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Abstract

The filtration of the Virasoro minimal series representations M
(p,p′)
r,s induced by

the (1, 3)-primary field φ1,3(z) is studied. For 1 < p′/p < 2, a conjectural basis of

M
(p,p′)
r,s compatible with the filtration is given by using monomial vectors in terms

of the Fourier coefficients of φ1,3(z). In support of this conjecture, we give two
results. First, we establish the equality of the character of the conjectural basis vectors
with the character of the whole representation space. Second, for the unitary series
(p′ = p+ 1), we establish for each m the equality between the character of the degree
m monomial basis and the character of the degree m component in the associated
graded module gr(M

(p,p+1)
r,s ) with respect to the filtration defined by φ1,3(z).
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§1. Introduction

In this paper we study a filtration on the Virasoro minimal modules by
the φ1,3 primary field. We first state the problem in a general scheme. Let
S = {φα(z)}α∈A be a set of vertex operators acting on a graded vector space
V . In the actual setting, the representation space V is a direct sum V =
⊕β∈BV (β) such that the index set A is a subset of B, the grading is of the form
V (β) =

∑
i∈∆(β)+Z≥0

V
(β)
i , and the action of the vertex operator

φα(z) : V (β) → V (γ)

is decomposed as
∑

n∈Z+∆(γ)−∆(β) φ
(γ,β)
α,−nzn−∆(α)

, where φ
(γ,β)
α,−n : V

(β)
i → V

(γ)
i+n.

Now for some fixed vector v0 ∈ V (α0), one can define a sequence of sub-
spaces E0(V ) ⊂ E1(V ) ⊂ E2(V ) ⊂ · · · ⊂ V by setting

Em(V ) = span{φ(β0,β1)
α1,−n1

φ
(β1,β2)
α2,−n2

. . . φ
(βk−1,βk)
αk,−nk

v0 |(1.1)

αi ∈ A, βj ∈ B, βk = α0, ni ∈ Z + ∆(βi−1) −∆(βi), k ≤ m}.

In what follows we assume that the Fourier coefficients {φ(γ,β)
α,−n} generate the

whole V from v0. In this case the above construction gives a filtration E =
{Em(V )}∞m=0 on V , which we refer to as the S-filtration. In our examples,
V is a representation of the Virasoro or the ŝl2 algebra, and φα(z) are vertex
operators from the corresponding conformal field theory.

Let us consider the associated graded space grEV := ⊕∞
m=0Em(V )/

Em−1(V ). Note that the space grEV is bi-graded by the grading grEV =
⊕∞

m=0grE
mV and that of V (β) =

∑
i V

(β)
i . Now there are two natural questions:

(i) Find the bi-graded character

chq,vgrEV (α) :=
∑
m,n

qnvm dim
(
V (α)

n ∩ Em(V ))/(V (α)
n ∩Em−1(V )).

(ii) Find a monomial basis of V which is compatible with the filtration E. This
means that one needs to construct a basis of V of the form

φ
(β0,β1)
α1,−n1

φ
(β1,β2)
α2,−n2

. . . φ
(βk−1,βk)
αk,−nk

v0 (βk = α0)

with certain αi, ni, βj such that the images of the basis vectors with k ≤ m

form a basis of Em(V ).

In the case when V is a Virasoro minimal model and S consists of one field
φ2,1(z), these questions have been studied in [FJMMT1], [FJMMT2] under
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certain conditions. In this paper we consider the φ1,3(z) field. The correspond-
ing filtration on the Virasoro modules is called the (1, 3)-filtration. We also
clarify the connection between the φ1,3 case and the fusion filtration on the
representations of ŝl2. Let us describe our results.

Let p < p′ be relatively prime positive integers, and let M
(p,p′)
r,s (1 ≤ r < p,

1 ≤ s < p′) be the irreducible representations of the Virasoro algebra with the
central charge c = 13 − 6(t + 1/t) and highest weight ∆r,s = ((rt− s)2 − (t−
1)2)/4t, where t = p′/p. We consider the (1, 3) primary field (s− s′ = −2, 0, 2)

φ(s′,s)(z) =
∑

n∈Z+∆r,s′−∆r,s

φ
(s′,s)
−n zn−∆1,3 , φ

(s′,s)
−n : M (p,p′)

r,s →M
(p,p′)
r,s′ .

One of our goals is to construct a monomial basis of M
(p,p′)
r,s compatible with

the (1,3)-filtration under the condition 1 < t < 2. In this paper we propose a
set of vectors as the monomial basis. Let us describe it. Fix a highest weight
vector |r, s〉 of M

(p,p′)
r,s . For r and s, we determine b(r, s) by the equality

∆r,b(r,s) = min
1≤a≤p′−1
a≡s mod 2

∆r,a.

Next we define some rational numbers w(a, b, c) for 1 ≤ a, b, c ≤ p′ such that
|a − b| and |b − c| are 0 or 2. In the case of 1 < t ≤ 5/3, they are given as
follows:

w(s± 2, s, s∓ 2) =
2
t
,

w(s, s + 2, s + 2) = w(s + 2, s + 2, s) = 2−
{

s + 1
t

}
,

w(s, s, s + 2) = w(s + 2, s, s) = 1 +
{

s + 1
t

}
,

w(s, s + 2, s) = −2
{

s + 1
t

}
+ x(s),

w(s, s, s) = 2,

w(s, s− 2, s) = 2
{

s + 1
t

}
− 4

t
+ 5− x(s).

Here {u} := u− [u], where [u] is the integer part of u, and

x(s) =

{
2 (1 ≤ s < p′/2)
3 (p′/2 < s ≤ p′ − 1).

In the case of 5/3 < t < 2 we have some choices of the definition of the
values w(s, s± 2, s) and w(s, s, s) under the condition described as (2.23) (see
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(2.16)–(2.21) and the text below for the precise definition). It is a part of our
conjecture that, for any choice, the vectors given in the following constitute a
basis. We call a vector of the form

(1.2) φ
(s0,s1)
−n1

. . . φ
(sm−1,sm)
−nm

|r, b(r, s)〉 (s0 = s, sm = b(r, s))

admissible monomial if it satisfies the condition

(1.3) ni − ni+1 ≥ w(si−1, si, si+1) (i = 1, . . . , m− 1).

Now we state our conjecture:

Conjecture. The set of admissible monomials form a basis of M
(p,p′)
r,s .

To support the conjecture, we prove two statements:

A. The character of the proposed basis coincides with the character of M
(p,p′)
r,s .

B. In the unitary case p′ = p+1, the bi-graded character of the proposed basis
and that of grEM

(p,p′)
r,s coincide, where grEM

(p,p′)
r,s is the associated graded

space with respect to the (1, 3)-filtration on M
(p,p′)
r,s .

The proof of the statement A is based on combinatorics and the Rocha-
Caridi character formula. Namely we show that the character of admissible
monomials with fixed m can be written in the form

(1.4)
q∆r,s

(q)m
Im(q), (q)m =

m∏
i=1

(1− qi),

where Im(q) is an alternating sum of the characters for the fusion products
[FL]. We also prove that the Rocha-Caridi formula for the character of M

(p,p′)
r,s

can be rewritten as
∑

m≥0
q∆r,s

(q)m
Im(q). In order to prove that the admissi-

ble monomials form a basis of M
(p,p′)
r,s , it is enough to rewrite any monomial

φ
(s0,s1)
−n1

· · ·φ(sm−1,sm)
−nm

|r, b(r, s)〉 in terms of admissible monomials of length less
than or equal to m. This was done in [FJMMT1], [FJMMT2] in the case of
the (2, 1) field using quadratic relations for its Fourier components. Similar
quadratic relations can be written also for the (1, 3) field using the results of
[DF]. Still it is not clear to us how to rewrite an arbitrary monomial in terms
of admissible ones using these relations.

The proof of the statement B is based on the coset construction. For
i = 0, 1 and integers r, k with 0 ≤ r − 1 ≤ k, let

(1.5) Li,1 ⊗ Lr−1,k =
⊕

1≤s≤k+2
s: s+r+i even

M (k+2,k+3)
r,s ⊗ Ls−1,k+1
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be the decomposition of the tensor product of the irreducible highest weight
representations of ŝl2. Here Lj,k denotes the level k module with the highest
weight j with respect to sl2 ⊗ 1 ↪→ ŝl2. We denote by vj,k the highest weight
vector. Using a result of [L], we establish the connection between the (1, 3)
filtration and the fusion filtration on the left hand side of (1.5). Namely, con-
sider the action of the algebra ŝl2 on Li,1 and the corresponding S-filtration
Gm(Li,1), where S = {e(z), h(z), f(z)}, x(z) =

∑
(x⊗ tn)z−n−1, and {e, h, f}

is the standard basis of sl2. We call this filtration the Poincaré-Birkhoff-Witt
(PBW) filtration. We show that

(1.6) U(ŝl2) · (Gm(Li,1)⊗ vr−1,k) =
⊕

1≤s≤k+2
s: s+r+i even

Em(M (k+2,k+3)
r,s )⊗ Ls−1,k+1,

where Em(M (k+2,k+3)
r,s ) is the (1, 3)-filtration. Thus the study of this filtration

can be reduced to the study of the left hand side of (1.6).
We recall that, for two cyclic g-modules V1 and V2 with cyclic vectors v1

and v2, the fusion filtration on the tensor product V1(z1)⊗V2(z2) of evaluation
representations of g⊗ C[u] is defined by

Fm(V1(z1)⊗ V2(z2)) = span{(g(1) ⊗ ui1) · · · (g(s) ⊗ uis) · (v1 ⊗ v2)},

where g(i) ∈ g and i1 + . . . + is ≤ m. One can easily show that

Fm(Li,1 ⊗ Ll,k) = U(ŝl2) · (Gm(Li,1)⊗ vl,k).

Using (1.6) we express the bi-graded character of the (1, 3)-filtration via
that of the PBW-filtration on Li,1. We thus get the bi-graded version (1.4) of
the Rocha-Caridi formula as an alternating sum of the bi-graded characters of
weight subspaces of Li,1.

We finish the introduction with a discussion of possible generalizations.
Note that the integer level k in the coset construction (1.5) can be replaced
by a fractional one. This generalization leads to the coset realization of the
general M

(p,p′)
r,s . We expect that the above construction can be applied to the

general case.
Now consider the (1, 2) field φ1,2(z). In this case the decomposition (1.5)

should be replaced by

(L0,1 ⊕ L1,1)⊗ Lr−1,k =
⊕

1≤s≤k+2

M (k+2,k+3)
r,s ⊗ Ls−1,k+1,

and the algebra ŝl2 by the vertex (intertwining) operator C2(z) acting on L0,1⊕
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L1,1. This vertex operator induces the filtration G′
m(L0,1 ⊕ L1,1). Then

U(ŝl2) · [G′
m(L0,1 ⊕ L1,1)⊗ Lr−1,k] =

⊕
1≤s≤k+2

H ′
m(M (k+2,k+3)

r,s )⊗ Ls−1,k+1,

where H ′
m(M (k+2,k+3)

r,s ) is the (1, 2)-filtration. As in the (1, 3)-case, the bi-
graded character ∑

m≥0

vmchqH
′
m(M (k+2,k+3)

r,s )

can be expressed as an alternating sum of the bi-graded characters of C2(z)-
filtration on L0,1 ⊕ L1,1.

