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Abstract

Let X be a minimal projective surface of general type defined over the complex
numbers and let C ⊂ X be an irreducible curve of geometric genus g. Given a rational
number α ∈ [0, 1], we construct an orbibundle Ẽα associated with the pair (X, C) and
establish the Miyaoka-Yau-Sakai inequality for Ẽα. By varying the parameter α in the
inequality, we derive several geometric consequences involving the “canonical degree”
CKX of C. Specifically we prove the following two results. (1) If K2

X is greater than
the topological Euler number c2(X), then CKX is uniformly bounded from above by
a function of the invariants g, K2

X and c2(X) (an effective version of a theorem of
Bogomolov-McQuillan). (2) If C is nonsingular, then CKX ≤ 3g− 3 + o(g) when g is
large compared to K2

X , c2(X) (an affirmative answer to a conjecture of McQuillan).

§1. Introduction

In 1977, F. Bogomolov [1] showed that, given a pair (g, X) of a non-
negative integer g and a minimal complex projective surface X of general type
with K2

X > c2(X), the irreducible curves of genus g on X form a bounded fam-
ily. In particular, such X contains only finitely many rational/elliptic curves.
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Bogomolov’s proof (see also the expository article [3]) involves beautiful ideas,
eventually leading to M. McQuillan’s partial solution [8] of the Green-Griffiths
conjecture [4] concerning the algebraicity and finiteness of entire holomorphic
curves (i.e., non-constant holomorphic images of C) on a surface of general
type.

Unfortunately, the result of Bogomolov-McQuillan is not effective. For
instance, when the ambient surface X deforms in an analytic family, their
theory cannot rule out the possibility that the number of rational/elliptic curves
therein tends to infinity. In this note we clear up this problem by proving that
the canonical degree of an irreducible curve of genus g on X is bounded from
above by a function of g, K2

X and c2(X):

Theorem 1.1 (Uniform bound of the canonical degree). Let X be a
minimal projective surface of general type defined over C and let C ⊂ X be an
irreducible curve of geometric genus g. If K2 = K2

X > c2 = c2(X), then the
canonical degree CK = CKX of C is bounded by a(g − 1) + b, where a and b

are functions of K2 and c2. When C is not a smooth rational curve, we can
choose the functions as follows:

a =
2K2 +

√
2 (K2) (3c2 − K2)
K2 − c2

,

b =

(
K2

) (
3c2 − K2

)
+ c2

√
2 (K2) (3c2 − K2)

2 (K2 − c2)
.

Corollary 1.2 (Uniformity of the number of rational/elliptic curves).
Let X be a minimal projective surface of general type over C. If K2

X > c2(X),
then the number of irreducible curves of genus ≤ 1 on X is bounded by a func-
tion of K2

X and c2(X).

Theorem 1.1 is a direct consequence of the following

Theorem 1.3 (Orbibundle Miyaoka-Yau-Sakai inequality for the pair (X,

C)). Let X be a surface of non-negative Kodaira dimension (i.e., X is not a
ruled surface ) and let C be an irreducible curve of genus g on it.

(i) If α is a real number with 0 ≤ α ≤ 1, then the inequality

α2

2
(
C2 + 3CKX − 6g + 6

) − 2α(CKX − 3g + 3) + 3c2(X) − K2
X ≥ 0

holds.
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(ii) Assume that C is not isomorphic to P1 and that CKX > 3g − 3. Then

2(CKX − 3g + 3)2 − (3c2(X) − K2
X)(C2 + 3CKX − 6g + 6) ≤ 0.

(iii) Assume that KX is nef and K2
X > 0 (i.e., X is a minimal surface of

general type). Put x = CKX/K2
X , σ = c2(X)/K2

X , γ = (g − 1)/K2
X ,

y2 = −(C − xKX)2/K2
X (we have x ≥ 0, σ ≥ 1/3, γ ≥ −1, y2 ≥ 0 by

the minimality of X, the Miyaoka-Yau inequality [10], the definition of the
genus and the Hodge index theorem). If C �� P1 and x > 3γ, then we have
the inequality

(1) (σ − 1)x2 + (4γ + 3σ − 1)x − 2γ(3γ + 3σ − 1) ≥
(

σ − 1
3

)
y2.

