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On the Density of Unnormalized Tamagawa
Numbers of Orthogonal Groups I

By

Norihiko HAYASAKA* and Akihiko YUKIE**

§81. Introduction

This is the first part of a series of three papers. In this series of papers,
we determine the density of unnormalized Tamagawa numbers of projective
special orthogonal groups defined over a fixed number field.

Let k£ and A be a number field and its ring of adeles. Throughout this
series of papers

(1.1) G = GL(1) x GL(n), V = Sym?Aff".

We regard V' as the space of quadratic forms in n > 1 variables. In these papers
we mainly consider the case n > 3, but need to consider all positive integers
n € Zsq for technical reasons. Let V;*® = {z € V| detz #0}. For € V¥,
we define the special orthogonal group SO(z) in the well-known manner. We
define PSO(z) to be SO(z) modulo its center, and call it the projective special
orthogonal group of . Then

SO(x) n odd,

PSO(w) = {SO(I)/ {£I,} n even.

We denote the set of k-isomorphism classes of algebraic groups over k of
the form PSO(z) by S,. Then S, can be naturally identified with the set of
k-isomorphism classes of algebraic groups over k of the form SO(z).
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In § 3, we prove that the correspondence Gx\V;® 5 x — PSO(z) € S, is a
bijective map. In § 5, we define the discriminant A, € Z~( for x € V**. In § 8§,
we define an invariant measure dg’/ on the adelization PSO(xz), essentially using
its Twasawa decomposition. This dg’ is not the classical Tamagawa measure
on PSO(xz)a, which is defined using an invariant differential form defined over
k.

The volume vol(PSO(xz)a/PSO(z);) with respect to dg! is finite, and we
call it the unnormalized Tamagawa number of PSO(z). This is an arithmetic
invariant of some interest. For example, if n = 2 then it can be described by
the class number and the regulator of the quadratic extension of k generated
by the roots of x.

Our main theorems are Theorem 6.12 in Part II [9] and Theorem 5.9 in
Part IIT [34]. Our results are over an arbitrary number field k, but we state
them here assuming that k& = Q for simplicity.

n—1

For convenience, we put r = [%], ie, r =" (nodd) and r =

2 (n

n
2
even). For a prime number p, we put
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Let I'(s) be the classical gamma function. We put
Tr(s) = 2T(3), Ic(s) = (2m)'°T(s).

For 0 <1 < r, let S,; be the subset of S,, consisting of groups of the form
PSO(z) where z is a quadratic form with signature (n — 1,1). Note that this
implies that there are n — 1 positive eigenvalues.

For the special case kK = Q, our main results can be formulated as follows.

Theorem 1.2.  Suppose that n = 2r + 1 > 3 is odd. Then

)giinwx-’Lil 37 vol(SO(2)4/SO(x)g)vol(SO(y)4/SO(y)q)
T, YESpy i
AgpBdy<X

2
2—n+1’1(n—1’1+1)+2

=———— | [T =0 II =0 II <] II&

1<j<i 1<j<n—i 1<j<r )

Note that SO(x) = PSO(z) if n is odd.
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Theorem 1.3.  Suppose that n = 2r > 4 is even. Then

> vol(PSO(x)4/PSO(x)q)

TESy i
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Since our work is a generalization of Datskovsky’s work [3], our method
works for n = 2 also, and can prove the following known result of Goldfeld-
Hoffstein [7].

Theorem 1.4 (Goldfeld-Hoffstein).

2

T 2 3 4
lim X~ hpRrp = — 1-— — + ,
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where hp, Rp are the class number and the requlator of the quadratic field F
respectively.

Note that 1 —p 2 —p 214 p 22 =1 _—p 2 _p34ptifr =1,
which is the constant in the theorem of Goldfeld-Hoffstein. Also note that the
theorem of Goldfeld-Hoffstein is stronger than Datskovsky’s work (and hence
our work also) in the sense that they obtained an error term estimate. This
aspect on the error term is very difficult if one uses the zeta function method,
but it is something which should eventually be achieved with the zeta function
method also for even n.

For a nonzero integer D, let hp be the number of SL(2)z-equivalence classes
of primitive integral binary quadratic forms with discriminant D. It is known
that hp equals the narrow class number of the order of a quadratic field with
discriminant D. If D > 0 then one can define an analogue of the regulator
for the above order, which we denote by Rp. It is very famous that Gauss

> o~ gt

0<—-D<X

conjectured that

The integral structure on the space of binary quadratic forms Gauss used was
different from the integral structure used nowadays. If the integral structure
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of this paper (which is the same as that in Shintani [26], etc.,) is used, the
constant 4/21 must be replaced by 1/18. If we use the integral structure of this
paper, Gauss’ conjecture for D > 0 can be stated as follows:

3" hpRp~ ™ xi
0<Dex 18C(3)

Gauss’ conjecture was proved by Lipschutz [18] for the imaginary case
(i.e.,, for D < 0). The real case was proved by Siegel [27]. Mertens [19],
Vinogradov [29], Shintani [26] and Chamizo-Iwaniec [2] worked on the error
term estimates for these cases. Shintani estimated the error term using the zeta
function theory of prehomogeneous vector spaces. Siegel’s result [27] contains
the density theorem of equivalence classes of integral quadratic forms in n > 2
variables.

Gauss’ conjecture was a conjecture essentially on integral equivalent classes
of integral binary quadratic forms. One can naturally associate a quadratic field
to a binary quadratic form. Then a natural question is whether or not hp is
related to the class number of the quadratic field with discriminant D. The
answer is yes in some sense. If D is square-free then hp is indeed the narrow
class number of the quadratic field with discriminant D. However, in Gauss’
conjecture, hp's for not necessarily square-free D were counted. If m is a non-
zero integer and D = m2D’ then hp, Rp can be easily described by hp/, Rp:
and m. So to get the density of hy Ry of quadratic fields, one has to filter out
the above ambiguity.

This ambiguity was first removed by Goldfeld and Hoffstein in [7]. Goldfeld
and Hoffstein used Eisenstein series of half integral weight to prove Theorem
1.4. Datskovsky gave another proof by using the zeta function theory of the
prehomogeneous vector space (1.1) for the case n = 2 in [3].

Theorems 1.2, 1.3 are density theorems on rational equivalence classes
Go\Vg® and so differs from Siegel’s result in some sense. We obtain natural
objects such as Q-isomorphism classes of (projective) special orthogonal groups
by considering GQ\VQfs. What we do is to remove the ambiguity based on the
difference between integral equivalence classes and rational equivalence classes.

Considering rational equivalence classes sometimes makes the considera-
tion easier and sometimes more difficult. If there are not enough equivalence
classes, the consideration becomes easier. This is the case for odd n. If there
are still many equivalence classes, the consideration becomes more difficult,
because it is difficult to count sparse objects. This is the case for even n. For
this reason, we use different methods for odd n and even n.

The notion of prehomogeneous vector spaces was introduced by M. Sato in
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the early 1960’s. The pair (1.1) is a typical example of prehomogeneous vector
spaces. The principal parts of the global zeta functions for some prehomo-
gencous vector spaces, including (1.1), were determined by Shintani [25], [26]
and Yukie [35], [36], [37]. Ibukiyama-Saito [11] proved an “explicit formula”
for the zeta function for (1.1) when the ground field is Q. They expressed the
zeta function as a sum of two functions which are products of Riemann zeta
functions in the case where n is odd, and expressed the zeta function using
Riemann zeta functions and the Eisenstein series of half integral weight in the
case where n is even.

For the rest of this introduction, we consider (1.1) over an arbitrary number
field k. The main purpose of Parts I, I is to prove Theorem 1.2. For this
purpose, we use a Dirichlet series Z (s) defined by

Z(s) = Z vol(SO(a:)AAS/SO(a:)k)
xGGk\VI:S z
when n is odd. This Z(s) is not the zeta function of the prehomogeneous
vector space (1.1). In Part II, we shall express Z(s) as a sum of two Euler
products by a technique used in [11], and prove that Z(s)2 has the rightmost
pole at s = "TH which is simple. Then the well-known Tauberian theorem (see
Theorem I [21, p.464]) reduces the problem to the computation of the residue of
Z (s)? at s = "T'H The slightly complicated form of Theorem 1.2 is a reflexion
of the fact that Z(S)Q7 rather than Z(s), has a simple pole at the rightmost
pole. The location of the poles of Z(s)? for Re(s) < 241l s related to the
generalized Riemann hypothesis. So it seems difficult to obtain any error term

estimate. Even though we shall not prove it, we expect that

X< Y vol(SO(x)a/SO0(x)) < X5
€Sy
Ap<X

for any € > 0 if n is odd.

For odd n, vol(SO(x)4/SO(z))) can be expressed as 2[], ¢, ,, where 2 is
the value of the classical Tamagawa number of SO(z) and ¢} , is a certain Euler
factor corresponding to the place v of k. If v is a finite place then it turns out
that the computation of ¢ , reduces to the computation of the “local density”
of z. If k = Q then the local density is known for all cases (see [8], [30]).
However, there is a slight difficulty dealing with arbitrary dyadic fields and so
we use a method similar to that in [3], [15] to compute ¢} , for v € M in § 11.
For even n, we shall group local orbits according to their types and compute

the sum of ¢ , for each type for v € 9 in Part III. We shall compute ¢, , for
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infinite places (including the case where n is even) in Part II. The knowledge
of ¢ , for all v and x and the relatively simple orbit space G \V;* enables us
to use a technique in [11] to Z(s). We shall discuss the method for odd n in
the introduction of Part II in more detail (also see the comment at the end of
§6).

We shall prove Theorem 1.3 in Part III. We use the “filtering process”
used in [4], [3], [14], [15], [16] (also implicitly in [5], [6]) for that purpose. This
approach is based on the zeta function theory of the prehomogeneous vector
space (1.1). Roughly speaking, the zeta function Z(s) for this case is in the
following form:

Z(s) = Z vol(SO(x)Ai/SO(x)k)Lx(S)
TeGR\ VS *
where L,(s) is a certain L-function which depends on the orbit 2 € V. So, in
a sense, we use the filtering process to remove the contribution from L,(s).

We speculate that it is possible to use the filtering process to the square of
the zeta function and obtain the same result for odd n. However, it is probably
easier to apply the explicit method in Part II. There is also a possibility that
one can use the explicit method in Part II for even n. However, since the
principal parts of the zeta function for the present case has been determined
in [35], it is probably easier to use the zeta function theory at this point. We
discuss the method for even n in the introduction of Part III in more detail.

For the rest of the introduction, we discuss the organization of this part.
Except for § 3 where k is an arbitrary field, £ is a number field. In this part n
is an arbitrary positive integer except for § 6, 9, 10, 11 where n > 3 is an odd
integer.

In § 2, we discuss notations used throughout this part. In § 3, we investigate
the relation between S, and the orbit space G;\V;® for an arbitrary field k. In
§ 4, we choose a set of representatives for local orbit spaces of (1.1) at finite
places. In § 5, we define the notion of discriminant for quadratic forms, and
determine values of discriminants for the local representatives which we choose
in § 4. In § 6, we investigate the correspondence between the global orbit space
and the product of the local orbit spaces for odd n. In § 7 and 8, we define
invariant measures on SO(z),, etc., for x € V3 essentially using their Iwasawa
decompositions, and define the notion of the unnormalized Tamagawa number
of SO(x)a, etc., assuming the definition of the measures at infinite places in
Part II. In this way, the reader can concentrate on finite places in this part,
and on infinite places in Part II. In § 9, we review some facts concerning the
classical Tamagawa number of SO(x). In § 10 and 11, we compute ¢, , for finite
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places v. Part of the computations of ¢ , may follow from classical results, but
we included them for the sake of the reader.

§2. Notation

In this section, we define basic notations used throughout this paper. More
specialized notations will be introduced in each section.

If X is a finite set then §X will denote its cardinality. The symbols Q, R,
C and Z will denote respectively the set of rational, real and complex numbers
and the rational integers. If a € R, then [a] will denote the largest integer z
such that z < a. The symbol Rs (resp. R>¢) will denote the set of positive
(resp. non-negative) real numbers. Similarly, Z~o (resp. Z>o) will denote the
set of positive (resp. non-negative) integers. If R is any ring, then R* is the set
of invertible elements of R. If V is a variety defined over R, then Vg denotes
the set of R-points. If G is an algebraic group, then G° denotes its identity
component.

In this paper, we assume that k is a number field except for § 3 where k is
an arbitrary field. We shall denote the ring of integers of k& by . The symbols
M, Moo, Mg, Myy, Mr and N will denote respectively the set of all places of
k, all infinite places, all finite places, all dyadic places (those dividing the place
of Q at 2), all real places and all imaginary places.

If v € M, k, denotes the completion of k at v and | |, the normalized
absolute value on k,. If v € Mg, then O, denotes the ring of integers of k,,
7, a uniformizer of O,, p, the maximal ideal of O, and ¢, the cardinality of
Oy/pv. If a € k, and (a) = p!, then we write ord,(a) = i (or ord(a) = i if
there is no confusion). If i is a fractional ideal in &, and a — b € i, then we
write a = b (i) or a = b (¢) if ¢ generates i.

If k1/ko is a finite extension either of local fields or of number fields, then
we denote the relative discriminant of the extension by Ay, /i,, which is an
ideal in the ring of integers of ky. If ks is either Q, or Q, we denote Ay, /i,
by Ag,. We also denote the classical absolute discriminant of k; over Q by
the same symbol Ay, . Since this number generates the ideal Ay, , the resulting
notational identification is harmless.

We now return to k. The symbols 71, ro, hi, Ri and e; will denote
respectively, the number of real places, the number of imaginary places, the
class number, the regulator and the number of roots of unity contained in k.
We put

(2.1) Cp =27 (27) 2 hy Rie;, '
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We next define notations concerning adeles and ideles (see [31]). The ring
of adeles, the group of ideles and the adelic absolute value of k are denoted by
A, A% and | | respectively. Let Al = {t € AX | |t| = 1} and A; be the finite
part of A. For A € Ry, A € A* is the ideéle whose component at any infinite
place is A/*@ and whose component at any finite place is 1. Then Al = A

We choose a Haar measure dx on A so that fA/k dxr = 1. For any v € 9,
we choose a Haar measure dx, on k, so that fOu dr, = 1. Let dx, be the
Lebesgue measure if v € Mg, and two times the Lebesgue measure if v € M.
It is known that do = |A| Y2 ], dz, (see [31, p.91]).

We define a Haar measure d*t' on A! so that fAl/kX
measure, we choose a Haar measure d*t on A* so that

d*t!' = 1. Using this

f)yd*t = / FAtYd* d*th,
AX 0 Al

where d*\ = A~1d\. For any v € 9, we choose a Haar measure d*t, on k.
so that [« d¥t, = 1. Let d*t, = [t,[, 'dt, if v € M.

We later have to consider the product of local measures, and for that
purpose it is convenient to denote the product of local measures on A, A* as
follows

(2.2) dpr = [ [ day, dft =] d"t, .

