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A Presentation of Lie Tori of Type By

By

Malihe YOUSOFZADEH*

Abstract

We give a finite presentation of the universal covering algebra of a Lie torus of
type By, £ > 3.

§0. Introduction

For a complex finite dimensional simple Lie algebra G and a field K, one
can define a Lie algebra G(K) := Gz ®z K over K where Gy is the Chevalley Z-
form of G with respect to a given Chewvalley basis of G [Ch]. In the case that the
rank of G is greater than 1 and ch(K) # 2, 3, Stienberg [St] proves that G(K) is
centrally closed and gives a presentation of G(K) by generators and relations.
Kassel [K] generalizes this concept by considering a unital commutative algebra
A over a commutative ring R in place of the field K and defines the Lie algebra
G(A) := Gz ®z A over R. He proves that the universal covering algebra of G(A)
is G(A) := G(A) ® C where C is linearly isomorphic to QY /dA, the module of
Kahler differentials of A modulo exact forms. He also gives a presentation of
G(A) by generators and relations. When R = C and A is the algebra of Laurent
polynomials in n—variables, the algebra G(A) is called, by Moody, Rao and
Yokonuma [MRY], an n—toroidal Lie algebra. They give an abstract infinite
presentation of a 2—toroidal Lie algebra in terms of generators and relations
involving the extended Cartan matrix of G. They use their presentation to
construct a great number of representations of G(C[tT!, t3]) for a simply laced
algebra G. Saito and Yoshii [SaY] introduce a class of Lie algebras whose
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cores are 2—toroidal Lie algebras. They call their class elliptic Lie algebras
as they are used in the study of elliptic singularities. They give a Serre-type
presentation of a simply laced elliptic Lie algebra in term of the elliptic Dynkin
diagram (R, G) attached to its elliptic root system R (an extended affine root
system of nullity 2) with marking G which is a rank 1 subspace of the radical of
the semi-positive symmetric bilinear form defining R. Yamane [Ya] extends the
presentation given by Saito and Yoshii to elliptic Lie algebras in general. More
precisely, he gives a Serre-type theorem for the elliptic Lie algebras associated
to the (reduced marked) elliptic root systems with rank greater than 2. A
toroidal Lie algebra is centrally isogenous to the centerless core of an extended
affine Lie algebra [AABGP, Chapter I1I] which is in turn a Lie torus [Yo2]. Now
the question is whether one could find a (finite) presentation of the universal
covering algebra of a Lie torus for a given nullity and type. In this work we
give an affirmative answer to this question for Lie tori of type B, (¢ > 3). The
nature of our presentation highly depends on generalized Tits construction from
which the Lie algebras graded by root systems of type By (¢ > 3), Fy and G»
arise [BZ, Section 3].

81. Preparation

Throughout this work all vector spaces are considered over the field of
complex numbers C and all tensor products are taken over C. We denote the
dual space of a vector space V by V*. If a finite dimensional vector space V is
equipped with a non-degenerate symmetric bilinear form, then for o € V*, we
take t, to be the unique element in V' representing a through the form. Also for
an algebra A, Z(A) denotes the center of A. All modules over a unital algebra
are considered to be unital. For elements z1,...,z, in a Lie algebra (G, [-,]),
we set [Xp,..., 1] to be [y, ..., [x3, [T2,21]]...]. Also for a finite dimensional
Lie algebra G, define k(-,-) to be the Killing form on G. We denote by M,, ,,,
the set of all linear transformations from an n—dimensional vector space to an
m—dimensional vector space or equivalently the set of all m x n matrices over
C. For X € M, n, let X! be the transposition of X. For / € Nand 1 <r,s <,
by e, s, we mean an element of My, having 1 in (r, s) position and 0 elsewhere.
We refer to a finite root system as a subset A of a vector space so that 0 € A
and A\ {0} is a finite root system in the sense of [Bo]. For a finite root system
A, we set A := A\ {0}.

Let £ € Z=% and V be a (2 + 1)—dimensional vector space over the field
C, also let I be the identity matrix of rank ¢. Take u to be the non-degenerate
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symmetric bilinear form on V whose matrix is s = | 700 | . Then there exists
001

a basis {v1,...,v9p41} for V such that

(1.1)

w(vi, vegs) = 1for 1 <4 < £, u(vopsr,vaey1) = 1 and u(v;, v;) = 0 otherwise.

The algebra G, consisting of all endomorphisms X of V which are skew-
symmetric with respect to u i.e. u(X(v),w) = —u(v, X(w)) for v,w € V,
is a finite dimensional simple Lie algebra of type B, [J, Theorem IV.6.7]. Set
H;:=¢€;;—epr;oyifor1 <i¢ <l Then H = @le(CHi is a Cartan subalgebra of
G [J, §IV.6]. For 1 <i < ¢, define ¢; € H* such that ¢;(H;) = 0, ; for 1 < j < .
Up to isomorphism G is the unique finite dimensional irreducible G—module of
highest weight £1 + 2 (see [H] for the definition of a highest weight) and V is
the unique finite dimensional irreducible G—module of highest weight ;. We
refer to V as the short highest weight module of G.

One can see that V and G are H—modules admitting weight space decom-
positions as follows:

V=V®Y_ Vi, and

02 G oY G ® Ty c Osorsey with o= H
where

(1.3) Vo = Cvgpq1, Ve, = Cuy, V_o, =Cuppy; 1 <0 <
and

Ge, = Clears1,04i — €i2041), G2, = Cleaet1,i — €r4i2041)s
(1.4) Geive; = Cleiprs — €j0vi), Gci—e; = Cleryij — €eqjii),
Geime; = Cleij — eepjuri)i L <i#j <L

So @ := {0} U{zxe;,£(e; £¢5) | 1 < i # j < £} is the root system of G and
{0} U @y, = {0} U {&e;}_, is the set of weights of V. Now set oy := &, and
;= ¢&; — ;41 for 1 <i < ¢ —1. One can easily check that {a;}¢_; is a base
of ®. Now let 1 <i,j < /¢, then k(H;, H;) = 46, ;, so t., = H;/4. For o € ®*,
set hg = 2ty /k(ta,te). Then we have

(1)  he,=2H;, 1<i<{ and he,e,=H;+Hj, 1<i#j<Ll
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Now set

e, 1= €241 040 — €i 2041, Je, = 2(€rier1 — €2041,), 1 <0 <L,

Ccite; 1= €itt) — €jutiy feite; 1= €otji — €otig,

1<i<j<é,
(1.6)  ecye; i=€ij — Copjptis Jeime; = €ji — Coyitis

h‘i = hE,i—€i+17ei = eEi—Ei+17 fZ = ij,—Ei+17 1 S Z S g - 17
h£ = h‘Egv 6[ = 6647 fe = fEZ'

By an easy computation we have the following lemma:

Lemma 1.1. For a € {g;}f_; U{ei * ejticicj<t, (€arha, fa) is an
sl, -triple.

Now let 1 < i < /. It is easy to check that

04 jVit1 i £ 1 <5 <Y,
(1) fi-vj= 2002041 ' _é’ l=sjsé
251-,@1)24 j=20+1,
(1.7) —0iq1,j—everi L+ 1 <5 <20,
fj'fi"'fQ'fl'U1:07 Z#‘gulgj?éz—"_lSE?

(i) fi-fife—1-fo-vaep1 =0, 1<j#i—-1Z4.
This together with (1.3) implies that

Ve, =Cfi1- fica - fa- f1-v1, 254 <Y,
(1.8) Vo=Cfe- fo—1-+fo- f1-v1,
Vo, =Cfi- fixr- fo—1- fo-vaepr, 1< <L

Lemma 1.2. If1<i</{ then fi - fo- f1-v1=[fi,.-, fo, f1] - v1.
Proof. Using induction on 4, we are done. O

Lemma 1.3.  Set f := [fe,..., f1] and let 2 < i < £. Then we have
fio fivr oo foo fron=[fi fixr, o fo f] o1

Proof. Using induction on ¢ — i, we are done. O

Definition 1.1. Let B be a unital commutative associative algebra, W
be a B—module and g : W x W — B be a symmetric B—bilinear form on W.
Then Cliff(g) := B1 ® W with the multiplication

(b1 +w) - (M1 +w') =bb'1 + g(w,w' )1 + bw' + b'w; w,w € W,b,b' € B

is a Jordan algebra called the Clifford Jordan algebra of g.
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Now consider the Clifford Jordan algebra Cliff(g) = B1 @ W for a unital
commutative associative algebra B, a B—module W and a symmetric B—
bilinear form g : W x W — B. For a,a’ € Cliff(g), define dy o = LoLy —
L, L, € End¢(Cliff(g)) where L, and L, are the (left) multiplications by a
and o’ on Cliff(g) respectively. Set Dwyy = spanc{dw. | w,w’ € W}
Since for all w,w’,v,v" € W, dy . stabilizes W and dy o/ duw — o =
dq, ,ww + dwa

v,v

algebra of the associative algebra End¢(W).

Now suppose u is defined as in (1.1) and consider Cliff(u) = C1 @ V. It
is easy to check that Dy = G. So one can express the elements of Dy y in

,w, we may consider Dy )y as a Lie subalgebra of the Lie

v,v

matrix forms. More precisely for 1 <, j < £, we have

d’t)i,’l)(+_7‘ = eEifij ) dvi,vj = e€i+€j7 d’()[+i,llg+j = _f6i+5j yJ > 1,
(1 9) dvi,w_‘_j = fsjfﬁmdvi,vj = _e€j+€i7 dvg+i,vg+j = f€j+€i7 1> Js
d’t)i,’l)(+_7‘ = H’L dvi,vj = 07 d’()[+i,llg+j = 07 1= .77

_ -1
dv2€+1yvi = €y dvl+i»v2l+1 - 2f€7‘,'

Next, let A be an irreducible finite root system and G be an abelian group.
Denote by Xa, a reduced finite root system of type A if A is reduced and of
type B, C or D otherwise. Suppose g is a finite dimensional simple Lie algebra
over C with a Cartan subalgebra h so that g has a root space decomposition

9 = Dpuex, 9y with b = go.

Definition 1.2. Let g and h be as above. A A—graded Lie algebra £
with grading pair (g,h) is a Lie algebra satisfying the following conditions:

(i) L contains g as a subalgebra,

(it) L= ®uealy, where L, = {z € L | [h,z] = p(h)z for all h € b},

(#1) Lo = ,enx[Lus Loyl
A A—graded Lie algebra £ with grading pair (g, h) is called (A, G)—graded if
L = ®yecl? is a G—graded Lie algebra such that g C £° and supp(L) := {g €
G | £9 # {0}} generates G. Since g C £°, £9 is an h—module for g € G and
so we have £ = @uen Dgec L], where LI = LINL, for g € G and p € A
[MP, Proposition 2.1]. A (A,G)—graded Lie algebra L is called a division
(A, G)—graded Lie algebra if for each p € A*, g € G and 0 # = € LY, there
exists y € L_7 such that [z,y] = ¢, (mod Z(£)). A division (A,Z")—graded
Lie algebra £ with dimc(£f)) < 1 for all 0 € Z” and p € A* is called a Lie
v—torus or simply a Lie torus.

Remark 1. Tt follows from [Yol, Theorem 5.1] that if A is a finite root
system of type B, and £ = ®,ea Doezv Ly, is a (A, Z")—graded Lie algebra,
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then there exist semilattices (see [AABGP, Chapter II] for the terminology)
S,L C Z" such that S = S, for p € Ay, and L = S, for p € Ayy where for all
peA, S, ={0eZ|L]#{0}}. Let us call (S, L) the corresponding pair of
L.

We recall that a central extension of a Lie algebra L is a pair (E~7 ) con-
sisting of a Lie algebra £ and an epimorphism 7 : £ — £ whose kernel lies in
the center of £. A covering of L is a central extension (EN7 m) of £ with L perfect
(£, L] = £). Any perfect Lie algebra £ has a unique (up to isomorphism) uni-
versal central extension which is perfect called the universal covering algebra of
L (see [G]). Two perfect Lie algebras are said to be centrally isogenous if they
have the same universal covering algebra.

