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The authors wish to express their gratitude to Hei Hironaka for his won-
derful teaching and his friendship, over a period of many years.

In this succinct and incomplete presentation of Hironaka’s published work
up to now, it seems convenient to use a covering according to a few main
topics: families of spaces and equisingularity, birational and bimeromorphic
geometry, finite determinacy and algebraicity problems, flatness and flattening,
real analytic and subanalytic geometry. This order follows roughly the order of
publication of the first paper in each topic. One common thread is the frequent
use of blowing-ups to simplify the algebraic problems or the geometry. For
example, in the theory of subanalytic spaces of Rn, Hironaka inaugurated and
systematically used this technique, in contrast with the “traditional” method of
studying subsets of Rn by considering their generic linear projections to Rn−1.

No attempt has been made to point at generalizations, simplifications,
applications, or any sort of mathematical descent of Hironaka’s work, since the
result of such an attempt must be either totally inadequate or of book length.

• Families of algebraic varieties and analytic spaces, equisingularity

- Hironaka’s first published paper is [1], which contains part of his Master’s
Thesis. The paper deals with the difference between the arithmetic genus and
the genus of a projective curve over an arbitrary field. In particular it studies
what is today known as the δ invariant of the singularities of curves. Previous
work in this direction had been done by Rosenlicht (in his famous 1952 paper
where Rosenlicht differentials are introduced), as he points out in his review
of Hironaka’s paper in Math. Reviews. However, Rosenlicht’s treatment is
rather “arithmetical”, in the style of Chevalley’s book on algebraic functions of
one variable, while Hironaka’s presentation is “geometrical”. It allows him to
study the behavior of the arithmetic genus under specialization of a curve over
a (quasi-excellent) discrete valuation ring and to prove the best possible result
in this direction, using Zariski’s principle of degeneration.
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In a seminar at IHES in the spring of 1968 Hironaka explained his ideas on
how to relate the topology of complex analytic singularities and the algebraic
properties of the local rings, and stated in particular that the constancy of the
Milnor number in an analytic family of plane curve singularities should imply
its equisingularity. In this case the Milnor number is 2δ − r + 1 where r is the
number of analytic branches. This was later proved by Lê and Ramanujam for
analytic families of hypersurfaces of dimension �= 2 with isolated singularities.

- Next comes [2], which gives necessary and sufficient conditions for the con-
stancy of the Hilbert characteristic functions of the fibers of a family of pro-
jective varieties parametrized by the spectrum of a (quasi-excellent) discrete
valuation ring. Again the approach is geometric. This paper contains the well
known “Lemma of Hironaka” whose interest was pointed out by Nagata in his
review in Math. Reviews. It gives a condition which ensures that the normality
of the special fiber of such a family implies the normality of the total space.

- In the late 1960’s, Zariski was developing the theory of equisingularity, and
one problem was to understand the relationship between Zariski equisingularity,
which certainly implies equimultiplicity, and the Whitney conditions. Hironaka
used a geometric interpretation of his own ideas about normal flatness to give
an analogue, normal pseudo-flatness, which makes sense in both the real and
the complex case, and to prove that the Whitney conditions along a stratum
imply normal pseudo-flatness along that stratum. In the complex analytic case,
normal pseudo-flatness implies equimultiplicity, so that the Whitney conditions
imply equimultiplicity.

- In the paper [33] Hironaka proves the existence of Whitney stratifications
for subanalytic sets (see below) and describes an algebraic condition (in terms
of blowing-ups) ensuring Thom’s af condition for pairs of strata in X with
respect to a flat map f : X → S. Thom’s condition concerns the limiting
positions of tangent spaces to the fibers of f on the strata. It suffices to ensure
a fairly good behavior of the fibers of f , for example the existence of vanishing
cycles. Hironaka proves the existence of a stratification of X satisfying Thom’s
condition whenever S is a non singular curve.

