated with α|h ∈ h∗.

5.5 Proposition. For any η = (α, ξ) ∈ r∗, we have

rη = {(s, v) | s ∈ ker(Kα|qξ
) & ad ∗

q(s)α = v∗ξ} .

Proof. Straightforward. The first condition imposed on s guarantees us
the equality s·ξ = 0 and that the equation ad ∗

q(s)α = v∗ξ has a solution v for
any such s.

It follows that rη is a direct sum of the space {w ∈ V | w∗ξ = 0} = (q·ξ)⊥,
sitting in V , and a space of dimension dim ker(Kα|qξ

), which is embedded in
q�V somehow diagonally. (We will see below that under additional constraints
this second space lies entirely in q.)

A result of Räıs on semi-direct products [32] describes r-regular points in
r∗ and gives the value of ind r, that is, the dimension of the stabilizer of the
r-regular points in r∗. Namely, if ξ ∈ V ∗ is q-regular, then (α, ξ) is r-regular
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if and only if α is qξ-regular as element of q∗ξ (with respect to the coadjoint
representation of qξ). By a theorem of Duflo-Vergne [13], the stabiliser of any
regular point in the coadjoint representation is commutative, see also [30, 1.8]
for an invariant-theoretic proof.

It seems to be difficult to find out a general condition ensuring that
Eq. (3.1) holds for some regular point in r∗. For this reason, we only look at
the three cases occurring already in Proposition 5.3 in connection with generic
centralisers.

• If (q, ad∗) has a generic stabiliser, then (q � q, ad∗) has.
Indeed, if qξ is a generic stabiliser (ξ ∈ q∗), then qξ � qξ is the stabiliser of
η = (0, ξ) ∈ (q � q)∗ and [q � q, qξ � qξ] ∩ (qξ � qξ) = {0}.

• If (q, ad∗) has a generic stabiliser, then (q�q∗, ad∗) may have no generic
stabilisers.

Example. Let q be the 3-dimensional Heisenberg algebra H1. The generic
stabiliser for (q, ad∗) exists and equals the centre of q. But q̂ = q�q∗ is nilpotent
and quadratic. Therefore (q̂, ad∗) � (q̂, ad ) has no generic stabiliser.

• Suppose q = g is reductive. Then g � g∗.

By [34], (g : V ∗) always has a generic stabiliser. Assume that this stabiliser is
reductive. There is no much harm in it, since there are finitely many g-modules
whose generic stabiliser is not reductive. Then our goal is to prove that the
existence of a generic stabiliser for (r, ad∗) imposes a very strong constraint on
the action (G : V ).

Let ΩV ∗ be the open subset of g-generic points in V ∗. Fix a generic
stabiliser h ⊂ g and a Cartan subalgebra th ⊂ h.

5.6 Lemma. There is an open R-stable subset Ξ ⊂ (r∗)reg ∩ (g × ΩV ∗)
such that if η = (α, ξ) ∈ Ξ, then rη is a direct sum of two spaces, one lying
in g∗ and another lying in V ∗. Furthermore, eventually replacing η with an
H-conjugate point, one can achieve that rη = th � (g·ξ)⊥.

Proof. Since h is reductive, the h-modules h and h∗ can be identified using
the restriction to h of a non-degenerate g-invariant symmetric bilinear form on
g. Suppose η = (α, ξ) ∈ (r∗)reg ∩ (g×ΩV ∗). Without loss of generality, assume
that gξ = h. As was explained above, the r-regularity of η means that α is
h-regular as an element of h∗. Having identified h∗ and h, we may assume
that α is regular semisimple. This last condition distinguishes the required
subset Ξ. Then ker(Kα|h) is a Cartan subalgebra of h, and if s ∈ ker(Kα|h),
then ad ∗

g(s)α = 0. Comparing this with Proposition 5.5, we see that rη =
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ker(Kα|h) � (g·ξ)⊥. Taking an H-conjugate, which does not affect ξ, we may
achieve that ker(Kα|h) = th.

Thus, for almost all r-regular points in r∗, their stabilisers are conjugate
to subalgebras of the form h̃ = th � (g·ξ)⊥. Set U = (g·ξ)⊥. By the very
construction, U is h-stable. Since η is regular and therefore rη is commutative,
th acts trivially on U , i.e., th·U = 0.

5.7 Proposition.
1. Suppose (r, ad∗) has a generic stabiliser. Then g·U ∩ U = {0}.
2. If h = 0, then the converse is also true.

Proof. 1. By Lemma 5.6 and Eq. (3.1), (r, ad∗) has a generic stabiliser
if and only if [r, h̃] ∩ h̃ = {0}. We have

[r, h̃] = [g � V, th � U ] = [g, th � U ] + th·V .

Clearly, g·U is a subspace of [g, th � U ]. Hence we get the condition that
g·U ∩ U = {0}.
2. Let V = U ⊕ V ′ be an h-stable decomposition. Then th·V = th·V ′ ⊂ V ′.
Hence this summand causes no harm. If h = 0, then [g, th�U ] = g·U . Therefore
the condition g·U ∩ U = {0} appears to be necessary and sufficient for the
existence of a generic stabiliser.

Recall from [11] the notion of a polar representation of a reductive group.
Let v ∈ V be semisimple, i.e., G·v is closed. Define cv = {x ∈ V | g·x ⊂ g·v}.
Then (G : V ) is said to be polar if there is a semisimple v ∈ V such that
dim cv = dimV//G. Such c is called a Cartan subspace. Polar representations
have a number of nice (and hence restrictive) properties. For instance, all
points of c are semisimple, all Cartan subspaces are G-conjugate, the group
Wc := N(c)/Z(c) is finite, and k[V ]G � k[c]Wc [11]. The latter implies that
k[V ]G is polynomial and the morphism πG : V → V//G is equidimensional [26].

Our main result related to Question (Q2) is:

5.8 Theorem. Suppose the action (G:V ) is stable. Then (r = g�V, ad∗)
has a generic stabiliser if and only if (G:V ) is a polar representation.

Proof. 1. Suppose (g � V, ad∗) has a generic stabiliser.

Choose η = (α, ξ) ∈ Ξ as prescribed by Lemma 5.6, so that rη = th � U is
a generic stabiliser and hence g·U ∩ U = {0} (Proposition 5.7). In view of
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stability, we may also assume that ξ is (g-regular and) semisimple. Let us
prove that U is a Cartan subspace of V .

As is well known, dimV//G = dimV ∗//G and (G : V ) is stable if and only
if (G : V ∗) is, see e.g. [44]. By the stability hypothesis,

max
ν∈V ∗

dimG·ν = max
v∈V

dimG·v = dimV − dimV//G .

Hence G·ξ = dimV − dimV//G and dimU = dimV//G.

Claim. There is a closed G-orbit of maximal dimension meeting U .

Proof of the claim. The proof of main results in [11] is based on tran-
scendental methods (compact real forms of G, Kempf–Ness theory). This is an
excuse for our using similar methods below. In the next paragraph, we assume
that k = C.

Let Gc be a maximal compact subgroup of G with Lie algebra gc. Fix
a Gc-invariant Hermitian form 〈 , 〉 on V ∗. Without loss of generality, we
may assume that ξ is of minimal length in G·ξ and hence 〈g·ξ, ξ〉 = 0, see [11,
Sect. 1]. Upon the identification the gc-modules V and V ∗ via 〈 , 〉, ξ appears
to be a point of U . If ṽ ∈ U corresponds to ξ under this identification, then
we still have 〈gc·ṽ, ṽ〉 = 0, and therefore 〈g·ṽ, ṽ〉 = 0. Hence G·ṽ is closed [11,
Theorem 1.1]. Since (gc)ξ = (gc)ṽ and (gc)ṽ is a compact real form of gṽ [11,
Prop. 1.3], we conclude that dim gṽ = dim gξ = dim h.

For ṽ ∈ U , we have dim g·ṽ = dimV − dimU . Hence g·ṽ = g·U for
dimension reason. In particular, g·y ⊂ g·ṽ for any y ∈ U . Thus, U satisfies all
conditions in the definition of a Cartan subspace.

2. Suppose (G : V ) is stable and polar.

Let v ∈ V be a regular semisimple element and c = cv the corresponding Cartan
subspace. Then V = g·c ⊕ c and g·c = g·v [11, Section 2]. Set h = gv. The
Lie algebra s := th � c is commutative, and a direct verification shows that it
satisfies Eq. (3.1). Indeed,

[g � V, th � c] = [g, th � c] + th·V .

Using the th-stable decomposition V = g·c ⊕ c, we see that th·V ⊂ g·c. As for
the first summand, its g-component does not belong to th and its V -component
belongs to g·c. Hence [g�V, th � c]∩ (th � c) = {0}. It remains to find an η ∈ r∗

such that rη = s.
The dual version of the previous Claim shows that (g·c)⊥ is a Cartan

subspace of V ∗ and that, for sufficiently general ξ ∈ (g·c)⊥, we have gξ = h
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and g·ξ = c⊥. Now, take an α ∈ g∗ such that under the identification g∗ � g

it becomes a regular element of th (i.e., α ∈ (th)reg). Then γ = (α, ξ) ∈ (r∗)reg

and rγ = s.

We mention without proof the following consequence of Theorem 5.8.

5.9 Corollary. If a generic stabiliser h for (r, ad∗) is near-toral, then
rk h = rk g and U = V h. In case of g simple, this implies that V is either the
adjoint or “little adjoint” g-module. (The latter means that the highest weight
is the short dominant root, in case g has roots of different length.)

Remark. It may happen that a generic stabiliser for (G : V ∗) is not reduc-
tive, but (g �V, ad∗) still has a generic stabiliser. Indeed, there are G-modules
V such that r = g�V is Frobenius, i.e., r∗ has a dense R-orbit, which certainly
ensures the existence of a generic stabiliser. For G simple, the list of such V is
obtained in [15].

Finally, we consider the field of rational invariants for the coadjoint represen-
tation of r = g � V . By [32],

trdeg k(r∗)R = trdeg k(V ∗)G + ind h ,

where h is a generic stabiliser for (G : V ∗). It follows from Eq. (5.4) that
k(V ∗)G can be regarded as a subfield of k(r∗)R.

5.10 Theorem. If ind h = 0, then k(r∗)R � k(V ∗)G.

Proof. It suffices to verify that k(V ∗)G separates R-orbits in a dense open
subset of r∗. Let p : r∗ = V ∗ ⊕ g∗ → V ∗ denote the projection. If O ⊂ V ∗ is a
generic G-orbit, then we will prove that p−1(O) contains a dense R-orbit. The
latter is equivalent to that, for any ξ ∈ O, Gξ �V has a dense orbit in p−1(ξ) =
{ξ}×g∗. Since 1�V is a normal subgroup of Gξ �V , we first look at its orbits.
For any (ξ, α) ∈ p−1(ξ), we have (1�V )·(ξ, α) = (ξ, α+V ∗ξ). Hence all orbits
are parallel affine space of dimension dim(V ∗ ξ). Therefore, it will be sufficient
to prove that Gξ has a dense orbit in the (geometric) quotient p−1(ξ)/(1 � V ).
Because V ∗ ξ = (gξ)⊥, that quotient is isomorphic to g∗/(gξ)⊥ � (gξ)∗ as
Gξ-variety. Now, the presence of a dense Gξ-orbit in (gξ)∗ exactly means that
ind gξ = 0, which is true as ξ is generic.

Remarks. 1. In Theorem 5.10, the reductivity of G is not needed. It
suffices to assume that (G : V ∗) has a generic stabiliser.

