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Simultaneous Linearization of Holomorphic
Maps with Hyperbolic and Parabolic

Fixed Points

By

Tetsuo Ueda∗

Abstract

We study local holomorphic mappings of one complex variable with parabolic
fixed points as a limit of a families of mappings with attracting fixed points. We show
that the Fatou coordinate for a parabolic fixed point can be obtained as a limit of
some linear function of the solutions to Schröder equation for perturbed mappings
with attracting fixed points.

§1. Introduction

Let g(w) be a holomorphic function of one variable of the form

g(w) = λw +
∞∑

ν=2

bνw
ν

defined in a neighborhood of the origin 0. If 0 < |λ| < 1, then there are a
neighborhood V of 0 such that g(V ) ⊂ V and an injective holomorphic function
ρ(w) on V satisfying the Schröder equation

ρ(g(w)) = λρ(w).

If λ = 1 and b2 �= 0, then there are a domain V whose boundary contains 0 and
an injective function ϕ(w) (Fatou coordinate) satisfying the Abel equation

ϕ(g(w)) = ϕ(w) + 1,
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which is unique up to an additive constant. (See Schröder [9], Koenigs [5], Leau
[6], Fatou [3] and Milnor [8], for these classical results.)

In this paper, we consider families of functions gλ(w) which have λ as a
parameter and show that, when λ tends non-tangentially to 1 from inside of
the unit disk, some linear function of ρλ(w) converges to ϕ(w).

To do this it is convenient to consider the case where the fixed point is
∞ on the Riemann sphere. By scaling the coordinate, we consider a family of
holomorphic maps of the form

fτ (z) = τz + 1 +
a1,τ

z
+
a2,τ

z2
+ · · ·

defined in a neighborhood of ∞. Here the parameter τ = 1/λ varies in a
neighborhood of τ = 1. For |τ | > 1, let χτ (z) denote the unique solution of the
equation

χτ (f(z)) = τχτ (z)

with χτ (∞) = ∞ and normalized so that χ(z) = z+O(1) in a neighborhood of
∞. We will show that, when τ tends to 1 non-tangentially within the domain
|τ | > 1, the sequence

χτ (z) − 1
τ − 1

− a1,τ log(τ − 1)

converges to a solution to the Abel equation

ϕ(f1(z)) = ϕ(z) + 1.

Precise statement and different formulations of the results are given in Theo-
rems 3.3–3.6.

An alternative proof and a generalization is given recently by T. Kawahira
[4]. As a related result, we note that T. C. McMullen showed the existence of
quasiconformal maps giving conjugacies between fτ and linear maps (see [7],
Theorem 8.2).

§2. Preliminaries

§2.1. A family of linear maps

We begin with studying the family {�τ}τ of linear maps

(1) �τ (z) = τz + 1

on the Riemann sphere Ĉ depending on the complex parameter τ . When |τ | >
1, the map �τ has ∞ as an attracting fixed point and all points except for
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1/(1 − τ ) converge locally uniformly to ∞ by the iterates of �τ . When τ = 1,
then ∞ is a parabolic fixed point and all points in Ĉ converges to ∞, though
the convergence is not uniform in the neighborhood of ∞.

We will investigate the uniformity, with respect to the parameter τ , of the
convergence of the iterates �nτ , when τ tends to 1 non-tangentially from outside
of the unit disk. So we will restrict the parameter τ in the closed sector

Tα = {τ ∈ C | Re τ − 1 ≥ |τ − 1| cosα},
where α is a real number with 0 < α < π/2, fixed throughout this paper.

To measure the rate of convergence to ∞, we introduce the function N :
Ĉ × Tα − {(∞, 1)} → R ∪ {∞} as follows.

Nτ (z) =
∣∣∣∣z − 1

1 − τ

∣∣∣∣ −
∣∣∣∣ 1
1 − τ

∣∣∣∣ for (z, τ ) ∈ Ĉ × (Tα − {1});

N1(z) = sup
|θ|≤α

Re(eiθz) for z ∈ C.

We will not define N1(∞). It is easy to see that the inequality

|Nτ (z1) −Nτ (z2)| ≤ |z1 − z2| z1, z2 ∈ C, τ ∈ Tα

holds. In particular we have

Nτ (z) ≤ |z|, z ∈ C, τ ∈ Tα.

