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Introduction

In the paper [6], we proved Kato’s conjecture, that is, the finiteness of
dominant rational maps in the category of log schemes as a generalization of
Kobayashi-Ochiai theorem [5]. It guarantees the finiteness of K-rational points
of a certain kind of log smooth schemes for a big function field K, which gives
rise to an evidence for Lang’s conjecture. In the proof of the above theorem, the
most essential part is the rigidity theorem of log morphisms. In this paper, we
would like to generalize it to a semistable scheme over an arbitrary noetherian
scheme.

Let f : X → S be a scheme of finite type over a locally noetherian scheme
S. We assume that f : X → S is a semistable scheme over S, namely, f is
flat and, for any morphism Spec(Ω) → S with Ω an algebraic closed field, the
completion of the local ring of X×S Spec(Ω) at every closed point is isomorphic
to a ring of the type

Ω[[X1, . . . , Xn]]/(X1 · · ·Xl).

Let g : Y → S be another semistable scheme over S, and let φ : X → Y be a
morphism over S. Let MX , MY and MS be fine log structures on X, Y and
S respectively. We assume that the morphisms f : X → S and g : Y → S of
schemes extend to log smooth and integral morphisms (X,MX)→ (S,MS) and
(Y,MY ) → (S,MS) of log schemes, and that φ is admissible with respect to
MY /MS , i.e., for all s ∈ S and all irreducible components V of the geometric
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fiber X ×S Spec(κ(s)) over s,

(φ×S idSpec(κ(s)))(V ) �⊆ Supp(MY /MS)|Y×SSpec(κ(s)) ,

where

Supp(MY /MS) = {y ∈ Y |MS,g(y) ×O×
Y,ȳ →MY,ȳ is not surjective}.

The following theorem is one of the main results of this paper.

Theorem A (Rigidity theorem). If we have log morphisms

(φ, h) : (X,MX)→ (Y,MY ) and (φ, h′) : (X,MX)→ (Y,MY )

over (S,MS) as extensions of φ : X → Y , then h = h′.

For the proof of the above theorem, our starting point is the local struc-
ture theorem (cf. Theorem 3.1), which asserts the local description of integral
and smooth log morphisms of semistable schemes. The case where S is the
spectrum of an algebraically closed field is essential for the general local struc-
ture theorem. This case was proved in the previous paper [6], which was a
generalization of a result due to Olsson [9, Proposition 2.10].

Based on the local structure theorem, the proof of the rigidity theorem
is carried out as follows: Clearly we may assume that S = Spec(A) for some
noetherian local ring (A,m). First we establish the theorem in the case where
A is an algebraically closed field. This was proved actually in the previous
paper [6]. Next, by induction on n, we see that the assertion holds for the
case S = Spec(A/mn). Finally, using the Krull intersection theorem, we can
conclude its proof.

In Section 1, we give the definition of semistable schemes and show their
elementary properties. In Section 2, we recall several facts concerning log
schemes. The local structure theorem is proved in Section 3. It is Section 4 that
contains the proof of the rigidity theorem. Several applications of the rigidity
theorem will be treated in the forthcoming paper [7].

Finally we would like to express hearty thanks to the referee for a lot of
comments to improve the paper.

Conventions and terminology

We will fix several conventions and terminology of this paper.

1. Throughout this paper, a ring means a commutative ring with the unity.
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2. The set of all natural numbers starting from 0 is denoted by N, that is,

N = {0, 1, 2, 3, 4, 5, . . .}.
3. In this paper, the logarithmic structures of schemes means the sense of J.-M
Fontaine, L. Illusie, and K. Kato. For the details, we refer to [4]. For a log
structure MX on a scheme X, we denote the quotient MX/O×

X by MX .

4. LetX be a scheme and F a sheaf in the étale topology. For a point x ∈ X, the
stalk of F at x with respect to the Zariski topology (resp. the étale topology)
is denoted by Fx (resp. Fx̄).

5. Let α : MX → OX be a log structure on a scheme X. For x ∈ X, an
element p ∈ MX,x̄ is said to be regular if there is m ∈ MX,x̄ such that p
coincides with m modulo O×

X,x̄ and α(m) is a regular element of OX,x̄, that is,
the homomorphism OX,x̄ → OX,x̄ given by φ �→ α(m)φ is injective. Note that
the regularity of p does not depend on the choice of m.

6. Throughout this paper, a monoid is a commutative monoid with the unity.
The binary operation of a monoid is often written additively. We say a monoid
P is finitely generated if there are p1, . . . , pn such that P = Np1 + · · · + Npr.
Moreover P is said to be integral if whenever x+ z = y + z for some elements
x, y, z ∈ P , we have x = y. An integral and finitely generated monoid is said
to be fine. We say P is sharp if whenever x + y = 0 for some x, y ∈ P , then
x = y = 0. For a sharp monoid P , an element x of P is said to be irreducible
if whenever x = y + z for some y, z ∈ P , then either y = 0 or z = 0. A
homomorphism f : Q→ P of monoids is said to be integral if it is injective and
an equation

f(q) + p = f(q′) + p′ (p, p′ ∈ P, q, q′ ∈ Q)

implies that p = f(q1) + p′′ and p′ = f(q2) + p′′ for some p′′ ∈ P and some
q1, q2 ∈ Q with q + q1 = q′ + q2. Further we say an injective homomorphism
f : Q→ P splits if there is a submonoid N of P such that the homomorphism
f(Q)×N → P given by (x, y) �→ x+ y is an isomorphism.

7. Let f : Q→ P and g : Q→ R be homomorphisms of monoids. The integral
tensor product P ⊗̄QR of P and R over Q is defined as follows: Let us consider
a relation ∼ on P ×R given by

(p, r)∼(p′, r′)⇐⇒(f(q), g(q′))+(p, r)=(f(q′), g(q))+(p′, r′) for some q, q′∈Q.

It is easy to see that ∼ is an equivalence relation on P ×R. We set

P ⊗̄QR = P ×R/∼ .
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Note that P ⊗̄QR is a monoid in the natural way and it is integral if so are P
and R (for more details, see [7]).

8. Let X be a set. We denote the set of all maps X → N by NX . For T ∈ NX ,
Supp(T ) is given by {x ∈ X | T (x) > 0}. Moreover, for T, T ′ ∈ NX ,

T ≤ T ′ def⇐⇒ T (x) ≤ T ′(x) ∀x ∈ X.

In the case where X = {1, . . . , n}, NX is sometimes denoted by Nn.

9. Let M be a monoid, X a finite subset of M and T ∈ NX . For simplicity,∑
x∈X T (x)x is often denoted by T ·X. If we use the product symbol for the

binary operation of the monoid M , then
∏
x∈X x

T (x) is written by XT . In par-
ticular, if X = {X1, . . . , Xn} and I ∈ Nn, then I ·X and XI means

∑n
i=1 I(i)Xi

and
∏n
i=1X

I(i)
i respectively according to a way of the binary operator of M .

For example, let A be a ring and let R be either the ring of polynomials of
n-variables over A, or the ring of formal power series of n-variables over A,
that is, R = A[X1, . . . , Xn] or A[[X1, . . . , Xn]]. Note that R is a monoid with
respect to the ring multiplication. As explained in the above, for I ∈ N

n, the
monomial XI(1)

1 · · ·XI(n)
n is denoted by XI .

10. Let f : Q→ P be an integral homomorphism of fine and sharp monoids. In
the following, the binary operators of monoids are written in the additive way.
For a finite subset σ of P , q0 ∈ Q and ∆, B ∈ N

σ, we say P has a semistable
structure (σ, q0,∆, B) over Q (or P is of semistable type (σ, q0,∆, B) over Q)
if the following conditions are satisfied:
(1) q0 �= 0, Supp(∆) �= ∅ and ∆(x) is either 0 or 1 for all x ∈ σ.

(2) P is generated by σ and f(Q) and the natural homomorphism Nσ → P

given by T �→ T · σ is injective.

(3) Supp(∆) ∩ Supp(B) = ∅ and ∆ · σ = f(q0) +B · σ.

(4) If we have a relation

T · σ = f(q) + T ′ · σ (T, T ′ ∈ N
σ)

with q �= 0, then T (x) > 0 for all x ∈ Supp(∆).

Let N → Q × N
σ\Supp(∆) and N → N

Supp(∆) be homomorphisms given by
1 �→ (f(q0), B|σ\Supp(∆)) and 1 �→ ∆|Supp(∆) respectively. It is known that the
natural homomorphism

(Q× N
σ\Supp(∆))⊗̄NN

Supp(∆) → P
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is bijective, where ⊗̄N is the integral tensor product (cf. [6, Proposition 2.2]).