Our paper is organized as follows: In Section 2, the character of the Vi-
rasoro module M

(p,p′)
r,s is written as an alternating sum by using the character

of the weight l component of the fusion product π∗m
2 (Lemma 2.2). The main

result in this section is a proof of the statement that for 1 < p′/p < 2 the alter-
nating sum with fixed m is the character of the admissible monomials of length
m (Proposition 2.3). Section 3 prepares some exact sequences of the fusion
products and vanishing of the homology groups of the Lie subalgebra n+ ⊂ ŝl2
generated by f ⊗1 and e⊗ t−1 with coefficients in the tensor product of certain
finite dimensional modules and irreducible highest weight ŝl2-modules. This is
used in Section 5 when the characters of the highest weight vectors in integrable
ŝl2-modules are computed. In Section 4, by using Lashkevich’s construction of
vertex operators in the GKO construction, an isomorphism is given between
the fusion product of level 1 and level k irreducible highest weight ŝl2-modules
and the associated graded module with respect to the filtration defined by the
(1, 3) primary field (Proposition 4.4). Section 5 is devoted to the calculation
of the characters for the m-th graded components of the Virasoro unitary se-
ries with the (1, 3)-filtration (Theorem 5.15). The result coincides with the
combinatorial characters computed in Section 2.

Throughout the text, e, f, h denotes the standard basis of sl2, and πj de-
notes the (j + 1)-dimensional irreducible representation.

§2. Conjectural Monomial Basis by (1,3) Field

§2.1. Formulation

In this section, we consider Virasoro modules in the minimal series which
are not necessarily unitary.

Let Vir be the Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0.
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Throughout this section, we fix relatively prime positive integers p, p′ satisfying
3 ≤ p < p′. We denote by M

(p,p′)
r,s (1 ≤ r ≤ p−1, 1 ≤ s ≤ p′−1) the irreducible

Vir-module with central charge c = 13− 6(t + 1
t ) and highest weight

∆r,s =
(rt− s)2 − (t− 1)2

4t
,

where

t =
p′

p
.

We fix 1 ≤ r ≤ p− 1, and consider the (1, 3) primary field

φ(s′,s)(z) =
∑

n∈Z+∆r,s′−∆r,s

φ
(s′,s)
−n zn−∆1,3 .

The Fourier coefficients φ
(s′,s)
−n are operators acting as

(
M

(p,p′)
r,s

)
d
→(

M
(p,p′)
r,s′

)
d+n

, where
(
M

(p,p′)
r,s

)
d

= {|v〉 ∈ M
(p,p′)
r,s | L0|v〉 = d|v〉} stands for

the graded component. They are characterized by the intertwining property

[Ln, φ(s′,s)(z)] = zn

(
z

d

dz
+ (n + 1)∆1,3

)
φ(s′,s)(z).

A non-trivial (1, 3) primary field exists if and only if s′ = s, s± 2 and (s′, s) �=
(1, 1), (p′ − 1, p′ − 1). Moreover, it is unique up to a constant multiple. We
fix the highest weight vector |r, s〉 ∈

(
M

(p,p′)
r,s

)
∆r,s

and use the normalization

φ
(s′,s)
∆r,s−∆r,s′

|r, s〉 = |r, s′〉.
Our problem is to construct a basis of the representation M

(p,p′)
r,s by using

the operators φ
(s′,s)
−n . In this paper we restrict to the case

1 < t < 2,(2.1)

and give a partial answer to this problem.
The form of the basis we propose is similar to the one studied in [FJMMT1],

[FJMMT2] using the (2, 1) primary field. We define a set of weights

w(a, b, c) ∈ ∆r,a − 2∆r,b + ∆r,c + Z ,(2.2)

and consider vectors of the form

φ
(s0,s1)
−n1

· · ·φ(sm−1,sm)
−nm

|r, sm〉(2.3)
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satisfying

ni − ni+1 ≥ w(si−1, si, si+1) .(2.4)

The actual form of the weights (2.2) is a little involved, and we postpone their
definition to subsection 2.3 (see (2.16)–(2.21) and paragraphs following them).
The vectors (2.3) are parametrized by spin-1 and level-p′ restricted paths, i.e.,
sequences of integers

s = (s0, s1, . . . , sm)

satisfying

1 ≤ si ≤ p′ − 1,

si = si+1 or si+1 ± 2,

(si, si+1) �= (1, 1), (p′ − 1, p′ − 1).

We call them simply paths. The non-negative integer m is called the length
of the path. We denote by P

(p′)
a,b,m the set of paths (s0, s1, . . . , sm) of length m

satisfying s0 = a and sm = b. Note that the parity of si is common with each
path. In particular, we have a ≡ b mod 2 if P

(p′)
a,b,m is non-empty.

The set of rational numbers

(n1, . . . , nm)

in the expression (2.3) is called a rigging associated with the path
(s0, s1, . . . , sm). A rigging satisfies

ni ∈ Z + ∆r,si−1 −∆r,si
.

A path with rigging is called a rigged path.
A rigged path of length m is called admissible if and only if (2.4) and the

following condition hold:

nm ≥ ∆r,sm−1 −∆r,sm
+ δsm−1,sm

.(2.5)

We denote by R
(p,p′)
r,a,b,m the set of admissible rigged paths of length m such that

s0 = a and sm = b.
Finally, we fix the boundary of a path sm = b(r, s) by the following rule:

b = b(r, s) is the unique integer satisfying 1 ≤ b ≤ p′ − 1, b ≡ a mod 2 and

∆r,b = min
1≤s≤p′−1
s≡a mod 2

∆r,s .(2.6)

We will comment on this choice in the next subsection 2.2.
Now we put forward the
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Conjecture 2.1. The set of vectors (2.3), where (n1, . . . , nm) runs
through the set

⋃
m≥0 R

(p,p′)
r,a,b,m and b = b(r, a) as given in (2.6), constitute

a basis of M
(p,p′)
r,a .

Note that the meaning of the condition (2.5) is clear. If ∆r,sm
+ nm <

∆r,sm−1 , the vector φ
(sm−1,sm)
−nm

|r, sm〉 is zero because
(
M

(p,p′)
r,sm−1

)
∆r,sm+nm

=

{0}. If sm−1 = sm and nm = 0, the vector φ
(sm,sm)
0 |r, sm〉 is proportional to

|r, sm〉 because it belongs to
(
M

(p,p′)
r,sm

)
∆r,sm

= C|r, sm〉. We have also ∆1,1 = 0

and
(
M

(p,p′)
1,1

)
1

= {0}. This is not in contradiction to the condition (2.5) for
r = sm = sm−1 = 1 because the case sm = sm−1 = 1 is prohibited.

In order to support the conjecture, we will show that the set of admissible
monomials has the same character as that of M

(p,p′)
r,a (Theorem 2.4). The

conjecture will follow if we show further that the above set of vectors span the
space M

(p,p′)
r,a . So far we have not been able to check the latter point in full

generality.

§2.2. A character identity

In this subsection, we rewrite the character of M
(p,p′)
r,a in a form suitable

for comparison with the set of paths.
We use the q-supernomial coefficients introduced in [SW]. They are a q-

analog of the weight multiplicities of tensor products of various πk, where πk

denotes the irreducible sl2-module of dimension k +1. As shown in [FF1], they
can be defined as the coefficients of zl of the graded character of the fusion
product (for the definition and properties of fusion product, see Section 3).

chq,z

(
π∗L1

1 ∗ · · · ∗ π∗LN

N

)
=

∑
l∈Z+ 1

2

PN
j=1 jLj

[
L1, . . . , LN

l

]
q

zl .

Here we will need only the special case N = 2, L1 = 0. Set

Sm,l(q) :=

[
0, m

l

]
q−1

.(2.7)

Formula (2.9) in [SW] gives

Sm,l(q) =
∑
ν∈Z

q(ν+l−m)(ν+l)+ν(ν−m)

[
m

ν

]
q

[
ν

m− l − ν

]
q

.
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In the right hand side[
L

a

]
q

=

{
(qL−a+1)a

(q)a
(a ∈ Z≥0, L ∈ Z),

0 (otherwise),

stands for the q-binomial symbol, and (x)n = (x)∞/(qnx)∞, (x)∞ =
∏∞

i=0(1−
qix).

Recall that the character χ
(p,p′)
r,s (q) of M

(p,p′)
r,s is given by [RC]

q−∆(p,p′)
r,s χ(p,p′)

r,s (q) =
∑
λ∈Z

1
(q)∞

qλ2pp′+λ(p′r−ps)(2.8)

−
∑
λ∈Z

1
(q)∞

qλ2pp′+λ(p′r+ps)+rs .

Lemma 2.2. For any b ∈ Z satisfying b ≡ a mod 2, the character (2.8)
can be written in terms of (2.7) as

q−∆(p,p′)
r,a χ(p,p′)

r,a (q) =
∑
m≥0

1
(q)m

I
(p,p′)
r,a,b,m(q),(2.9)

where

I
(p,p′)
r,a,b,m(q) =

∑
λ∈Z

qλ2pp′+λ(p′r−pa)+m2−((a−b)/2−p′λ)2Sm,(a−b)/2−p′λ(q)(2.10)

−
∑
λ∈Z

qλ2pp′+λ(p′r+pa)+ra+m2−((a+b)/2+p′λ)2Sm,(a+b)/2+p′λ(q) .

Proof. The q-supernomial coefficients satisfy the recurrence relations
([SW, Lemma 2.3])[

L1, L2

a

]
q

= qL1+L2−1

[
L1 − 2, L2

a

]
q

+

[
L1 − 2, L2 + 1

a

]
q[

L1, 0
a

]
q

=

[
L1

a + L1/2

]
q

.

Iterating this k times, we find[
L1, L2

a

]
q

=
k∑

m=0

q(k−m)(L1+L2−k)

[
k

m

]
q

[
L1 − 2k, L2 + m

a

]
q

.
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Choosing L1 = 2N, L2 = 0, k = N , changing q → q−1 and letting N → ∞ we
obtain for all l ∈ Z

1
(q)∞

=
∑
m≥0

qm2−l2

(q)m
Sm,l(q) .

In each summand of the first (resp. second) sum of (2.8), replace 1/(q)∞
by the right hand side of the above identity, choosing l = (a− b)/2− p′λ (resp.
(a + b)/2 + p′λ). The desired identity follows.

Though (2.9) is an identity valid for any b ∈ Z, in most cases the polyno-
mial (2.10) comprises negative coefficients. We prove in subsection 2.4 that, if
1 < t < 2 and (r, b) satisfies (2.6), then the coefficients of I

(p,p′)
r,a,b,m(q) are non-

negative integers. In fact we will show that it can be written as a configuration
sum over the set of paths P

(p′)
a,b,m. Define the weight of a path s ∈ P

(p′)
a,b,m by

E(s) =
m−1∑
i=1

iw(si−1, si, si+1).

Proposition 2.3. Under the conditions 1 < t < 2 and (2.6), we have
an equality

I
(p,p′)
r,a,b,m(q) =

∑
s∈P

(p′)
a,b,m

qE(s)+m(∆r,sm−1−∆r.b+δsm−1,b)+∆r,b−∆r,a .(2.11)

We give a proof in Section 2.4. Note that the exponent of q in (2.11) is an
integer because of (2.2).

From Proposition 2.3 immediately follows

Theorem 2.4. Notation being as above, we have an identity for the
character

χ(p,p′)
r,a (q) =

∑
m≥0

1
(q)m

∑
s∈P

(p′)
a,b,m

qE(s)+m(∆r,sm−1−∆r.b+δsm−1,b)+∆r,b .