Now let G be a finite dimensional simple Lie algebra of type By, £ > 3, V
be the short highest weight module of G and u be defined as in (1.1).

Theorem 1.1 (Recognition Theorem for type By).  ([BZ, Proposition
3.9 and Theorem 3.53]). Assume A is a unital commutative associative algebra
and B is an A—module having a symmetric A—bilinear form f: Bx B — A.
Then

T(Cliff(u) /C, Cliff(f)/A) := (G ®c A) & (V ®¢ B) ® Dp.5

is a centerless By—graded Lie algebra whose Lie bracket is an extension of the
Lie bracket on D, g satisfying

[t®a,v@b =2v®ab, [z®a,z’ ®d]=][z,2']®ad,
(1.10) [x®a,D] =0, @b v V] =dyw @ f(b,V)+ulv,v)dyp,
[D,v®b] =v® Db,

for z,2’ € G, a,a’ € A, v, €V, b € B and D,D' € Dgp. Con-
versely, Assume L is a Lie algebra which is By—graded for £ > 3. Then
there exist a unital commutative associative algebra A and an A—module B
having a symmetric A—bilinear form f such that L is centrally isogemous to

T(Cliff(u)/C, Cliff(f)/A).

The following theorem states how to construct the universal covering al-
gebra of a By—graded Lie algebra:

Theorem 1.2 ([ABG, Theorem 4.13]). By the same notation as in
Theorem 1.1 consider the centerless By—graded Lie algebra Q = (G ® A) @
(V® B) ® Dp p. Set a := A® B, direct sum two vector spaces A and B, and
let s be the subspace of a @ a spanned by the elements

(1.11) a@f+Bea, (af@y)+(Bryea)+(a®p), ab
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where o, B,y € a, a € A and b € B. Consider the quotient space

(1.12) {a,a} :=(a®a)/s

and for o, B € a, set {a, f} == (@@ f) +5 € {a,a}. Let Q = (G A) B (V®
B) @ {a,a} and define a multiplication on Q) by

[z ®a,2' ®ad] = [z, ® ad’ + k(z,2"){a,d'},
[®a,v@b =zv®ab=—-[v®bx®al,
[z®a,{a,a}] =0=-[{a,a},r®al,
(1.13) @b,V @] =dyw @ f(b,V) 4+ u(v,v){b,b'},
Ha, o'}, v@b =v®dyob=—[v®b,{e,a'}],
[

{a a/} {6 ﬁ/}] - {dma ﬁaﬁl} + {ﬁada,a/ﬁ/}a

forx, 2’ € G, a,a’ € A, v,v' €V, b/ € B and a,’, 3,5 € a. Then (Qﬁ)
where T : Q — Q is given by z@a— z®a; ub— u®b; {o,a'} — dow
1s the universal covering algebra of Q.

Lemma 1.4. By the same notation as in Theorem 1.2, for a,a’ € A
and x,2" € G, we have the following:

(¢) If '’ =1 or k(z,2') =0, then [z ® a,2' ® d'] = [z,2'] ® ad’.

(i) If [z,2'] = 0, then [t @ a,2’ @ d’,w] = [t/ @ d,z @ a,w] for all w € €.

Proof. (i) Let o € a, by (1.11), {«a,1} = {1,a} = 0. Using this together
with (1.13), we are done.

(i) Since dg 0 () = 0 for all o € @, (1.13) implies that {4, A} € Z(Q).
Now using the Jacobi identity, we are done. O

Next let v be a positive integer and take A, to be the algebra of Laurent
polynomials in the commuting variables ¢1,...,t,. For ¢ = (n1,...,n,) € Z,
by t° we mean t]'...t" . Let L be a centerless v—torus over C of type By,
£ > 3. Then by [Yo2, Theorem 7.3] and [AG, Theorem 5.29] we may assume
that the corresponding pair of £ is (S,2Z") where S = L+J;-n:_01(2Z” + 7;) for
some m > 1 and 79, ..., Tm—1 € Z" satisfying 7o = 0 and 7,.#7, (mod 2Z") for
0 <s#r <m—1. Furthermore

(1.14) £ = T(Cliff (u)/C, Cliff(g) /Ap)

where v is defined as in (1.1) and g is the symmetric Ap,j—bilinear form on
A’[ql:‘fl, m — 1 copies of A, defined as follows:



8 MALIHE YOUSOFZADEH

(1.15)
g AR < AR — AT (S0 avwp, 305 bewg) v 30T byt

in which {w1,...,w;,—1} is the standard basis for Aﬁf]_l over Ap,). One can
use Theorem 1.2 to conclude that the universal covering algebra of £ is 2 =

(GecAp) @ (Vec A’[Z]_l) ©{a,a} where a = Ay @A&‘l and {a, a} is defined

as in (1.12). So Theorem 1.1 implies that

(1.16) Q[/Z(Q[) = (g Rc A[l,]) b (V Xc Am]_l) &) 'DAELT%AV[,LL]A .

It follows from (1.13) together with Lemma 1.4 that A is generated by

e&®1, fi®l, hi®1, hi®t;, b @t; ", v @ w,,

(1.17) ) .
1<i<l, 1<j<py,1<s<m-1.

Moreover using (1.13), Lemma 1.4 and (1.9), for 1 < 4,7 < ¢, 1 < j < v and
1 <s,t <m —1, the following relations are satisfied in 2 :

[a(he)(hs @ £1) = alhi) (hy @ t771), 20 ©1] = 0; @ € B, 2o € Ga,
[B(hy)(hi @ t57) = B(ha) (he @ £57), 08 @ ws] = 05 B € By, v € Vg,

to which we refer as quasi-diagonal relations, also

[he @t5,hi @t 2@ 1] = a(h)a(h)z®1; 2 € Gy, a €D,
[hr ®tj,hi X tj_lay ®U}5] = Oé(hi)Oé hr)y & Ws; Y S Vou ac q)sha

that we call cancelling relations and

[v1 @ W, 11 @we] =0,  [v1 @ Wy, v; @ W] = Ost€c,4e, D™ 12> 2,
(V1 ® W, Viyi @ W] = g 160y, LT 1> 3,

which we call basic short part relations.

§2. Presentation

Throughout this section v, ¢ and m are positive integers so that £ > 3. G
and V are as in §1 and w is the form on V defined by (1.1). We find a finite
presentation of the universal covering algebra of a Lie torus of type By. More
precisely, we consider a set {7 | 0 < r < m—1} of some representatives of cosets
of 27" in Z" with 19 = 0 and find a finite presentation of the universal covering
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algebra of the Lie torus of type By whose corresponding pair is (.5, 2Z") with
S = &J;":_ol (1-+27Z"). We postpone the case that S = 2Z" (corresponding to m =
1) to Remark 3. So we suppose that m > 2 and fix 7. = (nj,n},...,nl) € Z",
1 <r <m-—1,such that 7y +22Z", ..., T,—1+2Z" are disjoint nonzero cosets of
27" in Z¥. We represent a finite presentation of the universal covering algebra
2 of T(Cliff(u)/C, Cliff(g)/A[)) where g is the symmetric Ap,)—bilinear form
on Alefl defined by (1.15). We first construct a finitely presented Lie algebra £
consisting of several generators and a bunch of relations. We decompose L into
irreducible G—modules isomorphic to G, irreducible G—modules isomorphic to
V and trivial G—modules. Next we prove that £ is a By—graded Lie algebra
that is a central extension of 2. Then we have enough tools to prove that £ = 2.
We collect the relations which have similar natures in the same collection. To
begin, we consider the Cartan matrix C = (¢; ;)i ; of type B, and take L, to
be the Lie algebra generated by 3¢ + 20v + m — 1 elements

(2.1) {ei, fishihijo" | 1<i<6,1<j<w, 1<r<m-—1},

subject to the following type of relations:

Serre’s relations:
(R1) [hi, hj] =0, [ei, f5] = i jha, [hises] = cjaej, [ha, fi] = —¢jif5,
(ade;) =it (e;) = 0, (adf;) "+ (f;) =0, 1 <i,j < L.

Short highest weight module relations:
(Rz) [eiavr] = Oa [hi7’UT] = 61,1'1}7"7 [fj7,07'] = [flhflavr] = Oa
1<i<6,2<j<l1<r<m-—1.

Now let G be the subalgebra of £, generated by {e;, fi, hi}¢_,. Since
{ei, fi, hi}e_, satisfies Serre’s relations, G is a finite dimensional simple Lie
algebra of type By [H, Theorem 18.3]. So G = @®ac0Go where & = {0} U
{i&,i(&iiE]‘) | 1< 75] < K} and where Ei(hj) = (51‘7]‘ _6i,j+17 1 S] < f—l,
and ¢;(hg) = 28; . Moreover for each o € ®T, there exist e, € G, and fo € G_q
such that (eq, [€q, fa], fa) is an sl, —triple. Without loose of generality we may
assume e, and f, (o € ®1) are defined as in (1.6). Now for 1 < j < v, define

£—1
+._ % + +
(2.2) k=4 ) 2k + b

t=2
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and set

Sy :=spanc{e;, fi, hi,hi ;0" | 1<i<l 1<j<v, 1<r<m-1}

Sy :=spang{e;, fi | 1 <i < £, i # 2}
H :=spanc{h; | 1 <i</{}.

N=y)

:zspanc{hfj [1<i<¥ 1<j<v}.

by :=spanc{h; [1<i</l i#2 1<j<v}

ho :=spanc{kj | 1< j <v}.

Zp = span(c{[hfj,h},s] [1<i,r<¢ 1<js<v}

bi! = spanc{a(h)h;; — a(hi)h, ; alh)hf; —a(hi)hf; |1 <j < v}
aed, 1<it<l.

Since G is a subalgebra of Ls, L is a G—module. Now for 1 < r < m — 1,
define V" to be the G—submodule of L, generated by v". Using (R2), one can
see that V" is a finite dimensional irreducible G—module of highest weight &,
[H, Theorem 21.4]. Contemplating (1.2), (1.3) and using (1.7)(¢) together with
Lemmas 1.2 and 1.3, we may assume V" admits a weight space decomposition
relative to H as follows:

(2.3) V' = aeitett_ ufor(V )a with
(V"o = Cugyyy, (V7)e, = Cof, (V") ¢, = Cup,; where
vf =", vf = [ficr, o SV = ([ficr, - ALV 20 <0
Vopoq = —%[fg7...,f1,vr] = —%[f,vr] where f = {[fe,..., f1],

(=1t —(—1)ti { fi,[fo, -y fo fl07] i=1,

UE_H' - 2 [fiw”af[avge-&-l] = 1 [[fi,n-,fbf],UT] 2 SZSE

Now let L, be the Lie algebra £, modulo the ideal generating the following
relations:

(R3) (i) [Zn,Sy) =0 (Zy is central), (it) [H,bh] = 0.

Quasi-diagonal relations:

B () s erpes] = 0, (i) o Sa] = 0, (i) [62° ., Cfo + Cea] = 0.
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Quasi-diagonal relations:

(4) [b,v5esq] =0, :
(R5) (i) | ’at??{;)a _ 0704 €Dy, 1 <4t <l 1<r<m-—1 (see (2.3)).