11. Let (A,m) be a local ring. The henselization of A and the completion of
A with respect to m are denoted by Ah and Â respectively.

§1. Semistable Schemes over a Scheme

§1.1. Algebraic preliminaries

In this subsection, we consider several lemmas which will be used later.
Let us begin with the following lemma.

Lemma 1.1.1. Let f : (A,mA)→ (B,mB) be a local homomorphism of
noetherian local rings such that f induces an isomorphism A/mA

∼−→ B/mB.

(1) Let x1, . . . , xn be generator of mB, i.e., mB = Bx1 + · · ·+Bxn. If (B,mB)
is complete, then, for any b ∈ B, there is a sequence

{α(a1,...,an)}(a1,...,an)∈Nn

of elements of A indexed by Nn with

b =
∑

(a1,...,an)∈Nn

f(α(a1,...,an))x
a1
1 · · ·xan

n .

(2) Let x1, . . . , xn be elements of mB with mB = Bx1 + · · ·+ Bxn +mAB. If
(A,mA) and (B,mB) are complete, then, for any b ∈ B, there is a sequence

{α(a1,...,an)}(a1,...,an)∈Nn

of elements of A indexed by Nn with

b =
∑

(a1,...,an)∈Nn

f(α(a1,...,an))x
a1
1 · · ·xan

n .

Proof. (1) First we claim the following:

Claim 1.1.1.1.

md
B ⊆

∑
(a1,...,an)∈N

n

a1+···+an=d

f(A)xa1
1 · · ·xan

n +md+1
B

for all d ≥ 0.
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We prove this claim by induction on d. Since A/mA � B/mB , we have
B = f(A) +mB, which means that the assertion holds for d = 0. Thus

mB = (f(A) +mB)x1 + · · ·+ (f(A) +mB)xn
⊆ f(A)x1 + · · ·+ f(A)xn +m2

B,

which show that the assertion holds for d = 1, so that we assume d ≥ 2. By
the hypothesis of induction,

md
B = mB ·md−1

B

⊆ (f(A)x1 + · · ·+ f(A)xn +m2
B

)·
 ∑

(a′1,...,a
′
n)∈N

n

a′1+···+a′n=d−1

f(A)xa
′
1

1 · · ·xa
′
n
n +md

B


⊆

∑
(a1,...,an)∈N

n

a1+···+an=d

f(A)xa1
1 · · ·xan

n +md+1
B .

Hence we get the claim.

In order to complete the proof of (1), it is sufficient to see the following
claim:

Claim 1.1.1.2. For all b ∈ B, there is a sequence {bd}∞d=0 of B such
that

bd ∈
∑

(a1,...,an)∈N
n

a1+···+an=d

f(A)xa1
1 · · ·xan

n

and
b− (b0 + · · ·+ bd) ∈ md+1

B

for all d ≥ 0.

Since B = f(A) +mB, we can set b = b0 + c with b0 ∈ f(A) and c ∈ mB.
We assume that b0, . . . , bd−1 are given. Then, by Claim 1.1.1.1,

b− (b0 + · · ·+ bd−1) = bd + c′,

where bd ∈
∑

(a1,...,an)∈N
n

a1+···+an=d

f(A)xa1
1 · · ·xan

n and c′ ∈ md+1
B . This yields the

second claim.

(2) Let us choose y1, . . . , yr ∈ A with mA = y1A+ · · ·+ yrA. Then

mB = x1B + · · ·+ xnB + f(y1)B + · · ·+ f(yr)B.
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Note that

xa1
1 · · ·xan

n f(y1)b1 · · · f(yr)br = f(yb11 · · · ybr
r )xa1

1 · · ·xan
n .

Therefore, since (A,mA) is complete, using (1), for any b ∈ B, there is a
sequence {α(a1,...,an,b1,...,br)}(a1,...,an,b1,...,br)∈Nn×Nr with

b =
∑

(a1,...,an,b1,...,br)∈Nn×Nr

f(α(a1,...,an,b1,...,br))x
a1
1 · · ·xan

n f(y1)b1 · · · f(yr)br

=
∑

(a1,...,an)∈Nn

f

 ∑
(b1,...,br)∈Nr

α(a1,...,an,b1,...,br)y
b1
1 · · · ybr

r

xa1
1 · · ·xan

n .

Thus we get (2). �

Next let us consider the following lemma.

Lemma 1.1.2. Let (A,m) be a noetherian local ring and T ∈ Nn \
{(0, . . . , 0)}. Let G ∈ m[[X1, . . . , Xn]], R = A[[X1, . . . , Xn]]/(XT − G) and π :
A[[X1, . . . , Xn]]→ R the canonical homomorphism. Then we have the following:

(1) Let M be an A-submodule of A[[X1, . . . , Xn]] given by

M =

∑
T �≤I

aIX
I | aI ∈ A


(cf. Conventions and terminology 8 and 9). If (A,m) is complete, then
π|M : M → R is bijective.

(2) A[[X1, . . . , Xn]]/(XT −G) is flat over A.

Proof. (1) We denote π(Xj) by xj . First we claim the following:

Claim 1.1.2.1. For f ∈ R, there is a sequence {Fi}∞i=0 in M such that
Fi+1 − Fi ∈ mi[[X1, . . . , Xn]] and f − π(Fi) ∈ miR for all i ≥ 0.

We will construct a sequence {Fi}∞i=0 inductively. Clearly we may set
F0 = 0. We assume that F0, F1, . . . , Fi have been constructed. Then we can
set f−π(Fi) = π(H)+xTπ(H ′) for some H,H ′ ∈ mi[[X1, . . . , Xn]] withH ∈M .
Here xTπ(H ′) = π(G)π(H ′) ∈ mi+1R. Thus, if we set Fi+1 = Fi +H, then we
get our desired Fi+1.
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The above claim shows that π|M is surjective. Next let us consider the
injectivity of π|M . We assume

π

∑
T �≤I

aIX
I

 = 0.

Then there is H ∈ A[[X1, . . . , Xn]] with∑
T �≤I

aIX
I = (XT −G)H.

Here we set
G =

∑
I∈Nn

gIX
I and H =

∑
I∈Nn

hIX
I .

Then gI ∈ m for all I and∑
T �≤I

aIX
I =

∑
I∈Nn

hIX
T+I −

∑
I∈Nn

( ∑
J+J′=I

gJhJ′

)
XI .

On the left hand side of the above equation, there is no term of a form XI+T .
Thus

hI =
∑

J+J′=I+T

gJhJ′

for all I. Here we claim that hI ∈ mi for all i and all I. We see this fact
by induction i. First of all, since gI ∈ m for all I, we have hI ∈ m for all I.
We assume that hI ∈ mi for all I. By the above equation, we can see that
hI ∈ mi+1. By this claim, hI must be zero for all I because

⋂
i≥0m

i = 0.
Therefore aI = 0 for all I.

(2) Note that the direct product of a family of flat modules over a noethe-
rian ring is again flat (cf. Chase [2]). Therefore, if (A,m) is complete, then the
assertion follows from (1). In general, let Â be the completion of A and

R′ = Â[[X1, . . . , Xn]]/(XT −G).

Then we have the following commutative diagram:

R
h′−−−−→ R′

f

� �f ′

A
h−−−−→ Â.

Note that f ′, h and h′ are faithfully flat. Thus so is f . �

We consider an approximation by an étale neighborhood.
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Proposition 1.1.3. Let (A,mA) be a noetherian local ring essentially
of finite type over an excellent discrete valuation ring or a field. Let f : X →
Spec(A) be a scheme of finite type over A. Let x be a point of X such that
f(x) = mA and A/mA is naturally isomorphic to OX,x/mX,x. We assume that
there are F1, . . . , Fr ∈ A[X1, . . . , Xn] (the polynomial ring of n-variables over
A) and an isomorphism

φ : Â[[X1, . . . , Xn]]/(F1, . . . , Fr)
∼−→ ÔX,x

over Â with φ(X̄i) ∈ m̂X,x for all i, where X̄i = Xi mod (F1, . . . , Fr). Then
there is an étale neighborhood (U, x′) of X at x together with an étale morphism

ρ : U → Spec(A[T1, . . . , Tn]/(F1(T ), . . . , Fr(T )))

such that ρ(x′) = (mA, T̄1, . . . , T̄n), where T̄i = Ti mod (F1(T ), . . . , Fr(T )).

Proof. First note that

F1(φ(X̄1), . . . , φ(X̄n)) = · · · = Fr(φ(X̄1), . . . , φ(X̄n)) = 0.

