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Abstract

We present applications of elimination theory to the study of singularities over
arbitrary fields. A partial extension of a function, defining resolution of singularities
over fields of characteristic zero, is discussed here in positive characteristic.
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Part 1. Introduction

Hironaka’s theorem of embedded desingularization was proven by induc-
tion on the dimension of the ambient space. This form of induction is based
on a reformulation of the resolution problem, as a new resolution problem, but
now in a smooth hypersurface of the ambient space. Smooth hypersurfaces
playing this inductive role are called hypersurfaces of maximal contact. In the
case of resolution of embedded schemes defined by one equation, hypersurfaces
of maximal contact can be selected via a Tschirnhausen transformation of the
equation. However this strategy for induction on resolution problems holds
exclusively over fields of characteristic zero, and fails over fields of positive
characteristic.

The objective of this paper is to discuss results that grow from a different
approach to induction, based on a form of elimination which holds over fields
of arbitrary characteristic (see also [6]).

Over fields of characteristic zero Hironaka proves that resolution of singu-
larities is achieved by blowing up, successively, at smooth centers. Constructive
resolution of singularities is a form of desingularization where the centers are
defined by an upper semi-continuous function. The singular locus is stratified
by the level sets of the function. The closed stratum, corresponding to the
biggest value achieved by the function, is the smooth center to be blown-up.
Then a new upper semi-continuous function is defined at the blow-up, which,
in the same way, indicates the next center to blow-up; and so on.

In this paper we show that there is a partial extension to arbitrary charac-
teristic of the upper semi-continuous function in [29], defined there over fields
of characteristic zero (see Theorem 6.18 and Proposition 6.19). The notion of
eliminations algebras, introduced in [32], will be used as a substitute for the
notion of maximal contact. A second ingredient for this extension is Hironaka’s
Finite Presentation Theorem (p.119, [19]) (see 5.19).

This partial extension of the function to positive characteristic provides,
in a canonical manner, a procedure of transformation of singularities into sin-
gularities of a specific simplified form (with “monomial” elimination algebra).
Over fields of characteristic zero this is the well know reduction to the monomial
case (see 6.16).

Hironaka defines a class of objects (couples), consisting of an ideal and
a positive integer. On this class he introduces two notions of equivalence.
The first equivalence is defined in terms of integral closure of ideals, and an
equivalence class is called an idealistic exponent.

In Sections 1 and 2 we give an overview of the main results in [31], where
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idealistic exponents are expressed as Rees algebras, and where this notion of
equivalence of couples is reinterpreted in terms of integral closure of Rees alge-
bras.

In Section 3 we discuss Rees algebras with an action of differential op-
erators (Diff-algebras). We also reformulate Giraud’s Lemma of differential
operators and monoidal transformations, in terms of Rees-algebras.

In Section 4 we recall the main ingredients that appear in the definition
of the upper-semi-continuous stratifying function mentioned above, and show
that there is a very natural extension of these functions to the class of Rees
algebras.

The second notion of equivalence, called weak equivalence, is discussed
here in Section 5); together with the Finite Presentation Theorem, which is a
bridge among both notions of equivalence. Weak equivalence played a central
role in definition of the stratifying upper semi-continuous function over fields
of characteristic zero, and in proving the properties studied in [30]. Namely,
the compatibility of constructive resolution with étale topology, smooth maps,
and the property of equivariance.

The partial extension of this stratifying function to positive characteristic,
which we finally address in Section 6), makes use of Hironaka’s Finite Presen-
tation Theorem, together with elimination of Diff-algebras as a substitute for
maximal contact.

It is the context of Diff-algebras where our form of elimination is defined,
and Diff-algebras are Rees-algebras enriched with the action of higher differ-
ential operators. Rees algebras extend to a Diff-algebras, and this extension is
naturally compatible with integral closure of algebras ([31]). This interplay of
Diff-algebras and integral closure is studied by Kawanoue in [22], and in [25],
papers which present new ideas and technics in positive characteristic, and also
provide an upper semi-continuous function with a different approach.

We refer to [21] for a program of Hironaka for embedded resolution over
fields of positive characteristic. We also refer to [8] and [7] for new proofs on
non-embedded resolution of singularities of schemes of dimension 3 and positive
characteristic.

I am grateful to the referee for many useful suggestions and the careful
reading of the paper. I profited from discussions with Angélica Benito, Ana
Bravo, Mari Luz Garćıa, and Santiago Encinas.
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§1. Idealistic Exponents and Rees Algebras

1.1. In what follows V denotes a smooth scheme over a field k. A
couple (J, b) is a pair where J non-zero sheaf of ideals in OV , and b is a positive
integer. We will consider the class of all couples, and transformation among
them.
• Given a couple (J, b), the closed set, or singular locus, is:

Sing (J, b) = {x ∈ V/νx(Jx) ≥ b},

namely the set of points in V where J has order at least b (here νx denotes the
order at the local regular ring OV,x). The set Sing (J, b) is closed in V .
• Transformation of (J, b):
Let Y ⊂ Sing (J, b) be a closed and smooth subscheme, and let

V
π←− V1 ⊃ H = π−1(Y )

Y

denote the monoidal transformation at Y . Since Y ⊂ Sing (J, b) the total
transform, say JOV1 , can be expressed as a product:

JOV1 = I(H)bJ1

for a uniquely defined J1 in OV1 . The new couple (J1, b) is called the transform
of (J, b). We denote the transformation by:

(1.1.1)
V

π←− V1,

(J, b) (J1, b)

and a sequence of transformations by:

(1.1.2)
V

π1←− V1
π2←− . . .

πk←− Vk.

(J, b) (J1, b) (Jk, b)

Let Hi denote the exceptional hypersurface introduced by πi, 1 ≤ i ≤ k, which
we also consider as hypersurfaces in Vk (by taking strict transforms). Note that
in such case

(1.1.3) JOVk
= I(H1)c1 · I(H2)c2 · · · I(Hk)ck · Jk

for suitable exponents c2, . . . , ck, and c1 = b. Furthermore, all ci = b if for
every index i < k the center Yi is not included in ∪j≤iHj ⊂ Vi (the exceptional
locus of V ←− Vi). The previous sequence is said to be a resolution of (J, b) if:
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1) Sing (Jk, b) = ∅, and
2) ∪j≤kHj ⊂ Vk has normal crossings.
So if (1.1.2) is a resolution, then Jk has at most order b − 1 at points of

Vk.
Of particular importance for resolution of singularities is the case in which

Jk has order at most zero, namely when Jk = OVk
. In such case we say that

(1.1.2) is a Log-principalization of J .
Given (J1, b1) and (J2, b2), then

Sing (J1, b1) ∩ Sing (J2, b2) = Sing (K, c)

where K = Jb2
1 + Jb1

2 , and c = b1 · b2. Set formally (J1, b1)
 (J2, b2) = (K, c).
If π is permissible for both (J1, b1) and (J2, b2), then it is permissible for

(K, c). Moreover, if (J ′
1, b1), (J ′

2, b2), and (K ′, c) denote the transforms, then
(J ′

1, b1)
 (J ′
2, b2) = (K ′, c).

1.2. We now define a Rees algebra over V to be a graded noetherian
subring of OV [W ], say:

G =
⊕

k≥0

IkW k,

where I0 = OV and each Ik is a sheaf of ideals. We assume that at every
affine open U(⊂ V ), there is a finite set F = {f1W

n1 , . . . , fsW
ns}, ni ≥ 1 and

fi ∈ OV (U), so that the restriction of G to U is OV (U)[f1W
n1 , . . . , fsW

ns ](⊂
OV (U)[W ]).

To a Rees algebra G we attach a closed set:

Sing (G) := {x ∈ V/νx(Ik) ≥ k, for each k ≥ 1},
where νx(Ik) denotes the order of the ideal Ik at the local regular ring OV,x.

Remark 1.3. Rees algebras are related to Rees rings. A Rees algebra is
a Rees ring if, given an affine open set U ⊂ V , F = {f1W

n1 , . . . , fsW
ns} can

be chosen with all degrees ni = 1. Rees algebras are integral closures of Rees
rings in a suitable sense. In fact, if N is a positive integer divisible by all ni, it
is easy to check that

OV (U)[f1W
n1 , . . . , fsW

ns ] = ⊕r≥0IrW
r(⊂ OV (U)[W ]),

is integral over the Rees sub-ring OV (U)[INWN ](⊂ OV (U)[WN ]).

Proposition 1.4. Given an affine open U ⊂ V , and F = {f1W
n1 , . . . ,

fsW
ns} as above,

Sing (G) ∩ U = ∩1≤i≤s{ord(fi) ≥ ni}.



666 Orlando Villamayor U.

Proof. Since νx(fi) ≥ ni for x ∈ Sing (G), 0 ≤ i ≤ s;

Sing (G) ∩ U ⊂ ∩1≤i≤s{ord(fi) ≥ ni}.
On the other hand, for any index N ≥ 1, IN (U)WN is generated by ele-

ments of the form GN (f1W
n1 , . . . , fsW

ns), where GN (Y1, . . . , Ys) ∈ OU [Y1, . . . ,

Ys] is weighted homogeneous of degree N , provided each Yj has weight nj . The
reverse inclusion is now clear.

1.5. A monoidal transformation of V on a smooth sub-scheme Y , say
V

π←− V1 is said to be permissible for G if Y ⊂ Sing (G). In such case, for
each index k ≥ 1, there is a sheaf of ideals, say I

(1)
k ⊂ OV1 , so that IkOV1 =

I(H)kI
(1)
k , where H denotes the exceptional locus of π. One can easily check

that
G1 =

⊕

k≥0

I
(1)
k W k

is a Rees algebra over V1, which we call the transform of G, and denote by:

(1.5.1)
V

π←− V1

G G1

A sequence of transformations will be denoted as

(1.5.2)
V

π1←− V1
π2←− . . .

πk←− Vk.

G G1 Gk

Definition 1.6. Sequence (1.5.2) is said to be a resolution of G if:
1) Sing (Gk) = ∅.
2)The union of the exceptional components, say ∪j≤kHj ⊂ Vk, has normal

crossings.