Lemma 2.1. Nτ (z) is upper semi-continuous as a function of two vari-
ables (z, τ ) ∈ C × Tα − {z = ∞} and

N1(z) = lim sup
Tα�τ→1

Nτ (z).

Proof. For r > 0, we let N̂(r,θ)(z) = N1+reiθ(z). Then

N̂(r,θ)(z) =
∣∣∣∣z +

1
reiθ

∣∣∣∣ − 1
r

=
1
r
{(1 + 2rRe(eiθz) + r2|z|2)1/2 − 1}.

This can be extended to a continuous function on Ĉ×{r ≥ 0}×R, by defining
N̂(0,θ)(z) = Re(eiθz). Hence

lim sup
Tα�τ→1

Nτ (z) = sup
|θ|≤α

N̂(0,θ)(z) = sup
|θ|≤α

Re(eiθz) = N1(z).

This shows the assertion.

To have a uniform estimate of the rate of convergence of the iterats of �τ ,
let us first show the following:
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Lemma 2.2. For (z, τ ) ∈ Ĉ × Tα − {(∞, 1)}, we have

Nτ (�τ (z)) ≥ |τ |Nτ (z) + cosα.

Proof. First, if τ ∈ T − {1}, then (1) is rewritten as

�τ (z) − 1
1 − τ

= τ

(
z − 1

1 − τ

)
.

Hence

Nτ (�τ (z)) =
∣∣∣∣�τ (z) − 1

1 − τ

∣∣∣∣ −
∣∣∣∣ 1
1 − τ

∣∣∣∣
= |τ |

∣∣∣∣z − 1
1 − τ

∣∣∣∣ −
∣∣∣∣ 1
1 − τ

∣∣∣∣
= |τ |Nτ (z) +

|τ | − 1
|1 − τ |

≥ |τ |Nτ (z) + cosα.

Here we have used the fact that

|τ | − 1
|τ − 1| ≥

Re(τ ) − 1
|τ − 1| ≥ cosα.

If τ = 1, then �1(z) = z + 1, and hence

Re(eiθ�1(z)) = Re(eiθz) + cos θ ≥ Re(eiθz) + cosα.

Therefore
N1(�1(z)) ≥ N1(z) + cosα

and the lemma is proved.

Let R be a real number and define

Vα(R) = {(z, τ ) ∈ Ĉ × Tα − {(∞, 1)} | Nτ (z) > R}.

We note that Vα(R) is not open. Slices of Vα(R) by τ = const. are open sets
given by

Vτ (R) = {z ∈ Ĉ | Nτ (z) > R} (τ �= 1);

V1(R) = {z ∈ C | N1(z) > R} =
⋃

|θ|≤α

{Re(eiθz) > R}.
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Proposition 2.3. We have

(2) |�nτ (z)| ≥ n cosα for Vα(0)

and hence the sequence {�nτ (z)}n converges to ∞ uniformly Vα(0).

Proof. Nτ (z) > 0 implies Nτ (�(z)) ≥ Nτ (z) + cosα > 0 by Lemma 2.2.
Hence, if τ ∈ Tα and z ∈ Vτ (0), then �nτ (z) ∈ Vτ (0) and

|�nτ (z)| ≥ Nτ (�nτ (z)) ≥ Nτ (z) + n cosα ≥ n cosα,

for all n. This proves the assertion.

§2.2. Solution to a difference equation

We consider the difference equation

(3) hτ (�τ (z)) − τhτ (z) =
1
z

+ Cτ ,

where �τ (z) = τz+ 1 with |τ | > 1 or τ = 1; and Cτ is a constant depending on
τ , which will be given later.

A solution to this equation is given by

(4) hτ (z) = − 1
τz

+
∞∑

n=1

1
τn+1

{
1

�nτ (0)
− 1
�nτ (z)

}
.

We note that �τ (z) = τnz + τn−1 + · · ·+ τ + 1 and �τ (0) = τn−1 + · · ·+ τ + 1.
In the following, we will investigate some properties of this function.

