Publ. RIMS, Kyoto Univ. **44** (2008), 91–105

Simultaneous Linearization of Holomorphic Maps with Hyperbolic and Parabolic Fixed Points

By

Tetsuo UEDA^{*}

Abstract

We study local holomorphic mappings of one complex variable with parabolic fixed points as a limit of a families of mappings with attracting fixed points. We show that the Fatou coordinate for a parabolic fixed point can be obtained as a limit of some linear function of the solutions to Schröder equation for perturbed mappings with attracting fixed points.

*§***1. Introduction**

Let $g(w)$ be a holomorphic function of one variable of the form

$$
g(w) = \lambda w + \sum_{\nu=2}^{\infty} b_{\nu} w^{\nu}
$$

defined in a neighborhood of the origin 0. If $0 < |\lambda| < 1$, then there are a neighborhood V of 0 such that $g(V) \subset V$ and an injective holomorphic function $\rho(w)$ on V satisfying the Schröder equation

$$
\rho(g(w)) = \lambda \rho(w).
$$

If $\lambda = 1$ and $b_2 \neq 0$, then there are a domain V whose boundary contains 0 and an injective function $\varphi(w)$ (Fatou coordinate) satisfying the Abel equation

$$
\varphi(g(w)) = \varphi(w) + 1,
$$

c 2008 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Communicated by K. Saito. Received October 11, 2006. Revised June 15, 2007.

²⁰⁰⁰ Mathematics Subject Classification(s): 30D05, 37F45

This work is partially supported by Grant-in-Aid for Scientific Research (no. 15340055 and no. 17654031), Japan Society for the Promotion of Science.

[∗]Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan.

e-mail: ueda@math.kyoto-u.ac.jp

92 Tetsuo Ueda

which is unique up to an additive constant. (See Schröder [9], Koenigs [5], Leau [6], Fatou [3] and Milnor [8], for these classical results.)

In this paper, we consider families of functions $g_{\lambda}(w)$ which have λ as a parameter and show that, when λ tends non-tangentially to 1 from inside of the unit disk, some linear function of $\rho_{\lambda}(w)$ converges to $\varphi(w)$.

To do this it is convenient to consider the case where the fixed point is ∞ on the Riemann sphere. By scaling the coordinate, we consider a family of holomorphic maps of the form

$$
f_{\tau}(z) = \tau z + 1 + \frac{a_{1,\tau}}{z} + \frac{a_{2,\tau}}{z^2} + \cdots
$$

defined in a neighborhood of ∞ . Here the parameter $\tau = 1/\lambda$ varies in a neighborhood of $\tau = 1$. For $|\tau| > 1$, let $\chi_{\tau}(z)$ denote the unique solution of the equation

$$
\chi_\tau(f(z)) = \tau \chi_\tau(z)
$$

with $\chi_{\tau}(\infty) = \infty$ and normalized so that $\chi(z) = z + O(1)$ in a neighborhood of ∞ . We will show that, when τ tends to 1 non-tangentially within the domain $|\tau| > 1$, the sequence

$$
\chi_\tau(z)-\frac{1}{\tau-1}-a_{1,\tau}\log(\tau-1)
$$

converges to a solution to the Abel equation

$$
\varphi(f_1(z)) = \varphi(z) + 1.
$$

Precise statement and different formulations of the results are given in Theorems 3.3–3.6.

An alternative proof and a generalization is given recently by T. Kawahira [4]. As a related result, we note that T. C. McMullen showed the existence of quasiconformal maps giving conjugacies between f_{τ} and linear maps (see [7], Theorem 8.2).

*§***2. Preliminaries**

*§***2.1. A family of linear maps**

We begin with studying the family $\{\ell_{\tau}\}_{\tau}$ of linear maps

$$
\ell_{\tau}(z) = \tau z + 1
$$

on the Riemann sphere $\widehat{\mathbb{C}}$ depending on the complex parameter τ . When $|\tau|$ > 1, the map ℓ_{τ} has ∞ as an attracting fixed point and all points except for

 $1/(1 - \tau)$ converge locally uniformly to ∞ by the iterates of ℓ_{τ} . When $\tau = 1$, then ∞ is a parabolic fixed point and all points in $\widehat{\mathbb{C}}$ converges to ∞ , though the convergence is not uniform in the neighborhood of ∞ .

We will investigate the uniformity, with respect to the parameter τ , of the convergence of the iterates ℓ_{τ}^n , when τ tends to 1 non-tangentially from outside of the unit disk. So we will restrict the parameter τ in the closed sector

$$
T_{\alpha} = \{ \tau \in \mathbb{C} \mid \text{Re}\,\tau - 1 \ge |\tau - 1| \cos \alpha \},\
$$

where α is a real number with $0 < \alpha < \pi/2$, fixed throughout this paper.