2. A related result for k(r∗)R is obtained in [31, Corollary 2.9] under the
assumption that trdeg k(V ∗)G = 0, but without assuming that G is reductive.
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§6. Reductive Semi-Direct Products and their Polynomial
Invariants

In this section, we study polynomial invariants of semi-direct products
q = g � V , where g is reductive.

Our main technical tool is the following result of Igusa (see [19, Lemma 4],
[46, Theorem 4.12]). For reader’s convenience, we provide a proof. Given an
irreducible variety Y , we say that an open subset Ω ⊂ Y is big if Y \Ω contains
no divisors.

6.1 Lemma (Igusa). Let A be an algebraic group acting regularly on an
irreducible affine variety X. Suppose S is an integrally closed finitely generated
subalgebra of k[X]A and the morphism π : X → SpecS =: Y has the properties :

(i) the fibres of π over a dense open subset of Y contain a dense A-orbit ;
(ii) Imπ contains a big open subset of Y .

Then S = k[X]A. In particular, the algebra of A-invariants is finitely gener-
ated.

Proof. From (i) and Rosenlicht’s theorem, it follows that k(Y ) = k(X)A.
In particular, k(X)A is the quotient field of k[X]A. Assume that S �= k[X]A.
Then one can find a finitely generated intermediate subalgebra: S ⊂ S̃ ⊂
k[X]A such that S �= S̃. The natural morphism π̃ : Spec S̃ → Y is birational and
its image contains a big open subset of Y (because π does). Since Y is normal,
the Richardson lemma [5, 3.2 Lemme 1] implies that π̃ is an isomorphism. This
contradiction shows that S = k[X]A.

Recall that Q := G � V is a connected group with Lie algebra q. Here
1 � V is exactly the unipotent radical of Q, which is also denoted Qu. Let T
be a maximal torus of G with the corresponding Cartan subalgebra t.

First, we consider the adjoint representation of g � V .

6.2 Theorem. Let V be an arbitrary G-module, q = g � V , and m =
dimV t. Then

(i) k[q]Q
u

is a polynomial algebra of Krull dimension dim g +m. It is freely
generated by the coordinates on g and the functions F̂i, i = 1, . . . ,m, asso-
ciated with covariants of type V ∗ (see below).

(ii) k[q]Q is a polynomial algebra of Krull dimension dim t + m. It is freely
generated by the basic invariants of k[g]G and the same functions F̂i, i =
1, . . . ,m.



�

�

�

�

�

�

�

�

1224 Dmitri I. Panyushev

(iii) max dimx∈q Q·x = dim q − dim q//Q;

(iv) If π : q → q//Q is the quotient morphism, then Ω := {x ∈ q | dπx is onto }
is a big open subset of q.

Proof. (i) By Theorem 4.3, MorG(g, V ∗) is a free k[g]G-module of rankm.
Let F1, . . . , Fm be a basis for this module and F̂1, . . . , F̂m the corresponding Q-
invariants on q, i.e., F̂i(x+ εv) = 〈Fi(x), v〉. To prove that k[q]Q

u

is freely gen-
erated by the coordinate functions on g and the polynomials F̂i, i = 1, . . . ,m,
we wish to apply Lemma 6.1.

Set Xm = {x ∈ g | dim span{F1(x), . . . , Fm(x)} = m}. That is, Xm is
the set of those x, where the vectors Fi(x) ∈ V ∗, i = 1, . . . ,m, are linearly
independent.

Claim. Xm is a big open subset of g. More precisely, codim g(g\Xm) � 3.

Proof of the claim. The set of regular elements of g, greg, has the property
that codim (g\greg) � 3 and G·x is normal for any x ∈ greg [21]. The condition
that codim G·x(G·x \G·x) � 2 is satisfied for every x ∈ g, since any G-orbit is
even-dimensional. By Theorems 4.2 and 4.3, we conclude that Xm ⊃ greg, and
the claim follows.
Let x1, . . . , xn be the coordinates on g, where n = dim g. Then x1, . . . , xn,

F̂1, . . . , F̂m are algebraically independent, because their differentials are linearly
independent on Xm � V . Consider the mapping

τ : q → Spec k[x1, . . . , xn, F̂1, . . . , F̂m] = k
n+m,

where τ (x + εv) = (x, F̂1(x + εv), . . . , F̂m(x + εv)). We identify kn+m with
g×k

m. If x = (x1, . . . , xn) ∈ Xm, then the Fi(x)’s are linearly independent, so
that the system

F̂i(x+ εv) = 〈Fi(x), v〉 = αi, i = 1, . . . ,m

has a solution v for any m-tuple α = (α1, . . . , αm). Hence Im τ ⊃ Xm × km,
which means that Im τ contains a big open subset of kn+m.

It follows from the above Claim that greg = Xm ∩ {y ∈ g | dimG·y =
n−m}. Take x ∈ greg, and let vα be a solution to the system F̂i(x+ εv) = αi.
Then τ−1(x, α) � x+ εvα and

τ−1(x, α) ⊃ Qu·(x+ εvα) = {x+ ε(vα + x ∗ V )} .
Since x ∈ Xm, we have dim τ−1(x, α) = n−m. On the other hand, dim[g, x] =
n−m, by the definition of greg. Hence τ−1(x, α) = Qu·(x+ εvα) for dimension
reason. Thus, a generic fibre of τ is a Qu-orbit, and Lemma 6.1 applies here.
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(ii) Clearly,

k[q]Q = (k[q]Q
u

)G = k[x1, . . . , xn, F̂1, . . . , F̂m]G .

Since the F̂i’s are already G-invariant, the algebra in question is equal to

k[g]G[F̂1, . . . , F̂m] .

(iii) The dimension of a Q-orbit cannot be greater than dim q− dim q//Q,
and if x ∈ t is regular, then dimQ·(x+ ε0) = dimQ− dim t −m.

(iv) It follows from the previous discussion that Ω ⊃ greg � V .

6.3 Remarks. 1. If V T = {0}, then the module of covariants of type V ∗

is trivial, so that we obtain a natural isomorphism k[q]Q � k[g]G.

2. From Theorem 5.1 and Proposition 5.5, it follows that t̃ := t�V t is a generic
centraliser in q and W̃ = NQ(̃t)/ZQ(̃t) is isomorphic to W = NG(t)/ZG(t), the
usual Weyl group of g. Therefore

k(q)Q � k(t � V t)W = k(t × V t)W .

Since k(t)W is a rational field, Theorem 5.1(iv) implies that k(q)Q is rational,
too. For g semisimple, the rationality of k(q)Q also follows from Theorem 6.2,
because in this situation k(q)Q is the quotient field of k[q]Q. However, if V t �= 0,
then the restriction homomorphism

res : k[q]Q → k[t × V t]W

is not onto. For, the description of the generators of k[q]Q shows that k[V t]W

does not belong to the image of res.

Now, we look at polynomial invariants of the coadjoint representation of q =
g � V . As we know from § 5, the existence of a generic stabiliser for (q, ad∗)
is a rare phenomenon; but this existence is not always needed for describing
invariants. It follows from Eq. (5.4) that k[V ∗]G can be regarded as a subalgebra
of k[q∗]Q. Recall that trdeg k(q∗)Q = trdeg k(V ∗)G +ind h, where h is a generic
stabiliser for (G : V ∗). In particular, if g is semisimple and h is reductive, then
trdeg k(q∗)Q = trdeg k(V ∗)G+rk h. Since the roles of V and g are interchanged
in the dual space, one might hope that k[q∗]Q could be generated by k[V ∗]G

and certain invariants arising from MorG(V, g∗). This is however false, because
it can happen that rk h > 0, but MorG(V, g∗) = 0. In general, it is not clear
how to discover “missing” invariants associated with the summand ind h (or
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rk h).
The simplest case is that in which h = 0. Then we are in a position to state an
analogue of Theorem 6.2.

6.4 Theorem. As above, let q = g × V and Qu = 1 � V . Suppose a
generic stabiliser for (G : V ∗) is trivial. Then k[q∗]Q

u

= k[V ∗] and k[q∗]Q =
k[V ∗]G.

Proof. The second equality stems from the first. To prove the first equal-
ity, we use the same method as in Theorem 6.2. The natural projection
q∗ → q∗/g∗ � V ∗ is Qu-equivariant and satisfies all the requirements of
Lemma 6.1. The details are left to the reader.

Remark. In Theorem 6.4, the reductivity of G is not needed.

§7. Takiff Lie Algebras and their Invariants

For g semisimple, some interesting results on the invariants of (g � g, ad )
are obtained by Takiff in [40]. For this reason, Lie algebras of the form q � q

are sometimes called Takiff (Lie) algebras , see [33],[16]. We will follow this
terminology.

In this section, we consider orbits and invariants of certain representations
of a Takiff group Q̂ = Q� q. Some results on rational invariants have already
appeared in § 5. Our main object here is the polynomial (regular) invariants.
We obtain a generalisation of the main result in [40], which concerns several
aspects. First, in place of semisimple Lie algebras, we consider a wider class.
Second, the initial representation of Q is not necessarily adjoint. Third, we also
describe the invariants of the unipotent group 1 � q ⊂ Q̂. Fourth, our proof
does not exploit complex numbers and complex topology.

If V is a q-module, then V × V can regarded as q � q-module in a very
natural way. For (x1, x2) ∈ q � q and (v1, v2) ∈ V × V , we define

(x1, x2)·(v1, v2) := (x1·v1, x1·v2 − x2·v1) .

This q-module will be denoted by V̂ = V �V . We also write v1+εv2 for (v1, v2).
If f ∈ k[V ]Q, then df ∈ MorQ(V, V ∗), and we define F̂f ∈ k[V̂ ] by the rule:
F̂f (x+ εy) = 〈dfx, y〉. Similarly to Lemma 4.6, one proves

F̂f ∈ k[V̂ ]Q̂ .

Here one needs the fact that dfv annihilates the tangent space of Q·v at v ∈ V .



�

�

�

�

�

�

�

�

Semi-Direct Products of Lie Algebras 1227

7.1 Theorem. Let V be a Q-module. Suppose the action (Q : V )
satisfies the following conditions :

(1) k[V ]Q is a polynomial algebra;
(2) max dimv∈V Q·v = dimV − dimV//Q;
(3) If πQ : V → V//Q is the quotient morphism and Ω := {v ∈ V |

(dπQ)v is onto}, then V \ Ω contains no divisors.
Then

(i) k[V̂ ]1�q is a polynomial algebra of Krull dimension dimV + dimV//Q,
which is generated by the coordinates on the first factor of V̂ and the poly-
nomials F̂1, . . . , F̂m associated with the differentials of basic invariants in
k[V ]Q;

(ii) k[V̂ ]Q̂ is a polynomial algebra of Krull dimension 2 dimV//Q, which is
freely generated by the basic invariants of k[V ]Q and the same functions
F̂i, i = 1, . . . ,m.

(iii) The Q̂-module V̂ satisfies conditions (1)–(3), too.

Proof. The proof is very close in the spirit to the proof of Theorem 6.2,
though some technical details are different.

Set N = 1�q. Let f1, . . . , fm, m = dimV//Q, be algebraically independent
generators of k[V ]Q. As was noticed above, to each fi one may associate the
polynomial F̂i = F̂fi

∈ k[V � V ]Q̂.
(i) We are going to prove, using Lemma 6.1, that k[q̂]N is freely generated

by the coordinate functions on V (which is the first component of V̂ ) and the
polynomials F̂i, i = 1, . . . ,m. Let x1, . . . , xn be the coordinate functions on
V . Then x1, . . . , xn, F̂1, . . . , F̂m are algebraically independent, because their
differentials are linearly independent on Ω � V . Consider the mapping

τ̂ : V̂ → Spec k[x1, . . . , xn, F̂1, . . . , F̂m] = k
n+m .