1.7. Given two Rees algebras over V , say G1 =
⊕

n≥0 InWn and G2 =⊕
n≥0 JnWn, set Kn = In + Jn in OV , and define:

G1 
 G2 =
⊕

n≥0

KnWn,

as the subalgebra of OV [W ] generated by {KnWn, n ≥ 0}.
Let U be an affine open set in V . If the restriction of G1 to U is

OV (U)[f1W
n1 , . . . , fsW

ns ], and that of G2 is OV (U)[fs+1W
ns+1 , . . . , ftW

nt ],
then the restriction of G1 
 G2 is

OV (U)[f1W
n1 , . . . , fsW

ns , fs+1W
ns+1 , . . . , ftW

nt ].
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One can check that:

(1) Sing (G1 
 G2) = Sing (G1) ∩ Sing (G2). In particular, if V
π←− V ′ is

permissible for G1 
 G2, it is also permissible for G1 and for G2.

(2) Set π as in (1), and let (G1
G2)′, G′1, and G′2 denote the transforms at V ′.
Then:

(G1 
 G2)′ = G′1 
 G′2.

§2. Idealistic Equivalence and Integral Closure

Recall that two ideals, say I and J , in a normal domain R have the same
integral closure if they are equal for any extension to a valuation ring (i.e. if
IS = JS for every ring homomorphism R → S on a valuation ring S). The
notion extends naturally to sheaves of ideals. Hironaka considers the following
equivalence on couples (J, b) and (J ′, b′) over a smooth scheme V (see [17]).

Definition 2.1. (Hironaka) The couples (J, b) and (J ′, b′) are idealistic
equivalent on V if Jb′ and (J ′)b have the same integral closure.

Proposition 2.2. Let (J, b) and (J ′, b′) be idealistic equivalent. Then:
1) Sing (J, b) = Sing (J ′, b′).
Note, in particular, that every monoidal transform V ← V1 on a center

Y ⊂ Sing (J, b) = Sing (J ′, b′) defines transforms, say (J1, b) and ((J ′)1, b′) on
V1.

2) The couples (J1, b) and ((J ′)1, b′) are idealistic equivalent on V1.

If two couples (J, b) and (J ′, b′) are idealistic equivalent over V , the same
holds for the restrictions to every open subset of V , and also for restrictions in
the sense of étale topology, and even for smooth topology (i.e. pull-backs by
smooth morphisms W → V ).

An idealistic exponent, as defined by Hironaka in [17], is an equivalence
class of couples in the sense of idealistic equivalence.

2.3. The previous equivalence relation has an analogous formulation for
Rees algebras, which we discuss below.

Definition 2.4. Two Rees algebras over V , say G =
⊕

k≥0 IkW k and
G′ =

⊕
k≥0 JkW k, are integrally equivalent, if both have the same integral

closure.
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Proposition 2.5. Let G and G′ be two integrally equivalent Rees alge-
bras over V . Then:

1) Sing (G) = Sing (G′).
Note, in particular, that every monoidal transform V ← V1 on a center

Y ⊂ Sing (G) = Sing (G′) defines transforms, say (G)1 and (G′)1 on V1.
2)(G)1 and (G′)1 are integrally equivalent on V1.

If G and G′ are integrally equivalent on V , the same holds for any open
restriction, and also for pull-backs by smooth morphisms W → V .

On the other hand, as (G)1 and (G′)1 are integrally equivalent, they define
the same closed set on V1 (the same singular locus), and the same holds for
further monoidal transformations, pull-backs by smooth schemes, and concate-
nations of both kinds of transformations.

2.6. For the purpose of resolution problems, the notions of couples and
of Rees algebras are equivalent. We first show that any couple can be identified
with an algebra, and then show that every Rees algebra arises from a couple.
We assign to a couple (J, b) over a smooth scheme V the Rees algebra, say:

G(J,b) = OV [JbW b],

which is a graded subalgebra in OV [W ].

Remark 2.7. Note that: Sing (J, b) = Sing (G(J,b)). In particular, every
transformation

V
π←− V1

(J, b) (J1, b)

induces a transformation, say

V
π←− V1

G(J,b)

(G(J,b)

)
1

It can be checked that:
(G(J,b)

)
1

= G(J1,b).
In particular a sequence (1.1.2) is equivalent to a sequence (1.5.2) over

G(J,b). Moreover, one of them is a resolution if and only if the other is so (1.6).
The following results shows that the class of couples can be embedded in

the class of Rees algebras, in such a way that equivalence classes are preserved,
and that every Rees algebra is, up to integral equivalence, of the form G(J,b) for
a suitable (J, b).

Proposition 2.8. Two couples (J, b) and (J ′, b′) are idealistic equiva-
lent over a smooth scheme V , if and only if the Rees algebras G(J,b) and G(J′,b′)

are integrally equivalent.
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Proposition 2.9. Every Rees algebra G =
⊕

k≥0 JkW k, over a smooth
scheme V , is integrally equivalent to one of the form G(J,b), for a suitable choice
of b.

Proof. Let U be an affine open set in V , and assume that the restriction
of G to U is

GU = OV (U)[f1W
n1 , . . . , fsW

ns ] =
⊕

k≥0

Jk(U)W k.

If b is a common multiple of all positive integers ni, 1 ≤ i ≤ s, then GU is an
finite ring extension of OV (U)[J(U)bW

b]. Finally, since V can be covered by
finitely many affine open sets, we may choose b so that G is integrally equivalent
to G(Jb,b).

§3. Diff-Algebras, Finite Presentation Theorem,
and Kollár’s Tuned Ideals

Here V is smooth over a field k, so for each non-negative integer s there is
a locally free sheaf of differential operators of order s, say Diffs

k . There is a
natural identification, say Diff0

k = OV , and for each s ≥ 0 Diffs
k ⊂ Diffs+1

k .
We define an extension of a sheaf of ideals J ⊂ OV , say Diffs

k(J), so that
over the affine open set U , Diffs

k (J)(U) is the extension of J(U) defined by
adding D(f), for all D ∈ Diffs

k (U) and f ∈ J(U). Diff0(J) = J , and
Diffs(J) ⊂ Diffs+1(J) as sheaves of ideals in OV . Let V (I) ⊂ V denote the
closed set defined by an ideal I ⊂ OV . The order of the ideal J at the local
regular ring OV,x is ≥ s if and only if x ∈ V (Diffs−1(J)).

Definition 3.1. We say that a Rees algebra
⊕

n≥0 InWn, on a smooth
scheme V , is a Diff-algebra relative to the field k, if: i) In ⊃ In+1 for n ≥ 0.
ii) There is open covering of V by affine open sets {Ui}, and for every D ∈
Diff (r)(Ui), and h ∈ In(Ui), then D(h) ∈ In−r(Ui) provided n ≥ r.

Note that (ii) can be reformulated by: ii’) Diff (r)(In) ⊂ In−r for each n,
and 0 ≤ r ≤ n.

3.2. Fix a closed point x ∈ V , and a regular system of parameters
{x1, . . . , xn} at OV,x. The residue field, say k′ is a finite extension of k, and
the completion ÔV,x = k′[[x1, . . . , xn]].

The Taylor development is the continuous k′-linear ring homomorphism:

Tay : k′[[x1, . . . , xn]]→ k′[[x1, . . . , xn, T1, . . . , Tn]]
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that map xi to xi + Ti, 1 ≤ i ≤ n. So for f ∈ k′[[x1, . . . , xn]], Tay(f(x)) =∑
α∈Nn gαTα, with gα ∈ k′[[x1, . . . , xn]]. Define, for each α ∈ Nn, ∆α(f) = gα.

There is a natural inclusion of OV,x in its completion, and it turns out that
∆α(OV,x) ⊂ OV,x, and that {∆α, α ∈ (N)n, 0 ≤ |α| ≤ c} generate the OV,x-
module Diffc

k(OV,x) (i.e. generate Diffc
k locally at x).

Theorem 3.3. For every Rees algebra G over a smooth scheme V , there
is a Diff-algebra, say G(G) such that:

i) G ⊂ G(G).
ii) If G ⊂ G′ and G′ is a Diff-algebra, then G(G) ⊂ G′.
Furthermore, if x ∈ V is a closed point, and {x1, . . . , xn} is a regular sys-

tem of parameters at OV,x, and if G is locally generated by F = {gni
Wni , ni >

0, 1 ≤ i ≤ m}, then

F ′ = {∆α(gni
)Wn′

i−α/gni
Wni ∈ F , α = (α1, α2, . . . , αn) ∈ (N)n,(3.3.1)

and 0 ≤ |α| < n′
i ≤ ni}

generates G(G) locally at x.

(see [31, Theorem 3.4]).

Remark 3.4. 1) If G1 and G2 are Diff-algebras, then G1 
 G2 is also a
Diff-algebra.

2)The local description in the Theorem shows that Sing (G) = Sing (G(G)).
In fact, as G ⊂ G(G), it is clear that Sing (G) ⊃ Sing (G(G)). For the

converse note that if νx(gni
) ≥ ni, then ∆α(gni

) has order at least ni − |α| at
the local ring OV,x.

The G operator is compatible with pull-backs by smooth morphisms, and
this kind of morphism will arise later (see 5.15.1). The following Main Lemma,
due to Jean Giraud, relates the, say G-extensions, with monoidal transforma-
tions.

Lemma 3.5. (J. Giraud) Let G be a Rees algebra on a smooth scheme
V , and let V ←− V1 be a permissible (monoidal) transformation for G. Let G1

and G(G)1 denote the transforms of G and G(G). Then:
1) G1 ⊂ G(G)1.
2) G(G1) = G(G(G)1).

(see [11, Theorem 4.1]).
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§4. On Hironaka’s Main Invariant

Hironaka attaches to a couple (J, b) a fundamental invariant for resolution
problems, which is a function (see 4.2). Here we discuss the role of this function
in resolution, and the satellite functions defined in terms of it. These satellite
functions are the main ingredients for the algorithm of resolution in [29], for
the case of characteristic zero.

Definition 4.1. Let X be a topological space, and let (T,≥) be a totally
ordered set. A function g : X → T is said to be upper semi-continuous if: i) g

takes only finitely many values, and, ii) for any α ∈ T the set {x ∈ X /g(x) ≥
α} is closed in X. The largest value achieved by g will be denoted by max g.

We also define

Max g = {x ∈ X : g(x) = max g}

which is a closed subset of X.

Definition 4.2. Give a couple (J, b), set

(4.2.1) ord(J,b) : Sing (J, b)→ Q ≥ 1; ord(J,b)(x) = νJ (x)
b

where νJs
(x) denotes the order of J at the local regular ring OV,x.

