Publ. RIMS, Kyoto Univ. **44** (2008), 837–891

Symmetric Crystals for gl[∞]

Dedicated to Professor Heisuke Hironaka on the occasion of his seventy-seventh birthday

By

Naoya ENOMOTO^{*} and Masaki KASHIWARA^{**}

Abstract

In the preceding paper, we formulated a conjecture on the relations between certain classes of irreducible representations of affine Hecke algebras of type B and symmetric crystals for \mathfrak{gl}_{∞} . In the present paper, we prove the existence of the symmetric crystal and the global basis for \mathfrak{gl}_{∞} .

*§***1. Introduction**

Lascoux-Leclerc-Thibon ([LLT]) conjectured the relations between the representations of Hecke algebras of *type A* and the crystal bases of the affine Lie algebras of type A. Then, S. Ariki ([A]) observed that it should be understood in the setting of affine Hecke algebras and proved the LLT conjecture in a more general framework. Recently, we presented the notion of symmetric crystals and conjectured that certain classes of irreducible representations of the affine Hecke algebras of *type B* are described by symmetric crystals for \mathfrak{gl}_{∞} ([EK]).

The purpose of the present paper is to prove the existence of symmetric crystals in the case of \mathfrak{gl}_{∞} .

Let us recall the Lascoux-Leclerc-Thibon-Ariki theory. Let H_n^A be the affine Hecke algebra of type A of degree n. Let K_n^A be the Grothendieck group

c 2008 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Communicated by T. Kawai. Received May 14, 2007. Revised November 18, 2007.

²⁰⁰⁰ Mathematics Subject Classification(s): Primary 17B37; Secondary 20C08.

Key words: crystal bases, affine Hecke algebras, LLT conjecture.

The second author is partially supported by Grant-in-Aid for Scientific Research (B) 18340007, Japan Society for the Promotion of Science.

[∗]Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606–8502, Japan. e-mail: henon@kurims.kyoto-u.ac.jp

^{∗∗}e-mail: masaki@kurims.kyoto-u.ac.jp

of the abelian category of finite-dimensional H_n^A -modules, and $K^A = \bigoplus_{n \geq 0} K_n^A$. Then it has a structure of Hopf algebra by the restriction and the induction. The set $I = \mathbb{C}^*$ may be regarded as a Dynkin diagram with I as the set of vertices and with edges between $a \in I$ and ap_1^2 . Here p_1 is the parameter of the affine Hecke algebra usually denoted by q . Let \mathfrak{g}_I be the associated Lie algebra, and \mathfrak{g}_I^- the unipotent Lie subalgebra. Let U_I be the group associated to \mathfrak{g}_I^- .
Hence \mathfrak{g}_I is isomorphic to a direct gum of sonice of $\Lambda^{(1)}$, if \mathfrak{g}_2 is a pointing Hence \mathfrak{g}_I is isomorphic to a direct sum of copies of $A_{\ell-1}^{(1)}$ if p_1^2 is a primitive ℓ -th root of unity and to a direct sum of copies of \mathfrak{gl}_{∞} if p_1 has an infinite order. Then $\mathbb{C} \otimes K^A$ is isomorphic to the algebra $\mathcal{O}(U_I)$ of regular functions on U_I. Let $U_q(\mathfrak{g}_I)$ be the associated quantized enveloping algebra. Then $U_q^-(\mathfrak{g}_I)$
because $g \in \text{Supp}(k)$ has an upper global basis $\{G^{up}(b)\}_{b\in B(\infty)}$. By specializing $\bigoplus \mathbb{C}[q, q^{-1}]G^{up}(b)$ at $q = 1$, we obtain $\mathcal{O}(U_I)$. Then the LLTA-theory says that the elements associated to irreducible H^A -modules corresponds to the image of the upper global basis.

In [EK], we gave analogous conjectures for affine Hecke algebras of type B. In the type B case, we have to replace $U_q^-(\mathfrak{g}_I)$ and its upper global basis with approximately (see $\S 2, 2$). It is now that other a follows Let UB be with symmetric crystals (see § 2.3). It is roughly stated as follows. Let H_n^B be the affine Hecke algebra of type B of degree n. Let K_n^B be the Grothendieck group of the abelian category of finite-dimensional modules over H_n^B , and $K^B =$ $\oplus_{n\geqslant 0} K_n^B$. Then K^B has a structure of a Hopf bimodule over K^A. The group U_I has the anti-involution θ induced by the involution $a \mapsto a^{-1}$ of $I = \mathbb{C}^*$. Let U_I^{θ} be the θ -fixed point set of U_I . Then $\mathscr{O}(U_I^{\theta})$ is a quotient ring of $\mathscr{O}(U_I)$. The action of $\mathscr{O}(U_I) \simeq \mathbb{C} \otimes K^A$ on $\mathbb{C} \otimes K^B$, in fact, descends to the action of $\mathscr{O}(U_I^{\theta})$.

We introduce $V_{\theta}(\lambda)$ (see § 2.3), a kind of the *q*-analogue of $\mathcal{O}(U_I^{\theta})$. The conjecture in [EK] is then:

- (i) $V_{\theta}(\lambda)$ has a crystal basis and a global basis.
- (ii) K^B is isomorphic to a specialization of $V_{\theta}(\lambda)$ at $q = 1$ as an $\mathcal{O}(U_I)$ -module, and the irreducible representations correspond to the upper global basis of $V_{\theta}(\lambda)$ at $q=1$.

Remark. In [KM], Miemietz and the second author gave an analogous conjecture for the affine Hecke algebras of type D.

In the present paper, we prove that $V_{\theta}(\lambda)$ has a crystal basis and a global basis for $\mathfrak{g} = \mathfrak{gl}_{\infty}$ and $\lambda = 0$.

More precisely, let $I = \mathbb{Z}_{odd}$ be the set of odd integers. Let α_i $(i \in I)$ be

the simple roots with

$$
(\alpha_i, \alpha_j) = \begin{cases} 2 & \text{if } i = j, \\ -1 & \text{if } i = j \pm 2, \\ 0 & \text{otherwise.} \end{cases}
$$

Let θ be the involution of I given by $\theta(i) = -i$. Let $\mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})$ be the algebra over $\mathbf{K}:=\mathbb{Q}(q)$ generated by E_i , F_i , and invertible elements T_i $(i \in I)$ satisfying the following defining relations:

- (i) the T_i 's commute with each other,
- (ii) $T_{\theta(i)} = T_i$ for any i,

(iii)
$$
T_i E_j T_i^{-1} = q^{(\alpha_i + \alpha_{\theta(i)}, \alpha_j)} E_j
$$
 and $T_i F_j T_i^{-1} = q^{(\alpha_i + \alpha_{\theta(i)}, -\alpha_j)} F_j$ for $i, j \in I$,

- (iv) $E_i F_j = q^{-(\alpha_i, \alpha_j)} F_j E_i + (\delta_{i,j} + \delta_{\theta(i),j} T_i)$ for $i, j \in I$,
- (v) the E_i 's and the F_i 's satisfy the Serre relations (see Definition 2.1 (4)).

Then there exists a unique irreducible $\mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})$ -module $V_{\theta}(0)$ with a generator ϕ satisfying $E_i\phi = 0$ and $T_i\phi = \phi$ (Proposition 2.11). We define the endomorphisms \widetilde{E}_i and \widetilde{F}_i of $V_\theta(0)$ by

$$
\widetilde{E}_i a = \sum_{n \geqslant 1} F_i^{(n-1)} a_n, \quad \widetilde{F}_i a = \sum_{n \geqslant 0} f_i^{(n+1)} a_n,
$$

when writing

$$
a = \sum_{n\geqslant 0} F_i^{(n)} a_n \quad \text{with } E_i a_n = 0.
$$

Here $F_i^{(n)} = F_i^n/[n]!$ is the divided power. Let \mathbf{A}_0 be the ring of functions $a \in \mathbf{K}$ which do not have a pole at $q = 0$. Let $L_{\theta}(0)$ be the **A**₀-submodule of $V_{\theta}(0)$ generated by the elements $\widetilde{F}_{i_1} \cdots \widetilde{F}_{i_\ell} \phi \; (\ell \geqslant 0, i_1, \ldots, i_\ell \in I)$. Let $B_{\theta}(0)$ be the subset of $L_{\theta}(0)/qL_{\theta}(0)$ consisting of the $\widetilde{F}_{i_1}\cdots\widetilde{F}_{i_\ell}\phi$'s. In this paper, we prove the following theorem.

Theorem (Theorem 4.15)**.**

- (i) $\widetilde{F}_i L_\theta(0) \subset L_\theta(0)$ *and* $\widetilde{E}_i L_\theta(0) \subset L_\theta(0)$ *,*
- (ii) $B_{\theta}(0)$ *is a basis of* $L_{\theta}(0)/qL_{\theta}(0)$,
- (iii) $\widetilde{F}_i B_\theta(0) \subset B_\theta(0)$ *, and* $\widetilde{E}_i B_\theta(0) \subset B_\theta(0) \sqcup \{0\}$ *,*

 (iv) $\widetilde{F}_i \widetilde{E}_i(b) = b$ *for any* $b \in B_\theta(0)$ *such that* $\widetilde{E}_i b \neq 0$ *, and* $\widetilde{E}_i \widetilde{F}_i(b) = b$ *for any* $b \in B_{\theta}(0)$.

By this theorem, $B_{\theta}(0)$ has a similar structure to the crystal structure. Namely, we have operators $\widetilde{F}_i : B_\theta(0) \to B_\theta(0)$ and $\widetilde{E}_i : B_\theta(0) \to B_\theta(0) \sqcup \{0\},$ which satisfy (iv). Moreover $\varepsilon_i(b) := \max \left\{ n \in \mathbb{Z}_{\geqslant 0} \mid \widetilde{E}_i^n b \in B_\theta(0) \right\}$ is finite. We call it the *symmetric crystal* associated with (I, θ) . Contrary to the usual crystal case, $\widetilde{E}_{\theta(i)}$ b may coincide with \widetilde{E}_i b in the symmetric crystal case.

Let – be the bar operator of $V_{\theta}(0)$. Namely, – is a unique endomorphism of $V_\theta(0)$ such that $\overline{\phi} = \phi$, $\overline{av} = \overline{a}\overline{v}$ and $\overline{F_i v} = F_i \overline{v}$ for $a \in \mathbf{K}$ and $v \in V_\theta(0)$. Here $\bar{a}(q) = a(q^{-1})$. Let $V_{\theta}(0)$ be the smallest submodule of $V_{\theta}(0)$ over $\mathbf{A} := \mathbb{Q}[q, q^{-1}]$ such that it contains ϕ and is stable by the $F_i^{(n)}$'s.

Then we prove the existence of global basis:

Theorem (Theorem 5.5)**.**

- (i) *For any* $b \in B_{\theta}(0)$ *, there exists a unique* $G_{\theta}^{\text{low}}(b) \in V_{\theta}(0)$ **A** \cap $L_{\theta}(0)$ *such that* $\overline{G_{\theta}^{\text{low}}(b)} = G_{\theta}^{\text{low}}(b)$ *and* $b = G_{\theta}^{\text{low}}(b)$ *mod* $qL_{\theta}(0)$ *,*
- (ii) $\{G_{\theta}^{\text{low}}(b)\}_{b \in B_{\theta}(0)}$ *is a basis of the* \mathbf{A}_0 *-module* $L_{\theta}(0)$ *, the* \mathbf{A} *-module* $V_{\theta}(0)$ \mathbf{A} *and the* **K***-vector space* $V_{\theta}(0)$ *.*

We call $G_{\theta}^{\text{low}}(b)$ the *lower global basis*. The $\mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})$ -module $V_{\theta}(0)$ has a unique symmetric bilinear form (\bullet, \bullet) such that $(\phi, \phi) = 1$ and E_i and F_i are transpose to each other. The dual basis to $\{G_{\theta}^{\text{low}}(b)\}_{b \in B_{\theta}(0)}$ with respect to (• , •) is called an *upper global basis*.

Let us explain the strategy of our proof of these theorems. We first construct a PBW type basis ${P_{\theta}(\mathfrak{m})\phi}_{\mathfrak{m}}$ of $V_{\theta}(0)$ parametrized by the θ -restricted multisegments m . Then, we explicitly calculate the actions of E_i and F_i in terms of the PBW basis ${P_{\theta}(\mathfrak{m})\phi}_{\mathfrak{m}}$. Then, we prove that the PBW basis gives a crystal basis by the estimation of the coefficients of these actions. For this we use a criterion for crystal bases (Theorem 4.1).

*§***2. General Definitions and Conjectures**

*§***2.1. Quantized universal enveloping algebras and its reduced** q**-analogues**

We shall recall the quantized universal enveloping algebra $U_q(\mathfrak{g})$. Let I be an index set (for simple roots), and Q the free Z-module with a basis $\{\alpha_i\}_{i\in I}$.

Let (\bullet, \bullet) : $Q \times Q \to \mathbb{Z}$ be a symmetric bilinear form such that $(\alpha_i, \alpha_i)/2 \in \mathbb{Z}_{>0}$ for any i and $(\alpha_i^{\vee}, \alpha_j) \in \mathbb{Z}_{\leq 0}$ for $i \neq j$ where $\alpha_i^{\vee} := 2\alpha_i/(\alpha_i, \alpha_i)$. Let q be an indeterminate and set $\mathbf{K} := \mathbb{Q}(q)$. We define its subrings \mathbf{A}_0 , \mathbf{A}_{∞} and \mathbf{A} as follows.

$$
\mathbf{A}_0 = \{ f \in \mathbf{K} \mid f \text{ is regular at } q = 0 \},
$$

$$
\mathbf{A}_{\infty} = \{ f \in \mathbf{K} \mid f \text{ is regular at } q = \infty \},
$$

$$
\mathbf{A} = \mathbb{Q}[q, q^{-1}].
$$

Definition 2.1. The quantized universal enveloping algebra $U_q(\mathfrak{g})$ is the **K**-algebra generated by elements e_i, f_i and invertible elements t_i ($i \in I$) with the following defining relations.

- (1) The t_i 's commute with each other.
- (2) $t_j e_i t_i^{-1} = q^{(\alpha_j, \alpha_i)} e_i$ and $t_j f_i t_i^{-1} = q^{-(\alpha_j, \alpha_i)} f_i$ for any $i, j \in I$.

(3)
$$
[e_i, f_j] = \delta_{ij} \frac{t_i - t_i^{-1}}{q_i - q_i^{-1}}
$$
 for $i, j \in I$. Here $q_i := q^{(\alpha_i, \alpha_i)/2}$.

(4) (*Serre relation*) For $i \neq j$,

$$
\sum_{k=0}^{b} (-1)^{k} e_i^{(k)} e_j e_i^{(b-k)} = 0, \ \sum_{k=0}^{b} (-1)^{k} f_i^{(k)} f_j f_i^{(b-k)} = 0.
$$

Here $b = 1 - (\alpha_i^{\vee}, \alpha_j)$ and

$$
e_i^{(k)} = e_i^k / [k]_i! , f_i^{(k)} = f_i^k / [k]_i! ,
$$

\n
$$
[k]_i = (q_i^k - q_i^{-k}) / (q_i - q_i^{-1}), [k]_i! = [1]_i \cdots [k]_i.
$$

Let us denote by $U_q^-(\mathfrak{g})$ (resp. $U_q^+(\mathfrak{g})$) the **K**-subalgebra of $U_q(\mathfrak{g})$ generated by the f_i 's (resp. the e_i 's).

Let e'_i and e_i^* be the operators on $U_q^-(\mathfrak{g})$ (see [K1, 3.4]) defined by

$$
[e_i,a]=\frac{(e_i^*a)t_i-t_i^{-1}e_i'a}{q_i-q_i^{-1}}\quad(a\in U_q^-(\mathfrak{g})).
$$

These operators satisfy the following formulas similar to derivations:

 $e'_{i}(ab) = e'_{i}(a)b + (\text{Ad}(t_{i})a)e'_{i}b,$ $e_i^*(ab) = ae_i^*b + (e_i^*a)(\text{Ad}(t_i)b).$ (2.1)

Note that in [K1], the operator e_i'' was defined. It satisfies $e_i'' = -\circ e_i' \circ -$, while e_i^* satisfies $e_i^* = * \circ e_i' \circ *$. They are related by $e_i^* = \text{Ad}(t_i) \circ e_i''$.

The algebra U_q^- (g) has a unique symmetric bilinear form (\bullet, \bullet) such that $(1, 1) = 1$ and

 $(e'_i a, b) = (a, f_i b)$ for any $a, b \in U_q^-(\mathfrak{g})$.

It is non-degenerate and satisfies $(e_i^* a, b) = (a, bf_i)$. The left multiplication of f_j, e'_i and e_i^* have the commutation relations

$$
e'_{i}f_{j} = q^{-(\alpha_{i}, \alpha_{j})}f_{j}e'_{i} + \delta_{ij}, \ e_{i}^{*}f_{j} = f_{j}e_{i}^{*} + \delta_{ij} \operatorname{Ad}(t_{i}),
$$

and both the e_i 's and the e_i^* 's satisfy the Serre relations.

Definition 2.2. The reduced q-analogue $\mathcal{B}(\mathfrak{g})$ of \mathfrak{g} is the **K**-algebra generated by e'_i and f_i .

*§***2.2. Review on crystal bases and global bases**

Since e'_i and f_i satisfy the q-boson relation, any element $a \in U_q^-(\mathfrak{g})$ can be uniquely written as

$$
a = \sum_{n\geqslant 0} f_i^{(n)} a_n \quad \text{with } e_i' a_n = 0.
$$

Here $f_i^{(n)} = \frac{f_i^n}{|n|_i!}.$

Definition 2.3. We define the modified root operators \tilde{e}_i and \tilde{f}_i on $U_q^-(\mathfrak{g})$ by

$$
\widetilde{e}_i a = \sum_{n \geq 1} f_i^{(n-1)} a_n, \quad \widetilde{f}_i a = \sum_{n \geq 0} f_i^{(n+1)} a_n.
$$

Theorem 2.4 ([K1])**.** *We define*

$$
L(\infty) = \sum_{\ell \geqslant 0, i_1, \dots, i_\ell \in I} \mathbf{A}_0 \tilde{f}_{i_1} \cdots \tilde{f}_{i_\ell} \cdot 1 \subset U_q^-(\mathfrak{g}),
$$

$$
B(\infty) = \left\{ \tilde{f}_{i_1} \cdots \tilde{f}_{i_\ell} \cdot 1 \mod qL(\infty) \mid \ell \geqslant 0, i_1, \dots, i_\ell \in I \right\} \subset L(\infty)/qL(\infty).
$$

Then we have

- (i) $\widetilde{e}_i L(\infty) \subset L(\infty)$ and $\widetilde{f}_i L(\infty) \subset L(\infty)$,
- (ii) B(∞) *is a basis of* $L(\infty)/qL(\infty)$,

(iii)
$$
\tilde{f}_i B(\infty) \subset B(\infty)
$$
 and $\tilde{e}_i B(\infty) \subset B(\infty) \cup \{0\}.$

We call $(L(\infty), B(\infty))$ *the* crystal basis *of* $U_q^-(\mathfrak{g})$ *.*

Let – be the automorphism of **K** sending q to q^{-1} . Then $\overline{A_0}$ coincides with \mathbf{A}_{∞} .

