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§1. Introduction

This paper is written to dedicate to Professor Hironaka for his outstanding
contributions to mathematics, especially in algebraic geometry. His leadership
in Asia has inspired many generations of asian mathematicians. We wish many
young mathematicians will continue to follow his footsteps in this grand subject.

In this paper we describe some of our recent results in the asymptotic
analysis of various Kähler metrics and their curvatures on the moduli spaces
of Riemann surfaces. These works will enable us to use differential geometric
techniques to study various algebraic geometric and topological problems about
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the moduli spaces. We believe that the new results here may give a new way
to study the intersection theory on various moduli spaces.

In his work [11], Mumford defined the goodness condition to study the cur-
rents of Chern forms defined by a singular Hermitian metric on a holomorphic
bundle over a quasi-projective manifold. The goodness condition is a growth
condition of the Hermitian metric near the compactification divisor of the base
manifold. The major property of a good metric is that the currents of its Chern
forms define the Chern classes of this bundle. For details, please see Section 2.

Except for the symmetric spaces discussed by Mumford in [11], several nat-
ural bundles over moduli spaces of Riemann surfaces give beautiful and useful
examples. In [20], Wolpert showed that the metric induced by the hyperbolic
metric on the twisted relative tangent bundle over the total space of moduli
space of hyperbolic Riemann surfaces is good. Later it was shown by Trapani
[16] that the metric induced by the Weil-Petersson metric on the determinant
line bundle of the logarithmic cotangent bundle of the Deligne-Mumford mod-
uli space is good. In both cases, the bundles involved are line bundles in which
cases it is easier to estimate the connection and curvature. Other than these,
very few examples of natural good metrics are known.

The goodness of the Weil-Petersson metric has been a long standing open
problem. In this paper, we describe our solution of this problem. In fact we
will present proofs of the goodness of the metrics induced by the Weil-Petersson
metric, as well as the Ricci and perturbed Ricci metrics on the logarithmic
cotangent bundle over the compactified moduli space of Riemann surfaces (the
DM moduli spaces). These works depend on our very accurate estimates of the
asymptotic of the curvature and connection forms of these metrics in [6] and [7]
together with the estimates of derivatives of the hyperbolic metric on Riemann
surfaces. The computations and proofs are quite involved and very subtle. We
will also present our proof of the dual Nakano negativity of the Weil-Petersson
metric. In [13] Schumacher proved the strong negativity of the Weil-Petersson
metric in the sense of Siu. Dual Nakano negativity is stronger than the strong
negativity in the sense of Siu and several interesting consequences will follow.
For example the goodness, combining with the dual Nakano negativity of the
Weil-Petersson metric, gives rise to interesting geometric consequences such as
infinitesimal rigidity of the complex structure on the moduli spaces. We feel
that our results open a new way to study the intersection theory on the moduli
spaces by using differential geometric techniques, and also to apply index theory
to the study of the geometry and topology of the moduli spaces and Teichmüller
spaces.
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Now we briefly describe the organization of this note. In Section 2 we
recall some known works on the geometry of moduli spaces which include the
degeneration of Riemann surfaces and hyperbolic metrics, the Ricci, perturbed
Ricci and Kähler-Einstein metrics as well as their curvature properties, the
asymptotic of Weil-Petersson metric, the Ricci and perturbed Ricci metrics as
established in [6] and [7]. We also review Mumford’s definition of good metrics.

In Section 3 we describe the main ideas of proving the goodness of the Weil-
Petersson metric and in Section 4 we describe the proof of the dual Nakano
negativity of the Weil-Petersson metric. In Section 5 we apply these results
to derive the vanishing theorem about certain cohomology groups and the in-
finitesimal rigidity of the moduli spaces. Our definition of the L2 cohomology
generalizes the usual one with trivial bundle coefficients. Here we have used
both the Weil-Petersson metric and the Ricci metric and their goodness.

Finally in Section 6 we present the goodness of the Ricci and the perturbed
Ricci metrics. We remark that our previous results about the asymptotic be-
havior of the Kähler-Einstein metrics on the moduli spaces already imply an
orbifold Chern number inequality for the logarithmic cotangent bundle which
should give new information about positive divisors on the DM moduli spaces.
In this paper, we will only give the main ideas and sketch the proofs of the
results presented. For details and precise estimates, we refer the reader to [8]
and [9].

We would like to thank professors H.-D. Cao, R. Schoen and E. Viehweg
for their help and encouragement.

§2. Background and Notation

In this section we review the necessary backgrounds and setup our nota-
tions. Most of the results can be found in [6], [7], [20] and [11].

Let Mg,k be the moduli space of Riemann surfaces of genus g with k

punctures such that 2g − 2 + k > 0. We know there is a unique hyperbolic
metric on such a Riemann surface. To simplify the computation, throughout
this paper, we will assume k = 0 and g ≥ 2 and work on Mg. Most of the
results can be trivially generalized to Mg,k.

By the Riemann-Roch theorem, we know that the complex dimension of
the moduli space is n = dimC Mg = 3g − 3. Given a Riemann surface X of
genus g ≥ 2, we denote by λ the unique hyperbolic (Kähler-Einstein) metric
on X. Let z be local holomorphic coordinate on X. We normalize λ:

∂z∂z log λ = λ.(2.1)
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Let (s1, · · · , sn) be local holomorphic coordinates on Mg near a point
p and let Xs be the corresponding Riemann surfaces. Let ρ : TsMg →
H1(Xs, TXs) ∼= H0,1(Xs, TXs) be the Kodaira-Spencer map. Then the har-
monic representative of ρ

(
∂

∂si

)
is given by

ρ

(
∂

∂si

)
= ∂z

(
−λ−1∂si

∂z log λ
) ∂

∂z
⊗ dz = Bi.(2.2)

If we let ai = −λ−1∂si
∂z log λ and let Ai = ∂zai, then the harmonic lift vi of

∂
∂si

is given by

vi =
∂

∂si
+ ai

∂

∂z
.(2.3)

The well-known Weil-Petersson metric ωW P =
√−1

2 hijdsi ∧ dsj on Mg is
defined to be

hij(s) =
∫

Xs

AiAj dv(2.4)

where dv =
√−1

2 λdz ∧ dz is the volume form on Xs. It was proved by Ahlfors
that the Ricci curvature of the Weil-Petersson metric is negative. The upper
bound of the Ricci curvature of the Weil-Petersson metric was conjectured by
Royden and was proved by Wolpert [18].