Thus, by Artin’s approximation theorem [1], there are t1, . . . , tn ∈ OhX,x such
that

F1(t1, . . . , tn) = · · · = Fr(t1, . . . , tn) = 0

and ti − φ(X̄i) ∈ m̂2
X,x for all i. Here we claim the following:

Claim 1.1.3.1.

m̂X,x = φ(X̄1)ÔX,x + · · ·+ φ(X̄n)ÔX,x +mAÔX,x
= t1ÔX,x + · · ·+ tnÔX,x +mAÔX,x.

Clearly

m̂X,x ⊇ φ(X̄1)ÔX,x + · · ·+ φ(X̄n)ÔX,x +mAÔX,x.

Conversely let us pick up f ∈ m̂X,x. Then we can write f = φ
(∑

I aIX̄
I
)
. If

a(0,...,0) ∈ Â×, then f must be a unit because f ∈ a(0,...,0) + m̂X,x. This is a
contradiction. Thus a(0,...,0) ∈ mA, which means that

f ∈ φ(X̄1)ÔX,x + · · ·+ φ(X̄n)ÔX,x +mAÔX,x.

Therefore we obtain

m̂X,x = φ(X̄1)ÔX,x + · · ·+ φ(X̄n)ÔX,x +mAÔX,x
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Moreover, since ti − φ(X̄i) ∈ m̂2
X,x, we can see that

m̂X,x = t1ÔX,x + · · ·+ tnÔX,x +mAÔX,x + m̂2
X,x.

Hence, by Nakayama’s lemma, we have our desired result.

Let us choose an étale neighborhood (U, x′) ofX at x with the same residue
field such that t1, . . . , tn are defined over U . Here let us define a homomorphism

ψ : A[T1, . . . , Tn]/(F1(T ), . . . , Fr(T ))→ OU,x′

to be ψ(T̄i) = ti for all i. It is easy to see that

ψ−1(mU,x′) = (mA, T̄1, . . . , T̄n).

Thus it is sufficient to show that ψ is étale. Let

µ : Â[[T1, . . . , Tn]]/(F1, . . . , Fr)→ Â[[X1, . . . , Xn]]/(F1, . . . , Fr)

be a homomorphism given by the composition of homomorphisms

Â[[T1, . . . , Tn]]/(F1, . . . , Fr)
bψ−→ ÔU,x′ = ÔX,x φ−1

−→ Â[[X1, . . . , Xn]]/(F1, . . . , Fr).

By the above claim and Lemma 1.1.1, µ is surjective. Hence, by the following
Lemma 1.1.4, it must be an isomorphism. Therefore so is ψ̂. This means that
ψ is étale because x′ and (mA, T̄1, . . . , T̄n) have the same residue field. �

Finally we consider the following lemma concerning the bijectivity of a
ring homomorphism.

Lemma 1.1.4. Let φ : A → A be an endomorphism of a noetherian
ring. If φ is surjective, then φ is injective.

Proof. We set In = Ker(φn) for n ≥ 1. Since φ is surjective, we can see
that φ(In+1) = In for all n ≥ 1. Moreover there is N ≥ 1 such that IN+1 = IN
because A is noetherian and In ⊆ In+1 for all n ≥ 1. Therefore

Ker(φ) = I1 = φN (IN+1) = φN (IN ) = {0}.

�
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§1.2. Semistable varieties and semistable schemes

Let k be an algebraically closed field and X an algebraic scheme over k.
A closed point x of X is called a semistable point of X if the completion of the
local ring at x is isomorphic to a ring of type

k[[X1, . . . , Xn]]/(X1 · · ·Xl).

The number l is called the multiplicity of X at x, and is denoted by multx(X).
Moreover we say X is a semistable variety over k if every closed point is a
semistable point. By the following Proposition 1.2.1, the set of all semistable
closed points of X is the set of the closed points belonging to a Zariski open set.
Thus we say a point x of X (x is not necessarily closed) is a semistable point if
there is a Zariski open set U of X such that x ∈ U and every closed point of U
is a semistable point. Note that the above definition of the semistability at x
(not necessarily closed) is equivalent to say that there is an étale neighborhood
U at x which is étale over Spec(k[X1, . . . , Xn]/(X1 · · ·Xl)).

Let Ω be an algebraically closed field such that k is a subfield of Ω. Note
that if X is a semistable variety over k, then so is XΩ = X ×Spec(k) Spec(Ω)
over Ω (cf. Proposition 1.2.2).

Let S be a locally noetherian scheme and f : X → S a morphism of
finite type. First we assume that S = Spec(F ) for some field F . Let F̄ be
the algebraic closure of F , X ′ = X ×Spec(F ) Spec(F̄ ), and π : X ′ → X the
canonical morphism. A point x of X is called a semistable point of X if every
point x′ of X ′ with π(x′) = x is a semistable point. For a general S, we say
f : X → S is semistable at x ∈ X if f is flat at x and x is a semistable point
of the fiber f−1(f(x)) passing through x. Moreover we say X is a semistable
scheme over S if f is semistable at all points of X. By Proposition 1.2.2, for a
flat morphism f : X → S, X is a semistable scheme over S if and only if, for
any algebraically closed field Ω, any morphism Spec(Ω) → S and any closed
point x′ ∈ X ×S Spec(Ω), the completion of the local ring at x′ is isomorphic
to a ring of type

Ω[[X1, . . . , Xn]]/(X1 · · ·Xl).

We say a semistable scheme X over S is proper if X is proper over S. Moreover
a proper semistable scheme X over S is said to be connected if f∗(OX) = OS .

In the remaining of this subsection, let us consider elementary properties
of semistable varieties.

Proposition 1.2.1. Let X be an algebraic scheme over an algebraically
closed field k. If x is a semistable closed point of X, then there is a Zariski
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open set U of X such that x ∈ U and every closed point of U is a semistable
point.

Proof. By Proposition 1.1.3, there are an étale neighborhood π : (U, x′)→
(X,x) of x and an étale morphism

ρ : U → Spec(k[T1, . . . , Tn]/(T1 · · ·Tl))
with ρ(x′) = (0, . . . , 0). Note that Spec(k[T1, . . . , Tn]/(T1 · · ·Tl)) is a semistable
variety over k. Thus so is U over k. Therefore every closed point of π(U) is a
semistable point. �

Proposition 1.2.2. Let X be an algebraic scheme over an algebraically
closed field k. Let Ω be an algebraically closed field such that k is a subfield of
Ω. Let π : XΩ = X ×Spec(k) Spec(Ω) → X be the canonical morphism. For
y ∈ XΩ, if x = π(y) is a semistable point, then so is y.

Proof. Let U be an open set of X containing x such that every closed
point of U is a semistable point.

First we assume that y is a closed point. Let us choose a closed point
o ∈ {x}∩U . By using Proposition 1.1.3 and shrinking U around o if necessary,
there are étale morphisms

f : V → U and g : V →W = Spec(k[X1, . . . , Xn]/(X1 · · ·Xl))

of algebraic schemes over k and closed points o′ ∈ V and o′′ ∈ W such that
f(o′) = o and g(o′) = o′′ = (0, . . . , 0). Since x ∈ U , o ∈ {x} ∩ U and f is
faithfully flat at o′, we can find x′ ∈ V with f(x′) = x and o′ ∈ {x′}. Here we
set 

UΩ = U ×Spec(k) Spec(Ω),

VΩ = V ×Spec(k) Spec(Ω),

WΩ = Spec(Ω[X1, . . . , Xn]/(X1 · · ·Xl))

and the induced morphisms VΩ → UΩ and VΩ →WΩ are denoted by fΩ and gΩ
respectively. Then y ∈ UΩ. Let ỹ : Spec(Ω) → UΩ be the morphism induced
by y. Let κ(y), κ(x) and κ(x′) be the residue fields of y, x and x′ respectively.
Then there is an embedding ι : κ(x′) ↪→ Ω over k such that the following
diagram is commutative:

κ(x′)� �

ι

������������������

Ω κ(y)
ỹ∗
∼�� κ(x)� ���

� �

��
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This yields a morphism β : Spec(Ω)→ VΩ such that the diagram

VΩ
π′

��

fΩ

��

V

f

��
Spec(Ω)

β
�����������

ỹ
�� UΩ

π �� U

is commutative and the image of π′ ◦ β is x′. Let y′ be the image of β. Then
fΩ(y′) = y. Note that fΩ and gΩ are étale and the residue fields of y, y′ and
y′′ = gΩ(y′) are Ω. Thus we can see that

ÔXΩ,y � ÔVΩ,y′ � ÔWΩ,y′′ .

We set y′′ = (a1, . . . , an) ∈ An(Ω) and I = {i | ai = 0 and i = 1, . . . , l}. Note
that I �= ∅ because y′′ ∈WΩ. Therefore, if we set Zi = Xi−ai and Z =

∏
i∈I Zi,

then it is easy to see that

ÔWΩ,y′′ = Ω[[Z1, . . . , Zn]]/(Z).