Let V be a vector space over **K**, L_0 an \mathbf{A}_0 -submodule of V, L_∞ an \mathbf{A}_∞ submodule, and V_A an **A**-submodule. Set $E := L_0 \cap L_\infty \cap V_A$.

Definition 2.5 ([K1], [K2, 2.1]). We say that $(L_0, L_\infty, V_\mathbf{A})$ is *balanced* if each of L_0 , L_∞ and V_A generates V as a **K**-vector space, and if one of the following equivalent conditions is satisfied.

- (i) $E \to L_0/qL_0$ is an isomorphism,
- (ii) $E \to L_{\infty}/q^{-1}L_{\infty}$ is an isomorphism,
- (iii) $(L_0 \cap V_{\mathbf{A}}) \oplus (q^{-1}L_{\infty} \cap V_{\mathbf{A}}) \to V_{\mathbf{A}}$ is an isomorphism,
- (iv) $\mathbf{A}_0 \otimes_{\mathbb{Q}} E \to L_0$, $\mathbf{A}_{\infty} \otimes_{\mathbb{Q}} E \to L_{\infty}$, $\mathbf{A} \otimes_{\mathbb{Q}} E \to V_{\mathbf{A}}$ and $\mathbf{K} \otimes_{\mathbb{Q}} E \to V$ are isomorphisms.

Let – be the ring automorphism of $U_q(\mathfrak{g})$ sending q, t_i, e_i, f_i to $q^{-1}, t_i^{-1},$ $e_i, f_i.$

Let $U_q(\mathfrak{g})$ **A** be the **A**-subalgebra of $U_q(\mathfrak{g})$ generated by $e_i^{(n)}$, $f_i^{(n)}$ and t_i . Similarly we define $U_q^-(\mathfrak{g})_{\mathbf{A}}$.

Theorem 2.6. $(L(\infty), L(\infty)^-, U_q^-(\mathfrak{g})_{\mathbf{A}})$ *is balanced.*

Let

$$
G^{\text{low}}\colon L(\infty)/qL(\infty) \longrightarrow E:=L(\infty) \cap L(\infty)^- \cap U_q^-(\mathfrak{g})_{\mathbf{A}}
$$

be the inverse of $E \rightarrow L(\infty)/qL(\infty)$. Then $\{G^{\text{low}}(b) \mid b \in B(\infty)\}\)$ forms a basis of $U_q^-(\mathfrak{g})$. We call it a (lower) *global basis*. It is first introduced by G. Lusztig $(\lceil \Gamma \rceil)$ under the name of "cappenisel basis" for the A, D, E gases $([L])$ under the name of "canonical basis" for the A, D, E cases.

Definition 2.7. Let

$$
\{G^{up}(b) \mid b \in B(\infty)\}
$$

be the dual basis of $\{G^{\text{low}}(b) \mid b \in B(\infty)\}\$ with respect to the inner product (⋅, ⋅). We call it the upper global basis of $U_q^-({\frak g})$.

*§***2.3. Symmetric crystals**

Let θ be an automorphism of I such that $\theta^2 = id$ and $(\alpha_{\theta(i)}, \alpha_{\theta(j)}) =$ (α_i, α_j) . Hence it extends to an automorphism of the root lattice Q by $\theta(\alpha_i)$ = $\alpha_{\theta(i)}$, and induces an automorphism of $U_q(\mathfrak{g})$.

Definition 2.8. Let $\mathcal{B}_{\theta}(\mathfrak{g})$ be the **K**-algebra generated by E_i , F_i , and invertible elements T_i ($i \in I$) satisfying the following defining relations:

- (i) the T_i 's commute with each other,
- (ii) $T_{\theta(i)} = T_i$ for any i,

(iii)
$$
T_i E_j T_i^{-1} = q^{(\alpha_i + \alpha_{\theta(i)}, \alpha_j)} E_j
$$
 and $T_i F_j T_i^{-1} = q^{(\alpha_i + \alpha_{\theta(i)}, -\alpha_j)} F_j$ for $i, j \in I$,

- (iv) $E_i F_j = q^{-(\alpha_i, \alpha_j)} F_j E_i + (\delta_{i,j} + \delta_{\theta(i),j} T_i)$ for $i, j \in I$,
- (v) the E_i 's and the F_i 's satisfy the Serre relations (Definition 2.1 (4)).

We set $E_i^{(n)} = E_i^n/[n]_i!$ and $F_i^{(n)} = F_i^n/[n]_i!$.

Lemma 2.9. *Identifying* $U_q^-(\mathfrak{g})$ *with the subalgebra of* $\mathcal{B}_{\theta}(\mathfrak{g})$ *by the morphism* $f_i \mapsto F_i$ *, we have*

$$
(2.2) \t\t T_i a = \left(\text{Ad}(t_i t_{\theta(i)}) a \right) T_i,
$$

(2.3)
$$
E_i a = (\text{Ad}(t_i)a) E_i + e'_i a + (\text{Ad}(t_i)(e^*_{\theta(i)}a)) T_i
$$

for $a \in U_q^-(\mathfrak{g})$.

Proof. The first relation is obvious. In order to prove the second, it is enough to show that if a satisfies (2.3), then f_j a satisfies (2.3). We have

$$
E_i(f_j a) = (q^{-(\alpha_i, \alpha_j)} f_j E_i + \delta_{i,j} + \delta_{\theta(i),j} T_i) a
$$

= $q^{-(\alpha_i, \alpha_j)} f_j ((\text{Ad}(t_i) a) E_i + e'_i a + (\text{Ad}(t_i) (e^*_{\theta(i)} a)) T_i)$
+ $\delta_{i,j} a + \delta_{\theta(i),j} (\text{Ad}(t_i t_{\theta(i)}) a) T_i$
= $((\text{Ad}(t_i) (f_j a)) E_i + e'_i (f_j a) + (\text{Ad}(t_i) (e^*_{\theta(i)} (f_j a)) T_i.$

 \Box

The following lemma can be proved in a standard manner and we omit the proof.

Lemma 2.10. Let $\mathbf{K}[T_i^{\pm}; i \in I]$ be the commutative **K**-algebra gener*ated by invertible elements* T_i ($i \in I$) *with the defining relations* $T_{\theta(i)} = T_i$ *. Then the map* $U_q^- (\mathfrak{g}) \otimes \mathbf{K}[T_i^{\pm}; i \in I] \otimes U_q^+(\mathfrak{g}) \to \mathcal{B}_{\theta}(\mathfrak{g})$ *induced by the multiplication cation is bijective.*

Let $\lambda \in P_+ := \{ \lambda \in \text{Hom}(Q, \mathbb{Q}) \mid \langle \alpha_i^{\vee}, \lambda \rangle \in \mathbb{Z}_{\geq 0} \text{ for any } i \in I \}$ be a dominant integral weight such that $\theta(\lambda) = \lambda$.

Proposition 2.11.

- (i) *There exists a* $\mathcal{B}_{\theta}(\mathfrak{g})$ *-module* $V_{\theta}(\lambda)$ *generated by a non-zero vector* ϕ_{λ} *such that*
	- (a) $E_i \phi_\lambda = 0$ *for any* $i \in I$,
	- (b) $T_i \phi_\lambda = q^{(\alpha_i, \lambda)} \phi_\lambda$ *for any* $i \in I$,
	- (c) $\{u \in V_{\theta}(\lambda) \mid E_i u = 0 \text{ for any } i \in I\} = \mathbf{K} \phi_{\lambda}$.

Moreover such a $V_{\theta}(\lambda)$ *is irreducible and unique up to an isomorphism.*

(ii) *there exists a unique symmetric bilinear form* (\cdot, \cdot) *on* $V_{\theta}(\lambda)$ *such that* $(\phi_{\lambda}, \phi_{\lambda})=1$ *and* $(E_i u, v)=(u, F_i v)$ *for any* $i \in I$ *and* $u, v \in V_{\theta}(\lambda)$ *, and it is non-degenerate.*

Remark 2.12. Set $P_{\theta} = {\mu \in P | \theta(\mu) = \mu}.$ Then $V_{\theta}(\lambda)$ has a weight decomposition

$$
V_{\theta}(\lambda) = \bigoplus_{\mu \in P_{\theta}} V_{\theta}(\lambda)_{\mu},
$$

where $V_{\theta}(\lambda)_{\mu} = \{u \in V_{\theta}(\lambda) | T_i u = q^{(\alpha_i,\mu)} u\}.$ We say that an element u of $V_{\theta}(\lambda)$ has a θ -weight μ and write $\text{wt}_{\theta}(u) = \mu$ if $u \in V_{\theta}(\lambda)_{\mu}$. We have $\text{wt}_{\theta}(E_i u) =$ $\operatorname{wt}_{\theta}(u) + (\alpha_i + \alpha_{\theta(i)})$ and $\operatorname{wt}_{\theta}(F_i u) = \operatorname{wt}_{\theta}(u) - (\alpha_i + \alpha_{\theta(i)}).$

In order to prove Proposition 2.11, we shall construct two $\mathcal{B}_{\theta}(\mathfrak{g})$ -modules, analogous to Verma modules and dual Verma modules.

Lemma 2.13. *Let* $U_q^-(\mathfrak{g})\phi_\lambda'$ *be a free* $U_q^-(\mathfrak{g})$ *-module with a generator* ϕ_λ' . *Then the following action gives a structure of a* $B_{\theta}(\mathfrak{g})$ *-module on* $U_q^-(\mathfrak{g})\phi'_{\lambda}$:

(2.4)
$$
\begin{cases} T_i(a\phi'_\lambda) = q^{(\alpha_i,\lambda)}(\mathrm{Ad}(t_i t_{\theta(i)})a)\phi'_\lambda, \\ E_i(a\phi'_\lambda) = (e'_i a + q^{(\alpha_i,\lambda)} \mathrm{Ad}(t_i)(e^*_{\theta(i)}a))\phi'_\lambda, \\ F_i(a\phi'_\lambda) = (f_i a)\phi'_\lambda \end{cases}
$$

for any $i \in I$ *and* $a \in U_q^-(\mathfrak{g})$ *.*
Managazza $B_n^-(\mathfrak{g})$ */* $\sum_{i=1}^n (B_n^-(\mathfrak{g}))$

Moreover $\mathcal{B}_{\theta}(\mathfrak{g}) / \sum_{i \in I} (\mathcal{B}_{\theta}(\mathfrak{g}) E_i + \mathcal{B}_{\theta}(\mathfrak{g}) (T_i - q^{(\alpha_i, \lambda)})) \rightarrow U_q^-(\mathfrak{g}) \phi'_{\lambda}$ *is an isomorphism.*

Proof. We can easily check the defining relations in Definition 2.8 except the Serre relations for the E_i 's.

For $i \neq j \in I$, set $S = \sum_{n=0}^{b} (-1)^n E_i^{(n)} E_j E_i^{(b-n)}$ where $b = 1 - \langle h_i, \alpha_j \rangle$. It is enough to show that the action of S on $U_q^-(\mathfrak{g})\phi'_\lambda$ is equal to 0. We can easily check that $SF_k = q^{-(b\alpha_i + \alpha_j, \alpha_k)} F_k S$. Since $S\phi'_\lambda = 0$, we have $SU_q^- (\mathfrak{g}) \phi'_\lambda = 0$.

Hence $U_q^-(\mathfrak{g})\phi'_\lambda$ has a $\mathcal{B}_\theta(\mathfrak{g})$ -module structure. The last statement is obvious.

 \Box

Lemma 2.14. $q^-_q(g)\phi''_A$ be a free $U_q^-_q(g)$ -module with a generator ϕ''_{λ} . Then the following action gives a structure of a $\mathcal{B}_{\theta}(\mathfrak{g})$ -module on $U_q^-(\mathfrak{g})\phi''_{\lambda}$:

(2.5)
$$
\begin{cases} T_i(a\phi_{\lambda}^{\prime\prime}) = q^{(\alpha_i,\lambda)}(\mathrm{Ad}(t_i t_{\theta(i)})a)\phi_{\lambda}^{\prime\prime}, \\ E_i(a\phi_{\lambda}^{\prime\prime}) = (e_i^{\prime}a)\phi_{\lambda}^{\prime\prime}, \\ F_i(a\phi_{\lambda}^{\prime\prime}) = (f_i a + q^{(\alpha_i,\lambda)}(\mathrm{Ad}(t_i)a)f_{\theta(i)})\phi_{\lambda}^{\prime\prime} \end{cases}
$$

for any $i \in I$ *and* $a \in U_q^-(\mathfrak{g})$ *. Moreover, there exists a non-degenerate bilinear*
form $\langle \cdot, H^{-}(\mathfrak{g}) \rangle dV \times H^{-}(\mathfrak{g}) dV$ **E** and that $\langle F, \cdot, \cdot \rangle$ $\langle \cdot, F, \cdot \rangle$ $\langle F, \cdot, \cdot \rangle$ $form \langle \bullet, \bullet \rangle : U_q^-(\mathfrak{g}) \phi'_\lambda \times U_q^-(\mathfrak{g}) \phi''_\lambda \to \mathbf{K}$ such that $\langle F_i u, v \rangle = \langle u, E_i v \rangle$, $\langle E_i u, v \rangle = \langle u, E_i v \rangle$, $\langle F_i u, v \rangle = \langle u, F_i v \rangle + \langle \sigma, \phi \rangle$ $\langle u, F_i v \rangle$, $\langle T_i u, v \rangle = \langle u, T_i v \rangle$ for $u \in U_q^-(\mathfrak{g}) \phi_\lambda'$ and $v \in U_q^-(\mathfrak{g}) \phi_\lambda''$, and $\langle \phi_\lambda', \phi_\lambda'' \rangle =$ 1*.*

Proof. There exists a unique symmetric bilinear form (\cdot, \cdot) on $U_q^-(\mathfrak{g})$
that $(1, 1) = 1$ and f and c' are transpared to seek other. Let us define such that $(1,1) = 1$ and f_i and e'_i are transpose to each other. Let us define $\langle \cdot, \cdot \rangle : U_q^-(\mathfrak{g}) \phi'_\lambda \times U_q^-(\mathfrak{g}) \phi''_\lambda \to \mathbf{K}$ by $\langle a\phi'_\lambda, b\phi''_\lambda \rangle = (a, b)$ for $a \in U_q^-(\mathfrak{g})$ and $b \in$
 $U_q^-(\mathfrak{g})$. Then we see easily sheely $\langle F, a \rangle$, $\langle a \rangle$, $F, a \rangle$, $\langle T, a \rangle$, $\langle a \rangle$, $T, a \rangle$, $S_{\text{R$ $U_q^-(\mathfrak{g})$. Then we can easily check $\langle F_iu, v \rangle = \langle u, E_i v \rangle$, $\langle T_iu, v \rangle = \langle u, T_iv \rangle$. Since e_i^* is transpose to the right multiplication of f_i , we have $\langle E_i u, v \rangle = \langle u, F_i v \rangle$. Hence the action of E_i , F_i , T_i on $U_q^-(\mathfrak{g})\phi''_\lambda$ satisfy the defining relations in Definition 2.8. \Box

Proof of Proposition 2.11. Since $E_i \phi''_{\lambda} = 0$ and ϕ''_{λ} has a θ -weight λ , there exists a unique $\mathcal{B}_{\theta}(\mathfrak{g})$ -linear morphism $\psi: U_q^-(\mathfrak{g})\phi'_\lambda \to U_q^-(\mathfrak{g})\phi''_\lambda$ sending ϕ'_λ to ϕ'' . Let $V(\lambda)$ be its image $\phi'_\lambda(L^-(\lambda)\phi'_\lambda)$ ϕ''_{λ} . Let $V_{\theta}(\lambda)$ be its image $\psi(U_q^-(\mathfrak{g})\phi'_{\lambda})$.
(i) (e) follows from $\int_{\mathfrak{g}} \mathcal{L} U_q^-(\mathfrak{g}) d\mu$.

(i) (c) follows from $\{u \in U_q^-(\mathfrak{g}) \mid e'_i u = 0 \text{ for any } i\} = \mathbf{K}$ and $U_q^-(\mathfrak{g})\phi''_A \supset$ $V_{\theta}(\lambda)$. The other properties (a), (b) are obvious. Let us show that $V_{\theta}(\lambda)$ is irreducible. Let S be a non-zero $\mathcal{B}_{\theta}(\mathfrak{g})$ -submodule. Then S contains a non-zero vector v such that $E_i v = 0$ for any i. Then (c) implies that v is a constant multiple of ϕ_{λ} . Hence $S = V_{\theta}(\lambda)$.

Let us prove (ii). For $u, u' \in U_q^-(\mathfrak{g})\phi'_\lambda$, set $((u, u')) = \langle u, \psi(u')\rangle$. Then it is a bilinear form on $U_q^-(\mathfrak{g})\phi'_\lambda$ which satisfies

(2.6)
$$
(\phi'_{\lambda}, \phi'_{\lambda}) = 1, ((F_i u, u')) = ((u, E_i u')), ((E_i u, u')) = ((u, F_i u')),
$$
 and
$$
((T_i u, u')) = ((u, T_i u')).
$$

It is easy to see that a bilinear form which satisfies (2.6) is unique. Since $((u', u))$ also satisfies $(2.6), ((u, u'))$ is a symmetric bilinear form on $U_q^-(\mathfrak{g})\phi'_\lambda$.
Since $\phi(u', v') = 0$ implies $((u, u')) = 0$ $((u, u'))$ induces a symmetric bilinear form Since $\psi(u') = 0$ implies $(u, u') = 0$, (u, u') induces a symmetric bilinear form on $V_{\theta}(\lambda)$. Since (\bullet, \bullet) is non-degenerate on $U_q^-(\mathfrak{g})$, $((\bullet, \bullet))$ is a non-degenerate symmetric bilinear form on $V_{\theta}(\lambda)$.

Lemma 2.15. *There exists a unique endomorphism* – *of* $V_{\theta}(\lambda)$ *such that* $\overline{\phi_{\lambda}} = \phi_{\lambda}$ *and* $\overline{av} = \overline{a}\overline{v}$, $\overline{F_i v} = F_i \overline{v}$ *for any* $a \in \mathbf{K}$ *and* $v \in V_{\theta}(\lambda)$ *.*

Proof. The uniqueness is obvious.