In our work [6] we defined the Ricci metric ωτ :

ωτ = −Ric (ω
W P

)(2.5)

and the perturbed Ricci metric ωeτ :

ωeτ = ωτ + Cω
WP

(2.6)

where C is a positive constant. These new Kähler metrics have good curvature
and asymptotic properties and play important roles in our study.

Now we describe the curvature formulae of these metrics. Please see [6]
and [7] for details. We denote by fij = AiAj where each Ai is the harmonic
Beltrami differential corresponding to the local holomorphic vector field ∂

∂si
. It

is clear that fij is a function on X. We let � = −∂z∂z be the Laplace operator,
let T = (� + 1)−1 be the Green operator and let eij = T (fij). The functions
eij and fij are building blocks of these curvature formulae.

The curvature formula of the Weil-Petersson metric was given by

Rijkl = −
∫

Xs

(eijfkl + eilfkj) dv.(2.7)



Good Geometry on the Curve Moduli 703

This formula was first established by Wolpert [18] and was generalized by Siu
[15] and Schumacher [14] to higher dimensions. A short proof can be found in
[6].

To describe the curvature formulae of the Ricci and perturbed Ricci met-
rics, we need to introduce several operators. We first define the operator
ξk : C∞(Xs) → C∞(Xs) by

ξk(f) = ∂
∗
(i(Bk)∂f) = −λ−1∂z(Ak∂zf) = −AkK1K0(f)(2.8)

where K0, K1 are the Maass operators [18], [6].
It was proved in[6] that ξk is the commutator of the Laplace operator and

the Lie derivative in the direction vk:

(� + 1)vk − vk(� + 1) = �vk − vk� = ξk.(2.9)

We also need the commutator of the operator vk and vl. In [6] we defined the
operator Qkl : C∞(Xs) → C∞(Xs) by

Qkl(f) = [vl, ξk](f) = P (ekl)P (f) − 2fkl�f + λ−1∂zfkl∂zf(2.10)

where P : C∞(Xs) → Γ(Λ1,0(T 0,1Xs)) is the operator defined by P (f) =
∂z(λ−1∂zf).

The terms appeared in the curvature formulae of the Ricci and perturbed
Ricci metrics are formally symmetric with respect to indices. For convenience,
we recall the symmetrization operator defined in [6].

Definition 2.1. Let U be any quantity which depends on indices i, k, α,

j, l, β. The symmetrization operator σ1 is defined by taking the summation of
all orders of the triple (i, k, α). Similarly, σ2 is the symmetrization operator of
j and β and σ̃1 is the symmetrization operator of j, l and β.

Let R̃ijkl and Pijkl be the curvature tensors of the Ricci and perturbed
Ricci metrics respectively. In [6] we established the following curvature formulae
of these metrics:

R̃ijkl = − hαβ

{
σ1σ2

∫
Xs

{
(T (ξk(eij))ξl(eαβ) + T (ξk(eij))ξβ(eαl)

}
dv

}
− hαβ

{
σ1

∫
Xs

Qkl(eij)eαβ dv

}
+ τpqhαβhγδ

{
σ1

∫
Xs

ξk(eiq)eαβ dv

}{
σ̃1

∫
Xs

ξl(epj)eγδ) dv

}
+ τpjh

pqRiqkl

(2.11)
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and

Pijkl = − hαβ

{
σ1σ2

∫
Xs

{
T (ξk(eij))ξl(eαβ) + T (ξk(eij))ξβ(eαl)

}
dv

}
− hαβ

{
σ1

∫
Xs

Qkl(eij)eαβ dv

}
+ τ̃pqhαβhγδ

{
σ1

∫
Xs

ξk(eiq)eαβ dv

}{
σ̃1

∫
Xs

ξl(epj)eγδ) dv

}
+ τpjh

pqRiqkl + CRijkl.

(2.12)

It is easy to derive information of the sign of the curvature of the Weil-
Petersson metric from its curvature formula (2.7). However, the curvature
formulae of the Ricci and perturbed Ricci metrics are too complicated to use
directly. Thus we need to look at the asymptotic behavior of these metrics.
We now recall geometric construction of the DM moduli space which is due to
Earle-Marden and the degeneration of hyperbolic metrics. Please see [6] and
[18] for details.

Let Mg be the Deligne-Mumford compactification of Mg and let D =
Mg \Mg. It was shown in [2] that D is a divisor with only normal crossings.
A point y ∈ D corresponds to a stable nodal surface Xy. A point p ∈ Xy is a
node if there is a neighborhood of p which is isometric to the germ {(u, v) | uv =
0, |u|, |v| < 1} ⊂ C

2. Let p1, · · · , pm ∈ Xy be the nodes. Xy is stable if each
connected component of Xy \ {p1, · · · , pm} has negative Euler characteristic.

Fix a point y ∈ D, we assume the corresponding Riemann surface Xy

has m nodes. Now for any point s ∈ Mg lying in a neighborhood of y, the
corresponding Riemann surface Xs can be decomposed into the thin part which
is a disjoint union of m collars and the thick part where the injectivity radius
with respect to the Kähler-Einstein metric is uniformly bounded from below.

There are two kinds of local holomorphic coordinate on a collar or near a
node. We first recall the rs-coordinate defined by Wolpert in [20]. In the node
case, given a nodal surface X with a node p ∈ X, we let a, b be two punctures
which are glued together to form p.

Definition 2.2. A local coordinate chart (U, u) near a is called rs-
coordinate if u(a) = 0 where u maps U to the punctured disc 0 < |u| < c

with c > 0, and the restriction to U of the Kähler-Einstein metric on X can
be written as 1

2|u|2(log |u|)2 |du|2. The rs-coordinate (V, v) near b is defined in a
similar way.
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In the collar case, given a closed surface X, we assume there is a closed
geodesic γ ⊂ X such that its length l = l(γ) < c∗ where c∗ is the collar constant.

Definition 2.3. A local coordinate chart (U, z) is called rs-coordinate
at γ if γ ⊂ U where z maps U to the annulus c−1|t| 12 < |z| < c|t| 12 , and the
Kähler-Einstein metric on X can be written as 1

2 ( π
log |t|

1
|z| csc π log |z|

log |t| )2|dz|2.