Cancelling relations:
(i) [hy s hitys 2] = a(hi)a(he)z, @ € Ga, a € @,

8,077,970

(i0) [hg s hilyoy) = a(hi)alhs)y, y € (V)a, a € By,
1<j<y1<4,s<l,1<r<m-1

Basic short part relations:
(Z) [Urﬂvt] = 07 1 S Tvt S m — 17
(RT) (id) [0, o!] = O,a(adal®) "1 . (adalt) e, 4,

(#1) [v", v}, ] = 5r,t(ada11’t)|”§‘ ... (adaf;t)wv'esl,si,

[\
~

9

<
3

= IN
IN

1
<i <Y,

|—=

kF > ; ktnt >0 i+£2
where a7 = %J_n 20 dait— j_ng_Oz;A'

L N

Now for 1 < j < v set

e ==t fens fea KT ey ver)s  fT5 = lfers for B e v,

€F; = ep Fermer K eer ey Ji o= = Elfens oo Fea K ey ),
(2.4) e;j = %[fsgvfslak;taeﬁ—l-m}a

ef; = =3 erirs fers formein K s €eren), B<i< L1,

Eim Ll fers fens Formeri K eegey], 20 <01,
and define

é‘:zspan(c{efj|1§i§€7 1<j<v},
f::spanc{ffﬂlgigé, 1<j<v}h

Finally define £ to be the Lie algebra £, modulo the ideal generating the
following relations:

(R8) [ef, fil=hi;1<i<( 1<j<w
(R9) [n,h,€,F] =0, [Xi_, Cfi,h,E,F] = 0.

Theorem 2.1 (Main Theorem). L is the universal covering algebra of
T (Cliff(u) /C, Cliff(g) /A1), in other words £ = 2.
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To prove this theorem, we need to know the structure of £. To begin, we
recall that 2 is generated by the elements stated in (1.17). It follows using
(1.13) that this generating set satisfies the relations (R1)—(R9). So there exists
a Lie algebra epimorphism from £ to 2 as follows:

(2.5) cp: L— 2
ei—e; @1, fim fi®l, hi—h;®1, hfthi®tji1,UrHU1®wr7
1<i<l, 1<j<vy,1<r<m-1

Lemma 2.1. Leta,b€ b and x € L, then [a,b, x] = [b, a, z].

Proof. By (R3)(i), we have [a,b] C Z(L). Using this together with the
Jacobi identity, we are done. a

We know that G is a subalgebra of £. Another point about the structure
of L is that, under the adjoint action of G on £, £ decomposes into a direct
sum of

e modules isomorphic to the adjoint module G.
e modules isomorphic to V.
e one-dimensional G—modules.

We show this point in some steps. So we arrange the rest of this section as
follows. The first three subsections are respectively devoted to introducing some
irreducible G—submodules of £ isomorphic to G, irreducible G—submodules of
L isomorphic to V and trivial G—submodules. We study the properties of
the introduced G—submodules in each subsection. Subsection 4 deals with
the relations between the introduced G—submodules. In Subsection 5, we get
familiar with some central elements of £. Finally in the last subsection we get
the mentioned decomposition and use it to prove our main theorem.

§2.1. G—submodules isomorphic to G

Definition 2.1. Let o0 = (ny,...,n,) € Z". We call |o| := Y 0_, |ng]
the norm of 0. For o # 0, if 1 < j < vand 1+ 3771 |ng| <i < 37_, |nsl,
k;r if n; > 0

defi i =
e a K if ny <0

(see (2.2)) and set ay := (a1,...,a),). Also set

ap := (ki ,k]). We call a, the norm-tuple of o.
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Now let o € Z" and define

s = [3a1,...,3as,¢€9) Where (a1,...,a;) is the norm-tuple of o

(2.6) and ey = ec, 1., is a maximal vector of highest weight § = ¢; + &5
in G—module G. Using (R6)(4), we have ey = ey.

Set
(2.7) G, := G—submodule of £ generated by e,; o € Z".

Proposition 2.1. G,, o0 € Z”, is an irreducible finite dimensional G—
module of highest weight 0. In fact as G—modules, G, ~ G.

Proof. Contemplating (2.5), one can see that ¥(e,) = ep®t° # 0. There-
fore e, # 0. Thus by [H, Theorem 21.4], it is enough to show

m;+1

—_—~
(2.8) [hiseo] = 0(hi)es, leiseq) =0, [fi, fis-., fiyes] =0
where 1 <i</{ and m; = 0(h;).

Fix 1 <4 < ¢. We first mention that the equalities in (2.8) hold for o = 0 as ey is
a maximal vector in G—module G. Now let 0 # o € Z¥ and e, = [aq, . .., as, €q]
for some s € N. Then (R3)(i¢) implies that [h;,es] = [a1,...,as, hi,eq] =
O(h;)es. Also if i # 2, then by (R4)(it) we have

[fi7fi7"'afi7ea] = [a17"'7a57fi7fi7"'7fi769] = [ala"'7a570] =0.
——— ——
m;+1 mi+1
Next we use induction on |o| to prove [e;,e,] = 0 and [fa, f2,e5] = 0. Let
o,7 € Z” such that e, = [a1,...,as,¢q], e = [ag,a1,...,as,¢eq], [€i,esc] = 0
and [fa, f2,e,] = 0. If i # 2, then by (R4)(i¢) and the induction hypothesis, we
have [e;, e;] = [ao, €;,€,] = 0. Now let ¢ = 2 and ag = %kji for some 1 < j < w.

It follows using (R4)(i¢) that
1
(2.9) {ikji,eg} = [h3; + 2h3, eq).
This together with Lemma 2.1 implies that
€r = [a07a17 cee a3769] = [alv ceey Qs hg:,j + 2h§j769] = [hg:,] + Qh?zﬁj?ea]'
Using this together with (R4)(¢i) and the induction hypothesis, we have

[ea,er] = [eg,hQiJ- + 2h§t’j760] = [hQiJ +2h§j,€2760] =0
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and

[f27f2ae7']_[f27f2ah§£]+2h337 ] [héc] +2h ]af27f2aea]:

This completes the proof. O

Now let o0 € Z". Using Proposition 2.1, one concludes that there exists a
G—module isomorphism ¢, : G — G, mapping eg to e,. So

if x,y,z,w € G such that [z,y] = [z, w]

(2.10) then @, ([2,9]) = [, 0o (1)] = [2, 0 (w)].

Also G, admits a weight space decomposition G, = > c4(Go)a Where (Go)o =
©5(Gu), a € ®. Consider the base {a;}¢_, of ® defined in §1, then we have

¢ ¢
(2.11)  (Go)o = ¥o(Go) = ZC% D)= @ollfi-Gal) = D _[fir (Go)as-
i=1 i=1
Next let 1 <7 < £ and set
(2 12) Cio ‘= @U(ei)v fi,U = @G(fi), hi,o' = @U(hi)a
' Hi o= @o(H;) where H; =Y '"h, + (1/2)hy.

Then (2.10) implies that
(2.13)

(Z) [6’610] [flafzo‘]: )

(“) [eiv.fja] [f]aeza] —5,]hzoa

(“Z) [hiye Red [elv hz,a} - 261,0 and [hi, fi,o} = _[ 2fi,a;

[

% } a]:
(1) [ej, hio] = (aj(hi)/2)lej, hjo] and  [fj, hio] = (a;(hi)/2)[f5: hio]

where 1 <i,5 </ and o € Z". Now set
(2.14) o—jF = (0,...,0, £1,0,...,0), o7 = @p; 1<) <w.
Jth

One knows that e_+ = [(1/2)kjt, eg], so using (2.4) together with (2.13)(4¢) and
J
(R8), for 1 <i </l and 1 <j < v, we have
(i) ey = ¢; (ea) (i) fi5 = 5 (fi)

(2.15)
(#47) hf’[j = wj-i(hi) (iv) kji = ¢ £(hg) (see (2.2)).
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Now (2.15)(i4i) together with (R6) implies that

(2 (h),(pj (W), z] = a(h)a(h)z, x € G, a €D,
(2.16) (o5 (h),0f (1), 9] = a(h)a(h)y, y€ (V)a, a € Pep,
1<j<v,hheH 1<r<m-1.

To figure out some more relations holding in £, we need to introduce some new
notation as follows:

by = spanc{a(h)gj (') — a(R)7(h) |1 < j < v}
b = spanc{a(h)s (') — a(l)ps(h) | 0 € 2},

Since for a € ®, x € G, and h, h' € H, we have [a(h)h' — a(h')h,z] = 0, (2.10)
implies that

‘o€ ®, h,h € H.

(2.17) [Ga, B ] = 0= [Ga, b2M); @€ ®, hh € H.

In particular for 1 < ¢ </, we have

(2.18)

(i) [Ces + Cfa,p2"0 ] =0, (i1) [Cecyae, + Cfeypae,, b4 ] =0,

(idd) [Cei + Cfi, b "] = 0,i # £, (i) [Ce; + Cfi, i1 = 0,i # 1,

(0) [ec, e, BOL 2D =0, (0i) [Cesp1+Cfipr, bl )= 0,i £ ¢,
]

(vit) [Cleirtsei] + Clfirn, fil, bafafl,] =0, i # £,
(viii) [Clei—1, €] + Clfi-1, fi], ba 1] =0, i # 1,
(iz) [Ce; + Cf;, hHihi] = 0.
Also considering (2.14), it follows using (2.15)(¢4i) and (R5)(i%) that
(2.19) [bw,(vr)]_o; a€dy, 1<r<m-1, h,h' € H,

in particular, contemplating (2.3), we have

(2.20)
(Z) [[)211 597’0 ] 0, (“) [hgf;qu—i_Hl [6@ .ﬂ } =0,
(idi) [hho;Fr 7] = 0, (iv) [T [ fy, f1,07] = 0,

(0) 0220 [fo far o fon fl07] =0, 1<r<m—1.
Next let h € H and a € ® such that a(h) = 0. We know that there
exists b’ € H such that a(h’) # 0. One can see that Z’f,ﬁ/ =i (Cgo;-t(h) and
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bt = spanc{ps(h) | o € Z"}. Using these together with (2.19) and (2.17),
we have the following:

If he H, a € &y, and § € ® such that a(h) = 0 = S(h),
(2.21) then for 1 < j < vand 1 < r < m — 1, we have
[p7(h),(V")a] = 0 and for o € Z¥, we have [, (h),Gs] = 0.

In particular for2 < i < ¢, 1< j <wv, H; = Zf;} hit+3heand f = [fy, ..., f1] €
G_.,, we have

(i) 7 (H:), 0] =0, (it) [hi;,0"] =0,

(222 (#0) oy ()il =0, (iv) [kE, [fe, f1,07] = 0,
(v) [o; (Hi),05p4,] =0, (vi) [k}, [ee, fl,0"] =0,
(i) [hyj, [fimt, - 1l 07] = 0, 6 # 2, (viidd) [hf5, fr,0"] =0, 0 # 2.

k57, v") = (05 (H1) — @ (H,), "] and
(2.23) k5, v"] = oy (H1) + @ (Hi),v'"]
where 1 <j<p, 2<i</l 1<r<m-1

Alsoif 1 <i,t,s < /¢ and o € Z", (2.21) implies that
(1) [po(H;),Cfe, +Cec,] =0, i #t,
(2.24) (1) [po(H; £ He),Cfz,5e, + Cecyge,] =0, i< 8,
(14) [0 (H;), Cfe e, + Cecone,] =0, s<t, s#14, i #t.

To reduce the amount of computation, we introduce some new notations.
Consider (2.14) and define

/—
(2.25) Hfj = @?E(Hi) where H,; = Zt:il hi + %hg;
1<i<f1<j<uv.
One can correspond to o € Z" with norm-tuple (a1,...,a,) and 1 < i < ¢,
two n—tuples (mi,...,m%) and (m;1,...,m;,) where for 1 < s < n, m’ and

m, s are defined as follows:

(2.26) mt = Hli] and m; = hi

i if as = k;t for some 1 < j < w.