First, for a τ fixed, the following properties of hτ (z) can be easily verified:
In the case |τ | > 1, the function hτ (z) is meromorphic on Ĉ except the essential
singularity at 1/(1 − τ ), and has poles at (1 − τ−n)/(1 − τ ), (n = 0, 1, 2, . . .).
This function hτ (z) is holomorphic at ∞. We write

(5) Hτ = hτ (∞) =
∞∑

n=1

1
τn+1�nτ (0)

.

We can easily verify that hτ (z), with τ �= 1, satisfies the equation (3) with the
constant

(6) Cτ = (1 − τ )Hτ .

In the case τ = 1, we have �n(z) = z + n and

h1(z) = −1
z

+
∞∑

n=1

{
1
n
− 1
z + n

}
.
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This function is meromorphic on C and has poles at 0,−1,−2, . . .. As is easily
verified, h1(z) satisfies the equation (3) with C1 = 0.

We note that

h1(z) =
Γ′(z)
Γ(z)

+ γ

where Γ(z) denotes the gamma function and γ denotes the Euler constant

γ = lim
n→∞

( n∑
k=1

1
k
− log n

)
.

Now we study the dependence of hτ (z) on the parameter τ .

Proposition 2.4. The function hτ (z) is continuous on Vα(0).

Proof. The continuity at the points (z, τ ) with τ �= 1 is clear. Using
�nτ (z) − �nτ (0) = τnz and the estimate (2), we have∣∣∣∣ 1

τn+1

{
1

�nτ (0)
− 1
�nτ (z)

}∣∣∣∣ =
∣∣∣∣ z

τ�nτ (0)�nτ (z)

∣∣∣∣ ≤ ∣∣∣ z
τ

∣∣∣ 1
n2 cos2 α

.

This shows that the series (4) is locally uniformly convergent on Vα(0) −
{z = ∞} and hence hτ (z) is continuous there.

Corollary 2.5. The constat Cτ is a continuous function of τ ∈ Tα.

Proof. By the difference equation (3), we have Cτ = hτ (�τ (z))−τhτ (z)−
1/z, which is continuous on Vα(0) by Proposition 2.4. Hence Cτ is continuous
on Tα.

Proposition 2.6. For any ε > 0, there is a constant M such that

|h′τ (z)| ≤ M

Nτ (z)
on Vα(ε).

Proof. Differentiation of (3) with respect to z yields

h′τ (z) =
1
τ

∞∑
n=0

1
{�nτ (z)}2

.

Hence

|h′τ (z)| ≤
∞∑

n=0

1
|�nτ (z)|2 ≤

∞∑
n=0

1
(Nτ (z) + n cos θ)2

≤
∫ ∞

0

dx

(Nr(z) + x cos θ)2
.

Therefore |h′τ (z)| is bounded by M/Nτ (z) with some constant M .
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§2.3. Behavior of Hτ

Now we look at the behavior of the function Hτ defined by (5), when τ → 1
within the sector T . It is clear from the expression (5) that Hτ is unbounded,
while Cτ = (1− τ )Hτ tends to 0 by Corollary 2.5. Here we give a more precise
description of its behavior.

Proposition 2.7. We have

Hτ = − log(τ − 1) + γ − 1 + o(1)

as τ → 1 within the sector Tα. Here γ denotes the Euler constant.

Proof. To begin with, letting λ = 1/τ , we have

H1/λ =
∞∑

n=1

λ2n

1 + λ+ · · · + λn−1

= (1 − λ)
∞∑

n=1

( λn

1 − λn
− λn

)
= (1 − λ)L(λ) − λ.

Here L(λ) denotes the Lambert series defined by

L(λ) =
∞∑

n=1

λn

1 − λn
.

This series L(λ) defines a holomorphic function on |λ| < 1. We want to
know the behavior of this function when λ tends to 1 non-tangentially within
the unit disk.

L(λ) is developped into the power series

L(λ) =
∞∑

n=1

d(n)λn = λ+ 2λ2 + 2λ3 + 3λ4 + · · · ,

where d(n) denotes the number of divisors of n. We write

D(n) = d(1) + · · · + d(n).

Then
L(λ)
1 − λ

=
∞∑

n=1

D(n)λn.
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The asymptotic behavior of D(n) is given by a theorem of Dirichlet (see
Apostol [1], Chandrasekharan [2]) :

D(n) = n logn+ (2γ − 1)n+O(
√
n) (n→ ∞).