To measure the rate of convergence to ∞ , we introduce the function N : $\widehat{\mathbb{C}} \times T_{\alpha} - \{(\infty, 1)\} \to \mathbb{R} \cup \{\infty\}$ as follows.

$$
N_{\tau}(z) = \left| z - \frac{1}{1 - \tau} \right| - \left| \frac{1}{1 - \tau} \right| \quad \text{for } (z, \tau) \in \widehat{\mathbb{C}} \times (T_{\alpha} - \{1\});
$$

\n
$$
N_1(z) = \sup_{|\theta| \le \alpha} \text{Re}(e^{i\theta}z) \quad \text{for } z \in \mathbb{C}.
$$

We will not define $N_1(\infty)$. It is easy to see that the inequality

$$
|N_{\tau}(z_1) - N_{\tau}(z_2)| \le |z_1 - z_2| \quad z_1, z_2 \in \mathbb{C}, \tau \in T_{\alpha}
$$

holds. In particular we have

$$
N_{\tau}(z) \le |z|, \quad z \in \mathbb{C}, \tau \in T_{\alpha}.
$$

Lemma 2.1. $N_{\tau}(z)$ *is upper semi-continuous as a function of two variables* $(z, \tau) \in \mathbb{C} \times T_\alpha - \{z = \infty\}$ *and*

$$
N_1(z) = \limsup_{T_\alpha \ni \tau \to 1} N_\tau(z).
$$

Proof. For $r > 0$, we let $\hat{N}_{(r,\theta)}(z) = N_{1+re^{i\theta}}(z)$. Then

$$
\hat{N}_{(r,\theta)}(z) = \left| z + \frac{1}{re^{i\theta}} \right| - \frac{1}{r} = \frac{1}{r} \{ (1 + 2r \operatorname{Re}(e^{i\theta} z) + r^2 |z|^2)^{1/2} - 1 \}.
$$

This can be extended to a continuous function on $\widehat{\mathbb{C}} \times \{r \geq 0\} \times \mathbb{R}$, by defining $\hat{N}_{(0,\theta)}(z) = \text{Re}(e^{i\theta}z)$. Hence

$$
\limsup_{T_{\alpha}\ni\tau\to 1}N_{\tau}(z)=\sup_{|\theta|\leq\alpha}\hat{N}_{(0,\theta)}(z)=\sup_{|\theta|\leq\alpha}\text{Re}(e^{i\theta}z)=N_1(z).
$$

This shows the assertion.

To have a uniform estimate of the rate of convergence of the iterats of ℓ_{τ} , let us first show the following:

Lemma 2.2. *For* $(z, \tau) \in \widehat{\mathbb{C}} \times T_\alpha - \{(\infty, 1)\}\)$, we have $N_{\tau}(\ell_{\tau}(z)) \geq |\tau| N_{\tau}(z) + \cos \alpha.$

Proof. First, if $\tau \in T - \{1\}$, then (1) is rewritten as

$$
\ell_{\tau}(z) - \frac{1}{1-\tau} = \tau \left(z - \frac{1}{1-\tau}\right).
$$

Hence

$$
N_{\tau}(\ell_{\tau}(z)) = \left| \ell_{\tau}(z) - \frac{1}{1-\tau} \right| - \left| \frac{1}{1-\tau} \right|
$$

$$
= |\tau| \left| z - \frac{1}{1-\tau} \right| - \left| \frac{1}{1-\tau} \right|
$$

$$
= |\tau| N_{\tau}(z) + \frac{|\tau| - 1}{|1 - \tau|}
$$

$$
\geq |\tau| N_{\tau}(z) + \cos \alpha.
$$

Here we have used the fact that

$$
\frac{|\tau| - 1}{|\tau - 1|} \ge \frac{\text{Re}(\tau) - 1}{|\tau - 1|} \ge \cos \alpha.
$$

If $\tau = 1$, then $\ell_1(z) = z + 1$, and hence

$$
\operatorname{Re}(e^{i\theta}\ell_1(z)) = \operatorname{Re}(e^{i\theta}z) + \cos\theta \ge \operatorname{Re}(e^{i\theta}z) + \cos\alpha.
$$

Therefore

$$
N_1(\ell_1(z)) \ge N_1(z) + \cos \alpha
$$

and the lemma is proved.