The existence of collar was due to Keen [5]. We formulate this theorem in
the following:

Lemma 2.1. Let X be a closed surface and let γ be a closed geodesic
on X such that the length l of γ satisfies l < c∗. Then there is a collar Ω on
X with holomorphic coordinate z defined on Ω such that

(1) z maps Ω to the annulus { 1
c e−

2π2
l < |z| < c} for c > 0;

(2) the Kähler-Einstein metric on X restricted to Ω is given by

(
1
2
u2r−2 csc2 τ

)
|dz|2(2.13)

where u = l
2π , r = |z| and τ = u log r;

(3) the geodesic γ is given by the equation |z| = e−
π2
l ;

(4) the constant c has a lower bound such that the area of Ω is bounded from
below by a universal constant.

We call such a collar Ω a genuine collar.

Now we describe the pinching coordinate chart of Mg near the divisor D

[20]. Let X0 be a nodal surface corresponding to a codimension m boundary
point and let p1, · · · , pm be the nodes of X0. Then X̃0 = X0 \ {p1, · · · , pm}
is a union of punctured Riemann surfaces. Fix rs-coordinate charts (Ui, ηi)
and (Vi, ζi) at pi for i = 1, · · · , m such that all the Ui and Vi are mutually
disjoint. Now pick an open set U0 ⊂ X̃0 such that the intersection of each
connected component of X̃0 and U0 is a nonempty relatively compact set and
the intersection U0∩ (Ui∪Vi) is empty for all i. Now pick Beltrami differentials
νm+1, · · · , νn which are supported in U0 and span the tangent space at X̃0 of
the deformation space of X̃0. Let ∆n−m

ε ⊂ Cn−m be the polydisc of radius
ε. For t′′ = (tm+1, · · · , tn) ∈ ∆n−m

ε , let ν(t′′) =
∑n

i=m+1 tiνi. We assume
|t′′| = (

∑n
i=m+1 |ti|2)

1
2 small enough such that |ν(t′′)| < 1. The nodal surface
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X0,t′′ is obtained by solving the Beltrami equation ∂w = ν(t′′)∂w. Since ν(t′′) is
supported in U0, (Ui, ηi) and (Vi, ζi) are still holomorphic coordinates on X0,t′′ .
By the theory of Ahlfors and Bers [1] and Wolpert [20] we can assume that
there are constants δ, c > 0 such that when |t′′| < δ, ηi and ζi are holomorphic
coordinates on X0,t′′ with 0 < |ηi| < c and 0 < |ζi| < c. Now we assume
t′ = (t1, · · · , tm) has small norm. We do the plumbing construction on X0,t′′

to obtain Xt = Xt′,t′′ . For each i = 1, · · · , m, we remove the discs {0 <

|ηi| ≤ |ti|
c } and {0 < |ζi| ≤ |ti|

c } from X0,t′′ and identify { |ti|
c < |ηi| < c} with

{ |ti|
c < |ζi| < c} by the rule ηiζi = ti. This defines the surface Xt. The tuple

t = (t′, t′′) = (t1, · · · , tm, tm+1, · · · , tn) are the local pinching coordinates for
the manifold cover of Mg. We call the coordinates ηi (or ζi) the plumbing
coordinates on Xt,s and the collar { |ti|

c < |ηi| < c} the plumbing collar.

Remark 2.1. From the estimate of Wolpert [19], [20] on the length of
short geodesic, we have ui = li

2π ∼ − π
log |ti| .

In [6] we first proved the equivalence of canonical metrics on Mg:

Theorem 2.1. All the canonical metrics on the moduli space Mg: the
Teichmüller-Kobayashi metric, the Carathéodory metric, the induced Bergman
metric, the asymptotic Poincaré metric, the McMullen metric, the Ricci metric,
the perturbed Ricci metric and the Kähler-Einstein metric are equivalent.

The new metrics we defined have nice curvature properties which can be
used to control the Kähler-Einstein metric. In [6] and [7] we proved

Theorem 2.2. The Ricci and perturbed Ricci metrics are complete
Kähler metrics with Poincaré growth. These metrics and the Kähler-Einstein
metric have bounded geometry on the Teichmüller space Tg. Furthermore, all
the covariant derivatives of the curvature of the Kähler-Einstein metric are
bounded. The Ricci and holomorphic sectional curvatures of the perturbed Ricci
metric are bounded from above and below by negative constants.

We also derived in [6] and [7] the precise asymptotic of the Weil-Petersson,
Ricci and perturbed Ricci metrics and their curvature. This is one of the
key components in the proof of the goodness of these metrics. For the Weil-
Petersson and Ricci metrics we have

Theorem 2.3. Let (t, s) = (t1, · · · , tm, sm+1, · · · , sn) be the pinching
coordinates near a codimension m boundary point in Mg. Let h and τ be the
Weil-Petersson and Ricci metrics respectively. Then the Weil-Petersson metric
has the asymptotic:
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(1) hii = 2u−3
i |ti|2(1 + O(u0)) and hii = 1

2
u3

i

|ti|2 (1 + O(u0)) for 1 ≤ i ≤ m;

(2) hij = O(|titj |) and hij = O
(

u3
i u3

j

|titj |
)
, if 1 ≤ i, j ≤ m and i �= j;

(3) hij = O(1) and hij = O(1), if m + 1 ≤ i, j ≤ n;

(4) hij = O(|ti|) and hij = O
(

u3
i

|ti|
)

if i ≤ m < j;

(5) hij = O(|tj |) and hij = O
(

u3
j

|tj |
)

if j ≤ m < i

where u0 =
∑m

j=1 uj +
∑n

j=m+1 |sj |. The Ricci metric has the asymptotic:

(1) τii = 3
4π2

u2
i

|ti|2 (1 + O(u0)) and τ ii = 4π2

3
|ti|2
u2

i
(1 + O(u0)), if i ≤ m;

(2) τij = O
(

u2
i u2

j

|titj | (ui + uj)
)

and τ ij = O(|titj |), if i, j ≤ m and i �= j;

(3) τij = O
(

u2
i

|ti|
)

and τ ij = O(|ti|), if i ≤ m and j ≥ m + 1;

(4) τij = O(1), if i, j ≥ m + 1.

The holomorphic sectional curvature of the Ricci metric has the asymptotic:

(1) R̃iiii = − 3u4
i

8π4|ti|4 (1 + O(u0)) if i ≤ m;

(2) R̃iiii = O(1) if i > m.