When σ < 1 (i.e., c2(X) < K2
X), the left-hand side P (x) of (1) is a

quadratic polynomial in x with negative leading coefficient, and hence x

is bounded from above by the larger root R+(σ, γ) of P (x) or by 3γ:

(2) x ≤ max{3γ, R+(σ, γ)} =
2 +

√
6σ − 2

1 − σ
γ + o(γ).

Theorem 1.3 says something new about nonsingular curves as well. If C is
nonsingular with C2+CKX = 2g−2, then the assertion (ii) yields an inequality,
which seems to have been unknown to date (see Remarks D and F below):

Corollary 1.4. Let X be a surface with nef canonical divisor. If C is
a nonsingular curve of genus g ≥ 1 on X, then

(3) CK ≤ 3g − 3 +
√

3c2 − K2
√

4g − 4 + 3c2 − K2

2
+

3c2 − K2

2
,

where K and c2 are the abbreviations of KX and c2(X). Thus, when g is very
large, the canonical degree CK of a non-singular curve C of genus g on X is
bounded roughly by 3g − 3.

Remarks. A. Corollary 1.4 is true also for g = 0 with minor modifi-
cations. A smooth rational curve C on a minimal non-ruled surface X has
negative self-intersection −n ≤ −2 and can be contracted to a cyclic quotient
singularity. Then [11] Theorem 1.1 tells us that

CK = n − 2 ≤
⌊
3c2 − K2 − 4 − 1

n

⌋
= 3c2 − K2 − 5.
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B. There is an essential difference between our approach and the original
method of Bogomolov-McQuillan.

The basic idea of Bogomolov-McQuillan is to look at (a) the projective
bundle π : P(Ω1

X) → X with the tautological divisor 1, (b) an effective divisor
F ∈ |n1−mπ∗KX |, and (c) the rational map σ : C → P(Ω1

X) which is induced
by the natural homomorphism ΩX |C → ωC defined on the non-singular locus of
C. Unless σ(C) ⊂ F (i.e., C is a leaf of the multi-valued foliation induced by F ),
the intersection number σ(C)F is non-negative, whence follows the inequality
mCKX ≤ n(2g − 2). Extra analytic techniques (Jouanolou’s theorem [5] in
Bogomolov’s paper and Nevanlinna theory for foliations in McQuillan’s) take
care of the exceptional case σ(C) ⊂ F . The hypothesis K2

X > c2(X) appears
as a guarantee of the existence of some F ∈ |n1 − mπ∗KX | for n 	 m > 0.

Our proof of Theorem 1.3 does not rely on the existence of an effective
member F ∈ |n1 − mπ∗KX | as above, but depends on old inequalities of
[10], [11]. What is new in the present note is more or less of technical na-
ture: the systematic use of orbibundles (although [11] already used the notion
implicitly), along with an elementary reduction process (“G-nef reduction”)
for vector bundles of special type (Lemma 2.3). Theorem 1.3 is exactly the
Miyaoka-Yau-Sakai inequality [11] applied to a family of orbibundles Ẽα with
parameter α ∈ [0, 1] ∩ Q. The precise construction of Ẽα via G-nef reduction
process will be elaborated in Section 3 below.

C. In connection with S. Kobayashi’s complex hyperbolic geometry and P.
Vojta’s value distribution theory, S. Lang [6] conjectured that the union of all
the entire holomorphic curves (rational/elliptic curves, for example) on a va-
riety of general type should be contained in a certain proper algebraic closed
subset. L. Caporaso, J. Harris and B. Mazur [2] pointed out that Lang’s con-
jecture in arbitrary dimension would entail Corollary 1.2 (uniform finiteness
of rational/elliptic curves on surfaces) even when the assumption K2 > c2 is
dropped (their argument does not give any explicit bound, though). It is yet to
be seen whether the assumption is really necessary or redundant. It might be
any way noteworthy that Bogomolov-McQuillan’s proof and ours alike require
the very same condition K2 > c2 in quite different contexts.

