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Notes on Microstate Free Entropy
of Projections

By

Fumio Hiai1,2,∗ and Yoshimichi Ueda1,3,∗∗

Abstract

We study the microstate free entropy χproj(p1, . . . , pn) of projections, and estab-
lish its basic properties similar to the self-adjoint variable case. Our main contribution
is to characterize the pair-block freeness of projections by the additivity of χproj (The-
orem 4.1), in the proof of which a transportation cost inequality plays an important
role. We also briefly discuss the free pressure in relation to χproj.

Introduction

The theory of free entropy, initiated and mostly developed by D. Voiculescu
in his series of papers [20]–[25], has become one of the most essential disciplines
of free probability theory. The microstate free entropy χ(X1, . . . , Xn) intro-
duced in [21] for self-adjoint non-commutative random variables X1, . . . , Xn is
defined as a certain asymptotic growth rate (as the matrix size N goes to ∞) of
the Euclidean volume of the set of N×N self-adjoint matrices (A1, . . . , An) ap-
proximating (X1, . . . , Xn) in moments. It is this microstate theory that settled
some long-standing open questions in von Neumann algebras (see the survey
[26]). On the other hand, the microstate-free free entropy χ∗(X1, . . . , Xn) was
also introduced in [23] based on the non-commutative Hilbert transform and
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the notion of conjugate variables, avoiding use of microstates or so-called ma-
trix integrals which are rather hard to handle. Although it is believed that
both approaches should be unified and give the same quantity, only the in-
equality χ ≤ χ∗ is known to hold true due to Biane, Capitaine and Guionnet
[3] based on an idea of large deviation principle for several random matrices.
In his work [25] Voiculescu developed another kind of microstate-free approach
to free entropy, the so-called free liberation theory, and introduced the mutual
free information i∗ for subalgebras rather than random variables. He suggested
there the need to apply the microstate approach to projection random variables
because the usual microstate free entropy χ becomes always −∞ for projec-
tions while i∗ does not in general. Following the suggestion, we here study the
microstate free entropy χproj(p1, . . . , pn) of projections p1, . . . , pn in the same
lines as in [21] and [22] to provide the basis for future research.

The large deviation principle for random matrices as mentioned above
started with the paper of Ben Arous and Guionnet [2] and has been almost
completed in the single random matrix case (corresponding to the study of
χ(X) for single random variable X), see the survey [8]. We note that such large
deviation principle played quite an important role not only for the foundation
of free entropy theory but also for getting free analogs of several probability
theoretic inequalities (see [14] and the references therein). Recently, one more
large deviation was shown in [12] for an independent pair of random projection
matrices, including the explicit formula of the free entropy χproj(p, q) of a pro-
jection pair (p, q). This is one of a few large deviation results (indeed the first
full large deviation result) in the setting of several random matrices, though
the method of the proof is based on the single variable case. Moreover, in [15]
we applied it to get a kind of logarithmic Sobolev inequality between the free
entropy χproj(p, q) and the mutual free Fisher information ϕ∗(W ∗(p) : W ∗(q))
(see [25]) for a projection pair. The large deviation result in [12] also plays a
crucial role in our study of χproj here.

The paper is organized as follows. After giving the definition and basic
properties of χproj(p1, . . . , pn) in §1, we recall in §2 the formula in the case of
two variables. In §3 we introduce a certain functional calculus for a projection
pair (p, q) and provide a technical tool of separate change of variable formula.
This tool is essential in §4 to prove the additivity theorem characterizing the
pair-block freeness of projections by the additivity of their free entropy. §5
treats a free analog of transportation cost inequalities for tracial distributions
of projections. Such a free analog is of interest by itself while its simplest
case is needed in the proof of the above-mentioned additivity theorem. Finally,
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along the same lines as in [10], we introduce in §6 the notion of free pressure and
compare its Legendre transform with χproj(p1, . . . , pn), thus giving a variational
expression of free entropy for projections.

§1. Definition

Let U(N) be the unitary group of order N . Let G(N, k) denote the set of
all N×N orthogonal projection matrices of rank k, that is, G(N, k) is identified
with the Grassmannian manifold consisting of k-dimensional subspaces in CN .
With the diagonal matrix PN (k) of the first k diagonals 1 and the others 0,
each P ∈ G(N, k) is diagonalized as

(1.1) P = UPN (k)U∗,

where U ∈ U(N) is determined up to the right multiplication of elements in
U(k) ⊕ U(N − k). Hence G(N, k) is identified with the homogeneous space
U(N)/(U(k) ⊕ U(N − k)), and we have a unique probability measure γG(N,k)

on G(N, k) invariant under the unitary conjugation P �→ UPU∗ for U ∈ U(N).
In the homogeneous space description, this is the unique probability measure on
U(N)/(U(k)⊕U(N − k)) invariant under the left multiplication of elements in
U(N) or in other words the induced measure from the Haar probability measure
γU(N) on U(N). Let ξN,k : U(N) → G(N, k) be the (surjective continuous) map
defined by (1.1), i.e., ξN,k(U) := UPN (k)U∗. Then the measure γG(N,k) is more
explicitly written as

(1.2) γG(N,k) = γU(N) ◦ ξ−1
N,k.

Throughout the paper (M, τ ) is a tracial W ∗-probability space. Let
(p1, . . . , pn) be an n-tuple of projections in (M, τ ). Following Voiculescu’s
proposal in [25, 14.2] we define the free entropy χproj(p1, . . . , pn) of (p1, . . . , pn)
as follows. Choose ki(N) ∈ {0, 1, . . . , N} for each N ∈ N and 1 ≤ i ≤ n in such
a way that ki(N)/N → τ (pi) as N → ∞ for 1 ≤ i ≤ n. For each m ∈ N and
ε > 0 we set

Γproj(p1, . . . , pn; k1(N), . . . , kn(N);N,m, ε)

(1.3)

:=
{

(P1, . . . , Pn) ∈
n∏
i=1

G(N, ki(N)) :
∣∣∣∣ 1
N

TrN (Pi1 · · ·Pir) − τ (pi1 · · · pir)
∣∣∣∣<ε

for all 1 ≤ i1, . . . , ir ≤ n, 1 ≤ r ≤ m

}
,
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where TrN stands for the usual (non-normalized) trace on the N ×N matrices.
We then define

χproj(p1, . . . , pn) := lim
m→∞
ε↘0

lim sup
N→∞

(1.4)

1
N2

log

(
n⊗
i=1

γG(N,ki(N))

)(
Γproj(p1, . . . , pn; k1(N), . . . , kn(N);N,m, ε)

)
.

To justify the definition of χproj, here arises a natural question whether or not
the quantity χproj(p1, . . . , pn) depends on the particular choice of ki(N). The
answer is the following:

Proposition 1.1. The above definition of χproj(p1, . . . , pn) is indepen-
dent of the choices of ki(N) with ki(N)/N → αi for 1 ≤ i ≤ n.

Proof. For 1 ≤ i ≤ n let li(N), N ∈ N, be another sequence such that
li(N)/N → αi as N → ∞. In what follows we will denote, for brevity, the mi-
crostate set in (1.3) by Γ(�k(N),m, ε) with �k(N) := (k1(N), . . . , kn(N)). More-
over, let ξ�k(N)(�U) :=

(
ξN,k1(N)(U1), . . . , ξN,kn(N)(Un)

)
for �U = (U1, . . . , Un) ∈

U(N)n, and consider the subset Γ̃(�l(N),m, ε) := ξ�l(N) ◦ ξ−1
�k(N)

(
Γ(�k(N),m, ε)

)
of

∏n
i=1G(N, li(N)). Since

ξN,li(N)(U) − ξN,ki(N)(U) = U
(
PN (ki(N)) − PN (li(N))

)
U∗,

we get ∥∥ξN,li(N)(U) − ξN,ki(N)(U)
∥∥

1
=

|li(N) − ki(N)|
N

,

where ‖ · ‖1 denotes the trace-norm with respect to N−1TrN . For every m ∈ N

and ε > 0, there exists N0 ∈ N such that N−1|li(N) − ki(N)| < ε/m for all
N ≥ N0 and 1 ≤ i ≤ n. Let us prove that Γ̃(�l(N),m, ε) ⊂ Γ(�l(N),m, 2ε) when-
ever N ≥ N0. Assume that N ≥ N0 and �Q = (Q1, . . . , Qn) ∈ Γ̃(�l(N),m, ε);
then there is �U = (U1, . . . , Un) ∈ U(N)n so that �Q = ξ�l(N)(�U) and �P =

(P1, . . . , Pn) := ξ�k(N)(�U) ∈ Γ(�k(N),m, ε). Since

‖Qi − Pi‖1 =
∥∥ξN,li(N)(Ui) − ξN,ki(N)(Ui)

∥∥
1
<

ε

m
, 1 ≤ i ≤ n,

we get for 1 ≤ i1, . . . , ir ≤ n and 1 ≤ r ≤ m∣∣∣∣ 1
N

TrN (Qi1 · · ·Qir) −
1
N

TrN (Pi1 · · ·Pir)
∣∣∣∣ ≤ r∑

j=1

‖Qij − Pij‖1 < ε,
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and thus ∣∣∣∣ 1
N

TrN (Qi1 · · ·Qir) − τ (pi1 · · · pir)
∣∣∣∣ < 2ε,

implying �Q ∈ Γ(�l(N),m, 2ε). Setting γ�k(N) :=
⊗n

i=1 γG(N,ki(N)), we now have,
thanks to (1.2),

γ�l(N)

(
Γ(�l(N),m, 2ε)

) ≥ γ�k(N)

(
Γ̃(�l(N),m, ε)

)
=

(
γU(N)

)⊗n ◦ ξ−1
�l(N)

◦ ξ�l(N) ◦ ξ−1
�k(N)

(
Γ(�k(N),m, ε)

)
≥ (

γU(N)

)⊗n ◦ ξ−1
�k(N)

(
Γ(�k(N),m, ε)

)
= γ�k(N)

(
Γ(�k(N),m, ε)

)
whenever N ≥ N0. This implies that

lim sup
N→∞

1
N2

log γ�l(N)

(
Γ(�l(N),m, 2ε)

) ≥ lim sup
N→∞

1
N2

log γ�k(N)

(
Γ(�k(N),m, ε)

)
,

which says that the free entropy (1.4) given for �k(N) is not greater than that
for �l(N). By symmetry we observe that both free entropies must coincide.

The following are basic properties of χproj. We omit their proofs, all of
which are essentially same as in the case of self-adjoint variables in [21] or else
obvious.

Proposition 1.2. Let p1, . . . , pn be projections in (M, τ ).

(i) Negativity: χproj(p1, . . . , pn) ≤ 0.

(ii) Subadditivity: for every 1 ≤ j < n,

χproj(p1, . . . , pn) ≤ χproj(p1, . . . , pj) + χproj(pj+1, . . . , pn).

(iii) Upper semi-continuity: if a sequence (p(m)
1 , . . . , p

(m)
n ) of n-tuples of projec-

tions converges to (p1, . . . , pn) in distribution, then

χproj(p1, . . . , pn) ≥ lim sup
m→∞

χproj(p
(m)
1 , . . . , p(m)

n ).

(iv) χproj(p1, . . . , pn) does not change when pi is replaced by p⊥i := 1 − pi for
some i.
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Remark 1.3. We may adopt different ways to introduce the free entropy
of an n-tuple (p1, . . . , pn) of projections in (M, τ ). For instance, consider
two unitarily invariant probability measures γ(1)

G(N) and γ
(2)
G(N) on G(N) :=⊔N

k=0G(N, k) determined by the weights on G(N, k), 0 ≤ k ≤ N , given as

γ
(1)
G(N)(G(N, k)) =

1
N + 1

, γ
(2)
G(N)(G(N, k)) =

1
2N

(
N

k

)
.

We set

Γproj(p1, . . . , pn;N,m, ε)

:=
{

(P1, . . . , Pn) ∈ G(N)n :
∣∣∣∣ 1
N

TrN (Pi1 · · ·Pir) − τ (pi1 · · · pir)
∣∣∣∣ < ε

for all 1 ≤ i1, . . . , ir ≤ n, 1 ≤ r ≤ m

}
,

and define for j = 1, 2

χ
(j)
proj(p1, . . . , pn) := lim

m→∞
ε↘0

lim sup
N→∞

1
N2

log
(
γ

(j)
G(N)

)⊗n(
Γproj(p1, . . . , pn;N,m, ε)

)
.

It is fairly easy to see (similarly to the proof of Proposition 1.1) that both
χ

(j)
proj(p1, . . . , pn), j = 1, 2, coincide with χproj(p1, . . . , pn) given in (1.4).