Thus we get our lemma in the case where y is a closed point.
Next we consider a general case. We set UΩ = π−1(U). Then, by the

previous observation, every closed point of UΩ is a semistable point. On the
other hand, y ∈ UΩ. Thus y is a semistable point. �

§2. Some Facts on Log Structures

In this section, we consider several facts concerning log structures, which
will be used later.

§2.1. Ring extension for a good chart

Here we consider a ring extension to get a good chart. This is a partial
result of a proposition in the unpublished Ogus’ paper [8].

Proposition 2.1.1. Let (A,m) be a noetherian local ring, S = Spec(A)
and s the closed point of S. Let MS be a fine log structure on S. Then there
is a local homomorphism f : (A,m)→ (B, n) of noetherian local rings with the
following properties:

(1) B/n is algebraic over A/m, and f is flat and quasi-finite.
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(2) Let fa : S′ = Spec(B) → S = Spec(A) be the induced morphism, s′ the
closed point of S′ = Spec(B), and MS′ = (fa)∗(MS). There are a fine
and sharp monoid Q and a homomorphism πQ : Q → MS′,s′ such that
Q→MS′,s̄′ →MS′,s̄′ is bijective.

Proof. Let us begin with the following lemma:

Lemma 2.1.2. Let G be a finitely generated abelian group and R a ring.
Let us fix an element δ of Ext1(G,R×). Then there are u1, . . . , ul ∈ R× and
integers a1, . . . , al ≥ 2 with the following property:

(1) The product a1 · · · al of integers a1, . . . , al is equal to the order of the torsion
part of G.

(2) For any homomorphism f : R→ S of rings, if there are v1, . . . , vl ∈ S with
vai
i = f(ui) for all i, then the image of δ via the canonical homomorphism

Ext1(G,R×)→ Ext1(G,S×)

is zero.

Proof. By the fundamental theorem of abelian groups, we have the fol-
lowing exact sequence:

0 −−−−→ Zl
φ−−−−→ Zl

′ −−−−→ G −−−−→ 0,

where φ is given by φ(x1, . . . , xl) = (a1x1, . . . , alxl, 0, . . . , 0) for some integers
a1, . . . , al ≥ 2. Note that a1 · · · al is equal to the order of the torsion part of G.
The above exact sequence yields an exact sequence

Hom(Zl
′
, R×)

φ∗
R−−−−→Hom(Zl, R×) αR−−−−→Ext1(G,R×)−−−−→Ext1(Zl

′
, R×).

Note that Ext1(Zl
′
, R×) = {0}. Thus there is h ∈ Hom(Zl, R×) with αR(h) =

δ. We set ui = h(ei) for i = 1, . . . , l, where {e1, . . . , el} is the standard basis of
Z
l.

Let f : R → S be any homomorphism of rings with vai
i = f(ui) (i =

1, . . . , l) for some v1, . . . , vl ∈ S. Let us consider the following commutative
diagram:

Hom(Zl
′
, R×)

φ∗
R−−−−→ Hom(Zl, R×) αR−−−−→ Ext1(G,R×) −−−−→ 0

g1

� g2

� g3

�
Hom(Zl

′
, S×)

φ∗
S−−−−→ Hom(Zl, S×) αS−−−−→ Ext1(G,S×) −−−−→ 0
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Note that g2(h)(ei) = f(ui) for i = 1, . . . , l. Thus, if we set h′ ∈ Hom(Zl
′
, S×)

by

h′(ei) =

{
vi if i = 1, . . . , l

0 if i > l

then φ∗S(h′) = g2(h). Therefore

g3(δ) = g3(αR(h)) = αS(g2(h)) = αS(φ∗S(h′)) = 0.

�

Let us start the proof of Proposition 2.1.1. Let δ ∈ Ext1(M
gr

S,s̄,O×
S,s̄) be

the extension class of

0→ O×
S,s̄ →Mgr

S,s̄ →M
gr

S,s̄ → 0.

Then, by Lemma 2.1.2, there are u1, . . . , ul ∈ O×
S,s̄ and integers a1, . . . , al with

the properties as in Lemma 2.1.2. Let us choose an étale neighborhood (U, u)
of s such that u1, . . . , ul ∈ O×

U,u. Let B be the localization of

OU,u[X1, . . . , Xl]/(Xa1
1 − u1, . . . , X

al

l − ul).

at a closed point over u. Then B is flat and quasi-finite over A. Let vi be the
class of Xi in B. Note that vai

i = ui in B for all i. Let s′ be the closed point of
S′ = Spec(B), π : S′ → S the canonical morphism, and MS′ = π∗(MS). Then
we have an exact sequence

0→ O×
S′,s̄′ →Mgr

S′,s̄′ →M
gr

S′,s̄′ → 0.

Since Mgr
S′,s̄′ is the push-out O×

S′,s̄′⊗̄O×
S,s̄
Mgr
S,s̄ (cf. Conventions and termi-

nology 7.), we can see that M
gr

S′,s̄′ = M
gr

S,s̄ and the extension class δ′ of
the above exact sequence is the image of δ by the canonical homomorphism
Ext1(M

gr

S,s̄,O×
S,s̄) → Ext1(M

gr

S′,s̄′ ,O×
S′,s̄′). Thus, by Lemma 2.1.2, δ′ = 0.

Therefore we have a splitting s : M
gr

S′,s̄′ → Mgr
S′,s̄′ of Mgr

S′,s̄′ → M
gr

S′,s̄′ . Here
we set Q = MS′,s̄′ . Let us see that s(q) ∈ MS′,s̄′ for all q ∈ Q. Indeed, if
we denote Mgr

S′,s̄′ → M
gr

S′,s̄′ by π, then π(s(q)) = q. Thus there are u ∈ O×
S′,s̄′

and m ∈ MS′,s̄′ with s(q) = m · u, which implies s(q) ∈ MS′,s̄′ . Moreover
Q → MS′,s̄′ → MS′,s̄′ is the identity map. Further, changing S′ by an étale
neighborhood of S′, we may assume that Q→MS′,s̄ is defined on S′. �



386 Atsushi Moriwaki

§2.2. The support of log structures

In this subsection, we consider the support of log structures. The main
result of this subsection is the following proposition:

Proposition 2.2.1. Let X be a scheme and let M and N be fine log
structures on X. Let h : N →M be a homomorphism of log structures, i.e., a
homomorphism of sheaves of monoids with the following diagram commutative:

N
h ��

���
��

��
��

� M

����
��

��
��

OX
Then the set {x ∈ X | hx̄ : Nx̄ →Mx̄ is surjective} is open.

Proof. It is sufficient to show that if hx̄ : Nx̄ → Mx̄ is surjective, then
there is an étale neighborhood U of x such that, for all y ∈ U , hȳ : Nȳ → Mȳ

is surjective.

Claim 2.2.1.1. For z ∈ X, hz̄ : Nz̄ → Mz̄ is surjective if and only if
h̄z̄ : N z̄ →M z̄ is surjective.

Clearly, if hz̄ : Nz̄ → Mz̄ is surjective, then so is h̄z̄ : N z̄ → M z̄. Con-
versely we assume that h̄z̄ : N z̄ → M z̄ is surjective. Let m be an element of
Mz̄. Then there is n ∈ Nz̄ such that m ≡ hz̄(n) mod O×

X,z̄, i.e., m = uhz̄(n)
for some u ∈ O×

X,z̄. Thus m = uhz̄(n) = hz̄(un).

By virtue of [4, (2.9)], for a suitable étale neighborhood U of x, there are
finitely generated monoids P and Q together with homomorphisms π : P →
M |U , µ : Q→ N |U and f : Q→ P such that π and µ give rise to local charts
of M and N respectively and the diagram

Q
f−−−−→ P

µ

� �π
N |U

hU−−−−→ M |U
is commutative. It is easy to see that π−1

x̄ (O×
X,x̄) is a finitely generated sub-

monoid of P . Let p1, . . . , pn be generators of π−1
x̄ (O×

X,x̄). Shrinking U if neces-
sary, we may assume that

π(p1), . . . , π(pn) ∈ O×
X,ȳ
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for all y ∈ U . Let us check that hȳ : Nȳ →Mȳ is surjective for all y ∈ U , which
is equivalent to show that h̄ȳ : N ȳ → M ȳ is surjective by Claim 2.2.1.1. Note
that the commutative diagram

Q
f−−−−→ P

µȳ

� �πȳ

N ȳ
h̄ȳ−−−−→ M ȳ

gives rise to the commutative diagram

Q/µ−1
ȳ (O×

X,ȳ) −−−−→ P/π−1
ȳ (O×

X,ȳ)� �
N ȳ

h̄ȳ−−−−→ M ȳ

such that the vertical homomorphisms are bijective (cf. [4] and [6]). Therefore
it is sufficient to see that

Q/µ−1
ȳ (O×

X,ȳ)→ P/π−1
ȳ (O×

X,ȳ)

is surjective, which is equivalent to say that

Q→ P/π−1
ȳ (O×

X,ȳ)

is surjective. On the other hand, since π−1
x̄ (O×

X,x̄) ⊆ π−1
ȳ (O×

X,ȳ), it suffices to
show that

Q→ P/π−1
x̄ (O×

X,x̄)

is surjective, which is nothing more than the surjectivity of h̄x̄ : N x̄ →M x̄. �

Corollary 2.2.2. Let X be a scheme and M a fine log structure on X.
Then the set Supp(M) = {x ∈ X |Mx̄ is not trivial } is closed.