Let R be a real number and define

$$
\mathcal{V}_{\alpha}(R) = \{ (z, \tau) \in \widehat{\mathbb{C}} \times T_{\alpha} - \{ (\infty, 1) \} \mid N_{\tau}(z) > R \}.
$$

We note that $\mathcal{V}_{\alpha}(R)$ is not open. Slices of $\mathcal{V}_{\alpha}(R)$ by $\tau = \text{const.}$ are open sets given by

$$
V_{\tau}(R) = \{ z \in \widehat{\mathbb{C}} \mid N_{\tau}(z) > R \} \qquad (\tau \neq 1);
$$

\n
$$
V_{1}(R) = \{ z \in \mathbb{C} \mid N_{1}(z) > R \} = \bigcup_{|\theta| \leq \alpha} \{ \text{Re}(e^{i\theta} z) > R \}.
$$

Proposition 2.3. *We have*

(2)
$$
|\ell_{\tau}^{n}(z)| \ge n \cos \alpha \quad \text{for } \mathcal{V}_{\alpha}(0)
$$

and hence the sequence $\{\ell_{\tau}^{n}(z)\}_n$ *converges to* ∞ *uniformly* $\mathcal{V}_{\alpha}(0)$ *.*

Proof. $N_{\tau}(z) > 0$ implies $N_{\tau}(\ell(z)) \geq N_{\tau}(z) + \cos \alpha > 0$ by Lemma 2.2. Hence, if $\tau \in T_\alpha$ and $z \in V_\tau(0)$, then $\ell_\tau^n(z) \in V_\tau(0)$ and

$$
|\ell_{\tau}^{n}(z)| \geq N_{\tau}(\ell_{\tau}^{n}(z)) \geq N_{\tau}(z) + n \cos \alpha \geq n \cos \alpha,
$$

for all n . This proves the assertion.

\Box

*§***2.2. Solution to a difference equation**

We consider the difference equation

(3)
$$
h_{\tau}(\ell_{\tau}(z)) - \tau h_{\tau}(z) = \frac{1}{z} + C_{\tau},
$$

where $\ell_{\tau}(z) = \tau z + 1$ with $|\tau| > 1$ or $\tau = 1$; and C_{τ} is a constant depending on τ , which will be given later.

A solution to this equation is given by

(4)
$$
h_{\tau}(z) = -\frac{1}{\tau z} + \sum_{n=1}^{\infty} \frac{1}{\tau^{n+1}} \left\{ \frac{1}{\ell_{\tau}^{n}(0)} - \frac{1}{\ell_{\tau}^{n}(z)} \right\}.
$$

We note that $\ell_{\tau}(z) = \tau^n z + \tau^{n-1} + \cdots + \tau + 1$ and $\ell_{\tau}(0) = \tau^{n-1} + \cdots + \tau + 1$. In the following, we will investigate some properties of this function.

First, for a τ fixed, the following properties of $h_{\tau}(z)$ can be easily verified: In the case $|\tau| > 1$, the function $h_{\tau}(z)$ is meromorphic on $\widehat{\mathbb{C}}$ except the essential singularity at $1/(1 - \tau)$, and has poles at $(1 - \tau^{-n})/(1 - \tau)$, $(n = 0, 1, 2, ...).$ This function $h_{\tau}(z)$ is holomorphic at ∞ . We write

(5)
$$
H_{\tau} = h_{\tau}(\infty) = \sum_{n=1}^{\infty} \frac{1}{\tau^{n+1} \ell_{\tau}^{n}(0)}.
$$

We can easily verify that $h_{\tau}(z)$, with $\tau \neq 1$, satisfies the equation (3) with the constant

(6)
$$
C_{\tau} = (1 - \tau)H_{\tau}.
$$

In the case $\tau = 1$, we have $\ell^{n}(z) = z + n$ and

$$
h_1(z) = -\frac{1}{z} + \sum_{n=1}^{\infty} \left\{ \frac{1}{n} - \frac{1}{z+n} \right\}.
$$

This function is meromorphic on $\mathbb C$ and has poles at $0, -1, -2, \ldots$. As is easily verified, $h_1(z)$ satisfies the equation (3) with $C_1 = 0$.

We note that

$$
h_1(z) = \frac{\Gamma'(z)}{\Gamma(z)} + \gamma
$$

where $\Gamma(z)$ denotes the gamma function and γ denotes the Euler constant

$$
\gamma = \lim_{n \to \infty} \Big(\sum_{k=1}^{n} \frac{1}{k} - \log n \Big).
$$

Now we study the dependence of $h_\tau(z)$ on the parameter τ .

Proposition 2.4. *The function* $h_\tau(z)$ *is continuous on* $V_\alpha(0)$ *.*

Proof. The continuity at the points (z, τ) with $\tau \neq 1$ is clear. Using $\ell_{\tau}^{n}(z) - \ell_{\tau}^{n}(0) = \tau^{n} z$ and the estimate (2), we have

$$
\left|\frac{1}{\tau^{n+1}}\left\{\frac{1}{\ell_\tau^n(0)}-\frac{1}{\ell_\tau^n(z)}\right\}\right|=\left|\frac{z}{\tau\ell_\tau^n(0)\ell_\tau^n(z)}\right|\leq \left|\frac{z}{\tau}\right|\frac{1}{n^2\cos^2\alpha}.
$$

This shows that the series (4) is locally uniformly convergent on $\mathcal{V}_\alpha(0)$ − \Box ${z = \infty}$ and hence $h_\tau(z)$ is continuous there.