- The paper [39] gives a proof of a fundamental result in equisingularity the-
ory: the semicontinuity of Zariski’s dimensionality type. Zariski had given an
inductive definition of equisingularity of a hypersurface X along a non singu-
lar subspace Y which is based on equisingularity along the image of Y of the
discriminant of a generic projection of X to a non singular space of the same
dimension. Here generic does not mean generic among linear projections; one
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must deal with formal projections given by dimX formal power series. The
dimensionality type of a hypersurface at a point is also defined inductively;
roughly speaking, X is of dimensionality type r at a point if it is equisingular
at that point along a non singular subspace of codimension r in X. The proof
uses subtle constructions and a version of the Weierstrass preparation theorem.

• Birational and bimeromorphic Geometry

- The first text is Hironaka’s 1960 Harvard Thesis On the theory of birational
blowing-up. It presents a very complete view of the models of a field K/k of
algebraic functions, whether algebraic or “Zariskian” (corresponding to parts of
the Zariski-Riemann variety of K/k). The main idea is to classify the models V ′

which are projective over a given model V according to the semigroup of those
(coherent sheaves of fractional) ideals on V which become locally principal on
V ′. More precisely, given a projective birational map V ′ → V Hironaka intro-
duces an algebraic equivalence relation on the ideals on V which is compatible
with the product, shows that equivalent ideals are principalized by the same
morphisms and defines C(V, V ′) to be the commutative semigroup (for the op-
eration induced by the product) of equivalence classes of ideals whose pull-back
ideal is locally principal on V ′. Then he shows that the smallest group G(V, V ′)
containing C(V, V ′) is finitely generated and free. Thus C(V, V ′) generates a
convex cone in G(V, V ′) ⊗Z Q. This gives naturally rise to a combinatorial
complex. The main theorem is that there is a one to one correspondence be-
tween the cells of this combinatorial complex and the normal models of K/k

which lie between V and V ′ and are projective over V . The inclusion of cells
corresponds to birational domination of models. This is the first occurrence
of the characteristic cone of a morphism. The thesis contains many results on
the normalized blowing-up of ideals, the behaviour of the Picard group and the
additivity of the depths of the base and fiber at a general point of the source
of a nice morphism of schemes. (see also [3]). It also contains an example of a
non projective birational map.

- Hironaka produced in [4] (using a very ingenious blowing-up) a one-parameter
family of non singular compact complex varieties whose special fiber is non-
Kähler and all other fibers are Kähler.

- The famous paper on resolution of singularities in characteristic zero (see [7])
introduced a number of new techniques in the subject, indeed in algebraic ge-
ometry and commutative algebra, as well as some key ideas which still underlie
all the proofs of resolution of singularities in characteristic zero, after more than
forty years and a lot of successful works to streamline and simplify Hironaka’s
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proof and to make it effective.
One of the simpler ideas he introduces is to measure the singularity of

an algebraic variety X at one of its points x by the Hilbert-Samuel function
instead of its multiplicity. It is the function HX,x from N to N defined by:
n �→ dimκ(x)OX,x/mn+1

X,x which is associated to the local ring OX,x. Asymptot-

ically it behaves like eX,x
nd

d! where d is the dimension and eX,x the multiplicity.
Multiplicity is blind to lower-dimensional components so that multiplicity one
does not imply non singularity in general. If the Hilbert-Samuel function of
a local ring is that of a regular ring, the local ring is regular. Moreover, the
Hilbert-Samuel function of the local ring of a variety determines its local em-
bedding dimension, while the multiplicity does not. The partition of a variety
according to the values taken by the Hilbert-Samuel function of the local rings
(Samuel stratification of X) is of an algebraic nature. Next comes the fact that
the constancy of the Hilbert-Samuel function of a variety X along a non singu-
lar closed subvariety Y (i.e., HX,y(n) is independant of y ∈ Y for all n ∈ N) is
equivalent to the flatness of the canonical map CX,Y → Y of the normal cone
of Y in X (normal flatness). This makes it possible to prove that under a per-
missible blowing-up f : X ′ → X, the Hilbert-Samuel function cannot increase,
in the sense that for all x′ ∈ X ′ we have HX′,x′(n) ≤ HX,f(x′)(n) ∀n ∈ N.
Here permissible blowing-up means a blowing-up of the ambient non singular
space with a non singular center along which our singular space X is normally
flat. Moreover we have information on those points x′ ∈ f−1(x) for which the
two functions HX,x and HX′,x′ are equal.

