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Introduction

In the paper [6], we proved Kato’s conjecture, that is, the finiteness of
dominant rational maps in the category of log schemes as a generalization of
Kobayashi-Ochiai theorem [5]. It guarantees the finiteness of K-rational points
of a certain kind of log smooth schemes for a big function field K, which gives
rise to an evidence for Lang’s conjecture. In the proof of the above theorem, the
most essential part is the rigidity theorem of log morphisms. In this paper, we
would like to generalize it to a semistable scheme over an arbitrary noetherian
scheme.

Let f: X — S be a scheme of finite type over a locally noetherian scheme
S. We assume that f : X — S is a semistable scheme over S, namely, f is
flat and, for any morphism Spec(2) — S with Q an algebraic closed field, the
completion of the local ring of X x g Spec(Q2) at every closed point is isomorphic
to a ring of the type

QX1 ... X/ (X7 X))

Let g : Y — S be another semistable scheme over S, and let ¢ : X — Y be a
morphism over S. Let Mx, My and Mg be fine log structures on X, Y and
S respectively. We assume that the morphisms f: X — Sand g:Y — S of
schemes extend to log smooth and integral morphisms (X, Mx) — (S, Mg) and
(Y, My) — (S, Mg) of log schemes, and that ¢ is admissible with respect to
My /Mg, i.e., for all s € S and all irreducible components V' of the geometric
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fiber X xg Spec(k(s)) over s,
(¢ X5 1dg o mion (V) € Supp(My /M)y o spec(mia) -

where

Supp(My [Mg) ={y € Y | Mg s x Oy, — My, is not surjective}.
The following theorem is one of the main results of this paper.

Theorem A (Rigidity theorem).  If we have log morphisms

(¢,h): (X, Mx) — (Y,My) and (¢,h): (X, Mx)— (Y, My)

over (S, Mg) as extensions of ¢ : X =Y, then h="h'.

For the proof of the above theorem, our starting point is the local struc-
ture theorem (cf. Theorem 3.1), which asserts the local description of integral
and smooth log morphisms of semistable schemes. The case where S is the
spectrum of an algebraically closed field is essential for the general local struc-
ture theorem. This case was proved in the previous paper [6], which was a
generalization of a result due to Olsson [9, Proposition 2.10].

Based on the local structure theorem, the proof of the rigidity theorem
is carried out as follows: Clearly we may assume that S = Spec(A) for some
noetherian local ring (A, m). First we establish the theorem in the case where
A is an algebraically closed field. This was proved actually in the previous
paper [6]. Next, by induction on n, we see that the assertion holds for the
case S = Spec(A/m™). Finally, using the Krull intersection theorem, we can
conclude its proof.

In Section 1, we give the definition of semistable schemes and show their
elementary properties. In Section 2, we recall several facts concerning log
schemes. The local structure theorem is proved in Section 3. It is Section 4 that
contains the proof of the rigidity theorem. Several applications of the rigidity
theorem will be treated in the forthcoming paper [7].

Finally we would like to express hearty thanks to the referee for a lot of
comments to improve the paper.

Conventions and terminology

We will fix several conventions and terminology of this paper.

1. Throughout this paper, a ring means a commutative ring with the unity.
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2. The set of all natural numbers starting from 0 is denoted by N, that is,

N=1{0,1,2,3,4,5,...}.
3. In this paper, the logarithmic structures of schemes means the sense of J.-M
Fontaine, L. Tllusie, and K. Kato. For the details, we refer to [4]. For a log
structure Mx on a scheme X, we denote the quotient MX/(’))X( by Mx.

4. Let X be a scheme and F' a sheaf in the étale topology. For a point x € X, the
stalk of F' at « with respect to the Zariski topology (resp. the étale topology)
is denoted by F, (resp. Fy).

5. Let a : Mx — Ox be a log structure on a scheme X. For z € X, an
element p € MX@ is said to be regular if there is m € Mx z such that p
coincides with m modulo (’))X()i and a(m) is a regular element of Ox z, that is,
the homomorphism Ox z — Ox z given by ¢ — a(m)¢ is injective. Note that
the regularity of p does not depend on the choice of m.

6. Throughout this paper, a monoid is a commutative monoid with the unity.
The binary operation of a monoid is often written additively. We say a monoid
P is finitely generated if there are py,...,p, such that P = Npy; + --- + Np,..
Moreover P is said to be integral if whenever x + z = y + z for some elements
x,y,z € P, we have x = y. An integral and finitely generated monoid is said
to be fine. We say P is sharp if whenever x + y = 0 for some z,y € P, then
x =y = 0. For a sharp monoid P, an element x of P is said to be irreducible
if whenever x = y + 2z for some y,z € P, then either y = 0 or 2z = 0. A
homomorphism f : Q — P of monoids is said to be integral if it is injective and
an equation

f@+p=f(d)+p (p,0 €Pqq €Q)

implies that p = f(q1) + p” and p’ = f(q2) + p” for some p” € P and some
q1,q2 € Q with g+ q1 = ¢’ + g2. Further we say an injective homomorphism
f: @Q — P splits if there is a submonoid N of P such that the homomorphism
f(Q) x N — P given by (x,y) — = + y is an isomorphism.

7. Let f: @ — P and g : @ — R be homomorphisms of monoids. The integral
tensor product PRgoR of P and R over @ is defined as follows: Let us consider
a relation ~ on P X R given by

()~ ") = (f(a),9(d'))+(p,7)=(f(d), 9(q))+(p',r) for some ¢,¢'€Q.
It is easy to see that ~ is an equivalence relation on P x R. We set

P&gR=P x R/~ .



374 ATSUSHI MORIWAKI

Note that PR is a monoid in the natural way and it is integral if so are P
and R (for more details, see [7]).

8. Let X be a set. We denote the set of all maps X — N by N¥X. For T € NX,
Supp(T) is given by {z € X | T(z) > 0}. Moreover, for T, T’ € NX,

T<T €% T(2) <T'(x)Va € X.

In the case where X = {1,...,n}, NX is sometimes denoted by N".

9. Let M be a monoid, X a finite subset of M and T € NX. For simplicity,
> zex I'(z)x is often denoted by T'- X. If we use the product symbol for the
binary operation of the monoid M, then [] .y 2T(®) is written by XT. In par-
ticular, if X = {X1,...,X,,} and I € N", then I-X and X’ means Y, I(i)X;
and []}, XiI @) respectively according to a way of the binary operator of M.
For example, let A be a ring and let R be either the ring of polynomials of
n-variables over A, or the ring of formal power series of n-variables over A,
that is, R = A[Xq,...,X,] or A[X1,...,X,]. Note that R is a monoid with
respect to the ring multiplication. As explained in the above, for I € N the
monomial X{(l) - X1 is denoted by X1.

10. Let f : @ — P be an integral homomorphism of fine and sharp monoids. In
the following, the binary operators of monoids are written in the additive way.
For a finite subset o of P, qg € @Q and A, B € N7, we say P has a semistable
structure (o, qo, A, B) over Q (or P is of semistable type (o, qo, A, B) over Q)
if the following conditions are satisfied:

(1) qo # 0, Supp(A) # 0 and A(z) is either 0 or 1 for all z € o.

(2) P is generated by o and f(Q) and the natural homomorphism N° — P
given by T'— T - ¢ is injective.