§2. Case of Two Projections

Let (p, q) be a pair of projections in a tracial W ∗-probability space (M, τ )
with α := τ (p) and β := τ (q). Set

E11 := p ∧ q, E10 := p ∧ q⊥, E01 := p⊥ ∧ q, E00 := p⊥ ∧ q⊥,
E := 1− (E00 + E01 + E10 + E11).

Then E and Eij are in the center of {p, q}′′ and (E{p, q}′′E, τ |E{p,q}′′E) is
isomorphic to L∞((0, 1), ν;M2(C)), where ν is the measure on (0, 1) determined
by

τ (A) =
1
2

∫
(0,1)

Tr2(A(x)) dν(x), A ∈ L∞((0, 1), ν;M2(C)) ∼= E{p, q}′′E

(hence ν((0, 1)) = τ (E)). Under this isomorphism, EpE and EqE are repre-
sented as

(EpE)(x) =

[
1 0
0 0

]
and (EqE)(x) =

[
x

√
x(1 − x)√

x(1 − x) 1 − x

]
for x ∈ (0, 1).
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In this way, the mixed moments of (p, q) with respect to τ are determined by
ν and {τ (Eij)}1

i,j=0. Although ν is not necessarily a probability measure, we
define the free entropy Σ(ν) by

Σ(ν) :=
∫∫

(0,1)2
log |x− y| dν(x) dν(y)

in the same way as in [20]. Furthermore, we set

(2.1) ρ := min{α, β, 1 − α, 1 − β},

(2.2) C := ρ2B

( |α− β|
ρ

,
|α+ β − 1|

ρ

)
(meant zero if ρ = 0), where

B(s, t) :=
(1 + s)2

2
log(1 + s) − s2

2
log s+

(1 + t)2

2
log(1 + t) − t2

2
log t

− (2 + s+ t)2

2
log(2 + s+ t) +

(1 + s+ t)2

2
log(1 + s+ t)

for s, t ≥ 0. With these definitions, the following formula of χproj(p, q) was
obtained in [12] as a consequence of the large deviation principle for an inde-
pendent pair of random projection matrices.

Proposition 2.1 ([12, Theorem 3.2, Proposition 3.3]). If τ (E00)τ (E11)
= τ (E01)τ (E10) = 0, then

χproj(p, q) =
1
4
Σ(ν) +

|α− β|
2

∫
(0,1)

log x dν(x)

+
|α+ β − 1|

2

∫
(0,1)

log(1 − x) dν(x) − C,

and otherwise χproj(p, q) = −∞. Moreover, χproj(p, q) = 0 if and only if p and
q are free.

Note that the condition τ (E00)τ (E11) = τ (E01)τ (E10) = 0 is equivalent to

(2.3)


τ (E11) = max{α+ β − 1, 0},
τ (E00) = max{1 − α− β, 0},
τ (E10) = max{α− β, 0},
τ (E01) = max{β − α, 0}.
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When this is the case, the following must hold:

τ (E01) + τ (E10) = |α− β|, τ (E00) + τ (E11) = |α+ β − 1|, τ (E) = 2ρ.

In the case where χproj(p, q) = 0 (equivalently, p and q are free), the
measure ν was computed in [27] as

(2.4)

√
(x− ξ)(η − x)
2πx(1 − x)

1(ξ,η)(x) dx

with ξ, η := α+ β − 2αβ ±√
4αβ(1 − α)(1 − β). It is also worthwhile to note

[12] that lim sup in definition (1.4) can be replaced by lim in the case of two
projections due to the large deviation result mentioned above.

In §4 the equivalence between the additivity of χproj and the freeness of
projection pairs will be generalized to the “pair-block freeness result” for more
than two projections. To do this, we need a kind of separate change of variable
formula for χproj, which will be established in the next section.

§3. Separate Change of Variable Formula

Let N ∈ N and k, l ∈ {0, 1, . . . , N}. Assume that 0 < k ≤ l and k+ l ≤ N .
Consider a pair (P,Q) of N ×N projection random matrices with rank(P ) =
k and rank(Q) = l, which is assumed to be distributed under the measure
γG(N,k) ⊗ γG(N,l) on G(N, k) ×G(N, l). Then, by means of the so-called sine-
cosine decomposition of two projections, we can represent such (P,Q) as follows:

P = U

([
I 0
0 0

]
⊕ 0 ⊕ 0

)
U∗,(3.1)

Q = U

([
X

√
X(I −X)√

X(I −X) I −X

]
⊕ I ⊕ 0

)
U∗(3.2)

in C
N = (Ck⊗C

2)⊕C
l−k⊕C

N−k−l, where U is an N×N unitary matrix and X
is a k×k diagonal matrix with the diagonal entries 0 ≤ x1 ≤ x2 ≤ · · · ≤ xk ≤ 1.
When x1, . . . , xk are in (0, 1) and mutually distinct, it is easy to see that U is
uniquely determined up to the right multiplication of unitary matrices of the
form [

T 0
0 T

]
⊕ V1 ⊕ V2, T ∈ T

k, V1 ∈ U(l − k), V2 ∈ U(N − k − l).

We denote by V (N, k, l) the subgroup of U(N) consisting of all unitary matrices
of the above form so that U(N)/V (N, k, l) becomes a homogeneous space. Also,
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let [0, 1]k≤ and (0, 1)k< denote the sets of (x1, . . . , xk) satisfying 0 ≤ x1 ≤ · · · ≤
xk ≤ 1 and 0 < x1 < · · · < xk < 1, respectively. We then consider the
continuous map ΞN,k,l : U(N)/V (N, k, �)× [0, 1]k≤ → G(N, k)×G(N, l) defined
by (3.1) and (3.2), that is,

ΞN,k,l([U ], X)

:=

(
U

([
I 0
0 0

]
⊕ 0 ⊕ 0

)
U∗, U

([
X

√
X(I −X)√

X(I −X) I −X

]
⊕ I ⊕ 0

)
U

)
,

where X = (x1, . . . , xk) in the right-hand side is regarded as a diagonal matrix
as above. The set

(G(N, k) ×G(N, l))0 := ΞN,k,l
(
U(N)/V (N, k, l) × (0, 1)k<

)
is open and co-negligible with respect to γG(N,k) ⊗ γG(N,l) in G(N, k)×G(N, l)
thanks to [5, Theorem 2.2] (or [12, Lemma 1.1]) and moreover ΞN,k,l
gives a smooth diffeomorphism between U(N)/V (N, k, l) × (0, 1)k< and
(G(N, k) ×G(N, l))0. Then we show the next lemma for later use.

Lemma 3.1. The measure (γG(N,k) ⊗ γG(N,l)) ◦ ΞN,k,l coincides with

γN,k,l ⊗
(

1
ZN,k,l

k∏
i=1

xl−ki (1 − xi)N−k−l ∏
1≤i<j≤k

(xi − xj)2
k∏
i=1

dxi

)
,

where γN,k,l is the (unique) probability measure on U(N)/V (N, k, l) induced by
the Haar probability measure on U(N) and ZN,k,l is a normalization constant.

Proof. Let λ be the measure on U(N)/V (N, k, l) × (0, 1)k< transformed
from the restriction of γG(N,k) ⊗ γG(N,l) to (G(N, k) ×G(N, l))0 by the inverse
of ΞN,k,l, and µ be its image measure by the projection map ([U ], X) �→ X.
The disintegration theorem (see e.g. [16, Chapter IV, §6.5]) ensures that there
is a µ-a.e. unique Borel map λ(·) from (0, 1)k< to the probability measures on
U(N)/V (N, k, l) such that λ =

∫
(0,1)k

<
λX dµ(X). Note that ([U ], X) �→ X

splits into ΞN,k,l, (P,Q) �→ PQP and the map sending PQP to the eigenvalues
in increasing order. Hence µ coincides with the eigenvalue distribution of PQP
arranged in increasing order, which is known to be equal to the second compo-
nent given in the lemma by [5, Theorem 2.2]. Therefore, it suffices to show that
λX coincides with γN,k,l for µ-a.e. X ∈ (0, 1)k<. For each V ∈ U(N), the uni-
tary conjugation AdV ×AdV : (P,Q) �→ (V PV ∗, V QV ∗) on G(N, k)×G(N, l)
and the left-translation LV : [U ] �→ V [U ] := [V U ] on U(N)/V (N, k, l) satisfy
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the relation ΞN,k,l ◦ (LV × id) = (AdV × AdV ) ◦ ΞN,k,l; hence, in particu-
lar, (G(N, k) ×G(N, l))0 is invariant under the action AdV × AdV for every
V ∈ U(N). Then one can easily verify that∫

(0,1)k
<

(∫
U(N)/V (N,k,l)

f([U ], X) d(λX ◦ LV )([U ])

)
dµ(X)

=
∫

U(N)/V (N,k,l)×(0,1)k
<

f([U ], X) dλ([U ], X)

for any bounded Borel function f on U(N)/V (N, k, l) × (0, 1)k. This means
that λ enjoys a new disintegration λ =

∫
(0,1)k

<
λX ◦ LV dµ(X). The uniqueness

of the disintegration says that for µ-a.e. X ∈ (0, 1)k< one has λX = λX ◦LV for
all V ∈ U(N). Since γN,k,l is a unique probability measure on U(N)/V (N, k, l)
invariant under all LV , it follows that λX = γN,k,l for µ-a.e. X ∈ (0, 1)k< so
that

λ =
∫

(0,1)k
<

γN,k,l dµ(X) = γN,k,l ⊗ µ,

as required.

For a pair (p, q) of projections in (M, τ ) we introduce a sort of functional
calculus via the representation explained in §2. Let ψ be a continuous increasing
function from (0, 1) into itself. With the notations in §2 we define a new
projection q(ψ; p) in {p, q}′′ by

q(ψ; p) := Eq(ψ; p)E + E00 + E01 + E10 + E11,

(Eq(ψ; p)E)(x) :=

[
ψ(x)

√
ψ(x)(1 − ψ(x))√

ψ(x)(1 − ψ(x)) 1 − ψ(x)

]
for x ∈ (0, 1).

It is obvious that τ (q(ψ; p)) = τ (q). (The definition itself is possible for gen-
eral Borel function from (0, 1) into [0, 1] but the above case is enough for our
purpose.) The aim of this section is to prove the following change of variable
formula for free entropy of projections.

Theorem 3.2. Let p1, q1, . . . , pn, qn, r1, . . . , rn′ be projections in (M, τ )
and assume that χproj(pi, qi) > −∞ for 1 ≤ i ≤ n. Let ψ1, . . . , ψn be continu-
ous increasing functions from (0, 1) into itself, and qi(ψi; pi) be the projection
defined from pi, qi and ψi in the above manner for 1 ≤ i ≤ n. Then we have

χproj(p1, q1(ψ1; p1), . . . , pn, qn(ψn; pn), r1, . . . , rn′)

≥ χproj(p1, q1, . . . , pn, qn, r1, . . . , rn′)+
n∑
i=1

{
χproj(pi, qi(ψi; pi)) − χproj(pi, qi)

}
.
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Moreover, if ψ1, . . . , ψn are strictly increasing, then equality holds true in the
above inequality.

The proof goes on the essentially same lines as in [22] and it is divided into
two steps; one is to analyze the case when ψ1, . . . , ψn are all extended to C1-
diffeomorphisms from [0, 1] onto itself and the other is to approximate, in two
stages, the given ψ1, . . . , ψn by C∞-diffeomorphisms from [0, 1] onto itself in
such a way that the corresponding free entropies converge to those in question.
As the first step let us prove the following special case of the theorem.

Lemma 3.3. Let p1, q1, . . . , pn, qn, r1, . . . , rn′ be as in Theorem 3.2. If
ψ1, . . . , ψn are C1-diffeomorphisms from [0, 1] onto itself with ψi(0) = 0 and
ψi(1) = 1 and moreover ψ′

i(x) > 0 for all x ∈ [0, 1], then the equality assertion
of Theorem 3.2 holds true.

