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Divisorial Valuations via Arcs

By

Tommaso de Fernex∗, Lawrence Ein∗∗ and Shihoko Ishii∗∗∗

Abstract

This paper shows a finiteness property of a divisorial valuation in terms of arcs.
First we show that every divisorial valuation over an algebraic variety corresponds to
an irreducible closed subset of the arc space. Then we define the codimension for this
subset and give a formula of the codimension in terms of “relative Mather canonical
class”. By using this subset, we prove that a divisorial valuation is determined by
assigning the values of finite functions. We also have a criterion for a divisorial
valuation to be a monomial valuation by assigning the values of finite functions.

Introduction

Let X be a complex algebraic variety of dimension n ≥ 1. An impor-
tant class of valuations of the function field C(X) of X consists of divisorial
valuations. These are valuations of the form

v = q valE : C(X)∗ −→ Z,

where E is a prime divisor on a normal variety Y equipped with a proper,
birational morphism f : Y → X, q = q(v) is a positive integer number called
the multiplicity of v, and for every h ∈ C(X)∗ that is regular at the generic
point of f(E), valE(h) := ordE(h ◦ f) is the order of vanishing of h ◦ f at
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the generic point of E. It is a theorem of Zariski that the set of valuation
rings associated with this class of valuations coincides with the set of discrete
valuation rings (R,mR) of C(X) with trdeg(R/mR : C) = n − 1. Thanks
to Hironaka’s resolution of singularities, divisorial valuations had acquired a
fundamental role in singularity theory.

Since the publication of the influential paper of Nash [N] and the intro-
duction of motivic integration (see, e.g., [K], [DL], [B]), it become apparent the
close link between certain invariants of singularities related to divisorial valua-
tions and the geometry of arc spaces. This link was first explored by Mustaţǎ
in [M1], [M2], and then further studied in [ELM], [I2], [I3]. In particular, when
the ambient variety X is smooth, it is shown in [ELM] how one can reinterpret
invariants such as multiplier ideals in terms of properties of certain subsets in
the space of arcs X∞ of X.

The main purpose of this paper is to extend the results of [ELM] to ar-
bitrary varieties and to employ such results towards the characterization of
divisorial valuations by evaluation against finite numbers of functions.

Naturally associated to the valuation v = q valE , there is a subset

W (v) = W (E, q) ⊂ X∞,

constructed as follows. We can assume without loss of generality that both Y

and E are smooth. Then W (v) is defined as the closure of the image, via the
natural map Y∞ → X∞, of the set of arcs on Y with order of contact along E
equal to q. It turns out that

v = valW (v),

where for every irreducible constructible subset C ⊂ X∞ that is not contained
in the arc space of any proper closed subvariety of X, we define a valuation
valC : C(X)∗ → Z by taking the order of vanishing (or polarity) along the
generic point of C (see Definition 2.3). Although the subsets of X∞ of the
form W (v) are quite special, there is a much larger class of subsets C ⊆ X∞,
such that the associated valuation valC is a divisorial valuation. These sets
are called divisorial sets. It was shown in [I3] that sets of the form W (v) are
maximal (with respect to inclusion) among all divisorial sets defining the same
valuation; for this reason they are called maximal divisorial sets.

Other important classes of subsets of X∞ are those consisting, respectively,
of (quasi)-cylinders and contact loci. The valuations associated to irreducible
components of such sets are called cylinder valuations and contact valuations,
respectively. As it turns out, maximal divisorial sets belong to these classes of
sets. Generalizing to singular varieties some results of [ELM], we obtain the
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following properties:

(a) every divisorial valuation is a cylinder valuation (Theorem 3.9);

(b) every cylinder valuation is a contact valuation (Proposition 3.10);

(c) every contact valuation is a divisorial valuation (Proposition 2.12).

Geometrically, the correspondence between divisorial valuations and cylinder
valuations is constructed by associating to any divisorial valuation v the subset
W (v) ⊂ X∞. The fact that W (v) is a quasi-cylinder shows that v, being equal
to valW (v), is a cylinder valuation. The other direction of the correspondence
is more elaborate: starting from a cylinder valuation valC , one first realizes
valC as a contact valuation, that is, a valuation determined by an irreducible
component of a contact locus, the definition of which involves certain conditions
on the order of contact along some subscheme of X. The divisor E is then
extracted by a suitable weighted blowup on a log resolution of this subscheme,
and q is determined by the numerics involved in the construction.

A key point in the proof of these assertions, as well as a fundamental prop-
erty for many applications, is a codimension formula for the maximal divisorial
set W (v) associated to a divisorial valuation v. When X is a smooth variety,
it was shown in [ELM] that

codim
(
W (v), X∞

)
= kv(X) + q(v),

where kv(X) := v(KY/X) is the discrepancy of X along v and q(v) is the
multiplicity of v. The definition of discrepancy needs to be modified when X

is singular. Given an arbitrary variety X, we take a resolution of singularities
f : Y → X that factors through the Nash blowup

ν : X̂ −→ X,

and define the relative Mather canonical divisor K̂Y/X of f (see Definition 1.1).
This divisor, which is defined in total generality, is always an effective integral
divisor, and it coincides with KY/X when X is smooth (the two divisors are
in general different for Q-Gorenstein varieties). The relative Mather canonical
divisor plays a fundamental role in the geometry of arc spaces and the change-
of-variables formula in motivic integration. Defining k̂v(X) := v(K̂Y/X), the
codimension formula of [ELM] generalizes to arbitrary varieties as follows.

Theorem 0.1. With the above notation, we have

codim
(
W (v), X∞

)
= k̂v(X) + q(v).
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Using the interpretation of divisorial valuations via arc spaces, we show
that each divisorial valuation v is characterized by its values v(fi) = vi on a
finite number of functions fi. More precisely, we have the following result.

Theorem 0.2. Suppose that X = SpecA is an affine variety, and let
v be a divisorial valuation over X. Then there exists elements f1, . . . , fr ∈ A
and v1, . . . , vr ∈ N such that for every f ∈ A \ {0}

v(f) = min{v′(f) | v′ is a divisorial valuation such that v′(fi) = vi}.
Theorem 0.2 is obtained by determining functions fi and numbers vi such

that

(1) W (v) ⊂
r⋂

i=1

Contvi(fi),

with equality holding off a set contained in (SingX)∞. This is the content of
Theorem 4.2. A similar result can be obtained using MacLane’s results from
[ML] (see Remark 4.6); it would be interesting to further investigate the con-
nection between MacLane’s key polynomials and the functions fi determined
in the proof of the above results, and to study properties that the first ones
satisfy with respect to the geometry of arc spaces.