(3) Supp(A) N Supp(B) =0 and A -0 = f(q0) + B - 0.
(4) If we have a relation
T-oc=flg)+T o (T, €N
with ¢ # 0, then T'(z) > 0 for all = € Supp(A).

Let N — Q x No\Swp(4) apd N — NSwP(A) he homomorphisms given by
1= (f(q0), Blo\supp(a)) and 11— Alg, o) respectively. It is known that the
natural homomorphism

(Q x NU\SUPP(A))®NNSupp(A) Ny -
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is bijective, where ®y is the integral tensor product (cf. [6, Proposition 2.2]).

11. Let (A,m) be a local ring. The henselization of A and the completion of
A with respect to m are denoted by A" and A respectively.

81. Semistable Schemes over a Scheme
81.1. Algebraic preliminaries

In this subsection, we consider several lemmas which will be used later.
Let us begin with the following lemma.

Lemma 1.1.1.  Let f : (A,m4) — (B,mp) be a local homomorphism of
noetherian local rings such that f induces an isomorphism A/ma — B/mp.

(1) Letxy,...,x, be generator of mpg, i.e., mp = Bxy1+---+ Bx,. If (B,mp)
is complete, then, for any b € B, there is a sequence

{a(al,...,an)}(al,...,an)GN”

of elements of A indexed by N™ with

b= Z f(a(al).,.7a7L))17(111 s ZZ?Z".

(a1,...,an)EN™

(2) Let xq,...,x, be elements of mp with mp = Bxy + -+ + Bz, + maB. If
(A, ma) and (B, mp) are complete, then, for any b € B, there is a sequence

{a(al,...,an)}(al,..‘,an)EN"

of elements of A indexed by N™ with

b= Y [(Qayan)l

(a1,...,an)EN"
Proof. (1) First we claim the following:

Claim 1.1.1.1.

d+1

m% C E fA)z -zl 4 mEt
(a1,....,an)€EN"
a1+-+apn=d

for alld > 0.
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We prove this claim by induction on d. Since A/my ~ B/mp, we have
B = f(A) + mp, which means that the assertion holds for d = 0. Thus

mp = (f(A) + mp)z1 + -+ (f(A) + mp)z,
C f(A)zr+ -+ f(A)zn +mp,

which show that the assertion holds for d = 1, so that we assume d > 2. By
the hypothesis of induction,

m% =mp ~de§1

C (f(Az1+ -+ f(A)zp +mB)- ) FA)S -z +m
(a),...,al,)EN™
aj+--+al,=d—1

d+1

C g fA)z -zl +mG.
(a1, an)EN"
a1+-+an=d

Hence we get the claim.

In order to complete the proof of (1), it is sufficient to see the following
claim:

Claim 1.1.1.2.  For all b € B, there is a sequence {bs}3>, of B such
that

ba€ Y. f(A)aftaln
(a1,...,an)EN™
artan—=d

and
b—(bo+ -+ +bg) € mGH

for all d > 0.

Since B = f(A) +mp, we can set b = by + ¢ with by € f(A4) and ¢ € mp.
We assume that by, ...,bq—1 are given. Then, by Claim 1.1.1.1,

b—(bo+"'+bd_1)=bd+c/,

where by € > (q,.. an)enn f(A)2]" ---2f and ¢ € mdB+1. This yields the
a1+--t+an=d
second claim.

(2) Let us choose y1,...,y € A with mag =y1A+--- +y,.A. Then
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Note that

1'1111 .. .wznf(yl)bl .. .f(yr)br = f(ylljl .. .ygr)mtlll .. 'CUZ".

Therefore, since (A,m,4) is complete, using (1), for any b € B, there is a

SeqUENCe {Q(a, ... an.brybr) F(a1sesan bise.. by ) ENP xNr With

b= > F(@ar o an by )T i f ()" - f )™

(al,...,an,bl,‘..,b,«)eNnXNT
_ E § b b, a an
- f Oé(alv---aanvbl7-~-7br)y11 yT 1'11 l’” :
(a1,...,an)EN™ (b1,...,br)ENT
Thus we get (2). O

Next let us consider the following lemma.

Lemma 1.1.2.  Let (A,m) be a noetherian local ring and T € N™\
{(0,...,0)}. Let G € m[Xy1,...,X,], R = A[X1,..., X,]/(XT - Q) and 7 :
A[X1,...,Xn] — R the canonical homomorphism. Then we have the following:

(1) Let M be an A-submodule of A[X1,...,X,] given by

M = ZQIXI|CU€A
TLI

(¢f. Conventions and terminology 8 and 9). If (A,m) is complete, then
7|y M — R is bijective.

(2) A[X1,..., X,])/(XT — G) is flat over A.
Proof. (1) We denote m(X;) by z;. First we claim the following:

Claim 1.1.2.1.  For f € R, there is a sequence {F;}32, in M such that
Fip1 — F,emi[Xy,...,X,] and f — n(F;) € m*R for all i > 0.

We will construct a sequence {F;}{°, inductively. Clearly we may set
Fy = 0. We assume that Fy, Fi,..., F; have been constructed. Then we can
set f—n(F;) = n(H)+2Tm(H') for some H, H € m'[X1,...,X,] with H € M.
Here 27 7(H') = 7(G)n(H') € m**1R. Thus, if we set F;11 = F; + H, then we
get our desired Fj;.
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The above claim shows that =|,, is surjective. Next let us consider the
injectivity of m|,,. We assume

T arX'| =o.
> as

TLI
Then there is H € A[X4,...,X,] with
> arXx'= (X" -G)H.
TLI

Here we set

G=> gX' and H=Y nx"
IeNn IeNn
Then g; € m for all I and

S arXt ="y xTH -y ( > thJ/> X7,

TLI IeN™ IeN™ \J+J'=I

On the left hand side of the above equation, there is no term of a form X7

Thus
hr = Z grhy
J+J'=I+T

for all I. Here we claim that h; € m?® for all 4 and all I. We see this fact
by induction i. First of all, since g; € m for all I, we have h;y € m for all I.
We assume that h; € m® for all I. By the above equation, we can see that
h; € m*'. By this claim, h; must be zero for all I because (),~,m"' = 0.
Therefore a; = 0 for all I. B

(2) Note that the direct product of a family of flat modules over a noethe-
rian ring is again flat (cf. Chase [2]). Therefore, if (A, m) is complete, then the
assertion follows from (1). In general, let A be the completion of A and

~

R = A[Xy,.... X,.]/(XT - @).

Then we have the following commutative diagram:

R M

fT Tf’
A" A

Note that f/, h and b’ are faithfully flat. Thus so is f. O

We consider an approximation by an étale neighborhood.
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Proposition 1.1.3.  Let (A, ma) be a noetherian local ring essentially
of finite type over an excellent discrete valuation ring or a field. Let f: X —
Spec(A) be a scheme of finite type over A. Let x be a point of X such that
f(x) =ma and A/m4 is naturally isomorphic to Ox ,/mx . We assume that
there are Fy,...,F. € A[Xy,...,X,] (the polynomial ring of n-variables over
A) and an isomorphism

¢ AlXy,. .., X, ]/(Fy, ... F) =5 Ox .,

over A with #(X;) € Mmx . for all i, where X; = X; mod (Fy,...,F,.). Then
there is an étale neighborhood (U, x') of X at x together with an étale morphism

P U— SpeC(A[Tla s 7Tn]/(F1(T)a . 7FT‘(T)))
such that p(z') = (ma,Ty,...,T,), where T; = T, mod (Fy(T),...,F.(T)).