We also have a weak curvature estimate of the Ricci metric. Let

Λi =

{
ui

|ti| if i ≤ m

1 if i > m.

Then

(1) R̃ijkl = O(1) if i, j, k, l > m;

(2) R̃ijkl = O(ΛiΛjΛkΛl)O(u0) if at least one of these indices i, j, k, l is less
than or equal to m and they are not all equal to each other.

The asymptotic of the perturbed Ricci metric and its curvature can be
found in [6] and [7]. Also, precise estimates of the full curvature tensor of the
Weil-Petersson, Ricci and perturbed Ricci metrics, which will be used in the
proof of their goodness, can be found in [8] and [9].
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Stronger estimates of the asymptotic of these metrics lead to the Mum-
ford’s goodness condition of singular Hermitian metrics on vector bundles over
quasi-projective manifolds. We recall the definition and basic properties of
good metrics from [11].

Let X be a quasi-projective variety of dimC X = k obtained by removing
a divisor D of normal crossings from a closed smooth projective variety X. Let
E be a holomorphic vector bundle of rank n over X and E = E |X . Let h be
a Hermitian metric on E which may be singular near D.

We cover a neighborhood of D ⊂ X by finitely many polydiscs{
Uα =

(
∆k, (z1, · · · , zk)

)}
α∈A

such that Vα = Uα \ D = (∆∗)m × ∆k−m. Namely, Uα ∩ D = {z1 · · · zm = 0}.
We let U =

⋃
α∈A Uα and V =

⋃
α∈A Vα. On each Vα we have the local Poincaré

metric

ωP,α =
√
−1
2

(
m∑

i=1

1
2|zi|2 (log |zi|)2

dzi ∧ dzi +
k∑

i=m+1

dzi ∧ dzi

)
.

Definition 2.4. Let η be a smooth local p-form defined on Vα.

• We say η has Poincaré growth if there is a constant Cα > 0 depending on
η such that

|η(t1, · · · , tp)|2 ≤ Cα

p∏
i=1

‖ti‖2
ω

P,α

for any point z ∈ Vα and t1, · · · , tp ∈ TzX.

• We say η is good if both η and dη have Poincaré growth.

Definition 2.5. An Hermitian metric h on E is good if for all z ∈ V ,
assuming z ∈ Vα, and for all basis (e1, · · · , en) of E over Uα, if we let hij =
h(ei, ej), then

•
∣∣∣hij

∣∣∣ , (det h)−1 ≤ C (
∑m

i=1 log |zi|)2n for some C > 0 and n ≥ 1.

• The local 1-forms
(
∂h · h−1

)
αγ

are good on Vα. Namely the local connec-
tion and curvature forms of h have Poincaré growth.

It is easy to see the following basic properties of good metrics:

• The definition of Poincaré growth is independent of the choice of Uα or
local coordinates on it.
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• A form η ∈ Ap(X) with Poincaré growth defines a p-current [η] on X. In
fact we have ∫

X

|η ∧ ξ| < ∞

for any ξ ∈ Ak−p(X).

• If both η ∈ Ap(X) and ξ ∈ Aq(X) have Poincaré growth, then η ∧ ξ has
Poincaré growth.

• For a good form η ∈ Ap(X), we have d[η] = [dη].

The importance of a good metric on E is that we can compute the Chern
classes of E via the Chern forms of h as currents. Namely, with the growth
assumptions on the metric and its derivatives, we can integrate by part, so
Chern-Weil theory still holds. In [11] Mumford has proved:

Theorem 2.4. Given an Hermitian metric h on E, there is at most
one extension E of E to X such that h is good.

Theorem 2.5. If h is a good metric on E, the Chern forms ci(E, h) are
good forms. Furthermore, as currents, they represent the corresponding Chern
classes ci(E) ∈ H2i(X, C).

In the following sections, we will discuss the goodness of the above metrics
and their applications.

§3. Goodness of the Weil-Petersson Metric

From Theorem 2.3, it is very natural to consider the metrics induced by
the Weil-Petersson, Ricci, perturbed Ricci and Kähler-Einstein metrics on the
logarithmic extension E = T ∗

Mg
(log D) of the cotangent bundle T ∗

Mg
to the

DM moduli space Mg.
We first give a general discussion of the goodness condition of the metric

on E induced by a Kähler metric g on Mg. Let D = Mg \Mg be the compact-
ification divisor and let p ∈ D be a codimension m boundary point in Mg with
the corresponding stable nodal surface X0,0. Let n = 3g − 3 be the dimension
of Mg. Let (t1, · · · , tn) be the pinching coordinates near p where (t1, · · · , tm)
corresponding to the degeneration directions.

For any Kähler metric g on Mg, let g∗ be the induced metric on E. We
know that (

dt1
t1

, · · · ,
dtm
tm

, dtm+1, · · · , dtn

)
(3.1)
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is a local holomorphic frame of E. Under this frame, the metric g∗ and its
inverse are given by

g∗
ij

=



1
titj

gij i, j ≤ m

1
ti

gij i ≤ m < j
1
tj

gij j ≤ m < i

gij i, j > m

(3.2)

and

(g∗)ij =


titjgij i, j ≤ m

tigij i ≤ m < j

tjgij j ≤ m < i

gij i, j > m.

(3.3)

Now we define two quantities. Let

Dk
i =


tk

ti
i, k ≤ m

tk k ≤ m < i
1
ti

i ≤ m < k

1 i, k > m.

(3.4)

Let vi = − π
log |ti| for i ≤ m and let ui = li

2π where li is the length of the geodesic
loop on the i-th collar of X = Xt. We have that

ui = vi(1 + O(vi)).