D. When the curve C is nonsingular of genus g on a non-ruled surface X,
the Miyaoka-Yau-Sakai inequality [13], [11] for the open surface X \ C reads

CKX ≤ 4g − 4 + 3c2(X) − K2
X ,

regardless of the ratio σ = c2(X)/K2
X (our Corollary 1.4 improves this inequal-
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ity for g ≥ 2). The smoothness hypothesis on C was marginally relaxed in
[7]. Without the assumption K2 > c2, we still have a similar bound for CKX

provided C contains neither ordinary double points nor ordinary triple points.
Strangely, complicated singularities of high multiplicity do no harm to estimat-
ing canonical degrees. Curves with many ordinary double points are technically
the most difficult to deal with.

E. Consider a sufficiently ample divisor H on a surface X. In the complete
linear system |H| of dimension (H2 − HKX + 2χ(X,OX) − 2)/2, the curves
with m ordinary double points form a locally closed subset of codimension ≤ m.
Hence we have a crude estimate of the minimum gH of the geometric genera of
the members of |H|:

gH ≤ HKX − K2
X + c2(X)

12
+ O(1).

To put it another way, the supremum

d(X, g) = sup{CKX | C ⊂ X, g(C) = g} ∈ Z≥0 ∪ {∞}

of the canonical degrees of curves of genus g is expected to satisfy

(4) d(X, g) ≥ g +
K2

X + c2(X)
12

+ O(1).

This lower bound, depending only on the genus and the topology of X, will
be very crude; it may well happen that a curve of low genus and high degree
suddenly emerges as the complex structure of X varies. Such possibilities taken
into account, our uniform estimates (1) and (2) would be fairly nice.

A good example is the extremal case σ = 1/3. In this situation, the left-
hand side of the inequality (1) is (2/3)(x−3γ)2 so that Theorem 1.3 boils down
to the simple linear estimate CKX ≤ 3g − 3, which happens to be identical
with the estimate (3) stated exclusively for nonsingular curves.

F. The referee informed the authour of an extremely interesting preprint [9]
of McQuillan. The linear estimate of Theorem 1.1 was already proved there
through the combination of the complete classification of foliated surfaces with
his previous result [8]. However, his method does not produce explicit de-
scriptions of the coefficients a, b, apart from its dependence on a very hard
classification theorem. In the same preprint, an asymptotic behaviour

KXC ≤ (3 + ε)(g − 1) + o(g)
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of the canonical degree of smooth curves is stated as a conjecture based on
certain properties of normalized holomorphic sectional curvature. Theorem 1.4
confirms his conjecture with well controlled correction terms.

G. In the subsequent proof, we do not use the irreducibility of C. Theorem
1.3 (i) stays true for reduced reducible curve C =

∑
Ci if we define the genus

g = g(C) by
g(C) − 1 =

∑
(g(Ci) − 1) .

Conventions. In this note we work in the category of complex algebraic
varieties (or, more generally, varieties defined over an algebraically closed field
of characteristic zero). All the surfaces will be non-singular and projective
unless otherwise mentioned. Chern classes of coherent sheaves (or of elements
of the Grothendieck group K(·)) are regarded as elements in the real Betti
cohomology ring H∗(·,R). By the (geometric) genus of an irreducible curve,
we mean the genus of its normalization. Effective divisors are often identified
with closed subschemes of pure codimension one via the correspondence A 
→
Spec (O/O(−A)).

§2. G-Nef Reductions of Certain Vector Bundles

In this section, we formulate a couple of technical but elementary results,
which allow us to modify vector bundles of certain type into much simpler ones,
without changing their second Chern classes.

Let Z be a surface. A finite sum G =
∑

Gi of irreducible curves Gi ⊂ Z

is said to be a negative definite cycle if the intersection matrix (GiGj)ij is
negative definite. From the definition, it follows that the components Gi of a
negative definite cycle G must be mutually distinct, i.e., G is reduced. Given
a surjective morphism f : Z → Y onto another surface, the f -exceptional locus
(the union of the curves which f contracts to points) is a typical example of
negative definite cycles.