In the case of monomial valuations on toric varieties, we apply Theorem 0.1
to give a precise characterization in terms of a system of parameters. For
simplicity, we present here the result in the special case when the toric variety
is equal to Cn.

Theorem 0.3. Let v be a divisorial valuation of C(x1, . . . , xn), centered
at the origin 0 of X = Cn. Assume that there are positive integers a1, . . . , an

such that

(2) v(xi) ≥ ai and
∑

ai ≥ kv(X) + q(v).

Then v is a monomial valuation determined by the weights ai assigned along
the parameters xi, q(v) = gcd(a1, . . . , an), and equalities hold in both formulas
in (2).

The more general version of this result, holding for arbitrary singular toric
varieties, requires some additional notation, and is given in Theorem 5.1.

The authors express their hearty thanks to Bernard Teissier for his helpful
advice, and would like to thank Mircea Mustaţǎ for many helpful discussions,
in particular about the proof of Theorem 5.1.
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§1. The Relative Mather Canonical Divisor

In this preliminary section, we review the construction of the Nash blowup
and define a generalization of the relative canonical divisor to certain resolutions
of arbitrarily singular varieties. This will give a geometric interpretation of a
certain ideal sheaf that governs the dimension of fibers of maps between arc
space, and consequently the change-of-variable formula in motivic integration.

We start with an arbitrary complex variety X of dimension n. Note that
the projection

π : PX(∧nΩX) −→ X

is an isomorphism over the smooth locus Xreg ⊆ X. In particular, we have a
section σ : Xreg → PX(∧nΩX).

Definition 1.1. The closure of the image of the section σ is the Nash
blowup of X, and is denoted by X̂:

PX(∧nΩX)

π

��

⊇ X̂ := σ(Xreg)

Xreg
� � ��

σ

��

X.

The Nash blowup X̂ comes equipped with the morphism

ν := π| bX : X̂ −→ X

and the line bundle
K̂X := OPX(∧nΩX)(1)| bX .

We call this bundle the Mather canonical line bundle of X.

Remark 1.2. If X is smooth, then X̂ = X and K̂X is just the canonical
line bundle of X.

The original definition of Nash blowup is slightly different. Assuming the
existence of an embedding X ↪→ M into a manifold M , one can consider the
Grassmann bundle G(ΩM , n) over M of rank n locally free quotients sheaves
of ΩM . The map

x 	→ (
(ΩX)x � (ΩM )x

) ∈ G(ΩM , n)x,

defined for every smooth point x of X, gives a section σ̃ : Xreg → G(ΩM , n).
Then one takes the closure of the image of this section in G(ΩM , n). As we
prove next, the two constructions agree.
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Proposition 1.3. Keeping the above notation, let X̃ denote the closure
of σ̃(Xreg) in G(ΩM , n), and let ν̃ : X̃ → X the induced morphism. Then
X̃ = X̂ and ν̃ = ν.

Proof. We have exact sequences

0 �� S| eX
i �� ΩM | eX

p �� Q| eX �� 0

0 �� ker(q)
j �� ΩM | eX

q �� ν̃∗ΩX
�� 0,

where ΩM | eX is �∗ΩM | eX for the projection � : G(ΩM , n) → M and it also
coincides with ν̃∗(ΩM |X). The top row is the restriction of the universal se-
quence of the Grassmann bundle G(ΩM , n), and the second is the pull back of
the sequence of differentials determined by the inclusion of X in M . Over the
smooth locus of X we have

S|eσ(Xreg) = ker(q)|eσ(Xreg).

Then, since ker(q) is torsion free and the top sequence has a local splitting,
the inclusion j factors through i and an inclusion ker(q) ↪→ S| eX . Therefore
p factors through q and a surjection ν̃∗ΩX � Q| eX . After taking wedges, we
obtain a commutative diagram of surjections

(3) ∧nΩM | eX

�����������
�� ∧nQ| eX

∧nν̃∗ΩX

��
.

Now we consider the inclusion over X̃

G(ΩM | eX , n) ↪→ P eX(∧nΩM | eX)

given by Plücker embedding. The factorization (3) implies that the image of X̃
under this embedding is contained in P eX(∧nν̃∗ΩX), when the latter is viewed
as a subvariety of P eX(∧nΩM | eX) via the natural embedding. Therefore, by the
compatibility of Plücker embeddings, the image of X̃ under the embedding

G(ΩM |X , n) ↪→ PX(∧nΩM |X)

is contained in PX(∧nΩX). Then, restricting over the regular locus of X, we
have

X̃ ∩ π−1(Xreg) = π−1(Xreg) = X̂ ∩ π−1(Xreg).
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Since X̃ and X̂ are irreducible varieties, both surjecting onto X, we conclude
that X̃ = X̂. The equality ν̃ = ν follows by the fact that the construction is
carried over X.

Remark 1.4. The original construction of the Nash blowup using Grass-
mann bundles can be given without using (or assuming) any embedding, by
considering the Grassmann bundle G(ΩX , n) on X of rank n locally free quo-
tient sheaves of ΩX . Notice that G(ΩX , n) and PX(∧nΩX) agree over the
smooth locus of X.

Remark 1.5. Mather used the above construction to propose a gener-
alization to singular varieties of the notion of Chern classes of manifolds, by
considering the class ν̃∗

(
c(Q∗| eX)∩[X̃]

)
in A∗(X). This is known as the Mather-

Chern class of X. The push-forward ν∗
(
c1(K̂−1

X ) ∩ [X̂]
)

is equal to the first
Mather-Chern class of X.

Now consider any resolution of singularities f : Y → X factoring through
the Nash blowup of X, so that we have a commutative diagram

Y bf
��

f

��
X̂ ν

�� X .

Definition 1.6. Let K̂Y/X be the divisor supported on the exceptional
divisor on Y and linearly equivalent to KY − f̂∗K̂X . We call it the relative
Mather canonical divisor of f .

Proposition 1.7. The relative Mather canonical divisor K̂Y/X is an
effective divisor and satisfies the relation:

df(f∗ ∧nΩX) = OY (−K̂Y/X) · ∧nΩY ,

where df : f∗ ∧nΩX → ∧nΩY is the canonical homomorphism.