Now we let

Λi =

{
ui

|ti| i ≤ m

1 i > m.
(3.5)

Let A = (Ak
i ) be the connection form of g∗ where i is the row index and k

is the column index. We have

Ak
i =

∑
p

∑
j

(
∂pg

∗
ij

)
(g∗)kj

 dtp.(3.6)

By (3.2), (3.3) and (3.4), we have

Ak
i = −

∑
p

Dk
i

∑
j

(
∂pgkj

)
gij

 dtp(3.7)
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if i �= k or i = k > m. We also have

Ai
i = −

∑
p�=i

∑
j

(
∂pgij

)
gij

 dtp −

 1
ti

+
∑

j

(
∂igij

)
gij

 dti(3.8)

if i = k ≤ m.
To prove the goodness of g∗, the first order estimates are reduced to∣∣∣∣∣∣Dk

i

∑
j

(
∂pgkj

)
gij

∣∣∣∣∣∣ = O(Λp)(3.9)

if i �= k or i = k > m or p �= i = k ≤ m and∣∣∣∣∣∣ 1
ti

+
∑

j

(
∂igij

)
gij

∣∣∣∣∣∣ = O(Λi)(3.10)

if i = k = p ≤ m.
For the estimates on the g∗ itself, we need to show that∣∣∣g∗ij∣∣∣ , (det g∗)−1 ≤ C

(
m∑

i=1

log |ti|
)2n

.(3.11)

By (3.2) we have (det g∗)−1 = |t1 · · · tm|2(det g), inequality (3.11) is equiv-
alent to ∣∣∣g∗ij∣∣∣ , |t1 · · · tm|2(det g) ≤ C

(
m∑

i=1

log |ti|
)2n

.(3.12)

The second order estimates are reduced to show that dAk
i has Poincaré

growth for any choice of i, k. Since

dA = ∂A + ∂A = ∂A − A ∧ A,

if each entry of A has Poincaré growth, then each entry of A ∧ A has Poincaré
growth. Thus we need to show that each entry of ∂A has Poincaré growth.

By (3.7) and (3.8), since Di
i = 1, we have

∂Ak
i = Dk

i ∂q

∑
j

(
∂pgkj

)
gij

 dtp ∧ dtq = −Dk
i gijRkjpqdtp ∧ dtq(3.13)

where Rkjpq is the curvature of g. Thus we need to show that∣∣∣Dk
i gijRkjpq

∣∣∣ = O(ΛpΛq).(3.14)

By collecting the above argument, we have
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Lemma 3.1. The metric g∗ on T ∗
Mg

(log D) induced by a Kähler metric
g on Mg is good if and only if the estimates (3.9), (3.10), (3.12) and (3.14)
hold.

In this section, we will focus on the goodness of the metric induced by the
Weil-Petersson metric h. The main theorem is

Theorem 3.1. The metric h∗ on the logarithm cotangent bundle E over
the DM moduli space induced by the WP metric is good in the sense of Mumford.
Thus the Chern forms of h∗, as currents, are equal to the Chern classes of E.

We now sketch the proof of this theorem in three steps: the zero-th order,
first order and second order estimates. The details are in [8]. In the following,
we take the metric gij to be the Weil-Petersson metric hij . We use the same
notation as in our paper [6].

We first consider the zero-th order estimate. This follows directly from
Theorem 2.3.

Lemma 3.2. The inequality (3.12) hold for the Weil-Petersson metric h.

Proof. By Theorem 2.3 and (3.2), (3.3), we have

h∗
ij

=

{
2u−3

i (1 + O(u0)) i = j ≤ m

O(1) otherwise

and

|t1 · · · tm|2(deth) ≤ C

(
m∏

i=1

ui

)3

.

It is easy to see that (3.12) hold.

Now we prove the first order estimates. In order to compute the connection
of the induced metric h∗, it is easier to prove the formula (3.6) directly with
the metric h. We use the estimate of Masur [10] and refine the estimates of
Schumacher [13] and Trapani [16].

By the work of [6] we know that

hij =
∫

X

ϕiϕj

λ2
dv(3.15)

where ϕi is the holomorphic quadratic differential corresponding to dti and λ

is the KE metric on X. In order to compute the connection forms of the WP
metric, we need to estimate the derivatives of each ϕi and λ.
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Unlike the approach in [6], here we take plumbing coordinate and plumbing
collar rather than rs-coordinate and genuine collar because we need the trivi-
alization of the collars. It is easier to compute the derivative of the hyperbolic
metric by using the plumbing coordinate on the degeneration collars.

We first change coordinate on the collars. Let (t1, · · · , tn) be the pinching
coordinates near a codimension m boundary point p in the DM moduli. Let zi

and wi be the plumbing coordinates on the i-th collar of Xt with i ≤ m. Let
ri = |zi|, θi = arg zi, r̃i = |wi| and θ̃i = arg wi. We know that ziwi = ti. Let
Ωi

c be the i-th plumbing collar of size c with a fixed 0 < c < 1. Namely,

Ωi
c = {zi | c−1|ti| ≤ ri ≤ c} = {wi | c−1|ti| ≤ r̃i ≤ c}.

We denote by Ωc the union of all collars: Ωc =
⋃m

i=1 Ωi
c. We also define the

half collars Ωi+
c and Ωi−

c by

Ωi+
c = {zi | |ti|

1
2 ≤ ri ≤ c}

and
Ωi−

c = {zi | c−1|ti| ≤ ri ≤ |ti|
1
2 } = {wi | |ti|

1
2 ≤ r̃i ≤ c}.

To compute the derivative of ϕ, by our works in [6] and the work of Masur
[10], we have the expansion of ϕi on the plumbing collars. Let ∆n

δ be the
closed polydisc in C

n such that the radius of each disk is δ > 0. We assume
the pinching coordinates t = (t1, · · · , tn) is defined for t ∈ ∆n

δ . By shrinking δ

we have

Lemma 3.3. Let k ≤ m and let zk and wk be the plumbing coordinates
on the k-th collar Ωk

c0
with c < c0 < 1 fixed. Then on Ωk

c0
we have

(1) ϕi = − ti

π
1
z2

k
(pk

i (zk) + qk
i (zk)) if i ≤ m and i �= k;

(2) ϕi = 1
z2

k
(pk

i (zk) + qk
i (zk)) if i > m;

(3) ϕk = − tk

π
1
z2

k
(1 + pk

k(zk) + qk
k(zk)).

There is a constant M > 0 such that in the above formulae, the functions pk
i , qk

i

satisfy

(1) pk
i =

∑∞
s=1 ak

is(t)z
s
k such that each ak

is(t) is a holomorphic function of the
multi-variable t and

∑∞
s=1 |ak

is(t)|cs
0 ≤ M for t ∈ ∆n

δ ;

(2) qk
i =

∑
s≤−1 ak

is(t)t
−s
k zs

k such that ak
is(t) is holomorphic in t and∑

s≤−1 |ak
is(t)|c−s

0 ≤ M for t ∈ ∆n
δ .
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There are similar expansions by using the wk coordinates. Furthermore, on
X \ Ωc we have

‖ϕi‖ =

{
O(|ti|) i ≤ m

O(1) i > m.