§2.3. Definition of w(a, b, c)

In this subsection we introduce our weight w(a, b, c).
In (2.11), we fixed b = b(r, a) by the condition (2.6). Conversely, for a

given b, r for which (2.6) is valid is either r1(b) =
[

b+1
t

]
or r2(b) =

[
b−1

t

]
+ 1.

Set

τ (b) =
[
b + 1

t

]
−
[
b− 1

t

]
.
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We have τ (b) = 1 or 2. If τ (b) = 1 we have r1(b) = r2(b), and if τ (b) = 2 we
have r1(b) = r2(b) + 1. We list a few other properties of τ (s).

τ (1) = 1,(2.12)

τ (2) =

{
2 if 1 < t < 3

2 ;

1 if 3
2 < t < 2,

(2.13)

τ (p′ − 1) = 2,(2.14)

τ (s) = τ (p′ − s) if 1 < s < p′ − 1.(2.15)

Set

{x} = x− [x]

where [x] is the integer part of x.
We define the weight w(a, b, c) in the following form:

w(s± 2, s, s∓ 2) =
2
t
,(2.16)

w(s, s + 2, s + 2) = w(s + 2, s + 2, s) = 2−
{

s + 1
t

}
,(2.17)

w(s, s, s + 2) = w(s + 2, s, s) = 1 +
{

s + 1
t

}
,(2.18)

w(s, s + 2, s) = −2
{

s + 1
t

}
+ x(s),(2.19)

w(s, s, s) = 3− τ (s),(2.20)

w(s, s− 2, s) = 2
{

s + 1
t

}
− 4

t
+ y(s).(2.21)

Here x(s), y(s) are integers defined as follows. If τ (s) = 2, then x(s) = 2
and y(s) = 4. In the case of τ (s) = 1 we have two possibilities: (x(s), y(s)) =
(2, 3) or (3, 2). In the following we give the precise choice of the values x(s)
and y(s) when τ (s) = 1, and discuss the motivation for it. To simplify the text
we use the notation C(s) = 1A, 1B to signify the choice at s as indicated in the
following table.

C(s) τ (s) x(s) y(s)
1A 1 2 3
1B 1 3 2
2 2 2 4

For example, the wording “C(s) = 1B” means that τ (s) = 1 and we set
(x(s), y(s)) = (3, 2). In addition to it we write C(s) = 2, which means τ (s) = 2
and hence (x(s), y(s)) = (2, 4).
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Now we define x(s) and y(s) for s such that τ (s) = 1. If 1 < t ≤ 5/3 and
τ (s) = 1, then we take

C(s) =

{
1A (1 ≤ s < p′

2 ),

1B (p′

2 < s ≤ p′ − 1).

If 5/3 < t < 2, then we determine C(s)’s so that the sequence C(1), C(2), . . . ,
C(p′ − 1) becomes in the form

1A, 1B, 1A, 1B , . . . , 1B, 1A, 2, 1B, 1A, 1B, . . . , 1B, 1A, 2,

1B , 1A, 1B, . . . , 1A, 2, 1B, 1A, 1B, . . . , 1B, 1A, 2,

where 1’s between successive 2’s come always with an even number. Below we
will motivate the above assignment and show that it can be made consistently.

Let us seek for the weights w(a, b, c) in the above form (2.16)–(2.21). We
will take them independently of the choice r = r1(b) or r2(b). We demand
further the following.

(i) (2.11) holds for m = 2,

(ii) left-right symmetry w(a, b, c) = w(c, b, a),

(iii) symmetry reflecting M
(p,p′)
r,s �M

(p,p′)
p−r,p′−s,

w(a, b, c) = w(p′ − a, p′ − b, p′ − c) ,(2.22)

(iv)

if C(s) = 1B then C(s + 2) �= 1A.(2.23)

The last condition turns out to be necessary in the course of the proof of (2.11),
see subsection 2.4.

The validity of (2.11) for m = 2 gives a linear constraint on the weights.
There are three cases: a = b ± 4, b ± 2, b. In the first two cases, the relevant
weights are (2.16)–(2.18). They are independent of τ (s). It is easy to check
that the constraint is satisfied in these cases. In the third case, the relevant
weights are (2.19)–(2.21). Here the value of τ (s) matters. If τ (s) = 2, the
weights are uniquely given by (2.19)–(2.21), and they satisfy the constraint. If
τ (s) = 1, we must specify C(s) = 1A or 1B . For s = 1 and 2, see (2.12) and
(2.13). In these cases, the constraint implies

C(1) = 1A,(2.24)

C(2) = 1B for
3
2

< t < 2.(2.25)



226 B. Feigin, E. Feigin, M. Jimbo, T. Miwa and Y. Takeyama

If 2 < s < p′ − 2, the constraint is satisfied for either choice.
The left-right symmetry (ii) is automatically satisfied by the formulas

(2.16)–(2.21).
Symmetry (2.22) is also valid for (2.16)–(2.18) and (2.20). It is obvious for

(2.16); and follows from{s

t

}
+
{
−s

t

}
= 1 if 1 < s < p′

for (2.17) ↔ (2.18), and for (2.20).
We determine the choice of 1A/B so that the symmetry (2.22) for (2.19)

↔ (2.21) is valid. Since C(1) = 1A and C(p′ − 1) = 2, we have

w(1, 3, 1) = w(p′ − 1, p′ − 2, p′ − 1) = 4− 4
t
.

For 1 < t < 3/2, we have C(2) = C(p′ − 2) = 2, and

w(2, 4, 2) = w(p′ − 2, p′ − 4, p′ − 2) = 6− 6
t
;

for 3/2 < t < 2, we have C(2) = 1B. Setting C(p′ − 2) = 1A, we have

w(2, 4, 2) = w(p′ − 2, p′ − 4, p′ − 2) = 5− 6
t
.

For 2 < s < p′ − 2, the symmetry is valid if τ (s) = τ (p′ − s) = 2; if τ (s) =
τ (p′ − s) = 1, we need to choose 1A/B in such a way that

C(s) = 1A, 1B ⇔ C(p′ − s) = 1B, 1A.(2.26)

The last requirement would be inconsistent if τ (s) = 1 for s = p′/2. However,
we have

Lemma 2.5. If p′ is even, we have τ (p′/2) = 2.

Proof. If p′ is even, then p is odd. We have

τ (p′/2) = [α]− [β] where α =
p

2
+

p

p′
, β =

p

2
− p

p′
.

Since α + β = p is odd and 1 < α− β = 2p/p′ < 2, we have τ (p′/2) = 2.

We need also to satisfy the condition (2.23). Let us show the consistency of
(2.24), (2.25), (2.26) and (2.23). Suppose that τ (s) = 1. We choose C(s) = 1A

or 1B as follows.
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If 1 < t < 3/2, we have C(1) = 1A and C(2) = 2. Therefore, the following
choice of 1A or 1B for s such that τ (s) = 1 satisfies all the constraints.

C(s) =

{
1A if s < p′/2;

1B if s > p′/2.
(2.27)

If 3/2 < t ≤ 5/3, we have C(1) = 1A, C(2) = 1B and τ (4) = 2. Therefore,
the same choice (2.27) will do.

Before going to the case 5/3 < t < 2, we prepare a few lemmas.

Lemma 2.6. If 3/2 < t < 2, we do not have the sequence (τ (s), τ (s +
1)) = (2, 2).

Proof. Since 1
2 < 1

t < 1, the increment [ s+1
t ]− [ s

t ] is either 0 or 1. There-
fore, if τ (s) = τ (s + 1) = 2, we have

m ≤ s− 1
t

< m + 1, m + 1 ≤ s

t
< m + 2,

m + 2 ≤ s + 1
t

< m + 3, m + 3 ≤ s + 2
t

< m + 4

for some integer m. From s−1
t < m + 1 and m + 3 ≤ s+2

t follows t < 3
2 .

Lemma 2.7. Suppose that
[

s
t

]
= m,

[
s+1

t

]
= m. Then,

[
s+2

t

]
= m+1.

Proof. The statement follows from 1 < 2
t < 2.

Lemma 2.8. Suppose that τ (s) = 2, τ (s + 1) = · · · = τ (s + k) = 1 and
τ (s + k + 1) = 2. Then, k is even.

Proof. By Lemma 2.7, we have the sequence[
s−1

t

]
= m,

[
s
t

]
= m + 1,

[
s+1

t

]
= m + 2,

[
s+2

t

]
= m + 2,[

s+3
t

]
= m + 3,

[
s+4

t

]
= m + 3, . . .

[
s+k−1

t

]
= m + l,

[
s+k

t

]
= m + l,[

s+k+1
t

]
= m + l + 1,

[
s+k+2

t

]
= m + l + 2.

Therefore, k = 2l.

If 5/3 < s < 2, we have C(1) = 1A and C(2) = 1B. If we determine the
choice for s < p′/2, the rest is determined by (2.26). The constraint (2.23)
together with the symmetry (2.26) implies that if s + 2 < p′/2 and τ (s) =
τ (s + 2) = 1 we have

C(s) = 1A, 1B ⇒ C(s + 2) = 1A, 1B.
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We start from C(1) = 1A and C(2) = 1B and continue as 1A, 1B, 1A, 1B, . . .

until 2 appears. By a similar argument as in the proof of Lemma 2.8, we can
show that the first appearance of 2 is for even s. Therefore, from Lemmas 2.6
and 2.8 we can define the sequence C(1), C(2), . . . as

1A, 1B, 1A, 1B, . . . , 1B, 1A, 2, 1B, 1A, 1B, . . . , 1B, 1A, 2, 1B, 1A, 1B, . . .

This sequence does not contain (C(s), C(s + 2)) = (1B, 1A). The constraint
(2.23) is also satisfied.

§2.4. Proof of Proposition 2.3

In this subsection we fix the weights w(a, b, c) as in the previous section,
and prove (2.11). To that end we consider the configuration sum

Xa,b,c,m(q) :=
∑

s∈P
(p′)
a,b,c,m

qE(s),

where P
(p′)
a,b,c,m is the set of paths (s0, . . . , sm+1) satisfying s0 = a, sm = b and

sm+1 = c. From the definition, Xa,b,c,m(q) = 0 unless 1 ≤ a, b, c ≤ p′ − 1,
b = c, c± 2 and (b, c) �= (1, 1), (p′− 1, p′ − 1). Note that Xa,b,c,m(q) is uniquely
determined from the initial condition Xa,b,c,0(q) = δa,b and the recurrence
relation

Xa,b,c,m+1(q) =
∑

d=b, b±2

q(m+1)w(d,b,c)Xa,d,b,m(q).(2.28)

Let us give an explicit formula for Xa,b,c,m(q). As an ingredient we intro-
duce the function S̃m,l(q) defined by

S̃m,l(q) :=
∑
ν∈Z

q(ν+l−m)(ν+l−1)+ν(ν−m)

[
m

ν

]
q

[
ν

m− l − ν

]
q

.

The functions Sm,l(q) and S̃m,l(q) are related to each other as follows.

