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Abstract

Algorithms for resolution of singularities in characteristic zero are based on Hi-
ronaka’s idea of reducing the problem to a simpler question of desingularization of an
“idealistic exponent” (or “marked ideal”). How can we determine whether two marked
ideals are equisingular in the sense that they can be resolved by the same blowing-up
sequences? We show there is a desingularization functor defined on the category of
equivalence classes of marked ideals and smooth morphisms, where marked ideals are
“equivalent” if they have the same sequences of “test transformations”. Functoriality
in this sense realizes Hironaka’s idealistic exponent philosophy. We use it to show
that the recent algorithms for desingularization of marked ideals of W�lodarczyk and
of Kollár coincide with our own, and we discuss open problems.
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§1. Introduction

Hironaka’s theorem on resolution of singularities in characteristic zero [Hi1,
1964] is one of the monuments of twentieth century mathematics. Canonical
or functorial versions of Hironaka’s theorem were established more than fifteen
years ago, by Villamayor [V1], [V2] and by the authors [BM3], [BM4]. Two new
treatments of canonical resolution of singularities have appeared just in the last
couple of years, by W�lodarcyzk [W] and Kollár [Ko]. These papers reflect a
continuing interest in a better understanding of desingularization, in large part
with the goal of discovering techniques that extend to positive characteristic
(cf. [Hi3], [Hi4], [Ka]). They also show that certain aspects have remained
mysterious, even in characteristic zero. Our goal here is to clarify these issues
(and raise some questions).

The various proofs of desingularization have a lot in common, but also im-
portant differences that are related to the notion of functoriality or canonicity
involved. They all involve reducing the problem to “canonical desingulariza-
tion” of a collection of local resolution data, originating in Hironaka’s idea of an
idealistic exponent, and called a presentation [BM4], basic object [V2] or marked
ideal [W] (with variations in the meaning of these objects). In all cases, canoni-
cal desingularization is proved by induction on dimension. Functoriality (apart
from its intrinsic interest) plays two important roles: (i) in the statements of
the theorems that can be proved as consequences of canonical desingulariza-
tion of a marked ideal; (ii) in the proof itself — it is sometimes easier to prove
a stronger theorem by induction, because we can make a stronger inductive
assumption. (We use W�lodarcyzk’s terminology “marked ideal”, though our
notion is a little more general. See §1.1.)

We begin with the theorem of canonical resolution of singularities in char-
acteristic zero (not the most general statement, but formulated in a way that
is easy to state and includes the most useful conditions). For simplicity, we
restrict our attention to algebraic varieties (or reduced separated schemes of fi-
nite type). (There are more general theorems for nonreduced schemes; see [Hi1],
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[BM4, Sect. 11]. Moreover, all results below apply to analytic spaces, where the
desingularization morphism is given by a finite sequence of blowings-up over
any relatively compact open set.)

Theorem 1.1. Given an algebraic variety X over a field of character-
istic zero, there is finite sequence of blowings-up σj with smooth centres,

X = X0
σ1←− X1 ←− · · · σt←− Xt ,

such that:

(1) Xt is smooth and the exceptional divisor Et in Xt has only normal cross-
ings.

(2) The morphism σ given by the composite of the σj is an isomorphism over
X \ Sing X.

(3) The resolution morphism σX = σ : Xt → X (or the entire sequence of
blowings-up σj) can be associated to X in a way that is functorial (at least
with respect to étale or smooth morphisms, and field extensions).

This theorem can be proved with following stronger version of the condition
(2): For each j, let Cj ⊂ Xj denote the centre of the blowing-up σj+1 : Xj+1 →
Xj , and let Ej denote the exceptional divisor of σ1 ◦ · · · ◦ σj . Then:

(2′) For each j, either Cj ⊂ Sing Xj or Xj is smooth and Cj ⊂ supp Ej.

Theorem 1.1 is proved in [BM4], in [Hi1] without the functoriality condition
(3), and in [V2] assuming Hironaka’s reduction to the case of an idealistic
exponent [Hi2]. A weaker version of the theorem is proved in [EV2], [W], [Ko],
where the blowings-up σj do not necessarily have smooth centres. (We recall
that every birational morphism of quasi-projective varieties is a blowing-up
with centre that is not necessarily smooth [Ha, Thm. 7.17].) We do not know
of a proof that provides the condition of smooth centres without also giving
(2′). (See §1.3 below.)

There is no version of Theorem 1.1 that is functorial with respect to all
morphisms. Consider the morphism ϕ from A2 to the quadratic cone X :=
{uv − w2 = 0} ⊂ A3 given by ϕ(x, y) = (x2, y2, xy) [Ko, Ex. 3.4]. Then
σA2 is the identity morphism (by functoriality with respect to translations),
so functoriality with respect to ϕ would imply that ϕ lifts to the blowing-up
σ : X ′ → X over the origin (for example, by the universal mapping property
of blowing up). But this is clearly false.
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The main subject of this article is functorial desingularization of a marked
ideal (§1.2 befow); Theorem 1.3 is a strong version of functorial desingulariza-
tion, proved in Sections 5–7. In §1.1, we discuss how to deduce Theorem 1.1
from desingularization of a marked ideal. We show that, for X embedded in a
smooth variety M , the weaker version of Theorem 1.1 is an immediate conse-
quence of desingularization of a marked ideal given essentially by the ideal of
X in OM . In §1.3, we indicate how Theorem 1.1 in full can be proved using our
strong version of functorial desingularization for a different marked ideal that
we call a presentation of the Hilbert-Samuel function of X; we refer to [BM4,
Ch. III] for a construction of the latter.

§1.1. Reduction to desingularization of a marked ideal

For the sake of an inductive proof of Theorem 1.1, it is natural to deduce
the result from an embedded version: We can assume that X ⊂M , where M is
smooth. (Locally, X can be embedded in an affine space.) Then the successive
blowings-up of X are given by restricting a sequence of blowings-up of M to
the corresponding strict transforms of X.

All currently available proofs of canonical embedded resolution of singu-
larities follow Hironaka’s idea of reducing the result to “functorial desingular-
ization” of an ideal with associated multiplicity [Hi2]:

A marked ideal is a quintuple I = (M, N, E, I, d), where N is a smooth
subvariety of M , E is a normal crossings divisor on M that is transverse to N ,
I is a coherent ideal (sheaf) on N , and d ∈ N. I encodes the data we have
at each step of resolution: N will be a maximal contact subvariety and E an
exceptional divisor. A marked ideal has a transformation law that is simpler
than strict transform: Say that a blowing-up σ : M ′ → M is admissible if its
centre C ⊂ cosupp I := {x ∈ N : orderxI ≥ d}, and C, E have only normal
crossings. The (weak) transform I′ of I by σ is generated by y−d

excf ◦ σ, for
all f ∈ I, where yexc is a local generator of the ideal of σ−1(C). We define a
resolution of singularities of I as a finite sequence of admissible blowings-up,
after which the cosupport is empty. (See Section 2 for detailed definitions.)

The definition of a marked ideal above is a slight generalization of that of
[W] and corresponds to a presentation in [BM4]. W�lodarczyk’s marked ideal
would be given by (N, E|N , I, d).

We prove desingularization of a marked ideal by induction on dim I, where
dim I := dim N : We reduce the dimension by passing to an equivalent coef-
ficient ideal on a smooth maximal contact hypersurface. (See Defns. 2.5 and
Sect. 4.) Maximal contact exists locally in characteristic zero, but is not unique.
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Coefficient ideals are defined using ideals of derivatives of I (The notion goes
back to [Hi2], [G], and is used in [V2]). An idea in [BM4], [BM5] was to
use derivatives preserving the exceptional divisor E (i.e., derivatives logarith-
mic with respect to the exceptional variables). The idea is natural to the
strong version of functoriality in Theorem 1.3 below (see §3.4), and is crucial
to Kawanoue’s proposal for desingularization in positive characteristic [Ka].
The use of derivatives preserving E in resolution of singularities occurs already
in [C].

There are at least two approaches to proving Theorem 1.1 using desingu-
larization of a marked ideal. Given X ⊂ M , let IX ⊂ OM denote the ideal of
X. First, one can desingularize the marked ideal I = (M, M, ∅, IX , 1) and re-
strict the sequence of blowings-up of M that are involved to the successive strict
transforms of X. This provides embedded resolution of singularities of X in the
case that X ⊂M is a hypersurface (i.e., of codimension 1), but only a weaker
theorem in general (cf. [EV2], [W]): Consider the sequence of blowings-up {σj}
of M that resolves the singularities of I (and let Ij denote the corresponding
transforms of I). For some r, the centre Cr of σr+1 coincides with cosupp Ir.
Then Xr is smooth and has only normal crossings with Er (by Defns. 2.2).
We get conditions (1)–(3) of Theorem 1.1, but the intersections Cj ∩ Xj are
not necessarily smooth; i.e., the induced sequence of blowings-up of X does not
necessarily have smooth centres (nor do we necessarily get Cj ∩Xj ⊂ Sing Xj).
See Example 8.2.