Proof. By generic smoothness of X, the kernel of the morphism
ν∗ ∧n ΩX → K̂X is torsion, hence, pulling back to Y , we obtain a commu-
tative diagram

f∗ ∧n ΩX
df ��

��

∧nΩY

f̂∗K̂X

δ

����������

.
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Then, we have an effective divisor D with the support on the exceptional divisor
such that

im(δ) = OY (−D) · ∧nΩY .

It follows that D is linearly equivalent to KY − f̂∗K̂X , therefore we obtain
D = K̂Y/X .

For the second statement, we should note that ν∗∧nΩX → K̂X is surjective
as K̂X is relatively very ample with respect to π : PX(∧nΩX)→ X. This gives
the surjectivity of f∗ ∧n ΩX → f̂∗K̂X and the second statement.

Note that K̂Y/X is always an effective integral Cartier divisor, and in
particular it is in general different from the relative canonical divisor defined
in the Q-Gorenstein case. In fact, the following property holds.

Proposition 1.8. Let X be a normal and locally complete intersection
variety, and let f : Y → X be a resolution of singularities factoring through the
Nash blowup of X. Then K̂Y/X = KY/X if and only if X is smooth.

Proof. It follows by [EM1] that the difference K̂Y/X −KY/X is given by
the vanishing order of the Jacobian ideal sheaf of X.

Definition 1.9. For every prime divisor E on Y , we define

k̂E(X) := ordE(K̂Y/X),

and call it the Mather discrepancy of X along E. More generally, if v is a
divisorial valuation over X, then we can assume without loss of generality that
v = q valE for a prime divisor E on Y and a positive integer q, and define the
Mather discrepancy of X along v to be

k̂v(X) := q · k̂E(X).

If X is smooth, then we denote kE(X) := k̂E(X) and kv(X) := k̂v(X).

§2. Contact Loci in Arc Spaces and Valuations

In this section we set up basic statements for contact loci and divisorial
valuations.

Definition 2.1. Let X be a scheme of finite type over C and K ⊃ C

a field extension. A morphism α : SpecK[[t]] → X is called an arc of X. We
denote the closed point of SpecK[[t]] by 0 and the generic point by η. For
m ∈ N, a morphism β : SpecK[t]/(tm+1)→ X is called an m-jet of X. Denote
the space of arcs of X by X∞ and the space of m-jets of X by Xm. See [M2]
for more details.
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The concept “thin” in the following is first introduced in [ELM] and a “fat
arc” is introduced and studied in [I2].

Definition 2.2. Let X be a variety over C. We say that an arc
α : SpecK[[t]] → X is thin if α factors through a proper closed subset of X.
An arc which is not thin is called a fat arc. An irreducible constructible subset
C in X∞ is called a thin set if the generic point of C is thin. An irreducible
constructible subset in X∞ which is not thin is called a fat set.

Definition 2.3. Let α : SpecK[[t]] → X be a fat arc of a variety X

and α∗ : OX,α(0) → K[[t]] be the local homomorphism induced from α. Sup-
pose that the induced morphism SpecK → X is not dominant. By Propo-
sition 2.5, (i) in [I2], α∗ is extended to the injective homomorphism of fields
α∗ : C(X) → K((t)), where C(X) is the rational function field of X. Define a
map valα : C(X) \ {0} → Z by

valα(f) = ordt(α∗(f)).

The function valα is a discrete valuation of C(X). We call it the valuation
corresponding to α. If α is the generic point of an (irreducible and fat) con-
structible set C, the valuation valα is also denoted by valC , and is called the
valuation corresponding to C. From now on, we denote ordt α

∗(f) by ordα(f).
A fat arc α of X is called a divisorial arc if valα is a divisorial valuation over
X. A fat set C is called a divisorial set if the valuation valC is a divisorial
valuation over X.

Remark 2.4. For every irreducible, fat set C ⊂ X∞ and every regular
function f on X, we have valC(f) = min{ordγ(f) | γ ∈ C}.

Definition 2.5. Let ψm : X∞ → Xm be the canonical projection to
the space of m-jets Xm. A subset C ⊂ X∞ is called a cylinder if there is a
constructible set Σ ⊂ Xm for some m ∈ N such that

C = ψ−1
m (Σ).

Definition 2.6 ([ELM]). For an ideal sheaf a on a variety X, we define

Contm(a) = {α ∈ X∞ | ordα(a) = m}

and
Cont≥m(a) = {α ∈ X∞ | ordα(a) ≥ m}.
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These subsets are called contact loci of the ideal a. The subset Cont≥m(a)
is closed and Contm(a) is locally closed; both are cylinders. If Z = Z(a),
then Contm(a) and Cont≥m(a) are sometimes denoted by Contm(Z) and
Cont≥m(Z), respectively.

Definition 2.7 ([ELM]). For a simple normal crossing divisor E =⋃s
i=1 Ei on a non-singular variety X, we introduce the multi-contact locus for

a multi-index ν = (ν1, . . . νs) ∈ Zs
≥0:

Contν(E) = {α ∈ X∞ | ordα(IEi
) = νi for every i},

where IEi
is the defining ideal of Ei. If all intersections among the Ei are irre-

ducible, then each of these multi-contact loci Contν(E) is irreducible whenever
it is not empty.

Definition 2.8. Let f : Y → X be a resolution of the singularities of
X, and suppose that E is an irreducible smooth divisor on Y . For any q ∈ Z+,
we define

W (E, q) = f∞(Contq(E))

and call it a maximal divisorial set. For v = q valE we denote sometimes
W (E, q) byW (v). When we should clarify the spaceX withW (E, q) = W (v) ⊂
X∞ we denote W (E, q) by WX(E, q) or WX(v).

Remark 2.9. It follows by [I3, Proposition 3.4] that the above definition
of maximal divisorial set agrees with the one given in [I3, Definition 2.8].

Remark 2.10. The setW (E, q) only depends on the valuation v = q valE ,
and not on the particular model Y we have chosen; this justify the notation
W (v). Moreover, let g : X ′ → X be a proper birational morphism of normal
varieties, and let U ⊂ X ′ be an open subset intersecting the center of v on
X ′. We consider v also as a divisorial valuation over X ′ and over U . Since
we can assume that v = q valE for some smooth divisor E on a resolution of
X ′, it follows immediately from our definition of maximal divisorial set that
WX(v) = g∞(WX′(v)) = g∞(WU (v)) (cf. [I3, Proposition 2.9]).