Lemma 2.9. The following formulae hold:

Sm,−l(q) = Sm,l(q), S̃m,−l(q) = ql S̃m,l(q),(2.29)

Sm+1,l(q) = q−m−l−1Sm,l+1(q) + Sm,l(q) + q−m+l−1S̃m,l−1(q) ,(2.30)

Sm+1,l(q) = q−m−l−1Sm,l+1(q) + q−mS̃m,l(q) + Sm,l−1(q) ,(2.31)

Sm+1,l(q) = q−mS̃m,l+1(q) + Sm,l(q) + q−m+l−1Sm,l−1(q) ,(2.32)

S̃m+1,l(q) = q−lSm,l+1(q) + Sm,l(q) + q−m+l−1S̃m,l−1(q) ,(2.33)

S̃m+1,l(q) = q−lSm,l+1(q) + q−mS̃m,l(q) + Sm,l−1(q) ,(2.34)

S̃m+1,l(q) = q−m−lS̃m,l+1(q) + q−lSm,l(q) + Sm,l−1(q) .(2.35)
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Proof. We use the notation of q-trinomial[
n

a b c

]
:=

(q)n

(q)a(q)b(q)c
for a + b + c = n.

Then the product of q-binomials in the definition of Sm,l and S̃m,l is rewritten
as [

m

ν

][
ν

m− ν − l

]
=

[
m

m− ν m− l − ν 2ν + l −m

]

From this expression it is easy to check (2.29). The other formulae except
(2.31) and (2.34) follow directly from the q-trinomial identity:[

n

a b c

]
=

[
n− 1

a− 1 b c

]
+ qa

[
n− 1

a b− 1 c

]
+ qa+b

[
n− 1

a b c− 1

]
.(2.36)

In the following we prove (2.31). The proof of (2.34) is similar.
We start from

Sm+1,l(q)

=
∑
ν∈Z

q(ν+l−m−1)(ν+l)+ν(ν−m−1)

[
m + 1

m + 1− l − ν 2ν + l −m− 1 m + 1− ν

]
.

Decompose the right hand side above into three parts by applying (2.36) to the
q-trinomial. Then by changing ν → ν + 1 we see that the first part is equal to
q−m−l−1Sm,l+1(q). In the third part we rewrite the q-trinomial as follows:[

m

m + 1− l − ν 2ν + l −m− 1 m− ν

]

=
(
qm+1−l−ν + (1− qm+1−l−ν)

) [ m

m + 1− l − ν 2ν + l −m− 1 m− ν

]

= qm+1−l−ν

[
m

m + 1− l − ν 2ν + l −m− 1 m− ν

]

+ (1− q2ν+l−m)

[
m

m + l − ν 2ν + l −m m− ν

]
.

From the first term in the right hand side above, we obtain q−mS̃m,l(q). Then
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the remaining is∑
ν∈Z

q(ν+l−m−1)(ν+l)+ν(ν−m−1)+m+1−l−ν

×
[

m

m + 1− l − ν 2ν + l −m− 2 m− ν + 1

]

+
∑
ν∈Z

q(ν+l−m−1)(ν+l)+ν(ν−m−1)+ν(1− q2ν+l−m)

[
m

m + l − ν 2ν + l −m m− ν

]
.

Change ν → ν + 1 in the first sum, then it is canceled by the part containing
−q2ν+l−m in the second sum. The rest is equal to Sm,l−1(q).

Now we define the function fa,b,c,m(q) in the following form for (a, b, c) ∈ Z3

satisfying 1 ≤ b, c ≤ p′ − 1, a ≡ b (mod 2) and c = b, b± 2:

fa,b,b+2,m(q) : = ql(l+1)/t+m2−l2+(m−l){(b+1)/t}

×
{

S̃m,l(q) if C(b + 2) = 1A,

Sm,l(q) if C(b + 2) = 1B or 2,

fa,b,b,m(q) : = ql(l−1)/t+m2−l2+l(1−{(b−1)/t})

×
{

qmSm,l(q) if C(b) = 1A or 1B,

qlS̃m,l(q) if C(b) = 2,

fa,b,b−2,m(q) : = ql(l−1)/t+m2−l2+(m+l)(1−{(b−1)/t})

×
{

Sm,l(q) if C(b− 2) = 1A or 2,

qlS̃m,l(q) if C(b− 2) = 1B .

Here we set l := (b − a)/2 in the right hand sides. By definition we set
fa,b,c,m(q) = 0 for other type of triples (a, b, c). Then Xa,b,c,m is given in
terms of fa,b,c,m:

Proposition 2.10. We have

Xa,b,c,m(q) =
∑
ε=±

ε
∑
n∈Z

fε(a+2p′n),b,c,m(q).(2.37)

Proof. It is easy to check that the right hand side of (2.37) satisfies the
initial condition, that is, it is equal to δa,b in the case of m = 0. Now we should
check the recurrence relation∑

d=b, b±2 q(m+1)w(d,b,c)
∑
ε=±

ε
∑
n∈Z

fε(a+2p′n),d,b,m(q)(2.38)

=
∑
ε=±

ε
∑
n∈Z

fε(a+2p′n),b,c,m+1(q).
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Divide the cases according to the value of b ; (i) 3 ≤ b ≤ p′−3 (non-boundary),
(ii) b = 2 or p′ − 2 (next-to-boundary) and (iii) b = 1 or p′ − 1 (boundary).
Then the proof of (2.38) is just case-checking for each combination of the values
c (= b, b±2) and the choices of C(b) and C(c). In the following we give a sketch
of the calculation in two cases as an example.

First let us consider one of the non-boundary cases; 3 ≤ b ≤ p′−3, c = b−2
and C(b) = 1A. Then from the definition of fa,b,c,m we have∑

d=b,b±2

q(m+1)w(d,b,b−2)fa+2p′n,d,b,m(q)

= q(l−p′n)(l−p′n−1)/t+(m+1)2−(l−p′n)2+(m+1+l−p′n)(1−{(b−1)/t})

×
{

q−m−l+p′n−1Sm,l−p′n+1(q) + Sm,l−p′n(q)

+ q(m+1)(x(b−2)−3)+l−p′nS̃m,l−p′n−1(q)
}
.

Here we set l = (b− a)/2. Since C(b) = 1A, C(b− 2) is either 1A or 2. In both
cases we have x(b − 2) = 2, and hence we can apply (2.30) to the right hand
side above. Thus we obtain∑

d=b,b±2

q(m+1)w(d,b,b−2)fa+2p′n,d,b,m(q) = fa+2p′n,b,b−2,m+1(q).

This equality still holds after the change of the sign a, n→ −a,−n. Therefore
we have the equality (2.38).

Next let us consider one of the next-to-boundary cases; b = 2, c = 4, C(b) =
1B . Then we have∑

d=2,4

q(m+1)w(d,2,4)fa+2p′n,d,2,m(q)

= q(a/2+p′n)2/t+m2−(a/2+p′n)2+(3m+2)/t+a/2+p′n+m

×
{

q(m+1)(y(4)−2τ(4))−mS̃m,2−a/2−p′n(q) + Sm,1−a/2−p′n(q)
}

Now C(2) = 1B, hence we have C(4) = 1B or 2, and then y(4) − 2τ (4) = 0.
Apply (2.32) to the right hand side, and we get∑

d=2,4

q(m+1)w(d,2,4)fa+2p′n,d,2,m(q)

= q(a/2+p′n)2/t+m2−(a/2+p′n)2+(3m+2)/t

×
{

qa/2+p′n+mSm+1,1−a/2+p′n(q)− Sm,−a/2−p′n(q)
}
.

Note that the power of q in the coefficient of Sm,−a/2−p′n(q) is invariant under
the change of the sign a, n → −a,−n. Therefore after the sum over n ∈ Z
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and ε = ± in the right hand side of (2.38), the function Sm,−a/2−p′n(q) =
Sm,a/2+p′n(q) disappears. Thus we obtain (2.38).

To finish the proof of Proposition 2.3, it suffices to show that

I
(p,p′)
r,a,b,m(q) =

∑
d=b, b±2

qm(∆r,d−∆r,b+δd,b)+∆r,b−∆r,aXa,d,b,m−1(q).(2.39)

From (2.37) and the recurrence relations (2.30)–(2.32) we can check (2.39) by
direct calculation.

Remark. In [FJMMT1], we constructed a monomial basis of M
(p,p′)
r,s with

1 < p′/p < 2, using (2,1) primary field. To show that the monomials span the
space, quadratic exchange relations were employed. In the process of rewriting
the monomials, it was necessary to show the non-vanishing of a certain deter-
minant. In the present case of (1,3) primary field, a similar set of quadratic
relations can be written explicitly. However it is not clear to us how to derive
the spanning property for the proposed set of monomials.

From the next section, we will restrict to the case of unitary series p′ = p+1.

§3. Preliminaries on the Fusion Product

§3.1. Fusion product

In this section we fix our notation and collect the main properties of the
fusion product.

Let V1, . . . , Vn be cyclic representations of a Lie algebra g with cyclic vec-
tors v1, . . . , vn. Fix z = (z1, . . . , zn) ∈ Cn with zi �= zj for i �= j. Denote by
Vi(zi) the evaluation representation of g ⊗ C[u], which is isomorphic to Vi as
vector space and the action is defined via the map g⊗C[u]→ g, g ⊗ uj �→ zj

i g

(g ∈ g). Recall (see [FL]) that the fusion product1 V1(z1) ∗ · · · ∗ Vn(zn) is the
associated graded g ⊗ C[u]-module with respect to the filtration {Fm}m≥0 on
the tensor product V1(z1)⊗ · · · ⊗ Vn(zn):
(3.1)
Fm =span{(g1⊗uk1 · · · gp⊗ukp

)
(v1⊗· · ·⊗vn) | g1, . . . , gp∈g, k1+· · ·+kp≤m}.

If [g, g] = g, we have

Fm = U(g) · span{(g1 ⊗ u · · · gp ⊗ u
)
(v1 ⊗ · · · ⊗ vn) | g1, . . . , gp ∈ g, p ≤ m}.

1In [FL], fusion product is introduced for finite dimensional modules, but the same defi-
nition carries over to infinite dimensional modules as well.
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We set

(3.2) (V1(z1) ∗ · · · ∗ Vn(zn))m = Fm/Fm−1,

so that we have

V1(z1) ∗ · · · ∗ Vn(zn) =
∞⊕

m=0

(V1(z1) ∗ · · · ∗ Vn(zn))m.

The most important property of the fusion product is its independence
on z in some special cases (see [FL], [FF1], [CL], [FKL], [FoL], [K], [AK]).
Among such cases, we will need two cases: g = sl2 and Vi are irreducible
representations, and g = ŝl

′
2 with n = 2. Note that, for an arbitrary Lie

algebra g, the fusion product of two representations Vi (i = 1, 2) with cyclic
vectors vi, is independent of z1, z2 because

Fm = U(g) · (Gm ⊗ v2) where G0 = Cv1, Gm+1 = Gm + g ·Gm.(3.3)

The filtration Gm on V1 is called the Poincaré-Birkhoff-Witt (PBW) filtration
(see 5.3).

Consider the case where g = sl2, Vi = πai
, and vi ∈ πai

is the highest
weight vector. We write the corresponding fusion product as

(3.4) πa1 ∗ · · · ∗ πan

as it is independent of the choice of z. The fusion product is also independent
of the ordering of the components πai

. When a1 = · · · = an = a, we use the
shorthand notation π∗n

a . The fusion product (3.4) is a module over sl2 ⊗ C[u].
We set Mα = {v ∈M | h0v = αv} and

chq,zπa1 ∗ · · · ∗ πan
:=
∑
m,α

qmzα dim(πa1 ∗ · · · ∗ πan
)α
m,

chq(πa1 ∗ · · · ∗ πan
)α :=

∑
m

qm dim(πa1 ∗ · · · ∗ πan
)α
m.