Proof. In the same way as in the proof of [22, Proposition 3.1] it suffices
to show when n = 1; hence we assume n = 1 and write p = p1, q = q1 and
ψ = ψ1 for brevity. Let ν and {Eij}1

i,j=0 be as in §2 for (p, q). By Propositions
1.2 (iv) and 2.1 we may assume that τ (p) ≤ τ (q) ≤ 1/2 so that E11 = E10 = 0
by (2.3). We may further assume that p is non-zero; otherwise there is nothing
to do. With the polar decomposition (1 − p)qp = vp,q

√
pqp(p− pqp), we thus

represent p, q and q(ψ; p) as follows:

p = v∗p,qvp,q,

q = pqp+ vp,q
√
pqp(p− pqp) +

√
pqp(p− pqp)v∗p,q + vp,q(p− pqp)v∗p,q

+
(
q − pqp− (1− p)qp− pq(1− p) − vp,q(p− pqp)v∗p,q

)
,

q(ψ; p) = ψ(pqp) + vp,q
√
ψ(pqp)(p− ψ(pqp))

+
√
ψ(pqp)(p− ψ(pqp))v∗p,q + vp,q(p− ψ(pqp))v∗p,q

+
(
q − pqp− (1− p)qp− pq(1− p) − vp,q(p− pqp)v∗p,q

)
,

where ψ(pqp) means the functional calculus of pqp. Choose two sequences
k(N), l(N) for N ≥ 2 in such a way that 0 < k(N) ≤ l(N) ≤ N/2 and
k(N)/N → τ (p), l(N)/N → τ (q) as N → ∞. As explained at the beginning of
this section, for each (P,Q) ∈ (G(N, k(N)) × G(N, l(N)))0 there is a unitary
U ∈ U(N), unique up to V (N, k(N), l(N)), for which we have (3.1) and (3.2).
Then we can define the map ΦN,ψ on (G(N, k(N)) ×G(N, l(N)))0 by sending
(P,Q) to (P,Q(ψ;P )) with

Q(ψ;P ) := U

([
ψ(X)

√
ψ(X)(I − ψ(X))√

ψ(X)(I − ψ(X)) I − ψ(X)

]
⊕ I ⊕ 0

)
U∗.
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With the polar decomposition (I − P )QP = VP,Q
√
PQP (I − PQP ) we have

the following expressions:

Q = PQP + VP,Q
√
PQP (P − PQP )

+
√
PQP (P − PQP )V ∗

P,Q + VP,Q(P − PQP )V ∗
P,Q

+
(
Q− PQP − (I − P )QP − PQ(I − P ) − VP,Q(P − PQP )V ∗

P,Q

)
,

Q(ψ;P ) = ψ(PQP ) + VP,Q
√
ψ(PQP )(P − ψ(PQP ))

+
√
ψ(PQP )(P − ψ(PQP ))V ∗

P,Q + VP,Q(P − ψ(PQP ))V ∗
P,Q

+
(
Q− PQP − (I − P )QP − PQ(I − P ) − VP,Q(P − PQP )V ∗

P,Q

)
.

Upon these expressions, what we now need is to approximate vp,q and VP,Q
by polynomials of p, q and P,Q, respectively, as stated in the next lemma very
similarly to [11, 6.6.4].

Lemma 3.4. For each t ≥ 1 and ε > 0 one can find N0,m0 ∈ N, ε0 > 0
and a real polynomial G in such a way that the following assertions hold :

• ‖vp,q − (1− p)qp ·G(pqp)‖t < ε.

• For each N ≥ N0, if (P,Q) ∈ (G(N, k(N)) ×G(N, l(N)))0 satisfies

(3.3)
∣∣∣∣ 1
N

TrN ((PQP )m) − τ ((pqp)m)
∣∣∣∣ < ε0 for 1 ≤ m ≤ m0,

then ‖VP,Q − (1− P )QP ·G(PQP )‖t < ε.

Here, ‖ · ‖t denotes the Schatten t-norm with respect to τ as well as N−1TrN .

The proof of this technical lemma is essentially similar to that of [11, 6.6.4]
so that its sketch will be given later.

Proof of Lemma 3.3 (continued ). Choose k1(N), . . . , kn′(N) so that
ki(N)/N → τ (ri) as N → ∞, and set

ΦN := ΦN,ψ×
n′∏
i=1

idG(N,ki(N)) on (G(N, k(N))×G(N, l(N)))0×
n′∏
i=1

G(N, ki(N))

and γN := γG(N,k(N)) ⊗γG(N,l(N)) ⊗
⊗n′

i=1 γG(N,ki(N)). Let m ∈ N and ε > 0 be
arbitrary. In what follows, for brevity we write Γproj(p, q, r1, . . . , rn′ ;N,m0, ε0)
etc. without k(N), l(N), k1(N), . . . , kn′(N). Thanks to Lemma 3.4 together
with the expressions of q(ψ; p) and Q(ψ;P ) above, we can choose N0,m0 ∈ N
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and ε0 > 0 with m0 ≥ m and ε0 ≤ ε such that, for every N ≥ N0, if (P,
Q,R1, . . . , Rn′) ∈ Γproj(p, q, r1, . . . , rn′ ;N,m0, ε0) and (P,Q) ∈ (G(N, k(N)) ×
G(N, l(N)))0, then ΦN (P,Q,R1, . . . , Rn′) falls into Γproj(p, q(ψ; p), r1, . . . , rn′ ;
N,m, ε). Via ΞN,k(N),l(N) in the first two coordinates, Lemma 3.1 enables us
to estimate the Radon-Nikodym derivative dγN ◦ ΦN/dγN on a co-negligible
subset of Γproj(p, q, r1, . . . , rn′ ;N,m, ε) from below by the infimum value of

∏
1≤i<j≤k(N)

(
ψ(λi(PQP )) − ψ(λj(PQP ))

λi(PQP ) − λj(PQP )

)2 k(N)∏
i=1

ψ′(λi(PQP ))

(3.4)

×
k(N)∏
i=1

(
ψ(λi(PQP ))
λi(PQP )

)l(N)−k(N) k(N)∏
i=1

(
1 − ψ(λi(PQP ))

1 − λi(PQP )

)N−k(N)−l(N)

for all (P,Q) ∈ (G(N, k(N)) × G(N, l(N)))0 ∩ Γproj(p, q;N,m0, ε0) with the
eigenvalue list λ1(PQP ), . . . , λk(N)(PQP ) in increasing order.

Let ψ[1](x, y) be the so-called divided difference of ψ, i.e.,

ψ[1](x, y) :=

{
ψ(x)−ψ(y)

x−y (x �= y),

ψ′(x) (x = y).

Then, quantity (3.4) is rewritten in the coordinate (P,Q) as

detk(N)2×k(N)2

[
P ⊗ P · ψ[1](PQP ⊗ P, P ⊗ PQP ) · P ⊗ P

]
× (

detk(N)×k(N)[P (PQP )−1ψ(PQP )P ]
)l(N)−k(N)

× (
detk(N)×k(N)[P (P − PQP )−1(P − ψ(PQP )P ]

)N−k(N)−l(N)

= exp
(
Tr⊗2
k(N)

(
P ⊗ P · log(ψ[1](PQP ⊗ P, P ⊗ PQP )) · P ⊗ P

))
× (

exp
(
Trk(N)

(
P · log

(
(PQP )−1ψ(PQP )

) · P )))l(N)−k(N)

× (
exp

(
Trk(N)

(
P · log

(
(P − PQP )−1(P − ψ(PQP ))

) · P )))N−k(N)−l(N)
,

where ψ[1](PQP ⊗ P, P ⊗ PQP ) is defined on PCN ⊗ PCN while
(PQP )−1ψ(PQP ) and (P −PQP )−1(P −ψ(PQP )) are on PC

N . Let δ > 0 be
arbitrary. Since ψ is C1, logψ[1](x, y) is continuous on [0, 1]2 so that there is a
real polynomial L(x, y) on [0, 1]2 such that ‖ logψ[1] − L‖∞ < δ. If m′ ∈ N is
larger than the degree of L, then we have, for each (P,Q) ∈ Γproj(p, q;N,m′, ε′)
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with an arbitrary ε′ > 0,∣∣∣ 1
N2

Tr⊗2
N

(
P ⊗ P · logψ[1](PQP ⊗ P, P ⊗ PQP ) · P ⊗ P

)
− τ⊗2(p⊗ p · logψ[1](pqp⊗ p, p⊗ pqp) · p⊗ p)

∣∣∣
≤ 2δ +

∣∣∣ 1
N2

Tr⊗2
N (P ⊗ P · L(PQP ⊗ P, P ⊗ PQP ) · P ⊗ P )

− τ⊗2(p⊗ p · L(pqp⊗ p, p⊗ pqp) · p⊗ p)
∣∣∣

≤ 2δ + Cε

with C > 0 depending only on L (hence on δ). Therefore, for each η > 0 there
are m1 ∈ N and ε1 > 0 such that

exp
(
Tr⊗2
k(N)

(
P ⊗ P · log

(
ψ[1](PQP ⊗ P, P ⊗ PQP )

)
· P ⊗ P

))
(3.5)

≥ exp
(
N2

{
τ⊗2(p⊗ p · logψ[1](pqp⊗ p, p⊗ pqp) · p⊗ p) − η

})
for all (P,Q) ∈ Γproj(p, q;N,m′, ε′) as long as m′ ≥ m1 and 0 < ε′ ≤ ε1. Since
x−1ψ(x) and (1 − x)−1(1 − ψ(x)) are both bounded away from zero on [0, 1]
due to the assumption on ψ, the same argument works for the other two terms

exp
(
Trk(N)

(
P · log

(
(PQP )−1ψ(PQP )

) · P ))
,

exp
(
Trk(N)

(
P · log

(
(P − PQP )−1(P − ψ(PQP ))

) · P ))
.

Therefore, for each η > 0 there are m2 ∈ N and ε2 > 0 such that

exp
(
Trk(N)

(
P · log

(
(PQP )−1ψ(PQP )

) · P ))
(3.6)

≥ exp
(
N

{
τ (p · log((pqp)−1ψ(pqp)) · p) − η

})
,

exp
(
Trk(N)

(
P · log

(
(P − PQP )−1(P − ψ(PQP ))

) · P ))
(3.7)

≥ exp
(
N

{
τ (p · log((p− pqp)−1(p− ψ(pqp))) · p) − η

})
for all (P,Q) ∈ Γproj(p, q;N,m′, ε′) as long as m′ ≥ m2 and 0 < ε′ ≤ ε2. Hence,
whenever N ≥ N0, m′ ≥ max{m0,m1,m2} and 0 < ε′ < min{ε0, ε1, ε2}, we
have

1
N2

log γN
(
Γproj(p, q(ψ; p), r1, . . . , rn′ ;N,m, ε)

)
≥ 1
N2

log γN
(
ΦN

(
Γproj(p, q, r1, . . . , rn′ ;N,m′, ε′)

))
≥ 1
N2

log γN
(
Γproj(p, q, r1, . . . , rn′ ;N,m′, ε′)

)
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+ τ⊗2(p⊗ p · logψ[1](pqp⊗ p, p⊗ pqp) · p⊗ p)

+
(
l(N)
N

− k(N)
N

)
τ (p · log((pqp)−1ψ(pqp)) · p)

+
(

1 − l(N)
N

− k(N)
N

)
τ (p · log((p− pqp)−1(p− ψ(pqp))) · p) − 3η

=
1
N2

log γN
(
Γproj(p, q, r1, . . . , rn′ ;N,m′, ε′)

)
+

1
4

∫∫
(0,1)2

log
∣∣∣∣ψ(x) − ψ(y)

x− y

∣∣∣∣ dν(x) dν(y)
+

1
2

(
l(N)
N

− k(N)
N

)∫
(0,1)

log
ψ(x)
x

dν(x)

+
1
2

(
1 − l(N)

N
− k(N)

N

)∫
(0,1)

log
1 − ψ(x)

1 − x
dν(x) − 3η.

Take the lim sup as N → ∞ and the limit as m → ∞, ε ↘ 0 in the above
inequality. Since η > 0 is arbitrary, we get

χproj(p, q(ψ; p), r1, . . . , rn′)

≥ χproj(p, q, r1, . . . , rn′) +
1
4

∫∫
(0,1)2

log
∣∣∣∣ψ(x) − ψ(y)

x− y

∣∣∣∣ dν(x)dν(y)
+
τ (q) − τ (p)

2

∫
(0,1)

log
ψ(x)
x

dν(x) +
1 − τ (q) − τ (p)

2

∫
(0,1)

log
1 − ψ(x)

1 − x
dν(x)

= χproj(p, q, r1, . . . , rn′) + χproj(p, q(ψ; p))− χproj(p, q)

thanks to Proposition 2.1. The reverse inequality can be shown as well if
we replace the inequalities (3.5)–(3.7) by their reversed versions. Hence we
complete the proof of Lemma 3.3.

Proof of Lemma 3.4 (sketch). Given small α, β > 0 we can estimate

‖vp,q − ((1− p)qp)(
√
pqp(p− pqp) + α1)−1‖tt(3.8)

≤ 1
2

ν((0, β)) + ν((1 − β, 1)) + ν([β, 1 − β])

(
α√

β(1 − β) + α

)t


and

‖VP,Q − (I − P )QP (
√
PQP (P − PQP ) + αI)−1‖tt(3.9)

≤ 1
N

# {i : λi(PQP ) < β} +
1
N

# {i : λi(PQP ) > 1 − β}
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+
k(N)
N

(
α√

β(1 − β) + α

)t

,

where 0 < λ1(PQP ) < · · · < λk(N)(PQP ) < 1 are the eigenvalues of PQP |PCN

for (P,Q) ∈ (G(N, k(N)) × G(N, l(N)))0. For any η > 0 let us choose β > 0
so that ν((0, 2β)) + ν((1 − 2β, 1)) < ηt. By (3.8) we get

(3.10)

‖vp,q − ((1− p)qp)(
√
pqp(p− pqp) + α1)−1‖tt ≤

ηt

2
+
τ (E)

2

(
α√

β(1 − β)

)t

.