Proposition 2.2. Let o € ® and o € Z¥ with norm-tuple (a1, ..., an).
If {z1,...,2n} C H is such that for all 1 < i <n, a(z;) # 0. Then ¢s(Gy) =
(Go)a =le1, -+ cn, Ga) where ¢; (1 <i < n) is defined to be w;t(mi) if a; = k]i
for some 1 < j <w.
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Proof. Tt follows using Lemma 2.1 together with (2.18)(v) and (2.24) (i)
that

2.27) (i) ee = [mi,...,mk eq], (ii) ex = [Mm3,...,m2, eq]
(iii) eg = [mi+mi,....mL+mi, eg]; 3<i <L

Using (2.10) together with (2.27)(i4) and (2.24)(i),(i7), we have and

1 1 1
¢0(6€2) = _§[f€1760] = _§[f€17m%7'~'7m3m69] :—5[771%7.-.777’1%,‘]{51,69]
=[mi,...,m2 e.,]
and
1 1 9 9
@U(fal) = Z[f82’f817f€1760] = Z[wafEnfapml)--~7mn760}

1

= Z[f€27m%a"'7m317f81af81769]
1

= Z[.f€27_m%a"'7_mi7f€17f61a69]
1

= Z[_m%w"a_miaf627f€17f61a69]

=[=ml,...,—mb, f..].

Also for 2 < i < ¢, (2.10) together with (2.27)(i) and (2.24)(7),(i4) gives that

1 1
(pa(fei) = _Z[fspfeiafeyea] = _Z[felafeiafsym}a~~~7mr:rlm€9]

_ _i[fel,mi...,m}l,faﬁfsy@e]
_ _i[fal, =i, fey ey, €]
_ _i[_mg, coes = fers feis feas o]
= [—m’i, ce 7mimf€q‘,]
and
Grlee) = 5lfenrer] = 5l mbeo) = Glmd o oy o]
= [m%, .. ,m}b,egl]-

Similarly for 3 < i < ¢, (2.10) together with (2.27)(i4¢) and (2.24)(éi),(i) implies
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that

1 X .
SDO'(661> [fEQ?fSl 61760]:§[f€27f5175i7m%+mll7"'7m’}7,+mj’7,7ee]

= E[m% +mi, . mb - ml feyy fer e, 6]
=[mi+mi,....omL+mi e.]
=[mi,...,mt e.].

Up to now, we have proved that

(2.28)

woles,) =[mi,...,mi e..] and o, (f.,)=[-mi, ...,—mi, f,]; 1<i <L

Now let 1 <4 # j < {. Using (2.10), (2.28) and (2.24)(%), we have

:[fsjaQD(r ee,)| = [mlw-' iwfaj’eaih

(

= [fe; pa(fe)] = |- mla-~-v*m%af5jafei]a
(
(

oo ([fe;, ec,] )
Po )
)
)

(

(Ife;s f=]
(2.29)

(

(

Po [eeweei] = [esjaQD(r ee;)] = [mla miweaj’eai]?

)
)
)
)

Po [ecfj?faq‘,] = [Qe;v%pa fe)l=1- mla”'v*m%aee,‘afei]'

Using this and (2.28), we get

(go)isjisi = [mi7"'7mzvgi6ji€i} and (go'):tEi = [m’i7"'7miugi61,];
L<i#j<t,
which together with (2.17) and Lemma 2.1 completes the proof. O

Corollary 2.1. “J:Eaecbx dezu(ga)a] - Eae@X Zaezy(ga)a.

Proof. Fixl1<i</fand1l < j <wv. Let a € ®* and o € Z" with
norm-tuple (ai,...,ay). Then by Proposition 2.2 thereis {¢¥ |1 <r <n} CHh
such that (Gy)a = [cf, ..., ¢S, Ga]. Consider (2.14) and define nf =0+ ajﬁ If

a(h;) # 0, then by Lemma 2.1, (2.16) and Proposition 2.2, we have (gn;c)a =

[hzi], e, ..., ¢, Gy, but if a(h ) = 0, Lemma 2.1 together with (2.21) implies
that [hzi], (Go)al =lcf, ..., ¢ h; ], Go] = 0. This completes the proof. O

Remark 2. Let 1 < ¢ < ¢ and o € ZY with norm-tuple (aq,...,a,).
Using (2.29) and (2.28), we have
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(i) eio = [m},...,mb el = (if i #0) [-miTh o —mit e,

(it) fio=[-mi,....—mi, fi] = Gf i #0) [mi*,.. omiH, fi].

It follows using the first equality stated in (¢) together with (2.13)(i%), the
Jacobi identity, (2.17) and Lemma 2.1 that

(ii1) o (h)[py (W), hio) = ai(W)[@; (h), hig) where 1 < j < v, h, I/ € H
and {ay | 1 <t < ¢} is the base of ®.

§2.2. G—submodules isomorphic to V

For 1 <r <m—1and o € Z", define

v = lay,...,a,v"] where (aq,...,a:) is the norm-tuple of
(2.30) o and set V! to be the G—submodule of £ generated by v?.
Note that by (R6)(ii), v = v" and so V§ = V" (see (2.3)).
Proposition 2.3. Let1 < r < m —1. Then for o € Z", V] is an

irreducible finite dimensional G—module of highest weight €.

Proof. Considering o € Z" and contemplating (2.5), we have (v}) =
v1 @ t°w, # 0 and so v], # 0. Therefore by [H, Theorem 21.4], it is enough to
show

[eivv;] =0, [hlv o 51(}1,’)112, [ft»”f;] = [flvflavg] =0,

] =
(2.31) 1<i<e, 2<t<L.

Let (a1, ...,a,) be the norm-tuple of o. Then by (R3)(i¢) and (R2), we have

[hi,v0] = [a1, ..y an, hiy "] = [a1, ..., an,e1(h)0"] = e1(hy)vl; 1 <i < L.

Also by (R4)(4i) and (R2), we have
[fi, 0] = [fi, a1, an,0") =[a1,...,an, fi,v"] =0, 3<i<¥ and
[flafhvg-] = [flafl?alw"aa’navr] = [alw"aan?fhflavr] =0.

Thus it remains to prove [fa,v]] = 0 = [e;,v7] for 1 < ¢ < ¢. We show this,
using induction on |o|. Fix 1 < ¢ < £. Since V§ = V", (R2) implies that the

equalities hold for ¢ = 0. Next let o,7 € Z”, V), = [a1,...,a,,v"] for some
n € N and vl = [kji,v;] for some 1 < j < v such that [fa,v]] = 0 = [e;,v]].

We prove [f2,v7] = 0 = [e;,v]]. By Lemma 2.1, (2.20)(i) and (2.15)(iv), we
have

1
U: = [k‘.jivalv"'aanavr] = 5[(11,...70,n72kji7’0q
1 1
= §[a17'~'7an7k;t +h1i7jvvr] = §[k;t +h1i777v<77"]
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This together with (2.18)(¢), (2.15)(¢v) and the induction hypothesis implies
that

[f2.07] = 3[far k5 + hi; 05 = 3k + hi;, fa,05] =0,
le2,v7] = 3[ea, kf + hi;,v05] = 3[kF + hi;,e2,05] = 0.

Now let ¢ # 2. Using (R4)(i4) together with the induction hypothesis, we have
[es,v7] = e, kT, v [ki ei,v7] = 0. This completes the proof. O

T j70']

Now let 1 <r <m-—1and o € Z”. Proposition 2.3 guarantees the existence
of an isomorphism

(2.32) Yy ¥V — V. such that v; — v,.
Set 1, 1= 1f. Since ¥, (v1) = 0", (2.3) and (1.7)(¢) imply that
(2.33) v =r(v;); 1<i<20+41.

Also since V7 is isomorphic to V, (1.8) and (1.7)(4) together with Lemmas 1.2
and 1.3 imply that V] admits a weight space decomposition relative to H as
follows:
(2.34)

Vi= (VDo ® i (Vi)te, with

(Vo)o = C(vg)2e41, (V5)e, = Clvg)i, (Vg)-e; = C(vg)e4: where

for 1 <i<20+1, (v7);:=1"(v;) satisfies the following

(ve)1 = vy, (Vp)i = [fim1se ooy fr,v5] = [[fie1, -5 Al vp)s 2 <6 <
(Vp)2e41 = —5lfe,-- -, Jr,vg] = —3(f,v5] where f=1[fe,.... fi],
(0)eri = T fir- o fr (0] )2en]
{Vﬂhwwmﬂwﬁi=L

,_.

_ ==

4 [[fh"wfeaf]v Z;-] QSZS€
Next let x,z1,...,2, € G. Since 9] is a G—module isomorphism map-
ping vy to vl (see (2.32)), we have Y7 (z1 - 2y - v1) = [T1,. .., Tn, Y0 (v1)] =
[€1,...,Zn,v"]. Therefore [z1,...,2,,v"] = 0 if and only if 21 -- -z, - v1 = 0.

Also 1f 1 <i,j < 20+1 such that z-v; = vj, then [z, (v});] = (v});. In particular
for f =[fe,...,f1] € G, and 1 <4 < ¢, considering (1.7), we have
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6i, (V5 )i+1 il 1<j<t,
Nt g ) 200002 i=4 1< <4,
(’l) [f27(Ua)J]_ 2(5@1( )g j:2€+1
—0ig1j—e(V))eri L4+1<5 <20,
2.35 ’ o
2 [Fs fis fimrs oo for 1y 05] = 0, iFL 1< jAiI+1<L,
[fj7fi7fi+1a"'7ff lafé (U;>2[+1]_0 1<]7AZ—1<;€

(Z“) [f? [Cfé + C€€7 .f]; ] 0 (ZU) [CeEi + C.fawvg] = Oa { 7é 17

(v) le1, (v5)2e41] = 0.

(i)

Now we are interested in finding expressions for the weight spaces of V7
relative to the weight spaces of V. Fix 2 < i < £ and let (ay,...,a,) be the
norm-tuple of . Using (2.34) together with (2.23), Lemma 2.1, (2.24)(i4), (2.3)
and (2.22)(4i%), we have

(V;)Ez = (C[[fiflw"7f1]7a17"'aanavr]

=C|[fi—1,---, fi],mI +mi, ... mL +mé, v
=Clmi+mi,....mL+mi, [fic1,---, f1],v"]
=[mi+mi, ... omL+mi, (V)]
=[mi,...,mt, (V)]

and

V) e, =Cllfiy- -5 fo, flyar, - -y an, V"]

=Cl[fis-- fo, fl,mi —mi,...,mL —mi, "]
=Clmi—mi,...omL —mi [fi,..., fo, f],0"]
=[mi-—mi, ... omL—mi, (V")_.]
=[mi,....mi, (V") ]

Also using (2.34) and the second equality of the above expression together
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with Lemma 2.1, (2.20)(v), (R4)(i¢) and (2.3), we have

Vo)=er = [f1: Vo) —ea] = Clfr,my —mi, ..oy, —mi, [fo, oo foo f107]
=Clf1,m11,---sMin, [fo, s fo, [1,07]
=C(=D)"[f1,a1,- - an, [f2,-- -, fe, f],0"]
=Cla,...,an, f1,[f2; -, fo, [1,0"]

=lat,. .y an, (V' )—e]-
Summarizing our information, we have
(2.36)
VD)o, = a1,y an, V) ae,], V5 ae, =[mi,...omb, (V) ae,]; 2<i < L.
More generally, we have the following proposition:

Proposition 2.4. Letl1 <r<m-—1, a € &4 and o € Z¥ with norm-
tuple (a1,...,ay,). If {x1,...,2,} C H is such that a(x;) # 0, 1 < i < n.
Then (VD)o = [c1,-- -y Cn, (Vo] where ¢; (1 <i < n) is defined to be @f(azl) if
ai:kfforsomelgjgy. '

Proof.  Using (2.36) together with Lemma 2.1 and (2.19), we are done. [J

§2.3. One-dimensional G—submodules

Up to now, we have introduced some irreducible G—submodules of £ whose
highest weight is either a short root or a long root. Now we would like to
introduce a trivial G—submodule of £. We recall that f = [fs,..., f1] € G_¢,
and define

(2.37)  D:=spanc{Dy; = [[f,v;], [f,v5]] |1 <r,s <m—1, 0,7 € Z"}.