Proposition 2.1 (The Zariski decomposition with support in a negative
definite cycle). Let G =

∑
Gi ⊂ Z be a negative definite cycle and let A be an

effective Q-divisor on Z. Then there exists a unique decomposition A = P +N

into Q-divisors which satisfies the following four conditions:

(a) Both P and N are effective: P ≥ 0, N ≥ 0.

(b) N is supported by a subset of G, i.e., N =
∑

νiGi, νi ≥ 0.
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(c) P is nef on G, i.e., PGi ≥ 0 for every i.

(d) P and N are mutually orthogonal, i.e., PN = 0 (hence A2 = P 2 + N2

and, in view of (c), P is numerically trivial on N , i.e., PGi = 0 for each
Gi ⊂ suppN).

Furthermore, P is the largest effective Q-divisor ≤ A that is nef on G:

(e) If a Q-divisor B with 0 ≤ B ≤ A is nef on G, then B ≤ P .

Definition. The unique decomposition A = P + N as above is said to
be the Zariski decomposition with support in G. We call the Q-divisors P and
N the G-nef part and the G-negative part of A, respectively.

This definition generalizes classical Zariski decompositions [15]. Indeed,
the classical decomposition A = P + N is the decomposition with support in
N . Among the Zariski decompositions of a fixed divisor A with support in
various negative cycles, the classical one is characterized as the decomposition
which has the largest negative part and the smallest positive part (see Corollary
2.2 (iii) below). In order to avoid unnecessary confusions, we hereafter call the
classical Zariski decomposition the absolute Zariski decomposition.

Proposition 2.1 is proved in exactly the same manner (essentially an ex-
ercise of linear algebra) as in the case of absolute Zariski decompositions [15],
[12].

Corollary 2.2. (i) Take two effective Q-divisors A, A′ and let A =
P + N , A′ = P ′ + Q′ be the decompositions into the G-nef parts and the G-
negative parts. If A ≤ A′, then P ≤ P ′.

(ii) Let G and Ĝ be two negative definite cycles and let A = P +N = P̂ +N̂

be the Zariski decompositions with supports in G and Ĝ. If G ≤ Ĝ, then N ≤
N̂ , P ≥ P̂ . Furthermore, we have the inequalities between self-intersection
numbers: 0 ≥ N2 ≥ N̂2, P 2 ≤ P̂ 2.

(iii) Let A = P +N be the Zariski decomposition with support in G and let
A = P + N denote the absolute Zariski decomposition. Then we have N ≤ N ,
P ≥ P , 0 ≥ N2 ≥ N

2
, P 2 ≤ P

2
.

Proof. (i) is a direct consequence of the property (e) of P ′. Let us prove
(ii). By definition, P̂ is nef on Ĝ and hence on G, so that P̂ ≤ P and N̂ ≥ N .
In particular, supp N̂ ≥ supp N . Let V̂ [resp. V ] denote the subspace of
H2(Z,R) generated by the curves in supp N̂ [resp. supp N ]. Then P̂ [resp. P ]
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sits in the orthogonal complement V̂ ⊥ [resp. V ⊥], while R = P − P̂ = N̂ −N ∈
V ⊥ ∩ V̂ . Hence P = P̂ + R ∈ V̂ ⊥ ⊕ (V ⊥ ∩ V̂ ) is an orthogonal decomposition
in V ⊥ and so is N̂ = N + R ∈ V ⊕ (V ⊥ ∩ V̂ ) in V̂ . Noting that R2 ≤ 0, we get
(ii). The proof of (iii) is quite similar to that of (ii).

Take a surjective morphsm f: Z → Y between nonsingular projective sur-
faces and denote by G ⊂ Z the f -exceptional locus. In what follows we assume
that G is a divisor of simple normal crossings (this condition is automatic when
f is birational). Let ∆ ⊂ Z be an effective, reduced, normal crossing divisor
which contains G.