We identify k
n+m with V ×k

m. If x = (x1, . . . , xn) ∈ Ω, then (dfi)x are linearly
independent, so that the system F̂i(x + εy) = αi, i = 1, . . . ,m, has a solution
y for any m-tuple α = (α1, . . . , αm). Hence Im τ̂ ⊃ Ω × km, which means that
Im τ̂ contains a big open subset of kn+m.

Next, consider Ω′ = Ω ∩ {y ∈ V | dimQ·y = n −m}. In view of condi-
tion (2), it is still a non-empty open Q-stable subset of V . Take x ∈ Ω′, and
let yα be a solution to the system F̂i(x+ εy) = 〈(dfi)x, y〉 = αi, i = 1, . . . ,m.
Then τ̂−1(x, α) � x+ εyα and

τ̂−1(x, α) ⊃ N ·(x+ εyα) = {x+ ε(yα + q·x)} .
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Since x ∈ Ω, we have dim τ̂−1(x, α) = n −m. On the other hand, dimQ·x =
n − m, because of the definition of Ω′. Hence τ̂−1(x, α) = N ·(x + εyα) for
dimension reason. Thus, a generic fibre of τ̂ is an N -orbit, and Lemma 6.1
applies here.

(ii) Clearly,

k[V̂ ]Q̂ = (k[V̂ ]N )Q = k[x1, . . . , xn, F̂1, . . . , F̂m]Q .

Since the F̂i’s are already Q-invariant, the algebra in question is equal to

k[V ]Q[F̂1, . . . , F̂m] = k[f1, . . . , fm, F̂1, . . . , F̂m] .

(iii) We have to check that the Q̂-module V̂ satisfies properties (1)–(3).
• Property (1) is verified in (ii).
• If x ∈ Ω, then dim Q̂·(x+ ε0) = 2n− 2m, which gives property (2) for

Q̂.
• Set Ω̂ = Ω × V . It is a big open subset of V̂ . Explicit expressions for

algebraically independent generators of k[V̂ ]Q̂ show that their differentials are
linearly independent on Ω̂, which is exactly Property (3) for V̂ .

7.2 Remarks. 1. If the pair (q, V ) satisfies properties (1)–(3) of Theo-
rem 7.1, then the passage (q, V ) �→ (q̂, V̂ ) can be iterated ad infinitum without
losing those properties.

2. Since the adjoint representation of a semisimple Lie algebra g has
properties (1)–(3), iterating the Takiffisation procedure g �→ g�g always yields
algebras with a polynomial ring of invariants for the adjoint representation.
This is the main result of [40]. Explicit form of the basic invariants for (g�g, ad )
is also pointed out there. Notice also that Takiff’s results follow from either
Theorem 6.2 with V = g or Theorem 7.1 with q = V = g.

3. By Theorem 6.2, the adjoint representation of q = g�V satisfies all the
conditions of Theorem 7.1. Therefore these q can be used as building blocks for
Takiffisation procedure, which yields more and more complicated Lie algebras
having polynomial algebras of invariants.

Let us make some comments on the conditions of Theorem 7.1. If Q = G is
semisimple, then conditions (2) and (3) are always satisfied, regardless of the
fact whether k[V ]G is polynomial. For condition (3) we refer to [20, Satz 2],
while (2) follows since G has no rational characters and therefore k(V )G is the
quotient field of k[V ]G. Thus, we have

7.3 Corollary. If ρ : G → GL(V ) is a representation of a semisimple
group such that k[V ]G is polynomial, then Theorem 7.1 applies to the G � g-
module V � V .
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§8. The Null-Cone and its Irreducibility

In previous sections, we described several instances of representations of
nonreductive Lie algebras having a polynomial algebra of invariants. If Q ⊂
GL(Ṽ ) and k[Ṽ ]Q is polynomial, then it is natural to inquire of whether it
is true that k[Ṽ ] is a free k[Ṽ ]Q-module. As is well known, the freeness is
equivalent to that the quotient morphism π : Ṽ → Ṽ //Q is equidimensional ,
i.e., has the property that dimπ−1(π(0)) = dim Ṽ − dim Ṽ //Q. As in the case
of reductive group actions, we say that π−1(π(0)) is the null-cone, denoted
NQ(Ṽ ) or N(Ṽ ).

In this section, we only deal with reductive semi-direct products and their
representations. Our goal is to describe necessary and sufficient conditions for
equidimensionality of π and point out some consequences of it. We consider
two types of representations:

A) q = g � V , where V is a g-module, and Ṽ = q, i.e., we consider the
adjoint representation of q.

B) q = g � g is a reductive Takiff algebra and Ṽ = V � V , where V is a
g-module.

We begin with case A). Recall that m = dimV T and F1, . . . , Fm is a basis
for the k[g]G-module MorG(g, V ∗). The null-cone for (g, ad ) is denoted by N (g)
or merely by N . In other words, N is the set of nilpotent elements of g. Recall
that N is irreducible and dimN = dim g − dim g//G = dim g − dim t.

Theorem 6.2 says that if V T = 0, then k[q]Q = k[g]G and therefore N(q) � N ×
V . In this trivial case, πQ is equidimensional, since it is so for πG : g → g//G.
Therefore we assume below that V T �= 0.

Define a stratification of g in the following way:

Xi,V = Xi = {x ∈ g | dim span{F1(x), . . . , Fm(x)} = i} .
Then Xi ⊂ Xi+1 and Xm = g. The induced stratification on the null-cone
is Xi(N ) := Xi ∩ N . As is shown in the proof of Theorem 6.2, Xm is a big
open subset of g containing greg. Therefore Xm(N ) is a big open subset of N
containing the regular nilpotent orbit.

8.1 Theorem.

1. The quotient morphism πQ : q → q//Q is equidimensional if and only if
codimNXi(N ) � m− i.

2. If N(q) is irreducible, then πQ is equidimensional ;

3. N(q) is irreducible if and only if codimNXi(N ) � m− i+ 1 for i < m.
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Proof. 1. Since πQ is dominant, all irreducible components of N(q) are
of dimension � dim q − dim q//Q. By Theorem 6.2, N(q) = {(x, v) | x ∈
N & F̂i(x, v) = 〈Fi(x), v〉 = 0 ∀i}. Let p : N(q) → N be the projection

onto the first factor. Then N(q) =
m⊔

i=0

p−1(Xi(N )) and dim p−1(Xi(N )) =

dim Xi(N ) + dimV − i.
2. By Theorem 6.2, if e ∈ N reg, then (e, 0) ∈ qreg and (dπQ)(e,0) is

onto. Therefore, (e, 0) is a smooth point of N(q), and the unique irreducible
component of N(q) to which (e, 0) belongs is of dimension dim q−dim q//Q. On
the other hand, dim p−1(Xm(N )) = dimN + dimV −m = dim q − dim q//Q.
Hence p−1(Xm(N )) is the irreducible component of N(q) containing (e, 0).

3. The proof of part 2 shows that p−1(Xm(N )) is an irreducible compo-
nent of N(q) of expected dimension. To ensure the irreducibility, we have to
require that p−1(Xi(N )) cannot be an irreducible component for i < m. Since
all irreducible components of N(q) are of dimension � dim q − dim q//Q, the
condition that dim p−1(Xi(N )) < dim q − dim q//Q for i < m is equivalent to
the irreducibility.

The following is now immediate.

8.2 Corollary. If m = 1, then N(q) is irreducible; if m = 2, then πQ

is equidimensional.

8.3 Remarks. 1. Since N consists of finitely many G-orbits, condi-
tion 8.1(1) is equivalent to the following: if G·x ⊂ Xi(N ), then dimG·x �
dimN − (m− i), or

dim zg(x) − rk g � m− dim
(
span{F1(x), . . . , Fm(x)}) .

Furthermore, a more careful look at the projection N(q) → N shows that if
last condition is satisfied, then the number of the irreducible components of
N(q) equals the number of the G-orbits G·x ⊂ N such that dim zg(x) − rk g =
m− dim(span{F1(x), . . . , Fm(x)}).

2. The condition in Theorem 8.1(1) for i = 0 reads dimN−dim(X0(N )) �
m, or dimV T � dimN − dimX0(N ) � dimN . This is a rough necessary
condition for πQ to be equidimensional. Let G be simple and Vλ a simple G-
module with highest weight λ. Then (Vλ)T �= 0 if and only if λ lies in the root
lattice, R. The function n �→ dim(Vnλ)T , λ ∈ R, has a polynomial growth.
The only case in which this function is constant is that of G = SLp, λ = pϕ1 or
pϕp−1. Here ϕi’s are fundamental weights, and dim(Vnλ)T = 1 for any n ∈ N.
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Thus, modulo this exception, there are finitely many simple G-modules V such
that V T �= 0 and πQ is equidimensional.

For future use, we record a relationship between the stratifications of N and g.

8.4 Proposition. If codimNXi(N ) � m − i + 1 for i < m, then
codim gXi � m− i+ 2.

Proof. It follows from the definitions that Xi ⊂ ∪
j�i

Xj and Xi(N ) ⊂
∪

j�i
Xj(N ). For i < m, we have Xi ∩ greg = ∅ and hence πG(Xi) = Xi//G

is a proper subvariety of g//G. Therefore

dim Xi � dim g//G− 1 + dim Xi(N ) � dim g − (m− i+ 2).

There is another interesting cone related to q = g � V . Consider the
morphism π̄ : q → k

m, (x, v) �→ (F̂1(x, v), . . . , F̂m(x, v)). The zero-fibre of π̄ is
denoted by Nu(q). Thus,

Nu(q) = {(x, v) ∈ q | 〈Fi(x), v〉 = 0 i = 1, . . . ,m} .

The proof of the following result is entirely similar to that of Theorem 8.1. One
should only consider the projection Nu(q) → g.

8.5 Theorem.

1. The morphism π̄ : q → k
m is equidimensional if and only if codim gXi �

m− i.

2. If Nu(q) is irreducible, then π̄ is equidimensional ;

3. Nu(q) is irreducible if and only if codim gXi � m− i+ 1 for i < m.

Now, comparing Theorem 8.1(iii), Proposition 8.4, and Theorem 8.5(iii), one
concludes that if N(q) is irreducible, then so is Nu(q).

But one can derive a much stronger assertion on Nu(q) from the irreducibility
of N(q). This is related to properties of symmetric algebras of certain modules
over polynomial rings and exploits some technique from [22], [27].

Let Mor(g, V ∗) be the k[g]-module of all polynomial morphisms F : g →
V ∗. Consider the homomorphism τ̂ : Mor(g, V ∗)→Mor(g, V ∗) defined by
τ̂ (F )(x) = x·F (x). (Here “·” refers to the g-module structure on V ∗.)

8.6 Theorem. ker τ̂ is a free k[g]-module of rank m. More precisely,
(F1, . . . , Fm) is a basis for ker τ̂ .
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Proof. The proof is based on the same idea as the proof of Theorem 1.9
in [27].

Clearly, ker τ̂ is a torsion-free k[g]-module and the rank rk (ker τ̂ ) :=
dim(ker τ̂⊗k[g]k(g)) is well-defined. An easy argument shows that the rank of τ̂
over k(g) equals dimV −maxx∈g dim(V ∗)x = dimV −m. Hence rk (ker τ̂) = m.

Obviously, Fi ∈ ker τ̂ and
m⊕

i=1

k[g]Fi is a free submodule of ker τ̂ of rank m. It

follows that, for any F ∈ ker τ̂ , there exist p̂, p1, . . . , pm ∈ k[g] such that

p̂F =
∑

i

piFi .

Assume p̂ �∈ k
∗. Let p be a prime factor of p̂ and D the divisor of zeros of p.