It is well-known (see [31, pp. 91, 95]) that
(2.3) dr = |Ag| TV dpex, ¥t = & dt

Let (i (s) be the Dedekind zeta function of k. We define
(2.4) Zi(s) = |Ak|? (75T(5)) "™ ((2m)' T (s)) " CGa(s) -

This definition differs from that in [31, p.129] by the inclusion of the |Ax|*/?
factor and from that in [35] by a factor of (27)"2. It is known ([31, p. 129]) that

(2.5) Ress—1 Cr(s) = |Ak|_%€k, and so Ress— Z1(s) = €.

For positive integers [, m, we define M(I, m) to be the set of I x m matrices.
We denote the zero matrix of M(l,m) by 0;,,. If there is no confusion, we may
write 0 instead of 0;,,. We denote the unit matrix of M(m,m) by I,,.
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83. Structure of the Orbit Space

In this section, we assume that k is an arbitrary field. We denote its
separable closure by £%P. The main purpose of this section is to investigate
the relation between the sets of k-forms of orthogonal groups of various types
and the set of rational orbits in the space of quadratic forms.

Let n > 1 be an integer. We consider the following pair (G, V):

3.1 G = GL(1) x GL(n), V = Sym?Aff"
(3.1) y

where Sym?Aff” is the space of n-ary quadratic forms over k. In this paper,
we mainly investigate (3.1) for n > 3. We express an element z € V' as

(3.2) xv] = g LijV;V;
1<i<j<n
where v = (v1,--+,vy) (v is an n-dimensional row vector) and vy, ---, v, are
variables.
We associate to x, the symmetric matrix

2x11 X120 Tip
T12 2T22
(3.3) M, =
Tpn—1n
Tin - Tn—1n ann

If chk # 2 then z[v] = 27 'vM,'v and we can identify M, with z. Let n’ > 1
and u € M(n', n). We denote 2~ uM,'u by x[u].
We define an action of g = (t9,91) € G = GL(1) x GL(n) on V as follows:

(gz)[v] = toxf[vg].
Let T = Ker(G — GL(V)) and G = G/T. It is easy to see that
(3.4) T = {(t52, 1, | to € GL(1)}.

We put

(3.5) P(z) =

%det M, n odd,
det M, n even.

We define a character y of G as follows:

(3.6) x(g) =tf detgi (9= (to,91) € G).
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Then P(gz) = x(g)P(x). We say that a point = € V' is semi-stable if P(x) # 0.
We denote the set of semi-stable points of V' by V5.
For the rest of this paper, we put

H:(g;).

Let w,w’ be the elements of V' such that
(3.7)
H

n odd,
H ITny n odd,

M, = 2 M, = In

H In
2 n even.
T n even. In
2

H

It is easy to see that P(w) = £1 and so w € V. It is obvious that there exists
a permutation matrix ¢ such that cw = w’, which implies that GLw = Grw'.
So P(w') = %1 also. If n = 2r is even, we can choose such ¢ so that the
(4,27 — 1)-entry and the (r + j,2j)-entry are 1 for 1 < j < r. The point w is
more convenient for our purposes, but many textbooks on Lie groups use w’ to
describe the split orthogonal groups.

If € V® then we write

We regard GL(n) as a subgroup of G by the natural map GL(n) 3 g+~ (1,9) €
G. We define subgroups GO(z), O(z) and SO(z) of GL(n) respectively as
follows:

GO(z)={g € GL(n)
O(z) ={g € GL(n)
SO(z) = O(x) N SL(n).

| 31(9) € GL(1) s.t. gzfv] = ~(g)z[v]},

| gz[v] = z[v]},

We denote the identity component of GO(x) by GO(z)°. We call the map
7:GO(z) 3 g — 7(g) € GL(1)

in the definition of GO(z), the multiplicator of GO(z).
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By simple Lie algebra computations, one can show that the groups GO(x)
and SO(z) are smooth algebraic groups over any k (even if chk = 2). The
group O(z) is a smooth algebraic group over k if chk # 2. We consider the
above groups only set-theoretically if ch & = 2. For the rest of this section, we
assume that ch k # 2. Tt is well-known that SO(z) is the identity component
of O(x). Tt is reductive if n > 2 and semi-simple if n > 3.

Let Z = {tI, |t € GL(1)}. Then Z is the center of GO(x). If n is odd
(resp. even) then ZNSO(x) = {I,} (resp. ZNSO(z) = {*I,}). In both cases
Z NSO(z) is the center of SO(z). We define

(3.8) PSO(x) =SO(x)/(Z NSO(x)), PGO(z)=GO(z)/Z.

It is easy to see that GO(x)°/Z is the identity component of PGO(z). It is
well-known that PSO(x) = PGO(x)° as algebraic groups (however, if n is even
then the set-theoretic quotients SO(x)/{£I,}, GO(x)},/Zkr may not coincide).

The following lemma is easy to prove and we simply state it without proof.

Lemma 3.9. Ifx € V® then the projection to the second factor induces
an isomorphism G, = GO(z).

Let n > 3 for the rest of this section. Let Aut (SO(w)) and Aut (PGO(w)®)
(resp. Int(SO(w)) and Int(PGO(w)°)) be the automorphism groups (resp. the
inner automorphism groups) of SO(w) and PGO(w)°.

If h € PGO(w) then we define an automorphism Ad(h) of PGO(w)® as
follows:

Ad(h) : PGO(w)°® > &+ hah~! € PGO(w)°.

The group PGO(w)® is semi-simple since n > 3. If we denote the Dynkin
diagram of PGO(w)° by Dyn(PGO(w)®), then applying Proposition [1, p. 190]
to PGO(w)°, there exists a natural injection

Aut (PGO(w)°?)/Int(PGO(w)°) — Aut (Dyn(PGO(w)?)).
Since the Dynkin diagrams of PGO(w)® and SO(w) are of the same type,
{1} n is odd,
(3.10) Aut (Dyn(PGO(w)?)) = { Z/27Z n # 8 is even,
Gs3 n=2~8
where &3 is the symmetric group of degree 3.
Lemma 3.11.  Ifn > 3 then

PGO(w) =2 Aut (PGO(w)?) = Aut (SO(w)).
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Proof. We first assume that n > 3 is odd. We briefly review the proof
of the fact that GO(w)® = GO(w) (which implies that PGO(w)® = PGO(w)).
It is well-known that SO(w) is connected as an algebraic group. Since Z 22
GL(1) € GO(w) is connected, Z C GO(w)°. We show that GO(w); =
SO(w); Z5, which proves that GO(w) is connected. It is easy to see that if
g € GO(w)j; then there exists t € Zj such that y(¢) = v(g). So we may as-
sume that g € O(w). Then detg = £1. Since —1I,, € Z and det(—1I,) = —1,
g € SO(w);Z;. This proves that GO(w) is connected.

The map PGO(w) 3 h — Ad(h) € Aut (PGO(w)) is surjective by (3.10).
Moreover this map is injective because the center of PGO(w) is trivial. There-
fore, PGO(w) and Aut (PGO(w)) are isomorphic by the map PGO(w) 5 h —
Ad(h) € Aut (PGO(w)). The argument is similar for Aut (SO(w)).

We next assume that n is even. For g € PGO(x), we define Ad(g) €
Aut (PGO(z)°) similarly as above. We first prove that

(3.12) Aut (PGO(w)?)/Int(PGO(w)®) 2 Z/2Z.

(It is proved in [23, p. 90] that Aut (SO(w))/Int(SO(w)) = Z/27Z ). We put

2
In72 / 1
3.13 = =
(313) r ( H>7 - .
1

If o is the permutation matrix defined after (3.7) then simple computations
show that oro~! = 7/. It is easy to see that 7 € O(w) and 7/ € O(w’).

It is easy to see that Ad(7’) stabilizes the standard Borel subgroup of
PGO(w’)° and exchanges the last two roots of the Dynkin diagram of the group
PGO(w’)°. So Ad(7’) is an outer automorphism of PGO(w’)°. This implies
that Ad(7) is an outer automorphism of PGO(w)® also. Thus, by (3.10),

Aut (PGO(w)°)/Int(PGO(w)®) = Z/27Z

for n # 8.

Suppose that n = 8. We assume that Aut (PGO(w)°)/Int(PGO(w)°) =
G3 and deduce a contradiction.

We denote the spin group of degree 8 by Spin(8). Then

Aut (Spin(8))/Int(Spin(8)) = &;.

So every automorphism of Spin(8) is realized by an element of Aut (PGO(w)°®).
Let (p, W) be the vector representation of Spin(8). By assumption, there exists
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¢ € Aut (PGO(w)°®) such that po¢ is one of the half-spin representations. Note

that po¢(—1) = x(—1) is the identity. Here —1 is the scalar —1 in the Clifford

algebra. However, the image of —1 € Spin(8) by the half-spin representation is

non-trivial, which is a contradiction. Therefore, (3.12) holds for n = 8 also.
Since h maps to the non-trivial element of

Aut (PGO(w)°)/Int(PGO(w)®) 2 Z/27Z

and the center of PGO(w) is trivial, PGO(w) = Aut (PGO(w)®°). The rest of
the argument (including that for Aut (SO(w))) is similar to the case where n
is odd. O

Lemma 3.11 implies that [GO(w) : GO(w)°] = 2 if n is even.
Lemma 3.14.  Ifn = 3 is odd then G,, = SO(w) x T.

Proof. Let (to,g9) € Gujp. All automorphisms of SO(w) are inner by
Lemma 3.11. So there exists § € SO(w)j such that Ad(g)(h) = ghg™! = ghg*
for all h € SO(w)j. Since g~tg commutes with all elements of SO(w);, there
exists £}, € k* such that g = #)g. So GO(w); = SO(w)zT%. Since SO(w);NT} =
{(1,1,)}, the map

SO(w)g x Ty, = Gy i

is an isomorphism.

Simple Lie algebra computations show that the differential of the above
map is an isomorphism. Note that SO(w) x T and G,, are both smooth over k
and there is a natural map ¢,, : SO(w) x T — G,. Since ¢y is an isomorphism
over k, it is an isomorphism over k. (I

We next consider the relation between the sets of k-forms of the groups
SO(w), PGO(w)® and the orbit space G\V;®. Let Gy and G, be algebraic
groups over k. We say that Gs is a k-form of G if there exists a separable
algebraic extension K/k such that G x; K = G X, K. We define the first
Galois cohomology set H'(k,G) for an algebraic group G over k in the same
manner as in [13, p.317], i.e. a l-cocycle h = {hn}ne(}al(ksep/k) satisfies the
condition Ay, ,, = hy,h? for all n1, n2 € Gal(k*P /k).

Proposition 3.15.  Let n > 3. The orbit space Gi\V® is in bijective
correspondence with the set of k-isomorphism classes of algebraic groups in the
form SO(z) where x € V. It is also in bijective correspondence with the set
of k-isomorphism classes of algebraic groups in the form PGO(z)°. Moreover,
if n is odd then the set {SO(x)}zeGk\V;s = {PGO<x)O}meGk\V,§S exhausts all
k-forms of SO(w) = PGO(w)°.
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Proof. We first assume that n is odd. Using Theorem (1.7) [13, p.318],
there is a bijective map from GR\V¢® to H'(k,G,,) = H'(k, Aut (SO(w))) x
H'(k,T). Note that H'(k,T) = {1} by Hilbert’s Theorem 90. It is known that
H'(k, Aut (SO(w))) is in bijective correspondence with the set of k-forms of
SO(w) (see [23, p.67]). Therefore, Gi\V;® is in bijective correspondence with
the set of k-forms of SO(w) if n is odd.

We now prove that € V;>* corresponds to the k-form SO(z) by this
correspondence. If x = gyw for g, = (3,0, 9z,1) € Gieer, then Ad (g;}g;’)l) €
Aut (SO(w)g=er ). So x corresponds to the class of {Ad(g;&g;’)l)}neGal(kscp/k).
Let G(x) be the k-form of SO(w) corresponding to {Ad(g;jg;”l)}neGal(ksep/k) .

We show that there is a natural isomorphism G(x)r = SO(z)g for any
k-algebra R. Let Ry = R® k*P. We define an action of n € Gal(k*P/k) on Rj
by (r®z)?’=r®a". Let

ve(n) : SO(w)r, 3 g+ Ad(gz1971)(g") € SO(w)r, .
Then the set G(x)r of R-rational points of G(x) can be expressed as

G(z)r = {9 € SO(w)r,

ve(n)(9) =g Vn € Gal(k*P/k) }.

If g € SO(w) g, satisfies v,(n)(g) = g for all 7, then gx,lgg;& € SO(x) R, and

(92199:1)" = 92,1995 1-
So there is a natural isomorphism
SO(w)r, D G(x)r > g — gr199,1 € SO(z) 5.

Since there is a natural isomorphism G(z)g = SO(x) g for any k-algebra R,
there is an isomorphism between the algebraic groups G(x) and SO(z) over k
(see THEOREM [20, p.17]). Thus, x € V;*® corresponds to the k-isomorphism
class of the k-form SO(x).

We next assume that n is even. We consider ék\Vkss instead of G \V®.
Note that Gy, = Gy/Ty since H (k, T) = {1}. By Theorem (1.6) [13, p.318],
there is a bijective map

(3.16) GI\VE = Gp\VE — ker (Hl(k, Gu) — H'(k, é)) .
By Lemma 3.9 and Lemma 3.11, there is a bijective correspondence between

H'(k,G,) = H' (k, Aut (SO (w)))
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and the set of k-forms of SO(w). Using (3.16) and this correspondence, we
obtain a map from G;\V3® into the set of k-forms of SO(w). By the above
argument, this map is injective. It can be verified that it associates x € V;* to
the k-form SO(x) by the same argument as in the case where n is odd. The
argument is similar for k-forms of PGO(w)°.

This completes the proof of the proposition. 1

If n is even, we define a real subgroup SO*(n) of SO(n)c¢ as follows:
S0*(n) = {g € SO(n)clgJg" = J}

In/

where J = (_In/2

2 ) and g* is the complex conjugate of tg. It is known that
SO*(n) corresponds to the Satake diagram of type DIII and SO(z)r corresponds
to the Satake diagram of type DI or DII for any = € V3®. Therefore, SO*(n)
is isomorphic to SO(w) over C, but not isomorphic to SO(x) over R for any
z € V3® (see (10, pp. 445-446, 453,527, 533]). Therefore, the R-form SO*(n) of

SO(w) does not come from Gg\V3®.

84. A Set of Representatives for the Local Orbit Space

For the rest of this paper, we assume that k is a number field. The main
purpose of this section is to choose a set of representatives for GkU\Vk?: for
n > 2.

We assume that v € M. Let

(4.1) my = ord,2, A\, =4 (k‘vx/ (kvx)z) - 2.

First we review some facts concerning quadratic extensions of k,. There is
a unique unramified quadratic extension Fy of k, and it is generated by a root
of an irreducible polynomial

(4.2) po(2) = 2% 4+ apz + bo

for a suitable choice of ag, by € O whose discriminant a3 — 4by is a unit.
Moreover, Fj is also generated by the square root of a non-square unit in the
form

(4.3) ty =1+4c

for some ¢ € O. This p, corresponds to A in [22, p.164].
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Now we consider ramified quadratic extensions of k,. FEvery ramified
quadratic extension F' of k, is generated by either root of an Eisenstein poly-
nomial

p(z) = 2% +az +b.