Now the key problem is, given a Hilbert-Samuel function H of a point x of
X, to prove the existence of a sequence of permissible blowing-ups after which
the Hilbert-Samuel function has decreased everywhere above a neighborhood
of x. This suffices since one can show that the Hilbert-Samuel function can-
not indefinitely decrease, and when it stabilizes with respect to a sequence of
permissible blowing-ups, the space is non singular.

The key ideas introduced by Hironaka at this point are those of maximal
contact and of idealistic exponent. They do not appear with these names in the
Annals of Mathematics paper, but as parts of J-stable regular τ -frames and of
resolution data of type RN,n

II . Their role is explained in [35], [31], [37]. The idea
is to find locally at each singular point x of our singular space X a non singular
subspace W of the ambient non singular space, which has “maximal contact”
with X at x in the sense that it locally contains the Hilbert-Samuel stratum of
x in X, and after a permissible blowing-up its strict transform W ′ contains all
the points x′ ∈ f−1(x) of the strict transform X ′ of X where HX′,x′ = HX,x
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and has the same property at each of these points as W at x. Given such a
W , which exists in characteristic zero and has dimension ≤ dimxX, Hironaka
then constructs an idealistic contact exponent which in some sense measures
the contact of X with W and how difficult it is to separate the strict transforms
of X and W through permissible blowing-ups.

An idealistic exponent is an equivalence class of pairs (J, b) of an ideal
on W and an integer b. If we call νx(I) the order of an ideal I with respect
to the mX,x-adic filtration, that is the largest k such that Ix ⊂ mk

X,x, the
singular set of an idealistic exponent represented by a pair (J, b) is the set
{x ∈ X/νx(J) ≥ b}. It is independant of the choice of the representative and
an idealistic exponent is non singular if its singular locus is empty. There is
a notion of permissible blowing-up for idealistic exponents and a rule for their
transformation by such blowing-ups. Given X and a W with maximal contact
as above, an idealistic contact exponent on W has the following properties:
• Blowing ups f : X ′ → X that are permissible for X have their centers in W

and are permissible for (J, b).
• At all points x′ ∈ f−1(x) of the strict transform X ′ of X where HX′,x′ = HX,x,
the transform (J ′, b′) on the strict transform W ′ of W is again an idealistic
contact exponent.
• To make the Hilbert-Samuel function of X drop by a sequence of permissible
blowing-ups is equivalent to “resolving the singularities” of the idealistic expo-
nent (J, b) by a sequence of permissible (for (J, b), but it is the same as for X)
transformations on W .

In an essential way, the dimension of the problem has dropped to the
dimension of W , and Hironaka shows that resolution of singularities of spaces
embedded in lower dimension than X implies resolution for idealistic exponents
on W , hence the existence of a sequence of permissible blowing-ups which makes
the Hilbert-Samuel function of X drop, hence resolution for X.

In the special case where X is defined by one equation of the form

Zn + a1(x1, . . . , xk)Zn−1 + · · · + an(x1, . . . , xk) = 0,

the space W is the non singular space Z + a1(x1,...,xk)
n = 0 corresponding to the

Tschirnhaus transformation: the change of the variable Z to

Z ′ = Z +
a1(x1, . . . , xk)

n

makes the term a1(x1, . . . , xk)Zn−1 disappear. Assuming now that a1 = 0, the
idealistic contact exponent is

(
(ab/i

i )2≤i≤n, b = n!
)
. Note that if k = 1 and X
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is a plane curve, the rational number min1≤i≤nνx(ai)/i is the slope of the first
side of the Newton polygon of the curve. If the coordinates are chosen so that
Z = 0 has maximal contact, the integral part of this number measures how
many blowing-ups (of points) one must make in order to make the multiplicity
(or, which is equivalent in this case, the Hilbert-Samuel function) of the strict
transform of the curve drop. This is an important part of the philosophy of
the general proof, and also of the attempts to prove the positive characteristic
case (see [11], [12], [13], [50], [51]).

Note also that one sees immediately from the definition of the Tschirnhaus
transformation why maximal contact might fail in positive characteristic, as
indeed it does.