For the proof of this lemma, please see [10]. We also have the estimates of
the derivatives of pk

i and qk
i :

Lemma 3.4. Let 0 < c < c0 be a fixed constant. On the collar Ωk
c we

have

(1) ∂pk
i

∂tj
=

∑∞
s=1

∂ak
is(t)

∂tj
zs
k such that

∑∞
s=1

∣∣∣∂ak
is(t)

∂tj

∣∣∣ cs ≤ M1 for t ∈ ∆n
δ
2
;

(2) ∂qk
i

∂tj
=

∑
s≤−1

∂ak
is(t)

∂tj
t−s
k zs

k such that
∑

s≤−1

∣∣∣∂ak
is(t)

∂tj

∣∣∣ c−s ≤ M1 for t ∈ ∆n
δ
2

and j �= k;

(3) ∂qk
i

∂tk
= 1

tk

∑
s≤−1 bk

is(t)t
−s
k zs

k where bk
is(t) = tk

∂ak
is(t)

∂tk
− sak

is(t) and∑
s≤−1 |bk

is(t)|c−s ≤ M1.

Here M1 is a constant depending on M, c, c0, δ, n.

By combining the above two lemmas, we can get desired estimates of the
derivatives of each quadratic differential ϕi.

We then estimate the KE metric λ and its derivatives on each Riemann
surface. The following estimate of λ is due to Masur [10]. The following lemma,
although is not sharp, will be enough for our purpose.

Lemma 3.5. For each 1 ≤ i ≤ m, there is a constant α > 0 such that,
on Ωi+

c , we have
1
α

1
r2
i (log ri)2

≤ λ ≤ α
1

r2
i (log ri)2

and on Ωi−
c , we have

1
α

1
r̃2
i (log r̃i)2

≤ λ ≤ α
1

r̃2
i (log r̃i)2

.

The estimate the derivative of λ is more subtle. We have

Lemma 3.6. Let λ be the KE metric on the Riemann surface X = Xt.
On each collar Ωk

c , λ has a unique representation in term of the plumbing
coordinate zk. Then ∣∣∣∣ ∂

∂ti
(log λ |Ωc

)
∣∣∣∣ = O(Λi).
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Some ideas of the proof of this lemma was drawn from the work of
Schumacher in [13]. We briefly describe the proof here by using the compound
graft metric constructed by Wolpert in [20].

Let X be the total space and let π : X → Mg be the projection. In [6],
we established the curvature formulae of the WP metric and the Ricci metric
by using the harmonic lift which directly gives the harmonic representatives
of the Kodaira-Spencer classes. In this case, we need to use a different lift.
For each i, let vi be the harmonic lift of ∂

∂ti
. Let ṽi be a lift of ∂

∂ti
such that

ṽi |π−1(Ωc)=
∂

∂ti
. This can be done since we have a trivialization of π−1(Ωc)

by using the plumbing coordinates on the collars. ṽi can be obtained by gluing
fiberwisely an appropriately chosen lift of ∂

∂ti
on X \ Ωc and the vector field

∂
∂ti

on Ωc using a graft function.

Now let λ̃ be the compound graft metric on X. A direct computation
shows that ∣∣∣∣∣Levi

λ̃

λ̃
− Levi

λ

λ

∣∣∣∣∣ = O(Λi)

and ∣∣∣∣∣Levi
λ̃

λ̃

∣∣∣∣∣ = O(Λi).

The above two formulae imply ∣∣∣∣Levi
λ

λ

∣∣∣∣ = O(Λi)

which is the conclusion since ṽi |π−1(Ωc)=
∂

∂ti
.

The estimates on ϕi, λ and their derivatives give the estimates on the
derivatives of the dual metric of the WP metric:

Lemma 3.7. Let t = (t1, · · · , tn) be the local pinching coordinates with
t ∈ ∆n

δ . Assume δ is small enough. If p > m, then

∣∣∣∂ph
ij
∣∣∣ =



O(|ti|2u−3
i ) i = j ≤ m

O(|titj |) i, j ≤ m, i �= j

O(|ti|) i ≤ m < j

O(|tj|) j ≤ m < i

O(1) i, j > m.

(3.16)
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If p ≤ m and p �= i, then

∣∣∣∂ph
ij
∣∣∣ =



O(|ti|2u−3
i Λp) i = j ≤ m

O(|titj |Λp) i, j ≤ m, i �= j

O(|ti|Λp) i ≤ m < j

O(|tj |Λp) j ≤ m < i

O(Λp) i, j > m.

(3.17)

If p = i ≤ m then

∣∣∣∣∂i

(
1
ti

hij

)∣∣∣∣ =


O(u−2

i ) i = j ≤ m

O(
∣∣∣ tj

ti

∣∣∣u−2
i ) j ≤ m, i �= j

O(|ti|−1u−2
i ) j > m.

(3.18)

We omit the proof of this lemma since it consists of very technique esti-
mates. Please see [8] for details. Now the first order estimate follows from the
above lemma, Theorem 2.3 and direct computations:

Lemma 3.8. Let h∗ be the metric on E induced by the WP metric.
Then ∣∣∣∣∣∣

∑
j

∂p

(
h∗

ij

)
(h∗)kj

∣∣∣∣∣∣ = O(Λp)

for any i and k.

Remark 3.1. Let Γk
ij be the Christoffell symbol of the WP metric under

the pinching coordinates. By (3.9) and (3.10), Lemma 3.8 is equivalent to

(1)
∣∣∣Γi

ii + 1
ti

∣∣∣ = O(Λi) if p = i = k ≤ m;

(2)
∣∣∣Dk

i Γi
kp

∣∣∣ = O(Λp) otherwise.

Finally we briefly discuss the second order estimate. We only give the
main steps and omit the details. On one hand, since we need to estimate the
curvature tensor of the Weil-Petersson metric, we can use the techniques in [6].
On the other hand, we need precise estimates which require us to repeat the
work in [6] in an optimal way.