Let g be aroot of p(z). Then 7 is a uniformizer of F. We have Op = O,[rr]
and Ap/i,, = (a* —4b)O,. Let | = ord,(a). If | > m,, + 1, we may assume that
a = 0 by the transformation z — z — (a/2). In this case, F is generated by the
square root of a uniformizer of k, and Ap/, = p™ 1. If 1 <1 < m, then
Ap/k, = p2l and F is generated by the square root of a? — 4b and also by the
(mo =D+ for suitable ¢ € O;f. This exhausts

all quadratic extensions of k,. There are A, isomorphism classes of ramified

square root of 1 —4a=2b =1+ 7r3

extensions of k,. We denote their representatives by Fi, ---, F\,. Note that
Fy is the unramified extension of k, which corresponds to the Artin-Schreier
polynomial (4.2). For each 1 < j < A,, let

(4.4) pj(2) = 2° +a;z + b

be an Eisenstein polynomial which corresponds to Fj.

It is known that the orbit space G;\V3® for n = 2 is in bijective correspon-
dence with the set of isomorphism classes of Galois extensions of k which are
splitting fields of degree two equations without multiple roots (see [33, pp. 285,
309-310]).

Let

2 ao 2 a; .
ilvin* ) 41 rm,j) — J 1< <)\v~
’ ((l() 2b0> v, (rm, ) ((lj 2b]> =7 =

Then, for n = 2, we can choose a set of representatives for Gy, \V;* as follows:
(45) {H = ((1) (1)) ) A’u,ina A'u,(rm,l)a ) Av,(rm)\v)} C M(2a2)kv-

Now we consider all places v € 9 again. We recall definitions of some
invariants of quadratic forms over k,. An n-ary quadratic form x is called
isotropic if there exists a nonzero vector v € kJ such that z[v] = 0, anisotropic
if not. It is known that by the action of GL(n)x,, z € V* can be made into

the following form:
H
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where z’ is an anisotropic quadratic form. If the size of 2’ is mg X mg then my
does not depend on the choice of 2’ (see [22, pp.98-99]). We call (n — mg)/2
the Witt index of x. Tt is the split rank of SO(z). It is easy to see that az’ is
anisotropic for all & € GL(1)j, if 2’ is anisotropic. Since aH € GL(2),H for
all a € k), the Witt index is also invariant under the action of Gy,. If v € M
then the Witt index is clearly [n/2]. If v € My and the Witt index of z € Vi§®

is m, then
_Im Im
or
Iy m Ly m

belongs to GL(n)gz. So the signature of x is (n —m, m) or (m, n —m).
Let z € V3. We define d, () to be the class of det M, in k) /(k))?, ie.,

2P(z) n odd

mod (k).
P(z) n even

dy(z) =det M, = {
Note that this congruence is multiplicative. We always regard d,(z) as an
element of kX /(kX)2. Tt is clear that d, is invariant under the action of GL(n)y, .
In this paper, we call d,(z) the classical discriminant of x.
We next define the Hasse symbol of x € V;*. It is known that there exists
a € GL(n)g,x such that

(651 0
Ma: (@1,"',Oén€k;<)

0 o,

(see [22, p.90]). We define the Hasse symbol S, (x) by
Sv(.’L') = H (Oél', Oéj)v

1<i<j<n
where (, ), is the Hilbert symbol. The Hasse symbol S, (z) does not depend on
the choice of @ and is invariant under the action of GL(n)y, (see [22, p.167]).

In the classical theory of quadratic forms, a quadratic form

z(v) = Z V0,
1<i<j<n
corresponds to the symmetric matrix 27*M,. The symbols d,(z) and S,(z)
are the discriminant and the Hasse symbol of 2M,, in [22, pp. 87, 167]. It can
be verified that the above d,(z) and S,(z) have the same properties as the
discriminant and the Hasse symbol in [22, pp. 87, 167].
The following theorem is Theorem (63:20) [22, p. 170].
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Theorem 4.6.  Suppose that z, y € Vi*. Then GL(n),z = GL(n)r,y
if and only if d,(z) = d,(y) and Sy(x) = Sy (y).
We define the modified Hasse symbol S, of z € Vis by
Sy(x) = Sy(det Myz)
if n > 3 is odd.

Lemma 4.7.  Suppose that n > 3 is odd, v € M¢ and x, y € V. Then
G,z = G,y if and only if §v(m) = gv(y)

Proof. Since n is odd,
dy((det M,)x) = det ((det M,)M,) = (det M,)"™' =1 mod (k)%
Let (to,91) € Gk, and y = (to,g1)x. Then

(det M)y = (t5" det g7, g1)(det M,)x.

Since (det M)y can be regarded as (1, (L‘énﬂ)/2 det gl)gl) (det M)z and S, is

invariant under the action of GL(n), , Sy ((det My)y) = S, ((det My)x).
Conversely, let z, y € V¥ and S, (x) = S,(y). Since

dy ((det My)x) = d, ((det My)y) =1,
we have
GL(n)g, ((det My)z) = GL(n), ((det M,)y)
by Theorem 4.6. Since det M, det ]\Jy’1 is a scalar, Gy, =z = Gj, y. O

Suppose that n is even, z € V> and a € k). Then

Sy(ax) = S,(a" det Myz) = S, (avdet M,x).

If y € Vi then

n(n+1) n(n+1)

Sulay) = (o, (=1) 77 (det My)" ™) S,(y) = (o, (=1)" 7 det M) S, (y).

So

~ n(n+1)

Sy(ax) = (a,(=1)" 2 (det M,)" )8, (det M, x)

n(n+1) n(n+1) ~

= (o, (—1)" 2 det M,)S,(det Myz) = (o, (—1) 2 det M,)S,(z).
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If ord(det M, ) = 1 then there exists o € k. such that (a, (—1)% det M) =
—1 ((63:11a) [22, p. 165]). Therefore, S,(z) is not Gy, -invariant if n is even.

We now choose a set of representatives for Gy, \V;*. We first consider the

case v € M. Suppose that n > 3 is odd. By the above lemma, there are at

and wy

most two G, -orbits in Vi*. We define quadratic forms wy over

P m

k, as follows:

A,
0 _ 0 _ v,in
(48) wv,sp - (2)? wv,rm - < 27Tv>

where A, i, is the symmetric matrix in (4.5). The indices “sp” and “rm” stand
respectively for “split” and “ramified”. It is easy to see that the above wgysp
and w) ., are both anisotropic.

Definition 4.9. Let n > 3 be odd. We define n-ary quadratic forms
Wy, spy Wy,rm € VI:E as follows:

H H

(4.10) wyep = - =W, Wyrm = :
H H
0 0

wv,sp w'u,rm

0

. . . 0
If there is no confusion, we write wg,, Wy, and Wep, Wym.

Proposition 4.11.  Let n > 3 be odd. If v € My then {wyp, wm} is a
complete set of representatives for GkU\V,jUS. If v € M\ Mgy then

Sy(wsp) =1,  Sy(wem) = —1.

Proof. The Witt indices of wy, and w,,, are respectively (n — 1)/2 and
(n —3)/2. So Gk, wsp # Gk, Wim. By Lemma 4.7, there are at most two Gy, -
orbits in V;*. Therefore, {wsp, W } 1s a complete set of representatives for
G, \V>.

Suppose that v € M\Myy. It can easily be verified that (aq, az) = 1
for all o, ap € OF. The quadratic form ws, can be made into the form

2 (i1 ) . . s
( (/2 721(71_1)/2) by the action of GL(n),. Since £2 € O, S,(wgp) = 1.

Since G, wsp # G, Wrm,s So(Wrm) = —1. O

We next assume that n > 4 is even. We continue to assume that v € 9.
We define a quaternary quadratic form wgq as follows:

A .
4.12 o=
( ) w'u,dq ( 7T'L}A'U,in>
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where A, ;, is the symmetric matrix in (4.5). It is easy to see that wg,dq is

anisotropic.

Remark 4.13.  The index “dq” stands for “division quaternion algebra”.
The above wgydq corresponds to the norm of the unique division quaternion

algebra over k, (see [22, pp. 142-149]).

Definition 4.14. Let n > 4 be even. We define n-ary quadratic forms
Wy,dqs Wo,spy Wo,in ANd Wy, (4 ) for 1< 5 < A, as follows:

(4.15)
H
H
Wy,sp = .l ;  Wy,in = ' ;
H
H
Av,in
H H
Wy, (rm,j) = - y Wodq = i
v,(rm,j % o
Av,(rm,j) wg,dq

We put wg’in = A, in and w?),(rmw = Ay (rm,y) for 1 < j < A, If there is no
coonfusion, we write wy,, Wiy, ), Wiq and Win, Wm,j), wdq (we did not define
wv,sp)'

In the above definition, the index “in” stands for “inert”. From now on,
we shall use the symbol 1 (or 13, etc.,) for the index of the representatives. So
i =sp or rm if n is odd, and 1 = sp, in, (rm, j) or dq if n is even.

Proposition 4.16.  Let n > 4 be even and v € M. Then

{wspa Win, W(rm,1)y -+ -5 Wrm,\,)» wdq}

is a complete set of representatives for Gkv\Vksf.

Proof. We first prove that Gy, wi, # G, wi, for all 11 # 1. Since n is
even, d, is invariant under the action of G, . It is easy to see that

dy(Waq) = dy(wsp) = (_1)%» dy(Win) = (_1)%71 det Ay in,
dv(w(rm,j)) = (_1)%_1 det Av,(rm,j)
for1<j <\, So

dyp(wi,) # dy(wi,) (i1 # i2)
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except for (i1, i2) = (sp,dq). Therefore,
Gr,wi, # G, wi, (i1 # i2)

except for (11,12) = (sp,dq). It is easy to see that the Witt index of wqq
(resp. wgp) is (n —4)/2 (resp. n/2). So Gp,waq # G, wsp. Thus, we have
G, wi, # G, w;, for all 1y # 1.

We next prove that x € Vksf belongs to G, w; for some 1. It is known that
an n-ary quadratic form x over k, is isotropic if v € 9 and n > 5 (see (63:19)
[22, p. 170]). Therefore, the Witt index of x is n/2, (n —2)/2 or (n—4)/2. If it
is n/2, x clearly belongs to G, wsp. Let u, be a non-square unit whose square
root generates the unramified quadratic extension of k,,. It is known that every
anisotropic quaternary quadratic form can be made into the following form:

1
(4.17) T
Ty

Mo Ty

by the action of GL(4)g, (see [22, p.169]). So the above quadratic form belongs
to the GL(4),-orbit of wl,. If the Witt index of @ is (n —4)/2 then z is in the
orbit of (4.17). Since wy, is also in the orbit of (4.17), z is in the orbit of wg.

Suppose that the Witt index of « is (n —2)/2. Then by the action of Gy,
x belongs to the G, -orbit of a quadratic form in the following form:

H

H
A

where A corresponds to an anisotropic binary quadratic form. Note that A
belongs to the (k) x GL(2)g,)-orbit of one of the symmetric matrices A, m,j)
in (4.5). If a« € k) is a scalar then «H € GL(2)y, H. Therefore, z belongs to
G, Win oOr Gkvw(rmJ) for some 1 < 5 < A,.

This completes the proof of the proposition. O

We now consider an arbitrary n > 2 (but still assume that v € ). Let
wy ; be one of the representatives in (4.10), (4.15). We denote the Witt index of
wy,; by m and put mo = n—2m. Multiplying an element of GL(1)p, x GL(n)o,,
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w, ; can be made into the following form:

0 —I=»
2 mo = 0,
~Iy 0

(418) wiu-l = 0 0 *Im
0 wg,ﬁ 0 mo # 0.
—I, 0 0

Clearly G, wy; = Gkvwg7ﬁ.
If v € M then we call w,; and wim-l respectively the standard orbital
representative and the alternative orbital representative (or simply the stan-

dard representative and the alternative representative) for Gy, \V;.

We use
the standard orbital representatives and the alternative orbital representatives

depending on purposes. If there is no confusion, we write w} instead of w? ;.
,

Definition 4.19.  Let v € M and z € V;®. If n is odd, we say that x
is unramified (resp. ramified) if © € Gy, wsp (resp. € Gi, Wim). If 1 is even,
we say that « is unramified (resp. ramified) if z € G, wsp or € G, win (resp.
xr € Gk:vw(rm,j) or r € Gk/uwdq).

We consider this notion only for finite places.

If n is even and x € V;*, then we can associate the quadratic extension
k,(v/(=1)"/2d,(x))/k,. There is a notion of ramification for quadratic exten-
sions. If x = w, qq then x is ramified according to Definition 4.19. However,
the extension k,(\/(—1)"/2d,(x))/k, is trivial and so it is unramified. So the
notion of ramification in the sense of Definition 4.19 does not coincide with the
notion of ramification of the extension k,(\/(—1)"/2d,(x))/k,.

We next consider the case v € M. Let r = [n/2].

Definition 4.20. Let n > 2. If v € M then we define n-ary quadratic
forms w, ¢, and wy, g, respectively as follows:

Wy, sp = Ina w = I, o

If v € MR then we define n-ary quadratic forms w, ; and w;7]-1 for0<i<r
respectively as follows:

—I;
Wy = —h 0 w, . = I,,_o;
v, — 0 In—ﬁ ) v,i T n—21

—I
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/

If there is no confusion, we write wsp, w;p and wy, wj.

It is easy to see that G, w,; = Gkvng for all 1 and v € M. Clearly,
Gc\VE® consists of a single orbit and so we can choose w, s, or wy, o, as the
representative. It is well-known that either of {wy, ---, w,} or {w{, ---, wl.}
is a complete set of representatives for Ggr\Vg®.

If v € Mg then the Witt index m coincides with i. So from now on, if
v € My then we shall use 1 instead of m to express various matrices related to

orbits.

Remark 4.21. Clearly, |P(w,3)|o = [P(w;, ;)]0 = |[1/2], if n is odd, and
|P(wyi)lo = |P(wy, ;)[, = 1if n is even. It would have been desirable to choose
representatives = so that |P(x)|, = 1. However, we shall consider the Iwasawa
decompositions of the stabilizers in Part II, and for that purpose, it will turn
out to be more convenient to choose the above representatives w, ; or wy, ;.

For v € M, we call w,; and wgvﬁ respectively a standard orbital repre-
sentative and an alternative orbital representative for Gy, \V,®.
Let r = [n/2] as above. We define o, ¢, for v € M and o, ; for v € My

as follows:

V=2 2 2 2
TIT Or,n—Qr %Ir %Iﬁ Oﬁ,n—21’1 TL&
Oy,sp = OH—ZT‘,'I" 1, o On—2r,r y  Owui = On—21’1,1’1 I, 2 0n—2i1,i1
V=2 2 V2 V2
TI’I‘ Or7n—2r _TIT Tlﬁ 0ﬁ,n—2ﬁ _711'1

/

_ )
Then oy, spwy,sp = wy, o, for v € Me, and o, 3w, 3 = wy, for v € Mg.

We need the following proposition for later purposes.

Proposition 4.22.  Let n = 2r > 2 be even. If v € M and x € V;° is
a standard representative then there exists an element 1, of Gy, not in G, k.
whose order is two. If v € M; then one can choose T, in Gyp, N K,.

Proof. The point of the first statement is that we can take 7, rationally
over k.