In the general case, the construction of local systems of coordinates and
equations which allow one to describe locally the Samuel stratum of the point
and of the points obtained after permissible blowing-ups and to follow the
behavior of idealistic exponents under permissible blowing ups at all the points
where the Hilbert-Samuel function does not decrease requires a lot of work. In
particular, if X is defined locally at x in a non singular space T , in order for local
equations to contain enough information to describe locally the Hilbert-Samuel
stratum, their initial forms (or leading forms) for the mT,x-adic filtration of
OT,x must generate the ideal of the tangent cone CX,x (and similarly for the
normal cone CX,Y along a permissible center): this is the foundation of the
notion of standard basis, closely related to what is called nowadays Gröbner
basis or Macaulay basis.

The problem of resolution of singularities for complex analytic spaces,
about which Hironaka explained his first ideas in a seminar in Ruuponsaari
(Finland) in the summer of 1968, and which was studied in [21], [23], [30], [34],
[37] (a survey of the method), and [38], presents entirely new difficulties.

- Starting from an ideal generated by holomorphic functions, in order to find
useful generators for the ideal I of the idealistic exponent, one must first apply a
generalized form of the Weierstrass preparation theorem, invented by Hironaka
for this purpose, and which will appear again in the paragraph devoted to
flattening. It is in fact rather a division theorem, dividing an element g in a
convergent power series ring C{z1, . . . , zN} by the generators f1, . . . , f� of an
ideal I, that is, writing g = h1f1 +· · ·+h�f� +r in such a way that no monomial
zA of r is divisible by the initial monomials of the series fi. It is closely related
to a theorem of Grauert (1972).

- The centers of blowing-up which one can construct locally for the analytic
topology do not necessarily extend as global centers of blowing-up as the cen-
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ters constructed locally for the Zariski topology do in algebraic geometry. To
overcome this difficulty, Hironaka invented the Gardening of infinitely near sin-
gularities explained in [23] and in the Madrid notes [30]. It is a sort of sheafifi-
cation of local sequences of permissible blowing-ups which can be used to prove
by induction on the dimension the existence of global centers of permissible
blowing-ups.

More recently (see [50], [51]) Hironaka has taken up again the proof of reso-
lution of singularities of excellent schemes in arbitrary characteristic. He has
introduced a graded algebra which is finitely generated in any characteristic
and is associated to sequences of permissible blowing-ups. In principle the
finite-generatedness of this algebra and its very special properties with respect
to differential operators and some restrictions of ambient space shall make up
for the absence of maximal contact in positive characteristic. This is work in
progress.

- Hironaka has also made a substantial contribution to the problem of resolution
of singularities by Nash modification. The Nash modification ν : N(X) → X

of an algebraic variety or a reduced equidimensional complex analytic space
is the minimal proper birational (or bimeromorphic) map such that ν∗Ω1

X has
a locally free quotient of rank dimX. The fibers ν−1(x) are set-theoretically
the limit directions at x of tangent spaces to X at non singular points tending
to x. The problem of proving that after finitely many Nash modifications one
obtains a non singular space was first stated by Semple in 1954, and essentially
no progress was made until Hironaka proved in [41] by a valuative argument
that if one considers the same problem for surfaces and with normalized Nash
modification instead of Nash modification, one could reduce to the case where
X has only rational singularities.

- Another important contribution of Hironaka to bimeromorphic geometry is
the definition in [27] and [29] of the complex-analytic analogue of the Zariski-
Riemann manifold, the Voûte étoilée. Instead of taking the projective limit
of birational blowing-ups, one considers compositions of local blowing-ups. A
local blowing-up X ′ → X of X is the blowing-up in an open subset U of X of
a closed analytic subset of U , composed with the inclusion U ⊂ X. It is not
proper, and compositions of local blowing-ups do not form a projective system.
An element of the Voûte étoilée EX is a maximal projective subsystem of the
system of all compositions of local blowing-ups above X, satisfying in addition
some technical condition. There is a canonical proper morphism EX → X.
This object renders the same services as the Zariski-Riemann manifold, and in
particular is crucial in the proof of the local flattening theorem below.
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- In [14] it is shown that on a non singular projective variety X of dimension
n every algebraic cycle of dimension d ≤ min(3, n−1

2 ) is rationally equivalent
to a linear combination of non singular subvarieties of X. The method is
to desingularize, move into general position in the blown-up space, and push
down. The first paragraph contains the theorem that a proper flat morphism of
noetherian schemes with smooth fibers which has a fiber which is a projective
space is a projective bundle.