Let ξ be an anti-involution of $U_q^-(\mathfrak{g})$ such that $\xi(q) = q^{-1}$ and $\xi(f_i) =$
Let ξ be an element of $\mathbb{Q} \otimes B$ such that $(\xi \otimes \xi) = (\xi \otimes \xi)^2$. Define $f_{\theta(i)}$. Let $\tilde{\rho}$ be an element of $\mathbb{Q}\otimes P$ such that $(\tilde{\rho}, \alpha_i)=(\alpha_i, \alpha_{\theta(i)})/2$. Define $c(\mu) = ((\mu + \tilde{\rho}, \theta(\mu + \tilde{\rho})) - (\tilde{\rho}, \theta(\tilde{\rho}))) / 2 + (\lambda, \mu)$ for $\mu \in P$. Then it satisfies

$$
c(\mu) - c(\mu - \alpha_i) = (\lambda + \mu, \alpha_{\theta(i)}).
$$

Hence c takes integral values on $Q := \sum_i \mathbb{Z} \alpha_i$.

We define the endomorphism Φ of $\hat{U}_q^-(\mathfrak{g})\phi''_\lambda$ by $\Phi(a\phi''_\lambda) = q^{-c(\mu)}\xi(a)\phi''_\lambda$ for $a \in U_q^-(\mathfrak{g})_\mu$. Let us show that

(2.7)
$$
\Phi(F_i(a\phi''_{\lambda})) = F_i \Phi(a\phi''_{\lambda}) \text{ for any } a \in U_q^-(\mathfrak{g}).
$$

For $a \in U_q^-(\mathfrak{g})_\mu$, we have

$$
\Phi(F_i(a\phi''_{\lambda})) = \Phi(f_i a + q^{(\alpha_i, \lambda + \mu)} a f_{\theta(i)}) \phi''_{\lambda}
$$

=
$$
(q^{-c(\mu - \alpha_i)} \xi(a) f_{\theta(i)} + q^{-(\alpha_i, \lambda + \mu) - c(\mu - \alpha_{\theta(i)})} f_i \xi(a)) \phi''_{\lambda}.
$$

On the other hand, we have

$$
F_i \Phi(a\phi_\lambda'') = F_i \big(q^{-c(\mu)} \xi(a) \phi_\lambda'' \big)
$$

= $q^{-c(\mu)} \big(f_i \xi(a) + q^{(\alpha_i, \lambda + \theta(\mu))} \xi(a) f_{\theta(i)} \big) \phi_\lambda''.$

Therefore we obtain (2.7).

Hence Φ induces the desired endomorphism of $V_{\theta}(\lambda) \subset U_q^-(\mathfrak{g})\phi''_{\lambda}$.

 \Box

Hereafter we assume further that

there is no $i \in I$ such that $\theta(i) = i$.

We conjecture that $V_{\theta}(\lambda)$ has a crystal basis under this assumption. This means the following. Since E_i and F_i satisfy the q-boson relation, any $u \in V_{\theta}(\lambda)$ can be

 \Box

uniquely written as $u = \sum_{n\geqslant 0} F_i^{(n)} u_n$ with $E_i u_n = 0$. We define the modified root operators \widetilde{E}_i and \widetilde{F}_i by:

$$
\widetilde{E}_i(u) = \sum_{n \geqslant 1} F_i^{(n-1)} u_n \text{ and } \widetilde{F}_i(u) = \sum_{n \geqslant 0} F_i^{(n+1)} u_n.
$$

Let $L_{\theta}(\lambda)$ be the \mathbf{A}_0 -submodule of $V_{\theta}(\lambda)$ generated by $\widetilde{F}_{i_1}\cdots\widetilde{F}_{i_\ell}\phi_\lambda$ ($\ell \geq 0$ and $i_1,\ldots,i_\ell \in I$, and let $B_\theta(\lambda)$ be the subset

$$
\left\{ \widetilde{F}_{i_1} \cdots \widetilde{F}_{i_\ell} \phi_\lambda \bmod qL_\theta(\lambda) \mid \ell \geqslant 0, \, i_1, \ldots, i_\ell \in I \right\}
$$

of $L_{\theta}(\lambda)/qL_{\theta}(\lambda)$.

Conjecture 2.16. For a dominant integral weight λ such that $\theta(\lambda) = \lambda$, we have

- (1) $\widetilde{F}_i L_\theta(\lambda) \subset L_\theta(\lambda)$ and $\widetilde{E}_i L_\theta(\lambda) \subset L_\theta(\lambda)$,
- (2) $B_{\theta}(\lambda)$ is a basis of $L_{\theta}(\lambda)/qL_{\theta}(\lambda)$,
- (3) $\widetilde{F}_i B_\theta(\lambda) \subset B_\theta(\lambda)$, and $\widetilde{E}_i B_\theta(\lambda) \subset B_\theta(\lambda) \sqcup \{0\},$
- (4) $\widetilde{F}_i \widetilde{E}_i(b) = b$ for any $b \in B_\theta(\lambda)$ such that $\widetilde{E}_i b \neq 0$, and $\widetilde{E}_i \widetilde{F}_i(b) = b$ for any $b \in B_{\theta}(\lambda)$.

As in [K1], we have

Lemma 2.17. *Assume Conjecture* 2.16*. Then we have*

- (i) $L_{\theta}(\lambda) = \{v \in V_{\theta}(\lambda) \mid (L_{\theta}(\lambda), v) \subset \mathbf{A}_0\},\$
- (ii) Let $(\bullet, \bullet)_0$ be the Q-valued symmetric bilinear form on $L_{\theta}(\lambda)/qL_{\theta}(\lambda)$ *induced by* (\cdot, \cdot) *. Then* $B_{\theta}(\lambda)$ *is an orthonormal basis with respect to* $(\bullet,\bullet)_0.$

Moreover we conjecture that $V_{\theta}(\lambda)$ has a global crystal basis. Namely we have

Conjecture 2.18. The triplet $(L_{\theta}(\lambda), L_{\theta}(\lambda)^{-}, V_{\theta}(\lambda)^{\text{low}})$ is balanced. Here $V_{\theta}(\lambda)^{\text{low}}_{\mathbf{A}} := U_q^-(\mathfrak{g})_{\mathbf{A}} \phi_{\lambda}.$

Its dual version is as follows.

Let us denote by $V_{\theta}(\lambda)_{\mathbf{A}}^{\text{up}}$ the dual space $\{v \in V_{\theta}(\lambda) \mid (V_{\theta}(\lambda)_{\mathbf{A}}^{\text{low}}, v) \subset \mathbf{A}\}.$ Then Conjecture 2.18 is equivalent to the following conjecture.

Conjecture 2.19. $(L_{\theta}(\lambda), c(L_{\theta}(\lambda)), V_{\theta}(\lambda)^{\text{up}}_{\mathbf{A}})$ is balanced.

Here c is a unique endomorphism of $V_{\theta}(\lambda)$ such that $c(\phi_{\lambda}) = \phi_{\lambda}$ and $c(av) = \bar{a}c(v), \ c(E_i v) = E_i c(v)$ for any $a \in \mathbf{K}$ and $v \in V_\theta(\lambda)$. We have $(c(v'), v) = \overline{(v', \bar{v})}$ for any $v, v' \in V_{\theta}(\lambda)$.

Note that $V_{\theta}(\lambda)_{\mathbf{A}}^{\text{up}}$ is the largest **A**-submodule M of $V_{\theta}(\lambda)$ such that M is invariant by the $E_i^{(n)}$ ⁵₂s and $M \cap \mathbf{K} \phi_\lambda = \mathbf{A} \phi_\lambda$.

By Conjecture 2.19, $L_{\theta}(\lambda) \cap c(L_{\theta}(\lambda)) \cap V_{\theta}(\lambda)_{\mathbf{A}}^{\text{up}} \to L_{\theta}(\lambda)/qL_{\theta}(\lambda)$ is an isomorphism. Let G_{θ}^{up} be its inverse. Then $\{G_{\theta}^{up}(b)\}_{b \in B_{\theta}(\lambda)}$ is a basis of $V_{\theta}(\lambda)$, which we call the *upper global basis* of $V_{\theta}(\lambda)$. Note that $\{G_{\theta}^{up}(b)\}_{b\in B_{\theta}(\lambda)}$ is the dual basis to $\{G_{\theta}^{\text{low}}(b)\}_{b\in B_{\theta}(\lambda)}$ with respect to the inner product of $V_{\theta}(\lambda)$.

We shall prove these conjectures in the case $\mathfrak{g} = \mathfrak{gl}_{\infty}$ and $\lambda = 0$.

§3. PBW Basis of $V_\theta(0)$ for $\mathfrak{g} = \mathfrak{gl}_\infty$

*§***3.1. Review on the PBW basis**

In the sequel, we set $I = \mathbb{Z}_{odd}$ and

$$
(\alpha_i, \alpha_j) = \begin{cases} 2 & \text{for } i = j, \\ -1 & \text{for } j = i \pm 2, \\ 0 & \text{otherwise,} \end{cases}
$$

and we consider the corresponding quantum group $U_q(\mathfrak{gl}_{\infty})$. In this case, we have $q_i = q$. We write $[n]$ and $[n]$! for $[n]_i$ and $[n]_i$! for short.

We can parametrize the crystal basis $B(\infty)$ by the multisegments. We shall recall this parametrization and the PBW basis.

Definition 3.1. For $i, j \in I$ such that $i \leq j$, we define a segment $\langle i, j \rangle$ as the interval $[i, j] \subset I := \mathbb{Z}_{odd}$. A multisegment is a formal finite sum of segments:

$$
\mathfrak{m}=\sum_{i\leqslant j}m_{ij}\langle i,j\rangle
$$

with $m_{i,j} \in \mathbb{Z}_{\geqslant 0}$. We call m_{ij} the multiplicity of a segment $\langle i, j \rangle$. If $m_{i,j} > 0$, we sometimes say that $\langle i, j \rangle$ appears in m. We sometimes write $m_{i,j}(\mathfrak{m})$ for $m_{i,j}$. We sometimes write $\langle i \rangle$ for $\langle i, i \rangle$. We denote by M the set of multisegments. We denote by \emptyset the zero element (or the empty multisegment) of \mathcal{M} .

Definition 3.2. For two segments $\langle i_1, j_1 \rangle$ and $\langle i_2, j_2 \rangle$, we define the ordering \geq_{PBW} by the following:

$$
\langle i_1, j_1 \rangle \geqslant_{\text{PBW}} \langle i_2, j_2 \rangle \Longleftrightarrow \begin{cases} j_1 > j_2 \\ \text{or} \\ j_1 = j_2 \text{ and } i_1 \geqslant i_2. \end{cases}
$$

We call this ordering the *PBW-ordering*.

Definition 3.3. For a multisegment m, we define the element $P(m) \in$ $U_q^-(\mathfrak{gl}_\infty)$ as follows.

(1) For a segment $\langle i, j \rangle$, we define the element $\langle i, j \rangle \in U_q^-({\mathfrak g}{\mathfrak l}_\infty)$ inductively by

$$
\langle i, i \rangle = f_i,
$$

$$
\langle i, j \rangle = \langle i, j - 2 \rangle \langle j, j \rangle - q \langle j, j \rangle \langle i, j - 2 \rangle \text{ for } i < j.
$$

(2) For a multisegment $\mathfrak{m}=\sum_{i\leqslant j}$ $m_{ij}\langle i, j \rangle$, we define −

$$
P(\mathfrak{m}) = \prod^{\longrightarrow} \langle i, j \rangle^{(m_{ij})}.
$$

Here the product $\overrightarrow{\prod}$ is taken over segments appearing in $\mathfrak m$ from large to small with respect to the PBW-ordering. The element $\langle i, j \rangle^{(m_{ij})}$ is the divided power of $\langle i, j \rangle$ i.e.

$$
\langle i,j \rangle^{(n)} = \begin{cases} \frac{1}{[n]!} \langle i,j \rangle^n & \text{for } n > 0, \\ 1 & \text{for } n = 0, \\ 0 & \text{for } n < 0. \end{cases}
$$

Hence the weight of $P(\mathfrak{m})$ is equal to $wt(\mathfrak{m}) := -\sum_{i \leqslant k \leqslant j} m_{i,j} \alpha_k : t_i P(\mathfrak{m}) t_i^{-1} =$ $q^{(\alpha_i,\text{wt}(\mathfrak{m}))}P(\mathfrak{m}).$

Theorem 3.4 ([L]). *The set of elements* $\{P(\mathfrak{m}) \mid \mathfrak{m} \in \mathcal{M}\}\$ *is a* **K***-basis of* U_q^- (\mathfrak{gl}_∞)*. Moreover this is an* **A***-basis of* U_q^- (\mathfrak{gl}_∞)**A***. We call this basis the* PBW basis *of* $U_q^-(\mathfrak{gl}_\infty)$.

Definition 3.5. For two segments $\langle i_1, j_1 \rangle$ and $\langle i_2, j_2 \rangle$, we define the ordering \geqslant_{cry} by the following:

$$
\langle i_1, j_1 \rangle \geqslant_{\text{cry}} \langle i_2, j_2 \rangle \Longleftrightarrow \begin{cases} j_1 > j_2 \\ \text{or} \\ j_1 = j_2 \text{ and } i_1 \leqslant i_2. \end{cases}
$$

We call this ordering the *crystal ordering*.

Example 3.6. The crystal ordering is different from the PBW-ordering. For example, we have $\langle -1, 1 \rangle >_{\text{cry}} \langle 1, 1 \rangle >_{\text{cry}} \langle -1 \rangle$, while we have $\langle 1, 1 \rangle >_{\text{PBW}}$ $\langle -1, 1 \rangle >_{PBW} \langle -1 \rangle$.

Definition 3.7. We define the crystal structure on M as follows: for $\mathfrak{m} = \sum m_{i,j} \langle i, j \rangle \in \mathcal{M}$ and $i \in I$, set $A_k^{(i)}(\mathfrak{m}) = \sum_{k' \geq k} (m_{i,k'} - m_{i+2,k'+2})$ for $k \geq i$. Define $\varepsilon_i(\mathfrak{m})$ as $\max\left\{A_k^{(i)}(\mathfrak{m}) \mid k \geq i\right\} \geq 0$.

- (i) If $\varepsilon_i(\mathfrak{m}) = 0$, then define $\tilde{e}_i(\mathfrak{m}) = 0$. If $\varepsilon_i(\mathfrak{m}) > 0$, let k_e be the largest $k \geq i$ such that $\varepsilon_i(\mathfrak{m}) = A_k^{(i)}(\mathfrak{m})$ and define $\tilde{e}_i(\mathfrak{m}) = \mathfrak{m} - \langle i, k_e \rangle + \delta_{k_e \neq i} \langle i+2, k_e \rangle$.
- (ii) Let k_f be the smallest $k \geq i$ such that $\varepsilon_i(\mathfrak{m}) = A_k^{(i)}(\mathfrak{m})$ and define $\tilde{f}_i(\mathfrak{m}) =$ $m - \delta_{k_f \neq i} \langle i + 2, k_f \rangle + \langle i, k_f \rangle.$

Remark 3.8. For $i \in I$, the actions of the operators \tilde{e}_i and \tilde{f}_i on $\mathfrak{m} \in \mathcal{M}$ are also described by the following algorithm:

Step 1. Arrange the segments in m in the crystal ordering.

- Step 2. For each segment $\langle i, j \rangle$, write –, and for each segment $\langle i + 2, j \rangle$, write $+$.
- Step 3. In the resulting sequence of $+$ and $-$, delete a subsequence of the form +− and keep on deleting until no such subsequence remains.

Then we obtain a sequence of the form $-\cdots - + + \cdots +$.

- (1) $\varepsilon_i(\mathfrak{m})$ is the total number of in the resulting sequence.
- (2) $\widetilde{f}_i(\mathfrak{m})$ is given as follows:
	- (a) if the leftmost + corresponds to a segment $\langle i+2, j \rangle$, then replace it with $\langle i, j \rangle$,
	- (b) if no + exists, add a segment $\langle i, i \rangle$ to m.
- (3) $\tilde{e}_i(\mathfrak{m})$ is given as follows:
	- (a) if the rightmost corresponds to a segment $\langle i, j \rangle$ with $i < j$, then replace it with $\langle i + 2, j \rangle$,
	- (b) if the rightmost corresponds to a segment $\langle i, i \rangle$, then remove it,
	- (c) if no exists, then $\tilde{e}_i(\mathfrak{m}) = 0$.

Let us introduce a linear ordering on the set M of multisegments, lexicographic with respect to the crystal ordering on the set of segments.

Definition 3.9. For $\mathfrak{m} = \sum_{i \leq j} m_{i,j} \langle i, j \rangle \in \mathcal{M}$ and $\mathfrak{m}' = \sum_{i \leq j}$ $m'_{i,j}\langle i,j\rangle \in$ M, we define $\mathfrak{m}' \leq \mathfrak{m}$ if there exist $i_0 \leq j_0$ such that $m'_{i_0,j_0} < m'_{i_0,j_0}$, $m'_{i,j_0} =$ m_{i,j_0} for $i < i_0$, and $m'_{i,j} = m_{i,j}$ for $j > j_0$ and $i \leq j$.

Theorem 3.10.

- (i) $L(\infty) = \bigoplus$ $\bigoplus_{\mathfrak{m}\in\mathcal{M}}\mathbf{A}_0P(\mathfrak{m})$.
- (ii) $B(\infty) = \{P(\mathfrak{m}) \bmod qL(\infty) \mid \mathfrak{m} \in \mathcal{M}\}.$
- (iii) *We have*

$$
\widetilde{e}_i P(\mathfrak{m}) \equiv P(\widetilde{e}_i(\mathfrak{m})) \mod qL(\infty),
$$

$$
\widetilde{f}_i P(\mathfrak{m}) \equiv P(\widetilde{f}_i(\mathfrak{m})) \mod qL(\infty).
$$

Note that \tilde{e}_i *and* \tilde{f}_i *in the left-hand-side is the modified root operators.*

(iv) *We have*

$$
\overline{P(\mathfrak{m})}\in P(\mathfrak{m})+\sum_{\mathfrak{m'}\underset{\mathfrak{cry}}{\prec}\mathfrak{m}}\mathbf{A}P(\mathfrak{m'}).
$$

Therefore we can index the crystal basis by multisegments. By this theorem we can easily see by a standard argument that $(L(\infty), L(\infty)^-, U_q^-(\mathfrak{g})_{\mathbf{A}})$
is halonged, and there exists a unique $C^{\text{low}}(\mathfrak{m}) \subset L(\infty) \cap U_q^-(\mathfrak{g})$, such that is balanced, and there exists a unique $G^{\text{low}}(\mathfrak{m}) \in L(\infty) \cap U_q^-(\mathfrak{g})_{\mathbf{A}}$ such that $G^{\text{low}}(\mathfrak{m}) = G^{\text{low}}(\mathfrak{m})$ and $G^{\text{low}}(\mathfrak{m}) = D(\mathfrak{m})$ mode $L(\infty)$. Then $(G^{\text{low}}(\mathfrak{m}))$ $G^{\text{low}}(\mathfrak{m})^- = G^{\text{low}}(\mathfrak{m})$ and $G^{\text{low}}(\mathfrak{m}) \equiv P(\mathfrak{m}) \bmod qL(\infty)$. Then $\{G^{\text{low}}(\mathfrak{m})\}_{\mathfrak{m} \in \mathcal{M}}$ is a lower global basis.