From this and the fact that
n∑

k=1

1
k
− log n = γ +O

( 1
n

)
,

it follows that

D(n) = n
n∑

k=1

1
k

+ (γ − 1)n+ pn

=
n∑

k=1

n− k

k
+ γn+ pn

where pn = O(
√
n) as n→ ∞. Therefore, noting that

λ

(1 − λ)2
=

∞∑
n=1

nλn, log(1 − λ) = −
∞∑

n=1

λn

n

we have

L(λ)
1 − λ

=
∞∑

n=1

D(n)λn = −λ log(1 − λ)
(1 − λ)2

+
γλ

(1 − λ)2
+ P (λ)

where P (λ) =
∑∞

n=1 pnλ
n. Since pn = O(

√
n) = o(n), we have

P (λ) = o((1 − λ)−2) as λ→ 1 non-tangentially.

Thus we obtain

Hτ = (1 − λ)L(λ) − λ

= −λ log(1 − λ) + (γ − 1)λ+ (1 − λ)2P (λ)

= − log(τ − 1) + γ − 1 + o(τ − 1)

and the proposition is proved.
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§3. Families of Maps with Attracting/Parabolic Fixed Points

§3.1. Domain of convergence

Let U(R) = {z ∈ Ĉ | R < |z| ≤ ∞} be a neighborhood of ∞ ∈ Ĉ and we
consider a family of holomorphic maps fτ : U(R) → Ĉ of the form

(7) fτ (z) = τz + 1 +Aτ (z)

with
Aτ (z) =

a1,τ

z
+
a2,τ

z2
+ · · · .

We suppose that fτ depends holomorphically on the parameter τ ∈ ∆ρ = {τ ∈
C | |τ − 1| < ρ}.

As in the previous section, we choose and fix α so that 0 < α < π/2 and
let δ = 1

2 cosα. By shrinking the neighbohoods U(R) and ∆ρ, we assume that
there is a constant K such

(8) |Aτ (z)| < K

|z| < δ

for (z, τ ) ∈ U(R)×∆ρ. Further we assume that fτ (z) is injective in z for every
τ ∈ ∆ρ.

Now we have results on uniformity of convergence for fn
τ (z), corresponding

to Lemma 2.2 and Proposition 2.3 for �τ (z). We set

Tα,ρ = Tα ∩ ∆ρ = {τ ∈ C | Re(τ − 1) ≤ |τ − 1| cosα, |τ − 1| < ρ}.

Lemma 3.1. For (z, τ ) ∈ U(R) × Tα,ρ − {(∞, 1)} we have

Nτ (fτ (z)) ≥ |τ |Nτ (z) + δ.

Proof. From fτ (z) = �τ (z) +Aτ (z), it follows that

Nτ (fτ (z)) ≥ Nτ (�τ (z)) − |Aτ (z)|
≥ |τ |Nτ (z) + cosα− δ

= |τ |Nτ (z) + δ,

which proves the lemma.
Now let

Vα,ρ(R) = {(z, τ ) ∈ Vα(R) | τ ∈ Tα,ρ}.
We note that Vα,ρ(R) ⊂ U(R) × Tα,ρ since Nτ (z) ≤ |z|.
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Proposition 3.2. If τ ∈ Tα,ρ and z ∈ Vτ (R), then fτ (z) ∈ Vτ (R).
The sequence {fn

τ (z)}n converges uniformly on Vα,ρ(R) to ∞.

Proof. If τ ∈ Tα,ρ and z ∈ Vτ (R), then Nτ (z) > R. Hence Nτ (fτ (z)) ≥
Nτ (z) + δ > R+ δ and fτ (z) ∈ Vτ (R). Further

|fn
τ (z)| ≥ Nτ (fn

τ (z)) ≥ Nτ (z) + nδ > R+ nδ.

This shows the uniform convergence of {fn
τ (z)}n to ∞ on Vα,ρ(R).

§3.2. Schröder-Abel equation

We recall that Cτ is continuous on Tα and holomorphic in the interior of
Tα and that Cτ = (1 − τ )Hτ when τ �= 1. Let

(9) Bτ = 1 − a1,τCτ .

The following theorem constitutes the main ingredient of this paper.