Note that the function is upper semi-continious; and note also that if
(J1, b1) and (J2, b2) are integrally equivalent, then both functions coincide on
Sing (J1, b1) = Sing (J2, b2).

4.3. Resolution of couples was defined in 1.1 as a composition of per-
missible transformations, each of which is a monoidal transformation. Every
monoidal transformation introduces a smooth hypersurface, and a composition
introduces several smooth hypersurfaces. The definition of resolution requires
that these hypersurfaces have normal crossings. We define a pair (V, E) to be
a smooth scheme V together with E = {H1, . . . , Hr} a set of smooth hypersur-
faces so that their union has normal crossings. If Y is closed and smooth in V

and has normal crossings with E (i.e. with the union of hypersurfaces of E),
we define a transform of the pair, say

(V, E)← (V1, E1),

where V ← V1 is the blow up at Y ; and E1 = {H1, . . . , HrHr+1}, where Hr+1

is the exceptional locus, and each Hi denotes again the strict transform of
Hi, for 1 ≤ i ≤ r.
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We define a basic object to be a pair (V, E = {H1, . . . , Hr}) together with
a couple (J, b) (so Jx = 0 at any point x ∈ V ). We indicate this basic object
by

(V, (J, b), E).

If a smooth center Y defines a transformation of (V, E), and in addition Y ⊂
Sing (J, b), then a transform of the couple (J, b) is defined. In this case we say
that

(V, (J, b), E)←− (V1, (J1, b), E1)

is a transformation of the basic object. A sequence of transformations

(4.3.1) (V, (J, b), E)←− (V1, (J1, b), E1)←− · · · ←− (Vs, (Js, b), Es)

is a resolution of the basic object if Sing (Js, b) = ∅.
In such case the total transform of J can be expressed as a product, say:

(4.3.2) J · OVs
= I(Hr+1)c1 · I(Hr+2)c2 · · · I(Hr+s)cs · Js

for some integer ci, where Js is a sheaf of ideals of order at most b− 1, and the
hypersurfaces Hj have normal crossings.

Note that {Hr+1, . . . , Hr+s} ⊂ Es, and equality holds when E = ∅.
Furthermore, a resolution of a couple (J, b) is attained by a resolution of
(V, (J, b), E = ∅) (see 1.1).

4.4. The first satellite functions. (see 4.11, [10]) Consider, as above,
transformations

(4.4.1) (V, (J, b), E)←− (V1, (J1, b), E1)←− · · · ←− (Vs, (Js, b), Es)

which is not necessarily a resolution, and let {Hr+1, . . . , Hr+s}(⊂ Es) denote
the exceptional hypersurfaces introduced by the sequence of blow-ups. We may
assume, for simplicity that these hypersurfaces are irreducible. There is a well
defined factorization of the sheaf of ideals Js ⊂ OVs

, say:

(4.4.2) Js = I(Hr+1)b1I(Hr+2)b2 · · · I(Hr+s)bs · Js

so that Js does not vanish along Hr+i, 1 ≤ i ≤ s.
Define w-ordd

(Js,b) (or simply w-ordd
s):

(4.4.3) w-ordd
s : Sing (Js, b)→ Q; w-ordd

s(x) =
νJs

(x)

b

where νJs
(x) denotes the order of Js at OVs,x. It has the following properties:
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1) The function is upper semi-continuous. In particular Max w-ord is
closed.

2) For any index i ≤ s, there is an expression

Ji = I(H1)b1I(H2)b2 · · · I(Hi)bi · J i,

and hence a function w-ordi : Sing (Ji, b)→ Q can also be defined.
3) If each transformation of basic objects (Vi, (Ji, bi), Ei) ← (Vi+1, (Ji+1,

bi+1)Ei+1) in (4.4.1) is defined with center Yi ⊂ Max w-ordi, then

maxw-ord ≥ max w-ord1 ≥ · · · ≥ maxw-ords.

4.5. Let us stress here on the fact that the previous definition of the
function w-ord (4.4.3) (and the factorization in (4.4.2)), grow from the function
introduced in Def 4.2. Fix Hr+i as in (4.4.2), and define a function expi along
the points in Sing (Js, b) by setting expi(x) = bi

b if x ∈ Hr+i ∩Sing (Js, b), and
expi(x) = 0 otherwise.

Induction on the integer s allow us to express each rational number expi(x)
in terms of the functions ord(Js′ ,b), for s′ < s (in terms of these functions
ord(Js′ ,b) evaluated at the generic points, say ys′ , of the centers Ys′(⊂ Vs′) of
the monoidal transformation). Finally note that

w-ordd
(Js,b)(x) = ord(Js,b)(x)− exp1(x)− exp2(x)− · · · − exps(x).

Therefore all these functions grow from Hironaka’s functions ord(Ji,b), so we call
them “satellite functions” ([10, p.187]). In particular, if (J, b) and (J ′, b′) are
idealistic equivalent at V , then (4.3.1) induces transformations of (V, (J ′, b′), E);
moreover Sing (Js, b) = Sing (J ′

s, b
′), and w-ord(Js,b) = w-ord(J′

s,b′) as functions
(and the exponent functions expi coincide).

The general strategy to obtain resolution of a basic objects (V, (J, b), E)
(and hence of couples (J, b)), is to produce a sequence of transformations as in
(4.4.1), so that Js = OVs

in an open neighborhood of Sing (Js, b) (4.4.2). This
amounts to saying that w-ordd

s(x) = 0 at any x ∈ Sing (Js, b), or equivalently,
that max w-ord = 0. When this condition holds we say that the transform
(Vs, (Js, bs), Es) is in the monomial case.

If this condition is achieved, then we may assume Js = I(Hr+1)b1I(Hr+2)b2

· · · I(Hr+s)bs , and it is simple to extend, in this case, sequence (4.4.1) to a
resolution. In fact one can extend it to a resolution by choosing centers as
intersections of the exceptional hypersurfaces; which is a simple combinatorial
strategy defined in terms of the exponents bi.
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The point is that there is a particular kind of basic object, which we define
below, called simple basic objects, with the following property: if we know how
to produce resolution of simple basic objects then we can define (4.4.1) so as to
achieve the monomial case. The point is that resolution of simple basic objects
should be achieved by some form of induction. This is why we call them simple.

Definition 4.6. Let V be a smooth scheme, and let (J, b) be a couple.
1) (J, b) is said to be a simple couple if ord(J,b)(x) = 1 for any x ∈ Sing (J, b)

(see 4.2.1).
2) (V, (J, b), E) is a simple basic object if (J, b) is simple and E = ∅.

4.7. Second satellite function: the inductive function t. (See
4.15, [10].) Consider

(4.7.1) (V, (J, b), E)← (V1, (J1, b), E1)← · · · ← (Vs, (Js, b), Es),

as before, where each Vi ← Vi+1 is defined with center Yi ⊂ Max w-ordi, so
that:

(4.7.2) max w-ord ≥ max w-ord1 ≥ · · · ≥ max w-ords.

We now define a function ts, only under the assumption that maxw-ords

> 0. In fact, max w-ords = 0 in the monomial case, which is easy to resolve.
Set s0 ≤ s such that

max w-ord ≥ · · · ≥ max w-ords0−1 > max w-ords0

= max w-ords0+1 = · · · = max w-ords,

and set:
Es = E+

s �E−
s (disjoint union),

where E−
s are the strict transform of hypersurfaces in Es0 . Define

ts : Sing (Js, b)→ Q× N (ordered lexicographically).

ts(x) = (w-ords(x), ns(x)) ns(x) = �{Hi ∈ E−
s |x ∈ Hi}

where �S denotes the total number of elements of a set S. One can check that:
i) the function is upper semi-continuous. In particular Max ts is closed.
ii) There is a function ti for any index i ≤ s; and if (J, b) and (J ′, b′) are

integrally equivalent over V , then (4.7.1) induces a sequence of transformations
of (V, (J ′, b′), E) and the corresponding functions ti coincide along Sing (Ji, b) =
Sing (J ′

i , b
′).
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iii) If each (Vi, Ei) ← (Vi+1, Ei+1) in 4.7.1 is defined with center Yi ⊂
Max ti, then

(4.7.3) max t ≥ max t1 ≥ · · · ≥ max ts.

iv) If max ts = (d
b , r) (here maxw-ords = d

b ) then Max ts ⊂ Max w-ords.
Recall that the functions ti are defined only if max w-ordi > 0. We say

that a sequence of transformations is t-permissible when condition iii) holds;
namely when Yi ⊂ Max ti for all i.

Definition 4.8. Consider, as above, a sequence

(4.8.1) (V, (J, b), E)← (V1, (J1, b), E1)← · · · ← (Vs, (Js, b), Es),

so that Yi ⊂ Max w-ordi for 0 ≤ i ≤ s, and furthermore: that Yi ⊂ Max ti(⊂
Max w-ordi) if max w-ordi > 0. The decreasing sequence of values (4.7.2) will
hold, and that also (4.7.3) holds if maxw-ords > 0. We now attach an index,
say r, to the basic object (Vs, (Js, b), Es), defined in terms of the sequence of
transformations.

i) If maxw-ords > 0 set r as the smallest index so that max tr = max tr+1 =
· · · = max ts.

ii) If maxw-ords = 0 set r as the smallest index so that max w-ordr = 0.

4.9. The satellite functions were defined for suitable sequences of trans-
formations of basic objects. The main properties of the Inductive Function t

can be stated as follows:
1) There is a simple basic object naturally attached to the function.
2) This simple basic object can be chosen so as to be well defined up

idealistic equivalence.
The following Proposition clarifies 1), whereas 2) will be addressed later

(see 5.23).

Proposition 4.10. Assume that a sequence of s transformations (4.8.1)
of (V, (J, b), E) is defined in the same conditions as above, and that maxw-ords

> 0. Fix r as in Def 4.8, i).
There is a simple couple (J ′

r, b
′) at Vr, so that the simple basic object

(Vr, (J ′
r, b

′), E′
r = ∅) has the following property:

Any sequence of transformations of (Vr, (J ′
r, b

′), E′
r = ∅), say

(4.10.1) (Vr, (J ′
r, b

′), ∅)← (V ′
r+1, (J

′
r+1, b

′), E′
r+1)← · · · ← (V ′

S, (J ′
S , b′), E′

S),
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induces a t-permissible sequence of transformation of the basic object (Vr, (Jr, b),
Er), say:

(4.10.2) (Vr, (Jr, b), Er)← (V ′
r+1, (Jr+1, b), Er+1)← · · · ← (V ′

S, (JS , b), ES),

by blowing up at the same centers, with the following condition on the functions
tj defined for this last sequence (4.10.2):

a) Max tk = Sing (J ′
k, b′), r ≤ k ≤ S − 1.

b) max tr = max tr+1 = · · · = max tS−1 ≥ max tS .

c) max tS−1 = max tS if and only if Sing (J ′
S , b′) = ∅, in which case

Max tS = Sing (J ′
S , b′).