We first consider the case v € M. The statements are clearly satisfied for
Wy sp and so we only consider w, ; for i = in, (rm, j) and dq (if n > 4). Let
o, B be the roots of p;(z). We put

1 1 . 10 ..
i = in, i=in,
—ap —fo ap —1

(423) hru i = Vyi =

(_laj _1@) = (m, j), (1 _01> = (mj).
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Then hy i H'hy 3 = Ay, hmthi = v, for 1 = in, (rm, j) by straightforward

computations.
Let 7 be as in (3.13). If we put

olo.) = (I” h ) T = (I ) i = n, (m, ),

.
g(’U,dq) = hvjn y Tv,dq — < 2 v > y
V 7th'u,in o

then for i = in, (rm, j) and dq,

(4.24)

(4.25) wys = g(v,)w,  g(v,1)7g(v, i) =75

We pointed out that 7 is an outer automorphism of GO(w)® in the proof
of Lemma 3.11. Since 7,; € K,, this completes the proof of the proposition for
v € M.

We next consider the case v € My.. If v € M then the proposition is
obvious since V{* consists of a single orbit, and so we assume that v € M.

Let 0 <1< r. We put

Io;

g_ 1 11 (0.) = S
IRCACNE Ay M
s

Since SH'S = I, the signature of g(v,1)w is (n —1,1). So g(v,1)w € G, wy ;.
Therefore, it is enough to prove the statement of the proposition for x =

g(v, 1)w.
By simple computations,

g(v,1)7g(v, 1'1)_1 =a(l,---,1,-1) € Gy, -

This completes the proof of the proposition. O

85. The Discriminants of Orbits

The main purpose of this section is to define the notion of discriminant
for orbits both locally and globally. We continue to assume that & is a number
field. We use notations such as A\, in (4.1), etc., also in this section.



TAMAGAWA NUMBERS 569

We first define some notations concerning G. Let T,, € GL(n) be the set of
diagonal matrices and N,, C GL(n) the set of lower triangular matrices whose
diagonal entries are 1. Then B, = T,,N,, is a Borel subgroup of GL(n).

We define the classical orthogonal group and the special orthogonal group
as follows:

O(n) ={X € GL(n)g | X'X = I,,}, SO(n) = {X € SL(n)r | X'X =1I,}.

We define the classical unitary group U(n) by U(n) = {X € GL(n)c | XX* =
I,} where X* = "X is the conjugate transpose of X. We define a subgroup
K, , of GL(n)y, as follows:

GL(n)ov v € My,
(5.1) Ky =13 0O(
U(

n) v € Mg,
n) v € M.

It is known that GL(n);, contains K, , as a maximal compact subgroup
and has the decomposition GL(n)y, = K, »Bp,. We define a subgroup K, of
G, as follows:

Ky =K, x Ky .

For the rest of this section we assume that v € 9;.

Definition 5.2.  For each v € M, we define an integral structure on V'

by
2r11 T12 o Tig
T12 2% : o
Vo, = o € Vi, |2ij €0y, 1<i<j<n
: ’ Tn—1n
Tin *° Tpn—1n ann

Lemma 5.3.  We have P(x) € Z[z].

Proof. The statement is obvious if n is even. So we assume that n is odd.
We prove the lemma by induction on odd n. The case n = 1 is obvious and so
we assume that n > 3 is odd.

Let M7, be the matrix obtained by removing the first row and the first
column of x, and Mi’j the matrix obtained by removing the first and the i-th
rows and the first and the j-th columns of x for 2 < i < j < n. We consider
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the cofactor expansion of x with respect to the first row and then consider the
cofactor expansion with respect to the first column. Since x is symmetric,

det z = 2211 det M7 — in det M, + 2 Z (—1)" I+ det M;]

i=2 2<i<j<n

Since M}, is a symmetric matrix, det M/, is divisible by 2 as a polynomial in
Z|x] by induction. So P(z) = 27! det M, € Z[x]. O

The point w is “universally generic” in the sense of Section 2 [17]. So we
may apply Proposition 1 [17] to the present situation. However, since the proof
is very easy, we chose to include the above explicit proof.

Definition 5.4.  We define the discriminant A, of x € Vi for v € M;

as follows:
=i )

= G,z N Vou} .

Remark 5.5.  The discriminant of  depends only on the orbit G, z. We
defined the above discriminant so that the discriminant of quadratic form wg
in § 4 is 1 for all n. (see Proposition 5.23 below).

Let z € Vi®. It is easy to see that x € Vo, and detxz € O for all but
finitely many v € 9. Therefore, A, , = qi}rd“(”“” = 1 for all but finitely
many v € M. Thus, we can define the global discriminant as follows.

Definition 5.6.  We define the discriminant A, of z € V;>* as follows:

Ar= ] Aco

veEMs

For the rest of this section, we determine the values of discriminants for
standard orbital representatives.
Let z € V. We first state some conditions on z.

Condition 5.7. If g € Gy, and gz € Vp,, then ord,(x(g)) > 0.

Condition 5.8. If g € Gy, gz € Vo, and x(g9) € OF

~, then g €
Kvak,U-

Condition 5.9. If g = (1, ¢1) € Gi,, gz € Vo, and x(g) € O, then
g1 € Kn,v~

Condition 5.10. If z[v] € O, for a row vector v € k”', then v € O
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We do not use Conditions 5.8, 5.9 and 5.10 to determine the discriminants.
In § 8, we shall use Condition 5.8 to prove that the measures on GO(z)$ and
SO(z)4 for z € V¥ are well-defined. Moreover, in Part III, for even n > 2, we
shall use Condition 5.8 to prove that the constant terms of the g-expansions of
local orbital zeta functions are 1 except for finitely many places.

Conditions 5.9 and 5.10 may be useful in the proof of the Iwasawa de-
compositions of GO(wj)y and SO(wj)k,. In § 8, we shall define measures on
GO(w})g, and SO(w})k,. The Iwasawa decompositions tell us that the mea-
sures in § 8 are natural in some sense. The Iwasawa decompositions of these
groups are well-known. For example, Satake [24] discusses the proof of the
Iwasawa decomposition of GO(wj); in [24, pp. 50-53]. However, the notation
and the formulation in [24] are not totally compatible with our paper. So we
briefly discuss the Iwasawa decompositions in § 7.

Even though Conditions 5.8, 5.9 and 5.10 are not directly related to the
notion of discriminant, which is the topic of this section, we can verify that
these conditions and Condition 5.7 are satisfied for w; by the same argument.
So we consider them in this section for convenience.

Suppose that = € Vp, satisfies Condition 5.7. If g € Gj, and gz € Vo,
then

ord, (P(gz)) = ord, (x(g)) + ord, (P(z)) = ord, (P(xz))

since P(gx) = x(g)P(zx). Since

ord, (P(x)) = min {ord, (P(z"))| 2’ € G,z NVo,},

Apy = qgrd”(P(r)). Thus, we can determine the value of A, , using Condition
5.7.

The following observation may be useful to verify that Conditions 5.7, 5.8
and 5.9 are satisfied for z € V5 .

Suppose that we try to verify that Condition 5.7 is satisfied for z € V.
If g € G, and gz € Vp,, then we may replace g by kgh where x € K,, ,, and

h € Ggr,. For, kgh satisfies the conditions kghx € Vo, and

x(9) = x(8)"'x(rgh), x(k) € OF.

Similarly, it suffices to verify that kgh € K,Gy, (resp. kg € K, ) for some
Kk € Kpy, h € Gy, in order to prove that x € V;?* satisfies Condition 5.8 (resp.
Condition 5.9).

We first consider the case where n is odd and the Witt index is 0.

Lemma 5.11.  Both wl, and wl, in (4.8) satisfy Conditions 5.7, 5.8,
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5.9 and 5.10. Moreover

Ao =1, Ao

Wsp >V rm> ¥

= qu-

we only consider w?

Proof. Since the statement holds clearly for whp,
Let n = 3. We prove that w? satisfies Condition 5.10. Suppose that

v = (u1, uz, uz) € k3 satisfies the condition

0

wi, [v] = ui + aguius + bouj + meuj € O,.

Since ord, (u% + aguiug + bgug) is even and ord, (mu%) is odd for any
ky, u? bou’ 2co
UL, U2, U3 € Ky, UT + QoU1U2 + OoUs, TyUz € Oy.

Thus, w1, us, uz € O,.
We now prove that w?  satisfies Conditions 5.7, 5.8 and 5.9. For three row
vectors vy, v2, v3 € k3 and ty € kS, we put

U1 2f1 f2 f3
gp=1v2), 9= (th gl)’ gw?m = f2 2f4 f5
U3 I3 f5 2f6

It is easy to see that
fr =towgy[n1],  fa=towly,lval,  fo = towp,[vs).

We first prove that w? satisfies Condition 5.9. Suppose that to = 1,
gwl, € Vo, and x(g) € O. Multiplying an element of K3, from the left, we
may assume that g; is in the following form:

t1 00 1 0 0 t1 0 0
(512) 0 t2 0 U1 1 0 = t2u1 t2 0
00 t3 U2 U3 1 t3U2 t3’LL3 t3

where t1,to,t3 € k) and uy, uz,u3 € ky. Then v1 = (¢1,0,0), vy = (tauq, ta2, 0),
V3 = (t3U2, t3U3, t3) and

fl :wO [’Ul] :t%a
f4 = ’U)O [7.)2] = t%(ul —+ apguy —+ bo)
fo = w alvs] = t%(u2 + aguaolty + b0u3 + 7).

Since f1, f1, fo € O, and w?  satisfies Condition 5.10, ¢y, t2, t3 € O,. Since
x(g1) = 131313 € OF, t1, ta, tz3 € OF. Since tous, tzug, tsuz € Oy, U1, Uz, uz €
O,. Thus, g1 € K3,.
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We next prove that w?, satisfies Condition 5.7. Suppose that gw’ € Vo, .
By multiplying an element of K3 ,, from the left and an element of T}, € G0 &,
from the right, we may assume that g; is in the form (5.12) and ¢; = 1. Then

fl = to’LU?m[Ul] = to,
(513) f4 = towgm [UQ] = tot% (U% “+ aguy + bo),
f6 = towgm [U3] = tot% (U% “+ apugusz + bou§ + 7TU).

Since f; € O,, tg € O,. It is easy to see that tofy = wl, [tovs], tofs =
w? [tovs]. Since wl, satisfies Condition 5.10, tgva = (totaus, totz, 0), tovs =
(totsus, totsus, tots) € O3. So tota, totz € O,. Since ord, (u? + aguy + by) < 0
and fy = tot5(uf + aour + bo) € Oy, tot3 € O,. Since x(g) = (tot3)(tots)?,
x(9) € O,.

We next prove that w? satisfies Condition 5.8. Suppose that gw? € Vo,
and x(g) € OF. Similarly as above, we may assume that g; is in the form
(5.12) with ¢t; = 1 and fi, fa4, f6 are in the form (5.13). We already verified
that

to, tota, tots, tot2 € O,.

Since fg € O, and ord,, (u3 + aguzus + bou3 + m,) < 1,0rd, (tet3) > —1. Since
ord, (x(g)) = ord, (t§t3) + ord, (tot3) =0

and ord, (5t3) > 0 is even, ord, (§t3) = ord, (ot3) = 0. Since
ord, (x(g)) = ord, (tot3) + ord, (t3t3) = 0,

ord, (tgtg) = ord, (t%t%) = 0. Thus, to, t2, t3 € OF. It is easy to see that

tof1 = w2, [tova], tofs = wl,[tovs]. Since tofs, tofs € O, and w?, satisfies

Condition 5.10, tov, tovs € O3, Since to € O, vo, v3 € O3, Thus, g € K,.
Since ord, (P(wd,)) = 0, ord, (P(w),)) = 1 and wl, and wy, satisfy

sp
Condition 5.7, we have Aw;’p,v =1and Ayo = Go-
This completes the proof of the lemma. O

We next consider the case where n is even.

Lemma 5.14. Al of w?° w(()rm ) for1 <j <\, and wgq satisfy Con-

m’

ditions 5.7, 5.8, 5.9 and 5.10. Moreover

Aw?ﬂ,v =1,
ord,, (Ap,./kv) .
w?rmj),v:qv ! (1§] S)\v)a
— 42
Awgqﬂ) - qv
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0

in

0

Proof.  The argument for the case wy, is similar to that for the case wq,.

So we only consider w(()rm i)
Let n = 2. We first prove that w? satisfies Condition 5.10. Suppose

(rm7-j)
that v = (u1, uz) € k2 and that

0
and wg,,.

w?rm,j)[v] = u? + a;U;U2 + b]’Uzg € O’u~

If ug = 0 then u; € O,. If ug # 0 then
w?rmVj)[v] =u3 ((wiuy")? + ajuruy * +b;) € O,.

Note that
ord, ((ulugl)Q +ajuyuyt + bj) <0

if ord, (ujuy ') < 0 and that
ord, ((uluz_l)2 + ajulugl + bj) =1

if ordv(ulugl) > 1. So ord,(u3) > 0. Since uy € O, and u? + aju s + bjug €
Oq,, uy € O,.

We now prove that w?rm’ ) satisfies Conditions 5.7, 5.8 and 5.9. For two
row vectors vy, va € k2 and tg € kX, we put

_ [ _ o _ (21 [
(515) g1 = (’UQ) 5 g = (th gl)a gw(rm,j) - <f2 2f3> .

It is easy to see that

fi= tow(()rm,j) [vi], f3= tow(()rm,j) [v2].

We first prove that w(orm i) satisfies Condition 5.9. Suppose that ty = 1,
gw?rm ;) € Vo, and x(g) € O). Multiplying an element of K5, from the left,
we may assume that ¢g; is in the following form:

oy [10 to0
5.16 =
( ) <0 t2> <U1 1) <t2u1 t2>
where t1,t3 € k) and uy € k,. Then vy = (t1, 0), v2 = (t2uq, t2) and

fi= w(()rm,j) [n] =11,
fo =Wl (vl = 5 (ui + ajur + by).

Since f1, f3 € O, and w? ) satisfies Condition 5.10, 1, touy, to € O,. Since

(rm,j

x(g) = t%t% S O;(? t1, to € Of; ThUS7 g1 € KQ,U.
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We next prove that w?rm 7 satisfies Condition 5.7. Suppose that gw?rm ) €
Vo,. By multiplying an element of K5 , from the left and an element of Tkv -
G o ks from the right, we may assume that g; is in the form (5.16) and

Wirm,j

t1 = 1. Then

= tow(()rm’j) [v1] = to,

5.17
( ) f3 = tow?rmJ) [’02] = tot% (U% + ;U + b])

By assumption, fi = tg € O,. So tofs = w?rm j[tov2] € O,. Since w?rmj)
satisfies Condition 5.10, tgva € O2. Thus, tots € O,. Since x(g) = t3t3,

x(9) € Oy.

We next prove that w?rm%j) satisfies Condition 5.8. Suppose that ¢y is
as above, gu(, . € Vo, and x(9) = (tot2)® € OF. Then tot2 € OF. By
assumption, tg € O,.