First of all, by Theorem 2.3, formula (3.14) is equivalent to the following
two formulae:

|Rkjpq| =

O
(
ΛpΛq

u3
j

|tj |
)

j ≤ m

O (ΛpΛq) j > m
(3.19)



Good Geometry on the Curve Moduli 717

if k > m and

|Rkjpq| =

O
(
ΛpΛq

u3
j

|tjtk|
)

j ≤ m

O
(
ΛpΛq

1
|tk|

)
j > m

(3.20)

if k ≤ m.
To check these two formulae, we use the curvature formula of the Weil-

Petersson metric:

Rkjpq = −
∫

X

(ekjfpq + ekqfpj) dv.(3.21)

In this case, we will use rs-coordinates on the genuine collars. We let X = Xt

and let Ωi
c be the i-th genuine collar in X of size c. Let zi be a rs-coordinate

on Ωi
c with ri = |zi| and let ρi = e

− 2π2
li . By [6] we know that

Ωi
c = {zi | c−1ρi ≤ ri ≤ c}.

We define the half collars

Ωi+
c = {zi | ρ

1
2
i ≤ ri ≤ c}

and
Ωi−

c = {zi | c−1ρi ≤ ri ≤ ρ
1
2
i }.

For 0 < c1 < c, we define Ωj
c \ Ωj

c1
= Γj

1 ∪ Γj
2 where

Γj
1 = {c1 < rj ≤ c}

and
Γj

2 = {c−1ρj ≤ rj < c−1
1 ρj}.

Let the functions ẽij be defined as in [9]. The following technical lemma,
as an optimal version of the proof of Corollary 4.2 of [6], is one of the key
ingredient of the second order estimate.

Lemma 3.9. Let j ≤ m. Then
∫
Ωj

c1
ẽjjfkk dv ≥ 0 and

∫
Ωj

c1

ẽjjfkk dv =


O

(
u4

j

|tj |2
)

k > m

O
(

u4
j

|tj |2
u6

k

|tk|2
)

k ≤ m, k �= j

O
(

u5
j

|tj |4
)

k = m.

(3.22)

By using this lemma, we have the second order estimate:



718 Kefeng Liu, Xiaofeng Sun and Shing-Tung Yau

Lemma 3.10. The formulae (3.19) and (3.20) hold.

The proof of this part follows from Lemma 3.9 and a detailed case by case
check. See [8]. Now we are ready to prove the main theorem 3.1.

Proof. By Lemmas 3.2, 3.8 and 3.10 we already checked the goodness
condition of the metric h∗ by using the frame (3.1). If we choose another local
holomorphic frame of E, it is clear that the change matrix is holomorphic and
its determinant is non-zero and bounded. Thus the zero order, first order and
second order estimates of using the new frame differ from the estimates of using
the frame (3.1) by bounded terms. We finish the proof.

§4. Dual Nakano Negativity of the Weil-Petersson Metric

The Weil-Petersson metric has many negative curvature properties.
Ahlfors showed that its Riemannian sectional curvature is negative. Later,
Schumacher showed in [13] that the curvature of the WP metric is strongly
negative in the sense of Siu. In this section, we prove that WP metric is dual
Nakano negative from which we will derive Nakano-type vanishing theorems in
next section.

We first recall the concept of dual Nakano negativity. Let (Em, h) be a
holomorphic vector bundle with a Hermitian metric over a complex manifold
Mn. The curvature of E is given by

Pijαβ = −∂α∂βhij + hpq∂αhiq∂βhpj .

(E, h) is Nakano semi-positive if the curvature P defines a semi-positive form
on the bundle E ⊗ TM . Namely,

PijαβCiαCjβ ≥ 0(4.1)

for all m × n complex matrix C. The metric h is Nakano positive if (4.1) is a
strict inequality whenever C �= 0. E is dual Nakano (semi) negative if the dual
bundle with the induced metric (E∗, h∗) is Nakano (semi) positive.

Our main result in this section is

Theorem 4.1. Let Mg be the moduli space of Riemann surfaces of
genus g ≥ 2. Then (TMg

, ωWP ) is dual Nakano negative.

To prove that the WP metric h on the tangent bundle of Mg is Nakano
negative, we only need to show that (T ∗Mg, h

∗) is Nakano positive. Let Rijkl
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be the curvature of Mg and Pijkl be the curvature of the cotangent bundle.
We first have

Pmnkl = −hinhmjRijkl.

Thus if we let akj =
∑

m hmjCmk, we have

PmnklC
mkCnl = −

∑
i,j,k,l

Rijklakjali = −
∑

i,j,k,l

Rkjilakjali = −
∑

i,j,k,l

Rijklaijalk.

Recall that at X ∈ Mg we have

Rijkl = −
∫

X

(
eijfkl + eilfkj

)
dv.

By combining the above two formulae, to prove that the WP metric is Nakano
negative is equivalent to show that∫

X

(
eijfkl + eilfkj

)
aijalk dv ≥ 0(4.2)

and the left hand side of the above formula is strictly positive if A = [aij ] �= 0.
We now describe the proof with the assumption that the matrix [aij ] is

invertible. The general case can be found in [8] which follows from the same
idea.

Recall that if we let � = −λ−1∂z∂z be the Laplace operator with respect
to the KE metric λ on X and let T = (� + 1)−1, then eij = T

(
fij

)
where

fij = AiAj and Ai is the harmonic representative of the Kodaira-Spencer
class of ∂

∂ti
where (t1, · · · , tn) are local coordinates on Mg and z is the local

coordinate on Xt.
Let Bj =

∑n
i=1 aijAi. Then the inequality (4.2) is equivalent to

−
∑
j,k

R(Bj , Bk, Ak, Aj)(4.3)

=
∑
j,k

∫
X

(
T
(
BjAj

)
AkBk + T

(
BjBk

)
AkAj

)
dv ≥ 0.

Since {Ak} is a basis of the space H0,1(X, TX) and the matrix {aij} is an
arbitrary invertible matrix, we need to show that the inequality (4.3) holds for
any two bases {Ai} and {Bi}. Of course we can choose one basis, say {Ai},
and let the other basis vary freely.

Now we prove the inequality (4.3). Let µ =
∑

j BjAj . Then the first term
in (4.3) is ∑

j,k

∫
X

T
(
BjAj

)
AkBk dv =

∫
X

T (µ)µ dv ≥ 0.
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To check the second term, we let G(z, w) be the Green’s function of
the operator T . Namely, for any function f ∈ C∞(X), we have T (f) =∫

X
G(z, w)f(w)dv(w). Now we let

H(z, w) =
∑

j

Aj(z)Bj(w).