Proof. There is a natural homomorphism O×
X → M . Thus this is a

consequence of the above proposition. �

Corollary 2.2.3. Let X and Y be schemes and let M and N be fine
log structures on X and Y respectively. Let (f, h) : (X,M) → (Y,N) be a log
morphism.
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(1) The set

Supp(M/N) = {x ∈ X | Nf(x) ×O×
X,x̄ →Mx is not surjective}

is closed.

(2) Let ρ : Y ′ → Y be a morphism of schemes and X ′ = X ×Y Y ′. We set the
induced morphisms as follows:

X
ρ′←−−−− X ′

f

� �f ′

Y
ρ←−−−− Y ′.

Then ρ′−1(Supp(M/N)) = Supp(ρ′∗(M)/ρ∗(N)).

Proof. (1) Note that the surjectivity of N
f(x)
×O×

X,x̄ →Mx is equivalent
to the surjectivity of f∗(N)x̄ →Mx̄. Thus it follows from Proposition 2.2.1.

(2) For x′ ∈ X ′, we set x = ρ′(x′). Note that ρ′∗(f∗(N)) = f ′∗(ρ∗(N)).
Thus we have a commutative diagram:

M x̄
ν′−−−−→ ρ′∗(M)x̄′� �

f∗(N)x̄
ν−−−−→ f ′∗(ρ∗(N))x̄′ .

Note that the horizontal homomorphisms ν′ and ν are bijective. Hence, by
using Claim 2.2.1.1 of Proposition 2.2.1, we have (2). �

§3. Local Structure Theorem

In this section, we consider the following fundamental structure theorem
of this paper.

Theorem 3.1 (Local structure theorem). Let (f, h) : (X,MX)→(S,MS)
be a smooth and integral morphism of fine log schemes. Let x be a point of X
and s = f(x). We assume that f : X → S is semistable at x. Then we have
the following:

(1) If f is smooth at x, then there is a submonoid N of MX,x̄ such that MX,x̄ =
h̄x̄(MS,s̄) × N and N is isomorphic to Na for some non-negative integer
a. Moreover every element of N is regular (For the definition of regularity,
see Conventions and terminology 5).
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(2) If f is not smooth at x and h̄x̄ : MS,s̄ →MX,x̄ splits, there is a submonoid
N of MX,x̄ such that MX,x̄ = h̄x̄(MS,s̄) ×N and N is isomorphic to the
monoid arising from monic monomials of

Z[U1, U2, . . . , Ua]/(U2
1 − U2

2 )

for some a ≥ 2. In this case, the characteristic of the residue field of OX,x̄
is not equal to 2, and every element of N is regular.

(3) If f is not smooth at x and h̄x̄ : MS,s̄ → MX,x̄ does not split, then MX,x̄

has a semistable structure (σ, q0,∆, B) over MS,s̄ for some σ ⊆MX,x̄ with
#(σ) ≥ 2, q0 ∈ MS,s̄ and ∆, B ∈ N

σ (For the definition of semistable
structure, see Conventions and terminology 10). More precisely, σ is the
set of all irreducible elements of MX,x̄ not lying in h̄x̄(MS,s̄). Further every
element of σ \ Supp(∆) is regular.

Proof. First we will prove this theorem except the regularity of elements
of either N or σ \ Supp(∆) in each case (1), (2), (3).

Let us consider the geometric fiber Xs̄ = X ×S Spec(κ(s)) over s. Note
that MX,x̄ is canonically isomorphic to MXs̄,x̄, where MXs̄

= MX |Xs̄
. Thus

we may assume that S = Spec(k) for some algebraically closed field k. Hence
the theorem follows from [6, Theorem 3.1], provided we show that, in the case
(2), N is isomorphic to the monoid T arising from monic monomials of

Z[U1, U2, . . . , Ua]/(U2
1 − U2

2 ).

Let Tk be the monoid arising from monic monomials of

k[U1, U2, . . . , Ua]/(U2
1 − U2

2 ).

We need to show the natural homomorphism T → Tk is bijective. Let Ūe11 Ūe22

· · · Ūea
a and Ū

e′1
1 Ū

e′2
2 · · · Ūe

′
a
a be elements of T . Clearly we may assume that

e1, e
′
1 ∈ {0, 1}. We suppose that Ūe11 Ūe22 · · · Ūea

a = Ū
e′1
1 Ū

e′2
2 · · · Ūe

′
a
a in k[U1, U2,

. . . , Ua]/(U2
1 − U2

2 ). Then there is φ ∈ k[U1, . . . .Ua] with

Ue11 Ue22 · · ·Uea
a − Ue

′
1

1 U
e′2
2 · · ·Ue

′
a
a = (U2

1 − U2
2 )φ.

Comparing the degrees with respect to U1 of both sides, we can see that φ = 0.
Therefore (e1, . . . , ea) = (e′1, . . . , e′a).

The rest is to prove that elements of either N or σ \ Supp(∆) are regular
in each case (1), (2), (3).
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Let (OS,s,mS,s) → (A,m) be a flat local homomorphism of local rings.
We set S′ = Spec(A), X ′ = X ×S S′ and the induced morphisms as follows:

X ′ π′−−−−→ X

f ′
� �f
S′ π−−−−→ S.

Let us choose x′ ∈ X ′ with f ′(x′) = m and π′(x′) = x. Then, since OX,x →
OX′,x′ is faithfully flat, if regularity holds at x′, then so does at x.

Let k be the algebraic closure of the residue field at x. Note that by virtue
of [3, EGA III, Chapter 0, 10.3.1], there are a noetherian local ring (A,m) and
a local homomorphism (OS,s,mS,s) → (A,m) such that mS,sA = m, A/m is
isomorphic to k over OS,s/mS,s and that A is flat over OS,s. Therefore we
may assume that OS,s/mS,s is algebraically closed and x is a closed point.
Moreover, by using Proposition 2.1.1, we may further assume that there are
a fine and sharp monoid Q and a homomorphism πQ : Q → MS,s such that
Q → MS,s̄ → MS,s̄ is bijective. Hence, by [6] or Ogus’ paper [8], there is
a fine and sharp monoid P together with homomorphisms f : Q → P and
πP : P →MX,x̄ such that the following properties are satisfied:

(a) The diagram

Q
f−−−−→ P

πQ

� �πP

MS,s̄ −−−−→ MX,x̄,

is commutative.

(b) The induced homomorphism P →MX,x̄ →MX,x̄ is bijective.

(c) The natural homomorphism

OS,s̄ ⊗OS,s̄[Q] OS,s̄[P ]→ OX,x̄

is flat.

Since OS,s̄ ⊗OS,s̄[Q] OS,s̄[P ] → OX,x̄ is flat, it is sufficient to see the regularity
of each element in OS,s̄ ⊗OS,s̄[Q] OS,s̄[P ].

If there is a submonoid N of P with P = f(Q)×N , then

OS,s̄ ⊗OS,s̄[Q] OS,s̄[P ] = OS,s̄[N ].
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Thus, for the case (1), the regularity of N is obvious because N is free. For the
case (2), the assertions follow from Lemma 3.2 below.

Next we assume that f : Q→ P does not split. Let us set σ = {p1, . . . , pr}
such that Supp(∆) = {p1, . . . , pl}. Moreover we set xi = α(πP (pi)) and t =
β(πQ(q0)), where α : MX → OX and β : MS,s̄ → OS,s̄ are the canonical
homomorphisms. Then

OS,s̄ ⊗OS,s̄[Q] OS,s̄[P ] = OS,s̄[X1, . . . , Xr]/(X1 · · ·Xl − tXbl+1
l+1 · · ·Xbr

r ),

where bi = B(pi) and xi is the class of Xi. Thus the assertions follow from
Lemma 3.2 below. �

Lemma 3.2. Let A be a ring. Then we have the following:

(1) Let A[X] be the polynomial ring of one variable over A. For a regular
element a ∈ A, X is regular in A[X]/(X2 − a), that is, the multiplication
of X in A[X]/(X2 − a) is injective.