We claim that this subspace is a trivial G—submodule. To prove, we need some
lemmas.

Lemma 2.2. Letl <r <m-—1 ando € Z" with norm-tuple (ai,...,an,).
Then we have

(Z) Hf@afLU;] = Hfg,f]7(l17...,an7’l}r] = (%)n[mf’17"'7mf,n7 [ffafLUT]'

(”) He@afLU;] = HeéafLalw"?amvr] = (%)n[m&h'"?mf,m [eéaﬁﬂ)r}'
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Proof. (i) Using the first part of (2.23) together with (2.24)(i4), (2.20)(iv)
and Lemma 2.1, we have

[[f[?f]avz;] = [[f[af]aala”wamvr] = Hfbf]?m% —mf,...,mi _mfwvr]
:[m% _mga"'vm% _mfm[.f@?f]’vr]

= (;) [m“, <y My [fﬁa ﬂvvr}'

(#4) Using the second part of (2.23) together with (2.24)(éi), (2.20)(é4) and
Lemma 2.1, we have

[[efafLU;] = [[eg,fLah...,amvT] = Hebf]?mi —|—m§7...,m£ +mfwvr}
[

mi+my,...,my +my, e, f],0]

(%) [mf,la"wmf,na[e[af]avr]'

This completes the proof. (I

Lemma 2.3. Foro,7€Z” and1<r,s <m — 1, we have
(Z) [Uf-v [flaf]vv;] = [vz;-v [flaf]vvﬂ’

(”) [’U,‘; [efafLU;] = [U:n [efafLUf-]'

Proof. Let vl = [ai,,...,a;,v"] for some t € N. One knows that [[f¢, f],v"]
€ (V")_¢, and [[eg, f],v"] € (V")e,. So considering (2.3) and using (R7), Lemma
2.1 and (2.18)(i¢), we have

(a) [k, 0%, [fe, £1.07) = 220, 0%, [fe, £, 07],
(2.38) 1<j<w

(b) [k;[,vs, [ee, f],0"] = %[hzj,vs, [ee, f],07],

(¢) Let (ajy,...,a;,) be the norm-tuple of 7. We first use induction on |7|
to prove
(2.39)
[vf—a [fb f]a /UZ-} = (_1/2)t+n[m€,j1a BN L7 NS (LT PR 7m€,it7’vs7 [fb f]y’UT]-
Let |7| = 0, then the norm-tuple of 7 is (aj,,a;,) = (ki ,k{) and v: =

laj,,aj,,v°] = v°. We drew the attention of the reader to the point that by
(R7) and (R6), we have

2
<_71> [me gy s M gy, 0%, [fe, 1,07 = 08, [fe, f],07].
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This together with Lemma 2.2(4), (2.22)(4i) and Lemma 2.1 implies that

[vZ, [fe; 1, v5] = [v°, [fe, f1, vg]
= (71/2)t[m27i1,' . 'amf,imvsa [ff’f]avr]

= (_1/2)t+2[m5,j1 MCAPTUDATEREE 7mf,iuvsv [ffa f]v ,Ur].
So we have the first step of the induction. Next suppose v = [a;,,...,a;,, V"]
and v, = [k?ﬂ v2] for some 1 < j < v such that (2.39) holds. Then by the

Jacobi identity, Lemmas 2.2(7) and 2.1, (2.22)(iv), the induction hypothesis
and (2.38)(a), we have

[ /a[ff» ]a ]:[[ [ffa ] ] } []7 ‘r’[f[?f] }

t
(7) Hmf,iw"'ﬂm&it?k;‘ta[f[af]avr]avf—] [j’ o7, [fe, f1,v5]
:0+[kgi7 vy, [fe, f1,v5]

t+n
_) [me7j17"'7m€7jn7mé7i1"' My, k ]7 * [fes f1,07]

t+n+1
_ +
= <_) [h&jv T Gyy - o 3T Gy s TV s+« 5TV iy vsa [ff’ f]avr]'

This completes the induction. Now considering Lemma 2.1, we are done as by
(R7) we have [v°,[fo, f],v"] = 0 for r # s.

(#4) Using Lemma 2.2(47), (2.22)(vi) and (2.38)(b) in place of Lemma 2.2(¢),
(2.22)(iv) and (2.38)(a) respectively in the proof of part (¢), one concludes that

[U7s—7 [657 fL’UJ] (1/2)t+n[mf N IR N LT S L1 N PR 7m€,iuvs7 [627 .fL’UT}'
Now we are done, using (R7). O

Proposition 2.5. D is a trivial G—submodule of L.

Proof. Fixo,7 € Z" and 1 < r,s < m—1. Since G is generated by {e;, f; |
1 <@ < £}, it is enough to show [z, D75 = 0 for all w € {e;, fi | 1 < i < £},
One knows that

[f?f[*l]:[fzufe]:(h1§Z§£_2 and [fael]:0a2§2§‘€_1

Therefore for v € Z¥ and 1 < ¢t < m — 1, the Jacobi identity together with
(2.35)(4), (2.34), (2.35)(v),(it) and (2.31) implies that

[fg_l,f,’l),ty] = [f, fg_l,’l),ty] = Oa [elafa Vfty] C [ela (Vé)ﬂ] = O,
[f’u[f?v'ty]] = [fi7f€7"'7fl7viz] = [ffafhf@—la-'wflavi/] = 07 1 S 1 S €_2a
lei, f,vh] = [freivl] =0, 2<i< -1
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This together with the Jacobi identity implies that

[z, Dg3) = [z, [f, vgl, [, o3l = [Ifs vgl, [, [ w2 )] = [If, 03], [, [, vz ]]] = 0,

Now it remains to show [z, Dp5] = 0 for x € {ey, fr}. Let x € {es, fo}. Using
the Jacobi identity together with (2.31) and (2.35)(4),(#4%), we have

[z, Dg7] = [, [f, vol, [f, vzl = [[f val, [, [f, o2]]] = (I, o], [, [, vg ]
= [lf,vz), [l f1, 02]] = (1f; 07, [, f1, w5 ]
= [fv ’U;’ ["E’ f]v v‘is-] - [fv 'U‘zs-a [1'7 f},vﬂ

Now we are done, using Lemma 2.3. (]

§2.4. The relations between introduced G—submodules of £

As we promised we want to decompose L into a direct sum of irreducible
G—modules isomorphic to G, irreducible G—modules isomorphic to V and one
dimensional G—modules. For this, we need to know the relations between D
and the irreducible G—modules introduced in (2.7) and (2.30). We start with
the following proposition:

Proposition 2.6. Let 1 < r <m-—-1, 0 € Z" and o € ®. Then
[v",(Gs)a)] © (VE)ate, where if a+e1 & Pgp, U{0}, (VI)ate, s defined to be

ZEro.

Proof. Let (ai,...,a,) be the norm-tuple of 0. We first assume that o €
® \ {£e1,0}, then there exists h € H such that €1(h) = 0 and «(h) # 0. Then
Proposition 2.2 implies that (Gy)a = [c1,-..,Cn,Ga) Where ¢; (1 < i < n) is
defined to be gpji(h) ifa; = k]i for some 1 < j < . So by (2.21) and Propositions
2.3 and 2.4, we have

(2.40)

[’Urv (go')a]:[clv ey Cn,’UT,goJ g [Clv « 5 Cpy (Vr)a-‘rﬂ}:(vg)oé-‘rﬂ; « 7& Oa :‘:61.

Now let a = ¢7. Using (2.40), we have [v", (Gs)e,+e,] = 0. This together
with (2.10) and (2.35)(év) implies that

[UT7 (ga)€1] = C[UT7 f627€0] = (C[few v, eo] = [fswvra (g0)61+62] = 0.
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Next let @ = —&1. One knows from (2.40) that [v", (Gy)ey—e,] € (VI)e, which
together with (2.10), (2.35)(iv) and Proposition 2.3 implies that

[0, (Go)—e ] = [V, fes (Go)er—er] = [fers V"3 (Go)er—er] Clfery Vo)ea]l € (Vi)o-

Finally let « = 0. For 2 < ¢ < ¢, (R2) implies that [f;,v"] = 0 and (2.40)
implies that [V, (Gs)e, —en] = [V, (Go)a;] = 0 where {o; | 1 <4 < £} is the base
of ® introduced in §1. Therefore we have

[UT7 (g0)61—€2] =0 and [vra fiv (ga)ai] = [fi’vr’ (go')ai] =0, 2<i </

Using (2.11) together with the above equalities, the Jacobi identity, Remark
2(4), (2.35)(4), (2.22)(¢4¢) and Propositions 2.3 and 2.4, we have

L
[Ur7<g0)0]_[ f1’ go’ 51 €2 +Z fza go’ al
= ['Ur’flﬁ(gtf)m—éz] +

= (C[[UT7 fl]? [m%7 B m:w 61]] + [fla ,U’r’7 (gU)El—EQ]
=C[mi,...,m., [f1,v"],e1] +0 C C[mq,...,m.,v"] = (VI).,.
This completes the proof. O
Now consider the set {7 = (n},...,nl) | 1 <r < m — 1} of some repre-

sentatives of nonzero cosets of 27" in Z" stated at the beginning of the section.
We have the following proposition:

Proposition 2.7. Leto € Z" and1 <r,s <m—1. Then [v°, (V]),] =
Clo*, 03] = 0 and [0%, (Vi)a] © (Gotry e v for a € {0} Uy \ {61},

Proof. We first prove that for a € {0,¢, | 2 <t < £}, we have [v°, (V])a] C
(Gotr,)e1+a- Let 2 <t < ¢ and (ay,...,a,) be the norm-tuple of 0. Set

. d U =
j and KOAE <0 2.

or _ ) 5kiif nf 20 e JEiE R >01<j<v
skiif nf <0 J

Using (2.36) and (2.3), we have (VI)., = [m},...,m}, v}]. Therefore (2.22)(4)
together with (R7), (2.16) (if necessary) and Proposition 2.2 implies that

[v* (Vo)e.]

Cosr[mi,...,mb, (adat ™)™l (adat) ™ e 4o,

(241) ; (g0'+7'7«)61+€t'
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Next using (2.34) and (R2) together with (2.41) and Proposition 2.1, we have

[US’ (V;)O} = C[Usvff7 .. ~7f27.f17v(7;} = C[f@ .. '7f27087f1’1}g]
[f@v i ~7f27fUSv (V;)E’z}
[.ff7 .. '7f27 (g0-+7—7‘)€1+52]
(ga-&-n)al'

Finally for 2 <t < /¢, by (2.34), (R2), (2.42) and Proposition 2.1, we have

(2.42)

NN

%, (VD) _e,] = C?, fi, ..o, fo, [, 05 = Clft, ..., fe, v, f,v]]
= [fe,- - fov®, (Vo)
Cfer--s fo, (Gotr,)ei]
= (Gotr,)er—e,-
Now considering (2.34) and using Proposition 2.3, we have [ec,, (V] )2041] =

—vl. This together with (2.31) implies that [v®,0v]] = —[v°, ey, (V) 2041] =
—[eey, v*, (V] )2¢+1]. Therefore thanks to (2.42) and Proposition 2.1, we have

[Usv U;] = _[661 ) US? (U;)Qé-i-l] € _[6617 (g<7+7r)61] =0.
This completes the proof. (Il

Lemma 2.4. Leto€eZ” and1 <r,s <m—1. Then for 1 <i</{¢-—1,
we have

(Lfis fimrs s f1,0°)s [fins oo fo frg]]
= Zﬁ;gz+1)(7l)j+1[fi+ja .. '7flvvsafi+j+1a '7.flaf> U;]
+ (=D e f v fup] + (D00 [ vz ])

where for i = € — 1, YT (I [fig L f1 00, fagans .o fo foul] s
defined to be zero.