Note that ν is non-atomic on (0, 1) due to the assumption χproj(p, q) > −∞.
Set ξN,i := min{x ∈ [0, 1] : ν((0, x)) = iτ(E)/k(N)} for 1 ≤ i ≤ k(N); then we
get

τ ((pqp)m) = lim
N→∞

1
N

k(N)∑
i=1

(
ξN,i

)m for all m ∈ N.

Also choose a constant C > supN≥2N/k(N). By [11, 4.3.4] there are m0 ∈ N

and ε0 > 0 such that, for everyN ∈ N and for every (λ1, . . . , λk(N)) ∈ (0, 1)k(N)
< ,∣∣∣∣∣∣ 1

k(N)

k(N)∑
i=1

λmi − 1
k(N)

k(N)∑
i=1

(
ξN,i

)m∣∣∣∣∣∣ < 2Cε0 for 1 ≤ m ≤ m0

implies

(3.11)
1

k(N)

k(N)∑
i=1

∣∣λi − ξN,i
∣∣m < βηt.

Assume (3.11). Set i0 := #{i : λi < β} and i1 := #{i : ξN,i < 2β}. If
i1 < i ≤ i0, then

∣∣λi − ξN,i
∣∣ = ξN,i − λi ≥ β so that we get i0 < i1 + k(N)ηt

by (3.11). Since i1τ (E)/k(N) ≤ ν((0, 2β)) < ηt, we get i0 < τ (E)−1(1 +
τ (E))k(N)ηt. If there is no i1 < i ≤ i0, then i0 ≤ i1 < τ (E)−1k(N)ηt.
Therefore, #{i : λi < β} < τ (E)−1(1 + τ (E))k(N)ηt. Similarly, we have
#{i : λi > 1 − β} < τ (E)−1(1 + τ (E))k(N)ηt. Now, choose N0 ∈ N so that∣∣∣∣∣∣ 1

N

k(N)∑
i=1

(
ξN,i

)m − τ ((pqp)m)

∣∣∣∣∣∣ < ε0

for all 1 ≤ m ≤ m0 and N ≥ N0. We then conclude that if N ≥ N0 and
(P,Q) ∈ (G(N, k(N)) ×G(N, l(N)))0 satisfies (3.3), then

#{i : λi(PQP ) < β} < 1 + τ (E)
τ (E)

k(N)ηt,(3.12)
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#{i : λi(PQP ) > 1 − β} < 1 + τ (E)
τ (E)

k(N)ηt.(3.13)

Inserting (3.12) and (3.13) into (3.9) we get

‖VP,Q − (I − P )QP (
√
PQP (P − PQP ) + αI)−1‖tt(3.14)

≤ 1 + τ (E)
τ (E)

ηt +
1
2

(
α√

β(1 − β)

)t

.

Finally, let α > 0 be so small as α/
√
β(1 − β) < η, and choose a real polynomial

G(x) such that |G(x)−(
√
x(1 − x)+α)−1| < η for all x ∈ [0, 1]. Then by (3.10)

and (3.14) we obtain

‖vp,q − (1− p)qp ·G(pqp)‖t < 2η

and

‖VP,Q − (I − P )QP ·G(PQP )‖t <
((

1
τ (E)

+
3
2

)1/t

+ 1

)
η.

The proof is completed if η > 0 was chosen so small as
(
(1/τ (E) + 3/2)1/t+

1
)
η < ε.

For the second step we present two more technical lemmas. The proof of
the next lemma should be compared with that of [22, Lemma 4.1].

Lemma 3.5. Let µ be a measure on [0, 1] with no atom at 0 and 1,
and assume the conditions∫∫

(0,1)2
log |x− y| dµ(x) dµ(y) > −∞,(3.15) ∫
(0,1)

log x dµ(x) > −∞,(3.16) ∫
(0,1)

log(1 − x) dµ(x) > −∞.(3.17)

If ψ is a continuous increasing function from [0, 1] onto itself with ψ(0) = 0 and
ψ(1) = 1, then there exists a sequence of C∞-diffeomorphisms ψj from [0, 1]
onto itself with ψj(0) = 0 and ψj(1) = 1 such that

(i) ψ′
j(x) ≥ 1/j for all j ∈ N and x ∈ [0, 1],

(ii) ψj −→ ψ uniformly on [0, 1],
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(iii) lim
j→∞

∫∫
(0,1)2

log |x− y| d(ψj∗µ)(x) d(ψj∗µ)(y)

=
∫∫

(0,1)2
log |x− y| d(ψ∗µ)(x) d(ψ∗µ)(y),

(iv) lim
j→∞

∫
(0,1)

log x d(ψj∗µ)(x) =
∫

(0,1)

log x d(ψ∗µ)(x),

(v) lim
j→∞

∫
(0,1)

log(1 − x) d(ψj∗µ)(x) =
∫

(0,1)

log(1 − x) d(ψ∗µ)(x),

where ψ∗µ is the image measure of µ by ψ. Furthermore, even when conditions
(3.16) and/or (3.17) for µ are dropped, the conclusion holds without (iv) and/or
(v) correspondingly.

Proof. Extend ψ to a continuous increasing function on the whole R pe-
riodically, namely, ψ(x + m) = ψ(x) + m for x ∈ [0, 1] and m ∈ Z. For each
j ∈ N, by (3.15)–(3.17) one can choose δj ∈ (0, 1/j] such that∫∫

{(x,y)∈(0,1)2:|x−y|<δj}
log |x− y| dµ(x) dµ(y) ≥ −1/j,(3.18) ∫∫

{(x,y)∈(0,1)2:|x−y|<δj}
dµ(x) dµ(y) ≤ 1/(j log j),(3.19) ∫

(0,δj)

log x dµ(x) ≥ −1/j,(3.20)

µ((0, δj)) ≤ 1/(j log j),(3.21) ∫
(1−δj ,1)

log(1 − x) dµ(x) ≥ −1/j,(3.22)

µ((1 − δj , 1)) ≤ 1/(j log j).(3.23)

We further choose a C∞-function φj ≥ 0 supported in [−1/j, 1/j] with∫
φj(x) dx = 1 such that |(ψ ∗ φj)(x) − ψ(x)| ≤ δj/2j for all x ∈ [0, 1], and

define

ψj(x) :=
x

j
+

(
1 − 1

j

)
((ψ ∗ φj)(x) − (ψ ∗ φj)(0)) for x ∈ [0, 1].

Then one can immediately see that ψj is C∞, ψj(0) = 0, ψj(1) = 1 and also
(i) and (ii) are satisfied.

Notice that, for x, y ∈ [0, 1] with |x− y| ≥ δj ,

|ψj(x) − ψj(y)|
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=
|x− y|
j

+
(

1 − 1
j

)
|(ψ ∗ φj)(x) − (ψ ∗ φj)(y)|

≥ |x− y|
j

+
(

1 − 1
j

){|ψ(x) − ψ(y)| − |(ψ ∗ φj)(x) − ψ(x)| − |ψ(y) − (ψ ∗ φj)(y)|
}

≥
(

1 − 1
j

)
|ψ(x) − ψ(y)|,

and in particular

ψj(x) ≥
(

1 − 1
j

)
ψ(x) for x ∈ [δj , 1),

1 − ψj(x) ≥
(

1 − 1
j

)
(1 − ψ(x)) for x ∈ (0, 1 − δj ].

Hence we have by (3.18) and (3.19)∫∫
(0,1)2

log |x− y| d(ψj∗µ)(x)d(ψj∗µ)(y)

≥
∫∫

{(x,y)∈(0,1)2:|x−y|<δj}
log

|x− y|
j

dµ(x) dµ(y)

+
∫∫

{(x,y)∈(0,1)2:|x−y|≥δj}
log

((
1 − 1

j

)
|ψ(x) − ψ(y)|

)
dµ(x) dµ(y)

≥ −2
j

+ log
(

1 − 1
j

)
+

∫∫
(0,1)2

log |x− y| d(ψ∗µ)(x) d(ψ∗µ)(y),

and also we have by (3.20)–(3.23)∫
(0,1)

log x d(ψj∗µ)(x)

≥
∫

(0,δj)

log
x

j
dµ(x) +

∫
[δj ,1)

log
((

1 − 1
j

)
ψ(x)

)
dµ(x)

≥ −2
j

+ log
(

1 − 1
j

)
+

∫
(0,1)

logψ(x) dµ(x),

∫
(0,1)

log(1 − x) d(ψj∗µ)(x)

≥
∫

(1−δj ,1)

log
1 − x

j
dµ(x) +

∫
(0,1−δj ]

log
((

1 − 1
j

)
(1 − ψ(x))

)
dµ(x)
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≥ −2
j

+ log
(

1 − 1
j

)
+

∫
(0,1)

log(1 − ψ(x)) dµ(x).

Therefore,

lim inf
j→∞

∫∫
(0,1)2

log |x− y| d(ψj∗µ)(x) d(ψj∗µ)(y)

≥
∫∫

(0,1)2
log |x− y| d(ψ∗µ)(x) d(ψ∗µ)(y),

lim inf
j→∞

∫
(0,1)

log x d(ψj∗µ)(x) ≥
∫

(0,1)

log x d(ψ∗µ)(x),

lim inf
j→∞

∫
(0,1)

log(1 − x) d(ψj∗µ)(x) ≥
∫

(0,1)

log(1 − x) d(ψ∗µ)(x).

On the other hand, Fatou’s lemma says that the reverse inequalities of the
above three ones with lim sup in place of lim inf actually hold true. Hence we
have (iii)–(v). Finally, the above proof shows the last statement as well.

Lemma 3.6. Let µ be a measure on [0, 1] with no atom at 0 and 1, and
let ψ be a continuous increasing function from [0, 1] into itself. Assume that µ
satisfies conditions (3.15)–(3.17) in Lemma 3.5 and also ψ∗µ does (3.16) and
(3.17). Then, there exists a sequence of continuous increasing functions ψm
from [0, 1] onto itself with ψm(0) = 0 and ψm(1) = 1 such that

(i)
∫
(0,1)

|ψm(x) − ψ(x)|2 dµ(x) −→ 0,

(ii) lim
m→∞

∫∫
(0,1)2

log |x− y| d(ψm∗µ)(x) d(ψm∗µ)(y)

=
∫∫

(0,1)2
log |x− y| d(ψ∗µ)(x) d(ψ∗µ)(y),

(iii) lim
m→∞

∫
(0,1)

log x d(ψm∗µ)(x) =
∫

(0,1)

log x d(ψ∗µ)(x),

(iv) lim
m→∞

∫
(0,1)

log(1 − x) d(ψm∗µ)(x) =
∫

(0,1)

log(1 − x) d(ψ∗µ)(x).

Furthermore, even when conditions (3.16) and/or (3.17) for µ and ψ∗µ are
dropped, the conclusion holds without (iii) and/or (iv) correspondingly.

Proof. We assume that both ψ(0) > 0 and ψ(1) < 1; the other cases can
be handled easier. Condition (3.15) implies

(− logm)ν((0, 1/m))2 ≥
∫∫

(0,1/m)2
log |x− y| dν(x) dν(y) −→ 0,(3.24)



Microstate Free Entropy of Projections 69

(− logm)ν((1 − 1/m, 1))2 ≥
∫∫

(1−1/m,1)2
log |x− y| dν(x) dν(y) −→ 0(3.25)

as m→ ∞. On the other hand, (3.16) and (3.17) imply

(− logm)ν((0, 1/m)) ≥
∫

(0,1/m)

log x dµ(x) −→ 0,(3.26)

(− logm)ν((1 − 1/m, 1)) ≥
∫

(1−1/m,1)

log(1 − x) dµ(x) −→ 0,(3.27)

respectively. For each m ≥ 2 define a function ψm on [0, 1] by

ψm(x) :=


mxψ(x) (0 ≤ x < 1/m),

ψ(x) (1/m ≤ x ≤ 1 − 1/m),

1 −m(1 − x)(1 − ψ(x)) (1 − 1/m < x ≤ 1),

which is clearly continuous and increasing with ψm(0) = 0 and ψm(1) = 1.
Then (i) immediately follows. It is easy to check the following:

|ψm(x) − ψm(y)| ≥


mψ(0)|x− y| for x, y ∈ (0, 1/m),

m(1 − ψ(1))|x− y| for x, y ∈ (1 − 1/m, 1),

|ψ(x) − ψ(y)| for other x, y ∈ (0, 1).