Then
∑

i pi(v)Fi(v) = 0 for any v ∈ D. Since greg is big, greg ∩D is dense in
D. Because {Fi(v)} are linearly independent for v ∈ greg, we obtain pi|D ≡ 0.
Hence pi/p ∈ k[g] for each i, and we are done.

Let E denote the k[g]-module Im τ̂ . In view of the previous theorem, we
have the exact sequence

(8.7) 0 →
m⊕

i=1

k[g]Fi
β̂→ Mor(g, V ∗) τ̂→ E → 0 .

Choose a basis ξ1, . . . , ξn for V ∗. Using this basis, we identify Mor(g, V ∗) =
k[g] ⊗ V ∗ with k[g]n. Then we can write Fj(x) =

∑n
i=1 Fij(x)ξi, where Fij ∈

k[g]. If we regard sequence (8.7) as a sequence

0 → k[g]m
β̂→ k[g]n τ̂→ E → 0 ,

then β̂ becomes an n × m-matrix with entries Fij . Let It(β̂) be the ideal
generated by t× t minors of β̂. For d ∈ N, consider the following condition

(Fd) ht It(β̂) � m− t+ 1 + d for 1 � t � m.

The ideals It(β̂) are independent of the presentation of E. These are Fitting
ideals of E, see e.g. [43, 1.1]. Let Sym

k[g](E) denote the symmetric algebra of
the k[g]-module E.

8.8 Theorem. Suppose N(q) is irreducible. Then

(i) The condition (F2) is satisfied by E.

(ii) Sym
k[g](E) is a factorial domain of Krull dimension dim g + n−m.
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(iii) Nu(q) is an irreducible factorial complete intersection, and k[Nu(q)] =
Symk[g]E.

(iv) Nu(q) = Im (κ), where κ : q → q is defined by κ(x, v) = (x, x·v), x ∈
g, v ∈ V .

Proof. (i) It is easily seen that Xi is the zero locus of Ii+1(β̂). Therefore
condition (F2) is satisfied in view of Proposition 8.4.

(ii) The exact sequence (8.7) shows that E has projective dimension at
most one. Therefore part (ii) follows from (i) combined with [2, Prop. 3 & 6].

(iii) The universal property of symmetric algebras implies that Symk[g](E)
is the quotient of Symk[g](k[g] ⊗ V ∗) = k[g × V ] by the ideal generated by
the image of β̂. It follows from the construction that β̂(Fi) = F̂i. Hence
Sym

k[g](E) = k[Nu(q)], and the other assertions follow from (ii).
(iv) Clearly, Im (κ) is an irreducible subvariety of q. Taking the (surjective)

projection to g and looking at the dimension of the generic fibre, one finds that
dim Im (κ) = dim g + n − m. Thus, Im (κ) ⊂ Nu(q), both have the same
dimension and are irreducible. Hence they are equal.

Remark. For V = g, i.e., for the Takiff algebra g � g, condition (F2)
can be proved directly, without referring to the irreducibility of N(q), see [22,
Prop. 2.1]. In this special case, the above results for Nu(q) are already obtained
in [22, Prop. 2.4]. Actually, N(q) is irreducible if V = g. But this fact, as well
as “Takiff” terminology, was not used in loc. cit. In § 9, we give new examples
of semi-direct products q = g � V such that N(q) is irreducible and thereby
new instances, where Theorem 8.8 applies.

Now, we proceed to case B).
Recall that Ĝ = G � g and V̂ = V � V is a Ĝ-module. To a great extent,
our results in this case are similar to those in case A). A notable distinction is,
however, that whereas the adjoint representation of G has some good properties
for granted, we have to require these properties for (G : V ).

We will assume below that (G : V ) satisfies properties (1)–(3) of Theo-
rem 7.1, with G in place of Q, and use the respective notation. In particular,
Ĝu = 1 � V , m = dimV//G, k[V ]G = k[f1, . . . , fm], and F̂i ∈ k[V̂ ]Ĝ is the
invariant associated with dfi. As in case A), we define a stratification of V by

Yi = {x ∈ V | dim span{(df1)x, . . . , (dfm)x} = i} = {x ∈ V | rk (dπG)x = i} .

Then Yi ⊂ Yi+1 and Ym = V . Notice that Y0 = {0}. The induced strat-
ification of the null-cone NG(V ) = N(V ) is Yi(N(V )) := Yi ∩ N(V ). Since
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πG : V → V//G is onto, dim N(V ) � dimV − dimV//G. But, unlike the case of
(G : g), it may happen that the last inequality is strict and Ym(N(V )) = ∅.

8.9 Lemma. Suppose πĜ : V̂ → V̂ //Ĝ is equidimensional. Then so is
πG : V → V//G and Ym(N(V )) �= ∅.

Proof. Consider the projection p : N(V̂ ) → N(V ). If j is the maximal
index such that Yj(N(V )) �= ∅, then dimN(V̂ ) = dim N(V )+dimV − j. Since
dim N(V ) � dimV −m, the result follows.

Thus, if we are searching for equidimensional quotient morphisms πĜ, then
we must assume that

(∗) dim N(V ) = dimV − dimV//G and Ym(N(V )) �= ∅.
In this setting, analogs of results (8.1)–(8.8) are proved in a quite similar fash-
ion. Let Nu(V̂ ) denote the zero-fibre of the morphism π̄ : V̂ → k

m defined
by

π̄(v1, v2) = (F̂1(v1, v2), . . . , F̂m(v1, v2)) =
(〈(df1)v1 , v2〉, . . . , 〈(dfm)v1 , v2〉

)
.

8.10 Theorem. Under the assumptions (1)–(3) of Theorem 7.1 and
(∗), we have

1. The morphism πĜ : V̂ → V̂ //Ĝ (resp. π̄ : V̂ → km) is equidimensional if
and only if codim N(V )Yi(N(V )) � m − i (resp. codim V Yi � m − i) for
all i.

2. If N(V̂ ) (resp. Nu(V̂ )) is irreducible, then πĜ (resp. π̄) is equidimen-
sional ;

3. N(V̂ ) (resp. Nu(V̂ )) is irreducible if and only if codim N(V )Yi(N(V )) �
m− i+ 1 (resp. codim V Yi � m− i+ 1) for i < m.

4. If codim N(V )Yi(N(V )) � a, then codim V Yi � m− i+ a.

Proof. The proof of parts 1–3 is similar to the proof of Theorem 8.1.
For the last part, we notice that dim Yi//G � i. Therefore dimYi � i +
dim Yi(N(V )) � i + dimN(V ) − a = dimV − (m − i + a). (Cf. the proof of
Prop. 2.1 in [22].)

Consider the homomorphism of k[V ]-modules

µ̂ : Mor(V, V ∗)→Mor(V, g∗)
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defined by 〈µ̂(F )(v), s〉 := 〈F (v), s·v〉 for v ∈ V, s ∈ g. Here “·” refers to the
g-module structure on V and the first (resp. second) 〈 , 〉 stands for the pairing
of g and g∗ (resp. V and V ∗). By [27, Theorem 1.9], ker µ̂ is a free k[V ]-module
of rank m generated by dfi, i = 1, . . . ,m. Let Ê denote the k[V ]-module Im µ̂.

8.11 Theorem. Suppose N(V̂ ) is irreducible. Then

(i) The condition (F2) is satisfied by Ê.

(ii) Symk[V ](Ê) is a factorial domain of Krull dimension 2 dimV −m.

(iii) Nu(V̂ ) is an irreducible factorial complete intersection, and k[Nu(V̂ )] =
Sym

k[V ]Ê.

(iv) Nu(V̂ ) = Im (κ), where κ : V ×g → V ×V is defined by κ(v, x) = (v, x·v),
x ∈ g, v ∈ V .

The proof of Theorem 8.11 is omitted, since it is similar to the proof of Theo-
rem 8.8.

§9. Isotropy Contractions and Z2-Contractions of Semisimple Lie
Algebras

Let h be a subalgebra of q such that q = h ⊕ m for some ad h-stable
subspace m ⊂ q. (Such an h is said to be reductive in q.) For instance, if ϑ is
an involutory automorphism of q, then +1 and −1-eigenspaces of ϑ yield such
a decomposition. The fixed-point subalgebra of an involutory automorphism is
called a symmetric subalgebra.

9.1 Definition. If h is reductive in q, then the semi-direct product h�m

is called an isotropy contraction of q. If h is symmetric, so the decomposition
q = h ⊕ m is a Z2-grading, then h � m is also called a Z2-contraction of q.

Notice that h�m is a contraction of q in the sense of the deformation theory of
Lie algebras, see e.g. [45, Chapter 7, § 2]. More precisely, consider the invertible
linear map ct : q → q, t ∈ k \ {0}, such that ct(h+m) = h+ t−1m. Define the
new Lie algebra multiplication [ , ](t) on the vector space q by the rule

[x, y](t) := ct
(
[c−1

t (x), c−1
t (y)]

)
, x, y ∈ q .

Then, for all t �= 0, the algebras q(t) are isomorphic, and limt→0 q(t) = h � m.

9.2 Lemma. Any Takiff Lie algebra is a Z2-contraction.
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Proof. Consider the direct sum of Lie algebras q � q and the involution
ϑ permuting the summands. Then the corresponding Z2-contraction is isomor-
phic to q � q.

In the rest of the section, we only consider isotropy contractions such that
the initial ambient Lie algebra is semisimple and the subalgebra is reductive.
Let k = h � m be an isotropy contraction of a semisimple Lie algebra g. For g,
one has equalities

rk g = ind g = dim g//G .

The first natural question is:
To which extent this remains true for isotropy contractions?

Recall that the complexity of a homogeneous space G/H, denoted c(G/H),
equals trdeg k(G/H)B, where B is a Borel subgroup of G, and G/H is said to
be spherical if c(G/H) = 0. We refer to [28] for basic facts on complexity.

9.3 Proposition.
(1) We have ind k = ind g + 2c(G/H). In particular, ind k = ind g if and

only if H is a spherical subgroup of G.
(2) dim k//K = dim zg(x), where x ∈ h is an h-regular semisimple ele-

ment.

Proof. (1) By [32], ind k = trdeg k(m∗)H + ind s, where s is a generic
stabiliser for (H : m∗). Since m is an orthogonal h-module, there is no difference
between m and m∗, the action (H : m) is stable [23] and therefore s is reductive.
Hence ind k = dimm//H + rk s. On the other hand, there is a formula for
c(G/H) in terms of the isotropy representation (H : m). Namely, 2c(G/H) =
dim m//H − rk g + rk s [28, Cor. 2.2.9]. Hence the conclusion.

(2) By Theorem 6.2, dim k//K = rk h + dim mth . The latter equals
dim zh(x) + dimmx for a regular semisimple element x ∈ th ⊂ h.

Remark. It is a general fact that the index of a Lie algebra cannot decrease
under contraction. The previous result gives a precise meaning for this in case
of isotropy contractions.

9.4 Corollary. If g = g0 ⊕ g1 is a Z2-grading and k = g0 � g1 is the
respective Z2-contraction, then ind k = dim k//K = rk g.

Proof. As is well known, any symmetric subgroup G0 ⊂ G is spherical,
and g0 contains a regular semisimple element of g.
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Thus, for Z2-contractions one obtains two, usually different, decomposi-
tions of the rank of g:

rk g =

{
ind k = rk s + dim g1//G0;
dim k//K = rk g0 + dim(g1)t0 ,

where t0 is a Cartan subalgebra of g0.
If h contains a g-regular semisimple element, then k[g]G and k[k]K are graded
polynomial algebras of the same Krull dimension. The second natural question
is:

Is there a relationship between the degrees of free homogeneous generators
(basic invariants) ?