Corollary 2.5. *The constat* C_{τ} *is a continuous function of* $\tau \in T_{\alpha}$ *.*

Proof. By the difference equation (3), we have $C_{\tau} = h_{\tau}(\ell_{\tau}(z)) - \tau h_{\tau}(z) 1/z$, which is continuous on $\mathcal{V}_{\alpha}(0)$ by Proposition 2.4. Hence C_{τ} is continuous on T_{α} . \Box

Proposition 2.6. *For any* $\varepsilon > 0$ *, there is a constant* M *such that*

$$
|h'_{\tau}(z)| \leq \frac{M}{N_{\tau}(z)} \qquad on \ \mathcal{V}_{\alpha}(\varepsilon).
$$

Proof. Differentiation of (3) with respect to z yields

$$
h'_{\tau}(z) = \frac{1}{\tau} \sum_{n=0}^{\infty} \frac{1}{\{\ell_{\tau}^{n}(z)\}^2}.
$$

Hence

$$
|h'_{\tau}(z)| \leq \sum_{n=0}^{\infty} \frac{1}{|\ell_{\tau}^{n}(z)|^{2}} \leq \sum_{n=0}^{\infty} \frac{1}{(N_{\tau}(z) + n \cos \theta)^{2}}
$$

$$
\leq \int_{0}^{\infty} \frac{dx}{(N_{\tau}(z) + x \cos \theta)^{2}}.
$$

Therefore $|h'_{\tau}(z)|$ is bounded by $M/N_{\tau}(z)$ with some constant M.

§2.3. Behavior of H_{τ}

Now we look at the behavior of the function H_{τ} defined by (5), when $\tau \to 1$ within the sector T. It is clear from the expression (5) that H_{τ} is unbounded, while $C_{\tau} = (1 - \tau)H_{\tau}$ tends to 0 by Corollary 2.5. Here we give a more precise description of its behavior.

Proposition 2.7. We have

$$
H_{\tau} = -\log(\tau - 1) + \gamma - 1 + o(1)
$$

as $\tau \to 1$ *within the sector* T_{α} *. Here* γ *denotes the Euler constant.*

Proof. To begin with, letting $\lambda = 1/\tau$, we have

$$
H_{1/\lambda} = \sum_{n=1}^{\infty} \frac{\lambda^{2n}}{1 + \lambda + \dots + \lambda^{n-1}}
$$

= $(1 - \lambda) \sum_{n=1}^{\infty} \left(\frac{\lambda^n}{1 - \lambda^n} - \lambda^n \right)$
= $(1 - \lambda)L(\lambda) - \lambda$.

Here $L(\lambda)$ denotes the Lambert series defined by

$$
L(\lambda) = \sum_{n=1}^{\infty} \frac{\lambda^n}{1 - \lambda^n}.
$$

This series $L(\lambda)$ defines a holomorphic function on $|\lambda| < 1$. We want to know the behavior of this function when λ tends to 1 non-tangentially within the unit disk.

 $L(\lambda)$ is developped into the power series

$$
L(\lambda) = \sum_{n=1}^{\infty} d(n)\lambda^n = \lambda + 2\lambda^2 + 2\lambda^3 + 3\lambda^4 + \cdots,
$$

where $d(n)$ denotes the number of divisors of n. We write

$$
D(n) = d(1) + \cdots + d(n).
$$

Then

$$
\frac{L(\lambda)}{1-\lambda} = \sum_{n=1}^{\infty} D(n)\lambda^n.
$$

The asymptotic behavior of $D(n)$ is given by a theorem of Dirichlet (see Apostol [1], Chandrasekharan [2]) :

$$
D(n) = n \log n + (2\gamma - 1)n + O(\sqrt{n}) \quad (n \to \infty).
$$

From this and the fact that

$$
\sum_{k=1}^{n} \frac{1}{k} - \log n = \gamma + O\left(\frac{1}{n}\right),\,
$$

it follows that

$$
D(n) = n \sum_{k=1}^{n} \frac{1}{k} + (\gamma - 1)n + p_n
$$

=
$$
\sum_{k=1}^{n} \frac{n-k}{k} + \gamma n + p_n
$$

where $p_n = O(\sqrt{n})$ as $n \to \infty$. Therefore, noting that

$$
\frac{\lambda}{(1-\lambda)^2} = \sum_{n=1}^{\infty} n\lambda^n, \quad \log(1-\lambda) = -\sum_{n=1}^{\infty} \frac{\lambda^n}{n}
$$

we have

$$
\frac{L(\lambda)}{1-\lambda} = \sum_{n=1}^{\infty} D(n)\lambda^n = -\frac{\lambda \log(1-\lambda)}{(1-\lambda)^2} + \frac{\gamma \lambda}{(1-\lambda)^2} + P(\lambda)
$$

where $P(\lambda) = \sum_{n=1}^{\infty} p_n \lambda^n$. Since $p_n = O(\sqrt{n}) = o(n)$, we have

 $P(\lambda) = o((1 - \lambda)^{-2})$ as $\lambda \to 1$ non-tangentially.