Pick up an effective reduced divisor Γ on Y such that G ⊂ f−1(Γ) ⊂ ∆.
The image f(G) of G in Y is a finite subset of Γ and therefore we can find an
affine open neighbourhood U ⊂ Y of f(G) on which Γ is defined by a single
equation ϕ. Since the inverse image f−1(Γ) is supported by a normal crossing
divisor ⊂ ∆, the pull back f∗ϕ of its defining equation is of the form (unit)za

1zb
2,

where a ≥ 0, b ≥ 0, a + b > 0 and z1, z2 are local coordinates of Z around a
point q ∈ G ⊂ f−1(Γ). Thus the logarithmic 1-form

f∗d log ϕ = a
dz1

z1
+ b

dz2

z2
+ (regular 1-form), (a, b) �= (0, 0)

is a nowhere-vanishing section of Ω1
Z(log ∆)|f−1(U) near G.

Lemma 2.3. Let Y, Z, f, G,Γ, ∆, d log ϕ be as above. Assume that a
vector bundle E of rank two on Z satisfies the following four conditions:

(a) E ⊂ Ω1
Z(log ∆).

(b) The determinant divisor D = det E is effective (as a Q-divisor).

(c) The G-nef part P and the G-negative part N of D are integral divisors.

(d) E contains f∗d log ϕ ∈ Ω1
Z(log ∆) on a certain neighborhood V of G.

Then, after shrinking V to a smaller neighborhood if necessary, we have an
exact sequence 0 → OV → E|V → OV (det E) → 0 and there is a standard
procedure to construct a new vector bundle Ẽ on Z which satisfies the following
three conditions:

i) Ẽ ⊂ E globally on Z and Ẽ = E outside G;

ii) det Ẽ = P ;

iii) c2(Ẽ) = c2(E).
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Proof. The logarithmic 1-form f∗d log ϕ gives a nowhere vanishing global
section of E|V and hence an injection OV → E|V , of which the cokernel is locally
free and isomorphic to det E|V .

We regard N as the subscheme determined by the ideal OZ(−N). Consider
the composite of the natural projections E → E|V → OV (det E) → ON (det E)
and define Ẽ to be the kernel of this composite map. We have the equality
c(Ẽ)c (ON (det E)) = c(E) in H∗(Z,R). Since det E = P + N , P being numeri-
cally trivial on N , we get

c (ON (det E)) = c (ON (N)) = c (OZ(N)) c (OZ)−1 = 1 + N.

Hence
P + N = det E = c1(E) = c1(Ẽ) + N = det Ẽ + N,

c2(E) = c2(Ẽ) + c1(Ẽ)N = c2(Ẽ) + PN = c2(Ẽ).

Definition. The new vector bundle Ẽ ⊂ E obtained in Lemma 2.3 is
called the G-nef reduction of E .

§3. Proof of Theorem 1.3

In this section, we construct an orbibundle Eα defined in terms of the
triple (α, X, C), where α ∈ [0, 1] ∩ Q, X is a surface of non-negative Kodaira
dimension and C is an irreducible curve on it. Theorem 1.1 follows from the
Miyaoka-Yau-Sakai inequality applied to the nef reduction Ẽα of Eα.

Throughout the section, we use the following symbols:

α a parameter ∈ [0, 1] ∩ Q,

X a surface with effective KX (as a Q-divisor),
C an irreducible curve on X,

e the topological Euler number c2 = c2(X) of X,

g geometric genus of C,

s the number of the singular points of C,

µ : Y → X the blowing up at the s singular points of C,

E1, . . . , Es the exceptional curves on Y ,

Γ the exceptional locus E1 + · · · + Es of µ.

Since µ−1(C) may not be a divisor of simple normal crossings, we choose a
log-resolution π: (Ỹ , C) → (

Y, µ−1(C)
)
. Namely,

(a) π : Ỹ → Y is the composite Ỹ = Yr
πr−→ Yr−1

πr−1−→ · · · π1−→ Y0 = Y, where
πi is the blowing up at a singular point of π−1

i−1 · · ·π−1
1 µ−1(C);
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(b) C, the inverse image π−1µ−1(C) with reduced structure, is a divisor of
simple normal crossings. (In particular, the strict transform C̃ ⊂ Ỹ of
C ⊂ X is nonsingular. C is a sum of C̃ and a disjoint union of s connected
trees of P1’s.)