Let Deg(A) denote the multiset of degrees of free generators of a graded poly-
nomial algebra A. The elements of Deg(A) are assumed to be increasingly
ordered.

9.5 Theorem. (1) If h contains a g-regular semisimple element, then
Deg(k[k]K) � Deg(k[g]G) (componentwise inequalities).

(2) Suppose a regular nilpotent element of h is also regular in g. Then
g-expg(g) = g-exph(h) � g-exph(m) (the union of multisets). Equivalently,
Deg(k[k]K) = Deg(k[g]G).

Proof. (1) Recall that k = limt→0 g(t). It is easily seen that this con-
traction gives rise to “a curve in the space of algebras of invariants” and to
an embedding limt→0 k[g(t)]G(t) ⊂ k[k]K . The limit exists, because k[g(t)]G(t) is
graded and the (finite) dimension the homogeneous component of a given degree
does not depend on t; so that the limit is taken in a suitable Grassmannian.

(2) Let {e, h, f} be a principal sl2-triple in h (see [45, Ch. 6,§ 2.3]). By
the assumption, it is also a principal sl2-triple in g. By a result of R. Brylinski
[8], the generalised exponents of a G-module V are obtained as follows. Take
the subspace V T and its “e-limit” lime(V T ) ⊂ V , see [8, § 2] for the precise
definition. Then g-expg(V ) is the multiset of h-eigenvalues on lime(V T ). It
is important that this “e-limit” depends only on the {e, h}-module structure
on V . In our setting, g and k are isomorphic as h-modules, and k = h ⊕ m as
h-module. Therefore

g-expg(g) = g-exph(g) = g-exph(k) = g-exph(h) � g-exph(m) .

The second assertion follows from Theorem 6.2, because Deg(k[k]K) =
g-exph(k) + 1 (componentwise) and likewise for k[g]G.
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Part (2) of this theorem can be used for finding generalised exponents of
certain representations.

9.6 Example. Let g be so8 and h the exceptional Lie algebra of type
G2 (dim g = 28, dim h = 14). The restriction of the defining representation
of g to h is the sum of V (7), the 7-dimensional simple h-module, and a 1-
dimensional trivial module. Let e ∈ h be a regular nilpotent element. It is
known that V (7) is a cyclic e-module. Therefore, as element of so8, e has the
Jordan form with blocks of size 7 and 1. Hence e is also regular in so8. Here
m = V (7) ⊕ V (7). Since g-expg(g) = {1, 3, 3, 5} and g-exph(h) = {1, 5}, we
conclude that g-exph(V (7)) = {3}. That is, the k[h]H -module Morh(h, V (7)) is
generated by the covariant of degree 3.

This is also an instructive illustration to Theorem 8.1 and Corollary 8.2.
Here m = rk g − rk h = 2, hence πK is equidimensional. The basic covariant
in Morh(h, V (7)) vanishes on the subregular nilpotent orbit in N (h). This
follows from a result of Broer on the ideal defining the closure of the subregular
nilpotent orbit [7, § 4]. Therefore codimN (h)X0(N (h)) = 2 and N(k) appears
to be reducible.

From now on, we assume that k is a Z2-contraction of g.

9.7 Theorem. Let g = g0 ⊕ g1 be a Z2-graded semisimple Lie algebra
and k = g0 � g1 its Z2-contraction. Then N(k) is irreducible.

Proof. Let ϑ be the involution of g determining the Z2-grading. It suffices
to handle the case in which g is not a sum of ϑ-stable ideals. This means that
either g is simple or g = s � s, where s is simple and ϑ permutes the factors.
In the second case, k = s � s is a Takiff Lie algebra, and the required result is
proved in [16, Theorem2.4]. Therefore we concentrate on the first case.

From now on, g is simple. Write N0 for the null-cone in g0 and K for
the Takiff group G0 � g1. Since g1 is an orthogonal G0-module, we do not
distinguish g1 and (g1)∗.

1) Suppose ϑ is inner. Then rk g = rk g0 and therefore the g0-module
g1 has no zero weight space. As is noted in § 8, the null-cone N(k) is then
isomorphic to N0 × g1.

2) Suppose ϑ is outer. This is the difficult part of the proof, which relies
on the classification of the involutions of simple Lie algebras. Recall that m =
dim(g1)t0 = rk g − rk g0.

(a1) rk g0 = rk g − 1 and m = 1. Here the assertion follows from Corol-
lary 8.2. This happens if g = so2n and g0 = so2k+1 × so2l+1 with k+ l = n− 1.
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(a2) rk g0 = rk g− 2 and m = 2. By Corollary 8.2, πK is equidimensional.
Still, N(k) can be reducible a priori. To prove that this is not the case, consider
the hierarchy X0(N0) ⊂ X1(N0) ⊂ X2(N0) = N0 determined by the basic
covariants of type g1. Invoking the criterion of irreducibility (Theorem 8.1(iii))
with m = 2 shows that only the condition with i = 0 has to be satisfied. That
is, we must have codimN0X0(N0) � 3. This means that each nilpotent orbit
in N0 of codimension 2 does not belong to X0(N0), i.e., there should exist a
covariant F ∈ MorG0(g0, g1) that does not vanish on such an orbit.

There are two involutions with m = 2 in the exceptional algebras. In both
cases, g is of type E6 and g0 is either F4 or C4. Furthermore, the degrees of
basic covariants of type g1 are 4, 8 in both cases. Since g0 is simple here, N0

has a unique orbit of codimension 2, the so-called subregular nilpotent orbit
Osub. The closure of Osub is normal and the equations of Osub in k[N0] are
explicitly described, see [7, § 4]. Therefore, it is not hard to verify that the
covariant of degree 4 survives on Osub.

(a3) It remains to handle two series of (g, g0): (sl2n, sp2n) and (sln, son).
In these cases, we explicitly describe the covariants of type g1 and verify that
the condition of Theorem 8.1(iii) is satisfied. Actually, we show that, for all
Z2-contractions of simple Lie algebras, a stronger inequality holds, see Eq. (9.9)
below.

Let us adapt Theorem 8.1 to our setting. We consider the stratification
of N0 determined by covariants of type g1. Since N0 consists of finitely many
G0-orbits, condition 8.1(iii) can be verified for each orbit separately. Therefore,
it can be written as
(9.8)

dim zg0(x)−rk g0 > m− dim span{F1(x), . . . , Fm(x)} if x ∈ N0 \ Xm(N0),

cf. Remark 8.3(1). What we are going to prove is:
(9.9)

dim zg0(x)−rk g0 � 2
(
m−dim span{F1(x), . . . , Fm(x)}) for any x ∈ N0.

Clearly, the last version is stronger and has an advantage of being stated more
uniformly.

9.10 Theorem. Inequality (9.9) holds for any Z2-grading of a simple
Lie algebra g.

Proof. Since the difference in the left-hand side of (9.9) is always even,
there is no distinction between inequalities (9.8) and (9.9) for m � 2. Therefore
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the proof of Theorem 9.7 shows that it remains to verify Eq. (9.9) for the
following series of Z2-gradings:

• g0 = sp(V ), g1 = ∧2
0(V ), dimV = 2n.

• g0 = so(V ), g1 = S2
0 (V ). Here one actually has two series, depending on

the parity of dimV .

We use familiar matrix models of classical Lie algebras and their represen-
tations. In the following computations, we need the fact that the nilpotent
G0-orbits are classified by certain partitions of dimV , see [39, IV.2.15], [45,
Ch. 6 §2.2]. A minor unpleasant phenomenon related to so2n is that there are
two isomorphic SO2n-orbits corresponding to a “very even partition”. This
does not affect, however, our computations. For x ∈ N0, let η = (η1, η2, . . .)
denote the corresponding partition. Write (η̂1, η̂2, . . . , η̂s) for the dual partition.
This means in particular that s = η1. What we need from these partitions is an
explicit formula for dim zg0(x) and a way to determine i such that x ∈ Xi(N0).

Let us begin with the symplectic case. Let J be a skew-symmetric non-
degenerate bilinear form on V , which is identified with its matrix in a certain
basis for V . Then

− sp2n = sp(V ) = sp(V, J) is the space of matrices {x ∈ gl(V ) |
xJ is symmetric};

− the representation space ∧2
0(V ) can be regarded as the space of skew-

symmetric matrices modulo one-dimensional subspace generated by J . The
sp2n-action on the space of skew-symmetric matrices is given by (x,A) �→ xJA+
A(xJ)t.

In this case m = n − 1, i.e., there are n − 1 basic covariants of type g1. Since
any regular nilpotent element in sp2n is also regular in sl2n, the generalised
exponents of the g0-module g1 can be found using Theorem 9.5(2). These are
2, 4, . . . , 2n−2. The key observation is that the corresponding covariants have a
very simple expression. Namely, consider the maps (x ∈ sp2n) �→ Fi(x) = x2iJ ,
i = 1, . . . , n − 1. It is easily seen that x2iJ is skew-symmetric and each Fi is
Sp2n-equivariant. Because the Fi’s are linearly independent over k[g0]G0 , these
are precisely the basic covariants.

9.11 Proposition. Inequality (9.9) is satisfied for (Sp(V ),∧2
0(V )).

Proof. By [17, Corollary 3.8(a)], the dimension of the centraliser of x in

g0 = sp2n is given by the formula dim zg0(x) =
1
2
(
∑

i

η̂2
i + #{j | ηj is odd}).
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The maximal nonzero power of x is determined by the size of the maximal
Jordan block, i.e., η1. Therefore x ∈ Xi(N0) if and only if x2i �= 0 and x2i+2 = 0
if and only if [η1−1

2 ] = i. Hence inequality (9.9), which we wish to prove, can
be written as

2
[
η1 − 1

2

]
+

1
2
( s∑

i=1

η̂2
i + #{j | ηj is odd}) − n− 2(n− 1) � 0 .

Using the relations
∑
η̂i = 2n and η1 = s, the left-hand side is transformed as

follows:

2
[
η1 − 1

2

]
+

1
2
( s∑

i=1

η̂2
i + #{j | ηj is odd}) − 3

2

∑
η̂i + 2 =

2
[
s− 1

2

]
+

1
2
( s∑

i=1

(η̂2
i − 3η̂i) + #{j | ηj is odd}) + 2 =

1
2
( s∑

i=1

(η̂i − 1)(η̂i − 2) + #{j | ηj is odd}) + 2
[
s+ 1

2

]
− s.

The first group of summands is non-negative, and so is the last group. Thus,
inequality (9.9) holds for any nilpotent orbit in sp2n.

We continue with the orthogonal case, with dimV = N . Here g0 is the
space of skew-symmetric N×N -matrices and g1 = S2

0 (V ) is the space of trace-
less symmetric N×N -matrices.

If N = 2n+ 1, then m = n. In this case, a regular nilpotent element of so2n+1

is also regular in sl2n+1, so that Theorem 9.5(2) applies, and g-expG0
(g1) =

{2, 4, . . . , 2n}. Similarly to the symplectic case, we find that x �→ Fi(x) = x2i,
i = 1, 2, . . . , n, are the basic covariants. If N = 2n, then m = n− 1. A regular
nilpotent element of so2n is not regular in sl2n, but F1, . . . , Fn−1 are still the
basic covariants. For, the Fi’s are linearly independent over k[g1]G0 and neither
of them vanishes on the regular nilpotent orbit in so2n.

9.12 Proposition. Inequality (9.9) is satisfied for (SO(V ),S2
0 (V )).

Proof. By [17, Corollary 3.8(a)], the dimension of the centraliser of x in

g0 = soN is given by the formula dim zg0(x) =
1
2
(
∑

i

η̂2
i − #{j | ηj is odd}).