To get Theorem 1.1 in full, we can follow a second approach (of origin
in [Hi2]) which requires a stronger idea of functoriality in desingularization
of a marked ideal (Thm. 1.3). This approach involves equisingularity of the
centres of blowing up with respect to the Hilbert-Samuel function; Theorem 1.1
is obtained using Theorem 1.3 applied to a marked ideal which is constructed
using a distinguished set of local generators of IX [BM4, Ch. III]. We know of
no other way to get Theorem 1.1 in full. (See §1.3 and Question 1.8.)

§1.2. Test sequences and functorial desingularization

Hironaka [Hi2] already proposed to deal with the preceding issue by using
blowings-up not only as building blocks in resolution of singularities, but also
to test for equisingularity of marked ideals. Define a weak test sequence for I as
a sequence of morphisms, each either an admissible blowing-up or a projection
M × A1 → M . Say that two marked ideals on M are weak equivalent if they
have the same weak test sequences (Defns. 2.4).

Functoriality in a general sense should mean that “equivalent” marked ide-



614 Edward Bierstone and Pierre D. Milman

als undergo the same resolution process. In [Hi2, §9], Hironaka asserts (without
proof) that a marked ideal can be desingularized functorially, not only with re-
spect to smooth morphisms, but also with respect to weak equivalence classes
(i.e., weak equivalent marked ideals have the same resolution sequences).

Question 1.2. Is this true?

The question is interesting partly in view of the role played by weak equiv-
alence in [Hi3], which develops techniques for use in positive characteristic.
We do not even know whether the algorithms of [BM4], [EV2], [W], [Ko] are
functorial in the sense of Hironaka’s assertion.

In [BM4], [BM5], we realize Hironaka’s philosophy by enlarging the class of
test transformations to include exceptional blowing-ups (centre = an intersec-
tion of two components of the exceptional divisor). Say that two marked ideals
on M are equivalent if they have the same sequences of test transformations.
(See Definitions 2.5.) The use of equivalence rather than weak equivalence is
crucial to our proof of the following theorem — see Remarks 3.13 and 6.3.

Theorem 1.3 Functorial resolution of singularities of a marked ideal.
Let I = (M, N, E, I, d) denote a marked ideal. Set I0 := I, I0 = (M0, N0, E0,

I0, d0). Then there is a finite sequence of blowings-up with smooth centres,

(1.1) M = M0
σ1←−M1 ←− · · · σt←−Mt ,

where σ1 is admissible for I0 and each successive σj+1 is admissible for the
transform Ij of Ij−1, such that

cosupp It = ∅ .

Moreover, a resolution sequence (1.1) can be associated to every marked ideal I
in a way that is functorial with respect to equivalence classes of marked ideals
and smooth morphisms.

The functoriality assertion here means that, if I = (M, N, E, I, d), I1 =
(M1, N1, E1, I1, d1) are marked ideals and ϕ : M1 →M is a smooth morphism
such that I1 and ϕ∗(I) are equivalent marked ideals of the same dimension,
then ϕ lifts to smooth morphisms throughout the resolution towers for I1, I.
Functoriality with respect to smooth morphisms in [W], [Ko] is the weaker
assertion that ϕ lifts to smooth morphisms throughout the resolution towers
for ϕ∗(I) and I. When we say that ϕ lifts to smooth morphisms throughout
the resolution sequences, we allow the possibility of inserting trivial blowings-
up (i.e., identity morphisms) in the resolution tower for I1. (For example, if
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ϕ : U ↪→ M is an embedding of an open subvariety U , then the centre of a
given blowing-up in the resolution sequence for I may have no points over U .)
This issue is treated in Section 7.

We give a complete proof of Theorem 1.3 in Sections 5–7. Our proof shows
that the association of a resolution sequence to a marked ideal is also functorial
with respect to field extensions and to closed embeddings ι : M ↪→ M ′ in the
case that d = 1 (as in [W], [Ko]), but we do not explicitly discuss these issues.

Our proof of Theorem 1.3 repeats the main features of [BM4] (and the
corresponding algorithms are the same), but we use the very clear inductive
framework of [W]. Part of our purpose is to clarify the relationship between
various proofs, particularly regarding the role of functoriality and the different
notions of derivative ideal (Sect. 5). We also want to isolate the precise role of
a desingularization invariant (Sect. 7) and to show that the idea of equivalence
makes it possible not only to prove the strong version of Theorem 1.1, but
also to compare the actual recipes for choosing the centres of blowing up in
different versions of desingularization of a marked ideal. In particular, we get
the following result which we prove in §8.1 as a consequence of Corollaries 3.6,
5.3 and our proof of Theorem 1.3. (The coefficient ideal is defined in Section 4
(see also Sect. 5, Step I) and the companion ideal in Section 5, Step II.)

Corollary 1.4. The variants of the coefficient and companion ideals
used in [W]or [Ko] are equivalent to our notions. As a result, the algorithm for
resolution of singularities of marked ideals of W�lodarczyk or Kollár is essentially
the same as that of [BM4] (see Remark 1.5(2) following).

Remark 1.5. (1) The various algorithms for resolution of singularities
have a similar recursive structure. They differ essentially in the notions of
coefficient and companion ideals that are used. These differences are reflected in
important differences in the proofs of the canonical desingularization theorem,
and one might ask whether the resulting algorithms provide different blowing-
up sequences — this is the issue treated in the second assertion of Corollary
1.4. We know of no way to prove this (or even to prove that the [W] and [Ko]
algorithms coincide) other than using functoriality with respect to equivalence
classes. See [BM5, §3.4] for the relationship between [BM4] and Villamayor’s
algorithm [V1], [V2].

(2) On the other hand, the desingularization algorithm (as described in
Section 5) allows many minor variations which can be incorporated in any of
the proofs of algorithmic resolution of singularities. For example: (a) Encinas
and Villamayor’s “good points” variant [EV1]; see [BM5, §3.6]. (b) Step I.B
in Section 5 below (moving apart E and cosupp I) is described in a different
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way in [W] (and [Ko]) that may mean separating the components of E from
cosupp I in a somewhat different order. “Essentially the same” in Corollary
1.4 means that the algorithms of [BM4] and [W] (or [Ko]) coincide modulo the
latter variation.

In Corollary 1.4 of course the blowings-up of M have smooth centres; our
discussion in §1.1 above concerns the way that desingularization of a marked
ideal can be applied to prove Theorem 1.1.

Remark 1.6. There is another application of our notion of functoriality,
raised by [Hi2, §1, Rmk. 2] and in an earlier version of [Ko]. Given two ideal
sheaves one of which is integral over the other, it is easy to see that the asso-
ciated marked ideals are equivalent, so that Theorem 1.3 associates the same
resolution sequence to them (cf. [EV3]).

Theorem 1.3 is proved by induction on dimI. (See Remark 1.7.) The
inductive step breaks up into two distinct steps (Section 5):

I. Functorial desingularization of a marked ideal of dimension n − 1 implies
functorial desingularization of a marked ideal of maximal order, of dimension
n. (See Definitions 2.1.)

II. Functorial desingularization of a marked ideal of maximal order of di-
mension n implies functorial desingularization of a general marked ideal of
dimension n.

Step I involves passing to an equivalent coefficient ideal on a local maximal
contact hypersurface. We have to show that the centres of blowing up given by
canonical desingularization of the coefficient ideals (which holds by induction)
in overlapping coordinate charts, glue together to define a global centre of blow-
ing up for the original marked ideal. Our proof and those of [W], [Ko] treat this
problem in different ways: In our induction, the coefficient ideals in overlap-
ping charts are equivalent, so that Step I follows from the inductive assumption
of strong functorial desingularization in lower dimension — this is the reason
for our notion of equivalence. But Step II requires some technical work. On
the other hand, in [W], [Ko], most of the work is required for Step I (passage
to a “homogenized ideal”, to reduce to a situation where maximal contact is
uniquely determined up to an étale automorphism), while II is simpler.