Proof. (see 4.12)

Remark 4.11. So if we take (4.10.1) to be a resolution of (Vr, (J ′
r, b

′), ∅),
we can extend the first r steps of (4.8.1), say

(4.11.1) (V, (J, b), E)← (V1, (J1, b), E1)← · · · ← (Vr, (Jr, b), Er),

with the transformations of sequence (4.10.2), say:

(V, (J, b), E)← · · · (Vr, (Jr, b), Er)← (V ′
r+1, (Jr+1, b), Er+1) · · ·

← (V ′
S , (JS, b), ES),

and now max tr = max tr+1 = · · · = max tS−1 > max tS .

In other words, the Proposition asserts that if we know how to define
resolution of simple basic objects, then we can force the value max t to drop.
Note that for a fixed basic object (V, (J, b), E) there are only finitely many
possible values of max t in any sequence of permissible monoidal transforma-
tions. As indicated in 4.5, resolution of simple basic objects would lead to the
case maxw-ordS = 0, also called the monomial case, which is easy to resolve.
The conditions of Prop. 4.10 hold for s = 0, namely when (4.8.1) is simply
(V, (J, b), E). So given (V, (J, b), E), this Proposition indicates how to define a
sequence of transformations that takes it to the monomial case (provided we
know how to resolve simple basic objects). Moreover, a unique procedure of
resolution of simple basic objects would define, for each (V, (J, b), E), a unique
sequence of transformations that takes it to the monomial case.

Remark 4.12. A general property of simple couples is that any trans-
form, say (J1, b), is again simple. An outstanding property of the satellite
functions is that they are upper semi-continuous, and a simple basic object can
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be attached to the highest value achieved by the function. Let the setting and
notation be as in 4.4. If max w-ordi = d

b , and d ≥ b, set

(4.12.1) (J ′′
i , b′′) = (J i, d)

If max w-ordi = d
b , and d < b, set

(4.12.2) (J ′′
i , b′′) = (Jd + (J i)b, bd).

One can check that if max w-ordi = d
b , then Max w-ordi = Sing (J ′′

i , b′′). So
the points where the functions takes its highest values is the singular locus of
a simple basic object. Furthermore, this link is preserved by transformations
in the following sense. Assume, as in 4.7 that a sequence (4.7.1) is defined by
centers Yi ⊂ Max w-ordi, and set s0 as the smallest index so that max w-ords0 =
max w-ords. One can check that, for each index i ≥ s0: (J ′′

i+1, b
′′) is the

transform of (J ′′
i , b′′).

A similar property holds for the inductive function t. In fact Proposi-
tion 4.10 establishes an even stronger link of the value max t with a simple
basic. Given a positive integer h, let Gh be the set of all subsets F ⊂ E−

i ,
F = {Hj1 , . . . , Hjh

} (with h hypersurfaces). For each positive integer m define
Hh(m) =

∏
F∈Gh

∑
Hij

∈F I(Hij
)m.

Set max ti = (d
b , h). If d ≥ b set

(J ′
i , b

′) = (J ′′
i +Hh(d), d),

with J ′′
i as in (4.12.1). If d < b set

(J ′
i , b

′) = (J ′′
i +Hh(bd), bd),

with J ′′
i as in (4.12.2). Note also the (J ′

i , b
′) is simple, and Sing (J ′

i , b
′) =

Max ti ⊂ Sing (J ′
i , b

′) = Max w-ordi.
One can check that (J ′

r, b
′) fulfills the condition in Prop 4.10 (see [10, Th

7.10]).

4.13. New operations on basic objects. There are two natural
operations on basic objects, which we discuss below, that play a central role in
Hironaka’s definition of invariance of the main function introduced in Definition
4.2, and also for the proof of the second property stated in 4.9. Recall the
definition of a basic object over a smooth scheme V over a field k in 4.3, say
(V, (J, b), E), where a pair (V, E) is defined by E = {H1, . . . , Hr}, a set of
smooth hypersurfaces with normal crossings, and (J, b) is a couple on V . Let
now

(4.13.1) V
π←− U
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be defined by:
A) An open set U of V (Zariski or étale topology).
B) The projection of U = V ×An

k on the first coordinate, where An
k denotes

the n-dimensional affine scheme, for some positive integer n.
In both cases there is a natural notion of pull-backs of the pair (V, E) to

(U, EU ), where EU consists of the pull-back of hypersurfaces in E. There is
also a notion of pull-back of the couple (J, b), say (JU , b), by restriction in case
A), and taking the total transform in case B).

In this way we attach to (4.13.1) a pull-back of basic objects, say

(4.13.2) (V, (J, b), E) π←− (U, (JU , b), EU )

The first observation is that the singular locus and Hironakas func-
tion in Definition 4.2 are compatible with pull-backs; i.e. Sing (JU , b) =
π−1(Sing (J, b)), and for x ∈ Sing (JU , b):

(4.13.3) ord(JU ,b)(x) = ord(J,b)(π(x)).

A similar compatibility property holds for satellite functions. Recall that these
functions were defined for transformations of a basic object, say

(4.13.4) (V, (J, b), E)←− (V1, (J1, b), E1)←− · · · ←− (Vs, (Js, b), Es)

to which we attached a well defined factorization of the sheaf of ideals Js ⊂ OVs
,

say:

(4.13.5) Js = I(Hr+1)b1I(Hr+2)b2 · · · I(Hr+s)bs · Js

so that Js does not vanish along Hr+i, 1 ≤ i ≤ s; where {Hr+1, . . . , Hr+s}(⊂
Es) denote the exceptional hypersurfaces introduced by the sequence of blow-
ups. Let now

(Vs, (Js, b), Es)
π←− (Us, ((Js)U , b), (Es)U )

be a pull-back of (Vs, (Js, b), Es). Note that {π−1(Hr+1), . . . , π−1(Hr+s)}(⊂
(Es)U ), indicate the non-smooth locus of the composite morphism V ← (Us),
and there is a natural pull-back of (4.13.5), say

(4.13.6) (Js)U = (I(Hr+1))b1
U (I(Hr+2))b2

U · · · (I(Hr+s))bs

U · (Js)U .

This shows that the function w-ord in (4.4.3) is also compatible with pull-
backs. One can go one step further:
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Definition 4.14. Define a local sequence of transformations of a basic
object (V, (J, b), E), to be a sequence

(4.14.1) (V, (J, b), E)←− (V ′
1 , (J1, b), E1)←− · · · ←− (V ′

s , (Js, b), Es),

where (V, (J, b), E) ←− (V ′
1 , (J1, b), E1), and each (V ′

i , (Ji, b), Ei) ←− (V ′
i+1,

(Ji+1, b), Ei+1), is a pull-back, or a pull-back followed by a usual transform of
a basic object (as defined in 4.3).

4.15. The same discussion in 4.4 applies for a local sequence of trans-
formations: if each

(4.15.1) (V ′
i , (Ji, b), Ei)←− (V ′

i+1, (Ji+1, b), Ei+1)

is a pull-back followed by the blow up at a center Yi ⊂ Max w-ordi , then

maxw-ord ≥ max w-ord1 ≥ · · · ≥ maxw-ords.

A similar argument applies for the function t : if the previous condition holds,
and maxw-ords > 0, then the functions ti can be defined for 0 ≤ i ≤ s.
Furthermore, if each “local transformation” (4.15.1) is the blow up at a center
Yi ⊂ Max ti followed by a pull-back, then

max t ≥ max t1 ≥ · · · ≥ max ts.

In this case we shall say that (4.14.1) is a t-permissible sequence of “local
transformations”.

4.16. The following Proposition is stronger then Proposition 4.10, in
fact it expresses a stronger property of the inductive function t. As we shall
see later, after discussing a weaker equivalence notion in the next section, this
stronger version will ensure statement 2) in 4.9.

Proposition 4.17. Let the setting and notation be as above, where
(4.14.1) is a t-permissible sequence of local transformations of (V, (J, b), E),
and maxw-ords > 0. Let r be the smallest index so that max tr = max ts.
There is a simple basic object (Vr, (J ′

r, b
′), E′

r = ∅) with the following property.
An arbitrary local sequence of transformations of (Vr, (J ′

r, b
′), E′

r = ∅), say

(4.17.1) (Vr, (J ′
r, b

′), ∅)← (V ′
r+1, (J ′

r+1, b
′), E′

r+1)← · · · ← (V ′
S, (J ′

S , b′), E′
S),

induces a t-permissible local sequence of transformation of the basic object
(Vr, (Jr, b), Er), say:

(4.17.2) (Vr, (Jr, b), Er)← (V ′
r+1, (Jr+1, b), Er+1)← · · · ← (V ′

S , (JS, b), ES),
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with the following condition on the functions tj defined for this last sequence
(6.12.3):

a) Max tk = Sing (J ′
k, b′), r ≤ k ≤ S − 1.

b) max tr = max tr+1 = · · · = max tS−1 ≥ max tS .

c) max tS−1 = max tS if and only if Sing (J ′
S , b′) = ∅, in which case

Max tS = Sing (J ′
S , b′).

Proof. The couple (J ′
r, b

′), defined in 4.12, also fulfills these conditions.

§5. A Weaker Equivalence Notion

The real strength of Hironaka’s function in Definition 4.2, and hence of
the satellite functions in 4.4 and 4.7, cannot be understood unless we discuss
a weak form of equivalence on couples (J, b), which we do in this section (see
Definition 6.15, [10]).

5.1. Fix a smooth scheme V and a couple (J, b). Note that the closed
set attached to it coincides with that attached to (J2, 2b); namely Sing (J, b) =
Sing (J2, 2b). The same holds if we take a pull-back (4.13.1) either of type
A) or B); and the same holds after any local sequence of transformations of
(V, (J, b), ∅) and (V, (J2, 2b), ∅).