Thus we obtain

$$
H_{\tau} = (1 - \lambda)L(\lambda) - \lambda
$$

= -\lambda \log(1 - \lambda) + (\gamma - 1)\lambda + (1 - \lambda)^2 P(\lambda)
= -\log(\tau - 1) + \gamma - 1 + o(\tau - 1)

and the proposition is proved.

*§***3. Families of Maps with Attracting/Parabolic Fixed Points**

*§***3.1. Domain of convergence**

Let $U(R) = \{z \in \widehat{\mathbb{C}} \mid R < |z| \leq \infty\}$ be a neighborhood of $\infty \in \widehat{\mathbb{C}}$ and we consider a family of holomorphic maps $f_{\tau}: U(R) \to \widehat{\mathbb{C}}$ of the form

$$
(7) \t\t\t f_{\tau}(z) = \tau z + 1 + A_{\tau}(z)
$$

with

$$
A_{\tau}(z) = \frac{a_{1,\tau}}{z} + \frac{a_{2,\tau}}{z^2} + \cdots
$$

We suppose that f_τ depends holomorphically on the parameter $\tau\in \Delta_\rho=\{\tau\in$ $\mathbb{C} \mid |\tau - 1| < \rho \}.$

As in the previous section, we choose and fix α so that $0 < \alpha < \pi/2$ and let $\delta = \frac{1}{2} \cos \alpha$. By shrinking the neighbohoods $U(R)$ and Δ_{ρ} , we assume that there is a constant K such

$$
(8) \t\t |A_{\tau}(z)| < \frac{K}{|z|} < \delta
$$

for $(z, \tau) \in U(R) \times \Delta_{\rho}$. Further we assume that $f_{\tau}(z)$ is injective in z for every $\tau \in \Delta_{\rho}$.

Now we have results on uniformity of convergence for $f_{\tau}^{n}(z)$, corresponding to Lemma 2.2 and Proposition 2.3 for $\ell_{\tau}(z)$. We set

$$
T_{\alpha,\rho} = T_{\alpha} \cap \Delta_{\rho} = \{ \tau \in \mathbb{C} \mid \text{Re}(\tau - 1) \le |\tau - 1| \cos \alpha, \ |\tau - 1| < \rho \}.
$$

Lemma 3.1. *For* $(z, \tau) \in U(R) \times T_{\alpha, \rho} - \{(\infty, 1)\}$ *we have*

$$
N_{\tau}(f_{\tau}(z)) \geq |\tau| N_{\tau}(z) + \delta.
$$

Proof. From $f_{\tau}(z) = \ell_{\tau}(z) + A_{\tau}(z)$, it follows that

$$
N_{\tau}(f_{\tau}(z)) \ge N_{\tau}(\ell_{\tau}(z)) - |A_{\tau}(z)|
$$

\n
$$
\ge |\tau| N_{\tau}(z) + \cos \alpha - \delta
$$

\n
$$
= |\tau| N_{\tau}(z) + \delta,
$$

which proves the lemma.

Now let

$$
\mathcal{V}_{\alpha,\rho}(R) = \{ (z,\tau) \in \mathcal{V}_{\alpha}(R) \mid \tau \in T_{\alpha,\rho} \}.
$$

We note that $\mathcal{V}_{\alpha,\rho}(R) \subset U(R) \times T_{\alpha,\rho}$ since $N_{\tau}(z) \leq |z|$.

100 Tetsuo Ueda

Proposition 3.2. *If* $\tau \in T_{\alpha,\rho}$ *and* $z \in V_{\tau}(R)$ *, then* $f_{\tau}(z) \in V_{\tau}(R)$ *. The sequence* $\{f_{\tau}^n(z)\}_n$ *converges uniformly on* $\mathcal{V}_{\alpha,\rho}(R)$ *to* ∞ *.*

Proof. If $\tau \in T_{\alpha,\rho}$ and $z \in V_{\tau}(R)$, then $N_{\tau}(z) > R$. Hence $N_{\tau}(f_{\tau}(z)) \geq$ $N_{\tau}(z) + \delta > R + \delta$ and $f_{\tau}(z) \in V_{\tau}(R)$. Further

$$
|f_{\tau}^{n}(z)| \ge N_{\tau}(f_{\tau}^{n}(z)) \ge N_{\tau}(z) + n\delta > R + n\delta.
$$

This shows the uniform convergence of $\{f_\tau^n(z)\}_n$ to ∞ on $\mathcal{V}_{\alpha,\rho}(R)$.