Proof. The proof will be carried out in steps:

(1) If1<j<e-—1,then [[fj,..., f,0°],[f,v5]] = [fs,.--, f1,0°%, fiul]
We show this, using induction on j. Let j = 1, then by the Jacobi identity,
(2.34) and (2.35)(i), we have

[[f1,118},[f,112”:[fl,vs,[f,’t};“ - [Us7f17[fﬁvg”
= [f17vs7 [f?U(TrH + 2[1}5’-}(17 (02)244“1“ = [flﬂvsafavfrr]'
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Now let the equality hold for 1 < j < ¢ — 2. Using (2.34) and (2.35)(i7), we
have [fj+1, [f, v5]] = 0. This together with the Jacobi identity and the induction
hypothesis implies that

[[fj+17 ey fl,US], [f7 U;H = [fj+17 [f]7 ey fl,US], [f7 U;H
= [fj-‘rlv.fja"'7f17vsafavg']'

This completes the induction.

(2) If1 < J <i < 4- 27 then [[fja'”vfl:USL [fi+27'~'7f€7f7vz;” =
[fir s J1,0°, fixa, ..o, fe, f,0L] © We use induction on j. Let j =1 and 1 <
i < ¢—2. We first mention that by (2.34) and (2.35) (i), [f1, fi+2,- -, fe, [, 00]
€ C[f1, fi+2,- -+ fo, (W5)2e41] = 0 which together with the Jacobi identity im-
plies that

Hflavs]7 [fi+27 o 7fZa f’ UZ;H = [f17vs7f7i+27 cee 7ff7f7vz;] -0
= [f17vs7fi+27 cee 7f€7f7vg']'
Next suppose that £ > 4 and 1 < j < £—3 is such that the equality holds for j <
i < £ —2. We show that the equality holds for j+1 <i</—2. Let j+1<i <
¢—2. Since j+1 <4, (2.34) and (2.35)(4¢) imply that [fj+1, fixe,-- -, fe, f,00] €
Clfj+1, fixa,- -+, fe, (v2)2041] = 0. This together with the Jacobi identity and
the induction hypothesis implies that

([fiets fiseoo f10°] [figas s fo, frvg]]
= [fj—i—l»[fja"'afl,vs}a [fi+27"'7ff,f7vg]] -0
= [fj+l7fj7'"7f1avs7fi+27'"7f£af’vg]'

This completes the induction.
(3) Tt follows, using induction on n = ¢ — ¢ by considering steps (1) and
(2), that the equality stated in the lemma holds. O

Proposition 2.8. Leto € Z" and1 <r,s <m—1. Then [v°,(V})_.,] C
Gotr. + D (see (2.37)).

Proof. By (2.34), we get (V2)_., = Clf1, fa,---, fe, f,v5]. Now using the
Jacobi identity and Lemma 2.4, we have

[’Us7f1af2a"'af€7f7 o’]:[f17 7f27"'7f€af7vg'] - [[f17vs]7f2a"'af€7f7vg]

-1

1+1 fzafz 17'"7flavsafi+17"'7f[afﬂvg']

:1

(=D (=Lfes - 0% frop) + [[f,0°) [, 0 ]])

+
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which together with Propositions 2.7 and 2.1 completes the proof as by (2.34),
we have [f,vl] € (VD)o and [fiz1,..., fo, fyvl] € VD) —ey,, for 1 <i<(—1.0

Proposition 2.9. (i) Let 0 € Z¥ and 1<s<m—1. Then [, (V%)o] =0.
(i) 10, 255 ez V3] € 05 Toene Vs

Proof. (i) By (2.34), it is enough to show [h;, f,v5] =0 forall 1 <i < ¢
and 1 <j<v. Fix1<i</¢ 1<j<wvandlet (a,...,a,) be the norm-tuple
of 0. If i # 1, then by the Jacobi identity, (2.15)(4i7), (2.21), Lemma 2.1 and
(2.22)(it), we have
f1, 08 = [f, a1, ..., an, A 0] +0 = 0.

s Yo INE

[hiimfvvi] =[f, hi 03] + [[hi

1,j7 70 4,57

Now let i = 1. Then (2.34) together with (2.21), (2.36), (2.3), (2.22)(iii),
Lemma 2.1 and (2.22)(vii) implies that

[hli,jv f7 Uzsf] = [hfﬁ f@? (’Ug)f]
= [fe, hij» (05)i]
e Clfe, hfj,m% +mt, . mb+m )]

=Clf,mi +mi,...,m; +m{, b [feo1,-. ., fi], 0] = 0.

(#7) By part (i), it is enough to show [f),Z;n:_ll Yoz Zﬁeésh(V;)ﬁ] -
S S e VEFix1<i<l1<j<py,1<r<m-1,7€Z" and § € Oy,
Let (ai,...,a,) be the norm-tuple of 7, then by Proposition 2.4, there exists a
subset {c,}'—; C b so that (VI)g = [c1,...,¢n, (V")g]. So Proposition 2.4 to-
gether with (possibly)(2.16) implies that [hfj, V)l = [hfj, 15,6, (V)] C
S S ez V5. This completes the proof. O

Lemma 2.5.  Consider (2.37), we have the following:
(i) [0'D] C P S e VE for1 <t <m—1.
(i) [h,D] = 0.

Proof. (i) Let 1 < r,s < m —1and 0,7 € Z'. We show [v', D}5] C
Zl:_ll > ezv Vi Note that by (2.11) and Proposition 2.2, G-, is generated
by {e;, fi | 1 < i < £} Ub. Now using the Jacobi identity, (2.34), Propositions
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2.7, 2.1, 2.9(i%) and 2.3, we have

[v', Dy3) = —[[f, 03], 0%, [f, 5] + [[f, ), 0" [f, 03]
—[f 5,08 [ ogl] + [v3, fo 0%, [f,07]]
+fvg, 0 [foop]] = g fo0t [ f, 03]
€ [f,v5, (Gorr e ] + (075 (Gotr, o]

+[f, 05, (Grir)ed] + [V, (Grar, o]

3 D71 RS 3 DECTD 9 Dht

k=1 oe€Z¥ k=1 oceZ” k=1 oce€Z¥

(ii) Let 1 <r,s <m —1and 0,7 € Z". We need to prove [h, D3] = 0.
Using the Jacobi identity together with (2.34) and Proposition 2.9(i), we get

b, DZ5] = [1f,v5], 0, [f, 020 = ([ 071, b, [f, 07 ]
C [, vl b, V7)ol = [1F 071, b, (V)] = 0.

This completes the proof. O

§2.5. Some central elements
In this subsection, we are interested to know about the center of L. Set
(243) z = Spanc{[hi,m hi,T] | o, T € Zua 1<:< Z}

We claim that Z is contained in the center of £. To prove, we need some
lemmas:

Lemma 2.6.  Consider (2.12) and (2.15). For 1 <i</{ 1< j<wv
and o € 7V, we have

(4) [eft+1,j7hi,0] = [ei+17<77h§£j] and [f'H»l,]’ hiol = [fit1,00 ”]a i £,
(44) [ei—l,jahi,a] = [ei—l,mhi,ﬂ and [fz 1Jvh1 o) = [fi-1,0 ”] i # 1.

Proof. Let (ai,...,a,) be the norm-tuple of o.

(1) Using Remark 2(7), (2.24)(#4),(7), Lemma 2.1, (2.18)(vi¢) and (2.21),
we have
[hil’jvei-‘rla €] = [mi, e mi“ hii+1 g7 €it1, €]

[m?b m Hz]’el-‘rhei]lgigg_Q
0 i=0—1.
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Also Remark 2(i) together with Lemma 2.1, (2.18)(4i7) and (2.24)(47),(¢) im-
plies that

+ j +
[eiv1, hifir j» o) = [ein1, Mmooy, B s el
B —leix1,mb, ..., mé Hfj, i) 1<i<e-2
= -1 -
—lee,my ... Z 1 QHZ 1],64_1] 1=0—1
B —[mi,...,mi H”,e“rl,el] 1<i<0 -2
= 01 .
—m{ L mit 2He lj,eg,eg_l] 1=0—1.

Now the second equality in (2.13)(i%), the Jacobi identity and (2.13)(iéi) to-
gether with the above equalities, Lemma 2.1, (2.24)(4i7),(7), (i), (2.18)(vi) and
Remark 2(7) imply

[ez:‘t+1,j’ hiol==[fi, eiw, €io) — [[ez‘iﬂ,j» fil, ei o]
= (1/2)[fs; leis, bty ) €i] =0
= (1/2)[fi, eit1, ﬁm,ei o) = (1/2)[fi, i1 j €141, €00]
—[fiymi,...,m! H”,e“rl,el]
=—[fi,m} +miT o om - mith HjE +H+lj,ez+1,el]
—[mi 4 mit L ml 4 mit Hi +HZ+1j,fl,el+1,el]

1 1 +
=[mi +mit o ml 4 mitt H; +H+1j,€z+1]

[mll—H, e 7m;+1,H£1’j,€i+1}
= 7[ H—la s 7m:7,+1 h?:ja ei—l—l]
[h;t]a 7I+17 (R 7ml+ el-‘rl] [ei-‘rLo'y hiz]]

For the second statement use the same argument as above by replacing the first
equality stated in (2.13)(i4) by the second one and Remark 2(ii) by Remark
2(4).

(74) Using Remark 2(7), (2.24)(#44),(4),(i7), Lemma 2.1 and (2.18)(viii), we
have

+ i
hi—y jsei- Lmis . omb e

+ i—1 i i—1
hi-q ez 1,m1—|—m1 yee,my, +my,

[hzi—l,jv €i-1,€i0) =|
[ 1,5 ﬂei]
=[mi +m mi +mi-LhE | e i)

1 sy My n o115, 6i—1,6i
[mi 17" miz_17Hii_17jaeiflaei]~

Also Remark 2(i) together with Lemma 2.1, (2.18)(iv) and (2.24)(#4i),(¢),(i%)
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implies that

[61—1,hii,1,j,€i,a]:[61—1,mi,-~ mt, hlilj,e]
—lei_1,mi, ..., m} HZjEJ7 il
—lei1,mt +miTh o mE mi? Hi —|—Hi1j, il
[ml—i-ml1 Lo mb +mit Hi +HE 10 €15 €i]
—[mit L mis 1,Hii_17j,ei_1,ei}.

Now the second equality in (2.13)(ii), the Jacobi identity and (2.13)(iii) to-
gether with the above equalities, (2.24)(4i7),(7), (2.18)(i1%) and Remark 2(7)

imply
[eii—l,j’ hiol = —[fi, eii—ldﬁ €io] — [[ezi_Lja fils €io]

= (1/2)[fi, [ei—1, hi=y ;) 0] — O
— (12 [fos eim1, Wy ei0] — (/2o hE s eimrs i

=—[fi ifl,...,m;_l,Hilmei,hei]
=i HE G fis e el

_{mﬁl,“,11zﬂlwqﬂ]i¢e

T 2T m lHe Ljee—1]i=1L
—[mi 1,...,mjfl,hi)j,ei_1]
[hzij, L mi e ] = [ei_l)g,hfj].