A similar property holds for two couples on V which are idealistic equiva-
lent, say (J1, b1) and (J2, b2). In fact any pull-back defines two idealistic equiv-
alent couples, and any monoidal transformation of idealistic couples remain
idealistic equivalent.

Definition 5.2. Two couples (J (i), bi) , i = 1, 2, or two basic objects
(V, J (i), bi); , E) , i = 1, 2, are said to be weakly equivalent if: Sing (J (1), b1) =
Sing (J (2), b2), and if any local sequence of transformations of one of them:

(V ′, (J (i), bi), E′)←− (V ′
1 , (J (i)

1 , b), E′
1)←− · · · ←− (V ′

s , (J (i)
s , b), Es),

defines a local sequence of transformations of the other, and Sing (J (1)
i , b1) =

Sing (J (2)
i , b2), 0 ≤ i ≤ s.

5.3. It is important to point out that a first example of weak equivalence
appeared already in Proposition 4.17: if (Vr, (J ′

r, b
′), ∅) and (Vr, (J ′′

r , b′′), ∅) are
two basic objects which fulfill the property of that Proposition, then they are
weakly equivalent.

Note that if (V, (J (i), bi), E) , i = 1, 2, are weakly equivalent as above, then
also their transforms (Vs, J

(i)
s , bi); , Es) are weakly equivalent, for i = 1, 2. So
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this equivalence is preserved after an arbitrary local sequence of transforma-
tions.

Note also that integral equivalence implies weak equivalence. Hironaka
proves a suitable convers which we will address later. This converse will clarify
the second property in 4.9.

Lemma 5.4. Hironaka’s First Main Lemma. (See [17]; or [10,
7.1].) If two basic objects (V, (J (i), bi); , E), i = 1, 2, are weakly equivalent,
then

ord(J(1),b1)(x) = ord(J(2),b2)(x)

for all x ∈ Sing (J (1), b1) = Sing (J (2), b2).

5.5. Assume that (V, (J (i), bi), E), i = 1, 2, are weakly equivalent, and
consider a sequence of monoidal transformations

(V, (J (1), b), E)←− (V1, (J
(1)
1 , b), E1)←− · · · ←− (Vs, (J (1)

s , b), Es).

In 4.4 we attached to such data an expression J
(1)
s = I(Hr+1)c1I(Hr+2)c2 · · ·

I(Hr+s)cs · J (1)

s so that J
(1)

s does not vanish along Hr+i, 1 ≤ i ≤ s. The
previous Proposition, and the discussion in 4.5, assert that the same monoidal
transformations define

(5.5.1) (V, (J (2), b), E)←− (V1, (J
(2)
1 , b), E1)←− · · · ←− (Vs, (J (2)

s , b), Es),

an expression J
(2)
s = I(Hr+1)d1I(Hr+2)d2 · · · I(Hr+s)ds · J (2)

s , and for any x ∈
Sing (J (1)

s , b1) = Sing (J (2)
s , b2):

w-ord(1)(x) = w-ord(2)(x), and exp
(1)
1 (x) = exp

(2)
2 (x)

for i = 1, . . . , s (see 4.5). Similar equalities hold for the function t in 4.7, and
for t-permissible transformations.

Moreover, the discussion in 4.15 show that these equalities of satellite
functions also extends to the case of a local sequence of transformation.

5.6. Let V be a smooth scheme, so the local ring at a closed point OV,x

is regular. Then the associated graded ring, say grM (OV,x) is a polynomial
ring, and Spec(grM (OV,x)) = TV,x is the tangent space at x, which is a vector
space. Fix a vector space W. A vector v ∈ W defines a translation, namely
trv(w) = v + w for v ∈ W. An homogeneous ideal in the polynomial ring
grM (OV,x) defines a closed set , say C, in the vector space TV,x , which is a
union of lines through the origin. There is a largest linear subspace, say LC , so
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that trv(C) = C for any v ∈ LC . If we take, for example, C to be defined by
XY in the polynomial ring k[X, Y, Z], then LC is the Z-axis in A3. We discuss
in 6.1 how equations defining the subspace LC arise.

Let (J, b) be a couple on V , and fix x ∈ Sing (J, b). Hironaka considers
the closed set, say C(J,b) in TV,x defined by the ideal spanned by Inb(J)(⊂
M b/M b+1); and then he defines the integer τ(J,b)(x) to be the codimension of
the subspace LC (in TV,x). An important property of this subspace is that for
any smooth center Y in V , containing the point x and included in Sing (J, b),
the tangent space, say TY,x, is a subspace of LC (as subspace of TV,x). Note
that ord(J,b)(x) > 1 iff LC = TV,x (iff τ = 0).

Lemma 5.7. Hironaka’s Second Main Lemma. (See [2]) If two ba-
sic objects (V, (J (i), bi); , E), i = 1, 2, are weakly equivalent, then

τ(J(1),b1)(x) = τ(J(2),b2)(x)

for x ∈ Sing (J (1), b1) = Sing (J (2), b2).

5.8. From Couples to Rees algebras. Given a couple (J, b) on a
smooth scheme V , a function ord(J,b) : Sing (J, b) → Q was defined in Def.
4.2. In 2.6 we show that every couple defines a Rees algebra G(J,b), and this
assignment is such that Sing (J, b) = Sing (G(J,b)). Moreover, the assignment
is compatible with transformations (see 2.7).

We reformulate Hironaka’s function on the class of Rees algebras, which is
the analog to that defined for couples. Fix G =

⊕
k≥1 IkW k and x ∈ Sing (G).

Given fnWn ∈ InWn set ordx,n(fn) = νx(fn)
n ∈ Q; called the order of fn

(weighted by n), where νx denotes the order at the local regular ring OV,x. As
x ∈ Sing (G) it follows that ordx,n(fn) ≥ 1. Define

ordG(x) = inf{ordx,n(fn); fnWn ∈ InWn}.
So ordG(x) = infn≥1{νx(In)

n }, and ordG(x) ≥ 1 for every x ∈ Sing (G).
Proposition 5.9. 1) Let G be a Rees algebra generated by F = {gni

Wni ,

ni > 0, 1 ≤ i ≤ m} over V , then ordG(x) = inf{ordx,ni
(gni

); 1 ≤ i ≤ m}.
2) If G and G′ are Rees algebras with the same integral closure (e.g. if

G ⊂ G′ is a finite extension), then, for every x ∈ Sing (G)(= Sing (G′))
ordG(x) = ordG′(x).

3) If G = G(J,b), then ordG = ord(J,b) as functions on Sing (J, b) =
Sing (G(J,b)). (So if N is a common multiple of all ni, 1 ≤ i ≤ m, then
ordG(x) = inf{νx(IN )

N }).
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5.10. We have defined satellite function on basic objects by considering,
for a sequence

(5.10.1) (V, (J, b), E)← (V1, (J1, b), E1)← . . . ← (Vs, (Js, b), Es),

a natural factorization:

(5.10.2) Js = I(H1)b1I(H2)b2 · · · I(Hs)bs · Js

so that Js does not vanish along Hi, 1 ≤ i ≤ s. Recall that w-ords is defined in
terms of this expression (see (4.4.3)). Every Rees algebra G can be identified,
up to integral closure, with one of the form G = G(J,b). Consider now the Rees
algebra G = G(J,b), then (5.10.1) induces:

(5.10.3)
(V, E) π1←− (V1, E1)

π2←− . . .
πk←− (Vs, Es).

G (G)1 (G)s

In this case (G)i = G(Ji,b) (2.7), so Sing ((Ji, b)) = Sing (Gi), and function

(5.10.4) w-ordGi
= w-ord(Ji,b),

for 0 ≤ i ≤ s, can be defined. In order to unify notation we call (V,G, E) a
“basic object”, and a sequence of transformations (5.10.3) will be denoted by:

(5.10.5) (V,G(J,b), E) π1←− (V1,G(J1,b), E1)
π2←− . . .

πk←− (Vs,G(Js,b), Es).

If each center, say Yi, of πi is such that Yi ⊂ Max w-ordGi

(= Max w-ord(Ji,b)), then

max w-ordG ≥ maxw-ordG1 ≥ · · · ≥ maxw-ordGs

5.11. A Rees algebra G can be identified, up to integral closure, with
two Rees algebras, say G(J,b) and G(J′,b′), if and only if (J, b) and (J ′, b′) are
integrally equivalent. In particular satellite functions are well defined for G .

We say that Gs is monomial if maxw-ordGs
= 0. This amounts to saying

that (Js, b) is monomial (and that (J ′
s, b

′) is monomial).
It is clear that also the second coordinate of the satellite function in 4.7,

and hence the inductive function itself, extends naturally to the case of Rees
algebras. In particular we say that (5.10.3) is t-permissible if and only if (5.10.1)
is t-permissible; namely if

Yi ⊂ Max ti(⊂ Max w-ordGi
(= Max w-ord(Ji,b))),

in which case max t ≥ max t1 ≥ · · · ≥ max ts
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Definition 5.12. We say that G is simple (or that (V,G, E = ∅) is
simple) if ordG(x) = 1 for all x ∈ Sing (G).

5.13. Assume that a t-permissible sequence of monoidal transforma-
tions is defined, say:

(5.13.1) (V,G, E) π1←− (V1,G1, E1)
π2←− . . .

πk←− (Vs,Gs, Es).

i) If max w-ords > 0, set r as the smallest index so that max tr = max tr+1

= · · · = max ts.

ii) If max w-ords = 0, set r as the smallest index so that max w-ordr = 0.
The following proposition is simply a reformulation of Prop 4.10.

Proposition 5.14. Let (5.13.1) be a t-permissible sequence of monoidal
transformations, and assume that maxw-ords > 0. Fix r as above. There is a
simple Rees algebra G′ at Vr, so that (Vr,G′, E′

r = ∅) has the following property:
Any sequence of transformations of (Vr,G′, E′

r = ∅), say

(5.14.1) (Vr,G′, ∅)← (V ′
r+1, (G′)1, E′

r+1)← · · · ← (V ′
S , (G′)S , E′

S),

induces a t-permissible sequence of transformation of the basic object (Vr,Gr,

Er), say:

(5.14.2) (Vr,Gr, Er)← (V ′
r+1,Gr+1, Er+1)← · · · ← (V ′

S,GS , ES),

by blowing up at the same centers, so that condition a), b), and c) of 4.10
(suitable adapted) hold.