*§***3.2.** ^θ**-restricted multisegments**

We consider the Dynkin diagram involution θ of $I := \mathbb{Z}_{odd}$ defined by $\theta(i) = -i$ for $i \in I$.

We shall prove in this case Conjectures 2.16 and 2.18 for $\lambda = 0$ (Theorems 4.15 and 5.5).

We set

$$
\widetilde{V}_{\theta}(0) := \mathcal{B}_{\theta}(\mathfrak{gl}_{\infty}) / \sum_{i \in I} (\mathcal{B}_{\theta}(\mathfrak{gl}_{\infty}) E_i + \mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})(T_i - 1) + \mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})(F_i - F_{\theta(i)}))
$$

\n
$$
\simeq U_q^-(\mathfrak{gl}_{\infty}) / \sum_i U_q^-(\mathfrak{gl}_{\infty})(f_i - f_{\theta(i)}).
$$

Let $\widetilde{\phi}$ be the generator of $\widetilde{V}_{\theta}(0)$ corresponding to $1 \in \mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})$. Since $F_i \phi_0'' =$ $(f_i + f_{\theta(i)})\phi_0'' = F_{\theta(i)}\phi_0'',$ we have an epimorphism of $\mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})$ -modules

(3.1)
$$
\widetilde{V}_{\theta}(0) \twoheadrightarrow V_{\theta}(0).
$$

We shall see later that it is in fact an isomorphism (see Theorem 4.15).

Definition 3.11. If a multisegment m has the form

$$
\mathfrak{m}=\sum_{-j\leqslant i\leqslant j}m_{ij}\langle i,j\rangle,
$$

we call $m a \theta$ -restricted multisegment. We denote by \mathcal{M}_{θ} the set of θ -restricted multisegments.

Definition 3.12. For a θ -restricted segment $\langle i, j \rangle$, we define its modified divided power by

$$
\langle i,j\rangle^{[m]} = \begin{cases} \langle i,j\rangle^{(m)} = \frac{1}{[m]!} \langle i,j\rangle^m (i \neq -j), \\ \frac{1}{\prod_{\nu=1}^m [2\nu]} \langle -j,j\rangle^m (i = -j). \end{cases}
$$

We understand that $\langle i, j \rangle^{[m]}$ is equal to 1 for $m = 0$ and vanishes for $m < 0$.

.

Definition 3.13. For $\mathfrak{m} \in \mathcal{M}_{\theta}$, we define $P_{\theta}(\mathfrak{m}) \in U_q^-(\mathfrak{gl}_{\infty}) \subset \mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})$ by −

$$
P_{\theta}(\mathfrak{m}) = \prod_{\langle i,j\rangle \in \mathfrak{m}}^{\longrightarrow} \langle i,j\rangle^{[m_{ij}]}
$$

Here the product $\overrightarrow{\prod}$ is taken over the segments appearing in $\mathfrak m$ from large to small with respect to the PBW-ordering.

If an element $\mathfrak m$ of the free abelian group generated by $\langle i, j \rangle$ does not belong to \mathcal{M}_{θ} , we understand $P_{\theta}(\mathfrak{m}) = 0$.

We will prove later that ${P_{\theta}(\mathfrak{m})\phi}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ is a basis of $V_{\theta}(0)$ (see Theorem 4.15). Here and hereafter, we write ϕ instead of $\phi_0 \in V_\theta(0)$.

§3.3. Commutation relations of $\langle i, j \rangle$

In the sequel, we regard $U_q^-({\mathfrak{gl}}_\infty)$ as a subalgebra of $\mathcal{B}_\theta({\mathfrak{gl}}_\infty)$ by $f_i \mapsto F_i$.
We shall give formulas to suppose products of sogments by a DDW bosis We shall give formulas to express products of segments by a PBW basis.

Proposition 3.14. *For* $i, j, k, l \in I$ *, we have*

- (1) $\langle i, j \rangle \langle k, \ell \rangle = \langle k, \ell \rangle \langle i, j \rangle$ for $i \leq j, k \leq \ell$ and $j < k 2$,
- (2) $\langle i, j \rangle \langle j + 2, k \rangle = \langle i, k \rangle + q \langle j + 2, k \rangle \langle i, j \rangle$ for $i \leq j < k$,
- (3) $\langle j, k \rangle \langle i, \ell \rangle = \langle i, \ell \rangle \langle j, k \rangle$ for $i < j \leq k < \ell$,
- (4) $\langle i, k \rangle \langle j, k \rangle = q^{-1} \langle j, k \rangle \langle i, k \rangle$ for $i < j \leq k$,
- (5) $\langle i, j \rangle \langle i, k \rangle = q^{-1} \langle i, k \rangle \langle i, j \rangle$ for $i \leq j < k$,
- (6) $\langle i, k \rangle \langle j, \ell \rangle = \langle j, \ell \rangle \langle i, k \rangle + (q^{-1} q) \langle i, \ell \rangle \langle j, k \rangle$ for $i < j \leq k < \ell$.

Proof. (1) is obvious. We prove (2) by the induction on $k-j$. If $k-j=2$, it is trivial by the definition. If $j < k - 2$, then $\langle k \rangle$ and $\langle i, j \rangle$ commute. Thus, we have

$$
\langle i, j \rangle \langle j+2, k \rangle = \langle i, j \rangle \left(\langle j+2, k-2 \rangle \langle k \rangle - q \langle k \rangle \langle j+2, k-2 \rangle \right)
$$

=
$$
\left(\langle i, k-2 \rangle + q \langle j+2, k-2 \rangle \langle i, j \rangle \right) \langle k \rangle - q \langle k \rangle \langle i, j \rangle \langle j+2, k-2 \rangle
$$

=
$$
\langle i, k-2 \rangle \langle k \rangle + q \langle j+2, k-2 \rangle \langle k \rangle \langle i, j \rangle
$$

-
$$
q \langle k \rangle \left(\langle i, k-2 \rangle + q \langle j+2, k-2 \rangle \langle i, j \rangle \right)
$$

=
$$
\langle i, k \rangle + \langle j+2, k \rangle \langle i, j \rangle.
$$

In order to prove the other relations, we first show the following special cases.

Lemma 3.15. *We have for any* $i \in I$

- (a) $\langle j 2, j \rangle \langle j \rangle = q^{-1} \langle j \rangle \langle j 2, j \rangle$ and $\langle j \rangle \langle j, j + 2 \rangle = q^{-1} \langle j, j + 2 \rangle \langle j \rangle$,
- (b) $\langle j \rangle \langle j 2, j + 2 \rangle = \langle j 2, j + 2 \rangle \langle j \rangle$,
- (c) $\langle j 2, j \rangle \langle j, j + 2 \rangle = \langle j, j + 2 \rangle \langle j 2, j \rangle + (q^{-1} q) \langle j 2, j + 2 \rangle \langle j \rangle.$

Proof. The first equality in (a) follows from

$$
\langle j-2,j\rangle \langle j \rangle - q^{-1} \langle j \rangle \langle j-2,j \rangle
$$

= $(f_{j-2}f_j - qf_jf_{j-2})f_j - q^{-1}f_j(f_{j-2}f_j - qf_jf_{j-2})$
= $f_{j-2}f_j^2 - (q+q^{-1})f_jf_{j-2}f_j + f_j^2f_{j-2} = 0.$

We can similarly prove the second.

Let us show (b) and (c). We have, by (a)

$$
\langle j-2,j\rangle\langle j,j+2\rangle = \langle j-2,j\rangle\big(\langle j\rangle\langle j+2\rangle - q\langle j+2\rangle\langle j\rangle\big)
$$

\n
$$
= q^{-1}\langle j\rangle\langle j-2,j\rangle\langle j+2\rangle - q\big(\langle j-2,j+2\rangle + q\langle j+2\rangle\langle j-2,j\rangle\big)\langle j\rangle
$$

\n
$$
= q^{-1}\langle j\rangle\big(\langle j-2,j+2\rangle + q\langle j+2\rangle\langle j-2,j\rangle\big)
$$

\n(3.2)
\n
$$
-q\langle j-2,j+2\rangle\langle j\rangle - q\langle j+2\rangle\langle j\rangle\langle j-2,j\rangle
$$

\n
$$
+q^{-1}\langle j\rangle\langle j-2,j+2\rangle - q\langle j-2,j+2\rangle\langle j\rangle
$$

\n
$$
= \langle j,j+2\rangle\langle j-2,j\rangle + q^{-1}\langle j\rangle\langle j-2,j+2\rangle - q\langle j-2,j+2\rangle\langle j\rangle.
$$

Similarly, we have

$$
\langle j-2,j\rangle \langle j,j+2\rangle = (\langle j-2\rangle \langle j\rangle - q\langle j\rangle \langle j-2\rangle) \langle j,j+2\rangle
$$

\n
$$
= q^{-1} \langle j-2\rangle \langle j,j+2\rangle \langle j\rangle - q\langle j\rangle (\langle j-2,j+2\rangle + q\langle j,j+2\rangle \langle j-2\rangle)
$$

\n
$$
= q^{-1} (\langle j-2,j+2\rangle + q\langle j,j+2\rangle \langle j-2\rangle) \langle j\rangle
$$

\n(3.3)
\n
$$
-q\langle j\rangle \langle j-2,j+2\rangle - q\langle j,j+2\rangle \langle j\rangle \langle j-2\rangle
$$

\n
$$
= \langle j,j+2\rangle (\langle j-2\rangle \langle j\rangle - q\langle j\rangle \langle j-2\rangle)
$$

\n
$$
+q^{-1} \langle j-2,j+2\rangle \langle j\rangle - q\langle j\rangle \langle j-2,j+2\rangle
$$

\n
$$
= \langle j,j+2\rangle \langle j-2,j\rangle + q^{-1} \langle j-2,j+2\rangle \langle j\rangle - q\langle j\rangle \langle j-2,j+2\rangle.
$$

Then, (3.2) and (3.3) imply (b) and (c) .

$$
\Box
$$

We shall resume the proof of Proposition 3.14. By Lemma 3.15 (b), $\langle i, k \rangle$ commutes with $\langle j \rangle$ for $i < j < k$. Thus we obtain (3).

We shall show (4) by the induction on $k - j$. Suppose $k - j = 0$. The case $i = k - 2$ is nothing but Lemma 3.15 (a).

If $i < k - 2$, then

$$
\begin{aligned} \langle i,k \rangle \langle k \rangle &= \langle i,k-4 \rangle \langle k-2,k \rangle \langle k \rangle - q \langle k-2,k \rangle \langle i,k-4 \rangle \langle k \rangle \\ &= q^{-1} \langle k \rangle \langle i,k-4 \rangle \langle k-2,k \rangle - \langle k \rangle \langle k-2,k \rangle \langle i,k-4 \rangle = q^{-1} \langle k \rangle \langle i,k \rangle. \end{aligned}
$$

Suppose $k - j > 0$. By using the induction hypothesis and (3), we have

$$
\langle i,k\rangle \langle j,k\rangle = \langle i,k\rangle \langle j\rangle \langle j+2,k\rangle - q\langle i,k\rangle \langle j+2,k\rangle \langle j\rangle
$$

= $\langle j\rangle \langle i,k\rangle \langle j+2,k\rangle - \langle j+2,k\rangle \langle i,k\rangle \langle j\rangle$
= $q^{-1} \langle j\rangle \langle j+2,k\rangle \langle i,k\rangle - \langle j+2,k\rangle \langle j\rangle \langle i,k\rangle = q^{-1} \langle j,k\rangle \langle i,k\rangle.$

Similarly we can prove (5).

Let us prove (6). We have

$$
\langle i,k\rangle\langle j,\ell\rangle = (\langle i,j-2\rangle\langle j,k\rangle - q\langle j,k\rangle\langle i,j-2\rangle)\langle j,\ell\rangle
$$

= $q^{-1}\langle i,j-2\rangle\langle j,\ell\rangle\langle j,k\rangle - q\langle j,k\rangle(\langle i,\ell\rangle + q\langle j,\ell\rangle\langle i,j-2\rangle)$
= $q^{-1}\big((i,\ell\rangle + q\langle j,\ell\rangle\langle i,j-2\rangle)\big)(j,k\rangle$
 $-q\langle i,\ell\rangle\langle j,k\rangle - q\langle j,\ell\rangle\langle j,k\rangle\langle i,j-2\rangle)$
= $\langle j,\ell\rangle\langle i,k\rangle + (q^{-1} - q)\langle i,\ell\rangle\langle j,k\rangle.$

 \Box

Lemma 3.16.

- (i) *For* $1 \leq i \leq j$, we have $\langle -j, -i \rangle \widetilde{\phi} = \langle i, j \rangle \widetilde{\phi}$.
- (ii) *For* $1 \leq i < j$, we have $\langle -j, i \rangle \widetilde{\phi} = q^{-1} \langle -i, j \rangle \widetilde{\phi}$.

Proof. (i) If $i = j$, it is obvious. By the induction on $j - i$, we have

$$
\langle -j, -i \rangle \widetilde{\phi} = (\langle -j, -i - 2 \rangle \langle -i \rangle - q \langle -i \rangle \langle -j, -i - 2 \rangle) \widetilde{\phi}
$$

\n
$$
= (\langle -j, -i - 2 \rangle \langle i \rangle - q \langle -i \rangle \langle i + 2, j \rangle) \widetilde{\phi}
$$

\n
$$
= (\langle i \rangle \langle -j, -i - 2 \rangle - q \langle i + 2, j \rangle \langle -i \rangle) \widetilde{\phi}
$$

\n
$$
= (\langle i \rangle \langle i + 2, j \rangle - q \langle i + 2, j \rangle \langle i \rangle) \widetilde{\phi} = \langle i, j \rangle \widetilde{\phi}.
$$

(ii) By (i), we have

$$
\langle -j, i \rangle \widetilde{\phi} = (\langle -j, -1 \rangle \langle 1, i \rangle - q \langle 1, i \rangle \langle -j, -1 \rangle) \widetilde{\phi}
$$

\n
$$
= (\langle -j, -1 \rangle \langle -i, -1 \rangle - q \langle 1, i \rangle \langle 1, j \rangle) \widetilde{\phi}
$$

\n
$$
= (q^{-1} \langle -i, -1 \rangle \langle -j, -1 \rangle - \langle 1, j \rangle \langle 1, i \rangle) \widetilde{\phi}
$$

\n
$$
= (q^{-1} \langle -i, -1 \rangle \langle 1, j \rangle - \langle 1, j \rangle \langle -i, -1 \rangle) \widetilde{\phi} = q^{-1} \langle -i, j \rangle \widetilde{\phi}.
$$

 \Box

Proposition 3.17.

(i) For a multisegment $\mathfrak{m} = \sum_{i \leq j} m_{i,j} \langle i, j \rangle$, we have

$$
Ad(t_k)P(\mathfrak{m}) = q^{\sum_i (m_{i,k-2} - m_{i,k}) + \sum_j (m_{k+2,j} - m_{k,j})} P(\mathfrak{m}).
$$

SYMMETRIC CRYSTALS FOR \mathfrak{gl}_{∞} 857

(ii)

$$
e'_k \langle i, j \rangle^{(n)} = \begin{cases} q^{1-n} \langle i \rangle^{(n-1)} & \text{if } k = i = j, \\ (1 - q^2) q^{1-n} \langle i + 2, j \rangle \langle i, j \rangle^{(n-1)} & \text{if } k = i < j, \\ 0 & \text{otherwise,} \end{cases}
$$
\n
$$
e_k^* \langle i, j \rangle^{(n)} = \begin{cases} q^{1-n} \langle i \rangle^{(n-1)} & \text{if } i = j = k, \\ (1 - q^2) q^{1-n} \langle i, j \rangle^{(n-1)} \langle i, j - 2 \rangle & \text{if } i < j = k, \\ 0 & \text{otherwise.} \end{cases}
$$

Proof. (i) is obvious. Let us show (ii). It is obvious that $e'_k \langle i, j \rangle^{(n)} = 0$ unless $i \leq k \leq j$. It is known ([K1]) that we have $e'_k \langle k \rangle^{(n)} = q^{1-n} \langle k \rangle^{(n-1)}$. We shall prove $e'_k \langle k, j \rangle^{(n)} = (1 - q^2) q^{1-n} \langle k + 2, j \rangle \langle k, j \rangle^{(n-1)}$ for $k < j$ by the induction on n . By (2.1) , we have

$$
e'_k \langle k, j \rangle = e'_k(\langle k \rangle \langle k+2, j \rangle - q \langle k+2, j \rangle \langle k \rangle)
$$

= $\langle k+2, j \rangle - q^2 \langle k+2, j \rangle = (1-q^2) \langle k+2, j \rangle$.

For $n \geq 1$, by the induction hypothesis and Proposition 3.14 (4), we get

$$
[n]e'_{k}\langle k,j\rangle^{(n)} = e'_{k}\langle k,j\rangle\langle k,j\rangle^{(n-1)}
$$

= $(1-q^2)\langle k+2,j\rangle\langle k,j\rangle^{(n-1)} + q^{-1}\langle k,j\rangle \cdot (1-q^2)q^{2-n}\langle k+2,j\rangle\langle k,j\rangle^{(n-2)}$
= $(1-q^2)\left\{\langle k+2,j\rangle\langle k,j\rangle^{(n-1)} + q^{1-n}\langle k,j\rangle\langle k+2,j\rangle\langle k,j\rangle^{(n-2)}\right\}$
= $(1-q^2)(1+q^{-n}[n-1])\langle k+2,j\rangle\langle k,j\rangle^{(n-1)}$
= $(1-q^2)q^{1-n}[n]\langle k+2,j\rangle\langle k,j\rangle^{(n-1)}$.

Finally we show $e'_k \langle i, j \rangle = 0$ if $k \neq i$. We may assume $i < k \leq j$. If $i < k < j$, we have

$$
e'_k \langle i, j \rangle = e'_k (\langle i, k - 2 \rangle \langle k, j \rangle - q \langle k, j \rangle \langle i, k - 2 \rangle)
$$

= $q \langle i, k - 2 \rangle e'_k \langle k, j \rangle - q \langle e'_k \langle k, j \rangle \rangle \langle i, k - 2 \rangle$
= $q(1 - q^2) \langle i, k - 2 \rangle \langle k + 2, j \rangle - q(1 - q^2) \langle k + 2, j \rangle \langle i, k - 2 \rangle$
= 0.

The case $k = j$ is similarly proved.

The proof for e_k^* is similar.