We introduce further symbols associated with this log resolution:

• Es+i ⊂ Yi is the (−1)-curve produced by πi : Yi → Yi−1 (i = 1, . . . , r).

• Ei ∈ Div(Ỹ ) is the total transform of Ei (i = 1, . . . , s, s + 1, . . . , s + r),
and E is the sum E1 + · · · + Es+r (hence KeY = π∗µ∗KX + E).

• F1, . . . , Fs [resp. G1, . . . , Gr] are the strict transforms on Ỹ of E1, . . . , Es

[resp. of Es+1, . . . , Es+r], and F = F1 + · · ·+ Fs (the strict transform of
Γ = E1 + · · · + Es ⊂ Y ).

Thus the exceptional locus G of π is G1 + · · · + Gr, while the inverse image
π−1µ−1(C) is C = C̃ + F + G.

For a given parameter α ∈ [0, 1] ∩ Q, we define the orbibundle Eα to be
the kernel of the homomorphism ρ : Ω1

eY
(log C) → O(1−α) eC induced by the

natural residue map Ω1
eY
(log C) → OX/OX(−C̃). To be more precise, choose

any branched Galois covering f : Z → Ỹ such that Aα = (1 − α)f∗C̃ ≤ f∗C̃ is
an integral divisor. Then let Eα denote Ker

(
f∗Ω1

eY
(log C) → OZ/OZ(−Aα)

)
,

which is a well defined vector bundle on Z with equivariant Galois action.1 Its
total Chern class c(Eα) is computed by

c(Eα) = c
(
f∗Ω1

eY
(log C)

)
c (OAα

)−1

= c
(
f∗Ω1

eY
(log C)

)(
1 − (1 − α)f∗C̃)

)
.

Denoting by d the mapping degree [C(Z) : C(Ỹ )] = [C(Z) : C(X)] of f , we
have:

1The pair of Z and the Galois action is called an orbifold structure of eY , while an orbi-
bundle on eY is by definition a vector bundle on Z together with an equivariant Galois
action. Rigorously speaking, our choice of the covering f : Z → eY depends on the (de-

nominator of the) rational number α and we should better write fα: Zα → eY ; however,
our subsequent argument is not at all affected by the choice of coverings and we may
always replace Z by its branched Galois cover of sufficiently large degree. In this sense,
the most natural framework for our purpose will be the limit orbifold structure of eY , i.e.,
the projective limit lim←−Z of branched Galois covers of Ỹ .
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c1 (Eα) = f∗
(
KeY + F + G + αC̃

)
= f∗

(
π∗µ∗KX + E + F + G + αC̃

)
,

c2 (Eα) = c2

(
f∗Ω1

eY
(log(F + G))

)
+ c2

(
Oαf∗ eC(−(1 − α)f∗C̃)

)
+ c1

(
f∗Ω1

eY
(log(F + G))

)
c1

(
Oαf∗ eC(−(1 − α)f∗C̃)

)
= d

(
e − s + α(KeY + F + G)C̃ + αC̃2

)
= d

(
e − s + α(2g − 2) + αC̃(F + G)

)
∈ H4(Z,Z) � Z.

Put Dα = π∗µ∗KX + E + F + G + αC̃. The Q-divisor Dα and the second

Chern class of Eα can be computed in terms of resolution data. Write

C̃ = π∗C −
s+r∑
i=1

miEi, F + G =
s∑

i=1

Ei −
s+r∑

i=s+1

εiEi,

where {
mi ≥ 2 for i = 1, . . . , s

mi ≥ 1, εi ≥ 0 for i = s + 1, . . . , s + r.