Proof. Take (Vr, (J ′
r, b

′), ∅) as in Prop 4.10, and set G′ = G(J′,b′).

5.15. Rees algebras and pull-backs. The analogy between the no-
tions of Rees algebras and that of basic objects is also preserved by pull-backs.
Pull-backs, defined for basic objects in (4.13.2), can be reformulated as:

(5.15.1) (V,G, E) π←− (U,GU , EU )

which we call again a pull-back, which essentially is a restriction to an open set,
or a restriction followed by multiplication by an affine space. We reformulate
Definition 4.14:

Definition 5.16. A local sequence of transformations of a basic object
(V,G, E) is

(5.16.1) (V,G, E)←− (V ′
1 ,G, E1)←− · · · ←− (V ′

s ,G, Es),
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where (V,G, E)←− (V ′
1 ,G1, E1), and each (V ′

i ,Gi, Ei)←− (V ′
i+1,Gi+1, Ei+1), is

a pull-back, or a pull-back followed by a usual transform of a basic object (blow-
ing up a smooth center Yi ⊂ Sing (Gi with normal crossings with hypersurfaces
in Ei).

The formulation of Def 5.2 in the context of Rees algebras is:

Definition 5.17. Two Rees algebras G(i), i = 1, 2, or two basic ob-
jects (V,G(i), E), i = 1, 2, are said to be weakly equivalent if: Sing (G(1)) =
Sing (G(2)), and if

(V ′,G(i), E′)←− (V ′
1 ,G(i)

1 , E′
1)←− · · · ←− (V ′

s ,G(i)
s , Es),

is a local sequence of transformations of one of them, then it also defines a
local sequence of transformation of the other, and Sing (G(1)

j ) = Sing (G(2)
j ),

0 ≤ j ≤ s.

The following is essentially a corollary of Lemma 3.5.

Theorem 5.18. Let G be a Rees algebra on V , then G and G(G) (or
the basic objects (V,G, E) and (V, G(G), E)) are weakly equivalent.

Hironaka’s Finite Presentation Theorem applies for Diff-algebras:

Theorem 5.19. If two Diff-algebras on V , say G and G′ are weakly
equivalent (or, say, if (V,G, E = ∅) and (V,G′, E = ∅) are weakly equivalent),
then G and G′ are integrally equivalent .

Corollary 5.20. Let G and G′ be two weakly equivalent Rees algebras
on V , then G(G) and G(G′) are integrally equivalent.

5.21. The main formula (4.13.3) (of compatibility with pull-backs) is
now expressed as:

(5.21.1) ordGU
(x) = ordG(π(x)).

This will allow us to extend the satellite functions to the case of local transfor-
mations (see Def 4.14). If now

(5.21.2) (V ′,G, E) π1←− (V ′
1 ,G1, E1)

π2←− . . .
πk←− (V ′

s ,Gs, Es).

is a local sequence of transformations, where each

(5.21.3) (V ′
i ,Gi, Ei)←− (V ′

i+1,Gi+1, Ei+1)
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is the blow up at a center Yi ⊂ Max w-ordi followed by a pull-back, then

max w-ord ≥ max w-ord1 ≥ · · · ≥ max w-ords.

A similar argument applies for the satellite function t : if the previous condition
holds, and max w-ords > 0, then ti can be defined for 0 ≤ i ≤ s. Furthermore,
if each “local transformation” (4.15.1) is the blow up at a center Yi ⊂ Max ti
followed by a pull-back, then

max t ≥ max t1 ≥ · · · ≥ max ts.

In this case we shall say that (5.21.2) is a t-permissible sequence of “local
transformations”.

Part A) of the following Proposition state properties of the function t which
are stronger and imply Proposition 5.14. Parte B) will lead us a precise answer
to assertion 2) in 4.9.

Proposition 5.22. Let (5.21.2) be a t-permissible sequence of local
transformations, assume that maxw-ords > 0. Let r be the smallest index
so that max tr = max ts.

A) There is a simple Rees algebra G′ at Vr (or say (Vr,G′, E′
r = ∅) ), with

the following property: Any local sequence of transformations of (Vr,G′, E′
r =

∅), say

(5.22.1) (Vr,G′, E′
r = ∅)← (V ′

r+1,G′1, E′
r+1)← · · · ← (V ′

S ,G′S, E′
S),

induces a t-permissible local sequence of transformation of the basic object
(Vr,Gr, Er), say:

(5.22.2) (Vr,Gr, Er)← (V ′
r+1,Gr+1, Er+1)← · · · ← (V ′

r+S,Gr+S, Er+S),

with the following condition on the functions tj defined for this last sequence
(6.12.3):

a) Max tr+k = Sing (G′k), 1 ≤ k ≤ S − 1.
b) max tr = max tr+1 = · · · = max tr+S−1 ≥ max tr+S.

c) max tr+S−1 = max tr+S iff Sing (G′S) = ∅ , in which case Max tr+S =
Sing (G′S).

B) If a Rees algebra G′′ at Vr also fulfills A), then G′′ and G′ are weakly
equivalent.

Proof. Part A) is a reformulation of Proposition 4.17 . Part B) follows
from A) and the definition of weak equivalence.
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5.23. Part B) of the previous result, together with Theorem 5.18 say
that we may take G′ to be a (simple) Diff-algebra; furthermore, Hironaka’s
Theorem 5.19 says that up to integral closure, there is a unique Diff-algebra G′
which fulfills 2’).

In the previous Proposition we could have taken the Rees algebra G′ to
be of the form G(J′

r,b′), for (J ′
r, b

′) as in 4.12. The Diff-algebra G(G(J′
r,b′)) also

fulfills the property; and it is unique with this property up to integral closure.
Suppose now that we know how to resolve simple basic objects (or simple

Rees algebras) in an constructive way, so that two Rees algebras with the same
integral closure undergo the same resolution. In this case the discussion in
Remark 4.11 says that, given a basic object, the inductive function t defines
a unique sequence of monoidal transformations which make the basic object
monomial.

Set G(G(J′
r,b′)) =

⊕
k≥0 IrW

r. It is integral over a Rees ring of an ideal,
say OV [INWN ] for suitable N (see 1.3). These ideals IN are called tuned ideals
in [23] (see page 45). We may replace (J ′

r, b
′) in Prop 4.10), by ”tuned couple”

(IN , N), and if two tuned couples fulfill the conditions of (J ′
r, b

′) they must
idealistic equivalent. This answers 2) in 4.9.

§6. Projection of Differential Algebras and Elimination

As was indicated in 5.23, Proposition 5.22 ensures that if we know how to
resolve simple basic objects, then a sequence of monoidal transformations can
be defined over a basic object, so as to bring it to a simplified form (to the
monomial case). It also indicates some form of uniqueness in such procedure,
a property which must hold in any constructive or algorithmic resolution. In
this section we generalize that Proposition in Proposition 6.12, and we make
use of the notion of elimination algebras introduced in [32], and generalized
in [6]. This last result, together with Theorem 5.19, will lead us to the upper
semi-continuous functions that stratify the singular locus into locally closed
smooth sets in Theorem 6.18.

6.1. Let G = ⊕IsT
s be a Rees algebra on the smooth scheme V . Fix a

closed point x ∈ Sing (G), with residue field k′, and a regular system of parame-
ters {x1, . . . , xn} at OV,x. grMx

(OV,x), is a polynomial ring, say k′[X1, . . . , Xn],
where Xi denotes the initial form of xi, and Spec(grMx

(OV,x)) = TV,x (tan-
gent space). There is, on the one hand, a Taylor morphism, say: Tay : OV,x →
OV,x[[T1, . . . , Tn]] that map xi to xi +Ti, 1 ≤ i ≤ n (see 3.2); on the other hand
there is a Taylor morphism, say:

Tay : k′[X1, . . . , Xn]→ k′[X1, . . . , Xn][T1, . . . , Tn]
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that map Xi to Xi + Ti, 1 ≤ i ≤ n.
Both are closely related, and some important invariants in desingulariza-

tion arise from the link among them. In both cases we define, for each multi-
index α ∈ Nn, operators, say Γα and Γ

α
, so that Tay(f) =

∑
α∈Nn Γα(f)Tα,

and Tay(F ) =
∑

α∈Nn Γ
α
(F )Tα.

Note here that if F is an homogeneous polynomial of degree N , and if
|α| ≤ N , then Γ

α
(F ) is either zero or homogeneous of degree N − |α|.

As in 5.6, we attach an homogeneous ideal to G at x, say Inx(G), in-
cluded in grMx

(OV,x) ; namely that generated by the class of Is at the quotient
Ms

x/Ms+1
x , for all s. This homogeneous ideal defines a cone, say CG , at TV,x.

Recall that there is a biggest subspace, say LG , included and acting by trans-
lations on CG (see 5.6). Hironaka defines τG(x) (the τ -invariant at the point)
to be the codimension of the subspace LG in TV,x.

Recall also that Sing (G) = Sing (G(G)). The relation among the two
Taylor morphisms discussed above show how the two homogeneous ideals at
x, attached to G(G) and to G respectively, are related (namely Inx(G) and
Inx(G(G))) : If CG is the cone attached to G, then the cone attached to G(G)
is the linear subspace LG .

In fact, the graded ideal Inx(G(G)) is the smallest homogeneous extension
of Inx(G), closed by the action of the differential operators Γ

α
; namely, with

the property that if F is an homogeneous polynomial of degree N in the ideal,
and if |α| < N , then also Γ

α
(F ) is in the ideal. This homogeneous ideal defines

the subspaces LG , included in CG , with the properties stated in 5.6. Note, in
particular, that G and G(G) have the same τ -invariant at all singular point (see
[20], [17], [27], [28], [26]).

Definition 3.1 has a natural formulation in the relative context, namely
when β : V → V ′ is a smooth morphism.

Definition 6.2. We say that a Rees algebra
⊕

InWn, on a smooth
scheme V , is a Diff-algebra relative to V ′, if: i) In ⊃ In+1. ii) Diff (r)(In) ⊂
In−r for each n, and 0 ≤ r ≤ n, where Diff (r) denotes the sheaf of differentials
relative to β : V → V ′.

The smooth morphism β : V → V ′ defines, at each point x ∈ V , a linear
map at tangent spaces: dβx : TV,x → TV ′,β(x); and the kernel, say ker dβx is a
linear subspace of TV,x.