Hence we have∫∫
(0,1)2

log |x− y| d(ψm∗µ)(x) d(ψm∗µ)(y)

≥
∫∫

(0,1/m)2
log(mψ(0)|x− y|) dµ(x) dµ(y)

+
∫∫

(1−1/m,1)2
log(m(1 − ψ(1))|x− y|) dµ(x) dµ(y)

+
∫∫

(0,1)2
log |ψ(x) − ψ(y)| dµ(x) dµ(y)

= (logm+ logψ(0))µ((0, 1/m))2 +
∫∫

(0,1/m)2
log |x− y| dµ(x) dµ(y)

+ (logm+ log(1 − ψ(1)))µ((1 − 1/m, 1))2

+
∫∫

(1−1/m,1)2
log |x− y| dµ(x) dµ(y)

+
∫∫

(0,1)2
log |ψ(x) − ψ(y)| dµ(x) dµ(y)
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−→
∫∫

(0,1)2
log |ψ(x) − ψ(y)| dµ(x) dµ(y)

as m→ ∞ by (3.24), (3.25) and (3.15). Therefore,

lim inf
m→∞

∫∫
(0,1)2

log |x− y| d(ψm∗µ)(x) d(ψm∗µ)(y)

≥
∫∫

(0,1)2
log |x− y| d(ψm∗µ)(x) d(ψm∗µ)(y).

This together with Fatou’s lemma implies (ii). On the other hand, by (3.16)
for µ and ψ∗µ we have∫

(0,1/m)

log(mxψ(x)) dµ(x)

= (logm)ν((0, 1/m)) +
∫

(0,1/m)

log x dµ(x) +
∫

(0,1/m)

logψ(x) dµ(x) −→ 0

thanks to (3.26). Furthermore,

0 ≥
∫

(1−1/m,1)

log(1 −m(1 − x)(1 − ψ(x))) dµ(x)

≥ logψ(1 − 1/m) · µ((1 − 1/m, 1)) −→ 0.

These imply (iii). Similarly, (iv) follows from (3.17) for µ and ψ∗µ thanks to
(3.27).

We are now in the final position to prove Theorem 3.2 in full generality.

Proof of Theorem 3.2. As mentioned before we may assume n = 1, and
write p = p1, q = q1 and ψ =ψ1. We may further assume that χproj(p, q(ψ; p))>
−∞ as well as χproj(p, q) > −∞; otherwise, both sides of the inequality are
−∞ thanks to Proposition 1.2 (ii). By Proposition 2.1 both ν and ψ∗ν satisfy
condition (3.15); moreover they satisfy (3.16) unless τ (p) = τ (q) and also (3.17)
unless τ (p) = τ (1 − q). In each case where those equalities of traces occur or
not, we choose a sequence ψm correspondingly as mentioned in Lemma 3.6.
Since

‖pψm(pqp)p− pψ(pqp)p‖2
2 =

∫
(0,1)

|ψm(x) − ψ(x)|2 dν(x) −→ 0,

we get pψm(pqp)p→ pψ(pqp)p strongly so that q(ψm; p) → q(ψ; p) strongly as
m→ ∞ due to the definition of q(ψ; p). By Propositions 1.2 (iii) and 2.1 we see
that it suffices to prove the inequality in the case where ψ(0) = 0 and ψ(1) = 1.
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The same argument by using Lemma 3.5 in turn enables us to reduce the proof
to Lemma 3.3, and the proof of the inequality is now completed.

To prove the equality of the last statement, let ψ be a strictly increasing
function on (0, 1) and define ψ̃ on [0, 1] by

ψ̃(x) :=


0 (0 ≤ x ≤ ψ(0+)),

ψ−1(x) (ψ(0+) < x < ψ(1−)),

1 (ψ(1−) ≤ x ≤ 1).

Furthermore, set q̃ := q(ψ; p) and ν̃ := ψ∗ν. Then it is clear that ν̃ is the
measure corresponding to the pair (p, q̃) so that ν = ψ̃∗ν̃ and q = q̃(ψ̃; p).
Hence the inequality established above can be applied to (p, q̃) and ψ̃ too, and
we have the reversed inequality as well.

§4. Additivity and Freeness

In this section, we prove the next additivity theorem asserting that the
pair-block freeness of projections is characterized by the additivity of their free
entropy. For the projection version of free entropy we have no counterpart of
the so-called infinitesimal change of variable formula in [22, Proposition 1.3],
and hence we need to find another route to proving that the additivity implies
the freeness.

Theorem 4.1. Let p1, q1, . . . , pn, qn, r1, . . . , rn′ be projections in (M, τ ).

(1) If {p1, q1}, . . . , {pn, qn}, {r1}, . . . , {rn′} are free, then

χproj(p1, q1, . . . , pn, qn, r1, . . . , rn′) = χproj(p1, q1) + · · · + χproj(pn, qn).

(2) Conversely, if χproj(pi, qi) > −∞ for 1 ≤ i ≤ n and equality holds in (1),
then {p1, q1}, . . . , {pn, qn}, {r1}, . . . , {rn′} are free.

(3) In particular, χproj(p1, . . . , pn) = 0 if and only if p1, . . . , pn are free.

Proof. (1) It suffices to prove the following two assertions:

(a) If {p, q} and {p1, . . . , pn} are free, then

χproj(p, q, p1, . . . , pn) = χproj(p, q) + χproj(p1, . . . , pn).

(b) If {p} and {p1, . . . , pn} are free, then

χproj(p, p1, . . . , pn) = χproj(p1, . . . , pn).
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Since the proofs of these are identical, we give only that of (a), which is essen-
tially same as in [21, 24] (see also [11, pp. 269–272]).

To prove (a), we may and do assume that χproj(p, q) > −∞ and
χproj(p1, . . . , pn) > −∞. Choose k(N), l(N), ki(N) ∈ {0, 1, . . . , N} for each
N ∈ N and 1 ≤ i ≤ n so that k(N)/N → τ (p), l(N)/N → τ (q) and
ki(N)/N → τ (pi) as N → ∞. We set

ΩN (m, ε) := Γproj(p, q; k(N), l(N);N,m, ε)

× Γproj(p1, . . . , pn; k1(N), . . . , kn(N);N,m, ε),

ΘN (m, ε) := Γproj(p, q, p1, . . . , pn; k(N), l(N), k1(N), . . . , kn(N);N,m, ε).

Given m ∈ N and ε > 0 one can show as in [11, 6.4.3] that there exists ε1 > 0
such that

lim
N→∞

γN (ΩN (m, ε1) ∩ ΘN (m, ε))
γN (ΩN (m, ε1))

= 1,

where γN := γG(N,k(N)) ⊗ γG(N,l(N)) ⊗ γ�k(N) and γ�k(N) :=
⊗n

i=1 γG(N,ki(N)).
Hence we have

lim sup
N→∞

1
N2

log γN (ΘN (m, ε))

≥ lim sup
N→∞

1
N2

log γN (ΩN (m, ε1))

= lim
N→∞

1
N2

log
(
γG(N,k(N)) ⊗ γG(N,l(N))

)(
Γproj(p, q; k(N), l(N);N,m, ε1)

)
+ lim sup

N→∞

1
N2

log γ�k(N)

(
Γproj(p1, . . . , pn; k1(N), . . . , kn(N);N,m, ε1)

)
≥ χproj(p, q) + χproj(p1, . . . , pn).

Here the above equality is due to [12, Proposition 3.3]. Therefore,

χproj(p, q, p1, . . . , pn) ≥ χproj(p, q) + χproj(p1, . . . , pn),

and the reverse inequality is Proposition 1.2 (ii).

(3) will be proven in Corollary 5.7 of the next section as a consequence of
a transportation cost inequality for projection multi-variables.

(2) We may assume that p1, q1, . . . , pn, qn are all non-zero. For 1 ≤ i ≤
n let νi be the measure on (0, 1) corresponding to the pair (pi, qi) (see §2).
Since νi is non-atomic by the assumption χproj(pi, qi) > −∞, one can choose
a continuous increasing function ψi from (0, 1) into itself such that ψi∗νi is
equal to (2.4) with α = τ (pi) and β = τ (qi). Consider qi(ψi; pi) constructed
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from (pi, qi) and ψi (see §3). Since ψi∗νi corresponds to the pair (pi, qi(ψi; pi)),
we get χproj(pi, qi(ψi; pi)) = 0. Therefore, by Theorem 3.2 and the additivity
assumption, we have

χproj(p1, q1(ψ1; p1), . . . , pn, qn(ψn; pn), r1, . . . , rn′)

≥ χproj(p1, q1, . . . , pn, qn, r1, . . . , rn′) −
n∑
i=1

χproj(pi, qi) = 0.

This implies by (3) that p1, q1(ψ1; p1), . . . , pn, qn(ψn; pn), r1, . . . , rn′ are free.
Since νi and ψi∗νi are non-atomic, it is plain to see that {pi, qi}′′ =
{pi, qi(ψi; pi)}′′ for 1 ≤ i ≤ n. Hence the freeness of {p1, q1}, . . . , {pn, qn}, {r1},
. . . , {rn′} is obtained.

§5. Asymptotic Freeness and Free Transportation Cost Inequality

The aim of this section is to prove a transportation cost inequality for
tracial distributions of projection multi-variables. To do so, we first present an
asymptotic freeness result for random projection matrices generalizing
Voiculescu’s result in [19].

§5.1. Asymptotic freeness for random projection matrices

Let
({P (s,N), Q(s,N)})

s∈S be an independent family of pairs of N ×N

random projection matrices, and let k(s,N), l(s,N), n11(s,N), n10(s,N),
n01(s,N) and n00(s,N) denote the ranks of P (s,N), Q(s,N), P (s,N)∧
Q(s,N), P (s,N) ∧ Q(s,N)⊥, P (s,N)⊥ ∧ Q(s,N), P (s,N)⊥ ∧ Q(s,N)⊥, re-
spectively. For each s ∈ S we assume the following:

(1) k(s,N), l(s,N) and nij(s,N)’s are constant almost surely and k(s,N)/N ,
l(s,N)/N and nij(s,N)/N converge as N → ∞.

(2) The joint distribution of (P (s,N), Q(s,N)) is invariant under unitary con-
jugation (P,Q) �→ (UPU∗, UQU∗) for U ∈ U(N).

(3) For each s ∈ S the distribution measure of P (s,N)Q(s,N)P (s,N) with
respect to N−1TrN converges almost surely to a (non-random) measure on
[0, 1] in the weak topology as N → ∞.

Let (R(s′, N))s′∈S′ be an independent family of N × N random projection
matrices, also independent of

({P (s,N), Q(s,N)})
s∈S , and assume that each

R(s′, N) is distributed under the measure γG(N,k(s′,N)) on G(N, k(s′, N)) with
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0 ≤ k(s′, N)≤N such that k(s′, N)/N converges. Finally, let (D(t,N))t∈T be a
family of N ×N constant matrices such that supN ‖D(t,N)‖∞ < +∞ for each
t ∈ T and (D(t,N), D(t,N)∗)t∈T has the limit distribution. In this setup, we
have the following asymptotic freeness result for random projection matrices
generalizing [19, Theorem 3.11].

Theorem 5.1. With the above notations and assumptions the family(({P (s,N), Q(s,N)})
s∈S ,

(
R(s′, N)

)
s′∈S′ ,

{
D(t,N), D(t,N)∗ : t ∈ T

})
is asymptotically free almost surely as N → ∞.

Proof. Set n(s,N) :=
(
N − ∑1

i,j=0 nij(s,N)
)
/2. By assumption (1),

n(s,N) is constant almost surely and n(s,N)/N converges as N → ∞. As
before, the sine-cosine decomposition of two projections enables us to represent

P (s,N) = U(s,N)

([
I 0
0 0

]
⊕ I ⊕ I ⊕ 0 ⊕ 0

)
U(s,N)∗,

Q(s,N) = U(s,N)

([
X

√
X(I −X)√

X(I −X) I −X

]
⊕ I ⊕ 0 ⊕ I ⊕ 0

)
U(s,N)∗

in CN = (Cn(s,N) ⊗ C2) ⊕ Cn11(s,N) ⊕ Cn10(s,N) ⊕ Cn01(s,N) ⊕ Cn00(s,N), where
U(s,N) is a random unitary matrix and X = X(s,N) is a diagonal matrix
whose diagonal entries are 0 ≤ x1(s,N) ≤ x2(s,N) ≤ · · · ≤ xn(s,N)(s,N) ≤ 1.
Also, we can represent

R(s′, N) = U(s′, N)Pk(s′,N)U(s′, N)∗

for each s′ ∈ S′, where U(s′, N) is a unitary random matrix and Pk(s′,N) the
diagonal matrix whose first k(s′, N) entries are 1 and the others 0. As in the
proof of [11, 4.3.5] we can assume that (U(s,N))s∈S � (U(s′, N))s′∈S′ forms an
independent family of standard unitary matrices thanks to independence and
assumption (2). We fix s ∈ S and assume limN→∞ n0(s,N)/N > 0. (When
n(s,N)/N → 0 the discussion below becomes rather trivial.) Write A(s,N)
and B(s,N) for the matrices appearing inside AdU(s,N) in the above repre-
sentation of P (s,N) and Q(s,N), that is, A(s,N) = U(s,N)∗P (s,N)U(s,N)
and B(s,N) = U(s,N)∗Q(s,N)U(s,N). By assumption (3) one observes that
the empirical distribution n(s,N)−1

∑n(s,N)
i=1 δxi(s,N) converges to a measure ρs

on [0, 1] weakly in the almost sure sense as N → ∞. Choose (non-random) 0 ≤
ξ1(s,N) ≤ · · · ≤ ξn(s,N)(s,N) ≤ 1 in such a way that n(s,N)−1

∑n(s,N)
i=1 δξi(s,N)
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converges to ρs weakly as N → ∞. Let Ξ(s,N) be the diagonal matrix with
diagonal entries ξ1(s,N), . . . , ξn(s,N)(s,N) and define

C(s,N) :=

[
Ξ(s,N)

√
Ξ(s,N)(I − Ξ(s,N))√

Ξ(s,N)(I − Ξ(s,N)) I − Ξ(s,N)

]
⊕ I ⊕ 0 ⊕ I ⊕ 0.