Proof. First note that

Fi(¢(X1), s 0(Xp)) = - = Fr(o(X1), -+, 6(Xn)) = 0.
Thus, by Artin’s approximation theorem [1], there are ty,...,t, € (’)?(’m such
that
Fl(tl,...,tn) == Fr(tl,...,tn) =0

and t; — ¢(X;) € Mm%, for all i. Here we claim the following:
Claim 1.1.3.1.
my.g = ¢(X1)@X,x ot ¢(Xn)@X,m + mA@X,x
= fléx,x + -+ tn@X,m + mA@X,x~
Clearly
mx,z 2 ¢(X1)@X,x + et (b(Xn)@X,z + mA@X,m~

Conversely let us pick up f € Mmx . Then we can write f = ¢ (3, a; X7'). If
a,...,0) € A%, then f must be a unit because f € a(o,... o) + Mx . This is a
contradiction. Thus a(g,... o) € ma, which means that

IS ¢<X1)6X7w +-+ ¢(Xn)@X,x + mA@\X@-

Therefore we obtain

mx.g = ¢(X1)@X,m +o 4 ¢(Xn)@X,a: + mA@X,x
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Moreover, since t; — ¢(X;) € m% ., we can see that

=R ~ ~ ~ 9
mx.. = tIOX,z +-+ tnOX,:v + mAOX,r + mX’aj'

Hence, by Nakayama’s lemma, we have our desired result.

Let us choose an étale neighborhood (U, z’) of X at x with the same residue
field such that tq,...,t, are defined over U. Here let us define a homomorphism

VAT, T /(FA(T), - Fr(T) = Ovar
to be (T;) = t; for all i. It is easy to see that
w_l(mU,m/) = (ma,Ty,...,Ty).
Thus it is sufficient to show that v is étale. Let
wA[Ty,... ., T.]/(Fy,...,F) — A[X41,....X,]/(Fy,...,F,)

be a homomorphism given by the composition of homomorphisms

ATy, .. T/(Fy, ... F) -5 Opa = Ox.p & A[X1,. ... Xu]/(F1,..., Fy).
By the above claim and Lemma 1.1.1, p is surjective. Hence, by the following

Lemma 1.1.4, it must be an isomorphism. Therefore so is {b\ This means that
1 is étale because 2’ and (ma, T4, ...,T),) have the same residue field. 0

Finally we consider the following lemma concerning the bijectivity of a
ring homomorphism.

Lemma 1.1.4. Let ¢ : A — A be an endomorphism of a noetherian
ring. If ¢ is surjective, then ¢ is injective.

Proof. We set I,, = Ker(¢™) for n > 1. Since ¢ is surjective, we can see
that ¢(I,4+1) = I, for all n > 1. Moreover there is N > 1 such that Iniq = In
because A is noetherian and I,, C I,41 for all n > 1. Therefore

Ker(¢) = It = ¢" (In41) = ¢~ (In) = {0}.
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81.2. Semistable varieties and semistable schemes

Let k be an algebraically closed field and X an algebraic scheme over k.
A closed point x of X is called a semistable point of X if the completion of the
local ring at x is isomorphic to a ring of type

E[X1, .. Xa]/ (X1 X)),

The number [ is called the multiplicity of X at z, and is denoted by mult, (X).
Moreover we say X is a semistable variety over k if every closed point is a
semistable point. By the following Proposition 1.2.1, the set of all semistable
closed points of X is the set of the closed points belonging to a Zariski open set.
Thus we say a point x of X (z is not necessarily closed) is a semistable point if
there is a Zariski open set U of X such that z € U and every closed point of U
is a semistable point. Note that the above definition of the semistability at x
(not necessarily closed) is equivalent to say that there is an étale neighborhood
U at x which is étale over Spec(k[X1,..., Xn]/(X1 - X7)).

Let © be an algebraically closed field such that k is a subfield of €. Note
that if X is a semistable variety over k, then so is Xqg = X Xgpec(k) Spec(Q2)
over  (cf. Proposition 1.2.2).

Let S be a locally noetherian scheme and f : X — S a morphism of
finite type. First we assume that S = Spec(F) for some field F. Let F be
the algebraic closure of F', X’ = X Xgpec(r) Spec(F), and 7 : X’ — X the
canonical morphism. A point x of X is called a semistable point of X if every
point ' of X’ with 7(2’) = x is a semistable point. For a general S, we say
f: X — S is semistable at x € X if f is flat at  and x is a semistable point
of the fiber f~1(f(z)) passing through z. Moreover we say X is a semistable
scheme over S if f is semistable at all points of X. By Proposition 1.2.2, for a
flat morphism f: X — S, X is a semistable scheme over S if and only if, for
any algebraically closed field €2, any morphism Spec(2) — S and any closed
point 2’ € X X g Spec(?), the completion of the local ring at " is isomorphic
to a ring of type

Q[Xq, ..., Xn]/ (X1 X0).

We say a semistable scheme X over S is proper if X is proper over S. Moreover
a proper semistable scheme X over S is said to be connected if f.(Ox) = Og.

In the remaining of this subsection, let us consider elementary properties
of semistable varieties.

Proposition 1.2.1.  Let X be an algebraic scheme over an algebraically
closed field k. If x is a semistable closed point of X, then there is a Zariski
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open set U of X such that x € U and every closed point of U is a semistable
point.

Proof. By Proposition 1.1.3, there are an étale neighborhood 7 : (U, 2) —
(X, z) of  and an étale morphism

p:U — Spec(k[Ty,...,T,]/(Ty---Ty))

with p(a’) = (0,...,0). Note that Spec(k[T1,...,T,]/(Ty---T})) is a semistable
variety over k. Thus so is U over k. Therefore every closed point of 7(U) is a
semistable point. a

Proposition 1.2.2.  Let X be an algebraic scheme over an algebraically
closed field k. Let Q2 be an algebraically closed field such that k is a subfield of
Q. Let m: Xg = X Xgpec(k) Spec(2) — X be the canonical morphism. For
y € Xq, if v = 7(y) is a semistable point, then so is y.

Proof. Let U be an open set of X containing x such that every closed
point of U is a semistable point.

First we assume that y is a closed point. Let us choose a closed point
o€ mﬂ U. By using Proposition 1.1.3 and shrinking U around o if necessary,
there are étale morphisms

f:V—=U and g¢:V — W = Spec(k[X1,...,X,]/(X1---X1))

of algebraic schemes over k and closed points o' € V and o’ € W such that
f(o') = o and g(o') = 0" = (0,...,0). Since z € U, 0 € {z} NU and f is
faithfully flat at o/, we can find 2’ € V with f(z') = z and o’ € {z'}. Here we
set

Ua = U Xgpec(k) Spec(£2),

Vo=V X Spec(k) Spec(Q),

Wq = Spec(Q[X1,..., X,/ (X1 - X))

and the induced morphisms Vi — Uq and Vi — W, are denoted by fq and g
respectively. Then y € Ug. Let § : Spec(2) — Ugq be the morphism induced
by y. Let x(y), x(z) and k(z’) be the residue fields of y, 2 and 2’ respectively.
Then there is an embedding ¢ : k(') — Q over k such that the following
diagram is commutative:




RicmpiTy oF LoG MORPHISMS 383
This yields a morphism S : Spec(Q2) — Vi such that the diagram

VQ$V

N

Spec(€2) 5 Ug——=U

is commutative and the image of 7’ o 3 is a’. Let ¢’ be the image of 3. Then
fa(y') = y. Note that fo and gq are étale and the residue fields of y, 3’ and
y" = ga(y’) are Q. Thus we can see that

OXQ,y ~ OVQ,y’ ~ OWQ7y//.