For example,

chq,zπ
∗m
1 =

∑
−m≤l≤m

l≡m mod 2

 m
m + l

2


q

zl,(3.5)

chq,zπ
∗m
2 =

∑
−m≤l≤m

Sm,l(q−1)z2l.(3.6)
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§3.2. Exact sequences

In this subsection we describe some exact sequences of fusion products of
sl2-modules proved in [FF2] and [FF3].

Lemma 3.1 ([FF3, Lemma 2.1]). Let A = (a1, . . . , an) be a sequence of
non-negative integers with a1 ≤ · · · ≤ an. Then for any 1 ≤ i < n there exists
an sl2 ⊗ C[u]-module Si(A) such that the following sequence is exact:

0 −→ Si(A)−→ πa1 ∗ · · · ∗ πan

−→ πa1 ∗ · · · ∗ πai−1 ∗ πai−1 ∗ πai+1+1 ∗ πai+2 ∗ · · · ∗ πan
−→ 0 .

Lemma 3.2 ([FF2, Statement 4.1 and Proposition 4.1]). Under the con-
dition in Lemma 3.1, we have

S1(A) � πa2−a1 ∗ πa3 ∗ · · · ∗ πan
.

In order to have the above exact sequence to be degree preserving, we must
shift the q-degree of the highest weight vector of S1(A) (with respect to the
operator h⊗ u0) to (n− 1)a1. This gives the equality

chq,zπa1 ∗ · · · ∗ πan
= q(n−1)a1chq,zπa2−a1 ∗ πa3 ∗ · · · ∗ πan

(3.7)

+ chq,zπa1−1 ∗ πa2+1 ∗ πa3 ∗ · · · ∗ πan
.

Lemma 3.3 ([FF3, Remark 2.3]). Under the condition in Lemma 3.1,
we have

Sn−1(A) � πa1 ∗ · · · ∗ πan−2 ⊗ πan−an−1 .

Therefore one has an exact sequence of sl2 ⊗ C[u]-modules

(3.8) 0→ πa1 ∗ · · · ∗ πan−2 ⊗ πan−an−1 → πa1 ∗ · · · ∗ πan
→

πa1 ∗ · · · ∗ πan−2 ∗ πan−1−1 ∗ πan+1 → 0

We will also need an exact sequence involving different modules Si(A):

Lemma 3.4 ([FF3, Proposition 2.1]). Fix 2 ≤ i ≤ n − 1. Let A =
(a1, . . . , an) be a sequence of non-negative integers satisfying ai �= ai+1 and
ai−1 > 0. Denote by Ai the sequence

(a1, . . . , ai−1, ai − 1, ai+1 + 1, ai+2, . . . , an).

Then one has an exact sequence of sl2 ⊗ C[u]-modules:

(3.9)
0→ πa1 ∗ · · · ∗πai−2 ∗πai−1−ai+ai+1 ∗πai+2 ∗ · · · ∗πan

→ Si(A)→ Si(Ai−1)→ 0.
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By combining Lemma 3.3 and Lemma 3.4, we obtain the following exact
sequence when n ≥ 3, an−1 �= an and an−2 > 1:

(3.10)
0→ πa1 ∗ · · · ∗ πan−3 ∗ πan−2−an−1+an

→ πa1 ∗ · · · ∗ πan−2 ⊗ πan−an−1 →
πa1 ∗ · · · ∗ πan−2−1 ⊗ πan−an−1−1 → 0.

§3.3. ŝl2 and n+-homology

We first settle our notation about ŝl2. Let

ŝl2 = sl2 ⊗ C[t, t−1]⊕ CK ⊕ Cd,

where K is a central element and [d, xi] = −ixi, where we put xi = x ⊗ ti

for x ∈ sl2. Let n+ (resp. n−) be the nilpotent subalgebra of creation (resp.
annihilation) operators generated by f0, e−1 (resp. e0, f1). For a positive
integer k, we denote by Ll,k (0 ≤ l ≤ k) the set of integrable highest weight
representations of ŝl2. We fix a highest weight vector vl,k ∈ Ll,k. Then

n−vl,k = 0, h0vl,k = l vl,k, Kvl,k = k vl,k, d vl,k = 0, Ll,k = U(n+) · vl,k.

Representations Ll,k are bi-graded by operators d and h0. We set

Ll,k =
⊕

α,n∈Z

(Ll,k)α
n, (Ll,k)α

n = {v | dv = nv, h0v = αv}.

The Virasoro algebra acts on Ll,k by the Sugawara operators:

Ln =
1

2(k + 2)

∑
m∈Z

: en−mfm + fn−mem +
1
2
hn−mhm :,

where : : is the normal ordering sign:

: xiyj :=


xiyj , if i < j;

yjxi, if i > j;
1
2 (xiyi + yixi), if i = j.

The central charge is equal to 3k
k+2 . The conformal weight ∆(l, k) of the highest

weight vector vl,k is equal to l(l+2)
4(k+2) : L0vl,k = ∆(l, k)vl,k.

We now recall the homology result from [FF4]. For an sl2 ⊗ C[t]-module
M , we denote by M ′ the sl2 ⊗ C[t−1]-module which is isomorphic to M as a
vector space and the action is defined via the isomorphism xi �→ x−i.
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Proposition 3.5 ([FF4, Theorem 2.2]). Let a1 ≤ · · · ≤ an ≤ k. Then,
for 0 ≤ l ≤ k, we have

Hp(n+, (πa1 ∗ · · · ∗ πan
)′ ⊗ Ll,k)0 = 0 (p > 0),

where the superscript 0 denotes the weight zero spaces with respect to the oper-
ator h0.

Proposition 3.6 ([FF4, Corollary 2.3]). Suppose that a1 ≤ · · · ≤ an−1

≤ an = k + 1. Then, for 0 ≤ l ≤ k, we have

Hp(n+, (πa1 ∗ · · · ∗ πan
)′ ⊗ Ll,k)0 = 0 (p ≥ 0).

The above propositions imply that, if a1 ≤ · · · ≤ an ≤ k + 1, we have

(3.11) Hp(n+, (πa1 ∗ · · · ∗ πan
)′ ⊗ Ll,k)0 = 0 (p > 0).

We also note that the characters of the zeroth homology groups of these spaces
can be identified with the Kostka polynomials (see [FF4], [FJKLM], [SS]).

The following will be used later.

Lemma 3.7. For non-negative integers j, k, l, m satisfying 0 ≤ j ≤ k,
0 ≤ l ≤ k + 1, we have

Hp

(
n+, (π∗m

1 ⊗ πj)′ ⊗ Ll,k+1

)0 = 0 (p > 0),(3.12)

Hp

(
n+, (π∗m

2 ⊗ πj)′ ⊗ Ll,k+1

)0 = 0 (p > 0).(3.13)

Proof. In the case of j = 0 the equalities (3.12) and (3.13) follow from
(3.11). We assume that j > 0 in the following.

First we show (3.12). Consider the exact sequence (3.8) with (a1, . . . , an) =
(1, . . . , 1, j + 1):

0→ π∗m
1 ⊗ πj → π

∗(m+1)
1 ∗ πj+1 → π∗m

1 ∗ πj+2 → 0.

Tensoring by Ll,k+1 we obtain

0→ (π∗m
1 ⊗ πj)′ ⊗ Ll,k+1→ (π∗(m+1)

1 ∗ πj+1)′ ⊗ Ll,k+1

→ (π∗m
1 ∗ πj+2)′ ⊗ Ll,k+1 → 0.

Taking the homology we get the long exact sequence

· · · ←Hp(n+, (π∗(m+1)
1 ∗ πj+1)′ ⊗ Ll,k+1)0 ← Hp(n+, (π∗m

1 ⊗ πj)′ ⊗ Ll,k+1)0

←Hp+1(n+, (π∗m
1 ∗ πj+2)′ ⊗ Ll,k+1)0 ← · · ·
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for p > 0. Then the assertion (3.12) follows from (3.11).
To show (3.13), we start from the exact sequence (3.8) with (a1, . . . , am+2)

= (1, 2, . . . , 2, j + 1):

0→ π1 ∗ π
∗(m−1)
2 ⊗ πj−1 → π1 ∗ π∗m

2 ∗ πj+1 → π∗2
1 ∗ π

∗(m−1)
2 ∗ πj+2 → 0.

Arguing as above we obtain

Hp

(
n+, (π1 ∗ π

∗(m−1)
2 ⊗ πj−1)′ ⊗ Ll,k+1

)0 = 0 (p > 0).(3.14)

Now applying a similar argument to the exact sequence (3.10) where (a1, . . . ,

am+2) = (2, . . . , 2, j + 2):

0→ π
∗(m−1)
2 ∗ πj+2 → π∗m

2 ⊗ πj → π1 ∗ π
∗(m−1)
2 ⊗ πj−1 → 0.

Consider the associated long exact sequence of homology, then we find (3.13)
from (3.11) and (3.14).

§4. The φ1,3 Filtration

In what follows we deal with the Virasoro modules M
(p,p′)
r,s in the unitary

case, p = k + 2, p′ = k + 3.
Consider the decomposition of the tensor product of ŝl2-modules (the coset

construction [GKO])

(4.1) Li,1 ⊗ Lj,k =
⊕

0≤l≤k+1
l≡i+j mod 2

M
(k+2,k+3)
j+1,l+1 ⊗ Ll,k+1.

On the space M
(k+2,k+3)
j+1,l+1 we have two filtrations: the filtration defined by the

(1,3) primary field, and the one induced from the fusion filtration on the left
hand side. In this subsection, we show that these two filtrations coincide.

For that purpose we use an operator identity due to [L], which we recall
below. Consider the ŝl2 vertex operator associated with π2,

V σ(z) : Ll,k+1 ⊗ π2 → Ll+σ,k+1 ⊗ z∆(l+σ,k+1)−∆(l,k+1)−∆(2,k+1)C((z)).(4.2)

Here σ = −2, 0, 2 and C((z)) is the space of Laurent series. We fix a weight
basis vτ ∈ π2 with hvτ = τvτ (τ = −2, 0, 2), and write

V σ(z) = (V σ
−2(z), V σ

0 (z), V σ
2 (z)),
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where V σ
τ (z)(u) = V σ(z)(u⊗ vτ ). We have the Fourier expansion

V σ
τ (z) =

∑
n∈Z+∆(l,k+1)−∆(l+σ,k+1)

z−n−∆(2,k+1)V σ
τ,n,

V σ
τ,n : (Ll,k+1)α

β → (Ll+σ,k+1)α+τ
β−n.

We will also need the (1,3) field for the Virasoro modules. Abbreviating
φ(s+σ,s)(z) to φσ(z) we write

φσ(z) =
∑

n∈Z+∆r,s−∆r,s+σ

φσ
nz−n−∆1,3 ,

φσ
n : (M (p,p′)

r,s )β → (M (p,p′)
r,s+σ)β−n.

In what follows we suppose that some normalization of vertex operators V σ
τ (z)

and φσ(z) is fixed.
For x ∈ sl2, set x(z) =

∑
n∈Z

xnz−n−1. Introduce further the current

j(z) = (j−2(z), j0(z), j2(z))

acting on the tensor product Li,1 ⊗ Lj,k by

j−2(z) = kf(z)⊗ id− id⊗ f(z),

j0(z) = kh(z)⊗ id− id⊗ h(z),

j2(z) = ke(z)⊗ id− id⊗ e(z).

The following proposition is proved in [L].