The constraints imposed on partitions in the orthogonal case imply that η̂1 ≡
dimV (mod 2).

The maximal nonzero power of x is determined by the size of the maximal
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Jordan block. Therefore x ∈ Xi(N0) if and only if x2i �= 0 and x2i+2 = 0 if and
only if [η1−1

2 ] = i. The following computations are slightly different for so2n+1

and so2n.
1. N = 2n+ 1. Here inequality (9.9) can be written as

2
[
η1 − 1

2

]
+

1
2
(∑

i

η̂2
i − #{j | ηj is odd}) − 3n � 0 .

Using the relations
∑
η̂i = 2n+1 and η1 = s, the left-hand side is transformed

as follows:

2
[
s− 1

2

]
+

1
2
( s∑

i=1

η̂2
i − #{j | ηj is odd}) − 3

2
(

s∑
i=1

η̂i − 1) =

2
[
s− 1

2

]
+

1
2
( s∑

i=1

(η̂2
i − 3η̂i + 2) − 2s+ 3 − #{j | ηj is odd}) =

1
2
( s∑

i=1

(η̂i − 1)(η̂i − 2) − #{j | ηj is odd} + 4
[
s+ 1

2

]
− 2s− 1

)
=: L .

To see that L is nonnegative, consider several cases.
(a) η̂1 = 1 and hence all η̂i = 1. Then s = 2n+ 1 and L = 0.
(b) η̂1 = 3 and therefore η = (η1, η2, η3). Then

∑s
i=1(η̂i−1)(η̂i−2) = 2η3.

Hence

L = η3 + 2
[
η1 + 1

2

]
− η1 − 1

2
(1 + #{j | ηj is odd}) .

Taking into account that the even parts in (η1, η2, η3) occur pairwise and η1 +
η2 + η3 is odd, one quickly verifies that L is always nonnegative.

(c) η̂1 � 5. Then
∑s

i=1(η̂i − 1)(η̂i − 2) � η̂1 + 2 � #{j | ηj is odd} + 2.
Next, 4

[
s+1
2

] − 2s− 1 � −1. Hence L is positive.

Thus, inequality (9.9) holds for any nilpotent orbit in so2n+1.
2. N = 2n. Here the inequality we need to prove reads

2
[
η1 − 1

2

]
+

1
2
(∑

i

η̂2
i − #{j | ηj is odd}) − n− 2(n− 1) � 0 .

Using the relations
∑
η̂i = 2n and η1 = s, the left-hand side is being trans-

formed to

1
2
( s∑

i=1

(η̂i − 1)(η̂i − 2) − #{j | ηj is odd}) + 2
[
s+ 1

2

]
− s =: L .

Again, consider some cases.
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(a) η̂1 = 2, i.e., x has only two Jordan blocks (η1, η2). Then η1, η2 have
the same parity, and in both cases L = 0.

(b) η̂1 � 4. Then
∑s

i=1(η̂i − 1)(η̂i − 2) � η̂1 + 2 > #{j | ηj is odd}. Since
2

[
s+1
2

] − s � 0, the total expression is positive.

Thus, inequality (9.9) holds for any nilpotent orbit in so2n.

This completes the proof of Theorem 9.10.

Thus, all verifications needed to complete the proof of Theorem 9.7 are
done. Below, we gather our results on Z2-contractions of semisimple Lie alge-
bras.

9.13 Theorem. Let k = g0 �g1 be a Z2-contraction of a semisimple Lie
algebra g. Then

(1) k[k]K is a polynomial algebra of Krull dimension rk g;

(2) N(k) is an irreducible complete intersection. If k[k]K = k[f1, . . . , fl], l =
rk g, then the ideal of N(k) in k[k] is generated by f1, . . . , fl.

(3) the quotient morphism πK : k → k//K is equidimensional ;

(4) k[k] is a free k[k]K-module.

(5) if κ : g0 ⊕ g1 → g0 ⊕ g1 is defined by κ(x0, x1) = (x0, [x0, x1]), then
Imκ = Nu(q) and it is a factorial complete intersection of codimension
rk g − rk g0.

(6) the coadjoint representation of k has a generic stabiliser.

Proof. Part (1) follows from Theorem 6.2. The irreducibility in Part (2) is
just Theorem 9.7. Let x ∈ N0 be a regular nilpotent element. Then x̃ = (x, 0) ∈
N(k), and the description of basic invariants f1, . . . , fl in Theorem 6.2 shows
that (df1)x̃, . . . , (dfl)x̃ are linearly independent. Then a standard argument
shows that the ideal of N(k) is generated by f1, . . . , fl (cf. [21, Prop. 6].) Part (3)
follows from (2) and Theorem 8.1(2). Part (4) is a formal consequence of Parts
(1) and (3). Part (5) follows from Theorem 8.8 and the irreducibility of N(k).
Since the isotropy representation of any symmetric subalgebra of g is polar,
part (6) follows from Theorem 5.8.

To prove the irreducibility of N(k), inequality (9.8) is sufficient. However,
our efforts in proving stronger inequality (9.9) are not in vain, because that
result also has a geometric meaning.



�

�

�

�

�

�

�

�

1244 Dmitri I. Panyushev

9.14 Theorem. Let g = g0 ⊕ g1 be a Z2-grading. Consider the semi-
direct product k̃ = g0 � (g1 ⊕ g1) and the corresponding adjoint representation
(K̃ : k̃). Then the quotient morphism πK̃ is equidimensional.

Proof. The criterion for equidimensionality of πK̃ , Theorem 8.1(i), writ-
ten out in this case yields precisely inequality (9.9).

Main efforts in this section were devoted to Z2-contractions of g. However,
there are interesting examples of other isotropy contractions with full bunch of
good properties.

9.15 Examples. 1. Suppose g = so7 and h is a simple subalgebra of
type G2. It is a “truncation” of Example 9.6. Here m = V (7), and one easily
verifies that all conclusions of Theorem 9.13 hold for k = h � m.

2. g = sl2n+1 and h = sp2n = sp(V ). Here the sp(V )-module m equals
∧2(V ) ⊕ V ⊕ V . Since the sp(V )-module V has no zero-weight space, the
structure of N(h � m) is essentially the same as for the Z2-contraction of the
symmetric pair (sl2n, sp2n).

Remark. Our proofs of Theorems 9.7 and 9.10 use classification of involu-
tory automorphisms and explicit considerations of cases. It would be extremely
interesting to find a case-free proof for the irreducibility of N(k). Especially, be-
cause the corresponding irreducibility result for the Takiff algebra g � g can be
derived without checking cases. We discuss this topic in the following section.

§10. Reductive Takiff Lie Algebras and their Representations

The attentive reader may have noticed that we stated and proved the
stronger inequality (9.9) only for the Z2-gradings of simple Lie algebras, leaving
aside the permutation of two factors in g × g and the corresponding Takiff
algebra ĝ.

The situation here is as follows. By Theorem 8.1, the counterpart of in-
equality (9.8) for ĝ is equivalent to the irreducibility of N(ĝ), and this was
already proved by Geoffriau [16]. His proof consists of explicit verifications for
all simple types. It was noticed by M. Brion [6] that a classification-free proof
of (9.8) for ĝ, and hence the irreducibility of N(ĝ), can be derived from the fact
that N is a complete intersection having only rational singularities, see below.
The advantage of the Takiff algebra case is that the rather mysterious term
dim span{F1(x), . . . , Fm(x)} is being interpreted as the rank of the differential
of the quotient map πG : g → g//G at x.
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On the other hand, we will prove here the counterpart of (9.9) for ĝ, using
the classification. Brion’s idea cannot be applied directly to obtain a case-free
proof of that stronger result. The reason for being interested in proving a
counterpart of (9.9) for ĝ is that we deduce from this the equidimensionality
of some other quotient morphisms, see Theorems 10.8,10.9.

We work in the setting of case B) from § 8.

10.1 Definition. Let ρ : G→ GL(V ) be a representation of a connected
reductive group G. Then V or ρ is said to be extremely good if

(1) k[V ]G is a polynomial algebra;

(2) maxdimx∈V G·x = dimV − dimV//G;

(3) If πG : V → V//G is the quotient morphism, then Ω := {x ∈ V |
(dπG)x is onto} is a big open subset of V ;

(4) N(V ) := π−1
G (πG(0)) consists of finitely many G-orbits;

(5) N(V ) is irreducible and has only rational singularities.

Note that properties (1)–(3) are those appearing in Theorem 7.1. Recall from
§ 7 that if G is semisimple, then (2) and (3) are always satisfied.

10.2 Theorem. Let V be an extremely good G-module and V̂ = V � V

the corresponding Ĝ-module. Then

(i) NĜ(V̂ ) = N(V̂ ) is an irreducible complete intersection;

(ii) the ideal of N(V̂ ) in k[V̂ ] is generated by the basic invariants in k[V̂ ]Ĝ;

(iii) πĜ : V̂ → V̂ //Ĝ is equidimensional and k[V̂ ] is a free k[V̂ ]Ĝ-module.

Proof. Let f1, . . . , fm be algebraically independent generators of k[V ]G.
By Theorem 7.1, k[V̂ ]Ĝ is freely generated by the polynomials f1, . . . , fm,

F̂f1 , . . . , F̂fm
. Recall from § 8 the stratification of the null-cone:

Yi(N(V )) = {v ∈ N(V ) | rk (dπG)v = i}, i = 0, 1, . . . ,m .

Since N(V ) contains finitely many G-orbits, πG is equidimensional. If G·x is the
dense G-orbit in N(V ), then dimG·x = dimV −m and therefore x ∈ Ym(N(V ))
[20, Korollar 2]. (Corollary 2 is stated in Knop’s article under the assumption
that G is semisimple. However, that proof works also for reductive groups
as long as conditions (2) and (3) are satisfied.) Since N(V ) is irreducible and
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Ym(N(V )) �= ∅, it is a complete intersection. The condition of the irreducibility
of N(V̂ ) (Theorem 8.10(iii)) can be written as

(10.3) dimV − dimG·v + rk (dπG)v > 2m if v �∈ Ym(N(V )) .

We derive this inequality from a property of the local ring of (the closure of) the
orbit G·v ⊂ N(V ). Let O be this local ring. Then dimO = dimN(V )−dimG·v
and edim O = dimTvN(V )− dimG·v = dim gv − rk (dπG)v. Here edim O is the
embedding dimension of O and TvN(V ) is the tangent space of N(V ) at v. Since
N(V ) has only rational singularities, so has O. By a result of Goto-Watanabe
(see [25, Theorem 2’]), if a local ring O is a complete intersection with only
rational singularities and dim O > 0, then edim O < 2 dimO. Using the above
expressions for edim O and dim O, one obtains inequality (10.3), and thereby
the irreducibility of N(V̂ ).

All other statements of the theorem are consequences of the fact that N(V̂ )
is irreducible. By Theorem 8.10(ii), πĜ is equidimensional. If v ∈ Ym(N(V )),
then the differentials of the generators f1, . . . , fm, F̂f1 , . . . , F̂fm

are linearly in-
dependent at (v, 0) ∈ N(V̂ ) ⊂ V̂ . This fact and the irreducibility of N(V̂ )
imply that N(V̂ ) is a complete intersection whose ideal is generated by the
polynomials f1, . . . , fm, F̂f1 , . . . , F̂fm

(cf. [21, Prop. 6]).

Remark. The most subtle point in the definition of extremely good rep-
resentations is the rationality of singularities of N(V ). For the adjoint rep-
resentations, this result is due to W.Hesselink [18]. The idea to exploit the
fact that N = N(g) is a complete intersection with only rational singularities,
and to use the Goto-Watanabe inequality for local rings is due to M. Brion [6].
Since (G,Ad) is extremely good, this approach yields a conceptual proof of
[16, Theorem 2.4].