Remark 1.7. The inductive assumption of functorial desingularization in
lower dimension is used in our proof of Theorem 1.3 only in Step I, as just de-
scribed. Functoriality with respect to smooth morphisms is an assertion which
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of course involves not only a fixed dim N . We will give two different proofs that
the locally defined resolution sequences for the coefficient ideals patch together
to provide global blowings-up (Section 7). The first of these proofs uses only
functoriality with respect to equivalence classes of marked ideals and partic-
ular étale morphisms (coverings by open charts) in the inductive assumption.
The second uses only functoriality with respect to equivalence classes. With
either approach, functoriality with respect to smooth morphisms follows using
Lemmas 3.2 and 3.12 (see Remark 4.3).

§1.3. Use of the Hilbert-Samuel function

We can deduce Theorem 1.1 (including (2′)) from Theorem 1.3, following
Hironaka’s philosophy in [Hi2]. We use the Hilbert-Samuel function

HX,x(k) := length
OX,x

mk+1
X,x

, k ∈ N .

The Hilbert-Samuel function HX,· : X → NN has the following basic properties,
established by Bennett [Be] (see [BM2], [BM4] for simple proofs): (1) HX,· dis-
tinguishes smooth and singular points; (2) HX,· is Zariski upper-semicontinuous;
(3) HX,· is infinitesimally upper-semicontinuous (i.e., HX,· cannot increase after
blowing-up with centre on which it is constant); (4) Any decreasing sequence
in the value set of the Hilbert-Samuel function stabilizes.

The Hilbert-Samuel function HX,· is a local invariant that plays the same
role with respect to strict transform of a variety X as the order with respect
to (weak) transform of a (marked) ideal. More precisely, for all a ∈ X, there
is a local embedding X ↪→ M at a and a marked ideal I = (M, N, ∅, I, d)
which has the same test sequences as X := (M, ∅, X, H), where H = HX,a.
(We define a test sequence for X = (M, E, X, H) by analogy with that for a
marked ideal (Defns. 2.5), but where a blowing-up σ : M ′ → M with smooth
centre C is admissible if C ⊂ supp X := {x ∈ X : HX,x ≥ H} and C, E have
only normal crossings, and where X transforms by strict transform.) We call
I a presentation of HX,· at a. If a is a maximum point of HX,·, then the
corresponding maximal value of HX,· decreases after desingularization of I,
and Theorem 1.1 follows (using the basic properties of HX,· above and) using
functoriality in the same way as in Step I of the proof of Theorem 1.3. (See
[BM4, Ch. III] for these results.)

We are interested in equisingularity with respect to the Hilbert-Samuel
function as a necessary rather than only sufficient condition on the centres of
blowing up:
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Question 1.8. Does any local invariant ιX,· which satisfies the ba-
sic properties (1)–(4) above and which admits a presentation determine the
Hilbert-Samuel function HX,·? For example, is the stratification of X by the
values of ιX,· a refinement of that by HX,·?

§2. Marked Ideals and Test Transformations

In this section we give detailed definitions of the notions concerning marked
ideals, test transformations and equivalence that have been introduced infor-
mally in Section 1.

Definitions 2.1. A marked ideal I is a quintuple I = (M, N, E, I, d),
where:

(1) M , N are smooth, and N ⊂M is a closed subvariety;

(2) E =
∑s

i=1 Hi is a simple normal crossings divisor on M which is transverse
to N and ordered. (The Hi are smooth hypersurfaces in M , not necessarily
irreducible, with ordered index set as indicated.)

(3) I is an ideal (i.e., a coherent ideal sheaf) in ON .

(4) d ∈ N.

We define the cosupport cosupp I of a marked ideal I = (M, N, E, I, d) as

cosupp I := {x ∈ N : ordxI ≥ d} ,

where ordxI denotes the largest nonnegative integer q such that Ix ⊂ mq
N,x,

with mN,x the maximal ideal of ON,x.

We say that a marked ideal I = (M, N, E, I, d) is of maximal order if
d = max{ordxI : x ∈ cosupp I}.

Definitions 2.2. Let I = (M, N, E, I, d) denote a marked ideal. A
blowing-up σ : M ′ → M (with smooth centre C) is admissible for I if C ⊂
cosupp I, and C, E have only normal crossings.

We define the transform of I by an admissible blowing-up σ : M ′ →M as
the marked ideal I′ = (M ′, N ′, E′, I ′, d′ = d), where:

(1) N ′ is the strict transform of N by σ.

(2) E′ =
∑s+1

i=1 H ′
i, where H ′

i denotes the strict transform of Hi, for each
i = 1, . . . , s, and H ′

s+1 := σ−1(C) (the exceptional divisor of σ, introduced
as the last member of E′).
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(3) I ′ := I−d
σ−1(C) · σ∗(I) (where Iσ−1(C) ⊂ ON ′ denotes the ideal of σ−1(C)).

I.e., I′ is generated locally by y−d
excf ◦ σ, for all local generators f of I,

where yexc denotes a local generator of Iσ−1(C).

In this definition, note that σ∗(I) is divisible by Id
σ−1(C) and E′ is a normal

crossings divisor transverse to N ′, because σ is admissible.

Definition 2.3. Let I = (M, N, E, I, d) denote a marked ideal, and let
ϕ : M1 →M be a smooth morphism. We define the pull-back ϕ∗I of I as the
marked ideal ϕ∗I := (M1, ϕ

−1(N), ϕ−1(E), ϕ∗(I), d).

Definitions 2.4. Let I = (M, N, E, I, d) denote a marked ideal as
above. Consider the product of M with a line, M ′ := M × A1, and let
π : M ′ → M denote the projection morphism. We define the transform I ′ of
I by π as the marked ideal I ′ = (M ′, N ′, E′, I ′, d′ = d), where N ′ := π−1(N),
I ′ := π∗(I), and E′ =

∑s+1
i=1 H ′

i, where H ′
i := π−1(Hi), for each i = 1, . . . , s,

and H ′
s+1 denotes the horizontal divisor D := M × {0} (included as the last

member of E′). (Of course, π is a smooth morphism, but I ′ differs from π∗(I)
in the term E′.)

We define a weak test sequence for I0 = I as a sequence of morphisms

(2.1) M = M0
σ1←−M1 ←− · · · σt←−Mt ,

where each successive morphism σj+1 is either an admissible blowing-up (for
the transform Ij of Ij−1), or the projection from the product with a line.

We say that two marked ideals I and I1 = (M1 = M, N1, E1 = E, I1, d1)
(with the same ambient variety M and the same normal crossings divisor E)
are weak-equivalent if they have the same weak test sequences; i.e., every weak
test sequence for one is a weak test sequence for the other.

Definitions 2.5. Let I = (M, N, E, I, d) be a marked ideal. A blowing-
up σ : M ′ →M will be called an exceptional blowing-up for I if its centre C is
an intersection Hi ∩Hj of distinct hypersurfaces Hi, Hj ∈ E.

We define the transform I ′ of I by an exceptional blowing-up σ : M ′ →M

(with centre C, say) as the marked ideal I′ = (M ′, N ′, E′, I ′, d′), where N ′ the
strict transform of N (N ′ = σ−1(N), in this case), E′ is defined as in Definitions
2.2 above, I ′ = σ∗(I), and d′ = d.

We define a test sequence for I0 = I as a sequence of morphisms (2.1),
where each successive σj+1 is either an admissible blowing-up, the projection
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from a product with a line, or an exceptional blowing-up. (Morphisms of these
three kinds will be called test transformations or test morphisms.)

We say that two marked ideals I and I1 (with the same ambient variety
M and the same normal crossings divisor E) are equivalent if they have the
same test sequences.

§3. Differential Calculus

Let N denote a smooth variety. If (x1, . . . , xn) are local coordinates at a
point of N , then the partial derivatives ∂/∂x1, . . . , ∂/∂xn are well-defined as
local generators of the sheaf of derivations DerN of ON .

§3.1. Transformation of differential operators by blowing up

Let σ : N ′ → N denote the blowing-up with centre a smooth subvariety C

of N . Choose a local coordinate chart U of N with coordinates (x1, . . . , xn) in
which C = {xr = · · · = xn = 0}. Then σ−1(C) is covered by coordinate charts
Uxr

, . . . , Uxn
, where, for example in the xr-chart Uxr

, we can choose coordinates
(y1, . . . , yn) with y1 = x1, . . . , yr = xr, yr+1 = xr+1/xr, . . . , yn = xn/xr. The
following lemma is a simple but crucial exercise using the chain rule.

Lemma 3.1. With coordinates chosen as above, we have:

∂

∂xj
=

∂

∂yj
, j = 1, . . . , r − 1,

xr
∂

∂xr
= yr

∂

∂yr
−

n∑
j=r+1

yj
∂

∂yj
,

xj
∂

∂xj
= yj

∂

∂yj
, j = r + 1, . . . , n.