 \Box

*§***3.4. Actions of divided powers**

Lemma 3.18. *Let* a, b *be non-negative integers, and let* $k \in I_{>0}$:= ${k \in I | k > 0}.$

(1) *For* $\ell > k$ *, we have*

$$
\langle -k \rangle \langle -k+2, \ell \rangle^{(a)} \langle -k, \ell \rangle^{(b)} = [b+1] \langle -k+2, \ell \rangle^{(a-1)} \langle -k, \ell \rangle^{(b+1)} +q^{a-b} \langle -k+2, \ell \rangle^{(a)} \langle -k, \ell \rangle^{(b)} \langle -k \rangle.
$$

(2) *We have*

$$
\langle -k \rangle \langle -k+2, k \rangle^{(a)} \langle -k, k \rangle^{[b]} = [2b+2] \langle -k+2, k \rangle^{(a-1)} \langle -k, k \rangle^{[b+1]} +q^{a-b} \langle -k+2, k \rangle^{(a)} \langle -k, k \rangle^{[b]} \langle -k \rangle.
$$

(3) *For* $k > 1$ *, we have*

$$
\langle -k \rangle \langle -k+2, k-2 \rangle^{[a]} = (q^a + q^{-a})^{-1} \langle -k+2, k-2 \rangle^{[a-1]} \langle -k, k-2 \rangle
$$

$$
+ q^a \langle -k+2, k-2 \rangle^{[a]} \langle -k \rangle.
$$

(4) If $\ell \leq k - 2$, we have

$$
\langle \ell,k-2 \rangle^{(a)} \langle k \rangle = \langle \ell,k \rangle \langle \ell,k-2 \rangle^{(a-1)} + q^a \langle k \rangle \langle \ell,k-2 \rangle^{(a)}.
$$

(5) *For* $k > 1$ *, we have*

$$
\langle -k+2, k-2 \rangle^{[a]} \langle k \rangle = (q^a + q^{-a})^{-1} \langle -k+2, k \rangle \langle -k+2, k-2 \rangle^{[a-1]}
$$

$$
+q^a \langle k \rangle \langle -k+2, k-2 \rangle^{[a]}.
$$

Proof. We show (1) by the induction on a. If $a = 0$, it is trivial. For $a > 0$, we have

$$
[a] \langle -k \rangle \langle -k + 2, \ell \rangle^{(a)} \langle -k, \ell \rangle^{(b)}
$$

= $(\langle -k, \ell \rangle + q \langle -k + 2, \ell \rangle \langle -k \rangle) \langle -k + 2, \ell \rangle^{(a-1)} \langle -k, \ell \rangle^{(b)}$
= $[b + 1]q^{1-a} \langle -k + 2, \ell \rangle^{(a-1)} \langle -k, \ell \rangle^{(b+1)}$
+ $q \langle -k + 2, \ell \rangle \{ [b + 1] \langle -k + 2, \ell \rangle^{(a-2)} \langle -k, \ell \rangle^{(b+1)}$
+ $q^{a-b-1} \langle -k + 2, \ell \rangle^{(a-1)} \langle -k, \ell \rangle^{(b)} \langle -k \rangle \}$
= $[b + 1] (q^{1-a} + q[a - 1]) \langle -k + 2, \ell \rangle^{(a-1)} \langle -k, \ell \rangle^{(b+1)}$
+ $q^{a-b}[a] \langle -k + 2, \ell \rangle^{(a)} \langle -k, \ell \rangle^{(b)} \langle -k \rangle$.

Since $q^{1-a} + q[a-1] = [a]$, the induction proceeds.

The proof of (2) is similar by using $\langle -k, k \rangle^{[b]} = [2b] \langle -k, k \rangle^{[b-1]} \langle -k, k \rangle$.

We prove (3) by the induction on a. The case $a = 0$ is trivial. For $a > 0$, we have

$$
[2a]\langle -k\rangle\langle -k+2, k-2\rangle^{[a]}
$$

= $(\langle -k, k-2 \rangle + q\langle -k+2, k-2 \rangle \langle -k \rangle)\langle -k+2, k-2 \rangle^{[a-1]}$
= $q^{1-a}\langle -k+2, k-2 \rangle^{\{a-1\}}\langle -k, k-2 \rangle$
+ $q\langle -k+2, k-2 \rangle \{(q^{a-1}+q^{1-a})^{-1}\langle -k+2, k-2 \rangle^{[a-2]}\langle -k, k-2 \rangle$
+ $q^{a-1}\langle -k+2, k-2 \rangle^{\{a-1\}}\langle -k \rangle\}$
= $(q^{1-a} + \frac{q[2a-2]}{q^{a-1}+q^{1-a}})\langle -k+2, k-2 \rangle^{[a-1]}\langle -k, k-2 \rangle$
+ $q^{a}[2a]\langle -k+2, k-2 \rangle^{[a]}\langle -k \rangle$
= $(q^{a}+q^{-a})^{-1}[2a]\langle -k+2, k-2 \rangle^{[a-1]}\langle -k, k-2 \rangle$
+ $q^{a}[2a]\langle -k+2, k-2 \rangle^{[a]}\langle -k \rangle$.

Similarly, we can prove (4) and (5) by the induction on a .

 \Box

Lemma 3.19. *For* $k > 1$ *and* $a, b, c, d \ge 0$ *, set*

$$
(a, b, c, d) = \langle k \rangle^{(a)} \langle -k + 2, k \rangle^{(b)} \langle -k, k \rangle^{[c]} \langle -k + 2, k - 2 \rangle^{[d]} \widetilde{\phi}.
$$

Then, we have

(3.4)
\n
$$
\langle -k \rangle (a, b, c, d) = [2c + 2](a, b - 1, c + 1, d)
$$
\n
$$
+ [b + 1]q^{b - 2c}(a, b + 1, c, d - 1)
$$
\n
$$
+ [a + 1]q^{2d - 2c}(a + 1, b, c, d).
$$

Proof. We shall show first

$$
(3.5)^{\langle -k \rangle \langle -k+2, k-2 \rangle^{[d]}\widetilde{\phi}}
$$

= $(\langle -k+2, k \rangle \langle -k+2, k-2 \rangle^{[d-1]} + q^{2d} \langle k \rangle \langle -k+2, k-2 \rangle^{[d]}) \widetilde{\phi}.$

By Lemma 3.18 (3), we have

$$
\langle -k \rangle \langle -k+2, k-2 \rangle^{[d]} \widetilde{\phi}
$$

=
$$
((q^d+q^{-d})^{-1} \langle -k+2, k-2 \rangle^{[d-1]} \langle -k, k-2 \rangle
$$

$$
+q^d \langle -k+2, k-2 \rangle^{[d]} \langle -k \rangle \rangle \widetilde{\phi}.
$$

By Lemma 3.16 and Lemma 3.18 (5), it is equal to

$$
((q^{d} + q^{-d})^{-1}q^{-1}\langle -k + 2, k - 2\rangle^{[d-1]}\langle -k + 2, k\rangle + q^{d}\langle -k + 2, k - 2\rangle^{[d]}\langle k\rangle)\widetilde{\phi}
$$

=
$$
\left((q^{d} + q^{-d})^{-1}q^{-1}q^{1-d}\langle -k + 2, k\rangle\langle -k + 2, k - 2\rangle^{[d-1]}\right)
$$

$$
+q^{d}\left((q^{d} + q^{-d})^{-1}\langle -k + 2, k\rangle\langle -k + 2, k - 2\rangle^{[d-1]}\right)
$$

$$
+q^{d}\langle k\rangle\langle -k + 2, k - 2\rangle^{[d]}\right)\widetilde{\phi}.
$$

Thus we obtain (3.5). Applying Lemma 3.18 (2), we have

$$
\langle -k \rangle (a, b, c, d) = \langle k \rangle^{(a)} \Big([2c + 2] \langle -k + 2, k \rangle^{(b-1)} \langle -k, k \rangle^{[c+1]} + q^{b-c} \langle -k + 2, k \rangle^{(b)} \langle -k, k \rangle^{[c]} \langle -k \rangle \Big) \langle -k + 2, k - 2 \rangle^{[d]} \widetilde{\phi} = [2c + 2] (a, b - 1, c + 1, d) + q^{b-c} \langle k \rangle^{(a)} \langle -k + 2, k \rangle^{(b)} \langle -k, k \rangle^{[c]} \times \left(\langle -k + 2, k \rangle \langle -k + 2, k - 2 \rangle^{[d-1]} + q^{2d} \langle k \rangle \langle -k + 2, k - 2 \rangle^{[d]} \right) \widetilde{\phi} = [2c + 2] (a, b - 1, c + 1, d) + q^{b-2c} [b + 1] (a, b + 1, c, d - 1) + q^{(b-c)+2d-c-b} [a + 1] (a + 1, b, c, d).
$$

Hence we have (3.4).

Proposition 3.20.

(1) *We have*

$$
\langle -1 \rangle^{(a)} \langle -1, 1 \rangle^{[m]} \widetilde{\phi} = \sum_{s=0}^{\lfloor a/2 \rfloor} \left(\prod_{\nu=1}^{s} \frac{[2m+2\nu]}{[2\nu]} \right) q^{-2(a-s)m + \frac{(a-2s)(a-2s-1)}{2}}
$$

$$
\times \langle 1 \rangle^{(a-2s)} \langle -1, 1 \rangle^{[m+s]} \widetilde{\phi}.
$$

(2) *For* $k > 1$ *, we have*

$$
\langle -k \rangle^{(n)} \langle -k + 2, k - 2 \rangle^{[a]} \widetilde{\phi}
$$

=
$$
\sum_{i+j+2i=n, j+t=u} q^{2ai + \frac{j(j-1)}{2} - i(t+u)}
$$

$$
\times \langle k \rangle^{(i)} \langle -k + 2, k \rangle^{(j)} \langle -k, k \rangle^{[t]} \langle -k + 2, k - 2 \rangle^{[a-u]} \widetilde{\phi}.
$$

(3) If $\ell > k$ *, we have*

$$
\langle k \rangle^{(n)} \langle k+2, \ell \rangle^{(a)} = \sum_{s=0}^{n} q^{(n-s)(a-s)} \langle k+2, \ell \rangle^{(a-s)} \langle k, \ell \rangle^{(s)} \langle k \rangle^{(n-s)}.
$$

 \Box

Proof. We prove (1) by the induction on a. The case $a = 0$ is trivial. Assume $a > 0$. Then, Lemma 3.18 (2) implies

$$
\langle -1 \rangle \langle 1 \rangle^{(n)} \langle -1, 1 \rangle^{[m]} \widetilde{\phi}
$$

=
$$
([2m + 2] \langle 1 \rangle^{(n-1)} \langle -1, 1 \rangle^{[m+1]} + q^{n-m} \langle 1 \rangle^{(n)} \langle -1, 1 \rangle^{[m]} \langle -1 \rangle \rangle \widetilde{\phi}
$$

=
$$
([2m + 2] \langle 1 \rangle^{(n-1)} \langle -1, 1 \rangle^{[m+1]} + q^{n-m} \langle 1 \rangle^{(n)} \langle -1, 1 \rangle^{[m]} \langle 1 \rangle \rangle \widetilde{\phi}
$$

=
$$
([2m + 2] \langle 1 \rangle^{(n-1)} \langle -1, 1 \rangle^{[m+1]} + q^{n-2m} [n+1] \langle 1 \rangle^{(n+1)} \langle -1, 1 \rangle^{[m]} \rangle \widetilde{\phi}.
$$

Put

$$
c_s = \left(\prod_{\nu=1}^s \frac{[2m+2\nu]}{[2\nu]}\right) q^{-2(a-s)m + \frac{(a-2s)(a-2s-1)}{2}}.
$$

Then we have

$$
[a+1]\langle-1\rangle^{(a+1)}\langle-1,1\rangle^{[m]}\widetilde{\phi} = \langle-1\rangle\langle-1\rangle^{(a)}\langle-1,1\rangle^{[m]}\widetilde{\phi}
$$

$$
= \langle-1\rangle \sum_{s=0}^{\lfloor a/2 \rfloor} c_s \langle 1\rangle^{(a-2s)} \langle -1,1\rangle^{[m+s]}\widetilde{\phi}
$$

$$
= \sum_{s=0}^{\lfloor a/2 \rfloor} c_s \{ [2(m+s+1)] \langle 1\rangle^{(a-2s-1)} \langle -1,1\rangle^{[m+s+1]}
$$

$$
+q^{a-2s-2(m+s)} [a-2s+1] \langle 1\rangle^{(a-2s+1)} \langle -1,1\rangle^{[m+s]} \} \widetilde{\phi}.
$$

In the right-hand-side, the coefficients of $\langle 1 \rangle^{a+1-2r} \langle -1, 1 \rangle^{[m+r]} \widetilde{\phi}$ are

$$
[2(m+r)]c_{r-1} + q^{a-2m-4r}[a-2r+1]c_r
$$

=
$$
\prod_{\nu=1}^r \frac{[2m+2\nu]}{[2\nu]} q^{-2(a-r+1)m+\frac{(a-2r)(a-2r+1)}{2}} \left([2r]q^{a-2r+1} + [a-2r+1]q^{-2r} \right)
$$

=
$$
[a+1] \prod_{\nu=1}^r \frac{[2m+2\nu]}{[2\nu]} q^{-2(a-r+1)m+\frac{(a-2r)((a-2r+1))}{2}}.
$$

Hence we obtain (1).

We prove (2) by the induction on n. We use the following notation for short:

$$
(i, j, t, a) := \langle k \rangle^{(i)} \langle -k + 2, k \rangle^{(j)} \langle -k, k \rangle^{[t]} \langle -k + 2, k - 2 \rangle^{[a]} \widetilde{\phi}.
$$

Then Lemma 3.19 implies that

$$
\langle -k \rangle (i, j, t, a) = [2t + 2](i, j - 1, t + 1, a)
$$

$$
+ [j + 1]q^{j - 2t}(i, j + 1, t, a - 1)
$$

$$
+ [i + 1]q^{2a - 2t}(i + 1, j, t, a).
$$

Hence, by assuming (2) for n, we have

$$
[n+1]\langle -k\rangle^{(n+1)}\langle -k+2, k-2\rangle^{[a]}\widetilde{\phi} = \langle -k\rangle\langle -k\rangle^{(n)}\langle -k+2, k-2\rangle^{[a]}\widetilde{\phi}
$$

$$
= \sum_{i+j+2t=n, j+t=u} \begin{cases} [2t+2]q^{2ai+\frac{j(j-1)}{2}-i(t+u)}(i, j-1, t+1, a-u) \\ +[j+1]q^{2ai+\frac{j(j-1)}{2}-i(t+u)+j-2t}(i, j+1, t, a-u-1) \\ +[i+1]q^{2ai+\frac{j(j-1)}{2}-i(t+u)+2a-2u-2t}(i+1, j, t, a-u) \end{cases} \Bigg\}.
$$

Then in the right hand side, the coefficients of $(i', j', t', a - u')$ satisfying i' + $j' + 2t' = n + 1, j' + t' = u'$ are

$$
[2t']q^{2ai'+\frac{(j'+1)j'}{2}-i'(t'-1+u')} + [j']q^{2ai'+\frac{(j'-1)(j'-2)}{2}-i'(t'+u'-1)+j'-1-2t'} + [i']q^{2a(i'-1)+\frac{j'(j'-1)}{2}-(i'-1)(t'+u')+2a-2u'-2t'} = q^{2ai'+\frac{j'(j'-1)}{2}-i'(t'+u')} \Big([2t']q^{j'+i'} + [j']q^{i'-2t'} + [i']q^{-(t'+u')}\Big) = q^{2ai'+\frac{j'(j'-1)}{2}-i'(t'+u')} [n+1].
$$

We can prove (3) similarly as above.

§**3.5.** Actions of E_k , F_k on the PBW basis

For a θ -restricted multisegment m , we set

$$
\widetilde{P}_{\theta}(\mathfrak{m})=P_{\theta}(\mathfrak{m})\widetilde{\phi}.
$$

We understand $\widetilde{P}_{\theta}(\mathfrak{m}) = 0$ if \mathfrak{m} is not a multisegment.

Theorem 3.21. *For* $k \in I_{>0}$ *and a* θ *-restricted multisegment* **m** = $-*j*≤*i*≤*j* m_{i,j}⟨*i*, *j*⟩, we have$

$$
F_{-k}\widetilde{P}_{\theta}(\mathfrak{m})
$$
\n
$$
= \sum_{\ell > k} [m_{-k,\ell} + 1] q^{\ell' > \ell} \sum_{(m_{-k+2,\ell'} - m_{-k,\ell'})} \widetilde{P}_{\theta}(\mathfrak{m} - \langle -k+2,\ell \rangle + \langle -k,\ell \rangle)
$$
\n
$$
+ q^{\ell > k} \sum_{(m_{-k+2,\ell} - m_{-k,\ell})} [2m_{-k,k} + 2] \widetilde{P}_{\theta}(\mathfrak{m} - \langle -k+2,k \rangle + \langle -k,k \rangle)
$$
\n
$$
+ q^{\ell > k} \sum_{(m_{-k+2,k} - m_{-k,k}) + m_{-k+2,k} - 2m_{-k,k}}
$$
\n
$$
\times [m_{-k+2,k} + 1] \widetilde{P}_{\theta}(\mathfrak{m} - \delta_{k \neq 1} \langle -k+2, k-2 \rangle + \langle -k+2, k \rangle)
$$
\n
$$
+ \sum_{(m_{-k+2,k} - m_{-k,k}) + 2m_{-k+2,k-2} - 2m_{-k,k} + \sum_{(m_{-k+2} - \ell) < i} (m_{j,k-2} - m_{j,k})}
$$
\n
$$
+ k + 2 < i \leq k \sum_{(m_{i,k} + 1] \widetilde{P}_{\theta}(\mathfrak{m} - \delta_{i < k} \langle i, k-2 \rangle + \langle i, k \rangle).
$$

 \Box

Proof. We divide m into four parts

$$
\mathfrak{m} = \mathfrak{m}_1 + \mathfrak{m}_2 + \mathfrak{m}_3 + \delta_{k \neq 1} m_{-k+2,k-2} \langle -k+2, k-2 \rangle,
$$

where $\mathfrak{m}_1 = \sum_{j>k} m_{i,j} \langle i, j \rangle$, $\mathfrak{m}_2 = \sum_{j=k} m_{i,j} \langle i, j \rangle$, $\mathfrak{m}_3 = \sum_{-k+2 < i \leq j \leq k-2}$ $m_{i,j} \langle i, j \rangle$. Then Proposition 3.14 implies

$$
\widetilde{P}_{\theta}(\mathfrak{m})=P_{\theta}(\mathfrak{m}_1)P_{\theta}(\mathfrak{m}_2)P_{\theta}(\mathfrak{m}_3)\langle-k+2,k-2\rangle^{[m_{-k+2,k-2}]}\widetilde{\phi}.
$$

If $k = 1$, we understand $\langle -k + 2, k - 2 \rangle^{[n]} = 1$. By Lemma 3.18 (1), we have

$$
\langle -k \rangle P_{\theta}(\mathfrak{m}_{1})
$$

=
$$
\sum_{\ell > k} q^{\sum_{\ell' > \ell} (m_{-k+2,\ell'} - m_{-k,\ell'})} [m_{-k,\ell} + 1] P_{\theta}(\mathfrak{m}_{1} - \langle -k+2,\ell \rangle + \langle -k,\ell \rangle)
$$