Definition 6.3. Fix a Rees algebra G =
⊕

InWn on V , and a closed
point x ∈ Sing (G). We say that β : V → V ′ is transversal to G at the point, if
the subspaces LG and ker dβx are in general position in TV,x.
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Definition 6.4. Fix an integer e ≥ 0. We say that a Rees algebra G on
a d-dimensional scheme V is of codimensional type e, or say τG ≥ e, if τG(x) ≥ e

for all x ∈ Sing (G).

Remark 6.5. If τG ≥ e, the codimension of the closed set Sing (G) in V

is at least e. The components of codimension e are open and closed in Sing (G),
and they are regular. Furthermore, if Sing (G) is of pure codimension e, the
monoidal transform at such center is a resolution of G. This is, essentially, how
centers are chosen in constructive resolutions, and also the reason why strata
are smooth in the stratifications defined by the algorithm of desingularization.
The codimensional type e can be at most d (dimension of V ), and if G is of
codimensional type d, then Sing (G) is a finite set of points and a resolution of
G is defined by the blow up at those points.

6.6. Elimination algebras. Assume that:
i) G is a Rees algebra on V of codimensional type ≥ e; and that Sing (G)

has no component of codimension e.
ii) V ′ is smooth, dimV -dimV ′ = e (i.e. dimV ′ = d− e), and β : V → V ′ is

smooth, and transversal to G locally at every closed point x ∈ Sing (G).
iii) G is a Diff-algebra relative to β : V → V ′ .
If these conditions hold, then a Rees algebra, say G(e)

β , will be defined at

the smooth scheme V ′. G(e)
β is called the elimination algebra (see Def 4.10, [32]

for the case e = 1, and [6] for the general case).
Recall that the linear subspace LG , attached to G at TV,x, is the same as

that attached to G(G). So i) and ii) hold for G iff they hold for G(G). On the
other hand iii) will hold for G(G) with independence of β : V → V ′ . The local
condition at x in ii) is that LG ∩ ker dβx = 0. In other words, let G be a Rees
algebra of codimensional type ≥ e that fulfills condition i), then elimination
algebras will be defined for G(G) locally at any point of Sing (G(G)) = Sing (G),
for any smooth map as in ii).

6.7. Elimination algebras and local transformations. The
following properties ensure the compatibility of elimination algebras with
monoidal transformations and with pull-backs:

Ai) If Y is smooth and included in Sing (G), then β(Y ) is smooth in V ′

and included in Sing (G(e)
β ).

Aii) Let V ← V1 be the blow up at Y , and let G1 be the transform of G.
Set V ′ ← V ′

1 to be the blow up at β(Y ), and let (G(e)
β )′1 be the transform of

G(e)
β .
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There is a smooth map β1 : V1 → V ′
1 so that i) , ii) , and iii) hold at an

open neighborhood of Sing (G1), and the elimination algebra of G1 is (G(e)
β )′1.

B) We consider conditions i), ii), and iii), for a Rees algebra G on a smooth
scheme V , the notion of monoidal transform leads to the consideration of basic
objects, say (V,G, E).

Whenever (V,G, E) σ←− (U,GU , EU ) is a pull-back (see 5.15.1) the local
conditions i), ii), and iii), have a natural lifting to (U,GU , EU ), and the elimi-
nation algebra of the pull-back GU is the pull-back of the elimination algebra.

6.8. Elimination and singular loci. Set G =
⊕

InWn and β : V →
V ′ so that the three conditions in 6.6 hold. Set G(e)

β =
⊕

LnWn ⊂ OV ′ [W ].
The following conditions hold:

1) G(e)
β (=

⊕
LnWn) ⊂ G(= ⊕

InWn) via the inclusion OV ′ [W ] ⊂ OV [W ]

defined by β. We also denote this by β∗(G(e)
β ) ⊂ G, where β∗(OV ′) ⊂ OV is

the inclusion defined by β.
2) β(Sing (G)) ⊂ Sing (G(e)

β ) and the induced map β : Sing (G) →
β(Sing (G)) is a bijection.

6.9. G(e)
β is a Rees-algebra on the smooth scheme V ′, and there is a

function ordG(e)
β

defined on Sing (G(e)
β ) (see 5.8). We now define a function,

say ord
(e)
β , on the closed set Sing (G), as the restriction of ordG(e)

β

to the sub-

set β(Sing (G)) ⊂ Sing (G(e)
β ), followed by the identification of Sing (G) with

β(Sing (G)) in 6.8, 2).
It turns out that these function is independent of the choice of the smooth

map β. This property will allow us to define a function ord
(e)
G (= ord

(e)
β ) on

Sing (G), for a particular class of Rees-algebra.
Recall that elimination algebras are defined for Diff-algebra of codimen-

sional type ≥ e locally at any singular point, for suitable smooth morphisms
(see 6.6). So a function ord

(e)
G could be defined for any Diff-algebra that fulfills

6.6, i). Moreover, the properties in 6.7 show that elimination algebras are also
defined for monoidal transformations and for pull-backs of Diff-algebras. In
particular functions ord

(e)
G could be defined also for monoidal transformations

and for pull-backs of Diff-algebras. Furthermore, they are defined for a succes-
sive sequence of pull-backs and transformations of a Diff-algebra. So the class
of Rees-algebras G for which the functions ord

(e)
G are defined is closed under

monoidal transformations and pull-backs. The following generalizes Theorem
5.5 in [32].
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Theorem 6.10. ([6])
a) Let G be a Rees algebra over a smooth scheme V of dimension d, and

let β : V → V ′ and δ : V → V ′′ be smooth maps on smooth schemes V ′ and V ′′

of the same dimension d−e. If the three conditions in 6.6 hold for both smooth
maps, then

ord
(e)
β = ord

(e)
δ

as functions on Sing (G). Therefore a function ord
(e)
G → Q is well defined.

b) If G and G′ have the same integral closure, and if the functions ord
(e)
G

and ord
(e)
G are defined, then ord

(e)
G = ord

(e)
G′ on Sing (G) = Sing (G′).

c) If ord
(e)
G is defined for G and (V,G, E) σ←− (U,GU , EU ) is a pull-back,

then ord
(e)
GU

is defined and ord
(e)
GU

(x) = ord
(e)
G (σ(x)) for any x ∈ Sing (GU ).

6.11. Theorem 6.10 enables us to define a function, say ord
(e)
G (= ord

(e)
β )

on Sing (G). As for the case of e = 0, note that every Rees algebra G on V

is of codimensional type ≥ 0, and the conditions in 6.6 hold for β the identity
map. Furthermore, the previous function ord

(0)
G is the usual function ordG (see

5.8). In this case, we take any basic object (V,G, E), and define the satellite
functions in 5.11; which were defined entirely in terms of Hironaka’s function
ordG (see also 4.5).

Recall also the notion of a t-permissible transformations in 5.11, and con-
sider (Vr,G′, E′

r = ∅) as in Proposition 5.14. There G′ is a simple Rees algebra,
or equivalently of codimensional type ≥ 1. The discussion in 5.23 says that we
may take (Vr,G′, E′

r = ∅) to be a Diff-algebra, and in that case property A) of
Proposition 5.22 characterize this simple basic object up to integral closure (if
(Vr,G′, E′

r = ∅) and (Vr,G′′, E′′
r = ∅) are Diff-algebras that fulfill A) they have

the same integral closure).
In case e ≥ 1, consider β : V → V ′, G ( and G(e)

β ) so that the three
conditions in 6.6 hold. Take a basic objects (V,G, E) and (V ′,G(e), E) where
we assume:

1) The hypersurfaces of E in V are the pull-back of the hypersurfaces of
E in V ′ (pull-back via β).

2) That Sing (G) has no component of codimension e.
A sequence of permissible monoidal transformations, say

(6.11.1) (V,G, E) π1←− (V1,G1, E1)
π2←− . . .

πk←− (Vs,Gs, Es).

induces a sequence

(6.11.2) (V ′,G(e)
β , E) π1←− (V ′

1 , (G(e)
β )1, E1)

π2←− . . .
πk←− (V ′

s , (G(e)
β )s, Es).
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and for each index i there is a smooth morphism βi : Vi → V ′
i , so that the

three conditions of 6.6 hold, and (G(e)
β )i is the elimination algebra of Gi (6.7).

So for each index i, there is an identification of Sing (Gi) with βi(Sing (Gi)),
and an inclusion βi(Sing (Gi)) ⊂ Sing (G(e)

i ). The function ord
(e)
Gi

, defined on
Sing (Gi), is by definition the restriction to βi(Sing (Gi)) of the function ordG(e)

i

.

In particular the satellite functions of the functions ordG(e)
i

give rise to satellite

functions of ord
(e)
Gi

, and we say that (6.11.1) is t(e)-permissible if (6.11.2) is
t-permissible in the usual sense.

In the previous discussion we have considered only monoidal transforma-
tions. But the same holds for pull-backs, namely there is a compatibility of
smooth maps and elimination algebras with pull-backs. The notions of satellite
functions and of t(e)-permissibility extend to the case of local transformations.

Proposition 6.12. With the assumptions and hypothesis stated above,
let

(6.12.1) (V,G, E) π1←− (V1,G1, E1)
π2←− . . .

πk←− (Vs,Gs, Es).

be t(e)-permissible local sequence of transformations, assume that maxw-ord(e)
s

> 0, and fix r as in Prop 5.14 (smallest index so that max t
(e)
r = max t

(e)
s ).

A) There is a Rees algebra G′′ at Vr (or say (Vr,G′′, E′
r = ∅) ), of codi-

mensional type ≥ e + 1 with the following property: Any local sequence of
transformations of (Vr,G′′, E′

r = ∅), say

(6.12.2) (Vr,G′′, E′
r = ∅)← (V ′

r+1,G′′1 , E′
r+1)← · · · ← (V ′

S ,G′′S , E′
S),

induces a t(e)-permissible local sequence of transformation of (Vr,Gr, Er), say:

(6.12.3) (Vr,Gr, Er)← (V ′
r+1,Gr+1, Er+1)← · · · ← (V ′

r+S,Gr+S, Er+S),

with the following condition on the functions t
(e)
j defined for this last sequence

(6.12.3):
a) Max t

(e)
r+k = Sing (G′′k ), 1 ≤ k ≤ S − 1.

b) max t
(e)
r = max t

(d−e)
r+1 = · · · = max t

(e)
r+S−1 ≥ max t

(e)
r+S.

c) max t
(e)
r+S−1 = max t

e)
r+S if and only if Sing (G′′S) = ∅ , in which case

Max G′′ = Sing (G′′S).
B) If G′′′ on Vr also fulfills A), then it is weakly equivalent with G′′.