Theorem 3.3. There exists a function ϕτ (z) on Vα,ρ(R) with values in
Ĉ satisfying the following conditions :

(i) ϕτ (z) is continuous on Vα,ρ(R) and holomorphic in its interior as a
mapping to Ĉ.

(ii) For each τ ∈ Tα,ρ − {1} fixed, the function ϕτ (z) is holomorphic
in Vτ (R) except for a simple pole at ∞; and ϕ1(z) is holomorphic in V1(R).
Further ϕτ (z) satisfies the functional equation

(10) ϕτ (fτ (z)) = τϕτ (z) +Bτ .

(iii) For each τ ∈ Tα,ρ − {1} fixed, the function ϕτ (z) is of the form

ϕτ (z) = z − a1,τHτ + o(1)

in a neighborhood of z = ∞.

The proof is given in the next subsection.
This theorem implies in particular the following: Suppose that τ tends to

1 from outside of the unit disk with direction θ, i.e., τ = 1 + reiθ which fixed
θ and r tending to 0. Then the domain Vτ (R) of ϕτ (z) converges to the half
plane {Re eiθz > R} ⊂ V1(R), and ϕτ (z) converges to ϕ1(z) on this half plane.
This remark applies also to ψτ given below.

To make clear the meaning of this theorem, we will give the relation be-
tween ϕτ (z) and the solution to Schröder equation.
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Suppose |τ | > 1 and consider the equation

(11) χτ (fτ (z)) = τχτ (z),

which is a variant of the Schröder equation formutated for the case where the
fixed point is ∞. It is classical that this equation has a unique solution χτ (z)
of the form χτ (z) = z + O(1) in a neighborhood of ∞. By comparing the
coefficients of the Laurent expansion we can see that

χτ (z) = z +
1

τ − 1
+O(1/z).

On the other hand, we can easily verify that ϕ(z) + Bτ/(τ − 1) satisfies the
equation (11). Since Bτ = 1 − a1,τCτ = 1 − a1,τ (1 − τ )Hτ by (9) and (6), we
have the following.

Theorem 3.4. For τ ∈ Tα,ρ − {1} we have

ϕτ (z) = χτ (z) − Bτ

τ − 1

= χτ (z) − 1
τ − 1

− a1,τHτ .

Our result may be stated, without referring to ϕτ (z), as follows.

Theorem 3.5. When τ tends to 1 non-tangentially from outside of
the unit disk, the function

χτ (z) − 1
τ − 1

+ a1,τ log(τ − 1)

for τ ∈ T − {1} converges to a solution to the Abel equation for f1(z).

Here we may replace a1,τ by a1,1, since a1,τHτ and −a1,1 log(τ − 1) differ
only by a continuous function on Tα, ρ.

We may normalize ϕτ (z) by letting ϕ∗
τ (z) = ϕτ (z)/Bτ . Then ϕ∗

τ (z) satis-
fies the conditions of Theorem 3.3, replacing Bτ by 1. For τ �= 1, we have

ϕ∗
τ (z) =

χτ (z)
Bτ

− 1
τ − 1

.

Now we give another reformulations of the result. The function ϕτ has
pole on z = ∞. By a linear fractional transformation, we obtain a function
which is holomorphic on Vα,ρ(R).



102 Tetsuo Ueda

Theorem 3.6. There exists a function ψτ (z) on Vα,ρ(R) satisfying the
following conditions :

(i) ψτ (z) is continuous on Vα,ρ(R) and holomorphic in its interior, as a
function of two variables.

(ii) For each τ ∈ Tα,ρ fixed, the function ψτ (z) is holomorphic in Vτ (R)
and satisfies the functional equation

ψτ (fτ (z)) =
1
τ
ψτ (z) + 1.

(iii) For each τ ∈ Tα,ρ fixed, the function ψτ (z) is of the form

ψτ (z) =
τ

τ − 1
− τBτ

(τ − 1)2
1
z

+O
( 1
z2

)
.

In the neighborhood of z = ∞,

Proof. We define

ψτ (z) =
τϕτ (z)

(τ − 1)ϕτ (z) +Bτ
.

Then

ψτ (z) =
τ

τ − 1
− τBτ

(τ − 1)2
1

χτ (z)
when τ �= 1.

ψ1(z) = ϕ∗
1(z).