We set v = (a1,...,an) € A"(Q)and I = {i | a; =0and i=1,...,l}. Note
that I # () because y”" € Wq. Therefore, if we set Z; = X;—a; and Z = []..; Z;,
then it is easy to see that

iel

@Wn»y” = Q[[Zh cees Zn]]/(Z)

Thus we get our lemma in the case where y is a closed point.

Next we consider a general case. We set Uy = 7 1(U). Then, by the
previous observation, every closed point of Ug is a semistable point. On the
other hand, y € Ug. Thus y is a semistable point. O

§2. Some Facts on Log Structures

In this section, we consider several facts concerning log structures, which
will be used later.

§2.1. Ring extension for a good chart

Here we consider a ring extension to get a good chart. This is a partial
result of a proposition in the unpublished Ogus’ paper [8].

Proposition 2.1.1.  Let (A, m) be a noetherian local ring, S = Spec(A)
and s the closed point of S. Let Mg be a fine log structure on S. Then there
is a local homomorphism f : (A, m) — (B,n) of noetherian local rings with the
following properties:

(1) B/n is algebraic over A/m, and f is flat and quasi-finite.
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(2) Let f*: 8" = Spec(B) — S = Spec(A) be the induced morphism, s’ the
closed point of S’ = Spec(B), and Mg = (f*)*(Mg). There are a fine
and sharp monoid @ and a homomorphism mg : Q@ — Mg/ ¢ such that
Q— Mg g — MS/75/ is bijective.

Proof. Let us begin with the following lemma:

Lemma 2.1.2.  Let G be a finitely generated abelian group and R a ring.
Let us fiz an element & of Ext'(G, R*). Then there are ui,...,u; € R* and

integers ay,...,a; > 2 with the following property:
(1) The product ay - - - a; of integers ax, . .., a; is equal to the order of the torsion
part of G.

(2) For any homomorphism f : R — S of rings, if there are vy, ...,v; € S with
vt = f(u;) for all i, then the image of § via the canonical homomorphism

Ext'(G, R*) — Ext!(G, $*)
18 zero.

Proof. By the fundamental theorem of abelian groups, we have the fol-
lowing exact sequence:

0 7 — 7 G 0,
where ¢ is given by ¢(z1,...,2;) = (a121,...,a;2;,0,...,0) for some integers
ai,...,a; > 2. Note that a; - - - a; is equal to the order of the torsion part of G.

The above exact sequence yields an exact sequence
Hom(Z', R*) —% Hom(Z!, R*) —*% Ext (G, R*) — Ext!(Z", R¥).
Note that Ext!(Z!, R*) = {0}. Thus there is h € Hom(Z!, R*) with ag(h) =
5. We set u; = h(e;) for i =1,...,1, where {e1,...,e} is the standard basis of
VAR

Let f : R — S be any homomorphism of rings with v{* = f(u;) (i =
1,...,1) for some v1,...,v; € S. Let us consider the following commutative
diagram:

Hom(Z!", R*) R, Hom(Z', R*) —**— Ext'(G,R*) —— 0

gll gzl 93JV

Hom(Z!, $*) N Hom(Z', $*) —*— Ext'(G,8%) —— 0
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Note that ga(h)(e;) = f(u;) for i = 1,...,1. Thus, if we set h’ € Hom(Z",5%)

by
; ifi=1,...,1
W (e:) = v, 1t
0 ifi>1

then ¢%(h') = g2(h). Therefore

93(0) = gs(ar(h)) = as(gz2(h)) = as(¢s(h) = 0.

e 3797
Let us start the proof of Proposition 2.1.1. Let 6 € Extl(MS,g,Ogvg) be
the extension class of

—gr
0— Og’g HMsg; — Mg —0.

Then, by Lemma 2.1.2, there are uq,...,u; € (’)g)g and integers a, ..., a; with
the properties as in Lemma 2.1.2. Let us choose an étale neighborhood (U, u)
of s such that uq,...,u; € Oé)u. Let B be the localization of

OUyu[Xl,...,Xl]/(Xfl 7U1,...,Xlal 711,1).

at a closed point over u. Then B is flat and quasi-finite over A. Let v; be the
class of X; in B. Note that v;* = u; in B for all i. Let s’ be the closed point of
S’ = Spec(B), m: 8" — S the canonical morphism, and Mg = 7*(Mg). Then
we have an exact sequence

—gr
0— O§/7§/ — M‘z’/r"gl — MS/7§/ — 0.

Since MY, ., is the push-out Og’,g'@)oggMg‘,rg (cf. Conventions and termi-

nology 7.), we can see that M‘Zf,g, = Mfgrg and the extension class §' of
the above exact sequence is the image of & by the canonical homomorphism
Extl(M?:g?Ogg) — Extl(M?,:g,,(’)g,,g,). Thus, by Lemma 2.1.2, § = 0.
Therefore we have a splitting s : M%’f’g, — M/ o of Mg o, — M?ﬁg,. Here
we set Q = Mg . Let us see that s(q) € Mg g for all ¢ € Q. Indeed, if
we denote Mg ., — M?’gl by =, then 7(s(¢q)) = ¢. Thus there are u € O,
and m € Mg 3 with s(q) = m - u, which implies s(q) € Mg z. Moreover

5/
sS

Q — Mg 5 — Mgz is the identity map. Further, changing S’ by an étale
neighborhood of S/, we may assume that Q@ — Mg 5 is defined on S’. O
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§2.2. The support of log structures

In this subsection, we consider the support of log structures. The main
result of this subsection is the following proposition:

Proposition 2.2.1. Let X be a scheme and let M and N be fine log
structures on X. Let h : N — M be a homomorphism of log structures, i.e., a
homomorphism of sheaves of monoids with the following diagram commutative:

N

Then the set {x € X | hz : Nz — My is surjective} is open.

N

M

Proof. It is sufficient to show that if hz : Nz — Mj is surjective, then
there is an étale neighborhood U of x such that, for all y € U, hy : Ny — Mjy
is surjective.

Claim 2.2.1.1. For z € X, hs : N; — M; is surjective if and only if
ng :Ns: — M; is surjective.

Clearly, if hs : N; — M; is surjective, then so is hs : N; — M;. Con-
versely we assume that hs; : N; — M is surjective. Let m be an element of
M. Then there is n € N; such that m = hz(n) mod O% ., i.e., m = uhz(n)
for some u € Ox .. Thus m = uhz(n) = hz(un).