Proof. A) Recall that (6.11.1) induces a sequence (6.11.2), and that there
is a natural identification of Sing (Gi) with a closed subset βi(Sing (Gi)) of
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Sing (G(e)
i ), for 0 ≤ i ≤ s. The function t is upper semi-continuos, so after

replacing each V ′
i by a suitable open neighborhood of Sing (Gi) we may assume

that (6.11.2) is local t-permissible, that max w-ords > 0, and that r is the
smallest index so that max tr = max ts. Proposition 5.22 applies to (6.11.2),
so let (V ′

r ,G′, E′
r = ∅) have the property stated in A) of that Proposition.

The smooth morphism βr : Vr → V ′
r defines a lifting, say β∗

r (G′), which is
a Rees algebra on Vr (see 6.8). Set G′′β = Gr 
 β∗

r (G′) (see 1.7). Note that

Sing (G′′β) = Max t
(d−e)
r .

Let Y ⊂ Sing (G′′β) be smooth, and define a transformation, say Vr ← W ,
and transforms, say (G′′β)1 of G′′β , and say (Gr)1 of Gr. Then Y is permissible
for Gr, and transversality ensures that βr(Y ) is smooth at V ′

r , and included in
Sing (G′). Let V ′

r ← W ′ be the monoidal transformation and let (G′)1 be the
transform of G′. Then there is a natural lifting of βr, say β′

r : W → W ′, and
one can finally check that (G′′β)1 = (Gr)1 
 β′∗

r ((G′)1). So again Sing ((G′′β)1) =
Max t(e) ⊂ (Gr)1. A similar argument applies for pull-backs, and for any local
permissible sequence of G′′β . So we can set G′′ = G′′β .

B) follows by definition, just as B) in Proposition 5.22.

Remark 6.13. The definition of G′′β in Part A) of the previous proof was
done in terms of the sequence (6.11.2) and the smooth morphisms βi : Vi → V ′

i .
Replace (6.11.2) by, say

(6.13.1) (V ′′,G(e)
δ , E) π1←− (V ′′

1 , (G(e)
δ )1, E1)

π2←− . . .
πk←− (V ′′

s , (G(e)
δ )s, Es).

where for each index i there is a smooth morphism δi : Vi → V ′′
i , so that the

three conditions of 6.6 hold, and (G(e)
δ )i is the elimination algebra of Gi. It

follows from B) that the Rees algebras G′′β and G′′δ (defined in the proof of A),
are weakly equivalent. In particular G(G′′β) and G(G′′δ ) have the same integral
closure (Theorem 5.19).

Remark 6.14. Assume, as before that (6.11.1) is t(e)-permissible and that
max w-ord(e)

s = 0. This means that G(e)
s is a monomial Rees algebra (5.11), at

least in an open neighborhood of the closed set βs(Sing (Gs))(⊂ Sing (G(e)
s )). As

the functions are independent of the projections, the same argument applies
when we replace (6.11.2) by (6.13.1): namely that G′(e)s is a monomial Rees
algebra in an neighborhood of δs(Sing (Gs)).

Corollary 6.15. Assume that one can define a resolution for any Diff-
algebra of codimensional type ≥ e + 1. Let G be of codimensional type ≥ e

on a smooth scheme V . Then a t(e)-permissible sequence, now of monoidal
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transformations, say

(6.15.1) (V,G, E) π1←− (V1,G1, E1)
π2←− . . .

πk←− (Vs,Gs, Es).

can be defined so that Sing (Gs) = ∅ or maxw-ord(e)
s = 0.

6.16. The discussion in Remark 6.14 indicates that max w-ord(e)
s = 0

when the elimination algebra is (locally) a monomial Rees algebra in the sense
of (5.11). We will say that an e-codimensional Rees-algebra Gs is e-monomial
when max w-ord(e)

s = 0. So the previous Corollary says that by decreasing
induction on e, we can define (6.15.1) to be either a resolution, or Gs is an
e-monomial Rees algebra.

6.17. Set T = Q× Z ∪ {∞} so that Q×Z is ordered lexicographically,
and {∞} is the biggest element. And set Id = T×T×· · ·×T (d-times T) with
lexicographic order.

Theorem 6.18 ([6]). Let G be a Diff-algebra on a smooth scheme V of
dimension d. There is an upper semi-continuous function, say γG : Sing (G)→
Id so that:

i) The level sets of γG stratify Sing (G) in smooth (locally closed) strata.
ii) Over fields of characteristic zero, the function coincides with the desin-

gularization function used in [29].

The proof follows from the following result:

Proposition 6.19. Given a basic object (V,G, E), there is a unique se-
quence

(6.19.1) (V,G, E) π0←− (V1,G1, E1)
π1←− . . .

πs−1←− (Vs,Gs, Es).

together with upper semi-continuous functions γi : Sing (G)i → Id, so that for
each index i < s πi is the blow-up at the smooth scheme Yi = Max γi, and either
(6.19.1) is a resolution of the basic object, or Max γs is the singular locus of an
e-monomial Rees algebra (see 6.16) for some integer e > 0.

Furthermore, for each index i < s there is a positive integer ei and an
ei-codimensional Diff-algebra G′′i on Vi, so that Yi = Max γi is the union of
components of Sing (G′′i ) of codimension ei in Vi (see 6.5).

Proof. The inductive function t is upper semi-continuous (4.7), so if we
fix x ∈ Sing (G), the value, say α1 = t(x) ∈ Q × Z is the highest value in a
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neighborhood of x. Proposition 6.12 and Remark 6.13 (or say Theorem 5.19)
allow us to define a unique Diff-algebra attached to the value α1, say Gα1 of
codimensional type 1.

Define γ(x) = (α1,∞, . . . ,∞) ∈ Id if x is in a component of codimension
1 of Sing (Gα1). If not, an upper semi-continuous function t(1) is defined along
Sing (Gα1); so set α2 = t(1)(x) ∈ Q×Z , and now there is a Diff-algebra Gα1,α2

of codimensional type 2 attached to the value.
Define γ(x) = (α1, α2,∞, . . . ,∞) ∈ Id if x is in a component of codimen-

sion 2 of Sing (Gα1,α2). If not, an upper semi-continuous function t(2) is defined
at x, and we argue as before. In this way we define γ along Sing (G). This
function is upper semi-continuous, and has the following property. Assume
that (α1, α2, . . . , αr,∞, . . . ,∞), is the highest value, and fix r′ ≤ r. The set
of points where where the first r′ coordinates of the function take the value
(α1, α2, . . . , αr′) is Sing (Gα1,α2,...,αr′ ) where Gα1,α2,...,αr′ is of codimensional
type ≥ r′. And for r′ = r, Sing (Gα1,α2,...,αr

) is of pure codimension r, and
this will be our choice of center for π0. So the function define the center. The
sequence (6.19.1) can be defined with the following property which makes it
unique.

Assume, by induction on s, that a sequence as (6.19.1) is defined together
with the functions γi : Sing (G)i → Id. Set max γs = (α1, α2, . . . , αr,∞, . . . ,∞)
(highest value achieved by γs) and fix r′ ≤ r. Let s′ be the smallest in-
dex for which the first r′ coordinates of max γs′ is (α1, α2, . . . , αr′). There
is a Diff-algebra, say Gα1,α2,...,αr′ of codimensional type ≥ r′ at Vs′ , so that
Sing (Gα1,α2,...,αr′ ) are the points where the first r′ coordinates of γs′ take this
value. The same centers of transformations πi, i = s′, . . . , s in (6.19.1) define

(Vs′ ,Gα1,α2,...,αr′ , E
′
s′ = ∅) πs′←− (Vs′+1, (Gα1,α2,...,αr′ )1, E′

s′+1) . . .
πk←− (Vs, (Gα1,α2,...,αr′ )s−s′ , E′

s).

and Sing ((Gα1,α2,...,αr′ )s−s′) is the set of points where the first r′ coordinates
of γs take the value (α1, α2, . . . , αr′). Furthermore, this sequence is t(r

′)-
permissible and the r′ + 1-coordinate of γs along Sing ((Gα1,α2,...,αr′ )s−s′) is
defined in terms of the function t(r

′).
If, in the previous discussion, we take r′ = r, then (Gα1,α2,...,αr

)s−s′ is
r-codimensional, its singular locus is Max γs, and (6.19.1) can be extended if
the function w-ord(r), defined in terms of (Gα1,α2,...,αr

)s−s′ is not zero (i.e. if
(Gα1,α2,...,αr

)s−s′ is not r-monomial in the sense of Remark 6.16).



696 Orlando Villamayor U.

References

[1] S. S. Abhyankar, Good points of a hypersurface, Adv. in Math. 68 (1988), no. 2, 87–256.
[2] J. M. Aroca, H. Hironaka and J. L. Vicente, Introduction to the theory of infinitely near

singular points, Mem. Mat. Ins. Jorge Juan (Madrid) 28 (1974).
[3] E. Bierstone and P. D. Milman, Canonical desingularization in characteristic zero by

blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2,
207–302.

[4] , Desingularization algorithms. I. Role of exceptional divisors, Mosc. Math. J. 3
(2003), no. 3, 751–805, 1197.

[5] G. Bodnár and J. Schicho, Automated resolution of singularities for hypersurfaces, J.
Symbolic Comput. 30 (2000), no. 4, 401–428.

[6] A. Bravo and O. Villamayor, Hypersurface singularities in positive characteristic and
stratification of singular locus, in preparation.

[7] V. Cossart and O. Piltant, Resolution of singularities of threefolds in positive charac-
teristic I and II.
http://hal.archives-ouvertes.fr/hal-00139124/fr/
http://hal.archives-ouvertes.fr/hal-00139445/fr/

[8] S. D. Cutkosky, Resolution of singularities for 3-folds in positive characteristic.
http://arxiv.org/abs/math.AG/0606530, 2006.

[9] S. Encinas and H. Hauser, Strong resolution of singularities in characteristic zero, Com-
ment. Math. Helv. 77 (2002), no. 4, 821–845.

[10] S. Encinas and O. Villamayor, A course on constructive desingularization and equiv-
ariance, in Resolution of singularities (Obergurgl, 1997), 147–227, Progr. Math., 181,
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