For the last statement, use Remark 2(i¢) and the first equality in (2.13)(é¢) in
place of Remark 2(ii) and the second equality in (2.13)(ii) respectively and
repeat the same argument as above. O

Lemma 2.7. Forr,0 € Z” and 1 <i < /¥, we have
[ei;(f’ 61')-,—] =0= [fi,aa fi,'r]-

Proof. 'We use induction on |o|. If || = 0, then by (2.13)(i), we have
[€io,€ir] = 0 for all 7 € Z". Next assume [e; »,€;,] = 0 for all 0,7 € Z"
with |o] = t. We show [e; 0/, €;-] = 0 for all o/,7 € Z" with |0/| = ¢t + 1. Fix
o' € ZV with |o’| =t + 1. Then there exists 1 < j < v such that ¢/ = o + aj-t
(see (2.14)) for some o € Z” with |o| = t. So by Lemma 2.1, e, = [iji,eg].
Now let 7 € Z¥ with norm-tuple (ai,...,a,), then by Lemma 2.1 and (2.16),

we have [H”,H”,ei] = e;. So using Remark 2(7) and Lemma 2.1, we have
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il = [Hfj,ew] and [ fj,el -] = eir where 77 = 7+ 0 . Now the Jacobi
identity together with the induction hypothesis implies that

€iosCir| = i3 €]y Ci,r] = i3 €i0,Ci 7| — [€i,0,€Cir'| = U
[ ] = [[H, il eir] = [H =1 ]=0
The second equality is similarly proved. O

Lemma 2.8. Forr,0 €Z” and 1 <1i </{, we have

(Z) [ei,aa hi,r] = *[hi,oa ei,‘r}a (“) [fi,cﬂ hi,T} = *[hi,aa fi,7]~

Proof. (i) Using (2.13)(i¢), the Jacobi identity and Lemma 2.7, we get

[ei,cn hi,‘l’] = _[ei,oa [fi7 ei,T]] = [fi7 €i,rs ei,a] - [ei,’ra fi7 ei,o] = _[hi,(n ei,’T]'
The second statement is similarly proved. |
Lemma 2.9. Fort E 7Z¥, 1< j <vandl<i</{, wehavef; -, efj] =
[Hzi], hi ) — h; = where T T+o ( ee (2.12)).

Proof. Using Remark 2(4), the Jacobi identity, (2.13)(i), Remark 2(i7)
and possibly Lemma 2.1 and (2.16), we have

[fz T 13] [ 1],.](.1 Taez] - H Zja fz ‘r] 62] = 7[Hi:f:j»hi,r} + [fi,riaei]
+
_[Hi’j7 hi,'r} - hi,7i~
This completes the proof. O

Proposition 2.10. 2 = spanc{|hic,hi-| | 0,7 € Z",1 < i < {} C
Z(L). In particular Z is a trivial G—submodule of L.

Proof. We first prove that [hzij7 hiol€Z(L)for1<i<{¢ 1<j<vand

o € Z¥. Since L is generated by (2.1), 1t is enough to show that this generating

set is contained in the centralizer of [h [ his] in £. We start by proving that

7,77
(A, [hj;,h s = [fr,[hf],h s = [er,[hfj,hi,g]] =0 for 1 < r < ¢ Since
h, = [erafr]v it is enough to prove [fra [hi,jahi,aﬂ = [er» [h;{:j»hi,o'” = 0. Also

since the proofs of these equalities are similar, we just prove the first equality.
By the Jacobi identity, (2.13)(iv),(i#¢) and (2.15)(7), we have

ler, hiEi o) = (W, €r, hio] + [ler, hiE) hio)
_ [ on(ha) o (hy) 4
= hi,j’ 9 erjhr,g -+ 9 [er,hr7j],hi7o

= —ay(hi) ([l ero] + €5 hio)-
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Now we are done, using Lemmas 2.8 and 2.6 together with the fact that
ar(hi)=0forr#idi—1,i+1.
Next we want to prove that [hf)a,hfj, io] = 0forall 1 <a < v and

1 < r < {. By Lemma 2.1, Remark 2(ii), (2.13)(i7) and the first part of the
proof, we have

(Wt hE. hi,) = [hE, hE

ra’ Vi, 0 o i,j0 rar

hi,a] Gc[hi hi hi,o]

4,77 'Yi,a0

=C[hi,, hi;, hiol

i,a°'%,50 0,0

=Cles, [f75, b hiol] — Clf,, lei, hif;, hio]]

i,a’ 7,50 7

= C[Ei, [ = hi i,a” -0

i,a 'V,50

= C[6i7 [ » H;tp hi,o‘H7

i,a’
s + + ) _ + ._ + .
so it is enough to show [f7, H; ", hi,| = 0. Set 7= := o + o . Using Lemma

2.9, the Jacobi identity, Lemmas 2.8(¢) and 2.7, Remark 2(i¢), Lemma 2.1,
(2.18)(iz) and (2.16) (if necessary), we have

i Higo hiol = = 1fis [fios eil) = [fias o]

= [[fi:,ta’efjhfi,o'] - [eijfi,ow fa] + [hfuﬂfi,‘ri]

(2.44)
= [[fi,iaa ij], fi,U} +0+ 2[Hi%a7 fi,Ti}
= [[fi,iaaefj]afi,tf} - 2[Hi%a7Hii,jvfi,0]'
Now let (ai,...,a,) be the norm-tuple of o. It follows using induction on n

together with (R9) that
Hfi:f:a’ ezz'lij]v *miv AR 7miu fl] = [7mli’ et 7miw [fi:,ta’ez:‘l,:j}’ fl]

This together with Remark 2(i¢), the Jacobi identity, (2.13)(4),(i7), Lemma 2.1,
(2.15)(4i4) and (2.18)(iz) implies that
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[[fi%a,efj],fi,a}:[fmi,. o Uit €], fil
=[-m,. o Fias€igs il = [=mi, o —mi el i, £
=[=mi, ..., —mi, [ b
=[=mi,...,—mi, [=H,, fil,h}]
=[-mt, ..., —m} hf],Hli,fZ]
=[-mi,...,—ml, H},, b}, fi]
=2(-mi,...,—mj, H,, HY, fi
ZQ[Hmefyfi,a]

which together with (2.44) gives [, H, hi,] = 0.

2,a0 71,50

Finally, we prove that [v" hE. hio] =0for 1 <r < m-—1. We first suppose

s 14,90

i = 1. Using (2.13)(24), Remark 2(4), (2.35)(7), (2.22)(v) and (2.35)(v), we have

(2.45) (03011, o] = = (050405 f1, m}7 co,mlie] =0,

+
[Ugl-&-l? hl,j] [v2£+1’ S, H 1 FE el] =0.

One knows that ¢, (see (2.32)) is a G—module isomorphism mapping v; to v"
and vay1 to vh,, . Since ec,.vapy1 = —v1, we have v" = —[e.,,v5,,;]. Now the
Jacobi identity together with (2.45) and the first part of the proof implies that

[v" hliyhl#f] = —[651,11544_1, 1]7h1 o] + [U5€+17661’h1 g?hl ol =

Next let i # 1. Using the Jacobi identity together with (2.13)(i¢), Remark
2(4), (2.31) and (2.22)(4), we have

[hih] (", il hio] + [hiy 0" B o]

VR VAL i,
=", [fise ”H i = (B0, fis i)
(v, [fi Hi5 e ]]h o] = (B v", fimi, . myei]
—[0,his]) — 0 =0.

So up to now, we have proved [h”, his] € Z(L). This together with Remark

2(#4i) implies that

(2.46)  [hi; hio] € ClhT

P iol CZ(L); 1<it<{, 1<j<v, ocelZ".

lj7

Next let 1 < ¢ < ¢ and 0,7 € Z”. Using the same argument as in Lemma
2.6 by replacing Lemma 2.1 by (2.46), one gets
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(2.47)

[€it1,7 hio) = [€it1,0,Pir) and  [fiz17, hio] = [fit1,09 ”} i F L,
[ei—l,Ta hi,a} = [ei—1,0'7 hi,T] and [fi—l,Ta hi,a] [fz 1,051 T] 7& 1.

Now we are ready to prove [h; o, hi ] € Z(L) for o,7 € Z¥ and 1 < i < {.
As before it is enough to show that the generating set (2.1) is contained in the
centralizer of [h; s, hi .| in L. Use the same argument as above by replacing
(2.47) and (2.46) by Lemmas 2.6 and 2.1 respectively to conclude

[hm [hi,a7hi,'r“ = [era [hz o z ]] [fra[ 1,09 14 TH = [Us’ [hi,o"hiﬂ']] =0
1<r</{, 1<s<m-—1.

So it remains to show [hti’j, [hig,hir]] =0for 1 <t <{and 1< j<w. Using
the Jacobi identity together with (2.46), we have

[hgtj7 [hiﬂ'a hi,T]] = [hi,o'7 [hti’j7 hi,TH [[h?i]’ h } hi,T] = 0
This completes the proof. O

§2.6. The proof of the main theorem

Using the information in the previous subsections, we can decompose L
into irreducible G—modules. In fact we have the following theorem:

Theorem 2.2.  Considering (2.37) and (2.43), we have

m—1
L= G, +> > Vi+D+Z.

oEeZ” r=1 ocez”

Proof. Since L is generated by (2.1), it is enough to show that the right
hand side of the equality in the statement is an ideal of £ consisting of the
generators. Using (2.15)(¢4¢), we have hjE €g, + C > pepy Go for 1 <i <4
and 1 <j <w. Alsoweknow{e“f“h \1<2<£}Cgandfor1<s<m—1
vi eV C Y, Zaezv VI. Therefore we need to show that the right hand
side of the equahty is preserved under (left) multiplication by the generators.
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Let c € 2", 1 <i<fand 1 < j < v. Using (2.11) together with (2.46) and
Corollary 2.1, we have

(7t Gol = (i (Go)ol +

Wi D (go)a]

aced X

hii,jv Z (ga)o;|

aced X

=C

¢
+
Wi D heo
t=1

CZ+ Y G-

TELY

Using this together with Lemma 2.5 and Propositions 2.1, 2.3, 2.5, 2.10, 2.6,
2.7, 2.8 and 2.9, we are done. O

Proposition 2.11. L is a By—graded Lie algebra.

Proof. We know that the finite dimensional simple Lie algebra G is a
subalgebra of L. Also Theorem 2.2 shows that £ admits a weight space decom-
position £ = P4 Lo relative to H as follows:

(2.48)

Lo=Y e (Go)o+ S S e (VD)o + D+ Z (see (2.37) and (2.43)),
Lic;=Yoene(Go)te, + 05 Toene (Vi)2er, 1 <P <L

Liteite)) = 2wezr (Go)t(eite,), 1 <i<j< L

So it remains to prove Lo = Z [LosL_0] Fix 1 <i,t<l,1<rs<m-1

aedx
and 0,7 € Z". Using (2.48) together with (2.11) and (2.34), we have

(G5)0 € Xt 1[G—a1s (Go)a] € Xy i[Loass Las) © X pcax [Las Loal,
(Vg)o = C[ﬁ Ug} = [g—Eu (V;)&] - [£—81 ’ [’81] - Zae<1>>< [‘COH [’—Oé]-

Alsosince f € L_., and v}, vE € L., we have [f,vE] € Lo, [f, f,vi] € L_¢,

o) Ut

and [v7, [f,vZ]] € Le,. Therefore the Jacobi identity implies that
Dy = [f.oh, [f 3]l = g, £y [f0g)) € [Ley, £c] € Y [Lay Lol
acgdx

Finally by (2.48), we have e; € Go, C La,, hir € (Gr)o € Lo and f;, €
(Go)—as € L0, 80 [fio, hir] € L_g, and [e;, h; ;] € Lq,. Therefore the Jacobi



38 MALIHE YOUSOFZADEH

identity together with (2.13)(¢4) implies that

(hisos hir) = [[€is fi,o], hir) = [€i, fi,or Pir] — [fisos €05 P 7]
€ [Ea,i?ﬁ*ai] g Z [£a7£7a]'

acdX

This completes the proof. O

Lemma 2.10.  The center of L is contained in Z + D.