We know the second term of (4.3) is∑
j,k

∫
X

T
(
BjBk

)
AkAj dv=

∑
j,k

∫
X

∫
X

G(z, w)Bj(w)Bk(w)Ak(z)Aj(z) dv(w)dv(z)

=
∫

X

∫
X

G(z, w)H(z, w)H(z, w)dv(w)dv(z) ≥ 0

where the last inequality follows from the fact that the Green’s function G is
non-negative which is proved by Wolpert in [18, page 136].

Here we note that H(z, w) is not a global function. However, we can
overcome this by using a simple partition of unity argument. See [8] for details.

Remark 4.1. It is possible to show that the singular metric on
TMg

(− log D) induced by the Weil-Petersson metric is also dual Nakano neg-
ative. This follows from the dual Nakano negativity of the WP metric and
simple linear algebra.

§5. L2-Cohomology and Rigidity

The dual Nakano negativity of a Hermitian metric on a bundle over a
compact manifold gives strong vanishing theorems by using Bochner techniques.
However, in our case the base variety Mg is only quasi-projective. Thus we
can only describe vanishing theorems of the L2 cohomology.

In [12], Saper showed that the L2 cohomology of the moduli space equipped
with the Weil-Petersson metric can be identified with the ordinary cohomology
of the DM moduli space. Our situation is more subtle since the natural object to
be considered in our case is the tangent bundle valued L2 cohomology. Parallel
to Saper’s work, we proved in [8]

Theorem 5.1. We have the following natural isomorphism:

H∗
(2)((Mg, ωτ ), (TMg

, ω
WP

)) ∼= H∗
(
Mg, TMg

(− log D)
)

(5.1)

where ωτ is the Ricci metric on Mg.
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We first explain this theorem. To define the L2 cohomology of a vector
bundle over a manifold, we need metrics on both the bundle and the manifold.
Here we view TMg

purely as a bundle over the moduli space Mg. We use
the WP metric as the bundle metric and we put the Ricci metric on the base
variety Mg. We do this because of the technique difficulty that the WP metric
is incomplete and thus there is trouble in defining the adjoint operator ∂

∗
.

After setting up the section spaces appropriately, the proof of this theorem is
a direct application of the goodness of these metrics and can be found in [8].

Now we combine the above result with the dual Nakano negativity of the
Weil-Petersson metric. In [8] we proved the following Nakano-type vanishing
theorem

Theorem 5.2. The L2 cohomology group vanish:

H0,q
(2) ((Mg, ωτ ), (TMg

, ωW P )) = 0(5.2)

unless q = 3g − 3.

The proof is similar to proof of Nakano vanishing theorem in the case when
the base manifold is closed. It depends on the Kodaira-Nakano identity

�∂ = �∇ +
√
−1

[
∇2, Λ

]
.

We then apply the dual Nakano negativity of the WP metric to get the vanishing
theorem by using the goodness to deal with integration by part to show that
there is no boundary term. We note here that, in the proof of Nakano vanishing
theorem, we only need the negativity of the curvature of the bundle metric.

The above two theorems imply a result of Hacking [4]

Corollary 5.1. The pair (Mg, D) is infinitesimally rigid.

§6. Goodness of the Ricci and Perturbed Ricci Metrics

In this last section we discuss the goodness of the metrics on T ∗
Mg

(log D)
induced by the Ricci and perturbed Ricci metrics. These results here are more
difficult than that in Section 3, the goodness of the Weil-Petersson metric. Our
main theorem is

Theorem 6.1. The metrics τ∗ and τ̃∗ on T ∗
Mg

(log D) induced by the
Ricci and perturbed Ricci metrics are good in the sense of Mumford.
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By Lemma 3.1, we need to show the estimates (3.9), (3.10), (3.12) and
(3.14) hold when the metric g is the Ricci metric τ or the perturbed Ricci
metric τ̃ .

Here we only describe the proof of the estimates of the goodness of the
Ricci metric τ . Please see [8] for the perturbed Ricci metric.

In this case, the zero-th order estimate follows from Theorem 2.3 directly.
Now we consider the first order estimate. We let Γ̃k

ij be the Christoffell
symbol of the Ricci metric under the pinching coordinates. To show the first
order estimate, we need to check that Γ̃k

ij satisfy the inequalities (3.9) and
(3.10). By Theorem 3.2 of [6] we have

Γ̃i
kp = τ ijhαβ

(
σ1

∫
X

ξp(ekj)eαβ dv

)
+ Γi

kp(6.1)

where Γi
kp is the Christoffell symbol of the WP metric. In order to prove the

first order estimate for the Ricci metric, by Remark 3.1 and Lemma 3.8, we only
need to estimate the tensor part. Thus the first order estimate is equivalent to

Lemma 6.1. For any i, k and p, we have∣∣∣∣τ ijhαβ

(
σ1

∫
X

ξp(ekj)eαβ dv

)∣∣∣∣ = O(Λp).

The central part of the proof of this lemma is following estimates which is
the optimal version of the results in [6]:

Lemma 6.2.

∣∣∣P (
ẽij

)∣∣∣
L1

=



O
(

u3
i

|ti|2
)

i = j ≤ m

O
(

u3
i u3

j

|titj |
)

i, j ≤ m, i �= j

O
(

u3
i

|ti|
)

i ≤ m < j

O
(

u3
j

|tj |
)

j ≤ m < i

O(1) i, j > m.

Similarly, the second order estimate follows from sharpening the estimates
in [6]. Please see [8] for details.

It is well known that the line bundle KMg
+[D], which is the determinant

bundle of T ∗
Mg

(log D), is positive. In [7] we proved

Theorem 6.2. The logarithmic cotangent bundle E = T ∗
Mg

(log D) is
stable with respect to its first Chern class.



Good Geometry on the Curve Moduli 723

Since E is stable, by the works of Donaldson-Uhlenbeck-Yau [3], [17] there
is a Hermitian-Einstein metric on E with respect to any metric in the class
c1(E) which gives an orbifold Chern number inequality. However, the metric
induced by the Kähler-Einstein metric, if it is good, will give a stronger Chern
number inequality. Thus a more interesting question is whether the metric on
T ∗
Mg

(log D) induced by the Kähler-Einstein metric on Mg is good or not. The
difficulty rises from that it is very hard to control the off-diagonal terms in
the local expression of the Kähler-Einstein metric with respect to the pinching
coordinates. We believe that this difficulty can be solved by studying the
Kähler-Ricci flow on Mg with the Ricci metric as the initial metric and showing
that the goodness is preserved under the flow.
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