*§***3.2. Schr¨oder-Abel equation**

 \Box

We recall that C_{τ} is continuous on T_{α} and holomorphic in the interior of T_{α} and that $C_{\tau} = (1 - \tau)H_{\tau}$ when $\tau \neq 1$. Let

(9)
$$
B_{\tau} = 1 - a_{1,\tau} C_{\tau}.
$$

The following theorem constitutes the main ingredient of this paper.

Theorem 3.3. *There exists a function* $\varphi_{\tau}(z)$ *on* $V_{\alpha,\rho}(R)$ *with values in* C- *satisfying the following conditions*:

(i) $\varphi_{\tau}(z)$ *is continuous on* $\mathcal{V}_{\alpha,\rho}(R)$ *and holomorphic in its interior as a mapping to* $\widehat{\mathbb{C}}$ *.*

(ii) *For each* $\tau \in T_{\alpha,\rho} - \{1\}$ *fixed, the function* $\varphi_{\tau}(z)$ *is holomorphic in* $V_\tau(R)$ *except for a simple pole at* ∞ ; *and* $\varphi_1(z)$ *is holomorphic in* $V_1(R)$ *. Further* $\varphi_{\tau}(z)$ *satisfies the functional equation*

(10)
$$
\varphi_{\tau}(f_{\tau}(z)) = \tau \varphi_{\tau}(z) + B_{\tau}.
$$

(iii) *For each* $\tau \in T_{\alpha,\rho} - \{1\}$ *fixed, the function* $\varphi_{\tau}(z)$ *is of the form*

$$
\varphi_{\tau}(z) = z - a_{1,\tau} H_{\tau} + o(1)
$$

in a neighborhood of $z = \infty$ *.*

The proof is given in the next subsection.

This theorem implies in particular the following: Suppose that τ tends to 1 from outside of the unit disk with direction θ , i.e., $\tau = 1 + re^{i\theta}$ which fixed θ and r tending to 0. Then the domain $V_\tau(R)$ of $\varphi_\tau(z)$ converges to the half plane $\{Re\,e^{i\theta}z\geq R\}\subset V_1(R)$, and $\varphi_\tau(z)$ converges to $\varphi_1(z)$ on this half plane. This remark applies also to ψ_{τ} given below.

To make clear the meaning of this theorem, we will give the relation between $\varphi_{\tau}(z)$ and the solution to Schröder equation.

Suppose $|\tau| > 1$ and consider the equation

(11)
$$
\chi_{\tau}(f_{\tau}(z)) = \tau \chi_{\tau}(z),
$$

which is a variant of the Schröder equation formutated for the case where the fixed point is ∞ . It is classical that this equation has a unique solution $\chi_{\tau}(z)$ of the form $\chi_{\tau}(z) = z + O(1)$ in a neighborhood of ∞ . By comparing the coefficients of the Laurent expansion we can see that

$$
\chi_{\tau}(z) = z + \frac{1}{\tau - 1} + O(1/z).
$$

On the other hand, we can easily verify that $\varphi(z) + B_{\tau}/(\tau - 1)$ satisfies the equation (11). Since $B_{\tau} = 1 - a_{1,\tau}C_{\tau} = 1 - a_{1,\tau}(1-\tau)H_{\tau}$ by (9) and (6), we have the following.

Theorem 3.4. *For* $\tau \in T_{\alpha,\rho} - \{1\}$ *we have*

$$
\varphi_{\tau}(z) = \chi_{\tau}(z) - \frac{B_{\tau}}{\tau - 1}
$$

$$
= \chi_{\tau}(z) - \frac{1}{\tau - 1} - a_{1,\tau} H_{\tau}.
$$

Our result may be stated, without referring to $\varphi_{\tau}(z)$, as follows.

Theorem 3.5. *When* τ *tends to* 1 *non-tangentially from outside of the unit disk, the function*

$$
\chi_{\tau}(z) - \frac{1}{\tau - 1} + a_{1,\tau} \log(\tau - 1)
$$

for $\tau \in T - \{1\}$ *converges to a solution to the Abel equation for* $f_1(z)$ *.*

Here we may replace $a_{1,\tau}$ by $a_{1,1}$, since $a_{1,\tau}H_{\tau}$ and $-a_{1,1}\log(\tau-1)$ differ only by a continuous function on T_{α} , ρ .