Remark 2.11. The set W (E, q) is a divisorial set corresponding to the
valuation q valE and has the following “maximality” property: any divisorial
set C with valC = q valE is contained in W (E, q) (see [I3]).

The following is a generalization of a result of [ELM].
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Proposition 2.12. Let X = SpecA be an affine variety, and let a ⊂ A
be a non-zero ideal. Then, for any m ∈ N, every fat irreducible component of
Cont≥m(a) is a maximal divisorial set.

Proof. Let ϕ : Y → X be a log-resolution of a, and write a · OY =
OY (−∑s

i=1 riEi), where E =
⋃s

i=1Ei is a simple normal crossing divisor on
Y . By [ELM, Theorem 2.1], we have

Cont≥m(a) ⊃
⊔

P
riνi≥m

ϕ∞(Contν(E)),

where the complement in Cont≥m(a) of the above union is thin.
We claim that there are only finite number of maximal divisorial sets

ϕ∞(Contν(E))’s in X∞, for all possible values of ν. This follows by the follow-
ing two facts:

(i) We have ν ≤ ν′ if and only if Contν(E) ⊃ Contν′
(E), where the partial

order ≤ in Zs
≥0 is defined by

(ν1, . . . , νs) ≤ (ν′1, . . . , ν
′
s) if νi ≤ ν′i for all i.

(ii) The number of minimal elements of {ν ∈ Zs
≥0 |

∑
riνi ≥ m} according to

this order ≤ is finite.

Then the maximal ϕ∞(Contν(E))’s are the fat components of Cont≥m(a).
By [ELM, Corollary 2.6], Contν(E)’s are divisorial sets. Therefore, a fat ir-
reducible component of Cont≥m(a) is a divisorial set. To show the maximal-
ity, let C be a fat component of Cont≥m(a) and α ∈ C the generic point.
Let valα = q valF . Then, it is clear that C ⊂ W (F, q) by the maximality of
W (F, q). For the opposite inclusion, take the generic point β ∈W (F, q). Then
it follows that valβ = valα, which means that ordβ(f) = ordα(f) for every
f ∈ K(X). This gives β ∈ Cont≥m(a), and therefore W (F, q) is contained in a
fat irreducible component of Cont≥m(a). In conclusion, C = W (F, q).

§3. Codimension of a Maximal Divisorial Set

In this section we give an extension of the formula on the codimension of
maximal divisorial sets established in [ELM] to singular varieties. Let X be an
arbitrary complex variety, and let n = dimX. Let JX ⊂ OX be the Jacobian
ideal sheaf of X. In a local affine chart this ideal is defined as follows. Restrict
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X to an affine chart, and embed it in some Ad, so that it is defined by a set of
equations

f1(u1, . . . , ud) = · · · = fr(u1, . . . , ud) = 0.

Then JX is locally defined, in this chart, by the d − n minors of the Jacobian
matrix (∂fj/∂ui). Let S ⊂ X be subscheme defined by JX . Note that S is
supported precisely over the singular locus of X.

We decompose

X∞ \ S∞ =
∞⊔

e=0

Xe
∞, where Xe

∞ := {γ ∈ X∞ | ordγ(JX) = e},

and let Xm,∞ := ψm(X∞) and Xe
m,∞ := ψm(Xe

∞), where ψm : X∞ → Xm is
the truncation map. Also, let

X≤e
∞ := {γ ∈ X∞ | ordγ(JX) ≤ e} and X≤e

m,∞ := ψm(X≤e
∞ ).

We will need the following geometric lemma on the fibers of the truncation
maps. A weaker version of this property was proven by Denef and Loeser in
[DL, Lemma 4.1]; the sharper stated here is taken from [EM2, Proposition 4.1].

Lemma 3.1 ([DL], [EM2]). For m ≥ e, the morphism Xe
m+1,∞ →

Xe
m,∞ is a piecewise trivial fibration with fibers isomorphic to An.

Definition 3.2. Let C and C ′ be two constructible sets in X∞ that are
not contained in S∞. We denote C ∼ C ′ if C∩(X∞\S∞) = C ′∩(X∞\S∞). A
constructible set C in X∞ that is not contained in S∞ is called a quasi-cylinder
if there is a cylinder C ′ such that C ∼ C ′.

Remark 3.3. The relation ∼ is clearly an equivalence relation. Note also
that the closure of a cylinder which is not contained in S∞ is a quasi-cylinder.

Let C be an irreducible quasi-cylinder. By Lemma 3.1, we can also define
the codimension of C in X∞. Indeed, for a cylinder C ′ such that C ′ ∼ C, one
can check that the codimension of

C ′≤e
m := ψm(C ′) ∩X≤e

m,∞

inside X≤e
m,∞ stabilizes for m� e (this is done in detail in Section 5 of [EM2]),

and thus we can define

codim(C ′, X∞) := codim(C ′≤e
m , X≤e

m,∞) for m� e.
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Here, we note that the condition C ′≤e
m is not empty is equivalent to the condition

e ≥ ordα(JX), where α ∈ C ′ is the generic point, and therefore C ′≤e
m is indeed

nonempty for e� 0, since C ′ �⊆ S∞. Observe that C ′≤e
m is open, hence dense,

in ψm(C ′). Note also that codim(C ′, X∞) = codim(C ′, X∞), since ψm(C ′) ⊆
ψm(C ′) ⊆ ψm(C ′). Then we define

codim(C,X∞) := codim(C ′, X∞).

Notice that this definition does not depend on the choice of C ′. Indeed if
C ′′ is another cylinder with C ′′ ∼ C, then we have C ′ ∼ C ′′. This implies
that the symmetric difference between C ′ and C ′′ is contained in S∞. We
deduce that codim(C ′′, X∞) = codim(C ′, X∞) and hence codim(C ′′, X∞) =
codim(C ′, X∞).

Remark 3.4. If C is an irreducible cylinder, then this definition of codi-
mension coincides with the “usual” definition of codimension, i.e., the maximal
length r of a sequence C = C0 � C1 � · · · � Cr = X∞ of irreducible closed
subsets of X∞. Indeed, if s the codimension of C as defined above, then the
inequality

r ≥ s
is obvious by definition of s. For the opposite inequality we note that s =
codim(ψm(C), Xm,∞) for m � 0. Then the opposite inequality is obtained as
follows: from the sequence,

C = C0 � C1 � · · · � Cr

of irreducible closed subsets of X∞, we have the sequence

ψm(C) = ψm(C0) � ψm(C1) � · · · � ψm(Cr)

for m� 0, since Ci = lim←−ψm(Ci). This yields r ≤ s.