Proposition 4.1. There exist non-vanishing constants c−2, c0, c2 such
that, with respect to the identification (4.1), the following equality holds:

(4.3) jτ (z) = c−2φ
−2(z)⊗ V −2

τ (z) + c0φ
0(z)⊗ V 0

τ (z) + c2φ
2(z)⊗ V 2

τ (z).

Noting that ∆1,3 + ∆(2, k + 1) = 1, we set

jσ
τ (z) = cσφσ(z)⊗ V σ

τ (z) =
∑

jσ
τ,nz−n−1,

so that jτ (z) = j−2
τ (z) + j0

τ (z) + j2
τ (z).

Lemma 4.2. For each γ ∈ Z≥0, we have the equality

U(ŝl2) · span{jτ1,i1 · · · jτγ ,iγ
(|r, s〉 ⊗ vr−1,k+1) | τα = −2, 0, 2, iα ∈ Z}

= U(ŝl2) · span{jσ1
τ1,i1
· · · jσγ

τγ ,iγ
(|r, s〉 ⊗ vr−1,k+1) | τα, σβ = −2, 0, 2, iα ∈ Z}.
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Proof. We note that for any set of vectors {ul ∈ Ll,k+1}k+1
l=0 there exist

elements {xl ∈ U(ŝl2)}k+1
l=0 such that

xl · ul′ = δl,l′ul′ .

Using this fact and the intertwining property of the vertex operator (4.2),
Lemma can be proved by induction on γ.

Proposition 4.3. Fix r, s and k. For σ1, . . . , σγ = −2, 0, 2, set

Wσ1,...,σγ
= U(ŝl2) · span{jσ1

τ1,i1
· · · jσγ

τγ ,iγ
(|r, s〉 ⊗ vs−1,k+1)|τα = −2, 0, 2, iα ∈ Z}

and

W̃σ1,...,σγ
= span{φσ1

i1
· · ·φσγ

iγ
|r, s〉|iα ∈ Z} ⊗ Ls+σ1+···+σγ−1,k+1.

Then, the equality Wσ1,...,σγ
= W̃σ1,...,σγ

holds.

Proof. Let a = s + σ1 + · · ·+ σγ . We first note that

Wσ1,...,σγ
⊂ W̃σ1,...,σγ

⊂M (k+2,k+3)
r,a ⊗ La−1,k+1.

We show the equality

Wσ1,...,σγ
∩
(
(M (k+2,k+3)

r,a )n ⊗ La−1,k+1

)
= W̃σ1,...,σγ

∩
(
(M (k+2,k+3)

r,a )n ⊗ La−1,k+1

)
.

Note that the equality follows if we show that for any nα such that n1+· · ·+nγ =
n−∆r,s,

φσ1−n1
· · ·φσγ

−nγ
|r, s〉 ⊗ va−1,k+1 ∈Wσ1,...,σγ

holds. We prove this statement by induction on n.
Before starting, we note that in view of the equality ∆1,3 +∆(2, k+1) = 1,

we obtain

jσα
τα,iα−nα

=
∑

i−n=iα−nα

φσα−n ⊗ V σα
τα,i.

For n = ∆r,a the statement is equivalent to

|r, a〉 ⊗ va−1,k+1 ∈Wσ1,...,σγ
.
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This is a consequence of the fact that for any s1, s2 such that σ = s1 − s2 =
−2, 0, 2 one can find unique τ, i, i1, i2 (i1 + i2 = i) such that

|r, s1〉 ⊗ vs1−1,k+1 ∈ Cjσ
τ,i(|r, s2〉 ⊗ vs2−1,k+1) = Cφσ

i1 |r, s2〉 ⊗ V σ
τ,i2vs2−1,k+1.

Now suppose the statement is proved for all n ≤ n0. Fix τα, iα such that

va−1,k+1 ∈ CV σ1
τ1,i1
· · ·V σγ

τγ ,iγ
vs−1,k+1.

Choose nα such that n1 + · · ·+ nγ = n0 + 1−∆r,s and consider

wn1,...,nγ
= jσ1

τ1,i1−n1
· · · jσγ

τγ ,i1−nγ
(|r, s〉 ⊗ vs−1,k+1).

We have

wn1,...,nγ
= cφσ1−n1

· · ·φσγ

−nγ
|r, s〉 ⊗ va−1,k+1 +

n0∑
n=∆r,a

w̃n,

where c is a non-zero constant and

w̃n ∈ W̃σ1,...,σγ
∩
(
(M (k+2,k+3)

r,a )n ⊗ La−1,k+1

)
.

The statement follows from the induction hypothesis.

We now define the φ1,3-filtration on M
(k+2,k+3)
r,s . Note that when p′ = p+1,

the integer b(r, s) determined by the condition (2.6) reads

b(r, s) =

{
r if r − s is even:

r + 1 otherwise.

Now, consider the filtration

Em(M (k+2,k+3)
r,s )(4.4)

= span{φσ1
i1
· · ·φσγ

iγ
|r, b(r, s)〉|γ ≤ m, σα = −2, 0, 2} ∩M (k+2,k+3)

r,s .

Let

grE
m(M (k+2,k+3)

r,s ) = Em(M (k+2,k+3)
r,s )/Em−1(M (k+2,k+3)

r,s ).

Recall the decomposition (see (3.2))

Li,1 ∗ Lr−1,k =
∞⊕

m=0

(Li,1 ∗ Lr−1,k)m.
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Proposition 4.4. Under the identification (4.1), we have an isomor-
phism of ŝl2-modules

(Li,1 ∗ Lr−1,k)m =
⊕

1≤s≤k+2
s≡r+i mod 2

grE
m(M (k+2,k+3)

r,s )⊗ Ls−1,k+1.

Proof. We use the definition of the fusion product (3.1) of ŝl2-modules,
choosing

V1 = Li,1, V2 = Lr−1,k, v1 = vi,1, v2 = vr−1,k, z1 = k, z2 = −1.

Then the fusion filtration Fm on this tensor product is given by

Fm = U(ŝl2) · span{jτ1,i1 · · · jτγ ,iγ
(|r, r + i〉 ⊗ vs−1,k+1) |
τα = −2, 0, 2, iα ∈ Z, γ ≤ m}.

Now our proposition follows from Lemma 4.2 and Proposition 4.3.

§5. Decomposition of ŝl2 Fusion Products

Our goal in this section is to determine the character of grE
m(M (k+2,k+3)

r,a )
which appear in the decomposition of the fusion product Li,1 ∗ Lj,k. We show
that it is given in terms of I

(k+2,k+3)
a,b,r,m (q) introduced in (2.10).

§5.1. The functor Ik

Set

g± = sl2 ⊗ C[t∓1]⊕ Cd, g = ŝl2.

Let V be a g−-module with Z≥0 × Z-grading determined from the degree and
the weight with respect to d and h0, respectively:

V = ⊕s≥0 ⊕α∈Z V α
s , V α

s = {v ∈ V | d v = s v, h0v = α v}.

Then the induced g-module

Indg
g−V = U(g)⊗U(g−) V

is also Z≥0 × Z-graded. We will consider its maximal integrable quotient.
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Let k be a positive integer. Since the degree is bounded from below, the
operator e(z)k+1 =

∑
n e

(k+1)
n z−n−1 has a well-defined action on Indg

g−V . Let
Ik be the g-submodule of Indg

g−V generated by

(K − k) · Indg
g−V +

∑
n

e(k+1)
n · Indg

g−V.

We define

Ik(V ) = Indg
g−V/Ik.

Then Ik(V ) is an integrable g-module of level k. Moreover, any homomorphism
V → L of g−-modules to an integrable g-module L of level k extends to a
homomorphism of g-modules Ik(V )→ L.

Since Ik(V ) is integrable of positive level k, it has the decomposition

Ik(V ) =
k⊕

l=0

I l
k(V )⊗ Ll,k,

where

I l
k(V ) = Homg′(Ll,k, Ik(V ))(5.1)

is the space of highest weight vectors of weight l. Here we have set g′ = [g, g] =
sl2 ⊗ C[t, t−1] ⊕ CK. The space I l

k(V ) carries a grading by d. In the next
subsection we compute the character of I l

k(V ) for some V .

§5.2. Tensor product as induced module

In this subsection, we show that the tensor product module L0,1⊗Lj,k can
be realized as Ik+1(L0,1⊗πj) (see Proposition 5.4 below). We first prepare two
Lemmas.

Let ω denote the involutive automorphism of ŝl2 given by

ei �→ f−i, fi �→ e−i, hi �→ −h−i, K �→ −K, d �→ −d.

For a g−-module V defined by ρ− : g− → End(V ), let V ω denote the g+-module
structure on V given by ρ+ = ρ− ◦ ω : g+ → End(V ).

We consider the situation where V is the fusion product of sl2-modules or
their tensor products. We identify u with t and define the degree operator d

appropriately (see Proof of Proposition 5.4). In this case, V ω and V ′ (see 3.3)
are isomorphic as sl2 ⊗ C[t−1]-module.

Recall the definition of n+ given in 3.3.
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Lemma 5.1. Notation being as above, we have

chqI
l
k(V ) = chq−1H0(n+, V ω ⊗ Ll,k)0.

Proof. In order to use the reciprocity law, we rewrite (5.1) as

I l
k(V ) � Homg′(Ik(V ), Ll,k)∗,

where ∗ denotes the restricted dual. Setting g′± = sl2 ⊗ C[t∓1], we have

Homg′(Ik(V ), Ll,k)∗ �Homg′(Indg′

g′
−
V, Ll,k)∗

�Homg′
−(V, Ll,k)∗

�
(
(Ll,k ⊗ V ∗)g′

−
)∗

� (V ⊗ L∗
l,k)/g′−(V ⊗ L∗

l,k)

�H0(g′−, V ⊗ L∗
l,k).

Note that as g′+-modules we have (L∗
l,k)ω � Ll,k. Therefore, we obtain

chqH0(g′−, V ⊗ L∗
l,k) = chq−1H0(g′+, V ω ⊗ Ll,k)

= chq−1H0(n+, V ω ⊗ Ll,k)0.

Now our lemma follows.

Lemma 5.2. Let V be a bi-graded g+-module. Then

∞∑
p=0

(−1)pchqHp(n+, V ⊗ Ll,k)0(5.2)

=
∑
λ∈Z

q(k+2)λ2−(l+1)λ
(
chqV

−2λ(k+2)+l − chqV
−2λ(k+2)+l+2

)
.

Proof. We first prepare our notation concerning the Weyl group W of ŝl2.
It is generated by simple reflections s0, s1. The length of w ∈W is denoted by
�(w). Let h = Ch0 ⊕CK ⊕Cd be the Cartan subalgebra. Define (i, k, m) ∈ h∗

by (i, k, m)h0 = i, (i, k, m)K = k, (i, k, m)d = m. We have

s1(i, k, m) = (i, k, m)− iα1, α1 = (2, 0, 0),

s0(i, k, m) = (i, k, m)− (k − i)α0, α0 = (−2, 0,−1).

Let ρ = (1, 2, 0). We write w ∗ α = w(α + ρ) − ρ for the shifted action of the
Weyl group on h∗.
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Consider the BGG-resolution of Ll,k (see [BGG, Kum])

0←− Ll,k ←−M0 ←−M1 ←− · · · ,(5.3)

Mp =
⊕

�(w)=p

M(w ∗ (l, k, 0)),

where M(µ) is the Verma module with highest weight µ.
Here we recall that, for a general Lie algebra a, a U(a)-module V and

a free U(a)-module M , the U(a)-module V ⊗M is isomorphic to V triv ⊗M

where V triv is V with trivial a-action. For example, if M = U(a), then the
isomorphism V ⊗U(a) � V triv⊗U(a) is given by v⊗x �→∑i S−1(x(1)

i )v⊗x
(2)
i ,

where ∆(x) =
∑

i x
(1)
i ⊗ x

(2)
i is the coproduct and S is the antipode on U(a).