We can easily verify that ψτ (z) satisfies the required conditions.

§3.3. Proof of Theorem 3.3

To simplify the notation, we omit the subscript τ for fτ etc.
We rewrite the expression (7) in the form

(12) f(z) = τz + 1 +
a1,τ

z
+A1(z)

with A1,τ (z) = a2(τ )/z2 + . . . . There exits some constant K1 such that

|A1(z)| ≤ K1

|z|2 .

To make clear the idea of the proof, we will first consider the case where
a1,τ = 0 identically. Replacing z by fn−1(z) for in (11) and dividing by τn, we
obtain

(13)
1
τn
fn(z) =

1
τn−1

fn−1(z) +
1
τn

+
1
τn
A1(fn−1(z)).
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We define

ϕn(z) :=
1
τn
fn(z) −

n∑
k=1

1
τk

= z +
n∑

k=1

1
τk
A1(fk−1(z)).

Since

(14)
∣∣∣∣ 1
τk
A1(fn−1(p))

∣∣∣∣ ≤ K1

|fn−1(z)|2 ≤ K1

N(fn−1(z))2
≤ K1

(N(z) + (n− 1)δ)2
,

we conclude that ϕn(z) converges uniformly as n → ∞. Therefore the limit
ϕ(z) := limn→∞ ϕn(z) is continuous on Vα,ρ(R). From ϕn(f(z)) = τϕn+1(z)+
1, it follows that ϕ(z) satisfies the equation (10) with Bτ = 1.

Now, in the general case where a1,τ does not vanish identically, we have to
modify the above construction to have convergent sequence. Let us recall the
function h(z) satisfying the difference equation (3) in the previous section. We
set

A2(z) = h(f(z)) − h(�(z)).

Then
h(f(z)) = τh(z) + Cτ +

1
z

+A2(z).

Combining this with (12), we get

f(z) − a1h(f(z)) = τ{z − a1h(z)} +Bτ + Ã(z)

with Bτ = 1 − a1Cτ , where we have set

Ã(z) = A1(z) − a1A2(z).

In the same manner as in (13), we obtain

1
τn

{fn(z)−a1h(fn(z))} =
1

τn−1
{fn−1(z)−a1h(fn−1(z))}+Bτ

τn
+

1
τn
Ã(fn−1(z)).

We define

ϕn(z) =
1
τn

{fn(z) − a1h(fn(z))} −Bτ

n∑
k=1

1
τk

= z − a1h(z) +
n∑

k=1

1
τk
Ã(fk−1(z)).

The sum on the right is

n∑
k=1

1
τk
A1(fk−1(z)) − a1,τ

n∑
k=1

1
τk
A2(fk−1(z)).
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When n → ∞, the first sum is uniformly convergent by the estimate (14).
The convergence of the second sum follows from Lemma 3.7 below. Thus
ϕn(z) converges uniformly on Vα,ρ(R) as n → ∞. Hence the limit ϕ(z) =
limn→∞ ϕn(z) is continuous on Vα,ρ(R). From ϕn(f(z)) = τϕn+1(z) + Bτ it
follows that ϕ(z) satisfies the equation (10).

Since Ã(z) vanishes at z = ∞, we have ϕn(z) = z − a1Hτ + o(1) in the
neighborhood of z = ∞. Letting n→ ∞ yields the assertion (iii).

Lemma 3.7. We have

|A2(z)| ≤ KM

|z|N(z)

on (z, τ ) ∈ Vα,ρ(R).

Proof. Let z be a point with N(z) > R and let [�(z), f(z)] denote the
segment joining �(z) and f(z) in C. The length of this segment is

|f(z) − �(z)| = |A(z)| < K

|z| < δ,

by (8). For any ζ in this segment, we have |N(ζ) −N(�(z))| ≤ |ζ − �(z)| < δ.
Hence N(ζ) > N(�(z)) − δ > N(z). Hence, by Proposition 2.6 we have

|h′(ζ)| ≤ M

N(ζ)
≤ M

N(z)

on this segment. Thus we have

|A2(z)| =

∣∣∣∣∣
∫

[�(z),f(z)]

h′(ζ)dζ

∣∣∣∣∣ ≤ KM

|z|N(z)
,

which proves the assertion.
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