(2) Let A[X1, . . . , Xl] be the polynomial ring of l-variables over A. For a ∈ A,
let us consider a ring R given by R = A[X1, . . . , Xl]/(X1 · · ·Xl − a). If α
is a regular element of A, then so is α in R.

Proof. (1) We assume that Xf(X)=(X2−a)g(X) for some f(X), g(X)∈
A[X]. We set g(X) = Xh(X) + c for some h(X) ∈ A[X] and c ∈ A. Then

ca = X(h(X)(X2 − a) + cX − f(X)).

Thus, ca = 0. Since a is regular, c must be zero. Therefore

Xf(X) = X(X2 − a)h(X),

which implies f(X) = (X2 − a)h(X) because X is regular in A[X].

(2) It is sufficient to show that R is a free A-module. We set

M =

 ∑
(1,...,1) �≤I

aIX
I ∈ A[X1, . . . , Xn]

 .

Then it is easy to see that the natural A-module homomorphism M → R is
bijective. Thus R is a free A-module. �

Remark 3.3. The semistable structure of h̄x̄ : MS,s̄ →MX,x̄ in the case
(3) of Theorem 3.1 is uniquely determined by virtue of a result in [7], which is
not needed in this paper.
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§4. Rigidity Theorem

First of all, we would like to define the admissibility of morphisms. Let k
be an algebraically closed field, and let φ : X → Y be a morphism of algebraic
schemes over k. Let Z be a subscheme of Y . We say φ is admissible with respect
to Z if, for any irreducible component X ′ of X, φ(X ′) �⊂ Z.

Let f : X → S and g : Y → S be schemes of finite type over a locally
noetherian scheme S, and letMY andMS be fine log structures of Y and S such
that g extends to a log morphism (Y,MY ) → (S,MS). As in Corollary 2.2.3,
the closed set Supp(MY /MS) is given by

{y ∈ Y |MS,g(y) ×O×
Y,ȳ →MY,ȳ is not surjective}.

Let φ : X → Y be a morphism over S. For a point s ∈ S, we say φ : X → Y is
admissible over s with respect to MY /MS , if

φ×S idSpec(κ(s)) : X ×S Spec(κ(s))→ Y ×S Spec(κ(s))

is admissible with respect to Supp(MY /MS)|Y×SSpec(κ(s)). If φ : X → Y is
admissible over any points of S with respect to MY /MS , then φ is said to be
admissible with respect to MY /MS . By (2) of Corollary 2.2.3, φ is admissible
over s with respect to MY /MS if and only if

φ×S idSpec(κ(s)) : X ×S Spec(κ(s))→ Y ×S Spec(κ(s))

is admissible with respect to (MY |Y×SSpec(κ(s)))/(MS|Spec(κ(s))).
The following theorem is the main theorem of this paper.

Theorem 4.1. Let X, Y and S be locally noetherian schemes, and let
MX , MY and MS be fine log structures of X, Y and S respectively. Let
(X,MX) → (S,MS) and (Y,MY ) → (S,MS) be integral and log smooth mor-
phisms, and let φ : X → Y be a morphism over S. Let us fix a point s ∈ S.
We assume that X → S and Y → S are semistable at any points lying over s
and that φ : X → Y is admissible over s with respect to MY /MS. If

(φ, h) : (X,MX)→ (Y,MY ) and (φ, h′) : (X,MX)→ (Y,MY )

are extensions of φ : X → Y as log morphisms over (S,MS), then, for all
closed points x lying over s, hx̄ = h′x̄ as homomorphisms MY,φ(x) → MX,x̄ of
the stalks of étale topology.

Proof. Since this is a local problem, we may assume that S = Spec(A)
for a noetherian local ring (A,m). Let ρ : (A,m)→ (B, n) be a local homomor-
phism of local rings such that B/n is algebraic over A/m. We denote the closed
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point of S by s and the closed point of S′ = Spec(B) by s′. We setX ′ = X×SS′,
Y ′ = Y ×S S′, MX′ = π∗

X(MX), MY ′ = π∗
Y (MY ), and MS′ = π∗

S(MS), where
πX : X ′ → X, πY : Y ′ → Y and πS : S′ → S are the canonical morphisms. Let
φS′ : X ′ → Y ′ be the morphism given by φS′ = φ×S idS′ .

X ′ πX ��

φS′
�� ��

��
��

�

		�
��

��
��

X



�
��

��
��

��
��

��
�

φ

��
Y ′ πY ��

���
��

��
��

� Y

���
��

��
��

�

S′ πS �� S

Then we have log morphisms

(φS′ , hS′), (φS′ , h′S′) : (X ′,MX′)→ (Y ′,MY ′)

over (S′,MS′), where hS′ and h′S′ are the homomorphisms induced by h and
h′ respectively.

Claim 4.1.1. If ρ is flat and hS′,x̄′ = h′S′,x̄′ for all closed points x′ lying
over s′, then hx̄ = h′x̄ for all closed points x lying over s.

Let us choose a closed point x ∈ X over s. Then there is a closed point
x′ ∈ X ′ such that πX(x′) = x and x′ is lying over s′. If we set y = φ(x)
and y′ = φS′(x′), then πY (y′) = y. Here we consider the natural commutative
diagram:

MY,ȳ
��

hx̄

��
h
′
x̄

��

MY ′,ȳ′

h̄S′,x̄′=h̄′
S′,x̄′

��
MX,x̄

�� MX′,x̄′

Note that MY,ȳ → MY ′,ȳ′ and MX,x̄ → MX′,x̄′ are bijective. Thus we can
see that h̄x̄ = h̄′x̄. Let us pick up w ∈ MY,ȳ. Then, since h̄x̄ = h̄′x̄, there is
u ∈ O×

X,x̄ with hx̄(w) = h′x̄(w) · u. Here hS′,x̄′ = h′S′,x̄′ . Thus u must be 1 in
OX′,x̄′ . Note that OX′,x̄′ is flat over OX,x̄. Therefore u is the identity in OX,x̄.

Let I be an ideal of A with I2 = {0}, and B = A/I. Next we consider a
case where ρ is given by the natural homomorphism A→ B.

Claim 4.1.2. We assume that (i) k = A/m is algebraically closed and
(ii) there are a fine and sharp monoid Q and a homomorphism πQ : Q→MS,s

such that Q→MS,s̄ →MS,s̄ is bijective. If hS′,x̄′ = h′S′,x̄′ for all closed points
x′ lying over s′, then hx̄ = h′x̄ for all closed points x lying over s.
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Let x be a closed point of X lying over s, and y = φ(x). First of all,
by [6] or Ogus’ paper [8], there are fine and sharp monoids P and P ′ and
homomorphisms P → MX,x̄, Q → P , P ′ → MY,ȳ, Q → P ′ with the following
properties:

(1) The induced homomorphisms P → MX,x̄ → MX,x̄ and P ′ → MY,ȳ →
MY,ȳ are bijective.

(2) The following diagrams are commutative:

Q
f−−−−→ P� �

MS,s̄ −−−−→ MX,x̄,

Q
f ′

−−−−→ P ′� �
MS,s̄ −−−−→ MY,ȳ.

(3) There are étale neighborhoods (U, x′) and (V, y′) of x and y such that
P → MX,x̄ and P ′ → MY,ȳ are defined over U and V respectively, and
that the natural morphisms

U → Spec(A⊗A[Q] A[P ]) and V → Spec(A⊗A[Q] A[P ′])

are smooth at x′ and y′ respectively.

Clearly we may assume that P , P ′ and Q are submonoids of MX,x̄, MY,ȳ and
MS,s̄ respectively. We set Us = U ×S Spec(κ(s)), Vs = V ×S Spec(κ(s)),
φs = φ×S idSpec(κ(s)), MUs

= MX |Us
, MVs

= MY |Vs
and Mk = MS |Spec(κ(s)).