We first assume that ord,(t2) > 0. Since tg € O, and ord,(tot2) = 0,
to, ta € OF. Since

ordy(fs) = ord, (uf + ajus + b;) >0,

uy € Oyp. Thus, g € K, C K,G 0 P

(rm,j) ©v
We next assume that ord,(t2) < 0. Since ord, (tgt2) = 0, ord, (totg) < 0.
Since f3 = tot3(u? + ajur + b;) € O,,
ordq,(uf + aju + bj) > 0.
Thus, ord,(u;) > 1 and so ord, (u? + aju; + b;) = 1. Since

ord, (f3) = ord, (tot3(uf + ajui + b;)) = 1 + ord,(t2)

and f3 € Oy, ord,(t2) = —1 and so ord,(tg) = 1.
It is easy to see that

(1 0)\ (01
<bj ’<0 bj) \10 € Cuf o
10 01 1 0 01
bt = [tob:?! K,.

Thus, g € K,Gpo g, -

Wem, 5)

and
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Let n = 4. We first prove that wgq satisfies Condition 5.10. Suppose that
v = (u1, ug, uz, ug) € kit and

wq[v] = (uf + agurug + bouz) + Ty (U3 + aousuy + bouz) € O,

Since ord, (uf + aguiuz + bou3) is even and ord, (m, (u3 + aguzua + bouj)) is
odd for any w1, ug, us, U4 € ky, u? + aguiug + bous, T, (u% + aguzug + boui) S
O,. Thus, uy, us, ug, ug € O,.

We now prove that wgq satisfies Conditions 5.7, 5.8 and 5.9. For four row
vectors vy, V2, v3, v4 € ki and tg € kX, we put

o 2f1 fo f3 fa
o B | 225 f6 fr

618  w= |2 o= gwl= |0
" Ja fr fo 2f10

It is easy to see that

fr = tow[v1],  f5 =towgqlval,  fs = towlyvs],  fio = towgy[val.

We first prove that wgq satisfies Condition 5.9. Suppose that ty = 1,
gwgq € Vo, and x(g) € O;f. Multiplying an element of K4, from the left, we
may assume that ¢g; is in the following form:

t7, 0 0 0 1 0 0
OtQOO ullO

ttr 0 0 O
t2U1 tg 0 0

_ o O O

(5.19) =
0 0 t3 0 U2 U3 1 thQ t3U3 tg 0
000 t4 Ug U5 Ug t4U4 t4U5 t4u6 t4
where t1, -+ ,ty € kﬁ and uq, - ,ug € ky. Let fl, f5, fg, f10 be as above.
Then
fi = wgq[vl] = t%
f5s = wgq[vg] =12 (u% + apu + bo) ,
fs = wgq[vg] =t3 (u% + aguaug + bou3 + 7rv) ,
fro =wl,[va] =13 (u] + aouaus + bou? + mud + agmyus + bomy) -

Since f1, f5, fs, fi0 € O, and wgq satisfies Condition 5.10,
t1, touy, to, t3ug, taus, t3, taus, taus, taug, t4 € O,.

Since x(g) = t3t3t3t3 € O, ty, ta, t3, t4 € OF. Thus, g1 € Ky .
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We next prove that wgq satisfies Condition 5.7. Suppose that gwgq cVo,.

By multiplying an element of K4 , from the left and an element of fk - ng Ky
q

from the right, we may assume that g; is in the form (5.19) and ¢; = 1. Then

fi =towgy[vi] =to,
(5.20) f5 towﬁq[vz] =tot3 (uf + aous + bo) ,
fs = tow]y[vs] =tot3 (u3 + aougus + bou3 + ),
flO = tgwgq[m] = tgt?l (Ui “+ apuqsus + boug + WUU% —+ agTyUg + bo’ﬂ'v)

Since f1 € Ov, to € O,. So t0f4 = wgq[tovg], tofg = ’wgq[to’vg], tOflO =
wgq [tovs] € O,. Since wgq satisfies Condition 5.10, tove, tovs, tovy € O2. Thus,
tote, tots, Loty € O,.

We consider f5. Since f5 = tot3(u? +aoui +by) € O, and ord, (u? +agu; +
bo) < 0, ord,(tot3) > 0.

We consider fs. Since ord,(m,) = 1 and ord, (u3 + agusus + bou3) is even
for any g, uz € ky, totim, € O, and so ord, (tgt3) > —1.

We consider fig. Since ord, (u3 + agusus + bou?) is even and ord, (m, (u2 +
agug+bo)) is odd, tot3m, (ug + aoue + bo) € O,. Since ord, (ug + agug + by) <
0, ord, (tot3) > —1.

Suppose that ord(x(g)) < 0. Since

ord, (t5t3) > 0, ord, (tot3), ord, (totF) > —1,
ord(x(g)) = ord(t3t3t3t3) > —2. Since ord(x(g)) is even, ord(x(g)) = —2 and
ord, (t%t%) =0, ord, (totg) = ord, (toti) = —1.

Since totz € O,, ord,(t3) < —1 and ord,(tp) > 1. Since ord, (tot2) = 0,
ord, (ty) = —ord,(tg) < —1. This contradicts to the condition ord, (tot3) > 0.
Therefore, ord(x(g)) > 0.

We next prove that wgq satisfies Condition 5.8. Suppose that g = (tg, g1) €
G, where ¢; is as above, gwgq € Vo, and x(g) € 0. By multiplying an
element of Ky, from the left and an element of Tvkv - ngq i, from the right,
we may assume that g; is in the form (5.19) and ¢; = 1. Then f1, fs5, fs, fi0
are as in (5.20). So

ord,(tg), ord, (tot2) > 0, ord, (tot3), ord, (tot3) > —1

and
tovs = (totaui, tote, 0, 0),

tovs = (totsue, totsus, tots, 0),
tovs = (totaua, totaus, totaus, tots)
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are elements of O2}. Since

ord,(x(g)) = ord, (t3t2) + ord,(tot3) + ord,(tot3) = 0,

(5.21) (ord, (5t3), ord,(tot3), ord, (tot]))

is equal to (2, =1, —1), (0, —1, 1), (0, 0, 0) or (0, 1, —1).

Suppose that ord,(tot2) = 0. If ord, (tot3) = —1 (resp. ord,(tot3) = —1),
ord,(t3) < —1 (resp. ord,(ts) < —1) and ord,(ty) > 1. Since ord,(tot2) = 0,
ord, (tgt3) < —1. This contradicts to the condition ord,(¢ot3) € O,. So (5.21)
is equal to (2, —1, —1) or (0, 0, 0).

Suppose that (5.21) is equal to (0, 0, 0). Since to, tot3 € O, and ord, (t3t3)
=0, tg, t2 € Off Since t0t§7 toti € O;](, ts, t4 € O:j Since tov2, tovs, tovg €
O} u; € O, forall 1 <i < 6. Thus, g € K, C Kvagq k-

Suppose that (5.21) is equal to (2, —1, —1). Since ord, (tot3) = —1,
ord, (tg) is odd and so ord,(tp) > 1. Since ord,(tp) + ord, (totg) = 2 and
tot3 € Oy, ord,(ty) = 1 and ord, (totg) = 1. Thus,

(5.22) (ord, (tg), ord,(t2), ord,(ts), ord,(ts)) = (1, 0, =1, —1).

We consider f5 = tot3(u? 4+ aguy +bg). Since ord, (tot3) = 1 and ord, (u? +
apuy + by) is even for any uy € ky, ord, (u? + agui + bg) > 0. This implies that
up € O,.

We consider fg = tot3(u3 + aguaus + bous + ,). Since ord, (u3 + agugus +
bou3) is even for any wus, uz3 € k, and ord,(m,) = 1, tot3(u3 + agugus +
bou3) € O,. Since ord,(tgt2) = —1, ord,(u3 + aguaus + bou3) > 2. Thus,
ord, (uz),ord,(uz) > 1. Since fip € O, and ord, (tot3) = —1, ord,(uy),ord, (us)
> 1 and ord,(ug) > 0.

It is easy to see that

1 1
—1 2 2
G,
(T‘-v ) ( 7711]2) (Ig > > € wgq ky
1 0 0 0

touy to 0 0 -1 IQ -[2
th Ty
tauog tsusz tz 0 Tplo 1o

t4U4 t4U5 t4u6 t4

0 0 1 0
-1 0 0 t2u1 t2

v

and

= to’ﬂ'
t3’/TU 0 thQ t3U3

t47rvu6 t47Tv t47.L4 t4u5
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By (5.22) and the informations on ord,(uq),- - ,ord,(ug) obtained above, the
condition g € Kvag i, follows. This completes the proof of Lemma 5.14. [

In the following, we consider the discriminants of representatives. If w, ;
is a standard representative, we use the letter m for the Witt index as before.
Also mg =n — 2m. So if n > 3 is odd then mg = 1,3 according as i = sp, rm.
If n > 4 is even then my = 0, 2,2, 4 according as i = sp, in,rm, dq. We use the
same m, mg for alternative representatives also.

Proposition 5.23.  Ifn > 3 is odd, ws, and wm satisfy Condition 5.7.
Moreover,
Awsp,v = 1, Awm,,v = (qv-

If n > 2 is even, Wsp, Win, Wemj) for 1 < j < Xy and waq (if n > 4) satisfy
Conditions 5.7 and 5.8. Moreover,

ordv(AF./ku) . 2
Awdp7v = Awinxv =1, Aw(rm,j),v = Qv ! (1 <j< )\’U)a Awdq,v = q,-

Proof. It suffices to prove that the statement holds for w} in (4.18) instead
of wj;.

We first prove that w) satisfies Condition 5.7. Let g = (t9,91) € Gk, .
Suppose that gw! € Vo, .

By multiplying an element of K, from the left and an element of Tkv -
Gk, from the right, g1 can be made into the following form:

X1 0 0
(5.24) g1 = | Xo1 X22 O
X31 X32 X33

where X11, tX33 (S BﬂLkvv Xgl, tX32 S M(mo,m)ku, X31 (S M(m,m)kv and
1

to
Xog = ) € B ky -

tme
It is easy to see that Gy, contains the following matrices
X33 0 0 I, 0 0

0 Iy, 0 |, [wd'Xszslm, O
0 0 X33 Y31 Xsolp
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where Y31 € By, Ky and Y31 + tY31 = wﬁO[ng].
By multiplying elements in the above forms from the right, g; in (5.24)
can be made into the following form:

X1 0 0
(5.25) Xo1 Xas 0
X3 0 I,

where Xa1 € M(mg, m)k,, X31 € M(m,m)g, and

) 1
X1 = € Bk,
t.)] \u 1
1
1
lo
Xop = .. eBmoku‘
. U 1
b
We express gw) as follows:
Fy Fy Iy
(5.26) gw; = | 'Fy Fy Fs
"F3'F5 Fg

where I, F3, Fg € 1\/A[(TTL,TTL)]€U7 Fy, tF5 S M(m7m0)kv7 F, € M(m07m0)k
Then

vt

F =0, Fy=0,
(5.27) F3 = —toX11, Fi = tow)[Xs),
Fy = —tgXo1, Fs = —to ("X31 + X31) .

To consider F} corresponds to the situation where the Witt index is 0 and
¢° = (to, X22). So Lemmas 5.11 and 5.14 imply that t7% (g - - tm,)> € O,.
This is x(g") for m = 0.

We consider F5. Since F3 = —t9X11 € M(m,m)p,, diagonal entries
toth, -+, toth, of to X711 are elements of O,. Therefore,

X(g) =t (ty - - tmy)” (tot))? - - (tot!,)? € O,.

Thus, w] satisfies Condition 5.7.
We next prove that w} satisfies Condition 5.8 if n > 4 is even. As above,
we assume that g = (fo, g1) where to € kS and g; is in the form (5.25) and that

X(9) = 5 (t2 -+~ tmy)* (tot1)* - (tot;,)* € OF.
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Since t{* (ta - - tmy)?, tot], ..., toth, are elements of O,,
T (by -ty )2, tot], -+, tot!, € OX.

By Lemma 5.14, there exists (K1, k2) € K14 X Koo and (hy, ho) € (GL(1) x
GL(m0))wo , such that (to, Xa2) = (k1, k2)(h1, h2). So, by multiplying

-1 -1

I,0 0 hi'l, 0 0
K1, 0 ko O c Ky, hi, 0 hy 0 er;k’v
0 0 I 0 01,

from the left and the right, we may assume that

X1 0 0
(to, 91) = 1, X21 Imo 0
X31 0 Im

We express gw} as (5.26). Since tp = 1, F5 = —X11 € M(m,m)p, and
Fy = —Xo91 € M(mgp,m)o,, X11 € GL(m)op, and Xo1 € M(mgp, m)o,. Note
that G, contains matrices in the following form:

In 0 0
0 I, O
Yar 0 I,

where Y31 € M(m,m)y, and Y3, + Y3 = 0.
Multiplying an element in the above form from the right, we may assume
that X3; is in the following form:

ulq 0
Xg1=|
! !
Um1 " Umm
Since gw} € Vp, and
! !
2uig o Uy
t . .
—Fs ="X31 + X31 = Lo )
uly e 2ul

ml mm

u;j € O, and so X31 € M(m,m)o,. Thus, g € KyGulk,-
This completes the proof of Proposition 5.23. O
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Corollary 5.28. If x € V® then there exists a finite subset My, U
May €S C M such that x is unramified over k, if v ¢ S.

Proof. 'We choose S so that if v ¢ S then z € Vp, and |P(x)|, = 1. By
the definition of the discriminant, A,, = 1. Then the corollary follows from
Proposition 5.23. O

8§6. Existence of Global Orbits with Prescribed Local Conditions

In this section we assume that n > 3 is odd. The main purpose of this sec-
tion is to describe the image of the natural map from Gy \V® to [[,con Gr, \Vi®
by the modified Hasse symbol.

We first review some facts concerning the action of GL(n) on quadratic
forms. For v € M and x, € V¥, we denote the classical discriminant of z, by
dy(x,). We denote the Hasse symbol of x, by S,(z,) and the modified Hasse
symbol S, ((det M, )z,) by S,(z,) as in § 4.

The following theorem is the Hasse-Minkowski Theorem (66:4) [22, p. 189].

Theorem 6.1.  Let z,y € V. Then GL(n)rx = GL(n)xy if and only
if GL(n)g,x = GL(n)g,y for all v € M.

In this paper we call the above theorem the Hasse principle for quadratic
forms.
The following theorem is Theorem (72:1) [22, p. 203].

Theorem 6.2.  Let (v,) € [[,cqn Vi>. There exists x € Vi©° such that
GL(n)g,x = GL(n) g,z for allv € M if and only if (x,) satisfies the following
three conditions.

(1) There exists o € k such that d,(z,) =« mod (k) )2 for all v € M.
(2) Sy(zy) =1 for all but finitely many v € M.
(3) Teon Sul) = L.

Definition 6.3. Let ® be a map defined by

(6.4) Gi\Vif 2z (2)y € [] Gr\ViE
veEM

It is easy to see that ® is well-defined.

Lemma 6.5. Ifn >3 is odd, ® is injective.
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Proof. Suppose that z,z" € V;® and that there exists g, = ({04, 91,0) €
Gy, such that «/ = g,a for all v € M. We put go = det M,/ /det M, € k*.
Since x(gv) = to, mod (k)2

det M, = x(g,) det M, = tg,, det M, mod (k).
So go = to,, mod (k))?, which implies that
GL(n)k, (90r) = GL(n), (to,vx)
for all v. So
GL(n)g, (90x) = GL(n)k, (to,nx) = GL(n)k, 2’
for all v. By Theorem 6.1, GL(n) (goz) = GL(n)g2’. Thus, Grx = Gpa'. O

Proposition 6.6. By the map ®, the orbit space Gp\V;® corresponds
bijectively to the set of elements (z,) € [[,con Gk, \V> which satisfy the fol-
lowing two conditions.