- Under the pseudonym of Hej Iss’sa (Kobayashi Issa is a famous Japanese
poet) Hironaka settled in 1966 (see [10]) a long standing problem in the theory
of Riemann surfaces. Here we consider, for non compact connected Riemann
surfaces, the ring A(X) of holomorphic functions on X, and its field of fractions
F (X). A famous theorem of Chevalley-Kakutani and Bers showed that X and
Y are conformally equivalent if and only if A(X) and A(Y ) are isomorphic as
C-algebras. Iss’sa proved that X and Y are conformally equivalent if and only
if the fields F (X) and F (Y ) are C-isomorphic. The argument is in fact valid
in a much more general setting. The key fact is that a valuation of the field
M(X) of meromorphic functions on a complex variety X whose value group is
“not too large” in a precise sense, and in particular not divisible, is necessarily
≥ 0 on the ring of holomorphic functions on X. The crucial case is the case
X = C.

• Finite determinacy, algebraicity

The general result stated (but proved only in special cases) in [9] is that given
a finite type flat map π : X → Y of schemes, which, over a neighborhood of
a point y0 ∈ Y , has reduced equidimensional fibers, all of the same dimension
and is endowed with a section ε : Y → X, and given a closed subscheme Z of
X containing ε(Y ) and such that π|X \ Z : X \ Z → Y is formally smooth,
then there exists an H-adic (t, r)-index for (Y, y0, π, X, ε), where H is the ideal
defining Z in X. The completion of X along Z is defined as the completion
of the sheaf of algebras of X with respect to the H-adic topology. It is the
inductive limit of the infinitesimal neighborhoods of Z in X, which are defined
by the powers of H. Roughly speaking, the existence of a (t, r)-index means
that, if the dimensions of the fibers are fixed, the completion of X along Z is,
in a neighborhood of ε(y0) and up to Y -isomorphism, determined by a finite
infinitesimal neighborhood of Z in X. There is a subtlety in that, if we assume
that we have two data (Y, y0, π, X, ε, Z) and (Y, y0, π

′, X ′, ε′, Z ′) with the same
fiber dimension, it is not an isomorphism of the t-th infinitesimal neighborhood
Zt of Z in X with an infinitesimal neighborhood Z ′

t of Z ′ in X ′, which extends
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to the completions, but its restriction to some Zt−r.
Hironaka writes at the end of [9] that one of his sources of inspiration was

a result of Grauert stating that the formal completion along the exceptional
divisor of a point-blowing-up is determined by a finite infinitesimal neighbor-
hood. Generalizing this to exceptional divisors with normal crossings (see [6])
and applying resolution of singularities, one can hope to prove for example
that any isolated singularity is analytically or formally determined by a finite
infinitesimal neighborhood of the singular point, and in particular is algebraic,
but there are difficulties. In any case, for complete intersections with isolated
singularities, this result is proved in [9], and the determinacy of a small complex
neighborhood by a finite infinitesimal neighborhood for an exceptional divisor
A in a complex space X such that X \ A is non singular is proved in [6].

The papers [15], [16], [17] all deal with the problem of comparing formal or
analytic structures (embeddings, line bundles, etc.) with algebraic or rational
ones.

• Flatness and Flattening

- In his study of algebraicity conditions and the (t, r)-index ([9]) Hironaka
used in the 1960’s blowing-ups to transform an arbitrary subscheme X of a
non singular ambient scheme, defined by an ideal I, into a local complete
intersection, which amounts essentially to making the (strict transform of the)
normal space corresponding to the coherent sheaf of OX -modules I/I2 flat.
This can be systematized in at least two ways in analytic geometry. The main
idea is that given any analytic map f : X → S it can be made flat by base
change in the following sense:
- If the map f is proper and S is reduced and countable at infinity, given any
coherent sheaf on X, there exists a proper bimeromorphic map π : S′ → S such
that in the diagram