By Lemma 4.3 below, the admissibility of φs guarantees that for any irreducible
components T of Us, φs(T ) �⊆ Supp(MVs

/Mk).
Let σ (resp. σ′) be the set of all irreducible elements of P not lying in

f(Q) (resp. the set of all irreducible elements of P ′ not lying in f ′(Q)). For
j ∈ σ and i ∈ σ′, we denote α(j) by xj and α′(i) by yi, where α : MX,x̄ → OX,x̄
and α′ : MY,ȳ → OY,ȳ are the canonical homomorphisms. Moreover xj |Us

and
yi|Vs

are denoted by xjs and yis respectively. Let us consider h and h′ on
the fibers Xs = X ×S Spec(κ(s)) and Ys = Y ×S Spec(κ(s)) over s. Using
[6, Theorem 4.1], h̄x̄ = h̄′x̄ as homomorphisms P ′ → P . Thus we can set as
follows:

(4.1.3) hx̄(i) = ui · (Ii · σ + f(qi)) and h′x̄(i) = u′i · (Ii · σ + f(qi)),

where qi ∈ Q, Ii ∈ N
σ and ui, u′i ∈ O×

X,x̄. Then we have

(4.1.4) φ∗(yi) = β(qi) · xIi · ui = β(qi) · xIi · u′i,
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where β : MS,s̄ → OS,s̄ is the canonical homomorphism. We claim the follow-
ing:

(4.1.5)
If φ∗s(yis) �= 0 for some i ∈ σ′, then qi = 0 and φ∗(yi) = xIi · ui = xIi · u′i.

Indeed, by (4.1.4), φ∗s(yis) = βs(qi) · xIi
s · uis on Us, where βs : Q → k is a

homomorphism given by

βs(q) =

{
1 if q = 0

0 otherwise

and uis = ui|Us
. Thus qi = 0, which yields φ∗(yi) = xIi · ui = xIi · u′i.

Here we consider the following four cases:

(A) f : Q→ P splits and f ′ : Q→ P ′ splits.

(B) f : Q→ P does not split and f ′ : Q→ P ′ splits.

(C) f : Q→ P splits and f ′ : Q→ P ′ does not split.

(D) f : Q→ P does not split and f ′ : Q→ P ′ does not split.

(Case A): In this case, there are submonoids N and N ′ of P and P ′ respec-
tively such that P = f(Q)×N and P ′ = f ′(Q)×N ′. Note that σ and σ′ are
nothing more than the set of all irreducible elements of N and N ′ respectively.
Then, by the local structure theorem (cf. Theorem 3.1),

Supp(MVs
/Mk) =

⋃
i∈σ′
{yis = 0}.

around y′ on Vs. Thus, using the admissibility of φs, φ∗s(yis) �= 0. Hence, by
(4.1.5), qi = 0 and xIi · ui = xIi · u′i for all i ∈ σ′. Therefore ui = u′i for all
i ∈ σ′ because xj ’s are regular elements (cf. Theorem 3.1).

(Case B): In this case, there is a submonoid N ′ of P ′ such that P ′ =
f ′(Q)×N ′. Moreover P is of semistable type

(σ, q0,∆, B)

over Q for some q0 ∈ Q and ∆, B ∈ N
σ. By the local structure theorem (cf.

Theorem 3.1),
Supp(MVs

/Mk) =
⋃
i∈σ′
{yis = 0}



396 Atsushi Moriwaki

around y′ on Vs. Thus, by the admissibility of φs, φ∗s(yis) �= 0. Therefore, by
(4.1.5), qi = 0 and φ∗(yi) = xIi · ui = xIi · u′i for all i ∈ σ′. Since Us is given
by
∏
j∈Supp(∆) xjs = 0, if j ∈ Supp(Ii) ∩ Supp(∆), then φ∗s(yis) = 0 on the

irreducible component {xjs = 0} of Us. This contradicts to the admissibility
of φs. Hence Supp(Ii) ∩ Supp(∆) = ∅ for all i ∈ σ′. Thus xIi ’s are regular
elements (cf. Theorem 3.1). Therefore ui = u′i for all i ∈ σ′.

(Case C): In this case, there is a submonoid N of P with P = f(Q)×N .
P ′ is of semistable type

(σ′, q′0,∆
′, B′)

over Q for some q′0 ∈ Q and ∆′, B′ ∈ Nσ
′
. Note that

Supp(MVs
/Mk) = Sing(Vs) ∪

⋃
i∈σ′\Supp(∆′)

{yis = 0}.

around y′ on Vs (cf. Theorem 3.1).
Let us see that if φ∗s(yis) �= 0 for some i ∈ σ′, then qi = 0 and ui = u′i.

Indeed, by (4.1.5), we have qi = 0 and xIi · ui = xIi · u′i. Thus ui = u′i because
xIi ’s are regular elements (cf. Theorem 3.1).

Therefore we may assume that there is i0 ∈ σ′ with φ∗s(yi0s) = 0. By using
the admissibility of φs, φ∗s(yis) �= 0 for i ∈ σ′ \ Supp(∆′). Thus i0 ∈ Supp(∆′).
Moreover, if φ∗s(yi1s) = 0 for i1 ∈ Supp(∆′) \ {i0}, then

φs(Us) ⊆ {yi0s = yi1s = 0} ⊆ Sing(Vs),

which contradicts to the admissibility of φs. Thus φ∗s(yis) �= 0 for all i ∈
σ′ \ {i0}. Hence ui = u′i for all i ∈ σ′ \ {i0}. Let us consider the relation

∆′ · σ′ = f ′(q′0) +B′ · σ′.

Then we have{∑
i∈Supp(∆′) hx̄(i) = f ′(q′0) +

∑
i∈Supp(B′)B

′(i)hx̄(i),∑
i∈Supp(∆′) h

′
x̄(i) = f ′(q′0) +

∑
i∈Supp(B′)B

′(i)h′x̄(i).

Here hx̄(i) = h′x̄(i) for all i �= i0. Thus we can see that hx̄(i0) = h′x̄(i0).

(Case D): In the final case, P and P ′ are of semistable type

(σ, q0,∆, B) and (σ′, q′0,∆
′, B′)

over Q for some q0, q′0 ∈ Q, ∆, B ∈ Nσ and ∆′, B′ ∈ Nσ
′
. For j ∈ Supp(∆)

and i ∈ Supp(∆′), let Ujs and Vis be the irreducible components of Us and Vs
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given by xjs = 0 and yis = 0 respectively. By the admissibility of φs, for each
j ∈ Supp(∆), there is a unique i ∈ Supp(∆′) with φs(Ujs) ⊆ Vis. This i is
denoted by µ(j). Note that

Supp(MVs
/Mk) = Sing(Vs) ∪

⋃
i∈σ′\Supp(∆′)

{yis = 0}

around y′ on Vs. Here we claim the following:

(i) If i �= µ(j) for i ∈ σ′ and j ∈ Supp(∆), then φ∗(yi)|Ujs
�= 0.

(ii) If there is j ∈ Supp(∆) with i �= µ(j), then qi = 0 and φ∗(yi) = xIi · ui =
xIi · u′i.

(iii) If i �∈ µ(Supp(∆)), then qi = 0 and ui = u′i.

(iv) If i, i′ ∈ Supp(∆′) and i �= i′, then Supp(Ii) ∩ Supp(Ii′) = ∅.

(i) is obvious by the admissibility of φs. (ii) is a consequence of (i) and (4.1.5).
Let us see (iii). By (ii), qi = 0 and φ∗(yi) = xIi · ui = xIi · u′i. Using (i),
φ∗(yi)|Ujs

�= 0 for all j ∈ Supp(∆). Thus Supp(Ii) ∩ Supp(∆) = ∅. Hence
xIi is a regular element (cf. Theorem 3.1). Therefore ui = u′i. Finally we
consider (iv). We assume that there is a j ∈ Supp(Ii) ∩ Supp(Ii′). Then, since
φ∗(yl) = β(ql) · xIl · ul for all l ∈ σ′,

φ(Ujs) ⊆ {yis = yi′s = 0} ⊆ Sing(Vs),

which contradicts to the admissibility of φs.
Let us start the proof of the case (D). First we consider the case where

#µ(Supp(∆)) = 1, i.e., µ(Supp(∆)) = {i0} for some i0 ∈ Supp(∆′). Then, by
(iii), for i �= i0, qi = 0 and ui = u′i. Considering the relation:

∆′ · σ′ = f ′(q′0) +B′ · σ′,

we have {∑
i∈Supp(∆′) hx̄(i) = f ′(q′0) +

∑
i∈Supp(B′)B

′(i)hx̄(i),∑
i∈Supp(∆′) h

′
x̄(i) = f ′(q′0) +

∑
i∈Supp(B′)B

′(i)h′x̄(i).

Since hx̄(i) = h′x̄(i) for all i �= i0, we can see that hx̄(i0) = h′x̄(i0).
Next let us consider the case where #µ(Supp(∆)) ≥ 2. In this case, by (ii),

qi = 0 and φ∗(yi) = xIi · ui = xIi · u′i for all i ∈ σ′. Moreover, by (iii), ui = u′i
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for all i ∈ σ′ \ Supp(∆′). By our assumption, ui ≡ u′i mod IOX,x̄. Note that
xj (j �∈ Supp(∆)) is regular. Thus, if we set I ′i = Ii|Supp(∆) ∈ NSupp(∆), then

xI
′
i · ui = xI

′
i · u′i

for all i ∈ Supp(∆′). By (iv), Supp(I ′i)∩Supp(I ′i′) = ∅ for all i �= i′ ∈ Supp(∆′).
Further let us consider the relation

∆′ · σ′ = f ′(q′0) +B′ · σ′.