+
$$
+ q^{\sum_{\ell > k} (m_{-k+2,\ell} - m_{-k,\ell})} P_{\theta}(\mathfrak{m}_{1}) \langle -k \rangle,
$$

and Lemma 3.18 (2) implies

$$
\langle -k \rangle P_{\theta}(\mathfrak{m}_2) = [2m_{-k,k} + 2] P_{\theta}(\mathfrak{m}_2 - \langle -k+2, k \rangle + \langle -k, k \rangle)
$$

$$
+ q^{m_{-k+2,k} - m_{-k,k}} P_{\theta}(\mathfrak{m}_2) \langle -k \rangle.
$$

Since we have $\langle -k \rangle P_{\theta}(\mathfrak{m}_3) = P_{\theta}(\mathfrak{m}_3) \langle -k \rangle$, we obtain (3.6) $\langle -k \rangle \widetilde{P}_{\theta}(\mathfrak{m}) = \sum_{\ell > k} q^{\sum_{\ell' > \ell} (m_{-k+2,\ell'} - m_{-k,\ell'})} [m_{-k,\ell} + 1]$ $\times \widetilde{P}_{\theta}(\mathfrak{m} - \langle -k+2, \ell \rangle + \langle -k, \ell \rangle)$ $+q^{\sum_{\ell>k}(m_{-k+2,\ell}-m_{-k,\ell})}[2m_{-k,k}+2]$ $\times \widetilde{P}_{\theta}(\mathfrak{m} - \langle -k+2, k \rangle + \langle -k, k \rangle)$ $+q^{\sum_{\ell \geq k}(m_{-k+2,\ell}-m_{-k,\ell})}P_{\theta}(\mathfrak{m}_1 + \mathfrak{m}_2 + \mathfrak{m}_3)$ $\times \langle -k \rangle \langle -k+2, k-2 \rangle^{[m_{-k+2,k-2}]} \widetilde{\phi}.$

By (3.5) , we have

$$
\langle -k \rangle \langle -k+2, k-2 \rangle^{[m_{-k+2,k-2}]} \widetilde{\phi}
$$

= $\langle -k+2, k \rangle \langle -k+2, k-2 \rangle^{[m_{-k+2,k-2}-1]} \widetilde{\phi}$
+ $\delta_{k \neq 1} q^{2m_{-k+2,k-2}} \langle k \rangle \langle -k+2, k-2 \rangle^{[m_{-k+2,k-2}]} \widetilde{\phi}.$

Hence the last term in (3.6) is equal to

$$
q^{\sum_{\ell \ge k} (m_{-k+2,\ell} - m_{-k,\ell}) - m_{-k,k}}
$$

$$
\times [m_{-k+2,k} + 1] \widetilde{P}_{\theta}(\mathfrak{m} - \delta_{k \ne 1} \langle -k+2, k-2 \rangle + \langle -k+2, k \rangle)
$$

$$
+ \delta_{k \ne 1} q^{\sum_{\ell \ge k} (m_{-k+2,\ell} - m_{-k,\ell}) + 2m_{-k+2,k-2}}
$$

$$
\times P_{\theta}(\mathfrak{m}_1 + \mathfrak{m}_2 + \mathfrak{m}_3) \langle k \rangle \langle -k+2, k-2 \rangle^{[m_{-k+2,k-2}]} \widetilde{\phi}.
$$

For $k \neq 1$, Lemma 3.18 (4) implies

$$
P_{\theta}(\mathfrak{m}_3)\langle k\rangle = \sum_{-k+2 < i \leq k} q^{\sum_{-k+2 < j < i} m_{j,k-2}} \langle i, k \rangle P_{\theta}(\mathfrak{m}_3 - \delta_{i < k} \langle i, k-2 \rangle),
$$

and Proposition 3.14 implies

$$
P_{\theta}(\mathfrak{m}_2)\langle i,k\rangle = q^{-\sum_{j
$$

Hence we obtain

$$
P_{\theta}(\mathfrak{m}_{1})P_{\theta}(\mathfrak{m}_{2})P_{\theta}(\mathfrak{m}_{3})\langle k\rangle\langle-k+2,k-2\rangle^{[m_{-k+2,k-2}]}\widetilde{\phi}
$$

=
$$
\sum_{-k+2
$$
\times [m_{i,k}+1]\widetilde{P}_{\theta}(\mathfrak{m}-\delta_{i
$$
$$

Thus we obtain the desired result.

 \Box

Theorem 3.22. *For* $k \in I_{>0}$ *and a* θ *-restricted multisegment* $\mathfrak{m} =$ $\sum_{-j \leqslant i \leqslant j} m_{i,j} \langle i, j \rangle$, we have $E_{-k}\widetilde{P}_{\theta}(\mathfrak{m})$ $=(1 - q^2) \sum$ $l > k$ \overline{a} $1+$ Σ $\sum_{\ell' \geqslant \ell} (m_{-k+2,\ell'} - m_{-k,\ell'})$ $\times[m_{-k+2,\ell}+1]\widetilde{P}_{\theta}(\mathfrak{m}-\langle -k,\ell\rangle+\langle -k+2,\ell\rangle)$ $+(1-q^2)q^{1+\sum\limits_{\ell>k}(m_{-k+2,\ell}-m_{-k,\ell})+m_{-k+2,k}-2m_{-k,k}}$ $\times[m_{-k+2,k}+1]\widetilde{P}_{\theta}(\mathfrak{m}-\langle -k,k\rangle + \langle -k+2,k\rangle)$ $+(1 - q^2)$ \sum $-k+2 < i \leqslant k-2$ \overline{a} $1+\sum\limits_{\ell > k}(m_{-k+2,\ell}-m_{-k,\ell})+2m_{-k+2,k-2}-2m_{-k,k}+\sum\limits_{-k+2 < i' \leqslant i}(m_{i,k-2}-m_{i'k})$ $\times[m_{i,k-2}+1]\widetilde{P}_{\theta}(\mathfrak{m}-\langle i,k\rangle+\langle i,k-2\rangle)$ $+\delta_{k\neq1}(1-q^2)q^{1+\sum\limits_{\ell>k}(m_{-k+2,\ell}-m_{-k,\ell})+2m_{-k+2,k-2}-2m_{-k,k}}$ $\times[2(m_{-k+2,k-2}+1)]\widetilde{P}_{\theta}(\mathfrak{m}-\langle -k+2,k\rangle+\langle -k+2,k-2\rangle)$ $+q^{\sum\limits_{\ell>l}}$ $\sum_{\ell > k} (m_{-k+2,\ell}-m_{-k,\ell})-2m_{-k,k}+\delta_{k\neq 1}\Big(1-m_{k,k}+2m_{-k+2,k-2}+\sum_{-k+2 < i \leqslant k-2} (m_{i,k-2}-m_{i,k})\Big)$ $\times \widetilde{P}_{\theta}(\mathfrak{m} - \langle k \rangle).$

Proof. We shall divide m into

$$
\mathfrak{m}=\mathfrak{m}_1+\mathfrak{m}_2+\mathfrak{m}_3
$$

where $\mathfrak{m}_1 = \sum_{i \leq j, j > k} m_{i,j} \langle i, j \rangle$ and $\mathfrak{m}_2 = \sum_{i \leq k} m_{i,k} \langle i, k \rangle$ and $\mathfrak{m}_3 = \sum_{i \leq j < k} m_{i,j} \langle i, j \rangle$. By (2.3) and Proposition 3.17, we have

$$
E_{-k}\widetilde{P}_{\theta}(\mathfrak{m}) = \left(\left(e'_{-k}P_{\theta}(\mathfrak{m}_1) \right) P_{\theta}(\mathfrak{m}_2 + \mathfrak{m}_3) + \left(\mathrm{Ad}(t_{-k})P_{\theta}(\mathfrak{m}_1) \right) \left(e'_{-k}P_{\theta}(\mathfrak{m}_2 + \mathfrak{m}_3) \right) + \mathrm{Ad}(t_{-k}) \left\{ P_{\theta}(\mathfrak{m}_1) \left(e_k^* P_{\theta}(\mathfrak{m}_2) \right) \mathrm{Ad}(t_k) P_{\theta}(\mathfrak{m}_3) \right\} \right) \widetilde{\phi}.
$$

By Proposition 3.17, the first term is

$$
(e'_{-k}P_{\theta}(\mathfrak{m}_1))P_{\theta}(\mathfrak{m}_2 + \mathfrak{m}_3)
$$

\n
$$
(3.8) \qquad = (1 - q^2) \sum_{\ell > k} q^{\ell^2 \geq \ell} \sum_{\ell' \geq \ell} (m_{-k+2,\ell'} - m_{-k,\ell'})
$$

\n
$$
\times [m_{-k+2,\ell} + 1]P_{\theta}(\mathfrak{m} - \langle -k, \ell \rangle + \langle -k + 2, \ell \rangle).
$$

The second term is

$$
(Ad(t_{-k})P_{\theta}(\mathfrak{m}_{1}))(e'_{-k}P_{\theta}(\mathfrak{m}_{2} + \mathfrak{m}_{3}))
$$

\n
$$
= q^{\sum_{\ell > k}(m_{-k+2,\ell} - m_{-k,\ell})} \frac{[m_{-k,k}][m_{-k+2,k} + 1]}{[2m_{-k,k}]}
$$

\n
$$
\times (1 - q^{2})q^{1 - m_{-k,k} + m_{-k+2,k}}P_{\theta}(\mathfrak{m} - \langle -k, k \rangle + \langle -k + 2, k \rangle).
$$

Let us calculate the last part of (3.7). We have

$$
Ad(t_{-k})\Big(P_{\theta}(\mathfrak{m}_{1})(e_{k}^{*}P_{\theta}(\mathfrak{m}_{2}))\,Ad(t_{k})P_{\theta}(\mathfrak{m}_{3})\Big) =q^{\sum (m_{-k+2,\ell}-m_{-k,\ell})+\sum_{i\leq k-2}m_{i,k-2}-\delta_{k=1}}P_{\theta}(\mathfrak{m}_{1})(e_{k}^{*}P_{\theta}(\mathfrak{m}_{2}))P_{\theta}(\mathfrak{m}_{3}).
$$

We have

$$
e_k^* P_{\theta}(\mathfrak{m}_2) = q^{1 - m_k - \sum_{i < k} m_{i,k}} P_{\theta}(\mathfrak{m}_2 - \langle k \rangle)
$$

+
$$
(1 - q^2) \sum_{-k < i < k} q^{1 - m_{i,k} - \sum_{i' < i} m_{i',k}} P_{\theta}(\mathfrak{m}_2 - \langle i, k \rangle) \langle i, k - 2 \rangle
$$

+
$$
\frac{[m_{-k,k}]}{[2m_{-k,k}]} (1 - q^2) q^{1 - m_{-k,k}} P(\mathfrak{m}_2 - \langle -k, k \rangle) \langle -k, k - 2 \rangle.
$$

For $-k < i < k$, we have

$$
\langle i, k-2 \rangle P_{\theta}(\mathfrak{m}_3) = \frac{1}{q} \sum_{i' > i} m_{i',k-2} \left[(1 + \delta_{i=-k+2}) (m_{i,k-2} + 1) \right] P_{\theta}(\mathfrak{m}_3 + \langle i, k-2 \rangle).
$$

By Lemma 3.16, we have

$$
\langle -k, k-2 \rangle P_{\theta}(\mathfrak{m}_{3}) \widetilde{\phi}
$$

= $q^{-k+2 \leq k \leq k-2}{}^{m_{i,k-2}} P_{\theta}(\mathfrak{m}_{3}) \langle -k, k-2 \rangle \widetilde{\phi}$
= $q^{-k+2 \leq k \leq k-2}{}^{m_{i,k-2}-\delta_{k \neq 1}} P_{\theta}(\mathfrak{m}_{3}) \langle -k+2, k \rangle \widetilde{\phi}$
= $q^{-m-k+2,k-2} - {}_{k+2 \leq i \leq k-2}{}^{m_{i,k-2}-\delta_{k \neq 1}} \langle -k+2, k \rangle P_{\theta}(\mathfrak{m}_{3}) \widetilde{\phi}.$

Hence we obtain

$$
P_{\theta}(\mathfrak{m}_{1})(e_{k}^{*}P_{\theta}(\mathfrak{m}_{2}))P_{\theta}(\mathfrak{m}_{3})\widetilde{\phi}
$$

= $q^{1-\sum_{i\leq k}m_{i,k}}\widetilde{P}_{\theta}(\mathfrak{m}-\langle k\rangle)$
+ $(1-q^{2})\sum_{-k+2i}m_{i',k-2}} \times [m_{i,k-2}+1]\widetilde{P}_{\theta}(\mathfrak{m}-\langle i,k\rangle+\langle i,k-2\rangle)$

$$
+(1-q^2)\delta_{k\neq 1}q \n\times [2(m_{-k+2,k-2}+1)]\widetilde{P}_{\theta}(\mathfrak{m} - \langle -k+2,k \rangle + \langle -k+2,k-2 \rangle) \n+ (1-q^2)q \n\times [2(m_{-k+2,k-2}+1)]\widetilde{P}_{\theta}(\mathfrak{m} - \langle -k+2,k \rangle + \langle -k+2,k-2 \rangle) \n+ (1-q^2)q \n\times \sum_{k=1}^{2(1-m_{-k,k})} \sum_{k=1}^{2(1-m_{-k,k-2}-1)} \delta_{k\neq 1} \n\times \sum_{k=1}^{2(1-m_{-k,k})} \delta_{k\neq 1}
$$

$$
\times \frac{[m_{-k+2,k}+1][m_{-k,k}]}{[2m_{-k,k}]} P(\mathfrak{m}-\langle -k,k \rangle + \langle -k+2,k \rangle).
$$

Hence the coefficient of $\widetilde{P}_\theta(\mathfrak{m}-\langle k\rangle)$ in $E_{-k}\widetilde{P}_\theta(\mathfrak{m})$ is

$$
\begin{split} &\sum_{i\leq k} (m_{-k+2,\ell}-m_{-k,\ell}) + \sum_{i\leq k-2} m_{i,k-2} - \delta_{k=1} + 1 - \sum_{i\leq k} m_{i,k} \\ &= q^{\ell > k} (m_{-k+2,\ell}-m_{-k,\ell}) - 2m_{-k,k} + \delta_{k\neq 1} \left(1 - m_{k,k} + 2m_{-k+2,k-2} + \sum_{-k+2 < i \leqslant k-2} (m_{i,k-2}-m_{i,k})\right) \\ &= q^{\ell > k} \end{split}
$$

The coefficient of $\widetilde{P}_{\theta}(\mathfrak{m} - \langle -k, k \rangle + \langle -k+2, k \rangle)$ in $E_{-k}\widetilde{P}_{\theta}(\mathfrak{m})$ is
 $(1 - a^2) a^{\int \frac{1}{\ell \geqslant k} (m_{-k+2,\ell} - m_{-k,\ell})} \frac{[m_{-k,k}][m_{-k+2,k} + 1]}{[m_{-k+2,k} + 1]}$

$$
(1 - q^2) q^{1 + \sum_{k \geq k} (m_{-k+2,\ell} - m_{-k,\ell})} \frac{[m_{-k,k}] [m_{-k+2,k} + 1]}{[2m_{-k,k}]}
$$

\n
$$
+ q^{\ell} (m_{-k+2,\ell} - m_{-k,\ell}) + \sum_{i \leq k-2} m_{i,k-2} - \delta_{k-1} + 2(1 - m_{-k,k}) - m_{-k+2,k-2} - \sum_{k \geq k} m_{i,k-2} - \delta_{k \neq 1}
$$

\n
$$
\times (1 - q^2) \frac{[m_{-k+2,k} + 1][m_{-k,k}]}{[2m_{-k,k}]}
$$

\n
$$
= (1 - q^2) q^{1 + \sum_{\ell \geq k} (m_{-k+2,\ell} - m_{-k,\ell})} \frac{[m_{-k,k}] [m_{-k+2,k} + 1]}{[2m_{-k,k}]} (1 + q^{-2m_{-k,k}})
$$

\n
$$
= (1 - q^2) q^{1 - m_{-k,k} + \sum_{\ell \geq k} (m_{-k+2,\ell} - m_{-k,\ell})} [m_{-k+2,k} + 1]
$$

\n
$$
= (1 - q^2) q^{1 + m_{-k+2,k} - 2m_{-k,k} + \sum_{\ell > k} (m_{-k+2,\ell} - m_{-k,\ell})} [m_{-k+2,k} + 1].
$$

For $-k+2 < i \leq k-2$, the coefficient of $\widetilde{P}_{\theta}(\mathfrak{m} - \langle i, k \rangle + \langle i, k-2 \rangle)$ in $E_{-k}\widetilde{P}_{\theta}(\mathfrak{m})$ is

$$
\begin{split} & (1-q^2) q^{\sum\limits_{i'} (m_{-k+2,\ell}-m_{-k,\ell})+\sum\limits_{i' \leqslant k-2} m_{i',k-2}-\delta_{k=1}+1-\sum\limits_{i' \leqslant i} m_{i',k}-\sum\limits_{i'>i} m_{i',k-2}} [m_{i,k-2}+1] \\ & = (1-q^2) \\ & \qquad \qquad \times q^{\sum\limits_{\ell > k} (m_{-k+2,\ell}-m_{-k,\ell})+2m_{-k+2,k-2}-2m_{-k,k}+\sum\limits_{-k+2 < i' \leqslant i} (m_{i,k-2}-m_{i',k})} [m_{i,k-2}+1]. \end{split}
$$

Finally, for $k \neq 1$, the coefficient of $\widetilde{P}_{\theta}(\mathfrak{m} - \langle -k+2, k \rangle + \langle -k+2, k-2 \rangle)$ in $E_{-k}\widetilde{P}_{\theta}(\mathfrak{m})$ is

$$
(1-q^2)q^{\sum (m_{-k+2,\ell}-m_{-k,\ell})+\sum_{i\leq k-2}m_{i,k-2}-\delta_{k=1}+1-m_{-k,k}-m_{-k+2,k}-\sum_{-k+2\leq i}m_{i,k-2}}\times[2(m_{-k+2,k-2}+1)]
$$

= $(1-q^2)q^{1+\sum_{\ell\geq k}(m_{-k+2,\ell}-m_{-k,\ell})+2m_{-k+2,k-2}-2m_{-k,k}}[2(m_{-k+2,k-2}+1)].$

 \Box

Theorem 3.23. *For* $k > 0$ *and* $\mathfrak{m} \in \mathcal{M}_{\theta}$ *, we have*

$$
E_k \widetilde{P}_{\theta}(\mathfrak{m}) = \sum_{\ell > k} (1 - q^2) q^{1 + \sum_{\ell' \ge \ell} (m_{k+2,\ell'} - m_{k,\ell'})} \times [m_{k+2,\ell} + 1] \widetilde{P}_{\theta}(\mathfrak{m} - \langle k, \ell \rangle + \langle k + 2, \ell \rangle) + q^{1 + \sum_{\ell > k} (m_{k+2,\ell} - m_{k,\ell}) - m_{k,k}} \widetilde{P}_{\theta}(\mathfrak{m} - \langle k \rangle),
$$

$$
F_k \widetilde{P}_{\theta}(\mathfrak{m}) = \sum_{\ell \ge k} q^{\sum_{\ell' > \ell} (m_{k+2,\ell'} - m_{k,\ell'})} [m_{k,\ell} + 1] \widetilde{P}_{\theta}(\mathfrak{m} - \delta_{\ell \ne k} \langle k + 2, \ell \rangle + \langle k, \ell \rangle).
$$

Proof. The first follows from $e_{-k}^*P_{\theta}(\mathfrak{m}) = 0$ and Proposition 3.17, and the second follows from Proposition 3.20.