The transformation formulas in Lemma 3.1 go back to [G], and are usually
written a little differently. As arranged here, they show that it is logarithmic
differential operators which transform naturally by blowing up.

§3.2. Derivative ideals

Let I ⊂ ON denote a (coherent) ideal. LetD(I) ⊂ ON denote the coherent
sheaf of ideals generated by all first derivatives of local sections of I (so that
I ⊂ D(I)); i.e., D(I) is the image of the natural morphism DerN × I → ON .
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If f1, . . . , fq are local generators of I in a chart with coordinates (x1, . . . ,

xn), then fi, ∂fi/∂xj , where i = 1, . . . , q, j = 1, . . . , n, are local generators of
D(I).

We also define higher-derivative ideals inductively by

Dj+1(I) := D(Dj(I)), j = 1, . . . .

Now let E denote a normal-crossings divisor on N . We define DE(I) ⊂ ON

as the ideal generated by all local sections of I and first derivatives which
preserve the ideal IE of E. (If N ⊂M , where M is smooth, and E is a normal-
crossings divisor on M which is transverse to N , then we will simply write
DE(I) instead of DE|N (I).)

Consider a divisor E =
∑r

i=1 αiHi, where each αi ∈ N. Each point of N

has a neighbourhood U with a coordinate system (x1, . . . , xq, . . . , xn), q ≤ r,
such that x1, . . . , xq generate the ideals IH |U for those H = Hi which inter-
sect U ; write xj = xH , where H is the corresponding divisor. If fi are local
generators of I, then DE(I) is generated locally by all

fi, xH
∂fi

∂xH
, and

∂fi

∂xj
, q + 1 ≤ j ≤ n.

We again define

Dj+1
E (I) := DE(Dj

E(I)), j = 1, . . . .

Now consider a marked ideal I = (M, N, E, I, d). For simplicity, we will
write I = (I, d) when the remaining entries are evident. We define

D(I) := (M, N, E,D(I), d− 1) = (D(I), d− 1),

DE(I) := (M, N, E,DE(I), d− 1) = (DE(I), d− 1).

and

Dj+1
E (I) := DE(Dj

E(I)) = (Dj+1
E (I), d− j − 1), j = 1, . . . , d− 1.

Lemma 3.2. Let I = (M, N, E, I, d) be a marked ideal. Then:

(1) Dk
E(Dl

E(I)) = Dk+l
E (I).

(2) Dk
E(I · J ) ⊂∑k

j=0Dj
E(I) · Dk−j

E (J ).

(3) cosupp I ⊂ cosuppDj
E(I), j = 0, 1, . . . , d− 1, with equality if E = ∅.

(4) If ϕ : P → N is a smooth morphism, then Dϕ−1(E)(ϕ∗(I)) = ϕ∗(DE(I)).
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Proof. These statements are immediate from the definitions. (It is enough
to check (4) on completions.)

Lemma 3.3. Let I = (M, N, E, I, d) be a marked ideal. Let σ : M ′ →
M denote a test transformation for I (i.e., either an admissible or exceptional
blowing-up, or a projection M × A1 → M), and let I ′ = (M ′, N ′, E′, I ′, d′)
denote the transform of I by σ. (See Sect. 2.) Then σ is a test transformation
for DE(I), and DE(I)′ ⊂ DE′(I ′).

Proof. The first assertion follows from Lemma 3.2(3), and the second is
an exercise using the transformation formulas of Lemma 3.1.

The following three corollaries are easy consequences of Lemma 3.3.

Corollary 3.4. With the hypotheses of Lemma 3.3, if j ≤ d − 1, then
Dj

E(I)′ ⊂ Dj
E′(I ′).

Corollary 3.5. If j ≤ d− 1, then any sequence of test transformations
of I is a sequence of test transformations of Dj

E(I) and, after any sequence of
test transformations

M = M0
σ1←−M1 ←− · · · σt←−Mt ,

we have an inclusion Dj
E(I)t ⊂ Dj

Et
(It).

Of course, we can also define Dj+1(I), j = 1, . . ., by iterating D, and we
have analogues of Lemmas 3.2, 3.3 and Corollaries 3.4, 3.5 for the Dj(I). We
will use the following to prove Corollary 1.4.

Corollary 3.6. Suppose that E = ∅. Under the hypotheses of Lemma
3.3, if j ≤ d − 1, then Dj(I)′ ⊂ Dj

E′(I ′). Likewise, after any sequence of test
transformations as in Corollary 3.5, Dj(I)t ⊂ Dj

Et
(It).

§3.3. Aside on sums and products of marked ideals

We define sums and products, and give two lemmas which are simple ex-
ercises (cf. [W, Lemma 3.4.1]).

Consider marked ideals I=(M, N, E, I, d)=(I, d) and J =(M, N, E,J , d)
= (J , d). Define I · J := (I · J , d + e).
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Lemma 3.7.

(1) cosupp I ∩ cosuppJ ⊂ cosupp I · J (whereas cosupp Ik = cosupp I.)

(2) Let σ : M ′ → M be a test morphism for both I and J . Then σ is a test
morphism for I · J and the transforms satisfy I′ · J ′ = (I · J )′.

(3) Multiplication of marked ideals is associative.

Define I + J := (Il/d + J l/e, l), where l = lcm(d, e). Likewise, for any
finite sum. Addition is not associative, but I+J is equivalent to (Ie +J d, de).
(See Lemma 3.8(3).)

Lemma 3.8.

(1) cosupp (I + J ) = cosupp I ∩ cosuppJ .

(2) σ : M ′ → M is a test morphism for I + J if and only if σ is a test
morphism for both I and J , and the transforms by such a test morphism
satisfy I ′ + J ′ = (I + J )′.

(3) Addition of marked ideals is associative up to equivalence.

(4) If either I or J has maximal order and cosupp (I + J ) 
= ∅, then I + J
has maximal order.

§3.4. Logarithmic derivatives determine equivalent ideals

Consider a marked ideal I = (M, N, E, I, d). We define

Ck
E(I) :=

k∑
j=0

Dj
E(I), k ≤ d− 1.

Write Ck
E(I) =

(
M, N, E, Ck

E(I), dCk
E(I)

)
.

Lemma 3.9. cosupp I = cosupp Ck
E(I).

Proof. cosupp I ⊂ cosupp Ck
E(I), by Lemmas 3.2(3) and 3.8(1). But

cosupp Ck
E(I) ⊂ cosupp I, since D0

E(I) = I.

Theorem 3.10. Consider any sequence of test morphisms for I,

(3.1) M = M0
σ1←−M1 ←− · · · σt←−Mt .

Then (3.1) is a sequence of test morphisms for Ck
E(I), and for the transforms,

we have
cosupp Ck

Et
(It) = cosupp Ck

E(I)t.
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Proof. By Corollary 3.5, any sequence of test morphisms of I is a se-
quence of test morphisms of Ck

E(I), and cosupp Ck
Et

(It) ⊂ cosupp Ck
E(I)t. Since

Ck
E(I) = I +

∑k
j=1Dj

E(I), we have

cosupp Ck
E(I)t ⊂ cosupp It

⊂
k⋂

j=0

cosuppDj
Et

(It), by Lemma 3.2(3),

= cosupp Ck
Et

(It).

Corollary 3.11. I and Ck
E(I) are equivalent.

Proof. They have the same test sequences, by Lemma 3.9 and Theorem
3.10.

Lemma 3.12. If ϕ : M ′ → M is smooth, then ϕ∗(Ck
E(I)) =

Ck
ϕ−1(E)(ϕ

∗(I)).

Proof. This follows from Lemma 3.2(4).

Remark 3.13. The objects constructed in this section and the following
using our logarithmic derivative ideals Dj

E(I) of course have analogues defined
using the standard derivative ideals Dk(I) (cf. [V2]): We define Ck(I) :=∑k

j=0Dj(I), k ≤ d− 1. Then I and Ck(I) are weak-equivalent (cf. Corollary
3.11), but in general they are not equivalent. Step II of our proof of Theorem 1.3
is not functorial with respect to weak equivalence classes.(See Remark 6.3 and
Question 1.2.) We need the logarithmic derivative ideals to prove functoriality
with respect to equivalence classes, using Theorems 6.1 and 6.2 and Corollary
5.3.