We may normalize $\varphi_{\tau}(z)$ by letting $\varphi_{\tau}^{*}(z) = \varphi_{\tau}(z)/B_{\tau}$. Then $\varphi_{\tau}^{*}(z)$ satisfies the conditions of Theorem 3.3, replacing B_{τ} by 1. For $\tau \neq 1$, we have

$$
\varphi_{\tau}^*(z) = \frac{\chi_{\tau}(z)}{B_{\tau}} - \frac{1}{\tau - 1}.
$$

Now we give another reformulations of the result. The function φ_{τ} has pole on $z = \infty$. By a linear fractional transformation, we obtain a function which is holomorphic on $\mathcal{V}_{\alpha,\rho}(R)$.

Theorem 3.6. *There exists a function* $\psi_{\tau}(z)$ *on* $V_{\alpha,\rho}(R)$ *satisfying the following conditions*:

(i) $\psi_{\tau}(z)$ *is continuous on* $\mathcal{V}_{\alpha,\rho}(R)$ *and holomorphic in its interior, as a function of two variables.*

(ii) *For each* $\tau \in T_{\alpha,\rho}$ *fixed, the function* $\psi_{\tau}(z)$ *is holomorphic in* $V_{\tau}(R)$ *and satisfies the functional equation*

$$
\psi_{\tau}(f_{\tau}(z)) = \frac{1}{\tau}\psi_{\tau}(z) + 1.
$$

(iii) *For each* $\tau \in T_{\alpha,\rho}$ *fixed, the function* $\psi_{\tau}(z)$ *is of the form*

$$
\psi_{\tau}(z) = \frac{\tau}{\tau - 1} - \frac{\tau B_{\tau}}{(\tau - 1)^2} \frac{1}{z} + O\left(\frac{1}{z^2}\right).
$$

In the neighborhood of $z = \infty$ *,*

Proof. We define

$$
\psi_{\tau}(z) = \frac{\tau \varphi_{\tau}(z)}{(\tau - 1)\varphi_{\tau}(z) + B_{\tau}}.
$$

Then

$$
\psi_{\tau}(z) = \frac{\tau}{\tau - 1} - \frac{\tau B_{\tau}}{(\tau - 1)^2} \frac{1}{\chi_{\tau}(z)} \quad \text{when } \tau \neq 1.
$$

$$
\psi_1(z) = \varphi_1^*(z).
$$

We can easily verify that $\psi_{\tau}(z)$ satisfies the required conditions.

*§***3.3. Proof of Theorem 3.3**

To simplify the notation, we omit the subscript τ for f_{τ} etc. We rewrite the expression (7) in the form

(12)
$$
f(z) = \tau z + 1 + \frac{a_{1,\tau}}{z} + A_1(z)
$$

with $A_{1,\tau}(z) = a_2(\tau)/z^2 + \ldots$. There exits some constant K_1 such that

$$
|A_1(z)| \le \frac{K_1}{|z|^2}.
$$

To make clear the idea of the proof, we will first consider the case where $a_{1,\tau} = 0$ identically. Replacing z by $f^{n-1}(z)$ for in (11) and dividing by τ^n , we obtain

(13)
$$
\frac{1}{\tau^n} f^n(z) = \frac{1}{\tau^{n-1}} f^{n-1}(z) + \frac{1}{\tau^n} + \frac{1}{\tau^n} A_1(f^{n-1}(z)).
$$

We define

$$
\varphi_n(z) := \frac{1}{\tau^n} f^n(z) - \sum_{k=1}^n \frac{1}{\tau^k} = z + \sum_{k=1}^n \frac{1}{\tau^k} A_1(f^{k-1}(z)).
$$

Since

$$
(14) \left| \frac{1}{\tau^k} A_1(f^{n-1}(p)) \right| \leq \frac{K_1}{|f^{n-1}(z)|^2} \leq \frac{K_1}{N(f^{n-1}(z))^2} \leq \frac{K_1}{(N(z) + (n-1)\delta)^2},
$$

we conclude that $\varphi_n(z)$ converges uniformly as $n \to \infty$. Therefore the limit $\varphi(z) := \lim_{n \to \infty} \varphi_n(z)$ is continuous on $\mathcal{V}_{\alpha,\rho}(R)$. From $\varphi_n(f(z)) = \tau \varphi_{n+1}(z) +$ 1, it follows that $\varphi(z)$ satisfies the equation (10) with $B_{\tau} = 1$.