§4. Crystal Basis of $V_\theta(0)$

*§***4.1. A criterion for crystals**

We shall give a criterion for a basis to be a crystal basis. Although we treat the case for modules over $\mathcal{B}(\mathfrak{g})$ in this paper, similar results hold also for $U_q(\mathfrak{g})$.

Let $\mathbf{K}[e, f]$ be the ring generated by e and f with the defining relation $ef = q^{-2}fe + 1$. We define the divided power by $f^{(n)} = f^{(n)}[n]!$.

Let P be a free Z-module, and let α be a non-zero element of P.

Let M be a $\mathbf{K}[e, f]$ -module. Assume that M has a weight decomposition $M = \bigoplus_{\xi \in P} M_{\xi}$, and $eM_{\lambda} \subset M_{\lambda + \alpha}$ and $fM_{\lambda} \subset M_{\lambda - \alpha}$.

Assume the following finiteness conditions:

(4.1) for any
$$
\lambda \in P
$$
, dim $M_{\lambda} < \infty$ and $M_{\lambda+n\alpha} = 0$ for $n \gg 0$.

Hence for any $u \in M$, we can write $u = \sum_{n\geqslant 0} f^{(n)} u_n$ with $eu_n = 0$. We define endomorphisms \tilde{e} and \tilde{f} of M by

$$
\tilde{e}u = \sum_{n\geqslant 1} f^{(n-1)}u_n,
$$

$$
\tilde{f}u = \sum_{n\geqslant 0} f^{(n+1)}u_n.
$$

Let B be a crystal with weight decomposition by P . In this paper, we consider only the following type of crystals. We have wt: $B \to P$, $\tilde{f} : B \to B$, $\tilde{e} : B \to$ $B \sqcup \{0\}$, $\varepsilon: B \to \mathbb{Z}_{\geqslant 0}$ satisfying the following properties, where $B_{\lambda} := \text{wt}^{-1}(\lambda)$:

- (i) $\tilde{f}B_{\lambda} \subset B_{\lambda-\alpha}$ and $\tilde{e}B_{\lambda} \subset B_{\lambda+\alpha} \sqcup \{0\}$ for any $\lambda \in P$,
- (ii) $\tilde{f}\tilde{e}(b) = b$ if $\tilde{e}b \neq 0$, and $\tilde{e} \circ \tilde{f} = id_B$,
- (iii) for any $\lambda \in P$, B_{λ} is a finite set and $B_{\lambda+n\alpha} = \emptyset$ for $n \gg 0$,

(iv)
$$
\varepsilon(b) = \max\{n \ge 0 \mid \tilde{e}^nb \ne 0\}
$$
 for any $b \in B$.

Set ord (a) = sup $\{n \in \mathbb{Z} \mid a \in q^n \mathbf{A}_0\}$ for $a \in \mathbf{K}$. We understand ord (0) = ∞.

Let ${C(b)}_{b\in B}$ be a system of generators of M with $C(b) \in M_{\text{wt}(b)}$: M = $\sum_{b\in B}$ **K** $C(b)$.

Let ξ be a map from B to an ordered set. Let $c: \mathbb{Z} \to \mathbb{R}$, $f: \mathbb{Z} \to \mathbb{R}$ and $e: \mathbb{Z} \to \mathbb{R}$. Assume that a decomposition $B = B' \cup B''$ is given.

Assume that we have expressions:

(4.2)
$$
eC(b) = \sum_{b' \in B} E_{b,b'} C(b'),
$$

(4.3)
$$
fC(b) = \sum_{b' \in B} F_{b,b'}C(b').
$$

Now consider the following conditions for these data, where $\ell = \varepsilon(b)$ and $\ell' = \varepsilon(b')$:

 (4.4) $c(0) = 0$, and $c(n) > 0$ for $n \neq 0$,

SYMMETRIC CRYSTALS FOR \mathfrak{gl}_{∞} 869

(4.5) $c(n) \leq n + c(m+n) + e(m)$ for $n \geq 0$, $(4.6) \quad c(n) \leqslant c(m+n) + f(m) \quad \text{for } n \leqslant 0,$ (4.7) $c(n) + f(n) > 0$ for $n > 0$, (4.8) $c(n) + e(n) > 0$ for $n > 0$, $(4.9) \quad \text{ord}(F_{b,b'}) \geqslant -\ell + f(\ell + 1 - \ell'),$ $(4.10) \text{ ord}(E_{b,b'}) \geq 1 - \ell + e(\ell - 1 - \ell'),$ (4.11) $F_{b, \tilde{f}b} \in q^{-\ell}(1 + q\mathbf{A}_0),$ $(4.12) E_{b,\tilde{e}b}$ ∈ $q^{1-\ell}(1 + q\mathbf{A}_0)$ if $\ell > 0$, (4.13) $\text{ord}(F_{b,b'}) > -\ell + f(\ell + 1 - \ell') \text{ if } b' \neq \tilde{f}b, \xi(\tilde{f}b) \ngeq \xi(b'),$ (4.14) ord $(F_{b,b'}) > -\ell + f(\ell + 1 - \ell')$ if $\tilde{f}b \in B', b' \neq \tilde{f}b$ and $\ell \leq \ell' - 1$, $(4.15) \text{ ord}(E_{b,b'}) > 1 - \ell + e(\ell - 1 - \ell') \text{ if } b \in B'', b' \neq \tilde{e}b \text{ and } \ell \leq \ell' + 1.$

Theorem 4.1. *Assume the conditions* (4.4)–(4.15)*. Let* L *be the* A_0 *submodule* $b\overline{\in}B$ $\mathbf{A}_0C(b)$ *of* M. Then we have $\tilde{e}L \subset L$ and $\tilde{f}L \subset L$. Moreover *we have*

$$
\tilde{e}C(b) \equiv C(\tilde{e}b) \bmod{qL} \quad and \quad \tilde{f}C(b) \equiv C(\tilde{f}b) \bmod{qL} \quad for any \ b \in B.
$$

Here we understand $C(0) = 0$ *.*

We shall divide the proof into several steps. Write

$$
C(b) = \sum_{n \geq 0} f^{(n)} C_n(b) \quad \text{with } eC_n(b) = 0.
$$

Set

$$
L_0 = \sum_{b \in B, n \ge 0} \mathbf{A}_0 f^{(n)} C_0(b).
$$

Set for $u \in M$, $\text{ord}(u) = \sup\{n \in \mathbb{Z} \mid u \in q^n L_0\}$. If $u = 0$ we set $\text{ord}(u) =$ ∞ , and if $u \notin \bigcup_{n \in \mathbb{Z}} q^n L_0$, then $\text{ord}(u) = -\infty$.

We shall use the following two recursion formulas (4.16) and (4.17). We have

$$
eC(b) = \sum_{n\geq 1} q^{1-n} f^{(n-1)} C_n(b)
$$

=
$$
\sum_{n\geq 0} E_{b,b'} f^{(n)} C_n(b').
$$

Hence we have

(4.16)
$$
C_n(b) = \sum_{b' \in B_{\lambda + \alpha}} q^{n-1} E_{b,b'} C_{n-1}(b')
$$
 for $n > 0$ and $b \in B_{\lambda}$.

If $\ell := \varepsilon(b) > 0$, then we have

$$
fC(\tilde{e}b) = \sum_{b' \in B, n \geq 0} F_{\tilde{e}b, b'} f^{(n)} C_n(b')
$$

$$
= \sum_{n \geq 0} [n+1] f^{(n+1)} C_n(\tilde{e}b).
$$

Hence, we have by (4.11)

$$
\delta_{n\neq 0}[n]C_{n-1}(\tilde{e}b) = \sum_{b'} F_{\tilde{e}b,b'} C_n(b')
$$

\n
$$
\in q^{1-\ell}(1+q\mathbf{A}_0)C_n(b) + \sum_{b'\neq b} F_{\tilde{e}b,b'} C_n(b').
$$

Therefore we obtain

(4.17)
$$
C_n(b) \in \delta_{n \neq 0} (1 + q\mathbf{A}_0) q^{\ell - n} C_{n-1}(\tilde{e}b) + \sum_{b' \neq b} q^{\ell - 1} \mathbf{A}_0 F_{\tilde{e}b, b'} C_n(b')
$$
if $\ell > 0$.

Lemma 4.2. ord $(C_n(b)) \ge c(n - \ell)$ *for any* $n \in \mathbb{Z}_{\geq 0}$ *and* $b \in B$ *, where* $\ell := \varepsilon(b)$ *.*

Proof. For $\lambda \in P$, we shall show the assertion for $b \in B_{\lambda}$ by the induction on sup $\{n \in \mathbb{Z} \mid M_{\lambda+n\alpha} \neq 0\}$. Hence we may assume

(4.18)
$$
\text{ord}(C_n(b)) \geqslant c(n-\ell) \text{ for any } n \in \mathbb{Z}_{\geqslant 0} \text{ and } b \in B_{\lambda+\alpha}.
$$

(i) Let us first show $C_n(b) \in \mathbf{K}L_0$.

Since it is trivial for $n = 0$, assume that $n > 0$. Since $C_{n-1}(b') \in \mathbf{K}L_0$ for $b' \in B_{\lambda+\alpha}$ by the induction assumption (4.18), we have $C_n(b) \in \mathbf{K}L_0$ by (4.16). (ii) Let us show that $\text{ord}(C_n(b)) \geqslant c(n - \ell)$ for $n \geqslant \ell$.

If $n = 0$, then $\ell = 0$ and the assertion is trivial by (4.4). Hence we may assume that $n > 0$.

We shall use (4.16). For $b' \in B_{\lambda+\alpha}$, we have

$$
\operatorname{ord}(C_{n-1}(b')) \geqslant c(n-1-\ell') \quad \text{where } \ell' = \varepsilon(b')
$$

by the induction hypothesis (4.18). On the other hand, $\text{ord}(E_{b,b'}) \geq 1 - \ell +$ $e(\ell - 1 - \ell')$ by (4.10). Hence,

$$
\begin{aligned} \operatorname{ord}(q^{n-1}E_{b,b'}C_{n-1}(b')) &\geq (n-1) + \left(1 - \ell + e(\ell - 1 - \ell')\right) + c(n - 1 - \ell') \\ &= (n - \ell) + e(\ell - 1 - \ell') + c((n - \ell) + (\ell - 1 - \ell')) \\ &\geq c(n - \ell) \end{aligned}
$$

by (4.5).

(iii) In the general case, let us set

$$
r = \min \{ \text{ord}(C_n(b)) - c(n - \varepsilon(b)) \mid b \in B_\lambda, n \geqslant 0 \} \in \mathbb{R} \cup \{ \infty \}.
$$

Assuming $r < 0$, we shall prove

$$
\operatorname{ord}(C_n(b)) > c(n - \ell) + r \quad \text{for any } b \in B_\lambda,
$$

which leads a contradiction.

By the induction on $\xi(b)$, we may assume that

(4.19) if
$$
\xi(b') < \xi(b)
$$
, then $\text{ord}(C_n(b')) > c(n - \ell') + r$ where $\ell' := \varepsilon(b')$.

By (ii), we may assume that $n < \ell$. Hence $\tilde{e}b \in B$. By the induction hypothesis (4.18), we have $\text{ord}(q^{\ell-n}C_{n-1}(\tilde{e}b)) \geq \ell - n + c((n-1) - (\ell - 1)) \geq$ $c(n - \ell) > c(n - \ell) + r$. By (4.17), it is enough to show

$$
\operatorname{ord}(q^{\ell-1}F_{\tilde{e}b,b'}C_n(b')) > c(n-\ell)+r \quad \text{for } b' \neq b.
$$

We shall divide its proof into two cases.

(a) $\xi(b') < \xi(b)$.

In this case, (4.19) implies $\text{ord}(C_n(b')) > c(n - \ell') + r$. Hence

$$
\begin{aligned} \n\text{ord}(q^{\ell-1}F_{\tilde{e}b,b'}C_n(b')) &> (\ell-1) + (1 - \ell + f(\ell - \ell')) + c(n - \ell') + r \\ \n&= f(\ell - \ell') + c((n - \ell) + (\ell - \ell')) + r \geqslant c(n - \ell) + r \n\end{aligned}
$$

by (4.9) and (4.6).

(b) Case $\xi(b') \nless \xi(b)$.

In this case, $\text{ord}(F_{\tilde{e}b,b'}) > 1 - \ell + f(\ell - \ell')$ by (4.13), and $\text{ord}(C_n(b')) \geq$ $c(n - \ell') + r$. Hence,

$$
\begin{aligned} \n\text{ord}(q^{\ell-1}F_{\tilde{e}b,b'}C_n(b')) &> (\ell-1) + (1 - \ell + f(\ell - \ell')) + c(n - \ell') + r \\ \n&= f(\ell - \ell') + c((n - \ell) + (\ell - \ell')) + r \geqslant c(n - \ell) + r. \n\end{aligned}
$$

$$
\Box
$$

Lemma 4.3. ord $(C_{\ell}(b) - C_{\ell-1}(\tilde{e}b)) > 0$ for $\ell := \varepsilon(b) > 0$ *.*

Proof.

We divide the proof into two cases: $b \in B'$ and $b \in B''$.

- (i) $b \in B'$.
	- By (4.17), it is enough to show

$$
\operatorname{ord}(q^{\ell-1}F_{\tilde{e}b,b'}C_{\ell}(b')) > 0 \quad \text{for } b' \neq b.
$$

(a) Case $\ell > \ell' := \varepsilon(b')$. We have

$$
\text{ord}(q^{\ell-1}F_{\tilde{e}b,b'}C_{\ell}(b')) \geqslant (\ell-1)+(1-\ell+f(\ell-\ell'))+c(\ell-\ell')>0
$$

- by (4.7).
- (b) Case $\ell \leq \ell'$.

We have $\text{ord}(F_{\tilde{e}b,b'}) > 1 - \ell + f(\ell - \ell')$ by (4.14). Hence

$$
\text{ord}(q^{\ell-1}F_{\tilde{e}b,b'}C_{\ell}(b')) > (\ell-1) + (1 - \ell + f(\ell - \ell')) + c(\ell - \ell') \ge 0
$$

by (4.6) with $n = 0$.

(ii) Case $b \in B''$.

We use (4.16) . By (4.12) , it is enough to show that

$$
\operatorname{ord}(q^{\ell-1}E_{b,b'}C_{\ell-1}(b')) > 0 \text{ for } b' \neq \tilde{e}b.
$$

- (a) Case $\ell 1 > \ell'$. ord($q^{\ell-1}E_{b,b'}C_{\ell-1}(b')$) ≥ $e(\ell-1-\ell')+c(\ell-1-\ell') > 0$ by (4.10) and $(4.8).$
- (b) Case $\ell 1 \leqslant \ell'$. ord $(E_{b,b'}) > 1 - \ell + e(\ell - 1 - \ell')$ by (4.15), and $\text{ord}(q^{\ell-1}E_{b,b'}C_{\ell-1}(b')) >$ $e(\ell - 1 - \ell') + c(\ell - 1 - \ell') \geq 0$ by (4.5) with $n = 0$.
	- \Box

Hence we have

$$
C_n(b) \equiv 0 \mod qL_0 \quad \text{for } n \neq \ell := \varepsilon(b),
$$

\n
$$
C_{\ell}(b) \equiv C_0(\tilde{e}^{\ell}b) \mod qL_0,
$$

\n
$$
C(b) \equiv f^{(\ell)}C_{\ell}(b) \mod qL_0,
$$

\n
$$
\tilde{f}C(b) \equiv C(\tilde{f}b) \mod qL_0,
$$

\n
$$
\tilde{e}C(b) \equiv C(\tilde{e}b) \mod qL_0,
$$

\n
$$
L_0 := \sum_{b \in B, n \geq 0} \mathbf{A}_0 f^{(n)} C_0(b) = \sum_{b \in B} \mathbf{A}_0 C(b).
$$

Indeed, the last equality follows from the fact that ${C(b)}_{b\in B}$ generates L_0/qL_0 . Thus we have completed the proof of Theorem 4.1. The following is the special case where $B' = B'' = B$ and $\xi(b) = \varepsilon(b)$.

Corollary 4.4. *Assume* (4.4)*–*(4.12) *and*

- (4.20) ord $(F_{b,b'}) > -\ell + f(1+\ell-\ell')$ *if* $\ell < \ell'$ and $b' \neq \tilde{f}b$,
- (4.21) ord $(E_{b,b'}) > 1 \ell + e(\ell 1 \ell')$ *if* $\ell \leq \ell' + 1$ *and* $b' \neq \tilde{e}b$ *.*

Then the assertions of Theorem 4.1 *hold.*

*§***4.2. Crystal structure on** M^θ

We shall define the crystal structure on \mathcal{M}_{θ} .