10.4 Corollary. If V is extremely good, then the closure of the image
of the map

κ : V × g → V × V, (v, x) �→ (v, x·v),
is a factorial complete intersection of codimension m = dimV//G and the ideal
of Im κ is generated by F̂f1 , . . . , F̂fm

.

Proof. This follows from the irreducibility of N(V̂ ) and Theorem 8.11.

Since conditions (4) and (5) are quite restrictive, there are only a few ex-
tremely good representations. Below is a list of such irreducible representations
known to this author such that G is simple and k[V ]G �= k, except the adjoint
ones:
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(Bn or Dn, ϕ1), (B3, ϕ3), (B4, ϕ4), (G2, ϕ1), (An, 2ϕ1), (A2n−1, ϕ2),
(E6, ϕ1), (C3, ϕ3), (A5, ϕ3), (D6, ϕ6), (E7, ϕ1), (B5, ϕ5), (F4, ϕ1), (Cn, ϕ2).

The representations are given by their highest weights, and {ϕi} are fundamen-
tal weights of G with numbering from [45]. For all representations in the list
but the last one, the algebra of covariants, k[V ]U , is polynomial [4] (here U is
a maximal unipotent subgroup of G). Therefore the same is true for k[N(V )]U .
Then a result of Kraft (see [3, 1.5-6]) shows that N(V ) has rational singulari-
ties.
I conjecture that if G is simple and V is a simple G-module, then V is extremely
good if and only if dimV � dimG. Practically, this means that one has to only
verify that N(V ) has rational singularities for the following representations:
(A6, ϕ3), (A7, ϕ3), (B6, ϕ6), (D7, ϕ7).

For V = g, inequality (10.3) reads

(10.5) dim zg(x) + rk (dπG)x > 2rk g = 2m if x �∈ Xm(N ) = N reg .

This inequality was proved in [16, 2.6-2.15] in a case-by-case fashion. Below,
we prove a stronger result, which is the counterpart of inequality (9.9) in the
context of Takiff algebras. By the Morozov-Jacobson theorem [45, Ch. 3, Theo-
rem 1.3], any x ∈ N \{0} can be embedded in an sl2-triple {x, h, y}, where h is
semisimple; x is said to be even if the adh-eigenvalues in g are even. Following
E. B. Dynkin, h is called a characteristic of x.

10.6 Theorem. Let g be a simple Lie algebra and x ∈ N . Then

(10.7) L := dim zg(x) + 2rk (dπG)x − 3rk g � 0 .

If g = sln, then L = 0 if and only if the matrix x has at most two Jordan blocks.
Furthermore, if g �= sl2n+1, then L = 0 if and only if x is even and [zg(h), zg(h)]
is a sum of several copies of sl2. (Here h is a characteristic of x).

Proof. The proof is case-by-case. However, the computations themselves
are much shorter and more transparent than those in [16], because our inequal-
ity is stronger, and we use formulae for dim zg(x) in terms of dual partitions
(already used for Sp and SO in the proof of Propositions 9.11 and 9.12).

For the classical series, we work with the partition of x; while for the
exceptional algebras the explicit classification of nilpotent orbits is used. If g =
g(V) is classical and x ∈ g(V) is nilpotent, then η = (η1, η2, . . .) is the partition
of dim V corresponding to x and (η̂1, . . . , η̂s) is the dual partition. Here s = η1.
For Sp and SO, our analysis is quite similar to those in Propositions 9.11 and
9.12.
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(A) g = sl(V), dim V = n+ 1.

Here dim zg(x) =
∑s

i=1 η̂
2
i −1 and rk (dπG)x = η1−1 = s−1 [35, Theorem 4.2.1].

Then

L =
s∑

i=1

η̂2
i − 1+2(s− 1)− 3n =

s∑
i=1

η̂2
i − 3

s∑
i=1

η̂i +2s =
s∑

i=1

(η̂i − 1)(η̂i − 2) � 0.

This expression equals zero if and only if all η̂i � 2, i.e., x has at most two
Jordan blocks.

(B) g = so(V), dim V = 2n+ 1.

Here η̂1 is odd, dim zg(x) = 1
2

(∑
i η̂

2
i −#{j | ηj is odd}), and rk (dπG)x = [s/2]

[35, Theorem 4.3.3]. Then

L =
1
2
( s∑

i=1

η̂2
i − #{j | ηj is odd}) + 2[s/2] − 3n =

1
2
( s∑

i=1

(η̂i − 1)(η̂i − 2) + 3 − #{j | ηj is odd} − 2(s− 2[s/2])
)
.

If η̂1 = 1, then L = 0. This is the case of regular nilpotent elements.

If η̂1 = 3, then
∑s

i=1(η̂i − 1)(η̂i − 2) = 2η3 � 2. Therefore 2L = 2η2 + 3−#{j |
ηj is odd}− 2(s− 2[s/2]). Since #{j | ηj is odd} � 3 and 2(s− 2[s/2]) � 2, 2L

is nonnegative. Furthermore, L = 0 if and only if η3 = 1 and all ηi’s are odd.
If η̂1 � 5, then

∑s
i=1(η̂i − 1)(η̂i − 2) � η̂1 + 2 � #{j | ηj is odd} + 2. Next,

3 − 2(s− 2[s/2]) � 0. Hence L is positive.
(C) g = sp(V), dim V = 2n.

Here dim zg(x) = 1
2

(∑
i η̂

2
i + #{j | ηj is odd}) and rk (dπG)x = [s/2] [35,

Theorem 4.3.3]. Then

L =
1
2
( s∑

i=1

η̂2
i + #{j | ηj is odd}) + 2[s/2] − 3n =

1
2
( s∑

i=1

(η̂i − 1)(η̂i − 2) + #{j | ηj is odd} − 2(s− 2[s/2])
)
.

It is easily seen that L = 0 if and only if η̂1 � 2. Otherwise it is positive.
(D) g = so(V), dim V = 2n.

Here η̂1 is even and dim zg(x) is as in (B). For the rank of dπG, we have [35,
Theorem 4.4.2]

rk (dπG)x =


[s/2], if η̂1 � 4;

(2n− i+ 1)/2, if η = (2n− i, i) with i odd;
l, if η = (n, n) and n = 2l .
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Then

L =
1
2
( s∑

i=1

η̂2
i − #{j | ηj is odd}) + 2rk (dπG)x − 3n =

1
2
( s∑

i=1

(η̂i − 1)(η̂i − 2) + 4rk (dπG)x − 2s− #{j | ηj is odd}) .
Now, a consideration of cases shows that L = 0 if η̂1 = 2. If η̂1 � 4, then L > 0
unless η = (η1, η2, 1, 1), where η1, η2 are both odd.

(EFG) g is exceptional.

It is enough to check inequality (10.7) for sufficiently large orbits (with dim zg(x)
� 3rk g). To this end, one can consult the tables in [10, Ch. 8] for dimensions
of orbits and [35, Appendix] for the values of rk (dπG)x. Below we list all
non-regular nilpotent orbits with L = 0. The orbits are represented by their
Dynkin-Bala-Carter labels.

G2: G2(a1);

F4: F4(a1), F4(a2);

E6: E6(a1), D5, E6(a3);

E7: E7(a1), E7(a2), E6, E6(a1);

E8: E8(a1), E8(a2), E8(a3), E8(a4).

Inspecting the tables in [10, Ch. 8] shows that these are precisely the even
nilpotent orbits whose weighted Dynkin diagrams have no adjacent zeros, which
exactly means that [zg(h), zg(h)] is a sum of several sl2’s.

For g classical, there is a rule for writing out the characteristic h in terms of
η [39, Ch. IV]. Hence the Levi subalgebra zg(h) can be computed. This yields
the last assertion of the theorem.

A geometric meaning of (10.7) will be made clear in the following result.
Let g = g0 ⊕ g1 be a Z2-grading and ϑ the corresponding involutory automor-
phism of g. Then ϑ can be extended to an involution of the Takiff algebra ĝ by
letting ϑ(x+εy) = ϑ(x)+εϑ(y). The corresponding eigenspaces are ĝ0 = g0�g0

and ĝ1 = g1 � g1. Here ĝ1 is a ĝ0-module just in the sense of definition given
in § 7. The G0-module g1 is not extremely good, so that Theorem 10.2 cannot
be applied. But it is ‘good enough’ in the sense that it satisfies properties
(1), (2), (4) of Definition 10.1.
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10.8 Theorem. Suppose g = g0 ⊕ g1 is a Z2-grading of maximal rank,
i.e., g1 contains a Cartan subalgebra of g. Then the quotient morphism π̂ :
ĝ1 → ĝ1//Ĝ0 is equidimensional.

Proof. Recall the relationship between orbits and null-cones for the ac-
tions (G : g) and (G0 : g1). The null-cones are N and N(g1), respectively.

• N(g1) = N ∩ g1;

• G·x ∩ g1 is a union of finitely many G0-orbits;

• If x ∈ g1, then dimG0·x = 1
2 dimG·x;

• For any x ∈ g, we have G·x ∩ g1 �= ∅;

• k[g]G � k[g1]G0 .

The first three properties hold for all Z2-gradings, whereas the last two are
characteristic for the involutions of maximal rank, see [1].

Let us see what the equidimensionality criterion (Theorem 8.10(i)) means
here. We have V = g1, G = G0, and m = dim g1//G0. Since N(g1) consists of
finitely many G0-orbits, that criterion reads

dimN(g1) − dimG0·x � dim g1//G0 − rk (dπG0)x

for any x ∈ N(g1). Here πG0 : g1 → g1//G0 is the quotient morphism. In view
of the above properties of such Z2-gradings, we have dim N(g1) = 1

2 dimN =
1
2 (dim g − rk g), dim g1//G0 = rk g, and rk (dπG0)x = rk (dπG)x. The latter
stems from the isomorphism k[g]G � k[g1]G0 . Rewriting the previous inequality
using this data yields precisely inequality (10.7) ! Thus, the fact that π̂ is
equidimensional is essentially equivalent to Theorem 10.6.

Yet another geometric application of Eq. (10.7) is the following (cf. The-
orem 9.14):

10.9 Theorem. Set g[n] = g � g⊕n, where g⊕n (the sum of n copies)
regarded as commutative Lie algebra and n � 1. Consider the adjoint action
(G[n] : g[n]). Then πG[n] is equidimensional if and only if n � 2.

Proof. For n = 1, the assertion is already proved. Next, dim(g⊕n)T =
nrk g and for x ∈ N the equidimensionality condition of Theorem 8.1(i) reads
dim zg(x) − rk g � n(rk g − rk (dπG)x), which is exactly (10.7) for n = 2.
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Conversely, if n � 3, then this condition is not satisfied for the subregular
nilpotent orbit.

Remark. In the last theorem, the null-cone N(g[2]) is always reducible.
Indeed, each nilpotent G-orbit such that L = 0 in (10.7) gives rise to an irre-
ducible component of N(g[2]), see Remark 8.3(1). The proof of Theorem 10.6
shows that, for any g, there are at least two orbits with L = 0.

There are several equivalent ways to present inequality (10.7). Let B denote the
variety of Borel subgroups ofG. For any x ∈ N , set Bx = {B′ ∈ B | x ∈ LieB′}.
Recall that Xi = Xi,g = {x ∈ g | rk (dπG)x = i} and Xi,g(N ) = Xi,g ∩ N . This
stratification is determined by the covariants of type g.