Now, tensoring (5.3) by V , we obtain a U(n+)-free resolution for V ⊗Ll,k.
Therefore, the following complex counts H∗(n+, V ⊗ Ll,k)0:

(5.4) 0←− (C⊗U(n+) (V triv ⊗M0))0 ←− (C⊗U(n+) (V triv ⊗M1))0 ←− · · ·

We can rewrite (5.4) as

0←− ((C⊗U(n+) M0)⊗ V triv)0 ←− ((C⊗U(n+) M1)⊗ V triv)0 ←− · · ·

By the Euler-Poincaré principle,

∞∑
p=0

(−1)pchqHp(n+, V ⊗ Ll,k)0 =
∞∑

p=0

(−1)pchq

(
(C⊗U(n+) Mp)⊗ V triv

)0
=
∑

w∈W

(−1)�(w)q(w∗(l,k,0))(d)chqV
−(w∗(l,k,0))(h0).

Lemma follows by using the following formulas for the shifted action where
λ ∈ Z ,

(s1s0)λ ∗ (l, k, m) = (−2(k + 2)λ + l, k, m + (k + 2)λ2 − (l + 1)λ),(5.5)

s0(s1s0)λ−1 ∗ (l, k, m) = (−l − 2 + 2(k + 2)λ, k, m + (k + 2)λ2 − (l + 1)λ).

Corollary 5.3. If Hp(n+, V ω ⊗ Ll,k) = 0 holds for p > 0, then

chqI
l
k(V ) =

∑
λ∈Z

q−(k+2)λ2+(l+1)λ
(
chqV

2(k+2)λ−l − chqV
2(k+2)λ−l−2

)
.

Proof. This follows from Lemma 5.1 and Lemma 5.2, with q, V replaced
by q−1, V ω noting that chq−1(V ω)α = chqV

−α.
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Proposition 5.4. We have an isomorphism of ŝl2-modules

L0,1 ⊗ Lj,k � Ik+1(L0,1 ⊗ πj),

where we regard πj as an sl2 ⊗C[t]⊕Cd-module by letting sl2 ⊗ tC[t]⊕Cd act
as 0.

Proof. As we noted in 5.1, there exists a natural surjective homomorphism

Ik+1(L0,1 ⊗ πj)→ L0,1 ⊗ Lj,k.

Therefore, it suffices to check that the multiplicities of irreducible representa-
tions in the decomposition of left and right hand sides coincide.

Recall that L0,1 is an inductive limit of its Demazure submodules, which
are isomorphic to fusion products of 2-dimensional representations [FF2]. In-
troduce the action of d on π∗2N

1 by setting

d v = (N2 −m) v, v ∈ (π∗2N
1 )m,

and denote by π̃∗2N
1 the resulting sl2 ⊗ C[t] ⊕ Cd-module. Then we have an

isomorphism of sl2 ⊗ C[t]⊕ Cd-modules

L0,1 = lim
N→∞

π̃∗2N
1 .(5.6)

Since inductive limit commutes with tensor product and is an exact functor,
we have

Ik+1(L0,1 ⊗ πj) = lim
N→∞

Ik+1(π̃∗2N
1 ⊗ πj).

Therefore

chqIk+1(L0,1 ⊗ πj) = lim
N→∞

chqIk+1(π̃∗2N
1 ⊗ πj).

In view of the vanishing of homology (3.12), we can apply Corollary 5.3.
We obtain

chqI
l
k+1(π̃∗2N

1 ⊗ πj).

=
∑
λ∈Z

q−(k+3)λ2+(l+1)λ
(
chq(π̃∗2N

1 ⊗ πj)2(k+3)λ−l−chq(π̃∗2N
1 ⊗ πj)2(k+3)λ−l−2

)
=
∑
λ∈Z

q−(k+3)λ2+(l+1)λ
(
chq(π̃∗2N

1 )2(k+3)λ−l+j−chq(π̃∗2N
1 )2(k+3)λ−l−2−j

)
.
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On the other hand, we have from (3.5)

chq(π̃∗2N
1 )α = qN2

[
2N

2N+α
2

]
q−1

= qα2/4

[
2N

2N+α
2

]
q

.

Hence we find

chqI
l
k+1(π̃∗2N

1 ⊗ πj)

= q
(l−j)2

4

(∑
λ∈Z

q(k+2)(k+3)λ2+((k+3)(j+1)−(k+2)(l+1))λ

[
2N

2N−l+j
2 + (k + 3)λ

]
q

−
∑
λ∈Z

q(k+2)(k+3)λ2−((k+3)(j+1)+(k+2)(l+1))λ+(j+1)(l+1)

[
2N

2N−l−j−2
2 + (k + 3)λ

]
q

)
.

The last expression in the above formula coincides with the ABF finitization of
the Virasoro minimal model M

(k+2,k+3)
j+1,l+1 up to a power q∆j+1,l+1−(l−j)2/4 (see

[ABF]). This power comes from conformal dimensions of highest weight vectors
of ŝl2-modules:

∆j+1,l+1 − (l − j)2

4
= ∆(j, k)−∆(l, k + 1),

the right hand side being the difference between eigenvalue of L0 and degree.
Letting N →∞ we conclude that

chqI
l
k+1(L0,1 ⊗ πj) = q∆(l,k+1)−∆(j,k) × chqM

(k+2,k+3)
j+1,l+1 .

This completes the proof of Proposition.

§5.3. PBW-filtration on L0,1

Consider the fusion filtration Fm on the tensor product L0,1⊗Lj,k given by
(3.3). In order to study Fm/Fm−1, we consider in this subsection the structure
of the PBW-filtration Gm on L0,1. Denote the associated graded space by
Qm = Gm/Gm−1. Since Gm is invariant under the action of d and h0, the
space Qm is bi-graded by the degree and the weight. Note that for any n ≥ 0

(Qm)2m
n = (Gm)2m

n .

It is known [LP, FS] that this space has a monomial basis

e−n1 · · · e−nm
v0,1(5.7)
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where nj ≥ nj+1 + 2, nm > 0 and
∑m

j=1 nj = n. In particular, we have

chq(Qm)2m =
qm2

(q)m
.

There is a canonical action of g− on Qm. Define a g−-invariant filtration on
Qm by setting

Jn(Qm) =
∑
i≤n

U(g−)(Qm)2m
m2+i.

Proposition 5.5. We have

Qm = ∪∞n=0Jn(Qm).

The associated graded space grJ
n(Qm) is isomorphic to a direct sum of the fu-

sion product π∗m
2 . Each monomial vector (5.7) generates an sl2 ⊗ C[t]-module

isomorphic to π∗m
2 .

Obviously, ∪∞n=0Jn(Qm) ↪→ Qm. For the proof of this proposition we need
the following lemma.

Lemma 5.6. We have

chqQm =
qm2

(q)m
chq−1π∗m

2 .

The proof of this lemma is given below.
We also need the dual functional realization for the space Qm. Set Km =

C[z1, . . . , zm]. Consider the restricted dual space

Q∗
m = ⊕n(Qm)∗n.

For ϕ ∈ Q∗
m one can define an element Fϕ ∈ Km ⊗ (sl⊗m

2 )∗ by

Fϕ(x(1) ⊗ · · · ⊗ x(m)) = ϕ(x(1)
+ (z1) · · ·x(m)

+ (zm)v0,1).(5.8)

Here for x ∈ sl2 we set x+(z) =
∑

n≥1 x−nzn. The map ϕ �→ Fϕ is injective.
We will give a characterization of the image of this mapping. First we recall
some results of [FF1] on the dual functional realization of the fusion product.

Note the sl2 decomposition

π2 ⊗ π2 = π0 ⊕ π2 ⊕ π4.
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Define

Vm = {F (z1, . . . , zm) ∈ Km ⊗ π⊗m
2 |(5.9)

F |zi=zj
∈ σ(i,j)

(
π0 ⊗ π

⊗(m−2)
2

)
,

(∂zi
F )|zi=zj

∈ σ(i,j)
(
(π0 ⊕ π2)⊗ π

⊗(m−2)
2

)
}.(5.10)

Here

σ(i,j)(vi ⊗ vj ⊗ v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ v̂j ⊗ · · · ⊗ vn) = v1 ⊗ · · · ⊗ vn.

The space Vm is a g−-module by the action

xn · F =
m∑

j=1

zn
j �j(x)F.

Here �j(x) is the action of x ∈ sl2 on the j-th component of the tensor product
π⊗m

2 . The homogeneous degree of elements in Km is counted by −d ∈ g−. We
denote by (Km)n the subspace with homogeneous degree n.

Multiplication by elements of Km commutes with this action. Let K0
m

be the maximal ideal of Km generated by z1, . . . , zm. Combining the results
in [FF1] (see Theorem 3.1, Theorem 4.1 and Proposition 4.1), we obtain the
following proposition:

Proposition 5.7. We have an isomorphism of sl2 ⊗ C[t]-modules

Vm/K0
mVm � (π∗m

2 )∗.

We need a variant of this result in the symmetric case. The symmetric
group Sm acts on Vm by

(σF )(z1, . . . , zm) = (1⊗ σ) · F (zσ(1), . . . , zσ(m)),(5.11)

where the action of σ on π⊗m
2 is σ(v1⊗ · · ·⊗ vm) = vσ−1(1)⊗ · · ·⊗ vσ−1(m). Set

Wm = Vm ∩ (Km ⊗ π⊗m
2 )Sm .

Let Sm = KSm
m and (Sm)n = (Km)Sm

n . Note that

(Wm)−2m =
∏
i<j

(zi − zj)2Sm ⊗ v⊗m,(5.12)

where v is the lowest weight vector of π2.
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Set

S0
m = K0

m ∩ Sm.

This is the ideal of Sm consisting of symmetric polynomials vanishing at the
origin.

Lemma 5.8. The natural map

Wm/S0
mWm → Vm/K0

mVm

is an isomorphism.

Proof. First we prove

Wm ∩ (K0
mVm) ⊂ S0

mWm.

It is enough to show that for any n > 0

Sym(gF ) ∈ S0
mWm for any g ∈ (K0

m)n and F ∈ Vm.(5.13)

Here Sym F = 1
m!

∑
σ∈Sm

σF , and (K0
m)n is the homogeneous component of

degree n. We prove (5.13) by a decreasing induction on n. If deg g is large
enough, we can write g =

∑N
i=1 aigi with some ai ∈ S0

m and gi ∈ Km. The
assertion is evident in this case. Now take g ∈ (K0

m)n and suppose that (5.13)
is true for degree higher than n. Set ḡ = Sym g. Then there exist gij ∈ (Km)n

such that

g − ḡ =
∑
i<j

gij , sijgij = −gij ,

where sij ∈ Sm is the transposition of i and j. We have

Sym(gF ) = ḡ · SymF +
1
2

∑
i<j

Sym{gij(1− sij)F}.

The first term in the right hand side belongs to S0
mW . Using (5.9), (5.10) and

that

π0 ⊕ π4 � S2(π2), π2 � ∧2π2

one can write

(1− sij)F = (zi − zj)Fi,j for some Fij ∈ Vm.
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By the induction hypothesis we obtain that

Sym{gij(zi − zj)Fij} ∈ S0W.