By virtue of [4, (2.9)], for a suitable étale neighborhood U of x, there are
finitely generated monoids P and ) together with homomorphisms 7 : P —
M|, p:Q — Nl and f:Q — P such that m and p give rise to local charts
of M and N respectively and the diagram

o — . p

v |

Ny DL A My,

is commutative. It is easy to see that mz 1((’);5;) is a finitely generated sub-
monoid of P. Let p1,...,p, be generators of W51(0§7i). Shrinking U if neces-
sary, we may assume that

W(p1)7 s 77r(pn) € O;(’g
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for all y € U. Let us check that hy : Ny — Mj is surjective for all y € U, which
is equivalent to show that hy : Ny — My is surjective by Claim 2.2.1.1. Note
that the commutative diagram

Q L» P
oI
_ hy  —

gives rise to the commutative diagram

Q/M;1(0§,g) - P/Wz;l(o;(,g)

such that the vertical homomorphisms are bijective (cf. [4] and [6]). Therefore
it is sufficient to see that

Q/N;I(O;(,g) - P/Wygl(o;(,g)
is surjective, which is equivalent to say that
Q— P/ng(o;(,y)

is surjective. On the other hand, since wgl((’);m) - wgl((’);g), it suffices to
show that

Q— P/ng(o;c,j)

is surjective, which is nothing more than the surjectivity of hz : Nz — Mz. O

Corollary 2.2.2.  Let X be a scheme and M a fine log structure on X.
Then the set Supp(M) = {z € X | Mz is not trivial } is closed.

Proof. There is a natural homomorphism O% — M. Thus this is a
consequence of the above proposition. O

Corollary 2.2.3. Let X and Y be schemes and let M and N be fine
log structures on X and Y respectively. Let (f,h) : (X, M) — (Y,N) be a log
morphism.
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(1) The set
Supp(M/N) ={z € X | Ny X 0% ; — Mz is not surjective}
is closed.

(2) Let p:Y' =Y be a morphism of schemes and X' = X xy Y'. We set the
induced morphisms as follows:

X 2 x

7| |7

Yy —2— v
Then o'~ (Supp(M/N)) = Supp(p”™ (M) /p*(N)).

Proof. (1) Note that the surjectivity of Ny X 0% ; — Mz is equivalent
to the surjectivity of f*(N)z — Mz. Thus it follows from Proposition 2.2.1.

(2) For 2’ € X', we set z = p/(2'). Note that p’"(f*(N)) = f*(p*(N)).
Thus we have a commutative diagram:

FF(N)y —— 7 (p*(N))s-
Note that the horizontal homomorphisms v’ and v are bijective. Hence, by
using Claim 2.2.1.1 of Proposition 2.2.1, we have (2). a

83. Local Structure Theorem

In this section, we consider the following fundamental structure theorem
of this paper.

Theorem 3.1 (Local structure theorem). Let (f,h): (X, Mx)— (S, Mg)
be a smooth and integral morphism of fine log schemes. Let x be a point of X
and s = f(x). We assume that f : X — S is semistable at x. Then we have
the following:

(1) If f is smooth at x, then there is a submonoid N ofMX@, such that MX@ =
Bf(Ms,g) X N and N is isomorphic to N* for some non-negative integer
a. Moreover every element of N is reqular (For the definition of regularity,
see Conventions and terminology 5).
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(2) If f is not smooth at x and hs : Ms)g — MX@ splits, there is a submonoid
N of Mxz such that Mx z = hz(Mss) x N and N is isomorphic to the
monoid arising from monic monomials of

Z[U1, Uy, ..., U,] /(U — U3)

for some a > 2. In this case, the characteristic of the residue field of Ox z
is not equal to 2, and every element of N is regqular.

(3) If f is not smooth at x and hs : Msg — MX@ does mot split, then MX@
has a semistable structure (o, qo, A, B) over Ms,g for some o C MX@ with
#(o) > 2, qo € Mss and A, B € N° (For the definition of semistable
structure, see Conventions and terminology 10). More precisely, o is the
set of all irreducible elements ofMX@ not lying in hz (Mss). Further every
element of o\ Supp(A) is regular.

Proof. First we will prove this theorem except the regularity of elements
of either N or o \ Supp(A) in each case (1), (2), (3).

Let us consider the geometric fiber X5 = X xg Spec(k(s)) over s. Note
that MX@ is canonically isomorphic to ng,gz, where Mx, = Mx| X, Thus
we may assume that S = Spec(k) for some algebraically closed field k. Hence
the theorem follows from [6, Theorem 3.1], provided we show that, in the case
(2), N is isomorphic to the monoid T arising from monic monomials of

Z[UL, Us, ..., U]/ (UT = U3).
Let Ty be the monoid arising from monic monomials of
k[Uy,Us, ..., U] /(U — U3).

We need to show the natural homomorphism 7' — T is bijective. Let Uj*Us?
- Ug and UfIIU;Z -~-U§; be elements of T'. Clearly we may assume that
e1, €} € {0,1}. We suppose that U{'Us? ---USs = (_]16/1(_]26/2 U in k[Uy, Us,
..., U,] /(U2 — U2). Then there is ¢ € k[Uy,....U,] with

UsysE .. Uss — USUS: ... US = (U2 — U)o

Comparing the degrees with respect to Uy of both sides, we can see that ¢ = 0.

Therefore (e1,...,eq) = (€},...,€.).

The rest is to prove that elements of either N or o \ Supp(A) are regular
in each case (1), (2), (3).
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Let (Og,s,ms,s) — (A,m) be a flat local homomorphism of local rings.
We set S” = Spec(A4), X’ = X xg S’ and the induced morphisms as follows:

X’ﬂ—/>X

3l |7

s —T 5 8.

Let us choose ' € X' with f/(2') = m and n’(2’) = x. Then, since Ox , —
Ox 4 is faithfully flat, if regularity holds at 2/, then so does at .

Let k be the algebraic closure of the residue field at . Note that by virtue
of [3, EGA III, Chapter 0, 10.3.1], there are a noetherian local ring (A4, m) and
a local homomorphism (Og s, mss) — (A, m) such that mg,A = m, A/m is
isomorphic to k over Og/mg s and that A is flat over Og,. Therefore we
may assume that Og,/mg s is algebraically closed and x is a closed point.
Moreover, by using Proposition 2.1.1, we may further assume that there are
a fine and sharp monoid ) and a homomorphism 7g : @ — Mg s such that
Q — Mgz — Mg is bijective. Hence, by [6] or Ogus’ paper [8], there is
a fine and sharp monoid P together with homomorphisms f : @ — P and
mp : P — My z such that the following properties are satisfied:

(a) The diagram

is commutative.
(b) The induced homomorphism P — My z — M x z is bijective.
(¢) The natural homomorphism
Os,5 ®0s.,1q) Os,5[P] — Ox 2
is flat.

Since Os s ®og ,[q) Os,5[P] — Ox s is flat, it is sufficient to see the regularity
of each element in Og s ®o; . [(g) Os,5[P]-
If there is a submonoid N of P with P = f(Q) x N, then

Oss ®os :[Q] Os5[P] = Os 5[N]
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Thus, for the case (1), the regularity of N is obvious because N is free. For the
case (2), the assertions follow from Lemma 3.2 below.

Next we assume that f : Q@ — P does not split. Let us set o = {p1,...,pr}
such that Supp(A) = {p1,...,p}. Moreover we set x; = a(nwp(p;)) and t =
B(mg(qo)), where a : Mx — Ox and 8 : Mgz — Ogj; are the canonical
homomorphisms. Then

Os5s @05 .10 Os,5[P] = Oss[X1,.. o, X,/ (X1 Xy — X150 - X0,

where b; = B(p;) and z; is the class of X;. Thus the assertions follow from
Lemma 3.2 below. O

Lemma 3.2.  Let A be a ring. Then we have the following:

(1) Let A[X] be the polynomial ring of one wvariable over A. For a regular
element a € A, X is regular in A[X]/(X? — a), that is, the multiplication
of X in A[X]/(X? — a) is injective.