10.10 Proposition. Let g be a simple Lie algebra and m = rk g. Then
the following holds :

(1) codimNXi,g(N ) � 2(m− i) for any i = 0, 1, . . . ,m;
(2) dimBx + rk (dπG)x � rk g for any x ∈ N ;
(3) If O is the local ring of any G-orbit in N , then edimO � 3

2 dimO;
(4) If g = g0 ⊕ g1 is a Z2-grading of maximal rank and x ∈ N(g1), then

dim(G0)x + rk (dπG0)x � rk g.
(5) If g = g0⊕g1 is a Z2-grading of maximal rank and O′ is the local ring

of a G0-orbit in N(g1), then edimO′ � 2 dimO′.

Proof. In fact, all these conditions are equivalent to inequality (10.7).
Since N contains finitely many G-orbits, (1) can be written as codimNG·x �
2(m − rk (dπG)x) for any x ∈ N , which makes it clear that (1) is equivalent
to (10.7). For (2), one should use the fact that dimBx = 1

2 (dim zg(x) − rk g),
see e.g. [38, 4.3.10, 4.5]. For (3), one have to use formulae for dimO and
edimO written out in the proof of Theorem 10.2. For (4), we notice that since
dim g1 −dim g0 = rk g, the equality dimG0·x = 1

2 dimG·x is equivalent to that
dim(G0)x = 1

2 (dim zg(x) − rk g) = dimBx. Finally, the inequalities in (4) and
(5) are obtained from each other via simple transformations.

Remark. Concerning (5), we note that this inequality is weaker than the
Goto-Watanabe inequality from the proof of Theorem 10.2, but N(g1) is not
normal and can be reducible.

10.11 Corollary. codim gXi,g � 3(m− i) for any i = 0, 1, . . . ,m.

Proof. It follows from the definition of Xi,g that dim Xi,g//G = i. Since
Xi,g is conical, the fibre of the origin of the morphism Xi,g → Xi,g//G has the
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maximal dimension, i.e., dimXi,g � i+ dimXi,g(N ), which is exactly what we
want, in view of Proposition 10.10(1).

There are many open problems and observations related to our results on
reductive Takiff algebras and Z2-contractions. Here are some of them.

1o. It seems that if H is a spherical reductive subgroup of G and k = h�m

is the corresponding isotropy contraction of g, then πK is always equidimen-
sional. At least, I have verified this in case G is simple. In fact, Examples 9.6
and 9.15 present several instances of this verification.

2o. It would be quite interesting to have a case-free proof for Theorem 10.6
or, equivalently, 10.8. Various equivalent forms of that result presented in
Proposition 10.10 suggest that there might be different approaches to proving it.
From the geometric point of view, the equidimensionality of π̂ means that there
exists a transversal subspace to N(ĝ1), i.e., a subspace U such that dimU =
dim ĝ1//Ĝ0 and U ∩ N(ĝ1) = {0}.

3o. Whenever some quotient morphism is equidimensional, it is interesting
to find a natural transversal subspace to the null-cone. One may ask for such a
subspace in the setting of Theorems 9.13, 10.2, 10.8. Even for the adjoint rep-
resentation of ĝ = g�g it is not known how to naturally construct a transversal
space to N(ĝ). If ∆t ⊂ g � g is the diagonally embedded Cartan subalgebra,
then ∆t ∩N(ĝ) = {0}, so that one has a “one-half” of a transversal space. The
problem is to construct the second half. Similarly, if k is a Z2-contraction of
a simple Lie algebra, it is not known how to construct a transversal space to
Nu(k).

4o. If one knows that some null-cone N is irreducible, then it is tempting
to find a resolution of singularities for N.

5o. A case-by-case verification shows that X1,g(N ) is irreducible for any
simple g, and the dense G-orbit in it is Richardson.

§11. On Invariants and Null-Cones for Generalised Takiff Lie
Algebras

Following [33], we recall the definition of a generalised Takiff Lie algebra.
The infinite-dimensional k-vector space q∞ := q⊗ k[T] has a natural structure
of a Lie algebra such that [x ⊗ Tl, y ⊗ Tk] = [x, y] ⊗ Tl+k. Then q�(n+1) =⊕
j�n+1

q⊗Tj is an ideal of q∞, and the respective quotient is a generalised Takiff

Lie algebra, denoted q〈n〉. We also say that q〈n〉 is the n-th Takiff algebra. Write
Q〈n〉 for the corresponding connected group. Clearly, dim q〈n〉 = (n+ 1) dim q

and q〈1〉 � q � q. The main results of [33] are the following:
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(i) ind q〈n〉 = (n+ 1)ind q,
(ii) if q = g is semisimple, then k[g〈n〉]G〈n〉 is a polynomial algebra whose

set of basic invariants is explicitly described.

Actually, the authors of [33] work with invariants of the coadjoint representation
of G〈n〉, but this makes no difference, since g〈n〉 is quadratic.

In this section, we generalise the results from (ii) in the spirit of § 7. Let
q〈n〉u denote the image of q�1 in q〈n〉. It is a nilpotent Lie algebra, which is
noncommutative for n � 2, and q〈n〉 � q� q〈n〉u. Accordingly, one obtains the
semi-direct product structure of the group: Q〈n〉 = Q�Q〈n〉u.

11.1 Theorem. Suppose q satisfies conditions
(1) k[q]Q is a polynomial algebra;
(2) max dimx∈q Q·x = dim q − dim q//Q;
(3) If πQ : q → q//Q is the quotient morphism and Ω := {x ∈ q |

(dπQ)x is onto}, then q \ Ω contains no divisors.
Then

(i) k[q〈n〉]Q〈n〉u

is a polynomial algebra of Krull dimension dim q+n dim q//Q

whose algebraically independent generators can explicitly be described ;

(ii) k[q〈n〉]Q〈n〉 is a polynomial algebra of Krull dimension (n + 1) dim q//Q

whose algebraically independent generators can explicitly be described.

Proof. Let x = x0+εx1+ · · ·+εnxn denote the image of
∑n

i=0 xi ⊗ Ti in
q〈n〉. Here each xi ∈ q and ε is regarded as the image of T in k[T]/(Tn+1). Set
m = dim q//Q, and let f1, . . . , fm be a set of basic invariants in k[q]Q. Expand
the polynomial fi(x0 +εx1 + · · ·+εnxn) using the relation εn+1 = 0. We obtain

fi(x0 + εx1 + · · · + εnxn) =
n∑

j=0

εjF̂
(j)
i (x0, x1, . . . , xn) .

Following the argument in [33, Sect. III], one proves that

F̂
(j)
i depends only on x0, . . . , xj and(11.2)

F̂
(j)
i (x0, . . . , xj) = 〈(dfi)x0 , xj〉 + pij(x0, . . . , xj−1).

It follows from the construction that all F̂ (j)
i belong to k[q〈n〉]Q〈n〉.

(i) Making use of Lemma 6.1 and Eq. (11.2), we prove that the polynomials
F̂

(j)
i , i = 1, . . . ,m, j = 1, . . . , n, and the coordinates on the first factor in q〈n〉

freely generate k[q〈n〉]Q〈n〉u

.
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Consider the mapping

ψ : q〈n〉 → q × k
nm ,

given by ψ(x) = (x0, F̂
(1)
1 (x), . . . , F̂ (n)

m (x)). Here we regard q as q〈n〉/q〈n〉u,
so that q × k

nm is a variety with trivial Q〈n〉u-action. If x0 ∈ Ω, then
(dfi)x0 are linearly independent. Therefore Eq. (11.2) shows that the system
F̂

(j)
i (x0+εy1+ · · ·+εnyn) = α

(j)
i , i = 1, . . . ,m, j = 1, . . . , n has a solution, say

(y1, . . . , yn), for any nm-tuple α = (α(1)
1 , . . . , α

(n)
m ). Indeed, (y1, . . . , yn) can be

computed consecutively: First y1, then y2, and so on. Hence Imψ ⊃ Ω × knm,
i.e., Imψ contains a big open subset of q × knm. This also implies that the
coordinates on q and the polynomials F̂ (j)

i are algebraically independent. It
follows that

max
x∈q〈n〉

dimQ〈n〉u·x � dim q〈n〉 − dim q −mn = n(dim q −m) .

Next, consider Ω′ = Ω∩{z ∈ q | dimQ·z = dim q−m}. In view of condition (2),
it is still a non-empty openQ-stable subset of q. Fix x0 ∈ Ω′, and let (ȳ1, . . . , ȳn)
be a solution to the system F̂

(j)
i (x0+εy1+ · · ·+εnyn) = α

(j)
i , i = 1, . . . ,m,

j = 1, . . . , n. Then ψ−1(x0,α) ⊃ Q〈n〉u·(x0+
∑n

i=1 ε
iȳi). Since x0 ∈ Ω, we

have dimψ−1(x0,α) = n(dim q −m). On the other hand, the following holds

Claim. If x ∈ qreg, then dimQ〈n〉u·(x+ εy1+ · · ·+εnyn) = n dimQ·x =
n(dim q −m) for any (y1, . . . , yn) ∈ qn.

Proof of the claim. We argue by induction on n. For n = 1, the assertion
is obvious. Assume that n � 2. Consider the Q〈n〉u-equivariant projection

(x+
n∑
1

εiyi ∈ q〈n〉) p�→ (x+
n−1∑

1

εiyi ∈ q〈n−1〉) .

Let On denote the Q〈n〉u-orbit of x +
∑n

1 ε
iyi. Then p(On) = On−1. By the

induction hypothesis, dimOn−1 = (n− 1)(dim q −m). It is easily seen that

p−1(x+
n−1∑

1

εiyi) ∩ On ⊃ x+
n−1∑

1

εiyi + εn(yn + [q, x]) .

For, the right hand side is precisely an orbit of the subgroup exp(εnq) ⊂ Q〈n〉u.
Hence dimOn � n(dim q −m). But it is already proved that the dimension of
every Q〈n〉u-orbit is at most n(dim q −m).

Hence ψ−1(x0,α) = Q〈n〉u·(x0+εȳ1+ · · ·+εnȳn) for dimension reason.
Thus, a generic fibre of ψ is an Q〈n〉u-orbit, and Lemma 6.1 applies here.
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(ii) Follows from (i) and the description of Q〈n〉u-invariants.

11.3 Remark. It was noticed in § 9 that any Takiff algebra q � q is a
Z2-contraction of q � q. Similar phenomenon holds for the generalised Takiff
algebras: q〈n〉 is a contraction of q� · · ·� q = (n + 1)q. The starting point
for constructing such a contraction is to consider the action Zn+1 on (n+ 1)q
that cyclically permutes the summands. On the other hand, given q〈n〉, it can
further be contracted to q�q⊕n, the “usual” semi-direct product, where q⊕n is
regarded as commutative Lie algebra. The details are left to the reader. Thus,

q� · · ·� q = (n+ 1)q � q〈n〉 � q � q⊕n

is a chain of contractions.

Using Eq. (10.7) and Eq. (11.2) one can easily prove that if g is semisimple
and g〈2〉 is the second Takiff Lie algebra, then the quotient morphism πG〈2〉 :
g〈2〉 → g〈2〉//G〈2〉 is equidimensional. This is a particular case of the theorem
of Eisenbud-Frenkel mentioned in the introduction.
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Boston.

[10] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebras,
Van Nostrand Reinhold, New York, 1993.

[11] J. Dadok and V. Kac, Polar representations, J. Algebra 92 (1985), no. 2, 504–524.
[12] I. V. Dolgachev, Rationality of fields of invariants, in Algebraic geometry, Bowdoin,

1985 (Brunswick, Maine, 1985), 3–16, Proc. Sympos. Pure Math., Part 2, Amer.
Math. Soc., Providence, RI.
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