(1) Sy(xy) =1 for all but finitely many v € M.
(2) Iean Su(@) = 1.

Proof. If x € V;®, then ((det M,)z), clearly satisfies the above two con-
ditions.

Suppose that (z,), € [[,con Gk, \Vy® satisfies the above two conditions.
Then ((det My, )xy), € [[,con Gk, \V5® satisfies Conditions (2) and (3) in The-
orem 6.2. Since n is odd,

dy((det M, )z,) = (det M, )"dy(z,) = (det M, )" =1 mod (kX)?

and that 1 € k*. So ((det M, )x,), also satisfies Conditions (1) in The-
orem 6.2. By Theorem 6.2, there exists € VJ® such that GL(n)p,x =
GL(n)k, ((det My, )x,) for all v € M. So Gy, x = Gj, x, for all v € M. This
implies that ® is a surjective map to the set of elements (x,) which satisfy the
two conditions in Proposition 6.6. O

Proposition 6.6 is a simple application of Theorem 6.2, which is classical
and famous. We now explain the significance of Proposition 6.6 in comparison
with Theorem 6.2. Theorem 6.2 contains a global condition on d,, whereas
Proposition 6.6 contains only a local condition for gﬂ except for the condition
(2). So Gi\V;® is nearly equal to [, G, \V;> by Proposition 6.6.
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In this series of papers, we use Proposition 6.6 for the following purpose.
In Part II, we define a Dirichlet series VA (s), which plays an important role in
the proof of the main theorem, as a certain sum over G\V;*. We make Z(s)
into a sum of two Euler products. In this process, we use Proposition 6.6 in
order to modify the sum over G \V;* to a sum over [[, G, \V;®. Even though
Proposition 6.6 contains the global condition (2) on gv, we use a technique in
[11] and remove the condition (2) in the process of making Z(s) into a sum of
two Euler products. In this manner, the use of the group GL(1) x GL(n) in
Proposition 6.6 is more convenient than the use of the group GL(n) in Theorem
6.2 for our purposes.

87. Measures on Orthogonal Groups of Orbital Representatives at
Finite Places

Let v € M; and w),; be an alternative orbital representative of Gy, \V;*
defined in (4.18). The main purpose of this section is to define measures on
GO(w;,;)%,» SO(wy, ; )k, and PGO(w,, ;); = essentially (but not directly) using
their Iwasawa decompositions. The Iwasawa decompositions of these groups
are well-known (see [24]). We review them briefly for the sake of the reader
later in this section.

In this section also, we use the notations wg’ﬁ, w, ; (Definitions 4.9, 4.14
and (4.18)) and T,,, N,, (at the beginning of § 5).

Let T be as in (3.4). We identify T with the center of GO(z) for all
x € V* by Lemma 3.9. We define subgroups T,,(w, ;), Tn(w), ;) and fn(w;n)
respectively of GO(wy, ;)°, SO(wy, ;) and PGO(wy, ;)° by

T (w
To(w

i) = (GO(wy, ;) N T)°, Tn(w;,ﬁ) = (SO(uwy, ;) N Ty)°,
i) = Tﬂ(w'/un)/f

/
v,
/
v,

Let Z,(w),;), Zn(w), ;) and Zn(wf”) be the centralizers of T, (w),;), T, (w), ;)

and fn(w;n) in GO(wy, ;)°, SO(wy, ;) and PGO(wy, ;)° respectively.
The groups GO(wy, ;)° and SO(wy, ;) contain the following matrices:

I, 0 0 uy € M(m,my),
t

nl(ul) = wgﬁ U1 Img 0 v = (Ul ij) S M(m,m), s
vy uy Iy, v14; =0 fori <j, vy + v = ngyﬁ[ul}
I, 0 O

na(ug) = 0 Iy, 0 (ug € M(m,m), ug + tus = 0),

UQOIm
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us 0 0
TL3(U3) = 0 Imo 0 (Ug S Nm) .
0 0 tug’

Let Ny (w;, ;) be the subgroup of GO(wy, ;)° generated by these elements. We
regard Ny, (wy ;) as a subgroup of SO(wy ;) and PGO(wy, ;)°. It is easy to
see that T, (wy, ;) and Z, (w;, ;) Nn(wy, ;), etc., are a maximal split torus and a

v,1

51

minimal parabolic subgroup of GO(wy,;)°, etc.
Let K, be as in (5.1). We define subgroups K, (w, ;) and K,(w/;)

o

respectively of GO(wy, ;)7 and of SO(wy, ;)k, as follows:

Ky (w), ;) = GO(w) ;)5 NKpy, Kp(w),;) = SO(wy, )k, N Ko

v,1

Let f(n(wgn) be the image of K, (w,, ;) in PGO(wy, ;)7 .
Clearly K, (wy, ;), etc., are open compact subgroups of GO(wy, ;)7 , ete.

Proposition 7.1.  Let v € Mg and w, ; be an alternative orbital repre-
sentative of G, \V®. Then we have the following decompositions:

GO(w, )i, = Ky, (w'i),ﬁ)?n(w;),ﬁ)ku {(n(w/un) =K, (w'i),ﬁ)?n(w;),ﬁ)ku N (W), )k,
So(w;},ﬁ)k :Ifn(w'i),ﬁ)%n(w;,ﬁ)kuffn(wgz,ﬁ):Ifn(w'i)ﬁ)%n(w;,ﬁ)kuNn(wgz,ﬁ)kw

PGO(W, )2, = Ko (W), ) Zn (W] )i, Kon (W, 3) = Koy (0! 5) Zon (0!, )i, N (0, )i

We call the above decompositions the Cartan decomposition and the ITwa-
sawa decomposition for each case.

Now we briefly review how to prove Proposition 7.1 using Conditions 5.9
and 5.10. We only consider the Cartan decompositions of GO(wy, ;) = for wy, ;
such that mg # 0 since the proof is similar and easier for the case mg = 0.

We express X € GO(wj, )y, using blocks {X;},_,; ;5 as follows:

1 m—-1 myg 1 m—1
1 X1 X2 Xz X Xis
m—1[ Xo1  Xoo Xoz Xog X
X = mg X311 X3z X3z Xz Xz
1 X Xgo Xyz Xyuo X5
m—1\Xs1 Xs2 X5z Xsu X5

Multiplying elements of K, (wy, ;) from both sides, if necessary, we may assume
that

X1 X12 X14 Xi5
X1 Xog Xog Xos
Xa1 Xgo Xag Xus
Xs51 X520 X514 X5

(7.2) X € M(2m, 2m)o, .
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Then we obtain w}) ;[X43] — 2X 41" X 44 —2X 42" X45 = 0 using the condition X €
GO(wy, ;)z,- This implies wgﬁ[X;llXZlg] =2X ' X4 + 2X;11X42t(X4_41X45) €
20,. So, by Condition 5.10, X4_41X43 € O;0. Here, we used Condition 5.10 in
an essential manner. For general z € Vi, GO(x); ~(resp. SO(x)x,) may not
have the Iwasawa decomposition and the Cartan decomposition with GO(x)zU N
K, (resp. SO(z)g, N K,,,) as the maximal compact subgroup. The essential
reason why GO(wy, ;); and SO(w, ;), have the decompositions in Proposition
7.1 is that wy, ; satisfies Condition 5.10.

Since X € GO(w,, ;), it follows easily that X € GO((w;,;)~"). Considering
its (4, 4)-block, one can deduce that t(X;llXM)(wg)ﬁ)_l € O)o. This implies
that t(X;llXM) € O, Using these conditions, one can multiply suitable
elements of K, (w;, ;) from both sides and make X in the following form:

X1 X2 X3 X14 X5
0 Xo9 Xoz 0 Xos
(73) X = 0 X32 X33 0 X35
0 0 0 Xy O
0 X520 X53 0 X535

After eliminating Xo3, Xos, X392, X35, X592, X53 by induction on m, one can
eliminate Xyo,---, Xy5 also. Thus, we obtain the Cartan decomposition.

Definition 7.4.  Let v € ;. We define invariant measures dg;:ﬂ, dg;"ﬁ
and d@;/,ﬁ respectively on GO(w;, ;)7 , SO(wy, ;)k, and PGO(wy, ;)3 so that

/ dg;)/,]l = ]., -/; dg;/’n = 1, \/~ @Z,H = ]..
Ko (wy, ;) Kn(wy, ;) Kn(wy, ;)

v,

Since GO(wy, ;)7 has the Iwasawa decomposition with K, (wy, ;) as the
maximal compact subgroup, K, (wy ;) is called the special mazimal compact
subgroup. Even though we did not use the Iwasawa decomposition to define a
measure on GO(w,, )z for v € My directly, Proposition 7.1 tells us that our
choice of the measure is natural in some sense. The situation is similar for

SO(w,, ; )k, and PGO(wy, ;)7 .

§8. Canonical Measures on Orthogonal Groups

The main purpose of this section is to define invariant measures on or-
thogonal groups locally and globally which are canonical in some sense. We
have defined measures on GO(z) ,SO(z)k,, PGO(z); ~for alternative orbital
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representatives z and v € 9. We shall define measures on GO(x);, ,SO(2)y,
and PGO(m)ZU for standard orbital representatives x and v € M, in Part II.
In the following, we consider v € Mg, but the argument is similar for v € M,
where we use w, ; instead of w;yi.

We first consider the local situation. Suppose that z = amw;7ﬁ € Vi* for
ay = (to, g1) € Gi, . Let

(8.1) Ya, : Gr, 2 hy — Ozgjlhzcya7 = gl_lhxgl € Gg,.

It is easy to see that a, (Guk,) = Gu/ &, S0 pa, induces amap Gy, /G5, —
Gy, /G2, k- Also o, induces a homomorphism é; Ky, — éfy, 1, We denote
these maps also by @q, . v

Now we use the identification G, = GO(x), etc., (see Lemma 3.9). We

define a measure dg;; , on G§, = GO(z); as follows:

dgy.» = (0a,)"(dgy ;)

i.e., dg; , is the pullback of dg; ; by @a,. Since dg;; is an invariant measure
on GO(wy, ;)7 ; dgy , is an invariant measure on GO(x);, . We define invariant
measures dg; ,,dg, , on SO(x),, PGO(x); = similarly.

Lemma 8.2.  The measures dg,, ,,,dg, , and dg, , do not depend on the

choice of a.

Proof.  Suppose that o, = (to, 91), a;, = (g, 1) € Gi, and = = a,w, ;
= alw), ;. It is easy to see that a; o/, € Gy, .k, and g7 tgh € GO(wy, ; )k, -

Let h = ag'al and hy = g7 'g. Let ¢q, and @q, be the maps which were
defined in (8.1). Then, for h, € GO(z)} ,

Pa, (ha) = a;_lhwa; = (awh)_lhw(awh) = h_laajlha:azh = Ph © Pa, (hz)

where
on : GO(W) )7, 3 har = h ™ hyy h=hi"hy hy € GO(w) ;)3 .
So
(Par)*(dgy ;) = (n 0 Pa,)*(dgy ;) = (0a,) 0 (pr)*(dgs 5)-
By Lemma 3.11 and the comment after that, [GO(w] ;)x, : GO(w] ;). |
is 1 or 2 according as n is odd or even. If n is even then there exists 7,; €

GO(w), ;)x, \GO(w), ;)3 such that 77, = I, by Proposition 4.22. Since the
order of 7, ; is finite, the map

Pros t GO(wy )7, 2 huy = Ty thuy Tui € GO(wy ;)7

v,1
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is measure preserving. Since dg; ; is a unimodular measure on GO(wy, ;); , the
: :
map

erg s QO )R, 2 huy, = ()™ g ) € GO(wl)3,

v,1

for hY € GO(wy, ;)5 is also measure preserving. Therefore, (¢n,)*(dg, ;) = dg)) ;
for h € GO(w;)ﬁ)kv for all n > 2. Thus, (gpa;)*(dg;"ﬂ) = (@aw)*(dg:)’7ﬁ).
The proof is similar for dg, ,, dg, - O

x,v

We continue to identify 7' with the center {toI.|to € GL(1)} of GO(x)°.
Let d*to be the usual measure on kX = T}, .

Proposition 8.3.  Suppose that v € 9.
(1) If x € Vi® then dgll , = dgil ,d*to.

(2) If n >3 is odd and x € Vi° then dg, ,, = dg, ,,

Proof. 1t is enough to consider standard representatives. Let z € Vi be
a standard representative. We first discuss the statement (1).

Let f be the characteristic function of K, N G, C G7, . We compute
the integral of f with respect to the two measures dg//, and dg} ,d*to. It
follows from the definition that fGZk f(gll,)dgl, = 1. Let g/, € Gy, and

(t52,t01,) € T, . Tt is easy to see that f(ggyv(ﬁ;?,?o]n)) = O unless g, , € (K,N
G ku)fkv' So we express the above g/ as (¢~ qI,) for some x € K, NG3,.
and g € k.

Since d*t, is an invariant measure on fku,

54) [ fla ) @t Bl = [ FOs(Ey? Tola))d o,

Tk, Ty,
Note that f(k(ty 2, t01,)) # 0if and only if to € OX. So the value of the integral
(8.4) is 1. Hence

| G ) = | i

(KUQG; k )Tkv /Tku

@ ky v

Since the image of K, N G5, in G. k18 (K NG kv)fkv/fkv, the value of
the above integral is 1 by the definition of dg, . Since dg//,, and dg,/ ,d*, are
invariant measures on G3, , dglf , = dgll ,d*t.

We next discuss the statement (2). Tt suffices to prove that, if (t; 2, to1,) €
Tkv and g € SO(x), satisfies (50727?()[“)9 € K,, then (%Q,foln),g e K,.

v
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Note that, if (tNO_Q,?OIn)g c K,, 552 € OF. Soty € OX. Therefore, g €
K, N SO(x)kv. O

We shall prove a similar proposition in Part II for v € 9,
We call dg;,, dgy, and dg, the canonical measures respectively on
GO(z z); , SO(x )k, and PGO(x)},

Definition 8.5.  For x € V;*, we define measures dg, ,, dg; , and dg;; ,
respectively on GO(x)%, SO(z)s and PGO(z)S as follows:

(86) wA - H dgw v dgwA - H dgw vy EZA - H dN/wl,v'

veEM veM veEM

We call these measures the canonical measures also.

Lemma 8.7.  Let x € V5. Then, for all but finitely many v € M,

d—// —

x'u

dgy ., = /
SO(2)k, NGL(n) o,

»/GrO(:r)ivﬁGL(n)@U
Proof. Since the argument is similar for dg; 2 we only consider dgj ,

where a,, € G, and w), ; is an alternative orbital

Suppose that © = ay ,w! v

representative. For all but finitely many v € M, x € Vo, and ord, (P(x)) = 0.
Then z is unramified (see Definition 4.19), which implies that ord, (P(w;’ﬁ)) =
0. We only consider such v € ;.