(2) Let A[X,...,X]] be the polynomial ring of l-variables over A. For a € A,
let us consider a ring R given by R = A[Xy,.... X)]/(X1---X; —a). If«
is a regular element of A, then so is a in R.

Proof. (1) We assume that X f(X)=(X?—a)g(X) for some f(X),g(X)e
A[X]. We set g(X) = Xh(X) + c for some h(X) € A[X] and ¢ € A. Then

ca = X(h(X)(X?—a)+cX — f(X)).
Thus, ca = 0. Since a is regular, ¢ must be zero. Therefore
Xf(X) = X(X? - a)h(X),
which implies f(X) = (X2 — a)h(X) because X is regular in A[X].
(2) Tt is sufficient to show that R is a free A-module. We set

M= Y aX'eAX,.. X,
(1,..,1)LI
Then it is easy to see that the natural A-module homomorphism M — R is
bijective. Thus R is a free A-module. O

Remark 3.3.  The semistable structure of hz : Ms,g — HX@, in the case
(3) of Theorem 3.1 is uniquely determined by virtue of a result in [7], which is
not needed in this paper.
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84. Rigidity Theorem

First of all, we would like to define the admissibility of morphisms. Let k
be an algebraically closed field, and let ¢ : X — Y be a morphism of algebraic
schemes over k. Let Z be a subscheme of Y. We say ¢ is admissible with respect
to Z if, for any irreducible component X’ of X, ¢(X') ¢ Z.

Let f: X — Sand g : Y — S be schemes of finite type over a locally
noetherian scheme S, and let My and Mg be fine log structures of Y and S such
that g extends to a log morphism (Y, My) — (S, Mg). As in Corollary 2.2.3,
the closed set Supp(My /Mg) is given by

{y €Y | Mgz x O ; — My, is not surjective}.

Let ¢ : X — Y be a morphism over S. For a point s € S, wesay ¢: X — Y is
admissible over s with respect to My /Mg, if

¢ xsidg iy P X Xs Spec(k(s)) — Y xg Spec(x(s))

is admissible with respect to Supp(My/M5)|YXSSpeC(@). If¢g: X —-Yis
admissible over any points of S with respect to My /Mg, then ¢ is said to be
admissible with respect to My /Mg. By (2) of Corollary 2.2.3, ¢ is admissible

over s with respect to My /Mg if and only if

¢ xsidg o) P X Xs Spec(k(s)) — Y xg Spec(k(s))

w

is admissible with respect to (MY|Y><SSpeC(m))/(MSlSpec(m))'
The following theorem is the main theorem of this paper.

Theorem 4.1. Let X, Y and S be locally noetherian schemes, and let
Mx, My and Mg be fine log structures of X, Y and S respectively. Let
(X, Mx) — (S, Mg) and (Y, My) — (S, Mg) be integral and log smooth mor-
phisms, and let ¢ : X — Y be a morphism over S. Let us fiz a point s € S.
We assume that X — S and Y — S are semistable at any points lying over s
and that ¢ : X — 'Y is admissible over s with respect to My [Mg. If

(p,h): (X, Mx) — (Y,My) and (¢,h'): (X, Mx)— (Y, My)

are extensions of ¢ : X — Y as log morphisms over (S, Mg), then, for all
closed points x lying over s, hy = hl as homomorphisms MYW — Mxz of
the stalks of étale topology.

Proof. Since this is a local problem, we may assume that S = Spec(A)
for a noetherian local ring (A, m). Let p: (A,m) — (B, n) be a local homomor-
phism of local rings such that B/n is algebraic over A/m. We denote the closed
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point of S by s and the closed point of S” = Spec(B) by s’. We set X/ = X x g5,
Y=Y Xs S/, MX’ = ﬂ}k((Mx), My/ = ﬂik/(My), and MS’ = Wg(MS), where
mx : X' = X,y :Y' —Y and g : S’ — S are the canonical morphisms. Let
¢s: : X' — Y’ be the morphism given by ¢g = ¢ X g idg:.

XI

Then we have log morphisms

(¢s7, hs), (dsr, i)+ (X', Mxr) — (Y, My)
over (S, Mg:), where hg: and hl, are the homomorphisms induced by h and
I’ respectively.

Claim 4.1.1.  If p is flat and hg: z = h's, 5, for all closed points ' lying
over s', then hz = h% for all closed points x lying over s.

Let us choose a closed point € X over s. Then there is a closed point
' € X' such that mx(2') = x and 2’ is lying over s'. If we set y = ¢(x)
and y' = ¢g (2'), then 7y (y') = y. Here we consider the natural commutative

haz lh; lﬁs’,z’_ﬁg",m’

Mxz—— Mx/ 5

diagram:

Note that Myyg — Mygg/ and MX@ — MX/@/ are bijective. Thus we can
see that h; = h%. Let us pick up w € My ;. Then, since hy = hL, there is
u € Ox , with hg(w) = hi(w) - u. Here hgr z = R,
Ox z. Note that Ox- z is flat over Ox z. Therefore u is the identity in Ox z.

- Thus v must be 1 in

Let I be an ideal of A with I? = {0}, and B = A/I. Next we consider a
case where p is given by the natural homomorphism A — B.

Claim 4.1.2.  We assume that (i) k = A/m is algebraically closed and
(ii) there are a fine and sharp monoid Q and a homomorphism mg : Q — Mg s
such that Q) — Mg ;s — Ms’g is bijective. If hgr 7 = hlS',f/ for all closed points
x’ lying over s', then hgy = h% for all closed points x lying over s.
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Let x be a closed point of X lying over s, and y = ¢(z). First of all,
by [6] or Ogus’ paper [8], there are fine and sharp monoids P and P’ and
homomorphisms P — Mx z, Q@ — P, P’ — My 3, Q — P’ with the following
properties:

(1) The induced homomorphisms P — Mx ; — My and P — My g —
My ; are bijective.

(2) The following diagrams are commutative:

o —L . p 0 I p
Mgs —— Mxz, Mgz —— Myy.

(3) There are étale neighborhoods (U,z’) and (V,y’) of x and y such that
P — Mxz and P’ — My g are defined over U and V respectively, and
that the natural morphisms

U — Spec(A R AQ] A[P]) and V — Spec(4 R AQ) A[P)
are smooth at 2’ and y’ respectively.

Clearly we may assume that P, P’ and () are submonoids of Mx z, My  and
Mg 5 respectively. We set Us = U xg Spec(k(s)), Vs = V xg Spec(k(s)),
bs = ¢ X5 idspec(n(s)), Mu, = Mx|y_ , My, = My|y, and My = Ms|g,ec((s))-
By Lemma 4.3 below, the admissibility of ¢ guarantees that for any irreducible
components T of Uy, ¢4(T) € Supp(My, /My).