Proof. Let 2 € 5 Goy y € Som' S cpw Vi, d € D and z € Z such
that x + y+d+ z € Z(L). Then for a € G, Propositions 2.5 and 2.10 together
with Propositions 2.1 and 2.3 imply that

m—1
O=la,z+y+d+z]=laz]+[a,y] € Z Go + Z Z V.
lA<V/d r=1 ocez”
Therefore [a, 2] = [a,y] = 0 for all a € G and so = y = 0. This completes the
proof. O

Theorem 2.2 together with Lemma 2.10 allows us to identify

m—1
L/Z(L)=> Go+ Y > Vi+D where D' =(2+D)/Z(L).
o€z r=1 geZ¥
It follows from Proposition 2.11 that £/Z(L) with induced Lie bracket [-, ]~ is
a centerless By—graded Lie algebra. So £/Z(L) admits an induced weight space
decomposition relative to H as L/Z(L) = @, cp(L/Z(L))a. We shall keep the
same notation for the images of e;, f;, hi, h¥. and v in L/Z(L). Using (1.16)

0.
together with (2.5), we have an epimorphism

W L/Z(E) — A/Z@) = (GO AT (VO AT © Dy g,

such that for 1 <i </, 1<j<wvand1l<r<m—1we have

ei—e @1, fim fi®l, hi—h®1, hi:j’_)hi(@t;tla v — U1 @ Wy

Now let a, B,a+ 0 € X, v,a+y € Dy, o,7€ZY and 1 <r<m-—1. 1t
follows using Propositions 2.2, 2.4, (2.3) and (1.10) that ¢¥'((Gs)a) = Ga @ t°
and ¥’ ((V2)y) = Vy ® t°w,. Therefore by (1.10), we have

V((Go)ar (G)517) = [(Go)a), ¥/ (G:)5)] = Gy © 17 and
w/([(ga)m (V:)V]_) = [¢l((go)a)7¢l((v~:)w)] =Vaiy @ ot T,
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This implies that

[(ga)ou (gf)ﬁ]_ #0 and [(ga)av (V:)V]_ #0

2.49
( ) if a,0,a4+p€®*, yya+y€ b, o,7€Z”, 1 <r<m-—1.

Next we want to define a Z¥—grading on £. We recall that {r,. = (n7,...,n}) |
1 <r <m—1}is a set of some representatives of nonzero cosets of 2Z" in
7. We now define a Z"—grading on the free Lie algebra generated by (2.1) as
follows:

deg(e;) = deg(f;) = deg(h;) =0, degv” = 7., deg(hfj) =207,

(2.50) , . /
1<i<l,1<j<vy,1<r<m-1.

Since relations (R1)—(R9) are generated by homogenous elements, (2.50) de-
fines a Z¥—grading on £ and so £/Z(L) has a natural Z”—grading £L/Z(L) =
D,z (L/Z(L))7. Now set

(L)Z(L)T = (L) Z(L)a N (L/Z(L)); acd, ocl”.

One can use Propositions 2.2 and 2.4 to conclude that V7 C (L£/Z(L))*+™
and G, C (£/Z(L))? for o € Z* and 1 < r < m— 1. Therefore (2.48) together

with Lemma 2.10 implies that
(L/Z(£)27 = (Go)a and  (L/Z(LNFH™ = (V5)s

(2.51)

aed*, fed,y,, 0ceZ, 1<r<m-—1,
and so
(2.52) (L/Z(L)a =Y (L/Z(L); ac®”.

oELY

Since L/Z(L) is a centerless By—graded Lie algebra, Theorem 1.1 guaran-
tees the existence of a unital commutative associative algebra A, an A—module
B and a symmetric A—bilinear form ¢’ : B x B — A such that

(2.53)  L£/Z(L) =T(Cliff(v)/C, Cliff(¢")/A) = (G A)® (V@ B) ® Dp 5

in which G = G®1 and the Lie bracket on £/Z(L) is given by (1.10). It is easy
to check that

ga®A ae(ﬁlg

(2.54) (L/Z(L))a = {(ga R A)+ (Vo @ B) a € Dygp,.

Now let o € ®;5 and o € Z¥. We know that dim(G,)s = dim(G,) = 1. So by
(2.51) and (2.54), we can find a one-dimensional subspace A2 of A such that
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(L/Z(L£)% = (Go)a = Ga ® A%7. Next let a, 8 € @, be such that o — 3 € &,
then since ¢, : G — G,; is a G—module isomorphism, (1.10) and Lemma 2.10
imply that

ga ® Aia = @a([ga—ﬁa gﬁ]) == [ga—ﬁv Qpa’(gﬁ)] - [ga—ﬁa (ga)ﬁ]

= [Ga-p:(Go)s]~
=[Ga—p,G8 ® AY]™
— ga ® 1420'7

so A2 = A% . Using [AG, (5.11)], we get A27 = A% for all a,3 € By and
o €Z”. Set

A?? := A% for o € Z¥ and any choice of a € ®,,.
Then we have
(2.55) (L)Z(L)% = (Go)a =Ga ® A%7; 0 €L, a € By,

Now let o € &g and consider § € ®;4 such that o — 8 € &, then for all
o € ZY, by (2.51), Lemma 2.10, (2.55) and (1.10), we have

(L£/2(£))27 = ¢5([Ga-5.G5]) = [Gap. o (95)] = [Ga—p, (G5
=[Ga-p,(9o)s]"
=[Ga—p,Gs ® A*]”
_ ga ® AQO'.
This together with (2.51) and (2.55) implies that
(2.56) (L/Z(L£)2 = (Go)a =Ga @ A¥; 0 € 7V, a € ®*.

Nextlet 1 <r<m-—1, a € &g, and o € Z¥. Since dimV,, = dim(V?:), =
1, (2.51) and (2.54) imply that there exists a one-dimensional subspace B2+
of B such that (£/Z(L£))2°F7 = (VI)y = Va®B2°T™ If 0 € Z¥ and o, B € g,
such that a — 8 € ®*, then considering (2.32), (2.34), Lemma 2.10 and (1.10),
we have

Vo @ BXHT =90 (Ga—p - V5) = [Gap, by (Vo) = [Ga—p, Y5 (Vs)]~
=[Ga—p, Vs © By ]
=Ga—p- V3 ® BZ(H_TT'
=V, ® By,
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which implies that B37™ = BgaJrTr. Use [AG, (5.11)] to conclude B2+ =
Bé"*” for all o, 8 € ®gp, and define

B2t .= Bi”'”?‘ for 1<r<m-—1, 0 € Z" and any choice of a € ®,.

Therefore by (2.51), we have

(2.57)
(L/Z(L)2HTT = (V) =Va@B* ™ 0 €7V, 1<r<m—1, a € Dy,

Since G ® A =@,z Go and V& B = P, @aezy ", (2.54) together with
(2.52), (2.56) and (2.57) implies that

A= @JGZV A2U and B = @aGZV @m ! BzU-H—T

with one-dimensional summands.

(2.58)

Now let 0,7 € Z¥ and 1 < r < m—1, then for o, 8 € ®* such that a+ 5 € &>,
(2.49), (2.56) and (1.10) imply that

0% 2, o1 € (afy 23 = G 0 42007
()2 (F)F)™ = [Ga © A2, Gy © A7) = Gayy @ A7 - A%

and for o € ®;, and B € ®,p, such that a + 8 € gy, (2.49), (2.57) and (1.10)
imply that

0# [(Zz)a ,(zﬁ:))?f”ﬂ‘ c (Z'(CA))ZT%QTHT =Votp @ B2

[( )(21 , ( )27—"1‘7—7‘] [ga ® A2(r7 Vﬁ ® B2T+T7-]_:Va+ﬂ ® A20 . 27+
Therefore the one-dimensionality of the summands in (2.58) gives that

(Z) A20' . AQT — A20'+27'; o,T € Zl/7
(2.59)
(ii) A% . B2 47 = BAo+T+T g s e 7V 1 <7 <m— 1.

Using [BGKN, Lemma 1.8] together with (2.58) and (2.59)(¢), we conclude
that A is graded isomorphic to A[,j. So A is a unital commutative assomatlve
algebra generated by a generating set {xfl | 1 <j < v} satistying z;x j =1
Let 1 < j < v and consider (2.14), then by (2.56) and Proposition 2.1, we have
w?(eg) € gp}'(gg) = (go_j)g =Gy ® A% and <pj_(f9) € G_y ® A% . Therefore

there exist n;, m; € C such that gpj(eg) =njeg®@x; and @, (fo) = m;fo ®m;1.
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Using (1.10) together with (2.10), the Jacobi identity, (2.16), (2.15)(iv), (2.2)
and (R3)(¢), we have

ngmihe = [njeq © wj,m;fo © 25 = [} (ea), 5 (fo)]~
= Sl (h)sco, o5 ()l = 3 le0r 07 (ho), 05 (fo)]™

= Sl (o), o5 ()] + oo, o5 (o), 05 (o), fol
=0+ [eg, fo]~ = he.

Therefore njm; = 1 and so we may identify A with A, via tjﬂ = n;tlxjﬂ.
Thus it follows using (2.15)(iv) and (1.10) that kji = hy ®tjﬂ. Nowlet 1 <i</¢
and 1 < j < v. Using (2.56), we have @f(ei) € (gaji)ai =Gq, ® (Ctjil, so there
exists s; € C such that apf (e;) = si€; ®t;:1. Therefore by (2.15)(4i7) and (2.10),
we have

hi; = o5 (hi) = o7 (e:), fi] = sihi @ 5.

Thus by (2.2), we have

-1 -1
<h1 +Z2ht+h5> @t =hy @t =kF = hf, + > b + hE
t=1

t=1
£—1
= <51h1 + Z2Stht + 8[h£> ® tjil,
t=1

which implies that s; = 1 for 1 <t < {. Therefore we have
(2.60) hiy=hoti1<i<t1<j<w
This together with (R7), (1.10) and Lemma 2.10 implies that
(2.61) [V, 03] = 0rs€eiqe, @t 1 <7, s <m—1.

Now let 1 <7 <m — 1. Use (2.57) and fix a choice of 0 # 3, € B™ such that
v =010, € (V])e,- Then (2.58) and (2.59) imply that B is a free A—module
with basis {81, ..., 8m—1}. Therefore we may assume B = A[YZ]_l and identify
B; with w; for 1 <i <m — 1 where {w; | 1 <4 <m — 1} is the standard basis
for A[mu]_1 over Ap,). Thus (2.3) together with Lemma 2.10 and (1.10) implies
that

U;:Uj(g)wT; ISTSTTL—L 1§j§2£+1

Also by (2.53), we have

L£/Z(L) = T(Cliff(u) /C, Cliff(¢') /Ap))-
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Therefore (2.61) together with (1.10) and (1.9) gives that

67“736614-62 Rt = [UT7U§]_ = [Ul & Wy, V2 ®ws]_ = dUl,’“z ®g/(wrvws)

= €ei+eo & g/(wra ws)a
for 1 <r,s<m-—1,s0 ¢ (wy,ws) = st™, i.e. ¢ =g (see (1.15)), therefore
(2.62) L/Z(L) =T(Cliff(u)/C, Cliff(g)/Ap)).

Now we are ready to prove our main theorem which states that £ is the
universal covering algebra of T'(Cliff(u)/C, Cliff(g)/A,).

Proof of Theorem 2.1.  Let m : L — L/Z(L) and w5 : A — A/Z(A)
be the natural canonical maps. Considering (2.5), (2.60) and using Lemma
2.10, we have mo1) = 1. Therefore ¥ : L — 2 is an epimorphism whose kernel
is a subset of Z(L). So L is a central extension of 2. But 2 is the universal
covering algebra of T'(Cliff(u)/C, Cliff(g)/A,)) and L is perfect (Proposition
2.11), therefore by [MP, Proposition 1.9.3], £ = 2. O

Remark 3. In what we did, we constructed a finite presentation of the
universal covering algebra of a Lie torus of type B, whose corresponding pair
is (5,2Z%) with S # 27ZY. The same proofs as in the text shows that the
finitely presented Lie algebra generated by {e;, fi, hi, hfj [1<i<,1<5<
v} subject to the relations (R1), (R3), (R4), (R6)(7), (R8) and (R9) is the
universal covering algebra of a Lie torus of type B, whose corresponding pair
is (22" ,277).
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