For a non-singular variety X, every component of a cylinder is fat ([ELM]),
but this is no longer true in the singular case, as the following example show.

Example 3.5. Let X be the Whitney Umbrella, i.e. a hypersurface
in C3 defined by xy2 − z2 = 0. For m ≥ 1, let αm : C[x, y, z]/(xy2 − z2) →
C[t]/(tm+1) be the m-jet defined by αm(x) = t, αm(y) = 0, αm(z) = 0. Then,
the cylinder ψ−1

m (αm) is contained in Sing(X)∞, where Sing(X) = (y = z = 0).

Proposition 3.6. Let X be a reduced scheme. The number of irre-
ducible components of a cylinder on X∞ is finite.
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Proof. First, we show the number of irreducible components of a cylinder
that are not contained in S∞ is finite. Let C = ψ−1

m (Σ) be a cylinder over a
constructible set Σ ⊂ Xm. Let ϕ : Y → X be a resolution of the singularities
of X, and assume that ϕ is an isomorphism away from S. As ϕ is isomorphic
away from S, by the valuative criteria for the properness, the generic point of
each component of C not contained in S∞ can be lifted to the generic point
of a component of the cylinder ϕ−1

∞ (C) = (ψY
m)−1ϕ−1

m (Σ). The finiteness of
the components of C not contained in S∞ follows from the finiteness of the
components of (ψY

m)−1ϕ−1
m (Σ), as Y is non-singular.

Now, to prove the proposition, we use induction of the dimension. If
dimX = 0, then the assertion is trivial, since X∞ � X is a finite points set.
If dimX = n ≥ 1 and assume that the assertion is true for a reduced scheme
of dimension ≤ n − 1. Let F1, . . . , Fr be the irreducible components of C not
contained in S∞. Let

C ′ := ψm

(
C \

⋃
i

Fi

)
be the closure in Σ ∩ Sm. Then, every irreducible component F of C other
than Fi’s is contained in (ψS

m)−1(C ′). As F is an irreducible component of
C = ψ−1

m (Σ) which contains (ψS
m)−1(C ′), F is also an irreducible component

of the cylinder (ψS
m)−1(C ′) of a lower dimensional variety S. By the induction

hypothesis, we obtain the assertion of our proposition.

The second part of the following corollary also appears as [EM2,
Lemma 5.1].

Corollary 3.7. Every fat irreducible component of a cylinder is a quasi-
cylinder, and every thin component of a cylinder is contained in S∞.

Proof. Let C1, . . . Cr be the irreducible components of a cylinder C. As
Ci = lim←−m

ψm(Ci), for m� 0 it follows that

ψm(Ci) �⊂ ψm(Cj) for i �= j.

Then the non-empty open subset Ci \
(⋃

j �=i ψ
−1
m (ψm(Cj))

)
of Ci is a cylinder,

therefore if Ci is fat, then Ci is an irreducible quasi-cylinder.
For the second assertion, assume C1 is thin. If C1 is not contained in S∞,

there is e > 0 such that X≤e
∞ ∩ C1 �= ∅ which is open in C1. Let

U := X≤e
∞ \

( ⋃
j �=1

ψ−1
m (ψm(Cj))

)
and Um := X≤e

m,∞ \
( ⋃

j �=1

ψm(Cj)
)
.
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Then
U ∩ C1 = ψ−1

m (Um ∩ ψm(C1))

is a non-empty open subset of C1 for every m � 0. By Lemma 3.1, the
codimension of Um ∩ ψm(C1) in Xm,∞ is bounded. But it is in contradiction
with the fact that C1 is thin by [M1, Lemma 3.7].

The truncation morphisms induce morphisms

fm : Ym −→ Xm,∞ ⊆ Xm.

Indeed, the inclusion fm(Ym) ⊆ Xm,∞ is implied by the fact that Ym,∞ = Ym,
which follows by the smoothness of Y . An important ingredient of the proof
for our codimension formula, as well as the key ingredient for the change-of-
variable formula in motivic integration, is the following geometric statement on
the fibers of these morphisms, due to Denef and Loeser [DL, Lemma 3.4]. For a
more precise statement of the following lemma, we refer to [EM2, Theorem 6.2
and Lemma 6.3].

Lemma 3.8 ([DL]). Let γ ∈ Y∞ be any arc such that τ :=
ordγ(K̂Y/X) <∞. Then for any m ≥ 2τ , letting γm = ψY

m(γ), we have

f−1
m

(
fm(γm)

) ∼= Aτ .

Moreover, for every γ′m ∈ f−1
m (fm(γm)) we have πY

m,m−τ (γm) = πY
m,m−τ (γ′m),

where πY
m,m−τ : Ym → Ym−τ is the canonical truncation morphism.

We obtain the following results.

Theorem 3.9. Let f : Y → X be a resolution of the singularities such
that E appears as a smooth divisor on Y . Then, W (E, q) is a quasi-cylinder of
X∞ of codimension

codim(W (E, q), X∞) = q · (ordE(K̂Y/X) + 1),

Proof. Let

Contq(E)0 := {γ ∈ Y∞ | ordγ(E) = q, ordγ(Ex(f) \ E) = 0}.

This is an open subset of Contq(E). Note that τ := ordγ(K̂Y/X) is the same
for all γ ∈ Contq(E)0. Then, by Lemma 3.8, one can see that

f−1
m

(
fm

(
ψY

m(Contq(E)0)
))

= ψY
m(Contq(E)0) for all m� 0.
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The fact that f∞(Contq(E)0) is a quasi-cylinder in X∞ follows by the equalities
fm ◦ ψY

m = ψm ◦ f∞ and the fact that Contq(E)0 is a cylinder in Y∞.
Let ordE K̂Y/X = k and e = q · k. Then ψY

m(Contq(E)) ⊂
ψY

m(Conte(K̂Y/X)). By Lemma 3.8, the morphism ψY
m(Conte(K̂Y/X)) →

fm

(
ψY

m(Conte(K̂Y/X))
)

induces a morphism

ψY
m(Contq(E))→ fm

(
ψY

m(Contq(E))
)

with irreducible e-dimensional fibers for m � e. Note that ψY
m(Contq(E)) is

an irreducible closed subset of codimension q in Ym. Then

dim
(
fm

(
ψY

m(Contq(E))
))

= dim
(
ψY

m(Contq(E))
)− e

=m(n+ 1)− q − e = m(n+ 1)− q(k + 1).