§4. Maximal Contact and Coefficient Ideals

Corollary 4.1. Let I = (M, N, E, I, d) denote a marked ideal. Let z

denote a section of Dd−1
E (I) on N |U , where U is an open subset of M . Suppose

that z has maximum order 1 and that z is transverse to E (equivalently, z ·IE |N
has only normal crossings and IE |N 
⊂ (z), where (z) ⊂ ON |U is the ideal gen-
erated by z). Let P = V (z). Then, after any sequence of test transformations
of I|U ,

cosupp It ⊂ Pt ⊂ Nt,
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where Pt = V ((z)t) and (z)t denotes the transform of (z) (cf. notation of
Thm. 3.10). Moveover, if cosupp I � P , then (z)t has maximum order 1 and
is transverse to Et.

Proof. This follows from Theorem 3.10 and Corollary 3.11.

In the situation of Corollary 4.1, we call the hypersurface P of N |U a hyper-
surface of maximal contact for I. Note that the existence of z with maximum
order 1 means that I is of maximal order on U . In the setting of Corollary 4.1,
we define the coefficient (marked) ideal

(4.1) CE,P (I) :=
(
U, P, E, Cd−1

E (I)|P , dCd−1
E (I)

)
.

The following is an immediate consequence of Corollary 4.1.

Corollary 4.2. CE,P (I) is equivalent to I|U .

Remark 4.3. CE,P commutes with smooth morphisms. In other words,
if ϕ : M ′ →M is smooth, then P ′ := ϕ−1(P ) = V (ϕ∗(z)) is a maximal contact
hypersurface for ϕ∗(I), and ϕ∗(CE,P (I)) = CE′,P ′(ϕ∗(I)) (by Lemma 3.12).

Exercises 4.4. The following exercises give alternative ways to define
coefficient ideals. These approaches are used in [BM2], [BM4], and can simplify
explicit calculations.

(1) Under the hypotheses of Corollary 4.1, we can find a system of local co-
ordinates (x1, . . . , xn) for N such that xn = z and the components of E are
given by xi = 0, i = 1, . . . , r < n (in this chart). Let Dz(I) denote the ideal
generated by f , ∂f/∂z, for all f ∈ I (so that I ⊂ Dz(I) ⊂ DE(I)), and set
Cd−1

z (I) :=
∑d−1

j=0 Dj
z(I). Then Cz,P (I) :=

(
U, P, E, Cd−1

z (I)|P , dCd−1
z (I)

)
is

equivalent to I (in the chart).

(2) Suppose that I ⊂ OM is a principal ideal. Let g be a local generator of I
in a neighbourhood U of a ∈M with coordinates (x1, . . . , xm). Let d = ordaI.
(By making a linear coordinate change), we can assume that ∂dg/∂xd

m is non-
vanishing. Let z := ∂d−1g/∂xd−1

n . Then N := V (z) is a hypersurface of max-
imal contact for I|U := (U, U, ∅, I|U , d), and I|U is equivalent to Cxn,N (I) :=(
U, N, ∅, Cd−1

xn
(I)|N , dCxn,N (I)

)
, where Cd−1

xn
(I) :=

∑d−1
k=0

(
(∂kg/∂xk

n), d− k
)
.
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§5. Proof of Resolution of Singularities of a Marked Ideal

In this section, we prove Theorem 1.3. Let I = (M, N, E, I, d) denote a
marked ideal, where d > 0. The proof is by induction on dim I := dim N .

First suppose dim N = 0. If I = 0, then cosupp I = N and we can blow
up with centre N to resolve the singularities of I. If I 
= 0, then cosupp I = ∅
(since d > 0), so that I is already resolved.

The inductive step breaks up into the two independent steps I and II
formulated in Section 1.

Step I. Maximal order case. Let I = (M, N, E, I, d) be a marked ideal
of maximal order.

Case A. E = ∅. Let a ∈ cosupp I. By Corollary 4.1, there is a hypersur-
face of maximal contact P for I at a; P ⊂ N ∩U , where U is a neighbourhood
of a in M . Define

(5.1) CU (I) := C∅,P (I) = (U, P, ∅, Cd−1
∅ (I)|P , dC),

where dC = dCd−1
∅ (I). Then CU (I) is equivalent to I|U = (U, N∩U, ∅, I|N∩U , d),

according to Corollary 4.2. Therefore, a resolution of singularities of CU (I)
(which exists by induction) is a resolution of singularities of I|U .

The marked ideals CU (I) and CV (I) defined in two overlapping charts U

and V are equivalent in U ∩ V (since both are equivalent to I|U∩V ); therefore,
by functoriality in dimension n−1, their resolution sequences are the same over
U ∩ V (not counting blowings-up that restrict to isomorphisms over U ∩ V ).

Claim 5.1. It follows that the resolution sequences for the CU (I) (de-
fined locally) patch together to give functorial resolution of singularities of a
marked ideal I.

The problem here is that, to glue together the local centres of blowing up,
we have to know which nontrivial centres in the various charts U should be
taken first, etc. We leave this claim to Section 7 below, where we give two
different proofs.

Case B. General maximal order case. Let I∅ denote the marked
ideal (M, N, ∅, I, d). Let a ∈ cosupp I = cosupp I∅. By Corollary 4.1, there
exists an (irreducible) hypersurface of maximal contact P for I∅, defined in a
neighbourhood U of a. We introduce C := CU (I∅) = (U, P, ∅, C, dC), as in Case
A above.

If x ∈ N , set
s(x) := #{H ∈ E : x ∈ H}
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(where “H ∈ E” means “H is a component of E”, and # denotes the cardinality
of a finite set). After any sequence of test transformations of I, we will continue
to write E (as opposed to Et) for the divisor whose components are the strict
transforms of those of E, with the same ordering as in E, and we will continue
to write s(x) for #{H ∈ E : x ∈ H}.

Let s := max{s(x) : x ∈ cosupp I}, and let Sub(E, s) denote the set of
s-element subsets of E (i.e., of the set of components of E). Let E denote the
marked ideal E :=

(
U, P, ∅, E , dC

)
, where

(5.2) E :=
∏

Λ∈Sub(E,s)

∑
H∈Λ

IdC
H · OP .

Set J := C + E .
Clearly, cosupp E = {x ∈ P : s(x) ≥ s}, so that

cosuppJ = cosupp I|U
⋂
{x ∈ P : s(x) = s},

(and likewise after any sequence of test transformations of J ). Thus any se-
quence of test transformations of J is a sequence of test transformations of
I|U (and the centre C of each admissible blowing-up lies inside the intersec-
tion of the components of E that pass through a point of C). Therefore, the
equivalence class of J depends only on that of I|U , and blowings-up which are
admissible for J are also admissible for I|U .

By induction on dimension, there is a resolution of singularities of J . We
can define J for each element of a finite covering {U} of M and, as in Claim
5.1, the resolution sequences for the J patch together to define a sequence of
admissible blowings-up of I. (See Section 7.)

If this sequence of blowings-up resolves I, then we have finished Case B.
Otherwise, cosupp Ij and {x : s(x) = s} become disjoint for some index j of
the blowings-up sequence, say for j = q1 (i.e., s(x) < s, for all x ∈ cosupp Ij).
In this case, we repeat the process using Cq1

:= CU (I∅)q1 in place of C, and
using the new value s1 of max{s(x) : x ∈ cosupp Iq1

} in place of s. (Here s(x)
has the same meaning as above — it is defined using E as opposed to Eq1 . The
process above is repeated using J 1 := Cq1

+E1 in place of J , where E1 is given
by (5.2) with s1 in place of s.)

We thus get marked ideals Iq1
, . . . , Iqk

, . . . with s > s1 > · · · > sk > · · · ,
and, for each k and U , a marked ideal J k = Cqk

+ Ek analogous to J 1. After
finitely many steps as above, I is resolved. (If, after k steps, I is not resolved
but sk = 0, then I is resolved by the next step.) So we have completed Case
B and therefore Step I.
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Step II. General case. Let I = (M, N, E, I, d) be an arbitrary marked
ideal.

First suppose that I = 0 (so that cosupp I = N). Then we can blow up
with centre N to resolve singularities.

Now suppose that I 
= 0. Write

(5.3) I =M(I) · N (I),

where M(I) is a product of prime ideals defining irreducible components of
the elements of E, and N (I) is divisible by no such prime ideal. We consider
two cases.