Let o (resp. o’) be the set of all irreducible elements of P not lying in
f(Q) (resp. the set of all irreducible elements of P’ not lying in f/'(Q)). For
j € oand i € o', we denote a(j) by z; and o/(7) by y;, where o : Mx z — Ox z
and o : My,; — Oy, are the canonical homomorphisms. Moreover z;[;, and
yi|V3 are denoted by x;s and y;s respectively. Let us consider h and h' on
the fibers X; = X xg Spec(k(s)) and Y; = Y xg Spec(k(s)) over s. Using
[6, Theorem 4.1], hz = h’, as homomorphisms P’ — P. Thus we can set as
follows:

(4.1.3) ha(i) =w; - (Ii -0+ f(q:)) and  hi(i) = uj- (Li- o+ f(a)),
where ¢; € Q, I; € N and w;, u, € OX@. Then we have

(4.1.4) ¢*(yi) = Blgi) -« - uy = B(ai) - 2" - i
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where 3 : Mg s — Og ;5 is the canonical homomorphism. We claim the follow-

ing:

(4.1.5)
If ¢%(yis) # 0 for some i € o’, then ¢; = 0 and ¢* (y;) = 2’ - u; = 27 - .

Indeed, by (4.1.4), ¢*(yis) = Bs(q:) - 2L - w5 on Uy, where B, : Q — k is a
homomorphism given by

0 otherwise

and u;s = ul|U Thus ¢; = 0, which yields ¢*(y;) = ot - u; =zt - .

K3
Here we consider the following four cases:

A) f:Q — P splits and f': Q — P’ splits.

)

B) f:Q — P does not split and [’ : Q@ — P’ splits.
) f:@Q — P splits and f': Q — P’ does not split.
)

f:@Q — P does not split and f' : Q — P’ does not split.

(Case A): In this case, there are submonoids N and N’ of P and P’ respec-
tively such that P = f(Q) x N and P’ = f/(Q) x N'. Note that ¢ and ¢’ are
nothing more than the set of all irreducible elements of N and N’ respectively.
Then, by the local structure theorem (cf. Theorem 3.1),

Supp(My, /M) = | {yis = 0}.

i€o’
around ' on V;. Thus, using the admissibility of ¢, ¢%(y;s) # 0. Hence, by

(4.15), ¢ = 0 and 2% - u; = 2l - for all i € o’. Therefore u; = u/ for all
i € o’ because x;’s are regular elements (cf. Theorem 3.1).

(Case B): In this case, there is a submonoid N’ of P’ such that P’ =
1(@) x N'. Moreover P is of semistable type

(Ua q0, A7B)

over ) for some gy € Q and A, B € N?. By the local structure theorem (cf.
Theorem 3.1),

Supp(Mv, /M) = | {yis = 0}

i€o’
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around y’ on Vs. Thus, by the admissibility of ¢s, ¢%(y:s) # 0. Therefore, by
(4.1.5), ¢; = 0 and ¢*(y;) = %t - u; = xi - ! for all i € o’. Since U, is given
by ILiesupp(a) Tjs = 0, if j € Supp(l;) N Supp(A), then ¢7(yis) = 0 on the
irreducible component {z;s = 0} of Us. This contradicts to the admissibility
of ¢s. Hence Supp(I;) N Supp(A) = () for all i € ¢/. Thus z’i’s are regular
elements (cf. Theorem 3.1). Therefore u; =} for all i € o’.

(Case C): In this case, there is a submonoid N of P with P = f(Q) x N.
P’ is of semistable type
(0,7 qav A/v B/)
over @ for some ¢, € Q and A', B’ € N°’. Note that

Supp(My, /My) = Sing(Va)u | {vis = 0}.
i€o’\Supp(A’)

around y" on V; (cf. Theorem 3.1).
Let us see that if ¢%(y:s) # 0 for some ¢ € ¢/, then ¢; = 0 and u; = u}.

I;

Indeed, by (4.1.5), we have ¢; = 0 and z!i - u; = 2! - u}. Thus u; = u} because

xli’s are regular elements (cf. Theorem 3.1).

Therefore we may assume that there is ig € o/ with ¢%(y;,s) = 0. By using
the admissibility of ¢g, ¢%(yis) # 0 for i € ¢’ \ Supp(A’). Thus iy € Supp(4A’).
Moreover, if ¢%(y;,s) = 0 for 43 € Supp(A’) \ {io}, then

¢5(Us) - {yios = Yi1s = 0} C Slng(VS)7

which contradicts to the admissibility of ¢s. Thus ¢%(y;s) # 0 for all i €
o'\ {io}. Hence u; = u} for all i € o’ \ {ip}. Let us consider the relation

Ao = f,(Q6)+BI'UI~
Then we have

{ZiESupp(A’) hlf?(l) = f/(qé) + ZiESupp(B’) B/(Z)h (2)7
ZiGSupp(A’) h,a’?(z) = fl(qé)) + ZiGSupp(B’) B/(’L)h (Z)

Here hz(i) = hl (%) for all i # ig. Thus we can see that hz(ig) = h%(io).

8> 8

(Case D): In the final case, P and P’ are of semistable type
(Ua QO7A7B) and (UI7Q£)aA,aB/)

over Q for some qo, ¢} € Q, A,B € N? and A’, B’ € N°. For j € Supp(A)
and 7 € Supp(A’), let U;s and Vj, be the irreducible components of Us and V;
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given by x5 = 0 and y;s = 0 respectively. By the admissibility of ¢, for each
j € Supp(A), there is a unique ¢ € Supp(A’) with ¢4(Ujs) C Vis. This ¢ is
denoted by p(j). Note that

Supp(My, /My) = Sing(Va)u | {yis =0}
i€o’\Supp(A’)

around gy’ on V. Here we claim the following:
(i) If i # p(j) for i € o' and j € Supp(A), then ¢*(yi)|UjS # 0.

ii) If there is 7 € Supp(A) with ¢ i), then ¢; = 0 and ¢*(y;) = z¥i - u; =
(i) J pp(A) # w(j), i " (yi) ;

I; /

(iii) If ¢ & p(Supp(A)), then ¢; = 0 and u; = uj.
(iv) If i,i’ € Supp(A’) and i # 4, then Supp(l;) N Supp(L;/) = 0.

(i) is obvious by the admissibility of ¢. (ii) is a consequence of (i) and (4.1.5).
Let us see (iii). By (i), ¢ = 0 and ¢*(y;) = 2l - u; = 2 - ul. Using (i),
¢*(yi)|Uj3 # 0 for all j € Supp(A). Thus Supp(Z;) N Supp(A) = 0. Hence
zli is a regular element (cf. Theorem 3.1). Therefore u; = u/. Finally we
consider (iv). We assume that there is a j € Supp(I;) N Supp(Z;+). Then, since

¢* () = B(q) - 2" -y for all | € o,
¢(Ujs) € {yis = yrs = 0} C Sing(V5),

which contradicts to the admissibility of ¢s.

Let us start the proof of the case (D). First we consider the case where
#u(Supp(A)) =1, i.e., u(Supp(A)) = {ig} for some ig € Supp(A’). Then, by
(iii), for @ # 4p, ¢; = 0 and u; = u}. Considering the relation:

AI'U/:f/(q6)+BI'U/7
we have

{EiESupp(A’) hf(z) = f/(qé) + EiESupp(B’) B,(Z)h (Z)’
ZiESupp(A’) h/i(l) = fl(qIO) + ZieSupp(B’) B/<7’)h (Z)
Since hz (1) = hi(4) for all i # ig, we can see that hz(ig) = h%(ig).