Since wy, ; satisfies Condition 5.8, ., € KyGuy k,- So we may assume

that o, € K. By the definition of dg ,,

/C;O(ge);umGL(n)ov /Lpaz)v(GO(w)zvﬂGL(n)ov>

(8.8) §
= dgv,]'l'
@iy (GO(@)g, NGL(n)o, )aa,v
Since o, € Ky,

a; ! (GO(x)Z NGL(n)o, ) pw = GO(w), ;)r, NGL(n)o, = Kn(wy, ;).

v,1
/ dggﬁ =
Kn(w' ) ’

v, 1

So (8.8) is equal to

This completes the proof of the lemma. |

Proposition 8.9.  The measures dg,, ,,dg, 5 and dg, , are well-defined.
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Proof. Since
200 I &= J] GO@);, nGLMo,
Sy ISy

is an open compact subgroup of G3 , - and its volume with respect to the product
measure [ [, on dg; , is a non-zero finite value, the measure dg;; , is well-defined
by the above lemma. Similarly, the measure dg;’) » is well-defined.

Let d* .ty be the measure on T which is the product of the usual measures

p ~ ~
on all k. Then dg; , = dg; ,d.to. Since d}to is well-defined, dgy , is well-
defined also. O
Definition 8.10. Let
wl(Gr /G = [ ag
G u/Go

for x € V;*. We call vol(é;A/é;k) the unnormalized Tamagawa number of
Ge.

Note that if n > 3 is odd then é; = G, can be identified with SO(x). In
§ 10 and Part II, we shall compute the value of VOl(ézA/ézk) for odd n. The
unnormalized Tamagawa number VO].(éz a/ ér k) is not the Tamagawa number
7(G,) of SO(x) which we shall review in the next section. It turns out that
vol(Gy 4 /G is equal to 7(Gy) H Gy Where & is a local factor for v € M

veEM
which can be expressed using the local densities of SO(wy, ;) for the alterna-

tive orbital representatives w! ., such that w! , € Gj,x. The unnormalized

v,1 v,1

Tamagawa number vol(Gy 4 /Gy 1) is an important invariant for G, = SO(x).

89. The Tamagawa Measure on ém A

In this section n > 3 is an odd integer. In this section we shall review some
facts concerning the Tamagawa measure on ém 4 forx € V. Since ér =~ SO(x)
for odd n > 3, these facts are well-known (see [28] and [32]).

We first define invariant measures both on éz K, and éz A using invariant
differential forms on G and V*° which are defined over the global field k. Let
g = (to, g1) € Gk, and y € V;?°>. We express elements g € GL(n), and y € V;*
as follows:

2911 Y12 Yin
gi1 - Gin .
=1 ] Y=

gnl DRy gnn : ’ * : N yn_ln
Yin " Yn—1n 2Ynn

Y12 2y22
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We first define an invariant measure on Gy, . It is easy to see that

(9.1) v =1ty dto A (det g1)” /\ dg;;

1<i,5<n
is an invariant differential form on G = GL(1) x GL(n). Note that (9.1) is
a differential form over the global field k. For v € 9, we define a measure
dp, = dpy(g) on Gy, as follows:

(9.2) = [tol, "dto |det g1, ] dgis
1<i,j<n
where dty and dg;; are the usual measures on k, which we have chosen in § 2.
Since (9.1) is an invariant differential form on Gy, , du, is an invariant measure
on Gy,. We call du, the Tamagawa measure on Gy, .
The following theorem is Theorem [28, p.118] with respect to the special
case GL(n).

Theorem 9.3.  Let v € M;. Then, for any v € Z~g,

1GL(n)o,/pr T4 .
-/91EGL(n)O |det gl H dg” o TGL(?%) - H(l —dq, )

1<i,j<n j=1

ﬁGL(n)OU /pY

Note that v dim GL(n)
qv

is the local density of GL(n)j, for v € M. Using

the above lemma, we obtain

(0.4 | dm=a=aH Tl -a),

We next define invariant measures on V;2* and Gy, /G, for x € Vi°. For
v € M, we define a measure dy on V;,, as follows:

(9.5) dy= T du;
1<i<j<n
where dy;; is the usual measure on k,. For the rest of this paper, we denote the
volume of any measurable subset U C V}, with respect to dy by vol(U). By def-
inition, vol(Vo,) = 1. It is easy to see that v/, = P(y)~(T1/2 /\ dy;j is a
1<i<j<n

G-invariant differential form over the global field & on V. So |P(y)|; ™1/ 2dy
is a Gy, -invariant measure on V. For z € V;*, we define an invariant measure
dptly o = dptiy o (9') o0 Gy, /Go g, so that

_ndl
/ F@%m%m=/’ F(y) |P(y)|7*F dy
9'€Gr, /Gaky YyEG,
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for all measurable functions F’ on Vis.

Now we define invariant measures on G, and ém k, for @ € Vis. On
Ti, = { (52, tol,)|to € kX3, to ' dlo is an invariant differential form. So there
exists an invariant differential form 7/ on G, such that

v=LNAD) A (T dio).

We may not be able to express 7/ explicitly. However, using #/ A (f, *dty) and
v, , we can define the following invariant measures duyy ,, and djiy , respectively
on G, and G, k- Let d“f,u = d,uf,v(%vo) be the Tamagawa measure on
fk“ = GL(1)g,. Then

(9-6) / dpz, =1-q;"
TkvnKu ’

for v € M. Since [[,con, ka k. Az, does not converge absolutely, we con-

sider the Tamagawa measure on 7" only locally.

Definition 9.7.  Let z € V;>. We define an invariant measure dyu;; , =
dpiy ,(g") on Gy, so that

/ F(g)dp, = / / F(g'g")dp , | duy,
9€Gl, 9" €GLy, /Ga iy 9" E€Gy

for all measurable functions F' on Gy,,. We call dy; , the Tamagawa measure on
Gk, Let x € Vi, We define an invariant measure dfiy; , on Gy, = Gur, /Tk,
so that

[oranal,= [ ([ PG, ) di,
9"€G 4 1y G €Gy 1y /Ty to€Ty, ’

If n is even then GO(z) # GO(z)°. By restricting duy , to GO(z)} ,
we obtain a differential form on GO(x); . This differential form comes from
a differential form over the global field k. Let wy, ; be one of the alternative

3 3 SS " " : :
orbital representatives of V. Then dgw;mv and duw;mv are invariant measures
: /1 1 A 1"
on Gy i, S0 there exists a constant ¢ ; > 0 such that dgw;mv = U)ﬁduw;,ﬁ)v.

We remind the reader that we shall define dg;,, , for v € My in Part II. Let

d%’}; L be the canonical measure on Gy j,. Then d%’}; .

v

and dfj!,  are

v vi?

invariant measures on G, j, . So there exists a constant ¢, , > 0 such that
v,1 b
~11 _ 1 g
dgw;yﬂ,v - cv,iduw;}yi,v'
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If n > 3 is odd then G\ p, /T, = SO(w,, ; )k, So we can regard dg,, .,
d/j// Y wr
w5V

which compares the canonical measure and the Tamagawa measure.

as measures on SO(w, ;)k,. Also we can regard ¢, as the constant
: :

Proposition 9.8.
(1) If v e My then c;”ﬁ =(1—-gH e,

v,1°

(2) If v € My then cl, =7

v,1 v,1°

Proof. The statement (1) follows from (9.6). Since the Tamagawa mea-
sure on Ty, is the usual measure for v € My, the statement (2) follows. O

Definition 9.9.  Let z € Vi®. We define a measure dji, , on Gy as
follows:
dii) = 1T ditt.-
veEM
It is known that d/l;’, , is well-defined since G, is semi-simple. Since G,

contains GL(1) as T, [Teom, kav i, 1z ., does not converge absolutely. So
[Tocon, diz,, is not well-defined. We put

(9.10) P(G) = | Ay~ / Al
Gen/Gak

If n > 3 is odd then by Proposition 8.3, dﬂ;” 5 is the Tamagawa measure on

G, = SO(z) and 7(G,) is the Tamagawa number of SO(z). The following
theorem is Theorem 4.5.1 [32, p.109].

Theorem 9.11.  Suppose thatn > 3 is odd. Then, forx € V%, T(éw) =

§10. Unnormalized Tamagawa Number
and Local Constants for Odd n

Let n > 3 be odd. Suppose that € V;* and © = ar,vng for ag ., € Gi,.

We remind the reader that G, = GS and G, = G° = SO(x) for odd n > 3.

In this section we shall express the value of vol(Gya/Gyy) using ¢,; which

we have defined just before Proposition 9.8. For v € M., we shall compute

the explicit value of ¢ ; in Part II. For v € M, we shall express the value

of ¢j; using vol(K,w, ;) and compute the explicit value of vol(K,wy ;) for
/

alternative orbital representatives w; ;

value of VOl(éIA/éxk> for odd n > 3.
We first prove some properties of the Tamagawa measure.

in § 11. Thus, we obtain the explicit
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Lemma 10.1.  Let v € M; and x € Vi*. Then

n+1

_nt
/ dy = (1— ;)| P@)]5 T vol(K ) /
K, (G ko NK)Thy / Thoy

Proof. Let fx, be the characteristic function of K, C Gy,. If ¢’ € Gy,
satisfies the condition fx, (¢'Gzr,) # {0}, then ¢’ € K,Gyk,. Let ¢’ = kh
where k € K, and h € G, ,. Then, since dji’

T, v
/.

e (/WL () = [ e, (k) (1),
Gl ko

By definition, fx, (kh) # 0 if and only if kh € K,, which is equivalent to

h € Gy, NK,. Since fr, is 1 on Gyp, N Ky,

/ Fie, (g B (1) = / dii
G;Ek'/u

Ga: Ky QKU

is an invariant measure,

z ko

if g € K,Gyp,-
Therefore,

/ dpiy = / dyiy / dy ,
K, G:L'kvaU Kvakv/kav

 n41
[ 1P@E T
Ga: ky NK, K,z
Since P(y) = P(x) for y € K,x,

_ntl _nti 3
[ PR d = 1P@R [ dy= Pl vl (5,0).
Kyx K,x

The set G4, N K, surjects to (Gyp, N K,) fk“/fkv. If
(to, g1)s (S0, h1) € Gup, N K,
and (to, g1)(ty 2, toln) = (s0, hy) for some &y € Tkv, then
(62, toln) = (to, 1) ™" (s0, h1) € Tg, N Ky,
which implies that , € OX.
If d“”ﬁu is the Tamagawa measure on Tkv ~ GL(1)g,, /~ dﬂf,u =

TkvaU

(1-g,"). So

[aw=f ( | duf,v> i
G kyNK, (G koy VK Ty /Ty \J Troy N

ey i,
(Ga iy VK)o, /Ty, O
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Let v € 9 be an arbitrary place. Suppose that g9 € G, and z = goz’ €
Vs, We define @y : Gi g, — Gark,, ete., similarly as in (8.1).

Proposition 10.2.  On Gy, du;,, = ¢y, (dug ). On Gty diiy , =
90;;0 (d/l,x/’ﬂ))'

Proof. Note that du, = du, ,duy; , = dply . dply, . Since o5 (dp,) = dpy,

dﬂv = 90;0 (dlu’lz’,v)sozo (d//z/’,v)'

So we only have to prove that du;, , = @ (dui, ).
If F" is a measurable function on Vi*, then F (xx) is a measurable function

on Gy, /Gy, We denote this function by F”. Then

/ F'(ha) oy (dpthy ) :/ F' oyt (he)dpth
he€Gly /Ga ky 1€Gr, /Gy,

-

(10.3) = F'(gohar gy "@)dply
h,1€Gy, /Ga:/kv

= F'(gohgx")dply .
h EGk,,, /Gz/kv

Since dp, , is left G, -invariant, (10.3) is equal to

_nt1
/ F(hya' )i, = / F) POl dy
hz/eGkv/Gz/kU ’ yEGkvw’

ntl

= F'(y)|P(y)lo * dy

yEG’kvw
i /
hy€Gr, /Ga iy

Therefore, o5 (dpuls ) = dpsy o, S0 05, (dpfls ) = dpg -

Let d“f,u be the Tamagawa measure on Tkv as before. Then
iy, = dity dpg Ay, = dfiy ,dug .
Since
Aty = o (it o) = 4 (dfigr Az ) = O (Afig: o )dug s
dity , = ¢y, (i) - 0

Suppose that x € V°. Let i, () be an index such that G,z = Gk, wy i, (x)-
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Proposition 10.4.  Suppose that n > 3 is odd and x € V°. Then
dim SO(T)

i ()"
veM

vol(Gra/Gar) = 2|A]

Proof. By Proposition 10.2,

dggv - gogm (dgv nu(x)) = (pz;:c (,C\Zvﬁv(m)dﬁ;jjl 'U)

v, iy ()’

~1

= ?/’Z,ﬁv(m)@;w (At ),u) = E:;/,ﬁv(m)duxm'

v,iqy (@

Therefore, dg; , = [I,con 4970 = [vem € 4, (r) @i, By Theorem 9.11,

s

VOI( IA/GI]G) / g:;:A_ C'un r/ dﬁgA
Gon /G e

dim SO(z

= 92| Ay &,

§11. The Value of the Constant ¢, ; at Finite Places

Throughout this section we assume that n > 3 is odd and v € M. In
this section we compute the value of ¢ ;. We first express ¢, ; in terms of
VOl(K ywy 4).

Lemma 11.1.  Letv € My and w,; be a standard orbital representative
for G \Vi®. Then

n+1

i = |P(wyi)lo 7 vol(Kywy ) H(l - qv_j)_l'
j=1

s

Proof. By the definition of dg, L

ag’ =1

Wy i,V

/(qu,ik'u NK)Tk, /T,

By the definition of ¢/

’UII’

-1
~11 ~11 ~11
cv71'1 - / _ . dngy,-,,'u / _ _ duwvy,-,,'u

(G, ko NEW) Tk [/ Th, (Guwy 3o VE0)Thy /T,
-1
o ~11
- / . . dﬂwv,;‘,'u N
(Guwy yho NEW) Ty, [/ Thy,
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Using Theorem 9.3 and Lemma 10.1,

n4l
/ = (0= )P0 ()
(G, sko NK)Th, /Tr, '

n+1 n

= |P(wy)lo” (vol(Kyw, 11))_1 H(l - qv_j>~

Jj=1

Therefore,

_nt1

2 vol(Kywey 1) H 1fqv
j=1

O

By Lemma 11.1, we only have to compute the value of vol(K,w, ;) in order
to determine the value of the constant ¢ ;. We first define some notations
used in the computation of the value of vol(K,w,;). Let m, = ord,2 and

» = O,/p,. Note that F, = F, where q, = £(0,/m,O,). If there is no
confusion, for ¢ € O,, we denote the element ¢ mod m, of F, also by ¢ by
abuse of notation. We denote the set of squares of F* by (F§)2 It is known
that [FX : (FX)?] =2 if v € Mgy, and (FX)? =FX if v € Mqy. We put

5 _ 1 ngimdy,
! 0 ’UEf)ﬁdy,

ie., 2% = [FX : (FX)?] and §(F})% = 270 {F.

If v = (zi5), y = (yi5) € Voo, and d € Z~, then we use the notation z =y
mod 7, ete., if z;; = y;; mod 7 for all 4,5. Note that we use the coordinate
system (3.2), and regard 2’s in the diagonal entries of (3.3) as formal coefficients.