Case A. Monomial case I = M(I). For any sequence of admissible
blowings-up σj of I, let us order the collection of subsets of each Ej as fol-
lows: Suppose that E = {H1, . . . , Hq}. Write E0 := E = {H1, . . . , Hq} =:
{H0

1 , . . . , H0
q }. For each j = 1, . . ., write Ej = {Hj

1 , . . . , Hj
q+j}, where Hj

i de-
notes the strict transform of Hj−1

i by σj , if i < q + j, and Hj
q+j = σ−1

j (Cj−1).
Now, we associate to each subset I of Ej the finite sequence (δ1, . . . , δq+j),
where δi = 0 if Hj

i 
∈ I, and δi = 1 if Hj
i ∈ I. Then we order the subsets I of

Ej , for all j, by the lexicographic ordering of such sequences.
Let a ∈ cosupp I. In a neighbourhood of a, we can write I = Iα1

Hi1
· · · Iαr

Hir

(where a ∈ Hi1 ∩ · · · ∩ Hir
and where we write IHik

instead of IHik
· ON to

simplify the notation); in particular, α1 + · · ·+αr > d. (In Theorem 6.1 below,
we will see that µa(I) = (α1 + · · ·+αr)/d is a local invariant of the equivalence
class of I.) Then (in the neighbourhood above) cosupp I = ∪ZI , where each
ZI := N ∩⋂

H∈I H, and I runs over the smallest subsets of {Hi1 , . . . , Hir
} such

that
∑

l∈I αl ≥ d; in other words, I runs over the subsets of {Hi1 , . . . , Hir
} such

that
0 ≤

∑
l∈I

αl − d < αk, for all k ∈ I.

(We have simplified the notation by identifying subsets of {Hi1 , . . . , Hir
} with

subsets of {1, . . . , r}.)
Let J(a) denote the maximum of these subsets I (with respect to the

order above). Clearly, J(x) is Zariski upper-semicontinuous on cosupp I, and
the maximum locus of J(x) consists of at most one irreducible component of
cosupp I through each point.

Consider the blowing-up σ with centre C given by the maximum locus of
J(·). If a ∈ C, then (in a neighbourhood as above), C = N ∩⋂

l∈J(a) Hil
. We

can choose local coordinates (x1, . . . , xn) for N at a such that, for each k ∈ J(a),
xk is a local generator xHik

of the ideal IHik
|N . Then, in the xk-chart of the
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blowing-up σ, the transform of I is given by

I ′ = Iα1
H′

i1
· · · I

P
J(a) αl−d

σ−1(C) · · · Iαr

H′
ir

,

(with I
P

J(a) αl−d

σ−1(C) in the k’th place). Since
∑

l αl − d < αk, µa′(I ′) = µa(I)−
p/d, where p is a positive integer, over all points a of some component of
cosupp I. We therefore resolve singularities after a finite number of steps.

Case B. General case. Set

ordN (I) := max
x∈cosupp I

ordxN (I),

and define marked ideals

N (I) := (M, N, E,N (I), ordN (I)),

M(I) := (M, N, E,M(I), d− ordN (I)).

We define the companion ideal of I = (I, d) as

G(I) :=

{
N (I) +M(I), if ordN (I) < d;

N (I), if ordN (I) ≥ d.

(In the following, we treat both cases simultaneously by defining the cosupport
and transforms of M(I) in the case that ordN (I) ≥ d exactly as in Section
2, even though d − ordN (I) ≤ 0; e.g., cosuppM(I) = N in this case.) Then
G(I) is of maximal order (by Lemma 3.8(4)) and, for any sequence of test
transformations of G(I),

cosuppG(I)j = cosuppN (I)j

⋂
cosuppM(I)j

⊂ cosuppN (I)j

⋂
cosupp Ij .

By Lemma 3.7, Ij =M(I)j · N (I)j .

Remark 5.2. For any sequence of admissible blowings-up of G(I), it is
clear that N (I)j = N (Ij), M(I)j = M(Ij), and cosuppG(I)j = cosupp
N (I)j ∩ cosupp Ij .

In Theorems 6.1 and 6.2 below, we will prove that, if a ∈ cosupp I, then

(5.4) µa(I) :=
ordaI

d
and µH,a(I) :=

ordH,aI
d

, H ∈ E,

depend only on the equivalence class of I and dim N . (ordH,aI denotes the
order of I ⊂ ON along H|N at a; i.e., the largest µ ∈ N such that Ia ⊂ Iµ

H|N ,a.)
The following is a corollary of these results.
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Corollary 5.3. The equivalence class of G(I) depends only on the equiv-
alence class of I and dim N .

Proof. The divisor (with rational coefficients) M(I)1/d depends only on
the equivalence class of I, by Theorems 6.1 and 6.2. Over any sequence of test
transformations of G(I),

cosuppG(I)j =
{
x ∈ cosupp Ij : ordxN (I)j ≥ ordN (I),

ordxM(I)j ≥ d− ordN (I)}

=
{

x ∈ cosupp Ij : µx(Ij)− 1
d

ordxM(I)j ≥ 1
d

ordN (I),

1
d

ordxM(I)j ≥ 1− 1
d

ordN (I)
}

.

All terms in the latter condition depend only on the equivalence class of I and
dim N .

Now, we can resolve the singularities of the marked ideal of maximal order
G(I), using Step I. The blowings-up involved are admissible for I. Such a
resolution leads, after a finite number of steps (say r1 steps) to a marked ideal
Ir1

such that either ordN (Ir1
) < ordN (I), or cosupp Ir1

= ∅. (See Remark
5.2.) In the latter case, we have resolved the singularities of I. In the former
case, we can repeat the process for Ir1

= (Ir1 , d), . . .. We get marked ideals
Ir1

, . . . , Irk
, . . . such that

ordN (I) > ordN (Ir1
) > · · · > ordN (Irk

) > · · · .

The process terminates after a finite number of steps, when either we have
ordN (Irk

) = 0 (i.e., we have reduced to the monomial case Irk
= M(Irk

)),
or we have cosupp Irk

= ∅ (i.e., we have resolved singularities).
This will complete the proof of functorial resolution of singularities of a

marked ideal (Theorem 1.3) once we establish Claim 5.1 and prove Theorems
6.1, 6.2. �

§6. Invariants of a Marked Ideal

If I = (M, N, E, I, d) is a marked ideal and a ∈ cosupp I, we define
µa(I) := ordaI/d and µH,a(I) := ordH,aI/d, H ∈ E, as in (5.3). These orders
can be calculated in local coordinates. To prove the two theorems below, we
find sequences of test transformations depending only on the equivalence class
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of I, such that µa(I) and the µH,a(I) can be calculated also from orders of
vanishing of the transformed ideals along a “horizontal divisor” introduced by
product with a line. The first theorem is due to Hironaka [Hi2].

Theorem 6.1. Let I = (M, N, E, I, d) and J = (M, P, E,J , e) be
marked ideals. Suppose that I and J are weak-equivalent (Definitions 2.4).
Let a ∈ cosupp I = cosuppJ . If dim N = dim P , then µa(I) = µa(J ). If
dim N > dim P , then µa(I) = 1.

Proof. We have µa(I) = ∞ if and only if I = 0 at a, i.e., cosupp I is
smooth of dimension = dim N at a.

Suppose that µa(I) < ∞. Set I0 := I, I0 = (M0, N0, E0, I0, d). Let σ1 :
M1 := M0 × A1 → M0 denote the projection, and let I1 = (M1, N1, E1, I1, d)
denote the transform of I0 by σ1 (Defns. 2.4). Let a1 := (a, 0) and let Γ1 :=
{a} × A1 ⊂ cosupp I1 = σ−1

1 (cosupp I0). Consider a sequence of admissible
blowings-up

M1
σ2←−M2 ←− · · · ←−Mj

σj+1←− Mj+1 ←− · · ·
and the corresponding transforms Ij = (Mj , Nj , Ej , Ij , d) of I1, where, for
each j ≥ 1, σj+1 denotes the blowing-up with center aj , and the aj are defined
inductively as follows: For each j ≥ 1, aj+1 := Γj+1 ∩Dj+1, where Dj+1 is the
exceptional divisor σ−1

j+1(aj) and Γj+1 is the strict transform of Γj .
Clearly, each Γj+1 ⊂ cosupp Ij+1, since Γj+1 \ {aj+1} ⊂ cosupp Ij+1.
We introduce a subset S of N×N depending only on dim N and the weak-

equivalence class of I, as follows: Let r = dim M − dim N . Note that, for each
j ≥ 1, Dj+1∩Nj+1 is smooth, and has codimension r in Dj+1 and codimension
1 in Nj+1. We say that (j, 0) ∈ S, j ≥ 1, if, after j blowings-up σ2, . . . , σj+1 as
above, Dj+1∩cosupp Ij+1 contains (i.e., is) a smooth subvariety of codimension
r in Dj+1 at aj+1.