X ×S S′ π′−→ X

f ′ ↓ f ↓
S′ π−→ S

the sheaf π′∗F modulo its f ′-torsion is f ′-flat.
- We no longer assume f to be proper and consider a point s of S and a compact
subset L ⊂ f−1(s). Then there exists a finite family of maps πk : S′

k → S,
each of which is a finite composition of local blowing-ups, such that the strict
transform of f by each πk is flat at every point mapped to a point of L. Here the
strict transform is the closure of the part of the fiber product whose image by
the projection to S′

k is not contained in the exceptional divisor of πk. Moreover,
the union of the images of the maps πk is a neighborhood of s in S.
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In both cases, the first difficulty is to define a flattener of the sheaf (or the
map). The proof of flattening in the proper case is given in [33] (see also [32]).
In the local case, the flattener is the largest closed subspace B of S containing
the point s such that the restriction of f above B (in the sense of fiber product
with B over S) is flat.

The first proof of local flattening in [28] used generalized Newton polygon
techniques. There is in [29] a proof of the existence of the flattener using a
parametrized version (with respect to S) of Hironaka’s division theorem for the
local equations of X in S × CN .

In particular, if A → B = A{t1, . . . , tn}/I is a flat morphism of complex-
analytic algebras, Hironaka’s division theorem provides, given a system of gen-
erators of I and after a suitable linear change of the coordinates t1, . . . , tn, an
explicit presentation of the A-module B as a finite direct sum of free A-modules
of the form A{t1, . . . , tj}. If B is not flat over A, the division theorem makes
the obstructions to this presentation appear as series in A{t1, . . . , tn}, whose
coefficients in A provide equations for the flattener of the corresponding map.

It should be pointed out that flattening has important consequences in
birational and bimeromorphic geometry. For example if f : X → Y is a proper
bimeromorphic map of complex spaces, after base change by a blowing-up Y ′ →
Y the induced map (strict transform) f ′ : X ′ → Y ′ is bimeromorphic and flat,
so it is an isomorphism. Inverting it we see that f is dominated by a blowing-up,
a form of Chow’s lemma.

• Real analytic and subanalytic Geometry; subanalytic sets

- In the 1970’s Hironaka developed his theory of subanalytic sets. The existence
and usefulness of such a theory had been foreseen by Thom and �Lojasiewicz in
the 1960’s, and in 1968 Gabrielov proved the theorem of the complement: if we
call a subset of Rn subanalytic when it is locally at every point of Rn a finite
union of differences of images of semi-analytic sets by proper analytic maps, the
complement of a subanalytic set is subanalytic. From there the theory could be
developed, and indeed was later, from the viewpoint of projections of subsets of
Rn to affine spaces of lower dimensions introduced by �Lojasiewicz in the study
of semi-analytic sets.

In [25], [26] and [29](which contains a complete exposition), Hironaka built
the whole theory from a different viewpoint, as explained in the beginning.
The main theorem is a resolution of singularities of subanalytic sets: Every
subanalytic set is locally the finite union of images of spheres by real-analytic
maps. This is a consequence of the Rectilinearization theorem which states that
a subanalytic set can locally be transformed by finitely many finite sequences
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of local blowing-ups into a union of quadrants in affine space. One important
step in the proof is the use of the local flattening theorem in complex analytic
geometry to the complexifications of suitable real analytic maps defining the
subanalytic set to prove that after suitable blowing-ups of the ambient space
a subanalytic set becomes semi-analytic. Then one can apply resolution of
singularities to the definining analytic functions.

In [31] Hironaka gives a proof of the triangulability of semi-algebraic sets
(a known theorem, reputedly difficult) which is so streamlined and clear that it
allows him, almost without change, to prove the triangulability of subanalytic
sets, a new theorem. Finally by 1976 Hironaka had provided a complete an-
alytic description of subanalytic sets and their finiteness properties, including
Whitney stratifications, triangulability and the �Lojasiewicz inequalities.

We are grateful to Herwig Hauser and Tadao Oda for their careful reading
and their suggestions.
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lytique et aplatissement local, in Singularités à Cargèse (Rencontre Singularités Géom.
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