Then

Dα = π∗µ∗(KX + αC) +
s∑

i=1

(2 − αmi)Ei +
s+r∑

j=s+1

(1 − εj − αmj)Ej ,

c2(Eα)
d

=
c2(Ẽα)

d
= e + α(2g − 2) +

s∑
i=1

(αmi − 1) −
r∑

i=s+1

αεimi.

As the expression above shows, the effective Q-divisor Dα and hence c1(Eα)
are in general not nef on G or on f−1(G). Let Dα = Pα +Nα be the Zariski de-
composition into the G-nef part and the G-negative part (thanks to the unique-
ness property, the Zariski decomposition of c1(Ẽα) with support in f−1(G) is
given by f∗Dα = f∗Pα + f∗Nα). We write

Nα =
s+r∑

j=s+1

bjEj ,

bj = bj(α) being a rational number. If j = s + 1, . . . , s + r, then the effective
divisor Ej is supported by a subset of G so that 0 ≤ PαEj = (Dα − Nα)Ej =
−1 + εj + αmj + bi, thus proving

Lemma 3.1. bj ≥ 1 − εj − αmj for j = s + 1, . . . , s + r, and therefore

(5) −N2
α ≥

s+r∑
j=s+1

(max {1 − εj − αmj , 0})2 .
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Noting the inclusion relations (πf)∗Ω1
Y (log Γ) ⊂ Eα ⊂ Ω1

Z(log f−1(C)),
we can apply Lemma 2.3 to E = Eα, with minor modifications (we change
f, G, ∆, P, N etc. to π◦f, f−1(G), f−1(C), f∗Pα, f∗Nα etc. and, if necessary,
we replace Z by its suitable ramified cover in order to make the pull-backs
f∗Pα, f∗Nα integral divisors). Let Ẽα be the f−1(G)-nef reduction of Eα with
c1(Ẽα) = f∗Pα, c2(Ẽα) = c2(Eα).

Proposition 3.2. We have the formula:

3c2(Ẽα) − c2
1(Ẽα)

d
=

3c2(Eα) − c2
1(Eα) + (f∗Nα)2

d
= 3e − K2

X − 2α(CK − 3g + 3) − α2C2

+
s∑

i=1

(
1 − αmi + α2m2

i

)
+

t∑
j=s+1

(−3αεjmj + (1 − εj − αmj)2 − b2
j

)
.

The proof is immediate by simple calculation.
In this formula, the right-hand side is a sum of three terms: the first is

independent of the singularity of C, the second involves certain data coming
from the first s blowups and the third is concerned with further infinitely near
singularities of C. As for the third term, we observe

Lemma 3.3. For j = s + 1, . . . , s + r, we have the estimate

(6) −3αεjmj + (1 − εj − αmj)2 − b2
j ≤ 3α2mj(mj − 1)

2
.

Proof. If 1 − εj − αmj > 0, then the assertion follows from the two
inequalities bj ≥ 1 − εj − αmj and εj ≥ 0. Assume that 1 − εj ≤ αmj . Then

−3αεjmj + (1 − εj − αmj)2 = α2m2
j − α(2 + εj)mj + (1 − εj)2

≤ α2m2
j − α(2 + εj)mj + α(1 − εj)mj = α2m2

j − α(1 + 2εj)mj

≤ α2m2
j − αmj ≤ α2m2

j − α2mj ≤ (3/2)α2mj(mj − 1).

The G-nef divisor Pα may not be nef on F + G. Let Pα = P̂α + N̂α [resp.
Pα = Pα + Nα] be the Zariski decomposition with support in F + G [resp. the
absolute Zariski decomposition].

Lemma 3.4 (Cf. Lemma 3.1, Equation (5)). In the notation above,

N
2

α ≤ N̂2
α ≤ −

s∑
i=1

(max {2 − αmi, 0})2 .
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Proof. We showed that N
2

α ≤ N̂2
α in Corollary 2.2. Put N̂α =

s+r∑
i=1

b̂iEi.