In this case, Dj+1∩cosupp Ij+1 = Dj+1∩Nj+1 at aj+1, and the condition
Dj+1 ∩ Nj+1 ⊂ cosupp Ij+1 means that ordDj+1,aj+1Ij+1 ≥ d. The latter
inequality is equivalent to j(µa(I) − 1)d ≥ d, i.e., j(µa(I) − 1) ≥ 1. This can
be proved by induction on j, by a simple formal Taylor series calculation: For
each j, Ij+1,aj+1 = I−jd

Dj+1,aj+1
· (Ia · ONj+1,aj+1). But ordaj+1Ij+1 = ordaj

Ij =

· · · = ordaI; therefore, Ia · ONj+1,aj+1 is divisible by IjordaI
Dj+1,aj+1

and not by any

higher power. Since ordaI = µa(I)d, we have Ij+1,aj+1 = Ij(µa(I)−1)d
Dj+1,aj+1

· Ĩaj+1 ,
where Ĩaj+1 is not divisible by IDj+1,aj+1 .

In particular, since µa(I) ≥ 1, (j, 0) 
∈ S for all j ≥ 1 if and only if
µa(I) = 1.
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It follows that if I is weak-equivalent to J , where dim P < dim N , then
µa(I) = 1, since Dj+1 ∩ cosupp Ij+1 = Dj+1 ∩ cosuppJ j+1 ⊂ Dj+1 ∩ Pj+1

cannot contain a smooth subvariety of codimension r in Dj+1.
Now suppose that (j, 0) ∈ S, for some j ≥ 1. Then we can consider the

blowing-up σj+2 : Mj+2 → Mj+1 with centre Cj+1 = Dj+1 ∩Nj+1. Note that
σj+2|Nj+2 : Nj+2 → Nj+1 is the identity! Set Gj+2 := strict transform of Gj+1

and aj+2 := Gj+2∩Dj+2. We say that (j, 1) ∈ S if Dj+2∩cosupp Ij+2 contains
a smooth subvariety of codimension r in Dj+2 at aj+2.

If so, then again Dj+2 ∩ cosupp Ij+2 = Dj+2 ∩ Nj+2. Since Ij+1 =

Ij(µa(I)−1)d
Dj+1

· Ĩj+1 at aj+1, where Ĩj+1 is not divisible by IDj+1 , we see that

Ij+2 = Ij(µa(I)−1)d−d
Dj+2

· Ĩj+2 at aj+2, where Ĩj+2 = Ĩj+1 is not divisible by
IDj+2 . Therefore, (j, 1) ∈ S if and only if j(µa(I)− 1)d− d ≥ d.

We continue inductively: If i ≥ 1 and (j, i−1) ∈ S, let σj+i+1 : Mj+i+1 →
Mj+i denote the blowing-up with centre Cj+i = Dj+i ∩ Nj+i. Set Gj+i+1 :=
strict transform of Gj+i and aj+i+1 := Gj+i+1∩Dj+i+1. We say that (j, i) ∈ S

if Dj+i+1 ∩ cosupp Ij+i+1 is smooth and of codimension r in Dj+i+1; i.e.,
(j, i) ∈ S if and only if j(µa(I)− 1)− i ≥ 1.

According to its definition, S depends only on dim N and the weak-
equivalence class of I (and the point a). We have shown that S = ∅ if and only
if µa(I) = 1, and, if S 
= ∅, then

S = {(j, i) ∈ N× N : j(µa(I)− 1)− i ≥ 1} ;

therefore, µa(I) is uniquely determined by S. (µa(I) = 1 + sup(j,i)∈S(i +
1)/j.)

Theorem 6.2. Let I = (M, N, E, I, d) be a marked ideal and let a ∈
cosupp I. Consider H ∈ E. Then µH,a(I) depends only on the equivalence
class of I and the dimension of N at a. (See Defns. 2.5.)

Proof. Suppose that H  a. Set I0 := I, I0 = (M0, N0, E0, I0, d). We
can choose local coordinates (x1, . . . , xn) for N at a, such that H|N0 = {x1 =
0}. Let σ1 : M1 = M0 × A1 → M0 denote the projection, let a1 = (a, 0)
and let I1 = (M1, N1, E1, I1, d) denote the transform of I0 by σ1. (Thus
(x1, . . . , xn, t) are local coordinates for N1 at a1.) Let H1

0 := M0×{0} (so that
H1

0 |N1 = {t = 0}) and let H1
1 := σ−1(H) ((so that H1

1 |N1 = {x1 = 0}.) Set
Γ1 := {a} × A1.

We follow σ1 by a sequence of exceptional blowings-up

M1
σ2←−M2 ←− · · · ←−Mj

σj+1←− Mj+1 ←− · · · ,
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where (for all j ≥ 1) we inductively define σj+1 as the blowing-up with centre
Cj := Hj

0 ∩Hj
1 , and set Hj+1

0 := σ−1
j+1(Cj), Hj+1

1 := strict transform of Hj
1 by

σj+1, Γj+1 := strict transform of Γj , aj+1 := Γj+1 ∩Hj+1
0 = Cj+1 ∩ σ−1

j+1(aj).
Then, for each j ≥ 1, Nj+1 has a chart with coordinates (x, t) = (x1, . . . , xn, t)
at aj+1 in which (σ2 ◦ · · · ◦ σj+1)(x, t) = (tjx1, x2, . . . , xn, t).

Write I = IµH,a(I)d
H · J at a, where J is not divisible by IH . Set τj+1 :=

σ1 ◦ σ2 ◦ · · · ◦ σj+1. Then τ∗
j+1(J ) is not divisible by IHj+1

1
at aj+1, and

τ∗
j+1(I) = IjµH,a(I)d

Hj+1
0

· IµH,a(I)d

Hj+1
1

· τ∗
j+1(J ).

(Consider the formal expansion of the pullback of f(x) = x
µH,a(I)d
1 g(x) ∈ I.)

Therefore, there exists i ≥ 1 such that ordai+1τ
∗
i+1(J ) = ordaj+1τ

∗
j+1(J ),

for all j ≥ i. (We can take i to be the least order of a monomial not divisible
by x1 in the Taylor expansions of a set of generators of J at a.) Clearly, if
j ≥ i, then

µH,a(I) = µaj+1(Ij+1)− µaj
(Ij),

so the result follows from Theorem 6.1.

Remark 6.3. The µH,a(I) are not invariants of the weak equivalence
class of I [BM5, Example 5.14]. The latter example shows that Step II of our
proof in Section 5 is not functorial with respect to weak equivalence classes.

§7. Passage from Local to Global

In this section, we give two different proofs of Claim 5.1 in Step I.A in
Section 5 (and of the analogous claim in Step I.B). The first proof is the method
described by Kollár [Ko], which we present briefly here. (See [Ko, Thm. 105] for
an axiomatization of the procedure.) The second proof is the method of [BM4],
[BM5], which involves proving a stronger result than Theorem 1.3: we give an
algorithm for functorial resolution of singularities, where each successive centre
of blowing up is the maximum locus of a desingularization invariant. We use
the notation of Section 4.

The invariant is essentially already present in the proof of Theorem 1.3
in Section 5; we just make it explicit below. The invariant is defined using a
sequence of pairs — it begins with (ordN (I), s) and the following pairs are
determined in decreasing dimension, by induction. (The first pair is the same
as that denoted (d, s) in our first version of resolution of singularities [BM1,
§4].)
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§7.1. First proof

For simplicity, assume that N has constant dimension n. Choose a finite
open covering M = ∪Ui such that, for each i, we have a coefficient ideal CUi

(I)
as in Step I.A. Set M ′ :=

∐
i Ui (the disjoint union) and let γ : M ′ →M denote

the natural morphism. (γ is smooth.) The fibre-product M ′′ := M ′×M M ′ can
be identified with the disjoint union

∐
i≤j Ui∩Uj , so that, if τ1, τ2 : M ′′ →M ′

are the two projections, then τ1|Ui∩Uj
and τ2|Ui∩Uj

are the inclusions Ui∩Uj ↪→
Ui and Ui ∩ Uj ↪→ Uj (respectively).

Set I ′ := γ∗(I) and I ′′ := τ∗
1 (I ′) = τ∗

2 (I ′). The coefficient ideals CUi
(I)

induce a marked ideal C′ of dimension n − 1 on M ′. Set C′′1 := τ∗
1 (C′), C′′2 :=

τ∗
2 (C′). Then C′ is equivalent to I ′, and C′′1 is equivalent to C′′2 .

By the inductive assumption of functorial resolution of singularities in
dimension n − 1, there are resolution sequences associated to C′, C′′1 and C′′2
such that: (1) the resolution sequences for C′′1 and C′′2 are the same; (2) the
morphism τ1 (or τ2) lifts throughout the resolution sequences for C′′1 and C′ (or
C′′2 and C′).