Now, in the general case where $a_{1,\tau}$ does not vanish identically, we have to modify the above construction to have convergent sequence. Let us recall the function $h(z)$ satisfying the difference equation (3) in the previous section. We set

$$
A_2(z) = h(f(z)) - h(\ell(z)).
$$

Then

$$
h(f(z)) = \tau h(z) + C_{\tau} + \frac{1}{z} + A_2(z).
$$

Combining this with (12), we get

$$
f(z) - a_1 h(f(z)) = \tau \{ z - a_1 h(z) \} + B_\tau + \tilde{A}(z)
$$

with $B_{\tau} = 1 - a_1 C_{\tau}$, where we have set

$$
\tilde{A}(z) = A_1(z) - a_1 A_2(z).
$$

In the same manner as in (13), we obtain

$$
\frac{1}{\tau^n} \{ f^n(z) - a_1 h(f^n(z)) \} = \frac{1}{\tau^{n-1}} \{ f^{n-1}(z) - a_1 h(f^{n-1}(z)) \} + \frac{B_\tau}{\tau^n} + \frac{1}{\tau^n} \tilde{A}(f^{n-1}(z)).
$$

We define

$$
\varphi_n(z) = \frac{1}{\tau^n} \{ f^n(z) - a_1 h(f^n(z)) \} - B_\tau \sum_{k=1}^n \frac{1}{\tau^k}
$$

$$
= z - a_1 h(z) + \sum_{k=1}^n \frac{1}{\tau^k} \tilde{A}(f^{k-1}(z)).
$$

The sum on the right is

$$
\sum_{k=1}^{n} \frac{1}{\tau^k} A_1(f^{k-1}(z)) - a_{1,\tau} \sum_{k=1}^{n} \frac{1}{\tau^k} A_2(f^{k-1}(z)).
$$

104 Tetsuo Ueda

When $n \to \infty$, the first sum is uniformly convergent by the estimate (14). The convergence of the second sum follows from Lemma 3.7 below. Thus $\varphi_n(z)$ converges uniformly on $\mathcal{V}_{\alpha,\rho}(R)$ as $n \to \infty$. Hence the limit $\varphi(z)$ $\lim_{n\to\infty}\varphi_n(z)$ is continuous on $\mathcal{V}_{\alpha,\rho}(R)$. From $\varphi_n(f(z))=\tau\varphi_{n+1}(z)+B_\tau$ it follows that $\varphi(z)$ satisfies the equation (10).

Since $\tilde{A}(z)$ vanishes at $z = \infty$, we have $\varphi_n(z) = z - a_1 H_\tau + o(1)$ in the neighborhood of $z = \infty$. Letting $n \to \infty$ yields the assertion (iii). \Box

Lemma 3.7. *We have*

$$
|A_2(z)| \le \frac{KM}{|z|N(z)}
$$

on $(z, \tau) \in \mathcal{V}_{\alpha,\rho}(R)$.

Proof. Let z be a point with $N(z) > R$ and let $[\ell(z), f(z)]$ denote the segment joining $\ell(z)$ and $f(z)$ in $\mathbb C$. The length of this segment is

$$
|f(z) - \ell(z)| = |A(z)| < \frac{K}{|z|} < \delta,
$$

by (8). For any ζ in this segment, we have $|N(\zeta) - N(\ell(z))| \leq |\zeta - \ell(z)| < \delta$. Hence $N(\zeta) > N(\ell(z)) - \delta > N(z)$. Hence, by Proposition 2.6 we have

$$
|h'(\zeta)|\leq \frac{M}{N(\zeta)}\leq \frac{M}{N(z)}
$$

on this segment. Thus we have

$$
|A_2(z)| = \left| \int_{[\ell(z), f(z)]} h'(\zeta) d\zeta \right| \le \frac{KM}{|z| N(z)},
$$

which proves the assertion.

Acknowledgement

The author would like to thank the referee for careful reading of the manuscript and helpful suggestions.

References

[1] T. M. Apostol, *Introduction to analytic number theory*, Springer, New York, 1976.

SIMULTANEOUS LINEARIZATION 105

- [2] K. Chandrasekharan, *Introduction to analytic number theory*, Springer-Verlag New York Inc., New York, 1968.
- [3] P. Fatou, Sur les équations fonctionelles, Bull. Soc. Math. France **47** (1919) 161-271; ibid. **48** (1920) 33–94, 208–314.
- [4] T. Kawahira, A proof of simultaneous linearization with a polylog estimate, Bull. Pol. Acad. Sci. Math. **55** (2007), no. 1, 43–52.
- [5] G. Koenigs, Recherches sur les integrals de certaines equations fonctionelles, Ann. Sci. Ec. Norm. Sup. (3e Ser.) **1** (1884) supplem. 1–41.
- [6] L. Leau, Étude sur les équations fonctionnelles à une ou à plusieurs variables, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. **11** (1897), no. 2, E1–E24; ibid. no. 3, E25–E110.
- [7] C. T. McMullen, Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv. **75** (2000), no. 4, 535–593.
- [8] J. Milnor, *Dynamics in one complex variable*, Third edition, Princeton Univ. Press, Princeton, NJ, 2006.
- [9] E. Schröder, Ueber iterierte Funktionen, Math. Ann. **3** (1871), 296-322.