The formula on codimension follows.

Proposition 3.10. The valuation corresponding to a fat irreducible
component of a cylinder is the valuation corresponding to an irreducible com-
ponent of a contact locus.

Proof. Let C ⊂ X∞ be any fat irreducible component of a cylinder. For
every k ∈ N, define

ak! := {f ∈ OX | valC(f) ≥ k!} and Bk! := {γ ∈ X∞ | ordγ(ak!) ≥ k!}.
Note that we have a chain of inclusions

Bn! ⊇ B(n+1)! ⊇ · · · ⊇ C.
For each k, let ck be the smallest codimension in X∞ of irreducible components
of Bk! containing C, and let nk be the number of such components. Since

ck ≤ ck+1 ≤ codim(C,X∞) <∞ and

if ck = ck+1, then nk ≥ nk+1 > 0,

the sequences {ck} and {nk} stabilize. Therefore we find a closed subset W ⊂
X∞ containing C and equal to an irreducible component of Bk! for every k � 0.
We clearly have valC ≥ valW on regular functions because of the inclusion
C ⊆ W . Conversely, let h ∈ OX be an arbitrary nontrivial element. We can
arrange to have valC(hm) = k! for some m, k ∈ N. This means that hm ∈ ak!,
hence we have valW (hm) ≥ k! by the definition of W . Then we conclude that

valW (h) =
valW (hm)

m
≥ valC(hm)

m
= valC(h).



Divisorial Valuations via Arcs 441

§4. Determination of a Divisorial Valuation by Finite Data

Let X = SpecA be an affine variety, and let v be a divisorial valuation
over X, i.e., v = q valE for q ∈ N and a divisor E over X. For a subset V ⊂ X∞
we denote the set of fat arcs in V by V o.

Lemma 4.1. With the above notation, let x1, . . . , xm be elements in A,
and denote by

ϕ : Y = SpecA
[
x2

x1
, . . . ,

xm

x1

]
→ X = SpecA

the canonical birational morphism. If

Σ =
r⋂

j=1

(Contvj (fj))
o

is an irreducible subset in Y∞ for some f1, . . . , fr ∈ A
[

x2
x1
, . . . , xm

x1

]
and

v1, . . . , vr ∈ N, then

(4) ϕ∞(Σ) =

 r⋂
j=1

Contv′
j (f ′j)

 ∩( m⋂
i=1

Contpi(xi)

)o

for some v′j , pi ∈ N and f ′j ∈ A.

Proof. First we define v′j , pi and f ′j (i = 1, . . . ,m, j = 1, . . . , r). Let α̃ be
the generic point of Σ and α = ϕ∞(α̃). Let pi = ordα(xi) ≥ 0. As α has the
lifting α̃ on Y , we have ordα(xi) − ordα(x1) = ordα̃(xi/x1) ≥ 0, which means
p1 ≤ pi for every i = 2, . . . ,m.

Now for fj ∈ A
[

x2
x1
, . . . , xm

x1

]
, let the minimal a such that fjx

a
1 ∈ A be aj

and let f ′j = fjx
aj

1 . Next let v′j = ajp1 + vj . Then it is clear that

α ∈
 r⋂

j=1

Contv′
j (f ′j)

 ∩( m⋂
i=1

Contpi(xi)

)o

.

Therefore, the inclusion of the left side of (4) in the right side follows. For the
converse inclusion, take any arc β ∈ (⋂r

j=1 Contv′
j (f ′j)

) ∩ (⋂m
i=1 Contpi(xi)

)o.
Then, by the condition p1 ≤ pi (i > 1), β has the lifting β̃ on Y. Hence,
ordβ̃(fj) = ordβ(f ′j)− ordβ(xaj

1 ) = vj which implies that β̃ ∈ Σ.
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Theorem 4.2. Let X = SpecA be an affine variety. For any divisorial
valuation v over X, there are finite number of functions f1, . . . , fr ∈ A and
positive integers v1, . . . , vr such that

W (v) =
r⋂

i=1

(Contvi(fi))o.

Equivalently, we have W (v) ∼ ⋂r
i=1 Contvi(fi).

Proof. For a divisor E over X such that v = q valE , there exists a
resolution of singularities ϕ : Y → X such that E appears as a smooth
divisor on Y . Then, ϕ is obtained by blowing up an ideal I in A. Let
g1, . . . , gm be generators of I. Then Y is covered by affine open subsets
Ui = SpecA

[
g1
gi
, . . . , gm

gi

]
, (i = 1, . . . ,m). Take an i such that Ui ∩ E �= ∅.

Let this i be 1. Let B = A
[

g2
g1
, . . . , gm

g1

]
and consider the restricted morphism

ϕ : U1 = SpecB → X = SpecA.

Let the defining ideal of E on U1 be J = (h1, . . . , hs). Then the blowing-up
ψ : U ′

1 → U1 of the ideal J is an isomorphism, because it is the blow up with
the center Cartier divisor E. Hence U ′

1 is non-singular and it is covered by
charts Vj = SpecB

[
h1
hj
, . . . , hs

hj

]
(j = 1, . . . , s). Take j such that Vj ∩ E �= ∅.

Let this j be 1. Then, on V1 the divisor E is a principal divisor defined by h1.
Therefore, on V1, we have WV1(v) = (Contq(h1))o. Applying Lemma 4.1 for

ψ : V1 = SpecB
[
h2

h1
, . . . ,

hs

h1

]
→ U1 = SpecB,

and the property in Remark 2.10, we obtain that

WU1(v) = ψ∞(WV1(v)) = (Contq(h1) ∩ Contp2(h2).. ∩ Contps(hs))o

for some p2, . . . , ps. Next, applying the lemma and the remark again to

ϕ : U1 = SpecB → X = SpecA,

we obtain
WX(v) = ϕ∞(WU1(v))

=(Contq′
(h′1) ∩ Contp′

2(h′2) ∩ . . .Contp′
s(h′s) ∩ Contq1(g1) ∩ . . . ∩ Contqm(gm))o

for some h′j ∈ A, q′, p′i, ql ∈ N, (1 ≤ j ≤ s, i ≥ 2, and 1 ≤ l ≤ m).
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Remark 4.3. By this theorem, it follows that W (v) is the unique fat
component of the quasi-cylinder

⋂r
i=1 Contvi(fi). As a thin component of a

quasi-cylinder is in S∞ by Corollary 3.7, we see that the inclusion (1) is indeed
an equality off S∞, which implies Theorem 0.2. The fact that W (v) is a quasi-
cylinder, which was proven in Theorem 3.9, also follows immediately from this
theorem.