Since hx̄(i) = h′x̄(i) for all i ∈ σ′ \ Supp(∆′), we have∑
i∈Supp(∆′)

hx̄(i) =
∑

i∈Supp(∆′)

h′x̄(i),

which implies
∏
i∈Supp(∆′) ui =

∏
i∈Supp(∆′) u

′
i. Here we set vi = ui/u

′
i for

i ∈ Supp(∆′). Then, gathering the above observations, we have seen that
xI

′
i = xI

′
i · vi for all i ∈ Supp(∆′),

vi ≡ 1 mod IOX,x̄ for all i ∈ Supp(∆′),∏
i∈Supp(∆′) vi = 1,

Supp(I ′i) ∩ Supp(I ′i′) = ∅ for all i �= i′ ∈ Supp(∆′).

Since U → Spec(A⊗A[Q] A[P ]) is smooth at x′, U → Spec(A⊗A[Q] A[P ×Ne])
is étale at x′ for some e ≥ 0. Let o be the origin of Spec(A⊗A[Q] A[P × Ne]).
Then the residue field of A ⊗A[Q] A[P × Ne] at o is k. Moreover the residue
fields of OU,x′ and OX,x̄ are k because k is algebraically closed. Therefore the
completion of A⊗A[Q] A[P ×Ne] at o is isomorphic to the completion of OX,x̄.
Thus, by Lemma 4.4 below, vi = 1, that is, ui = u′i for all i ∈ Supp(∆′). Hence
we complete the proof of 4.1.2.

Let us start the proof of 4.1. Let k = A/m and k̄ the algebraic closure of k.
By virtue of [3, EGA III, Chapter 0, 10.3.1], there are a noetherian local ring
(B, n) and a local homomorphism A→ B such thatmB = n, B/n is isomorphic
to k̄ over k = A/m and that B is flat over A. Thus, by Claim 4.1.1, we
may assume that the residue field k = A/m is algebraically closed. Moreover,
by Proposition 2.1.1, we may further assume that there are a fine and sharp
monoid Q and a homomorphism πQ : Q→MS,s such that Q→MS,s̄ →MS,s̄

is bijective.

Let Ai = A/mi+1, ρi : Ai → Ai−1 the canonical homomorphism and
Ii = Ker(ρi). Then A0 = k and I2

i = {0} for i ≥ 1. We setXi = X×SSpec(Ai),
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MXi
= MX |Xi

, Yi = Y ×S Spec(Ai), MYi
= MY |Yi

. Moreover the induced two
morphisms MYi

→ MXi
via h and h′ are denoted by hi and h′i respectively.

Note that h0 = h′0 at any closed points of Xs by [6]. By Claim 4.1.2, hn = h′n
at any closed points lying over s implies that hn+1 = h′n+1 at any closed points
lying over s. Therefore we have hn = h′n at any closed points of Xs for all
n ≥ 0. Let x be a closed point of X over s and y = φ(x). Since h̄x̄ = h̄′x̄
as a homomorphism MY,ȳ → MX,x̄, for w ∈ MY,ȳ, there is u ∈ O×

X,x̄ with
hx̄(w) = h′x̄(w) · u. Since hn = h′n, we can see that u − 1 ∈ mn+1OX,x̄. Note
that OX,x̄ is noetherian, which implies that

⋂
n=0m

n+1OX,x̄ = {0}. Therefore
u = 1. �

As corollary of Theorem 4.1, we have the following:

Corollary 4.2 (Rigidity theorem). Let f : X → S and g : Y → S be
semistable schemes over a locally noetherian scheme S, and let φ : X → Y

be a morphism over S. Let MX , MY and MS be fine log structures on X, Y
and S respectively. We assume that (X,MX) and (Y,MY ) are log smooth and
integral over (S,MS) and φ is admissible with respect to MY /MS. If we have
log morphisms

(φ, h) : (X,MX)→ (Y,MY ) and (φ, h′) : (X,MX)→ (Y,MY )

over (S,MS) as extensions of φ : X → Y , then h = h′.

The following two lemmas were needed for the proof of Theorem 4.1.

Lemma 4.3. Let
X ′ π′
−−−−→ Y ′

µ

� �ν
X

π−−−−→ Y

be a commutative diagram of reduced algebraic schemes over an algebraically
closed field such that X and X ′ are equi-dimensional and µ is flat. Let Z be a
closed subset of Y . If π(T ) �⊆ Z for any irreducible components T of X, then
π′(T ′) �⊆ ν−1(Z) for any irreducible components T ′ of X ′.

Proof. We assume that π′(T ′) ⊆ ν−1(Z) for an irreducible component T ′

of X ′. Then
π(µ(T ′)) = ν(π′(T ′)) ⊆ ν(ν−1(Z)) ⊆ Z.

Let T be the Zariski closure of µ(T ′). If dimT < dimX, then

dimµ−1(x) ≥ dimT ′ − dimT > dimX ′ − dimX
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for x ∈ µ(T ′), which is a contradiction because µ is flat. Thus we have dimT =
dimX, which means that T is an irreducible component of X. On the other
hand, we know π(T ) ⊆ Z. This is a contradiction to our assumption. Therefore
we get our lemma. �

Lemma 4.4. Let (A,m) be a noetherian complete local ring and A[[X1,

. . . , Xn]] the ring of formal power series of n-variables over A. For a fixed
a ∈ m, let

R = A[[X1, . . . , Xn]]/(X1 · · ·Xn − a)
and J an ideal of R with J2 = 0. Let u1, . . . , ul be elements of R and I1, . . . , Il
elements of Nn with Supp(Ii) ∩ Supp(Ij) = ∅ for i �= j. We assume that (1)
u1 · · ·ul = 1, (2) XIiui = XIi in R for all i, and that (3) ui ≡ 1 mod J . Then
we have u1 = · · · = ul = 1.

Proof. We set Σ = {I ∈ Nn | ∆ �≤ I} and

A[[X1, . . . , Xn]]Σ =

{∑
I∈Σ

aIX
I | aI ∈ A

}
,

where ∆ = (1, . . . , 1). Then, by Lemma 1.1.2, the natural map A[[X1, . . . , Xn]]Σ
→ R is bijective. Here we claim the following:

Claim 4.4.1. Let T be an element of Nn. We set ΣT = {I ∈ Σ |
I + T ≥ ∆}. Then, for f ∈ A[[X1, . . . , Xn]]Σ, if XT f = 0 in R, then f can be
written by a form

f =
∑
I∈ΣT

bIX
I .

If either T = (0, . . . , 0) or T ≥ ∆, then our assertion is trivial. Thus we
may assume that T �= (0, . . . , 0) and T �≥ ∆. For I ∈ Nn, we can find a non-
negative integer α and J ∈ Σ with I = α∆ + J . We denote α and J by α(I)
and J(I) respectively. Here let us see that J(I+T ) �∈ {S+T | S ∈ Σ \ΣT } for
I ∈ ΣT . Indeed, since I ∈ ΣT , we can find i with I(i) = 0 and T (i) > 0. Thus

J(I + T )(i) = T (i)− α(I + T ) < T (i).

Hence J(I + T ) �∈ {S + T | S ∈ Σ \ ΣT }.
We set f =

∑
I∈Σ aIX

I . Then

XT f =
∑
I∈ΣT

aIX
I+T +

∑
I∈Σ\ΣT

aIX
I+T

=
∑
I∈ΣT

aIa
α(I+T )XJ(I+T ) +

∑
I∈Σ\ΣT

aIX
I+T .
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Thus aI = 0 for I ∈ Σ \ ΣT , which complete the proof of 4.4.1.

Since ui ≡ 1 mod J , there is ai ∈ J with ui = 1 + ai. Then XIiai = 0.
Moreover, since J2 = 0,

u1 · · ·ul = 1 + a1 + · · ·+ al = 1.

Hence a1+· · ·+al=0. Since XIiai = 0, by the above claim, ai=
∑

I∈ΣIi
ci,IX

I ,
where ΣIi

={I ∈ Σ | I + Ii ≥ ∆}. Therefore

l∑
i=1

∑
I∈ΣIi

ci,IX
I = 0.

Note that if I ∈ ΣIi
and I ′ ∈ ΣIj

for i �= j, then I �= I ′ because Supp(Ii) ∩
Supp(Ij) = ∅. Thus we can see that ci,I = 0, which shows us ai = 0 for all
i. �
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