By [11, 4.3.4] we then have

lim
N→∞

‖X(s,N) − Ξ(s,N)‖p,n(s,N)−1Trn(s,N)
= 0 almost surely for all p ≥ 1

so that for any polynomial F

lim
N→∞

‖F (B(s,N)) − F (C(s,N))‖p,N−1TrN
= 0 almost surely for all p ≥ 1.

Moreover, note that (A(s,N), C(s,N)) has the limit distribution for each s ∈ S.
Under the above preparations, the remaining proof is similar to that of

[11, 4.3.5] as sketched below. We may assume that
{
(D(t,N))N∈N : t ∈ T

}
forms a ∗-subalgebra of

∏
N∈N

MN (C). What we have to prove is

lim
N→∞

1
N

TrN
(
Y1(N)Y2(N) · · ·Ym(N)

)
= 0 almost surely

if (Yi(N))N∈N, 1 ≤ i ≤ m, are one of the following:

(a) Yi(N)= Fi(P (si, N), Q(si, N)) = U(si, N)Fi(A(si, N), B(si, N))U(si, N)∗

with si ∈ S and a noncommutative polynomial Fi such that
N−1TrN

(
Fi(A(si, N), B(si, N))

) → 0 almost surely,

(b) Yi(N) = αiR(s′i, N) + βiI = U(s′i, N)(αiPk(s′i,N) + βiI)U(s′i, N)∗ with s′i ∈
S′ and αi, βi ∈ C such that αiN−1k(s′i, N) + βi → 0,

(c) Yi(N) = D(ti, N) with ti ∈ T and N−1TrN (D(ti, N)) → 0,

where each neighboring Yi(N) and Yi+1(N) are of the different forms (a)–(c)
or of the same form (a) with si �= si+1 or of the same form (b) with s′i �= s′i+1.
Set Zi(N) := U(si, N)Fi(A(si, N), C(si, N))U(si, N)∗ if Yi(N) is of the form
(a) (that is, B(si, N) in the form (a) is replaced by the corresponding C(si, N)
contructed above), and otherwise Zi(N) := Yi(N). By the Hölder inequality
one has∣∣∣∣ 1
N

TrN (Y1(N) · · ·Ym(N)) − 1
N

TrN (Z1(N) · · ·Zm(N))
∣∣∣∣ −→ 0 almost surely.

Then one gets

lim
N→∞

1
N

TrN (Z1(N) · · ·Zm(N)) = 0 almost surely
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(see [11, 4.3.1]). Here the existence of the limit joint distribution of three dif-
ferent families {(A(s,N), C(s,N))}s∈S, {Pk(s′,N)}s′∈S′ and {D(t,N)}t∈T to-
gether is unnecessary (and not assumed here), because any two constant ma-
trices from those different families appearing in the string Z1(N) · · ·Zm(N) are
separated by one of U(s,N), U(s,N)∗, U(s′, N) and U(s′, N)∗. The proof is
now completed.

§5.2. Free transportation cost inequality for projections

Let A(2n+n′)
proj be the universal free product C∗-algebra of 2n+ n′ copies of

C∗(Z2) = C⊕C, and denote the canonical 2n+n′ generators of projections by
e1, f1, . . . , en, fn, e

′
1, . . . , e

′
n′ . For a given 2n+n′-tuple �P = (P1, Q1, . . . , Pn, Qn,

R1, . . . , Rn′) of projections in MN (C), there is a unique ∗-homomorphism from
A(2n+n′)

proj into MN (C) sending ei, fi, e′j to Pi, Qi, Rj , respectively, which we de-

note by h ∈ A(2n+n′)
proj �→ h(�P ) ∈MN (C). For �k := (k1, l1, . . . , kn, ln, k

′
1, . . . , k

′
n′)

∈ {0, 1, . . . , N}2n+n′
, denote by G(N,�k) the product

∏n
i=1

(
G(N, ki)×G(N, li)

)
×∏n′

j=1G(N, k′j) of Grassmannian manifolds, and by P(
G(N,�k)

)
the set of

Borel probability measures on G(N,�k). Note that each λ ∈ P(
G(N,�k)

)
clearly

gives rise to the unique tracial state λ̂ on A(2n+n′)
proj defined by

λ̂(h) :=
∫

1
N

TrN
(
h(�P )

)
dλ(�P ) for h ∈ A(2n+n′)

proj .

Let us denote by TS
(A(2n+n′)

proj

)
the set of tracial states on A(2n+n′)

proj . More-

over, we denote by TS�α(A(2n+n′)
proj ) with �α := (α1, β1, . . . , αn, βn, α

′
1, . . . , α

′
n′) ∈

[0, 1]2n+n′
the set of τ ∈ TS

(A(2n+n′)
proj

)
such that τ (ei) = αi, τ (fi) = βi and

τ (e′j) = α′
j . Following [4], we define the (free probabilistic) Wasserstein distance

W2,free(τ1, τ2) between τ1, τ2 ∈ TS
(A(2n+n′)

proj

)
to be the infimum of√√√√τ

(
n∑
i=1

(|σ1(ei) − σ2(ei)|2 + |σ1(fi) − σ2(fi)|2
)

+
n′∑
j=1

|σ1(e′j) − σ2(e′j)|2
)

over all τ ∈ TS
(A(2n+n′)

proj �A(2n+n′)
proj

)
with τ ◦ σ1 = τ1, τ ◦ σ2 = τ2, where σ1

and σ2 stand for the canonical embedding maps of A(2n+n′)
proj into the left and

right copies in A(2n+n′)
proj �A(2n+n′)

proj , respectively. The next lemma will be one
of the keys in proving a free transportation cost inequality.
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Lemma 5.2. For each pair λ1, λ2 ∈ P(
G(N,�k)

)
we have

W2,free(λ̂1, λ̂2) ≤ 1√
N
W2,HS(λ1, λ2) ≤ 1√

N
W2,d(λ1, λ2).

Here, W2,HS and W2,d are the usual Wasserstein distances determined by the
Hilbert-Schmidt norm ‖P−Q‖HS and the geodesic distance d(P,Q) with respect
to the Riemannian metric induced from TrN , respectively.

Proof. The first inequality is shown in the same way as in [14, Lemma 1.3],
while the second immediately follows from the inequality ‖P −Q‖HS ≤ d(P,Q)
(see e.g. [9, Appendix B]).

Let �α ∈ [0, 1]2n+n′
and �k(N) = (k1(N), l1(N), . . . , kn(N), ln(N), k′1(N),

. . . , k′n′(N)) ∈ {0, 1, . . . , N}2n+n′
for N ∈ N be given so that �k(N)/N → �α

as N → ∞. The free entropy χproj(τ ) for τ ∈ TS�α
(A(2n+n′)

proj

)
is defined as

follows. We denote by Γproj(τ ;�k(N);N,m, ε) the set of all 2n+ n′-tuples �P ∈
G(N,�k(N)) such that ∣∣∣∣ 1

N
TrN

(
h(�P )

)− τ (h)
∣∣∣∣ < ε

for all monomials h ∈ A(2n+n′)
proj in e1, f1, . . . , en, fn, e′1, . . . , e′n′ of degree at most

m. We then define

χproj(τ ) := lim
m→∞
ε↘0

lim sup
N→∞

1
N2

log γ�k(N)

(
Γproj(τ ;�k(N);N,m, ε)

)
,

where γ�k(N) :=
⊗n

i=1

(
γG(N,ki(N)) ⊗ γG(N,li(N))

) ⊗ ⊗n′

j=1 γG(N,k′
j(N)) on G(N,

�k(N)). Note that the quantity χproj(τ ) coincides with χproj(p1, q1, . . . , pn, qn,

r1, . . . , rn′) when pi := πτ (ei), qi := πτ (fi) and rj := πτ (e′j) in the GNS

representation of A(2n+n′)
proj associated with τ ; hence it is independent of the

particular choice of �k(N) due to Proposition 1.1.
In what follows, let τ ∈ TS�α

(A(2n+n′)
proj

)
be arbitrarily fixed. Then one can

choose a subsequence N1 < N2 < · · · so that

(5.1) χproj(τ ) = lim
m→∞

1
N2
m

log γ�k(Nm)

(
Γproj(τ ;�k(Nm);Nm,m, 1/m)

)
.

Set ΓNm
:= Γproj(τ ;�k(Nm);Nm,m, 1/m) and define λτNm

∈ P(
G(Nm,�k(Nm))

)
by

dλτNm
(�P ) :=

1
γ�k(Nm)(ΓNm

)
1ΓNm

(�P ) dγ�k(Nm)(�P ).

Here the next lemma can be easily proven as in the proof of [14, Eq. (2.5)].
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Lemma 5.3. lim
m→∞ λ̂τNm

= τ in the weak* topology.

For 1 ≤ i ≤ n the C∗-subalgebra generated by ei, fi (obviously identified
with A(2)

proj = C∗(Z2�Z2)) is isomorphic to

A :=
{
a(·) = [aij(·)]2i,j=1 ∈ C([0, 1];M2(C)) : a(0), a(1) are diagonals

}
by

ei �→ e(t) =

[
1 0
0 0

]
, fi �→ f(t) =

[
t

√
t(1 − t)√

t(1 − t) 1 − t

]
.

Under this isomorphism, any tracial state on A is written as

τν,{αij}(a) := α10a11(0) + α01a22(0) + α11a11(1) + α00a22(1)

+
∫

(0,1)

1
2
Tr2(a(t)) dν(t),

where αij ≥ 0,
∑1
i,j=0 αij ≤ 1 and ν is a measure on (0, 1) with ν((0, 1)) =

1 −∑1
i,j=0 αij . Let �ψ = (ψ1, . . . , ψn) be an n-tuple of continuous functions on

[0, 1], and define the probability distribution λψi

N on G(N, ki(N))×G(N, li(N))
by

dλψi

N (P,Q) :=
1

Zψi

N

exp
(−NTrN (ψi(PQP ))

)
d(γG(N,ki(N)) ⊗ γG(N,li(N)))(P,Q)

with the normalization constant Zψi

N . For τν,{αij} ∈ TS(αi,βi)

(A(2)
proj) one has

χproj(τν,{αij}) − τν,{αij}(ψi(efe))

=
1
4
Σ(ν)+

1
2

∫
(0,1)

(
(α01 + α10) log t+(α00 + α11) log(1 − t) − ψi(t)

)
dν(t) − C

with some constant C if α00α11 = α01α10 = 0, and otherwise −∞. Thus,
a general result on weighted logarithmic energy (see [18]) ensures that there
is a unique maximizer τψi

(αi,βi)
∈ TS(αi,βi)

(A(2)
proj

)
of the functional τ ∈

TS(αi,βi)

(A(2)
proj

) �→ χproj(τ ) − τ (ψi(efe)). Then, we define the tracial state

τ
�ψ
�α ∈ TS

(A(2n+n′)
proj

)
by

τ
�ψ
�α :=

(
�n
i=1τ

ψi

(αi,βi)

)
�τ(α′

1,...,α
′
n′ ), τ(α′

1,...,α
′
n′ ) := �n′

j=1

(
α′
jδ0 + (1 − α′

j)δ1
)

in the natural identification A(2n+n′)
proj =

(
�n
i=1A(2)

proj

)
�

(
�n′
j=1C

∗(Z2)
)
. Fur-

thermore, we define the joint distribution

λ
�ψ
N :=

(
n⊗
i=1

λψi

N

)
⊗

(
n′⊗
j=1

γG(N,k′
j(N))

)
on G(N,�k(N))
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(also considered as a 2n + n′-tuple of random projection matrices). The next
lemma follows from a large deviation result for two projection matrices as in
[12] and Theorem 5.1.