Second, we show that

Vm ⊂Wm + K0
mVm.

In fact, we have seen that for any F ∈ Vm

(1− sij)F ∈ K0
mVm.

Therefore, we have

F = SymF + (F − SymF ) ∈Wm + K0
mVm.

Define a decreasing filtration on Wm by

Jn(Wm) =
∑
i≥n

(Sm)i ·Wm.

Lemma 5.9. The associated graded space grn
J (Wm) = Jn(Wm)/

Jn+1(Wm) is isomorphic to a direct sum of (π∗m
2 )∗ :

grJ(Wm) = Sm ⊗ (π∗m
2 )∗.

For the proof of this lemma we prepare a character identity.

Lemma 5.10. We have the identity

(5.14) chq,zL0,1 =
∑
m≥0

qm2

(q)m
chq−1,zπ

∗m
2 .

Proof. Recall the isomorphism (5.6). We show that

(5.15) qN2
chq−1,zπ

∗2N
1 =

N∑
m=0

qm2
[
N

m

]
q

chq−1,zπ
∗m
2 .

Using the relation (see (3.7))

(5.16)
chq,zπ

∗2k1
1 ∗ π∗k2

2 = chq,zπ
∗2(k1−1)
1 ∗ π

∗(k2+1)
2 + q2k1+k2−1chq,zπ

∗2(k1−1)
1 ∗ π∗k2

2 ,
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we rewrite

qN2
chq−1,zπ

∗2N
1

= qN2
(chq−1,zπ

∗2(N−1)
1 ∗ π2 + q−2N+1chq−1,zπ

∗2(N−1)
1 )

= qN2
(chq−1,zπ

∗2(N−2)
1 ∗ π∗2

2 + (q−2N+1 + q−2N+2)chq−1,zπ
∗2(N−2)
1 ∗ π2

+q−4N+4chq−1,zπ
∗2(N−2)
1 ).

Repeating this procedure N times we obtain (5.15). Obviously,

lim
N→∞

[
N

m

]
q

=
1

(q)m
.

Lemma is proved.

We fix an isomorphism of sl2 modules: sl∗2 � π2. Then, we have

Lemma 5.11. The mapping ϕ �→Fϕ is an injection Q∗
m→z1 · · · zmWm.

Proof. The graded action of xn (x ∈ sl2) on grG(L0,1) = ⊕∞
m=0Qm is

mutually commutative and zero if n ≥ 0. The former property implies that
Fϕ(z) is symmetric with respect to the action (5.11), and the latter implies
that the action of x+(z) is equal to that of x(z) =

∑
n∈Z

x−nzn on grG(L0,1).
The integrability of the representation L0,1 implies that e(z)2 = 0. Therefore,
by applying ad f0, we see that the following operators act as zero on grG(L0,1):

e+(z)2, e+(z)h+(z), 2e+(z)f+(z)− h+(z)2, h+(z)f+(z), f+(z)2.

All these properties imply (5.9) and (5.10).

Proof of Lemmas 5.6 and 5.9. Proposition 5.7 and Lemma 5.8 imply that
for any symmetric polynomial g we have an isomorphism

gWm/gS0
mWm � (π∗m

2 )∗.

Suppose that a vector space B is a subspace of a sum of vector spaces A1 +
· · ·+ Ak. Then, there is a natural surjection.

A1/(A1 ∩B)⊕ · · · ⊕Ak/(Ak ∩B)→ (A1 + · · ·+ Ak)/B.(5.17)

Take a basis {g1, . . . , gk} of (Sm)n. Set Ai = giWm (1 ≤ i ≤ k) and B =
Jn+1(Wm). Then we have A1 + · · · + Ak = Jn(Wm) and Ai ∩ B = giS

0
mWm.
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Using (5.17) in this setting, we obtain

chqL0,1 =
∞∑

m=0

chqQm

=
∞∑

m=0

chq−1Q∗
m ≤

∞∑
m=0

qmchq−1Wm ≤
∞∑

m=0

qm2

(q)m
chq−1π∗m

2 .

Here we used (5.12) to obtain the last inequality. Because of Lemma 5.10, the
left end and the right end are equal. Lemma 5.6 follows from this. Moreover,
for each n, we have the isomorphism

⊕k
i=1giWm/giS

0
mWm � ⊕k

i=1gi ⊗ (π∗m
2 )∗ � grn

J(Wm)

in the above notation. Lemma 5.9 follows from this.

Proof of Proposition 5.5. Consider the dual g−-action on Q∗
m. The map-

ping in Lemma 5.11 is g−-linear. Set

Q′
m = U(g−)(Qm)2m.(5.18)

Define a coupling between Q′
m and z1 · · · zmWm as follows. Take x·w ∈ Q′

m

and g ∈ z1 · · · zmWm. Here x ∈ U(g−) and w ∈ (Qm)2m. There exists a non-
degenerate coupling [FS] between (Qm)2m and z1 · · · zm(Wm)−2m induced from
the non-degenerate coupling between the subspace of the tensor algebra over
the vector space ⊕i∈Z<0Cei which is spanned by ei1 · · · eim

(i1, . . . , im ∈ Z<0),
and the space of polynomials in z1, · · · , zm divisible by z1 · · · zm:

〈ei1 · · · eim
, zn1

1 · · · znm
m 〉 =

m∏
j=1

δij+nj ,0.

Using this coupling we define

〈x · w, g〉 = 〈w, S(x) · g〉.

Here S(x) is the antipode of U(g−). Using the scaling operator we see that the
above coupling further induces a coupling

grJ
n(Q′

m)× grn
J (Wm)→ C.(5.19)

The g−-module π∗m
2 is cyclic and generated by the highest weight vector:

π∗m
2 ⊂ U(g−) · (π∗m

2 )2m.
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The dual module (π∗m
2 )∗ is cocyclic:

U(g−) · w ⊃ ((π∗m
2 )∗

)2m for any 0 �= w ∈ (π∗m
2 )∗.

Now we know that grn
J (Wm) is a direct sum of cocyclic modules from Lemma

5.9, and Q′
m is a cyclic module by definition (5.18). Therefore, the coupling

(5.19) defines an inclusion

grn
J(Wm) ⊂ grJ

n(Q′
m)∗.(5.20)

Comparing this result with Lemmas 5.9 and 5.10, we obtain the equality

Q′
m = Qm

and that the inclusion (5.20) is bijective.

§5.4. Fusion filtration

In this section we conclude our discussion on the fusion filtration on the
tensor product of ŝl2-modules.

Lemma 5.12. The following formula holds :

chqI
l
k+1

(
grJ (Qm)⊗ πj

)
(5.21)

=
qm2

(q)m

∑
λ∈Z

q−(k+3)λ2+(l+1)λ

×
(
chq−1(π∗m

2 )2(k+3)λ−l+j − chq−1(π∗m
2 )2(k+3)λ−l−j−2

)
.

For j ≡ l mod 2, we have

q∆(j,k)−∆(l,k+1)chqM
(k+2,k+3)
j+1,l+1 =

∑
m≥0

chqI
l
k+1(grJ (Qm)⊗ πj).(5.22)

Proof. In view of Proposition 5.5 and the vanishing of homology (3.13),
we can apply Corollary 5.3 to V = grJ (Qm) ⊗ πj . A simple calculation leads
to formula (5.21). To show (5.22), we apply the identity of characters Lemma
2.2 taking p = k +2, p′ = k +3, r = b = j +1, a = l+1 and noting the relation

Sm,α(q) = chq−1(π∗m
2 )α.(5.23)

Comparing the result with (5.21) we obtain (5.22).

Let Fm be the fusion filtration (3.1) on the tensor product L0,1(1)⊗Lj,k(0).
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Theorem 5.13. We have

Fm/Fm−1 � Ik+1(Qm ⊗ πj).

For the character we have

chqI
l
k+1

(
Qm ⊗ πj

)
= chqI

l
k+1

(
grJ(Qm)⊗ πj

)
,(5.24)

which is given explicitly by (5.21).

Proof. Since there is a surjection Ik+1(Qm ⊗ πj)→ Fm/Fm−1, we are to
show that both sides have the same character. We note that

(5.25)

chqI
l
k+1(L0,1⊗πj) ≤

∑
m≥0

chqI
l
k+1(Qm⊗πj) ≤

∑
m≥0

chqI
l
k+1(grJ (Qm)⊗πj).

On the other hand, Ik+1(L0,1 ⊗ πj) = L0,1 ⊗ Lj,k implies that

q∆(j,k)−∆(l,k+1)chqI
l
k+1(L0,1 ⊗ πj) = chqM

k+2,k+3
j+1,l+1

(the factor q∆(j,k)−∆(l,k+1) comes from the difference between eigenvalue of L0

and degree). Because of Lemma 5.12, we obtain equalities in (5.25).

Finally, let us discuss the fusion product

L1,1 ∗ Lj,k =
⊕

0≤l≤k+1
l �≡j mod 2

grE(M (k+2,k+3)
j+1,l+1 )⊗ Ll,k+1.

Let F̃m be the fusion filtration (3.1) on the tensor product L1,1(1)⊗Lj,k(0) of
ŝl2 ⊗ C[u]-modules, and set

F̃m/F̃m−1 =
⊕

0≤l≤k+1
l �≡j mod 2

M̃
(k+2,k+3)
j+1,l+1,m ⊗ Ll,k+1.

Proposition 5.14. chqM̃
(k+2,k+3)
j+1,l+1,m = chqgrE

m(M (k+2,k+3)
k−j+1,k−l+2).

Proof. Consider an automorphism ı : ŝl2 → ŝl2 defined by Ei �→ E1−i,
Fi �→ F1−i, where E0, E1, F0, F1 are the Chevalley generators of ŝl2. Then we
have an isomorphism of ŝl2-modules Lj,k → L̃k−j,k, where the action of ŝl2 on
the right hand side is a composition of ı and of the natural action. This proves
our proposition.

Let us summarize the conclusion.
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Theorem 5.15. For the unitary series M
(k+2,k+3)
r,s , the character of the

(1,3) filtration (4.4) is given by the formula introduced in Lemma 2.2:

chqgrE
m(M (k+2,k+3)

r,s ) =
q∆r,s

(q)m
I
(k+2,k+3)
r,s,r+i,m (q).(5.26)

Here i = 0, 1 is given by i ≡ r − s mod 2.

Proof. First we give the proof in the case of i = 0. From Proposition 4.4
we have⊕

1≤s≤k+2
s≡r mod 2

grE
m(M (k+2,k+3)

r,s )⊗ Ls−1,k+1 = (L0,1 ∗ Lr−1,k)m = Fm/Fm−1.

Here Fm is the fusion filtration on the tensor product L0,1(0)⊗Lr−1,k(1). From
Theorem 5.13 we have

grE
m(M (k+2,k+3)

r,s ) = Homg′(Ls−1,k, Fm/Fm−1) � Is−1
k+1(Qm ⊗ πr−1).

Take the character of the both ends above and use (5.24). Then we obtain

chqgrE
m(M (k+2,k+3)

r,s ) = chqI
s−1
k+1(grJ (Qm)⊗ πr−1).

The character in the right hand side is given by (5.21). Then, from the relation
(5.23), we finally get the equality (5.26). To show the theorem in the case of
i = 1, use the automorphism of ŝl2 given in the proof of Proposition 5.14.
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