Definition 4.4. Under the situation of Theorem 4.2, we call v(f1) =
q1, . . . , v(fr) = qr the generating conditions, or simply the generators, of v.

Actually, the conditions in the above definition “generate” or “determine”
the divisorial valuation v in the following sense.

Corollary 4.5. Let v be a divisorial valuation over X = SpecA. Then
there exist f1, . . . , fr ∈ A and v1, . . . , vr ∈ N such that for every f ∈ A \ {0}
v(f) = min{v′(f) | v′ is a divisorial valuation over X such that v′(fi) = vi}.

Proof. Let v(fi) = vi (i = 1, . . . , r) be generators of v. For every f ∈
A \ {0}, let v0(f) be

min{v′(f) | v′ is a divisorial valuation over X such that v′(fi) = vi}.
Then it is clear that v0(f) ≤ v(f) for every f ∈ A \ {0} by the definition of v0.
On the other hand for an arbitrary f ∈ A \ {0}, take a divisorial valuation v′

over X (depending on f) such that v′(f) = v0(f) and v′(fi) = vi (i = 1, . . . , r).
Let β be the generic point of W (v′). Then β ∈ ⋂r

i=1(Contvi(fi))o = W (v).
The inclusion W (v′) ⊂ W (v) yields the inequality v′ |A≥ v |A. Therefore, in
particular, we have v0(f) = v′(f) ≥ v(f).

Remark 4.6. Suppose that K is the function field of an n-dimensional
variety and x is an element purely transcendental over K. Suppose that v is
a divisorial valuation for K(x) with residue field L. Let w be the restriction
of v to K. Denote by L′ the residue field of w. MacLane’s theorem says that
one can construct v from w by knowing the values of v on a sequence of key
polynomials in K[x] (see [ML]). If the sequence is infinite, then L is algebraic
over L′. Then the transcendence degree of L over C would be at most n − 1
and v can not be divisorial. Hence v can be determined from w and the values
of v on a finite number of key polynomials. Inductively, we see that we can
determine a divisorial valuation v on a finitely generated purely transcendental
field over C by knowing the values of v on just finitely many elements in the
function fields.
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Example 4.7 (Divisorial valuations over C2). We give some explicit
construct of divisorial valuations of C(x, y) in terms of blow-ups of C2. We
will denote by v1, .., v4, v5 and v′5 the valuations valE1 , .., valE4 , valE5 and valE′

5

associated to the following exceptional divisors E1, .., E4, E5 and E′
5.

(i) Let E1 be the exceptional divisor of the blowing-up ϕ1 : X1 → C2 with the
center (x, y) = (0, 0). Then, the generators of v1 are v1(x) = v1(y) = 1 and
v1 is a toric valuation.

(ii) Let E2 be the exceptional divisor of the blowing-up ϕ2 : X2 → X1 with
the center (x1, y1) = (0, 0), where x1 = x, y1 = y/x. Then, the generators
of v2 are v2(x) = 1, v2(y) = 2 and v2 is a toric valuation.

(iii) Let E3 be the exceptional divisor of the blowing-up ϕ3 : X3 → X2 with the
center (x2, y2) = (0, 0), where x2 = x1/y1, y2 = y1. Then, the generators
of v3 are v3(x) = 2, v3(y) = 3 and v3 is a toric valuation.

(iv) Let E4 be the exceptional divisor of the blowing-up ϕ4 : X4 → X3 with the
center (x3, y3) = (0, λ) (λ ∈ C \ {0}), where x3 = x2, y3 = y2/x2. Then,
the generators of v4 are v4(x) = 2, v4(y) = 3 and v4(y2 − λx3) = 7.

(v) Let E5 be the exceptional divisor of the blowing-up ϕ5 : X5 → X4 with
the center (x4, y4) = (0, 0), where x4 = x3, y4 = (y3 − λ)/x3. Then, the
generators of v5 are v5(x) = 2, v5(y) = 3 and v5(y2 − λx3) = 8.

(v’) Let E′
5 be the exceptional divisor of the blowing-up ϕ′

5 : X ′
5 → X4 with

the center (x4, y4) = (0, µ) (µ ∈ C \ {0}). Then, the generators of v′5 are
v′5(x) = 2, v′5(y) = 3, v′5(y2 − λx3) = 7 and v′5(y3 − λx3y − µx5) = 11.

Example 4.8 (Divisorial valuations over C3). In [CGP] V. Cossart, C.
Galindo and O. Piltant showed an example of divisorial valuation v with the
center at a non singular point x ∈ X of a three dimensional variety such that
the graded ring Grv(OX,x) associated to this valuation is not Noetherian. But
this valuation is also “finitely generated” in our sense.

In [CGP] the valuation v is obtained as follows: Let R be a regular local
ring of dimension three and let X0 = SpecR. Let X1 → X0 be the blow up
at the closed point of X0, E1 = Proj C[x, y, z] the exceptional divisor and C

the cubic in E1 defined by the equation x2z + xy2 + y3 = 0. Take the blow
up X2 → X1 at the smooth point of C with the homogeneous coordinates
(1 : 0 : 0). Then, for n ≥ 10 construct a sequence Xn → Xn−1 → · · · → X2,
where each Xi+1 → Xi is the blow up at the intersection of the strict transform
of C and the exceptional divisor of Xi → Xi−1. For simplicity, we assume that
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R is the local ring at the origin of X = Spec C[x, y, z]. As Grv(R) is not
Noetherian, the graded ring Grv(C[x, y, z]) is also non-Noetherian. But on
X we have finite ”generators”: v(x) = n − 1, v(y) = n, v(z) = n + 1 and
v(x2z + xy2 + y3) = 4(n− 1).

§5. Characterization of Toric Valuations

Using the result of [ELM], Theorem 0.3 follows immediately. Although it
is a particular case of the general statement for toric varieties, it is instructive
to give the proof independently.