Then the coefficient 2−αmi− b̂i of Ei in P̂α (i ≤ s) is non-positive by the same
reason as in Lemma 3.1. Therefore |̂bi| ≥ max{2 − αmi, 0} for i ≤ s, whence

follows N̂2
α = −

s+r∑
i=1

b2
i ≤ −

s∑
i=1

b2
i ≤ −

s∑
i=1

(max{2 − αmi, 0})2.

Proposition 3.5. We have

1
d

(
3c2(Ẽα) − c2

1(Ẽα) +
(f∗Nα)2

4

)
≤ 3e − K2

X − 2α(CKX − 3g + 3) − α2C2 +
3α2

2

s+r∑
i=1

mi(mi − 1)

= 3e − K2
X − 2α(CKX − 3g + 3) +

α2

2
(
C2 + 3CKX − 6g + 6

)
.

Proof. The second equality readily follows from the adjunction formula
C2 + CKX − ∑

mi(mi − 1) = 2g − 2 for C̃ ⊂ Ỹ . In view of Proposition 3.2,
Lemma 3.3 and Lemma 3.4, the first inequality reduces to the estimate

4
(
1 − αmi + α2mi

) − (max{2 − αmi, 0})2 ≤ 6α2mi(mi − 1)

for i = 1, . . . , s. In case αmi ≤ 2, the left-hand side is 3α2m2
i , which satisfies

≤ 6α2mi(mi − 1) because mi ≥ 2. If αmi ≥ 2, then

4 − 4αmi + 4α2m2
i − 6α2mi(mi − 1)

≤ 2αmi − 4αmi + 4α2m2
i − 6α2mi(mi − 1)

= 2αmi(3α − 1 − αmi) ≤ 2αmi(2 − αmi) ≤ 0.

Proof of Theorem 1.3. Recall that Ẽα ⊂ f∗ΩỸ (log C) and that det Ẽα ≥
f∗π∗µ∗KX is effective (as a Q-divisor). Then in view of Proposition 3.5, the
assertion (i) readily follows from the Miyaoka-Yau-Sakai inequality

3c2(Ẽα) − c2
1(Ẽα) + (1/4)(f∗Nα)2 ≥ 0

([11, Theorem 1.1]). When C is not isomorphic to P1, we have C2 +CKX ≥ 0.
If, in addition, CKX > 3g−3, then C2+3CKX−6g−6 ≥ 2(CKX−3g−3) > 0,
so that the quadratic polynomial

Q(α) =
α2

2
(
C2 + 3CKX − 6g + 6

) − 2α(CKX − 3g + 3) + 3c2(X) − K2
X
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in α has positive leading coefficient and takes minimum value at

α0 =
2(CKX − 3g + 3)

C2 + 3CKX − 6g + 6
∈ [0, 1].

This means that

Q(α0) = − 2(CKX − 3g + 3)2

C2 + 3CKX − 6g + 6
+ 3c2(X) − K2

X ≥ 0,

which amounts to the assertion (ii). The final statement (iii) is a direct conse-
quence of (ii) and the Hodge index theorem (C2)(K2

X) ≤ (CKX)2. �

Remark. The right-hand side of the inequality (6) in Lemma 3.3 can
be replaced by α2mj(mj − 1). Also in Lemma 3.5, our estimate is far from
being optimal when the multiplicity mi is three or more. In particular if C has
neither double points nor triple points, we can easily deduce the inequality

0≤ 1
d

(
3c2(Ẽα) − c2

1(Ẽα) +
(f∗Nα)2

4

)
≤ 3e − K2

X − 2α(CKX − 3g + 3) − α2C2 + α2
s+r∑
i=1

mi(mi − 1)

= 3e − K2
X − 2α(CKX − 3g + 3) + α2 (CKX − 2g + 2) ,

for α ∈ [0, 1]. Putting α = 1, we obtain CKX ≤ 4g − 4 + 3e − K2
X , the main

result of [7]. However, we can do better. Assume that CKX ≥ 3g − 3 ≥ 0 and

choose α to be
CKX − 3g − 3
CKX − 2g − 2

∈ [0, 1]. Then we get the same estimate of CKX

as in Corollary 1.4.
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