Since C′ is equivalent to I ′, the resolution sequence for C′ is a resolution
sequence for I ′. Consider the centre C ′

0 ⊂ M ′
0 := M ′ of the first blowing-up

in this sequence. For each i, let C ′
0i denote the restriction of C ′

0 to Ui. Then
C ′

0i|Ui ∩ Uj = C ′
0j |Ui ∩ Uj , for all i ≤ j.

Therefore, the C ′
0i glue together to define a smooth closed subvariety C0

of M0 := M . We thus obtain the centre of the first global blowing-up, and can
continue in the same way to get the entire functorial resolution sequence for I.

The same argument works for the analogous claim in Step I.B.

§7.2. Second proof

Given a marked ideal I, we will construct a resolution sequence and an
invariant (with values in an ordered set) defined at the points of the cosupp Ij

(where the Ij are the successive transforms of I), such that the invariant is
upper-semicontinuous, we blow up its maximum locus at each step, and the
invariant decreases with (finitely many) blowings-up. The following theorem
makes this precise. Let Q>0 (or Q≥0) denote the set of positive (or nonnegative)
rational numbers.

Theorem 7.1. Let I = (M, N, E, I, d) denote a marked ideal, where
d > 0. Then I admits a resolution of singularities

M = M0
σ1←−M1 ←− · · · σt←−Mt ,
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such that, if Ij denotes the j’th transform of I, then the following properties
are satisfied.

(1) There are Zariski upper-semicontinuous functions invI , µI and JI defined
on cosupp Ij, for all j, where invI takes values in the set of sequences
consisting of finitely many pairs in Q>0 × N followed by 0 or ∞ (ordered
lexicographically), µI takes values in Q≥0 ∪ {∞}, and JI takes values in
the set of subsets of Ej, for all j (ordered as in Step II.A in Section 5).

(2) Each centre of blowing up Cj ⊂ Mj is given by the maximum locus of
(invI , JI) on cosupp Ij (where pairs are ordered lexicographically).

(3) Let a ∈ cosupp Ij+1 and b = σj+1(a). If b 
∈ Cj, then

invI(a) = invI(b), µI(a) = µI(b), JI(a) = JI(b).

If b ∈ Cj, then (
invI(a), µI(a)

)
<

(
invI(b), µI(b)

)
.

(4) Suppose that ϕ : M ′ →M is a smooth morphism and that I ′ = (M ′, N ′, E′,
I ′, d′) is a marked ideal such that I ′ is equivalent to ϕ∗(I) (in particular,
E′ = ϕ−1(E)) and dim N ′ = dim ϕ−1(N). Then ϕ lifts to smooth mor-
phisms ϕj throughout the resolution towers for I ′ and I, and, for each j,
invI′ = invI ◦ ϕj, µI′ = µI ◦ ϕj and JI′ = JI ◦ ϕj.

Proof. We follow the steps of the proof of Theorem 1.3 in Section 5.

Step I. I of maximal order.

Case A. E = ∅. The coefficient ideals CU (I) admit resolution sequences
and invariants as required, by induction. Over each U , the desingularization of
I is realized by that of CU (I). If x is a point of cosupp Ij lying over U , we set

invI(x) :=
(
0, invCU (I)(x)

)
, µI(x) := µCU (I)(x), JI(x) := JCU (I)(x).

Case B. General maximal order case. The marked ideal J (defined
using CU (I∅)) has empty exceptional divisor. We set

invI(x) :=
(
s, invJ (x)

)
, µI(x) := µJ (x), JI(x) := JJ (x),

for x ∈ cosuppJ j , until J is resolved. If the sequences of blowings-up of the
J do not resolve I, then we repeat the process using the new s = max s(x), as
in Section 5.
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Note that if x ∈ cosupp Ij and s(x) < s, then all blowings-up in the
desingularization tower of I are isomorphisms over x, until we reach a year qk

where s(x) is the maximum value. Then the values of the invariants at x equal
their values in year qk (by definition; see also Step II.B below).

Step II. General I. First suppose that I = 0. If x ∈ cosupp I = N ,
then we set

invI(x) :=∞, µI(x) :=∞, JI(x) := ∅.
We blow up with centre N to resolve singularities.

Now suppose that I 
= 0.

Case A. Monomial case. If x ∈ cosupp Ij , then we set

invI(x) := 0, µI(x) := µx(Ij) =
ordxIj

d
,

and we let JI(x) denote the maximum among the subsets of Ej that define the
components of cosupp Ij at x. The required properties in this case have been
proved in Section 4.

Case B. General case. We resolve the singularities of the companion
ideal G := G(I) (which is of maximal order) in order to reduce the maximum
order of the ideal N (I). If x ∈ cosuppGj , then we set

invI(x) :=
(

ordN (I)
d

, invG(x)
)

, µI(x) := µG(x), JI(x) := JG(x).

If x ∈ cosupp I \ cosuppG, then ordxN (I) will be the maximum order of
N (I) in some neighbourhood of x, so we can define the invariant in the same
way over such a neighbourhood. (When we resolve the singularities of G(I),
either cosupp Ir1

= ∅ or ordN (Ir1
) < ordN (I) after r1 steps, and we repeat

the process using
(N (Ir1

), ordN (Ir1
)
)
. If x ∈ cosuppG(Ir1

) maps to the
complement of cosuppG(I), then all previous blowings-up are isomorphisms at
the successive images of x, so the values of the invariants at these points are
the same as at x.)

All properties required in the theorem follow by induction and semiconti-
nuity of ordx.

§8. Comparison of Algorithms and an Example

In this final section, we prove Corollary 1.4 and we give an example to
show that the versions of canonical desingularization (Theorem 1.1) in [EV2],
[W], [Ko] involve blowings-up with centres that are not necessarily smooth (see
also [Ma, Ex. 11-5]).
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§8.1. W�lodarczyk’s method

Let I = (M, N, E, I, d) denote a marked ideal. In the case that I is of
maximal order, W�lodarczyk introduces a homogenized ideal H(I) = (M, N, E,

H(I), d), where

H(I) :=
d−1∑
j=0

Dj(I) · (Dd−1(I))j .

Then H(I) is weak-equivalent to I [W, Lemma 3.5.2]. In general, H(I) is not
equivalent to I. It follows from Corollary 3.6, however, that if E = ∅, then
Ck(I) and H(I) are both equivalent to I. (The same statements hold for the
variant W(I) of H(I) introduced by Kollár [Ko].)

Consider the desingularization algorithm as described in Section 5. As
we said in Remark 1.5, we will ignore the small difference in the way that
W�lodarczyk treats Step I.B. The essential difference in his proof is his use of
the homogenized ideal. Instead of using the ideal Cd−1

E (I) of §3.4, he uses
Cd−1(H(I)). (See Remark 3.13.) Following the algorithm as presented in Sec-
tion 5, this introduces a change in Step I, where, instead of our coefficient ideal
C∅,P (I) (see (4.1)), W�lodarczyk would use

CP (I) :=
(
U, P, ∅, Cd−1(H(I))|P , dC

)
.

(Likewise in Kollár’s version, using W(I).)
A priori, this change might result in a change in the actual recipe for

choosing the centres of blowing up. However, since Cd−1(H(I)) is equivalent
to I when E = ∅, it follows that CP (I) is equivalent to C∅,P (I).

Equivalence of the companion ideal (Sect. 5, Step II.B) to the variants used
in [W] and [Ko] follows using Corollary 5.3. We thus obtain Corollary 1.4.

§8.2. Example

Let X denote the subvariety of A4 defined by the ideal I generated by
y2 − x3 and x4 + xz2 − w3. We consider resolution of singularities (Section 5)
of the corresponding marked ideal I = (A4, A4, ∅, I, 1) (which we write simply
as (∅, I, 1)). Then the companion ideal G(I) = N (I) = (∅, I, 2) (Step II.B).
The ideal I has maximum order 2 precisely at the origin, so that C0 := {0} is
the centre of the first blowing-up σ1, by Step I.A. Let I1 = (E1, I1, 1) denote
the transform of I by σ1. In the x-chart of σ1, E1 is given by (x) and

N (I1) = N (I)1 =
(
x− y2, x(x + z2 − w3)

)
=

(
x− y2, y2(y2 + z2 − w3)

)
;
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thus N (I1) has maximal order 1. According to Step I.B, the centre C1 of the
next blowing-up σ2 is given by x = y = 0.

But the ideal of the strict transform X1 of X in the x-chart above is
generated by

x− y2, y2 + z2 − w3.

Therefore, C1 ∩X1 is given by

x = y = 0, z2 − w3 = 0.

Moreover, Sing X1 = {0}.
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