Lemma 5.4.

(1) Bψi
:= lim

N→∞
1
N2

logZψi

N exists for every 1 ≤ i ≤ n.

(2) lim
N→∞

λ̂
�ψ
N = τ

�ψ
�α in the weak* topology.

Proof. When e1, f1, . . . , en, fn disappear and only e′1, . . . , e′n′ appear, we
have nothing to do for (1) and moreover (2) immediately follows from
Voiculescu’s original result [19, Theorem 3.11] rather than Theorem 5.1 as
follows. Let R1(N), . . . , Rn′(N) be an independent family of random projec-
tion matrices of ranks k′j(N) distributed under γG(N,k′

j(N)), respectively. Note

that λ
�ψ
N in this case coincides with γN :=

⊗n′

j=1 γG(N,k′
j(N)). For a monomial

h = rj1 · · · rjm ∈ A(n′)
proj one has

γ̂N (h) = E ◦
(

1
N

TrN

)
(Rj1(N) · · ·Rjm(N)),

which converges to τ(α′
1,...,α

′
n′ )(rj1 · · · rjm) thanks to [19, Theorem 3.11]. This

immediately implies (2) in this special case.
For the general case, i.e., when e1, f1, . . . , en, fn really appear, we need

to show (1) and limN→∞ λ̂ψi

N = τψi

�α weakly* for each 1 ≤ i ≤ n. Both are
simple applications of the large deviation result for the empirical eigenvalue
distribution of two random projection matrix pair (P (N), Q(N)) distributed
under λψi

N , whose proof is essentially same as in [12, Proposition 2.1] (or in the
proof of [15, Theorem 2.1]). Once the latter convergence was established, the
above argument would equally work well even in the general setting when [19,
Theorem 3.11] is replaced by Theorem 5.1.

With the above lemmas we can now prove the following transportation
cost inequality in the essentially same manner as in [14].

Theorem 5.5. Assume that ψi’s are C2-functions and ρ := min
{
1 −

c1‖ψ′
i‖∞ − c2‖ψ′′

i ‖∞ : 1 ≤ i ≤ n
}
> 0 for some universal constants c1, c2 > 0.

For every τ ∈ TS�α
(A(2n+n′)

proj

)
we have

(5.2) W2,free

(
τ, τ

�ψ
�α

)
≤

√√√√2
ρ

(
−χproj(τ ) + τ

(
n∑
i=1

ψi(pqp)

)
+B�ψ

)



80 Fumio Hiai and Yoshimichi Ueda

with B�ψ :=
∑n
i=1Bψi

. In particular, when e1, f1, . . . , en, fn disappear and only
e′1, . . . , e

′
n′ appear, (5.2) simply becomes

(5.3) W2,free

(
τ, τ(α′

1,...,α
′
n′ )

) ≤ √
−2χproj(τ ).

Proof. Since W2,free is lower semi-continuous in the weak* topology, we
have by Lemmas 5.3 and 5.4 (2)

W2,free

(
τ, τ

�ψ
�α

)
≤ lim inf

m→∞ W2,free

(
λ̂τNm

, λ̂
�ψ
Nm

)
.

By Lemma 5.2 we also have

W2,free

(
λ̂τNm

, λ̂
�ψ
Nm

)
≤ 1√

Nm
W2,d

(
λτNm

, λ
�ψ
Nm

)
.

We then need to confirm Bakry and Emery’s Γ2-criterion [1] for λ
�ψ
N with the

constant ρN , that is,

(5.4) Ric
(
G(N,�k(N))

)
+ Hess(ΨN ) ≥ ρNId(N),

where Ric
(
G(N,�k(N))

)
is the Ricci curvature tensor of G(N,�k(N)), Hess(ΨN )

is the Hessian of the trace function

ΨN (P1, Q1, . . . , Pn, Qn, R1, . . . , Rn′) := NTrN

(
n∑
i=1

ψi(PiQiPi)

)
,

and d(N) is the dimension of G(N,�k(N)), i.e.,

d(N) := 2
n∑
i=1

(
ki(N)(N−ki(N))+li(N)(N−li(N))

)
+2

n′∑
j=1

k′j(N)(N−k′j(N)).

It is known (see [15, Eq. (2.2)]) that Ric(G(N, k)) = NI2k(N−k) so that we need
only to estimate the Hessian Hess(Ψ(i)

N ) of the trace function Ψ(i)
N : (P,Q) ∈

G(N, ki(N))×G(N, li(N)) �→ NTrN (ψi(PQP )) from below. This can be done
by computing Hess(Ψ(i)

N ) explicitly, and consequently we can find two universal
constants c1, c2 > 0 so that

Hess(Ψ(i)
N ) ≥ −N(c1‖ψ′

i‖∞ + c2‖ψ′′
i ‖∞)I2ki(N)(N−ki(N))+2li(N)(N−li(N)).

Hence (5.4) is confirmed. See Remark 5.6 below for more details on this esti-
mate. Thus, by the transportation cost inequality in the Riemannian manifold
setting due to Otto and Villani [17] we obtain

(5.5) W2,d

(
λτNm

, λ
�ψ
Nm

)
≤

√
2

ρNm
S
(
λτNm

, λ
�ψ
Nm

)
,
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where S
(
λτNm

, λ
�ψ
Nm

)
stands for the usual relative entropy. We compute

S
(
λτNm

, λ
�ψ
Nm

)
=
∫

log
dλτNm

dλ
�ψ
Nm

dλτNm

=− log γ�k(Nm)(ΓNm
) +N2

mλ̂
τ
Nm

(
n∑
i=1

ψi(eifiei)

)
+

n∑
i=1

logZψi

Nm
.

Consequently, we obtain the desired inequality (5.2) by taking the limit of
(5.5) as m→ ∞ after divided by N2

m due to (5.1), Lemmas 5.3 and 5.4 (1). Fi-
nally, we should remark that if e1, f1, . . . , en, fn disappeared, then the argument
would become simpler without estimating the Hessian of ΨN .

Remark 5.6. The computation of Hess(Ψ(i)
N ) mentioned in the above

proof is outlined here. The tangent space TPG(N, k) at P ∈ G(N, k) is iden-
tified with the set of X ∈ MN (C)sa satisfying X = PX + XP , on which our
Riemannian metric is given by 〈X|Y 〉 := Re TrN (Y X) (this is inherited from
that on the Euclidean space MN (C)sa). Moreover, the geodesic curve started
at P with tangent vector X is given by C(t) := exp(t[X,P ])P exp(−t[X,P ])
for t ∈ R. (See e.g. [6, §2] for a brief summary and references therein.) Since〈

Hess(Ψ(i)
N )((C1(0), C2(0))(C ′

1(0) ⊕ C ′
2(0)|C ′

1(0) ⊕ C ′
2(0))

〉
=

d2

dt2

∣∣∣∣
t=0

NTrN (ψi(C1(t)C2(t)C1(t)))

for geodesic curves C1(t) ∈ G(N, ki(N)) and C2(t) ∈ G(N, li(N)), it suffices
(for getting the desired inequality in the above proof) to estimate, at t = 0, the
second derivative of the composition of φ(t) := C1(t)C2(t)C1(t) ∈MN (C)sa and
X ∈ MN (C)sa �→ Φ(X) := NTrN (ψi(X)) with the usual Euclidean structure
on MN (C)sa. Passing once to the identification MN (C)sa = R

N2
, we observe

that

(Φ ◦ φ)′′(0) =
〈
(∇2Φ)(φ(0))φ′(0)|φ′(0)

〉
+

〈
(∇Φ)(φ(0))|φ′′(0)

〉
thanks to the usual chain rule. By [13, Lemma 1.2] we can estimate the
operator norms ‖(∇2Φ)(φ(0))‖∞ (for linear operators on (MN (C)sa, 〈 · | · 〉))
and ‖(∇Φ)(φ(0))‖∞ (for elements in MN (C)sa) by N‖ψ′′

i ‖∞ and N‖ψ′
i‖∞, re-

spectively, from the above. As mentioned above the tangent vector C ′
i(0) ∈

MN (C)sa satisfies C ′
i(0) = Ci(0)C ′

i(0) + C ′
i(0)Ci(0) and the geodesic curve

Ci(t) must be

Ci(t) = exp(t[C ′
i(0), Ci(0)])Ci(0) exp(−t[C ′

i(0), Ci(0)]).
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It follows from these facts that

φ′(0) = C ′
1(0)C2(0)C1(0) + C1(0)C ′

2(0)C1(0) + C1(0)C2(0)C ′
1(0),

φ′′(0) = [[C ′
1(0), C1(0)], C ′

1(0)]C2(0)C1(0)

+ C1(0)[[C ′
2(0), C2(0)], C ′

2(0)]C1(0)

+ C1(0)C2(0)[[C ′
1(0), C1(0)], C ′

1(0)]

+ 2
{
C ′

1(0)C ′
2(0)C1(0) + C ′

1(0)C2(0)C ′
1(0) + C1(0)C ′

2(0)C ′
1(0)

}
.

Hence we get the rough estimates

‖φ′(0)‖2
HS ≤ 6‖C ′

1(0)‖2
HS + 3‖C ′

2(0)‖2
HS,

‖φ′′(0)‖1,TrN
≤ 8‖C ′

1(0)‖2
HS + 4‖C ′

2(0)‖2
HS

(we used 2C ′
i(0)2 = |[C ′

i(0), Ci(0)], C ′
i(0)]|, i = 1, 2, for the latter). Therefore,

(Φ ◦ φ)′′(0)

≤ N
{
(8‖ψ′

i‖∞ + 6‖ψ′′
i ‖∞)‖C ′

1(0)‖2
HS + (4‖ψ′

i‖∞ + 3‖ψ′′
i ‖∞)‖C ′

2(0)‖2
HS

}
.

Since Φ ◦ φ(t) does not change when C1(t), C2(t) are interchanged, one finally
finds two universal constants c1 = 6 > 0, c2 = 9/2 > 0 so that

|(Φ ◦ φ)′′(0)| ≤ N(c1‖ψ′
i‖∞ + c2‖ψ′′

i ‖∞)(‖C ′
1(0)‖2

HS + ‖C ′
2(0)‖2

HS),

which immediately implies the desired inequality.

Corollary 5.7. If p1, . . . , pn are projections in (M, τ ) and χproj(p1, . . . ,

pn) = 0, then p1, . . . , pn are free.

Proof. This follows from (5.3) and the fact that W2,free is a metric on
TS�α

(A(n)
proj

)
, where �α := (τ (p1), . . . , τ(pn)).

The corollary was an essential ingredient of the proof of Theorem 4.1.
In the self-adjoint case, the free transportation cost inequality [14, Theorem
2.2 or Corollary 2.3] provides a new proof of the fact that X1, . . . , Xn form
a free semicircular system if χ(X1, . . . , Xn) attains the maximum under the
restriction τ (X2

i ) = 1, while Voiculescu’s original proof in [22] is based on the
infinitesimal change of variable formula.
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§6. Free Pressure

Let
(A(n)

proj

)sa denote the space of self-adjoint elements in the universal

C∗-algebra A(n)
proj with the canonical projection generators e1, . . . , en as in the

previous section. Elements in
(A(n)

proj

)sa are considered as “free probabilistic
hamiltonians on Z

�n
2 .” Motivated from the viewpoint of statistical mechan-

ics, we introduce the free pressure for those free hamiltonians, and its Legendre
transform with respect to the duality between

(A(n)
proj

)sa and TS
(A(n)

proj

)
is com-

pared with χproj.
Let �α = (α1, . . . , αn) ∈ [0, 1]n and �k(N) = (k1(N), . . . , kn(N)) ∈ {0, 1, . . . ,

N} for N ∈ N be given so that �k(N)/N → �α as N → ∞. As before we write
G(N,�k(N)) :=

∏n
i=1G(N, ki(N)) and γ�k(N) :=

⊗n
i=1 γG(N,ki(N)) for short. For

�P = (P1, . . . , Pn) ∈ G(N)n we have the ∗-homomorphism h ∈ A(n)
proj �→ h(�P ) ∈

MN (C) sending ei to Pi, 1 ≤ i ≤ n. For each h ∈ (A(n)
proj

)sa define

(6.1) π�α(h) := lim sup
N→∞

1
N2

log
∫
G(N,�k(N))

exp
(
−NTrN

(
h(�P )

))
dγ�k(N)(�P ),

which we call the free pressure of h under the trace values (α1, . . . , αn).

Proposition 6.1. The above definition of π�α(h) is independent of the
choices of �k(N) with �k(N)/N → �α.