Let ag, by € OF be as in (4.2). Then a root of 2% + apz + by € F,[z]
generates the unique unramified quadratic extension L, of F,. Let ayg, By € L,
be the elements such that

22+aoz—|—boz(z—|—ao)(z+/60)~

We denote the conjugate of n € L, by 7, and the norm map L) > n+ nn € F
by Ni,/r,. It is known that Ny /r, (L)) =TF*.

Before computing the value of vol(K,w, ;), we review some facts concern-
ing orders of general orthogonal groups over F,. Since we shall use similar
computations in Part III, we consider all n (which means that we do not as-
sume that n is odd).
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We define an n-ary quadratic form @, s, over I, as follows:

X1X2+"'+Xn_2Xn_1 +Xr27, n Z 3 Odd7
X1X2—|—"'+Xn_1Xn n > 4 even

Qn,SP[X] = {

where X = (Xq, ..., X,,) and Xy, ..., X,, are variables. Similarly, for odd
n > 3, we define an (n — 1)-ary quadratic form @,,—1 i, over F, as follows:

Qo1 X]=X1Xo+ -+ Xy uXp 3+ X2 5 +a0Xn 2Xn 1 +bo X2,

where X = (X, ..., X,,—1) and X, ..., X,,_1 are variables.
The following lemma is known (see [12, pp.146-147]).

Lemma 11.2. We have

n—1

n(n—1) 2

200 q, 2 H (1—q,; %) n odd,
ﬁO(Qn,sp)]FU - i=1

n(n—1)

2g, = (L+g¢, 2)7?

'::]mLs

(1—-¢,%) n even.

i=1

If n > 3 is odd then

n—1

(n—1)(n—2) _n-ig 2 Y
ﬂO(Qn—l,in)]Fv = 2qy 2 (1 —qv ° ) H (1 —q, )

i=1

We now compute the values of the orders of GO(Qpn—1,in)r,; GO(Qn sp)F,
using Lemma 11.2. For each general orthogonal group, we denote its multipli-
cator by v(x) similarly as in previous sections.

We first consider GO(Q, sp)r, for even n. Let v € FX and

Y = (}/17 }/27 Tty Ynfh Yn) = (Xl, P)/XZa X37 7X47 Tty anlu 'VXn)

Then QnsplY] = YQnsp[X]. So the multiplicator v : GO(Qnsp)r, > g —
v(g) € GL(1)g, is a surjective group homomorphism. Since the kernel of v is
O(Qn sp)F, , the sequence

1 — O(Qn,sph“u - GO(Qn,sp)]Fv - GL(1>Fu —1

is exact. Thus,

ﬁGO(Qn,sp)Fv = ﬁGL(l)]Fv X ﬁO(Qn,sp)]Fv = ﬁ]F,Z( X ﬁO(QTL*l,Sp)]FU'
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We next consider GO(Q,,—1,in)r, for odd n. We define binary quadratic
forms QY and QY over F, as follows:

0IX] = Xn—oXn_1, QL[X]=X2_5+aoX,—oX,_1+boX2_,

sp

where X = (X,,_2, X,—1) and X,,_2, X,,_; are variables. Let v € F. Since
L,/F, is a finite extension of finite fields, Ny /g, (L)) = F;\. So there exists
n € L such that v = nn. We put

(11 _(n 0
h, = (Oéo ﬁ()) , a(n) = (O 77) e GL(2)p,.

Note that hya(n)h,' € GL(2)g,. Since h, 'QY = Q%) and a(n)QY, =vQY,.
h’l)a(n)h;1 ?n = ’YQ?n
Let

(Yh Y—Qa ) Yn—47 Yn—3) = (le 'YXQ, XBa 7X4a Tty Xn—4a ’YXn—ZS)a
(Yn—Qa Yn—l) = (Xn—27 Xn—l)hva(n)hﬂjl'

Then

Qn-1inY] =v(X1Xo+ -+ XpaXn3+ X2 5+ aoXp—2Xn—1 +boX2_1)
=YQn—1,m[X].

So the multiplicator GO(Qn—1,n)r, 2 9 — Y(g9) € GL(1)p,
group homomorphism. Since the kernel of the multiplicator is O(Qn—1.in)F

is a surjective

v

the sequence
1 = O(Qn-1,in)r, — GO(Qn-1,in)r, — GL(1)r, — 1
is exact. Thus,
1GO(Qn-1,in)r, = §GL(V)r, x HO(Qn-1,in)r, = iF; x 10(Qn—1,in)F, -
We next consider GO(Qpp)r, for odd n. Since n is odd,
GO(Qnsp)F, = SO(Qn.sp)F, X {fofn| to € FY}.

The multiplicator v(g) is equal to 1 for g € SO(Qnsp)r, and v(tol,) = t2.
Therefore, the image of the multiplicator is (IFj)2 and

1 — O(Qn,sp>]Fu - GO(Qn,Sp)EJ - (F1>1<>2 —1
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is an exact sequence. Thus,

ﬁGO(Qn,sp)Fv = ﬁ(]F:)Z X ﬁO(Qn,sp)va = 2_6Uﬁ]F1>;< X ﬁO(Qn,sp)]Fv'
Therefore, we arrive at the following lemma.

Lemma 11.3. We have

-
o T g 2 (1-g¢,%) " odd:
HGO(Qu ), = -
20" P+ a DT [0 a®) o even.
1=1
If n > 3 is odd, then
n;l
e e (R R | (B!
1=1

Let @ be a binary quadratic form defined by
Q[X] = 61X12 + X1 X9 + 03X22 (01, C2, C3 € Ov)

for X = (X1, X5) where X;, X5 are variables. In the process of computing the
value of vol(K,w, ;), we shall use the following lemma.

Lemma 11.4.  Suppose that Q[X] = Q% [X] mod m,. If v € OF, there

exists g € GL(2)o, such that gQ[X]| = vQJ,[X]. Suppose that Q[X] = Qf,[X]
mod 7,. If v € OF, there exists g € GL(2)o, such that gQ[X] = Q% [X].

Proof.  Since the argument is similar for QJ,[X], we only consider Qf, [X]

= X? + agX1 X3 + bpX3. Suppose that Q[X] = QY [X] mod 7,. We put

in

Y =X (2 Zf) C QY] - QUIX] = AXZ+ foX1 X0 + f3X2 mod m,.

Then

2 2
f1 =z + apz122 + b()ZQ — ].,
fo = 22123 + apz1 + apzaz3 + 2bpzo — ag,

2
f3 = 23 + apzs.
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By easy computations,

221 + agza agzy + 2bgzs 0
J def (Of; _
(21, 22, 23) = s, = | 2z3+ao aoz3+2by 221+ apz2
J/1<4,5<3 0 0 2z3 + ag

and det J(1, 0, 0) = —ag (a% — 4b0) € FX. So, by using Hensel’s lemma, there
exists g1 € M(2,2)p, such that

10
g1 = <O 1) mod 7,, ¢1Q[X]=Q%[X].
Since g = I mod 7,, g1 € GL(2)o, .

Let v € O. By the same argument as in the proof of the surjectivity of
the multiplicator

GO(Q)r, 2 9+ 7(9) € GL(Dg, ,
there exists g2 € GL(2)p, such that g2Q% [X] = vQY [X]. Thus, for g = g2g1,
9201Q[X] = 7Q, [X]. 0

Now we return to the case where n > 3 is odd, and compute the value of
vol(K,w, ;). We first consider vol(K,w, sp). We define a subset D, s, of Vo,
as follows:

(11.5) Dysp ={y € Vo,

Y =Wysp mod my,}.

Lemma 11.6. K,w, s, = K,D,gp.
Proof.  Using block matrices, we can express Y € D, g, as follows:
Y1 Y
Yy =, 1 Y2
Yo Y3

where ¥; € M(2,2)0,, Y € M(2,n — 2)o., Y3 € M(n — 2,n — 2)o,. Since
Y1 = (%) mod 7, Y1 € GL(2)o,. Therefore,

Iy 02,2 " Y 02,n—2
— ’ e K’Ua Y = ; — .
n (—%Yll In2> R (NP A A R

Since Y € Dygp, Y2 = 0 mod m,. Since Y3 — ¢ YnglYQ = Y3 mod 7,
91Y'g1 € Dysp. So, by applying an element of K, Y can be made into the
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following form:

Y
11.7 Y = '

(11.7) Yoo,
2

2Y ni1

2

where Y7, -+, YnT—l e M(2,2)0,, YnT+1 € O, and

Yl,'--,Yn_1:<0 1), Y1 =1 modm}.
pl 10 2

Since Y% = 1 mod 7, Y% € OF. By Lemma 11.4, there exists g1 €
GL(n)o, such that g1Y = Yo wy,sp. S0, if we put g = (Y,;l17 gl> € K,, then

2

gY = Wy 4p.

Let H, s, be the subgroup of K, defined by
(11.8) Hysp={9 € Ky| gwysp € Dysp} -
Clearly Hy spDysp = Doy sp-

Lemma 11.9. Ifn > 3 is odd then

n—1
2

vol(Kywy sp) = H (1—q,%71).
Jj=0

Proof. Let A, ¢, C K, be a set of representatives for K, /H,s,. Then

Kvwv,sp = |_| hDv,sp
h€A, sp

_ n(nt1)

and vol(hDy sp) = vol(Dysp) = qu 2> for each h € A, op.

If (to, g1) € Hysp, then gy mod 7, is an element of GO(Qy sp)r,, and to
mod 7, is uniquely determined by ¢g;. So
n—1
#GL(1)p, x £GL(n)g nint) 2 i1
Ky/H, ) = . =g, 2 1— g%,
ﬁ( U/ U,Sp) ﬁGO(Qn’sp)]Fv q g( qv )
Therefore,
%
VOl(Kywy sp) = §(Ky/Hysp) X vOl(Dy ) = H (1- %_Zj_l)' O

J=0
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We next consider vol(K,wy rm). We define a subset Dy, 1, of Voo, as follows:

Y1 Y,
D rm — Vi
b { <t Y2 YB) : o

Lemma 11.10. K,wyrm = KDy rm-

Yl = Qn—l,in mod T,
Yo e m,M(n—1,1)0,, Y3 € 21,0

Proof. Let Y = (};1,2 2) € Dy rm- Similarly as in the proof of Lemma

11.6, by applying an element of K,, Y can be made into the following form:

Yia
Y;
11.11 Y = Y, =
( ) ( }/2> ) 1

where Y11, -+, Y} n1 € M(2,2)0,, Y2 = 21ty (to € OF) and

o 01 o 2 ag
Ylvl? cee }fl,ang = (1 0> y }/1771;1 = (ao 2b0> mod Ty

By Lemma 11.4, there exists g1 € GL(n — 1)p, such that g1Y; = tglwn,l,v}in.
So, if we put g = (to, (%" 1)) € Ky, then gY = wy, y ym- O

Y,

n—1
1,051

Let H, ,m be the following subgroup of K,:

, hi2, "ha1 € M(n—1,1)0,,

h GL(n -1 h Ox
b h12> 11 € (n )OU, 2 € U7,
toh11@Qn—1,in = Qn-1,in mod m,

t,g EKU g1 =
(to, 1) ! <7th21 hao

Since (17 In) S Hv7rm7 Hv7rmDv,rm ; Dv,rm' SUPPOSQ that g= (t07 gl) € Hv,rm
and Y € D, im. Let g1 be as above. Using block matrices, we express Y and
gY as follows:

n—1 1 n—1 1
n—1( Y1 Y, n—1(Y Y
11.12 Y = Y = .
(11.12) 1 (tYQ Y3>’g 1 (tyg Y!
It is easy to see that Y{ = Q,,—1,» mod 7, and Y5 =0 mod m,. We consider
Yy = to (75 ho1Y1" hot 4 mohoo! Ya! hot + muho1 V2" haog + haoYs' has) .

Since all diagonal entries of Y7 are elements of 20,,, towzhlelt hay € 2720,.
Since Yz € m,M(n —1,1)p, and m,has’ Yo" hoy = myho1 Ya! hao, Tyhao! Yol hoy +
Tyho1 Yo" hao € 2720, Therefore, Y4 € 27,0 Thus, Hy ymDyrm = Do m-



604 NORIHIKO HAYASAKA AND AKIHIKO YUKIE

Lemma 11.13.  Let Y1, Yy € Dy . Suppose that g € K, satisfies
gY1 =Y> mod m,. Then g € Hy 1.

Proof. Let g = (to, ¢1). Using block matrices, we express g1 € K, as
follows:
n—1 1

n—1 ( g11 g12>
g1 = .
1 921 922
If we express Y, Y’ = gY € D, 1, similarly as (11.12), then
tglyf = g1 Yi'gi1 + 912" Yo' 911 + g11Y2"g12 + 912Y3" 912,

(11.14) to'Ys = g11Y1'g21 + g12' Yo' go1 + 911 Y2 g2 + 912Y3" goo,
to 'Yy = go1Y1'go1 + gao’ Ya'gor + g21Yo"goz + g22Y3'goa.

Since Y3 € my,M(n—1,1)p, and Y5 € 27,0, tlel’ = ¢11Y1'g11 mod m,. Since
Y1, Y] = Qno1,in mod m,,
t0911Qn—1,in = Qn—1,in mod .
Since t; 'Yy € m,M(n —1,1)0,,
g11Y1 921 + g12" Yo' go1 + 911 Y2 goo + g12Y3 g2s € mM(n—1,1)p,.

Therefore, g11Y1'g21 € myM(n — 1,1)p, because Y € m,M(n — 1,1)p, and
Y; € 2m,0F. Since g11Y1 € GL(n — 1)o,, tga1 € mM(n — 1,1)p,. Since
g1 € GL(n)@u, go2 € (95 ]

Lemma 11.15. Ifn > 3 is odd then

n—1
_n—1 2 .
VOl(KyWy,rm) = 27, (1-qn 7)) H (1—g, 7M.

<.
o

Proof. Let A, ,m C K, be a set of representatives for K,/H,,m. By
Lemma 11.13, Kywy rm = l_lheAv hDy rm- It is easy to see that
—nnzb) —(n—1) —1 —1
vOol(hDy rm) = vol(Dy rm) = qv X q, xq, (1—q,7)

_ n(nt1)

=q ° (1*‘1;1)
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for each h € A,p,. Since

1GL(1)g, x iGL(n)r,

ﬁ(Kv/Hv,rm = n—
) 1GO(Qn—1,in)F, X qv ' x §GL(1)r,
n(n+1)
=270, = 1-g) M1 -a H g, 7,
we obtain

VOl(K Wy rm) = §(Ky/Hyrm) X vol(DU rm)

_21_11_(1’0 Hl_q—le

By (3.5), if n > 3 is odd then

P(wy )]y = [P(w m>|v—{1 e

gl i=rm.
By Lemmas 11.1, 11.9 and 11.15, we obtain the following proposition.

Proposition 11.16.  Let v € M; and wy, ; be an alternative orbital rep-
resentative for Gy, \Vi*. Then

[Ta-a*" i = sp,

E’Z,ﬁ == nt
n—1 _n—1 . .
27,7 (1—qw 7)) 1_[(17q;2’)_1 i=rm.
i=1
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