Proof of Theorem 0.3. Let X = Cn, and consider the set

C := {γ ∈ X∞ | ordγ(xi) ≥ ai}.
It is immediate to check that this is an irreducible closed cylinder of codimension∑
ai in X∞, and in fact it coincides with the maximal divisorial set associated

with the toric valuation given by assigning weights ai to the coordinates xi.
Thus the statement follows as long as we show that W (v) ⊂ X∞ is equal to C.
By the first condition in (2), we have W (v) ⊆ C, whereas the second condition
and Theorem 3.9 imply that codim(W,X∞) ≤ codim(C,X∞). We conclude
that W (v) = C by the irreducibility of C.

Using notation as in [F], let M be a free abelian group of rank n ≥ 1,
and let N = M∗ be its dual. Fix a maximal dimensional rational polyhedral
cone σ ⊂ N ⊗ R, and let ∆ be the fan consisting of all faces of σ. Denote
Rσ = σ∨ ∩M , and let T (∆) = Spec C[Rσ] be the corresponding toric variety.
Recall that a toric valuation on a toric variety X = T (∆) is determined by a
nonzero element in σ ∩N , and conversely.

Theorem 5.1. Let v be a divisorial valuation over a complex affine
toric variety X = Spec C[Rσ] centered at the origin of X. Assume that there
is an element a ∈ σ ∩N \ {0} such that

(5) k̂v(X) + q(v) ≤ min
{x1,...,xn}

{∑
〈xi, a〉

}
,

where the minimum is taken over linearly independent subsets {x1, . . . , xn} ⊂
Rσ of cardinality n = dimX, and that

(6) v(uj) ≥ 〈uj , a〉 for all j

for some set of monomial generators {u1, . . . , ur} of Rσ. Then v coincides with
the toric valuation vala determined by a, q(v) = max{k ∈ N | a ∈ kN}, and
equality holds in (5) and (6)
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The proof for the singular toric case is similar, but we need to fix a couple
of properties first. From now on, suppose that X = T (∆) (notation as above).
Fix a nonzero element a ∈ σ∩N , and let vala be the associated toric valuation.

Lemma 5.2. With the above notation, we have

k̂vala(X) = min
{x1,...,xn}

(∑
〈xi, a〉 − q(a)

)
,

where q(a) = max{k ∈ N | a ∈ kN}, and the minimum is taken over the set of
linearly independent subsets {x1, . . . , xn} of cardinality n in Rσ.

Proof. By replacing a by its primitive element a/q(a), we can assume that
q(a) = 1. We observe that ∧nΩX is generated by the torus-invariant forms

dx1 ∧ · · · ∧ dxn,

as {x1, . . . , xn} ranges among linearly independent subsets of cardinality n in
σ∨ ∩M .

Take a toric resolution of singularities f : Y → X factoring both through
the toric blowup g : Bla(X) → X determined by a, and through the Nash
blowup ν : X̂ → X. Let E ⊂ Y be the prime divisor that is the proper transform
of the exceptional divisor of g, and fix toric invariant coordinates (y1, . . . , yn)
in a toric affine open set of Y intersecting E. Note that E is defined by the
vanishing of one of these yj .

Note that ∧nΩY
∼= OY (KY ) is generated (in this open set) by the form

dy1 ∧ · · · ∧ dyn.

On the other hand, the image of the map df : f∗∧n ΩX → ∧nΩY is determined,
in this open set, by

dx1 ∧ · · · ∧ dxn = (x1 . . . xn) · dy1
y1
∧ · · · ∧ dyn

yn
up to unit,

as {x1, . . . , xn} ranges as above. The statement follows by the definition of
K̂Y/X as the divisor determined by the image of df .

The next step is to understand the maximal divisorial set associated to
the toric valuation vala. We fix nonconstant monomial generators u1, . . . , ur of
Rσ, and let aj := 〈uj , a〉.

Lemma 5.3. The maximal divisorial set associated with vala is equal
to

W (vala) = {γ ∈ X∞ | ordγ(uj) ≥ aj}.
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Proof. The inclusion ⊂ is trivial. We prove the opposite inclusion ⊃. Let
T ∼= (C∗)n be the torus acting on X. For every m ≥ 1 we have a commutative
diagram

T∞

��

� � �� X∞

��
Tm

��

� � �� Xm

��
T

� � �� X,

where Tm
∼= Cnm×(C∗)n acts on Xm ([I1, Proposition 2.6]), and T∞ is the pro-

scheme obtained as the inverse limit of the projective system {Tm → Tm−1}.
For every face τ � σ we define

X∞(τ ) := {γ ∈ X∞ | γ(η) ∈ orb(τ )},

in particular for τ = {0}

X∞(0) := {γ ∈ X∞ | γ(η) ∈ T},

where η denotes the generic point of Spec C(γ)[[t]] and C(γ) is the residue field
of γ ∈ X∞. We obtain a stratification

X∞ =
⊔
τ	σ

X∞(τ ).

Observe that every arc γ : C[Rσ]→ C(γ)[[t]] determines a semigroup map

ordγ : Rσ → Z≥0 ∪ {∞}.

If γ ∈ X∞(0), then we actually have ordγ : Rσ → Z≥0, and this extends to a
linear map M → Z. So γ naturally determines an element aγ ∈ N , and since
ordγ is nonnegative on Rσ, we have aγ ∈ σ.

Now we stratify X∞(0) accordingly to the position of aγ (we treat the
other strata X(τ ), for 0 �= τ � σ, by induction on dimension) as follows. For
every a ∈ σ ∩N \ {0} we define

T∞(a) = {γ ∈ X∞(0) | aγ = a}.

Then T∞(a) is a T∞-orbit and T∞(a) = W (vala).
By [I1, Proposition 4.8], for every two a, a′ ∈ (σ ∩N) \ {0} we also have

T∞(a′) ⊆ T∞(a) ⇐⇒ a′ − a ∈ σ ∩N ⇐⇒ vala′ |Rσ
≥ vala |Rσ

.
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Now take an arbitrary γ ∈ X∞(0) \W (vala). Then γ ∈ T∞(b) for some
b ∈ (σ∩N)\{0} for which b−a �∈ σ∩N , hence we have ordγ(uj) < aj for some
uj . The statement follows by iterating the argument on the different pieces
X(τ ) of the stratification of X by using [I1, Theorem 4.15].

Proof of Theorem 5.1. The proof goes along the same lines of the one of
Theorem 0.3. By Lemma 5.3 and (6), we haveW (v) ⊆W (vala). The conclusion
follows by comparing codimension, which are determined respectively by (5)
and Lemma 5.2.
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