Proof. Let �l(N) = (l1(N), . . . , ln(N))), N ∈ N, be another sequence such
that �l(N)/N → �α as N → ∞. We set

δN (h) := max
�U∈U(N)n

∣∣∣∣ 1
N

TrN
(
h(ξ�k(N)(�U)

)− 1
N

TrN
(
h(ξ�l(N)(�U)

)∣∣∣∣
for h ∈ A(n)

proj and N ∈ N, where ξ�k(N)(�U) := (ξN,k1(N)(U1), . . . , ξN,kn(N)(Un))

for �U = (U1, . . . , Un) (see §1). Thanks to (1.2) we get∣∣∣∣∣ 1
N2

log
∫
G(N,�k(N))

exp
(
−NTrN

(
h(�P )

))
dγ�k(N)(�P )

− 1
N2

log
∫
G(N,�k(N))

exp
(
−NTrN

(
h(�P )

))
dγ�k(N)(�P )

∣∣∣∣∣
=

∣∣∣∣∣ 1
N2

log
∫

U(N)n

exp
(
−NTrN

(
h(ξ�k(N)(�U)

))
d
(
γU(N)

)⊗n(�U)

− 1
N2

log
∫

U(N)n

exp
(
−NTrN

(
h(ξ�l(N)(�U)

))
d
(
γU(N)

)⊗n(�U)

∣∣∣∣∣
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≤ δN (h)

for each h ∈ (A(n)
proj

)sa. Hence, it suffices to prove that δN (h) → 0 as N → ∞.

Since |δN (h1) − δN (h2)| ≤ ‖h1 − h2‖ for all h1, h2 ∈ A(n)
proj, we may show that

δN (h) → 0 for h = ei1 · · · eir with 1 ≤ i1, . . . , ir ≤ n. As in the proof of
Proposition 1.1 we have, for such h,∣∣∣∣ 1

N
TrN

(
h(ξ�k(N)(�U)

)− 1
N

TrN
(
h(ξ�l(N)(�U)

)∣∣∣∣
≤

r∑
j=1

‖ξN,kij
(N)(Uij ) − ξN,lij

(N)(Uij )‖1

≤
r∑
j=1

|kij (N) − lij (N)|
N

−→ 0

as N → ∞, and the conclusion follows.

The following are basic properties of π�α(h); we omit the proofs very similar
to those of [10, Proposition 2.3] but note that the last assertion of (iv) follows
from (6.2) and Proposition 6.4 (1) below.

Proposition 6.2.

(i) π�α(h) is convex on
(A(n)

proj

)sa.
(ii) If h1, h2 ∈ (A(n)

proj

)sa and h1 ≤ h2, then π�α(h1) ≥ π�α(h2).

(iii) |π�α(h1) − π�α(h2)| ≤ ‖h1 − h2‖ for all h1, h2 ∈ (A(n)
proj

)sa.
(iv) If h1 ∈ (A(j)

proj

)sa and h2 ∈ (A(n−j)
proj

)sa with 1 ≤ j < n, then

π�α(h1 + h2) ≤ π(α1,...,αj)(h1) + π(αj+1,...,αn)(h2),

where h1 + h2 is the sum as an element of A(n)
proj = A(j)

proj�A(n−j)
proj . In

particular when j = 1 or j = 2, equality holds in the above inequality.

Remark 6.3. Another possible definition of free pressure is to use the
probability measure γ(1)

G(N) or γ(2)
G(N) on G(N) given in Remark 1.3. For h ∈(A(n)

proj

)sa define

π(j)(h) := lim sup
N→∞

1
N2

log
∫
G(N)n

exp
(
−NTrN

(
h(�P )

))
d
(
γ

(j)
G(N)

)⊗n(�P )
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for j = 1, 2. It is not difficult to show that

π(1)(h) = π(2)(h) = max
{
π�α(h) : �α ∈ [0, 1]n

}
for every h ∈ (A(n)

proj

)sa. We simply write π(h) for these equal quantities; then
π(h) has the same properties as in Proposition 6.2. However, unlike the free
entropy quantities χ(j)

proj discussed in Remark 1.3, π(h) does not coincide with
π�α(h); the latter actually depends on �α.

In the single projection case, A(1)
proj = C2,

(A(1)
proj

)sa = R2 and TS
(A(1)

proj

)
=

{τα : 0 ≤ α ≤ 1} where τα(ζ1, ζ2) = αζ1 + (1 − α)ζ2 for (ζ1, ζ2) ∈ C
2. Let 0 ≤

α ≤ 1 and choose k(N) such that k(N)/N → α. For each h = (h1, h2) ∈ R2, it
is straightforward to check that

πα(h) = lim
N→∞

1
N2

log
∫
G(N,k(N))

exp
(−NTrN (h(P ))

)
dγG(N,k(N))(P )(6.2)

= −αh1 − (1 − α)h2 = −τα(h)

and hence χproj(τα) = 0 = τα(h) + πα(h). Moreover,

π(h) = −min{h1, h2} = min{−τα(h) + χproj(τα) : 0 ≤ α ≤ 1}.
In the case of two projections, A(2)

proj = C∗(Z2�Z2) with the canonical
projection generators e, f . Let α, β ∈ [0, 1]. The next theorem says that the
free entropy χproj(τ ) for τ ∈ TS(α,β)

(A(2)
proj

)
and the free pressure π(α,β)(h) for

h ∈ (A(2)
proj

)sa are the Legendre transforms of each other.

Proposition 6.4.

(1) In the definition of π(α,β)(h) in (6.1) lim sup can be replaced by lim.

(2) π(α,β)(h) = max
{
−τ (h) + χproj(τ ) : τ ∈ TS(α,β)

(A(2)
proj

)}
for every h ∈(A(2)

proj

)sa.
(3) χproj(τ )=inf

{
τ (h)+π(α,β)(h) : h∈(A(2)

proj

)sa} for every τ ∈TS(α,β)

(A(2)
proj

)
.

(4) π(h) = max
{
−τ (h) + χproj(τ ) : τ ∈ TS

(A(2)
proj

)}
for every h ∈ (A(2)

proj

)sa.
Proof. Thanks to the Lipschitz continuity in h of the quantity inside

lim sup in (6.1) as well as both sides of the equality in (2), to prove (1) and (2),
we may assume that h is a self-adjoint polynomial of e, f written as

h = C1 +Ae+Bf +
m∑
k=1

Aj(efe)j +
m∑
j=1

Bj(fef)j +
m∑
j=1

Dj((ef)j + (fe)j)
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with A,B,C,Aj, Bj , Dj ∈ R. Set

h0 := Ae+Bf +
m∑
k=0

Ck(efe)k

with C0 := C, Cj := Aj +Bj +Dj , 1 ≤ j ≤ m. We then get τ (h) = τ (h0) and
TrN (h(P,Q)) = TrN (h0(P,Q)) for P,Q ∈ G(N) so that π(α,β)(h) = π(α,β)(h0).
Hence it is enough to prove (1) and (2) for h0 above. A bit more generally, let
h ∈ (A(2)

proj

)sa be of the form

h = Ae+Bf + ψ(efe),

where ψ is a real continuous function on [0, 1]. Choosing k(N), l(N) such that
k(N)/N → α and l(N)/N → β, we have

1
N2

log
∫
G(N,k(N))×G(N,l(N))

exp
(−NTrN (ψ(P,Q))

)(6.3)

d
(
γG(N,k(N)) ⊗ γG(N,l(N))

)
(P,Q)

= −Ak(N)
N

−B
l(N)
N

+
1
N2

log
∫

[0,1]n
exp

(
−N

N∑
i=1

ψ(xi)

)
dλN (x1, . . . , xN ),

where λN is the empirical eigenvalue distribution of PQP when (P,Q) is dis-
tributed under γG(N,k(N))⊗γG(N,l(N)). By applying Varadhan’s integral lemma
(see [7, 4.3.1]) to the large deviation in [12, Theorem 2.2] we have

lim
N→∞

1
N2

log
∫

[0,1]n
exp

(
−N

N∑
i=1

ψ(xi)

)
dλN (x1, . . . , xN )

(6.4)

= sup
ν

{
−(1 − min{α, β})ψ(0) − max{α+ β − 1, 0}ψ(1) − 1

2

∫
[0,1]

ψ(x) dν(x)

+
1
4
Σ(ν) +

|α− β|
2

∫
[0,1]

log x dν(x)

+
|α+ β − 1|

2

∫
[0,1]

log(1 − x) dν(x) − C

}
,

where ν runs over all measures on (0, 1) with ν((0, 1)) = 2ρ. Here, ρ is in
(2.1) and C in (2.2). Let τ = τν,{αij} ∈ TS(α,β)

(A(2)
proj

)
(see §2 and §5). When
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α00α11 = α01α10 = 0 (this is necessary for χproj(τ ) > −∞), χproj(τ ) is given
as in Proposition 2.1 and moreover we get

τ (h) = Aα+Bβ + (α10 + α01 + α00)ψ(0) + α11ψ(1)

+
1
2

∫
(0,1)

(ψ(x) + ψ(0)) dν(x)

= Aα+Bβ + (1 − min{α, β})ψ(0) + max{α+ β − 1, 0}ψ(1)

+
1
2

∫
(0,1)

ψ(x) dν(x)

thanks to (2.3). Furthermore, Proposition 2.1 implies that χproj(τ ) is concave
and weakly* upper semi-continuous restricted on TS(α,β)

(A(2)
proj

)
. Hence we

obtain (1) and (2) by (6.3) and (6.4) together with the formulas of χproj(τ ) and
τ (h). Moreover, (3) follows from (2) due to the duality for conjugate functions
(or Legendre transforms). Finally, (4) is obvious from (2) and Remark 6.3.

Now, we introduce a free entropy-like quantity for tracial states on A(n)
proj

(or for n-tuples of projections) via the (minus) Legendre transform of free
pressure. Define

ηproj(τ ) := inf
{
τ (h) + π�α(h) : h ∈ (A(n)

proj

)sa}
for �α ∈ [0, 1]n and τ ∈ TS�α

(A(n)
proj

)
. Since π�α is a convex and continuous

function on
(A(n)

proj

)sa by Proposition 6.2, the above Legendre transform is
reversed so that we have

π�α(h) = sup
{
−τ (h) + ηproj(τ ) : τ ∈ TS�α

(A(n)
proj

)}
for h ∈ (A(n)

proj

)sa. For each h ∈ (A(n)
proj

)sa there exists a τ ∈ TS�α
(A(n)

proj

)
such

that
π�α(h) = −τ (h) + ηproj(τ ).

This equality condition is a kind of variational principle and such τ may be
called an equilibrium tracial state associated with h (and �α).

Moreover, for each n-tuple (p1, . . . , pn) of projections in (M, τ ), we have
τ(p1,...,pn) ∈ TS

(A(n)
proj

)
defined by τ(p1,...,pn)(h) := τ (h(p1, . . . , pn)), where h ∈

A(n)
proj �→ h(p1, . . . , pn) ∈ M is the ∗-homomorphism sending ei to pi, 1 ≤ i ≤ n.

We define
ηproj(p1, . . . , pn) := ηproj(τ(p1,...,pn)).

It is obvious by definition that the quantity ηproj(p1, . . . , pn) has the same
properties as χproj(p1, . . . , pn) given in Proposition 1.2.
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Theorem 6.5. Let p1, q1, . . . , pn, qn, r1, . . . , rn′ be projections in (M, τ ).

(1) ηproj(p1, . . . , pn) ≥ χproj(p1, . . . , pn).

(2) If {p1, q1}, . . . , {pn, qn}, {r1}, . . . , {rn′} are free, then

ηproj(p1, q1, . . . , pn, qn, r1, . . . , rn′) = χproj(p1, q1, . . . , pn, qn, r1, . . . , rn′).

Proof. The proof of (1) is similar to that of [10, Theorem 4.5 (1)]. By
(6.2) and Proposition 6.4 (3), ηproj = χproj holds when n = 1 or n = 2. Hence
(2) is seen from (1) together with the subadditivity of ηproj and the additivity
of χproj in Theorem 4.1 (1).

Remark 6.6. It is known that ηproj and χproj are not equal in gen-
eral. This can be seen as in [10, Remark 4.6] by proving the so-called de-
generate convexity [26, χ.8] for χproj. In fact, Miyamoto [28] proved that if
χproj(p1, . . . , pn) > −∞ and

∑n
i=1 min{τ (pi), τ (1−pi)} > 1 (this forces n ≥ 3),

then {p1, . . . , pn}′′ is a non-Γ II1 factor.

Finally, we note that the definition (6.1) is slightly modified in such a
way that the modified free pressure π(2)

�α (g) is defined for self-adjoint elements
of the minimal C∗-tensor product A(n)

proj ⊗min A(n)
proj and the modified quantity

η̃proj(p1, . . . , pn) induced from π
(2)
�α via Legendre transform is always equal to

χproj(p1, . . . , pn). The procedure of this modification is essentially same as [10,
§6] so that we omit the details.
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