Next let us consider the case where #p(Supp(A)) > 2. In this case, by (ii),
¢; =0 and ¢*(y;) = 2% - u; = 2li -}, for all i € ¢’. Moreover, by (iii), u; = u}

8> 0w
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for all i € o’ \ Supp(A’). By our assumption, u; =, mod IOx z. Note that

zj (j & Supp(A)) is regular. Thus, if we set I[; = Li|g,,,a) € NSupP(2) “then
aliou; =2l

for all 4 € Supp(A’). By (iv), Supp(Z})NSupp(L},) = 0 for all i # i’ € Supp(A’).

Further let us consider the relation

Ao = f’(q6)+B’~0’.
Since hz (i) = hi (i) for all ¢ € o’ \ Supp(A’), we have

Sohali)= > By,

i€Supp(A’) i€Supp(A’)

which implies [[;cquppan % = Ilicsuppiary wi- Here we set v; = u;/uj for
i € Supp(A). Then, gathering the above observations, we have seen that

ol = gl -v; for all i € Supp(A),

v; =1 mod IOx ; for all i € Supp(A’),

HiGSupp(A’) v =1,
Supp(I}) N Supp(I},) = 0 for all © # i’ € Supp(A’).

Since U — Spec(A ® 41q) A[P]) is smooth at z', U — Spec(A @ 4jq) A[P x N¢])
is étale at 2’ for some e > 0. Let o be the origin of Spec(A4 ® 4(q) A[P x N°).
Then the residue field of A ® ) A[P x N°] at 0 is k. Moreover the residue
fields of Oy and Ox z are k because k is algebraically closed. Therefore the
completion of A ® ;g A[P x N°] at o is isomorphic to the completion of Ox z.
Thus, by Lemma 4.4 below, v; = 1, that is, u; = u} for all ¢ € Supp(A’). Hence
we complete the proof of 4.1.2.

Let us start the proof of 4.1. Let k = A/m and k the algebraic closure of k.
By virtue of [3, EGA III, Chapter 0, 10.3.1], there are a noetherian local ring
(B, n) and a local homomorphism A — B such that mB = n, B/n is isomorphic
to k over k = A/m and that B is flat over A. Thus, by Claim 4.1.1, we
may assume that the residue field k = A/m is algebraically closed. Moreover,
by Proposition 2.1.1, we may further assume that there are a fine and sharp
monoid @ and a homomorphism ¢ : Q — Mg such that Q@ — Mgz — Mg s
is bijective.

Let A; = A/m'* p; : A; — A;_; the canonical homomorphism and
I; = Ker(p;). Then Ay = k and I? = {0} for i > 1. Wesset X; = X xgSpec(4;),
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My, = MX|X1_7 Y; =Y xgSpec(4;), My, = My‘yi. Moreover the induced two
morphisms My, — My, via h and h' are denoted by h; and h} respectively.
Note that hg = h{, at any closed points of X, by [6]. By Claim 4.1.2, h,, = h/,
at any closed points lying over s implies that hy,,1 = h;,; at any closed points
lying over s. Therefore we have h,, = h! at any closed points of X, for all
n > 0. Let x be a closed point of X over s and y = ¢(x). Since hy = hl
as a homomorphism My’g — MX@ for w € My,g, there is u € (’))X()i with
hz(w) = h%(w) - u. Since hy, = h!,, we can see that u — 1 € m""'Ox z. Note
that Ox z is noetherian, which implies that (1, _, m" 1 Ox z = {0}. Therefore
u=1. O

As corollary of Theorem 4.1, we have the following:

Corollary 4.2 (Rigidity theorem). Let f: X — S andg:Y — S be
semistable schemes over a locally noetherian scheme S, and let ¢ : X — Y
be a morphism over S. Let Mx, My and Mg be fine log structures on X, Y
and S respectively. We assume that (X, Mx) and (Y, My) are log smooth and
integral over (S, Mg) and ¢ is admissible with respect to My [Mg. If we have
log morphisms

(¢7h) : (X7MX) - (KMY) and ((ba h/) : (XaMX) - (KMY)
over (S, Mg) as extensions of ¢ : X =Y, then h =h'.
The following two lemmas were needed for the proof of Theorem 4.1.

Lemma 4.3. Let

X’”—/>Y’

4 |

X ———Y
be a commutative diagram of reduced algebraic schemes over an algebraically
closed field such that X and X' are equi-dimensional and p is flat. Let Z be a
closed subset of Y. If n(T) € Z for any irreducible components T of X, then
7(T") € v=Y(Z) for any irreducible components T' of X'.

Proof. We assume that 7/(T") C v~1(Z) for an irreducible component T”
of X’. Then
T((T") = v(x'(T") S v(v™1(2)) C Z.

Let T be the Zariski closure of (7). If dim T < dim X, then

dim g~ (z) > dim 7’ — dim T > dim X’ — dim X
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for x € p(T"), which is a contradiction because p is flat. Thus we have dim T =
dim X, which means that T is an irreducible component of X. On the other
hand, we know 7(T') C Z. This is a contradiction to our assumption. Therefore
we get our lemma. a

Lemma 4.4.  Let (A, m) be a noetherian complete local ring and A[X1,
..y Xn] the ring of formal power series of m-variables over A. For a fized
a €m, let
R=A[Xy,.... X,]/ (X1 X, — a)
and J an ideal of R with J> = 0. Let uy,...,u; be elements of R and I, ...,
elements of N™ with Supp(l;) N Supp(l;) = 0 for i # j. We assume that (1)
uy--up =1, (2) Xiu; = X% in R for all i, and that (3) u; =1 mod J. Then
we have up = -+~ =u; = 1.

Proof. Weset X ={I e N*| A £ I} and

AlXa, .. Xals = {ZGIXI lar € A},

Iex

where A = (1,...,1). Then, by Lemma 1.1.2, the natural map A[X1,..., X,]s
— R is bijective. Here we claim the following;:

Claim 4.4.1.  Let T be an element of N*. We set Xp = {I € X |
I+ T > A}. Then, for f € A[X1,...,X,]s, if XTf =0 1in R, then f can be

written by a form
f=> bx"
Iexy

If either T = (0,...,0) or T > A, then our assertion is trivial. Thus we
may assume that 7' # (0,...,0) and T 2 A. For I € N, we can find a non-
negative integer @ and J € ¥ with I = oA + J. We denote o and J by a(I)
and J(I) respectively. Here let us see that J(I+T) & {S+T | S € ¥\ X7} for
I € 7. Indeed, since I € X1, we can find ¢ with I(¢) = 0 and T'(i) > 0. Thus

JI+T)@)=T3G) —a(I+T) <T(®%).
Hence JI+T) ¢{S+T|SeX\ X}
We set f = ,.xarX’. Then

XTf: Z CL[XI+T+ Z aIXI"rT
IeXr IeX\Zp

_ Z alaa(I+T)XJ(I+T) + Z aIXI+T.
Iexr Ies\Zr
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Thus ay = 0 for I € ¥\ X7, which complete the proof of 4.4.1.

Since u; = 1 mod J, there is a; € J with u; = 1 4+ a;. Then X%ia; = 0.

Moreover, since J? = 0,

urpcuyy=1l+a1+---+aq =1.

Hence a;+- - -+a;=0. Since X’ia; = 0, by the above claim, a; :Zlez,, c“XI,
where Xp, ={I € ¥ | I + I; > A}. Therefore

l

Z Z C@[XI =0.

i=1I€xy,

Note that if I € X7, and I' € ¥p; for i # j, then I # I' because Supp(I;) N
Supp(I;) = 0. Thus we can see that ¢; ; = 0, which shows us a; = 0 for all

1.

d
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