Definition 4.5. Suppose $k > 0$. For a θ -restricted multisegment $m =$ $\sum_{-j\leqslant i\leqslant j}m_{i,j}\langle i,j\rangle,$ we set

$$
\varepsilon_{-k}(\mathfrak{m}) = \max\left\{A_j^{(-k)}(\mathfrak{m}) \mid j \geqslant -k+2\right\},\,
$$

where

$$
A_j^{(-k)}(\mathfrak{m}) = \sum_{\ell \ge j} (m_{-k,\ell} - m_{-k+2,\ell+2}) \quad \text{for } j > k,
$$

\n
$$
A_k^{(-k)}(\mathfrak{m}) = \sum_{\ell > k} (m_{-k,\ell} - m_{-k+2,\ell}) + 2m_{-k,k} + \delta(m_{-k+2,k} \text{ is odd}),
$$

\n
$$
A_j^{(-k)}(\mathfrak{m}) = \sum_{\ell > k} (m_{-k,\ell} - m_{-k+2,\ell}) + 2m_{-k,k} - 2m_{-k+2,k-2} + \sum_{-k+2 < i \le j+2} m_{i,k} - \sum_{-k+2 < i \le j} m_{i,k-2} \quad \text{for } -k+2 \le j \le k-2.
$$

(i) Let n_f be the smallest $\ell \geq -k+2$, with respect to the ordering \cdots $k + 2 > k > -k + 2 > \cdots > k - 2$, such that $\varepsilon_{-k}(\mathfrak{m}) = A_{\ell}^{(-k)}(\mathfrak{m})$. We define

$$
\widetilde{F}_{-k}(\mathfrak{m}) = \begin{cases}\n\mathfrak{m} - \langle -k+2, n_f \rangle + \langle -k, n_f \rangle & \text{if } n_f > k, \\
\mathfrak{m} - \langle -k+2, k \rangle + \langle -k, k \rangle & \text{if } n_f = k \text{ and } m_{-k+2,k} \text{ is odd,} \\
\mathfrak{m} - \delta_{k\neq 1} \langle -k+2, k-2 \rangle & \text{if } n_f = k \text{ and } m_{-k+2,k} \text{ is even,} \\
& + \langle -k+2, k \rangle & \text{if } -k+2 \le n_f \le k-2. \\
& + \langle n_f + 2, k \rangle & \text{if } -k+2 \le n_f \le k-2.\n\end{cases}
$$

(ii) If $\varepsilon_{-k}(\mathfrak{m}) = 0$, then $\widetilde{E}_{-k}(\mathfrak{m}) = 0$. If $\varepsilon_{-k}(\mathfrak{m}) > 0$, then let n_e be the largest $\ell \geq -k + 2$, with respect to the above ordering, such that $\varepsilon_{-k}(\mathfrak{m}) =$ $A_{\ell}^{(-k)}(\mathfrak{m})$. We define

$$
\widetilde{E}_{-k}(\mathfrak{m}) = \begin{cases} \mathfrak{m} - \langle -k, n_e \rangle + \langle -k+2, n_e \rangle & \text{if } n_e > k, \\ \mathfrak{m} - \langle -k, k \rangle + \langle -k+2, k \rangle & \text{if } n_e = k \text{ and} \\ \mathfrak{m} - \langle -k+2, k \rangle & \text{if } n_e = k \text{ and} \\ + \delta_{k \neq 1} \langle -k+2, k-2 \rangle & \text{if } n_{e} = k \text{ and} \\ \mathfrak{m} - \langle n_e +2, k \rangle & \text{if } -k+2 \leqslant n_e \leqslant k-2, \\ + \delta_{n_e \neq k-2} \langle n_e +2, k-2 \rangle & \text{if } -k+2 \leqslant n_e \leqslant k-2. \end{cases}
$$

Remark 4.6. For $0 < k \in I$, the actions of \widetilde{E}_{-k} and \widetilde{F}_{-k} on $\mathfrak{m} \in \mathcal{M}_{\theta}$ are described by the following algorithm.

Step 1. Arrange segments in m of the form $\langle -k, j \rangle$ $(j > k)$, $\langle -k + 2, j \rangle$ $(j > k)$, $\langle i, k \rangle$ ($-k \leq i \leq k$), $\langle i, k - 2 \rangle$ ($-k + 2 \leq i \leq k - 2$) in the order

$$
\cdots, \langle -k, k+2 \rangle, \langle -k+2, k+2 \rangle, \langle -k, k \rangle, \langle -k+2, k \rangle, \langle -k+2, k-2 \rangle,
$$

$$
\langle -k+4, k \rangle, \langle -k+4, k-2 \rangle, \cdots, \langle k-2, k \rangle, \langle k-2, k-2 \rangle, \langle k \rangle.
$$

- Step 2. Write signatures for each segment contained in m by the following rules.
	- (i) If a segment is not $\langle -k+2, k \rangle$, then
		- For $\langle -k, k \rangle$, write $--$,
		- For $\langle -k, j \rangle$ with $j > k$, write $-$,
		- For $\langle -k+2, k-2 \rangle$ with $k > 1$, write $++$,
		- For $\langle -k+2, j \rangle$ with $j > k$, write $+,$
		- For $\langle j, k \rangle$ with $-k + 2 < j \leq k$, write $-,$
		- For $\langle j, k-2 \rangle$ with $-k+2 < j \leq k-2$, write $+,$
		- Otherwise, write no signature.
	- (ii) For segments $m_{-k+2,k}\langle -k+2, k \rangle$, if $m_{-k+2,k}$ is even, then write no signature, and if $m_{-k+2,k}$ is odd, then write $-+$.
- Step 3. In the resulting sequence of $+$ and $-$, delete a subsequence of the form +− and keep on deleting until no such subsequence remains.

Then we obtain a sequence of the form $-\cdots - + + \cdots +$.

- (1) $\varepsilon_{-k}(\mathfrak{m})$ is the total number of in the resulting sequence.
- (2) $\widetilde{F}_{-k}(\mathfrak{m})$ is given as follows:
	- (i) if the leftmost + corresponds to a segment $\langle -k+2, j \rangle$ for $j > k$, then replace it with $\langle -k, j \rangle$,
	- (ii) if the leftmost + corresponds to a segment $\langle j, k 2 \rangle$ for $-k+2 \leq j \leq$ $k-2$, then replace it with $\langle j, k \rangle$,
	- (iii) if the leftmost + corresponds to segment $m_{-k+2,k}(-k+2, k)$, then replace one of the segments with $\langle -k, k \rangle$,
	- (iv) if no + exists, add a segment $\langle k, k \rangle$ to m.
- (3) $\widetilde{E}_{-k}(\mathfrak{m})$ is given as follows:
	- (i) if the rightmost corresponds to a segment $\langle -k, j \rangle$ for $j \geq k$, then replace it with $\langle -k+2, j \rangle$,
	- (ii) if the rightmost corresponds to a segment $\langle j, k \rangle$ for $-k+2 < j < k$, then replace it with $\langle j, k - 2 \rangle$,
	- (iii) if the rightmost corresponds to segments $m_{-k+2,k}(-k+2, k)$, then replace one of the segment with $\langle -k+2, k-2 \rangle$,
	- (iv) if the rightmost corresponds to a segment $\langle k, k \rangle$ for $k > 1$, then delete it,
	- (v) if no exists, then $\widetilde{E}_{-k}(\mathfrak{m}) = 0$.

Example 4.7.

(1) We shall write $\{a, b\}$ for $a\langle -1, 1 \rangle + b\langle 1 \rangle$. The following diagram is the part of the crystal graph of $B_{\theta}(0)$ that concerns only the 1-arrows and the (-1) -arrows.

$$
\phi \stackrel{1}{\Longrightarrow} \{0,1\} \xrightarrow{1} \{0,2\} \xrightarrow{1}{\{0,3\}} \xrightarrow{-1} \{0,4\} \xrightarrow{-1} \{0,5\} \cdots
$$

$$
\phi \stackrel{1}{\Longrightarrow} \{0,1\} \xrightarrow{-1} \{1,0\} \xrightarrow{1}{\{1,1\}} \{1,2\} \xrightarrow{-1} \{1,3\} \cdots
$$

$$
\left\{1,0\right\} \xrightarrow{-1} \{1,1\} \xrightarrow{-1} \{2,0\} \xrightarrow{-1} \{2,1\} \cdots
$$

Especially the part of (-1) -arrows is the following diagram.

$$
\{0,2n\} \xrightarrow{} \{0,2n+1\} \xrightarrow{} \{1,2n\} \xrightarrow{} \{1,2n+1\} \xrightarrow{} \{2,2n\} \cdots
$$

(2) The following diagram is the part of the crystal graph of $B_{\theta}(0)$ that concerns only the (-1) -arrows and the (-3) -arrows. This diagram is, as a graph, isomorphic to the crystal graph of A_2 .

(3) Here is the part of the crystal graph of $B_{\theta}(0)$ that concerns only the *n*arrows and the $(-n)$ -arrows for an odd integer $n \geq 3$:

$$
\phi \xrightarrow[n]{n} \langle n \rangle \xrightarrow[n]{n} 2\langle n \rangle \xrightarrow[n]{n} 3\langle n \rangle \xrightarrow[n]{n} \cdots
$$

Lemma 4.8. *For* $k \text{ ∈ } I_{>0}$ *, the data* \widetilde{E}_{-k} *,* \widetilde{F}_{-k} *,* ε_{-k} *define a crystal structure on* \mathcal{M}_{θ} *, namely we have*

SYMMETRIC CRYSTALS FOR \mathfrak{gl}_{∞} 877

(i)
$$
\widetilde{F}_{-k} \mathcal{M}_{\theta} \subset \mathcal{M}_{\theta}
$$
 and $\widetilde{E}_{-k} \mathcal{M}_{\theta} \subset \mathcal{M}_{\theta} \sqcup \{0\},$

- (ii) $\widetilde{F}_{-k}\widetilde{E}_{-k}(\mathfrak{m}) = \mathfrak{m}$ if $\widetilde{E}_{-k}(\mathfrak{m}) \neq 0$, and $\widetilde{E}_{-k} \circ \widetilde{F}_{-k} = id$,
- (iii) $\varepsilon_{-k}(\mathfrak{m}) = \max\left\{n \geq 0 \mid \widetilde{E}^n_{-k}(\mathfrak{m}) \neq 0\right\}$ for any $\mathfrak{m} \in \mathcal{M}_{\theta}$.

Proof. We shall first show that, for $\mathfrak{m} = \sum_{j \leqslant i \leqslant j} m_{i,j} \langle i, j \rangle \in \mathcal{M}_{\theta}$ $\widetilde{F}_{-k}(\mathfrak{m})$ is θ -restricted, $\widetilde{E}_{-k}\widetilde{F}_{-k}(\mathfrak{m}) = \mathfrak{m}$ and $\varepsilon_{-k}(\widetilde{F}_{-k}\mathfrak{m}) = \varepsilon_{-k}(\mathfrak{m}) + 1$. Let $A_j := A_j^{(-k)}(\mathfrak{m})$ $(j \geq -k+2)$ and let n_f be as in Definition 4.5. Set $\mathfrak{m}' = \widetilde{F}_{-$ Let $A'_j = A_j^{(-k)}(\mathfrak{m}')$ and let n'_e be n_e for \mathfrak{m}' .

(i) Assume $n_f > k$. Since $A_{n_f} > A_{n_f-2} = A_{n_f} + m_{-k,n_f-2} - m_{-k+2,n_f}$, we have $m_{-k,n_f-2} < m_{-k+2,n_f}$. Hence $\mathfrak{m}' = \mathfrak{m} - \langle -k+2,n_f \rangle + \langle -k,n_f \rangle$ is θ -restricted. Then we have

$$
A'_j = \begin{cases} A_j & \text{if } j > n_f, \\ A_j + 1 & \text{if } j = n_f, \\ A_j + 2 & \text{if } j < n_f. \end{cases}
$$

Hence $\varepsilon_{-k}(\mathfrak{m}') = A_{n_f} + 1 = \varepsilon_{-k}(\mathfrak{m}) + 1$ and $n'_e = n_f$, which implies $\mathfrak{m} = \widetilde{E}_{-k}(\mathfrak{m}').$

- (ii) Assume $n_f = k$.
	- (a) If $m_{-k+2,k}$ is odd, then $\mathfrak{m}' = \mathfrak{m} \langle -k+2, k \rangle + \langle -k, k \rangle$ is θ -restricted. We have

$$
A'_{j} = \begin{cases} A_{j} & \text{if } j > k, \\ A_{j} + 1 & \text{if } j = k, \\ A_{j} + 2 & \text{if } j < k, \end{cases}
$$

Hence $\varepsilon_{-k}(\mathfrak{m}') = \varepsilon_{-k}(\mathfrak{m}) + 1$ and $n'_e = k$, which implies $\mathfrak{m} = \widetilde{E}_{-k}(\mathfrak{m}')$.

(b) Assume that $m_{-k+2,k}$ is even. If $k \neq 1$, then $A_k > A_{-k+2}$ $A_k - 2m_{-k+2,k-2}$, and hence $m_{-k+2,k-2} > 0$. Therefore $\mathfrak{m}' = \mathfrak{m}$ - $\delta_{k\neq 1}\langle -k+2, k-2 \rangle + \langle -k+2, k \rangle$ is θ -restricted. We have

$$
A'_{j} = \begin{cases} A_{j} & \text{if } j > k, \\ A_{j} + 1 & \text{if } j = k, \\ A_{j} + 2 & \text{if } j < k. \end{cases}
$$

Hence $\varepsilon_{-k}(\mathfrak{m}') = \varepsilon_{-k}(\mathfrak{m}) + 1$ and $n'_e = k$, which implies $\mathfrak{m} = \widetilde{E}_{-k}(\mathfrak{m}')$.

(iii) Assume $-k+2 \leq n_f < k-2$. Since $A_{n_f} > A_{n_f+2} = A_{n_f} + m_{n_f+4,k}$ $m_{n_f+2,k-2}$, we have $m_{n_f+2,k-2} > m_{n_f+4,k}$. Hence $\mathfrak{m}' = \mathfrak{m} - \langle n_f + 2, k - 2 \rangle$ $2\rangle + \langle n_f + 2, k \rangle$ is θ -restricted. Then we have

$$
A'_{j} = \begin{cases} A_{j} & \text{if } j > n_{f}, \\ A_{j} + 1 & \text{if } j = n_{f}, \\ A_{j} + 2 & \text{if } j < n_{f}. \end{cases}
$$

(Here the ordering is as in Definition 4.5 (i).) Hence $\varepsilon_{-k}(\mathfrak{m}') = \varepsilon_{-k}(\mathfrak{m})+1$ and $n'_e = n_f$, which implies $\mathfrak{m} = \widetilde{E}_{-k} \mathfrak{m}'$.

(iv) Assume $n_f = k - 2$. It is obvious that $m' = m + \langle k \rangle$ is θ -restricted. We have

$$
A_j' = \begin{cases} A_j & \text{if } j \neq n_f, \\ A_j + 1 & \text{if } j = n_f. \end{cases}
$$

Hence $\varepsilon_{-k}(\mathfrak{m}') = \varepsilon_{-k}(\mathfrak{m}) + 1$ and $n'_e = n_f$, which implies $\mathfrak{m} = \widetilde{E}_{-k}(\mathfrak{m}')$.

Similarly, we can prove that if $\varepsilon_{-k}(\mathfrak{m}) > 0$, then $\widetilde{E}_{-k}(\mathfrak{m})$ is θ -restricted and $\widetilde{F}_{-k}\widetilde{E}_{-k}(\mathfrak{m}) = \mathfrak{m}$. Hence we obtain the desired results. $\widetilde{F}_{-k}\widetilde{E}_{-k}(\mathfrak{m}) = \mathfrak{m}$. Hence we obtain the desired results.

Definition 4.9. For $k \in I_{>0}$, we define \widetilde{F}_k , \widetilde{E}_k and ε_k by the same rule as in Definition 3.7 for \tilde{f}_k , \tilde{e}_k and ε_k .

Since it is well-known that it gives a crystal structure on M , we obtain the following result.

Theorem 4.10. *By* \widetilde{F}_k *,* \widetilde{E}_k *,* ε_k ($k \in I$ *),* \mathcal{M}_{θ} *is a crystal, namely, we have*

- (i) $\widetilde{F}_k \mathcal{M}_\theta \subset \mathcal{M}_\theta$ and $\widetilde{E}_k \mathcal{M}_\theta \subset \mathcal{M}_\theta \sqcup \{0\},$
- (ii) $\widetilde{F}_k \widetilde{E}_k(\mathfrak{m}) = \mathfrak{m}$ *if* $\widetilde{E}_k(\mathfrak{m}) \neq 0$ *, and* $\widetilde{E}_k \circ \widetilde{F}_k = \mathrm{id}$ *,*
- (iii) $\varepsilon_k(\mathfrak{m}) = \max\left\{n \geq 0 \mid \widetilde{E}_k^n(\mathfrak{m}) \neq 0\right\}$ for any $\mathfrak{m} \in \mathcal{M}_{\theta}$.

The crystal \mathcal{M}_{θ} has a unique highest weight vector.

Lemma 4.11. *If* $m \in \mathcal{M}_{\theta}$ *satisfies that* $\varepsilon_k(m) = 0$ *for any* $k \in I$ *, then* $\mathfrak{m} = \emptyset$ *. Here* \emptyset *is the empty multisegment. In particular, for any* $\mathfrak{m} \in \mathcal{M}_{\theta}$ *, there exist* $\ell \geqslant 0$ *and* $i_1, \ldots, i_\ell \in I$ *such that* $\mathfrak{m} = \widetilde{F}_{i_1} \cdots \widetilde{F}_{i_\ell} \emptyset$.

Proof. Assume $m \neq \emptyset$. Let k be the largest k such that $m_{k,j} \neq 0$ for some beam take the largest is qualitated $m_{k,j} \geq |k|$. Moreover, we j. Then take the largest j such that $m_{k,j} \neq 0$. Then $j \geqslant |k|$. Moreover, we have $m_{k+2,\ell} = 0$ for any ℓ , and $m_{k,\ell} = 0$ for any $\ell > j$. Hence we have

$$
A_j^{(k)}(\mathfrak{m}) = \begin{cases} 2m_{k,j} & \text{if } k = -j, \\ m_{k,j} & \text{otherwise.} \end{cases}
$$

Hence $\varepsilon_k(\mathfrak{m}) \geqslant A_j^{(k)}(\mathfrak{m}) > 0.$

*§***4.3. Estimates of the order of coefficients**

By applying Theorem 4.1, we shall show that $\{P_{\theta}(\mathfrak{m})\phi\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ is a crystal basis of $V_{\theta}(0)$ and its crystal structure coincides with the one given in § 4.2.

Let k be a positive odd integer. We define $c, f, e \colon \mathbb{Z} \to \mathbb{Q}$ by $c(n) = |n/2|$ and $f(n) = e(n) = n/2$. Then the conditions (4.4)–(4.8) are obvious. Set $\xi(\mathfrak{m})=(-1)^{m_{-k+2,k}}m_{-k,k}$ and

$$
B'' = \{ \mathfrak{m} \in \mathcal{M}_{\theta} \mid -k + 2 \leq n_e(\mathfrak{m}) < k \} \cup \{ \mathfrak{m} \in \mathcal{M}_{\theta} \mid m_{-k+2,k}(\mathfrak{m}) \text{ is odd} \},
$$

$$
B' = \mathcal{M}_{\theta} \setminus B''.
$$

Here $n_e(\mathfrak{m})$ is n_e given in Definition 4.5 (ii). If $\varepsilon_{-k}(\mathfrak{m})=0$, then we understand $n_e(\mathfrak{m}) = \infty.$

We define $F_{\mathfrak{m},\mathfrak{m}'}^{-k}$ and $E_{\mathfrak{m},\mathfrak{m}'}^{-k}$ by the coefficients of the following expansion:

$$
\begin{split} &F_{-k}P_{\theta}(\mathfrak{m})\widetilde{\phi}=\sum_{\mathfrak{m}'}F_{\mathfrak{m},\mathfrak{m}'}^{-k}P_{\theta}(\mathfrak{m}')\widetilde{\phi},\\ &E_{-k}P_{\theta}(\mathfrak{m})\widetilde{\phi}=\sum_{\mathfrak{m}'}E_{\mathfrak{m},\mathfrak{m}'}^{-k}P_{\theta}(\mathfrak{m}')\widetilde{\phi}, \end{split}
$$

as given in Theorems 3.21 and 3.22. Put $\ell = \varepsilon_{-k}(\mathfrak{m})$ and $\ell' = \varepsilon_{-k}(\mathfrak{m}')$.

Proposition 4.12. *The conditions* (4.9)*,* (4.11)*,* (4.13) *and* (4.14) *are satisfied for* \widetilde{E}_{-k} , \widetilde{F}_{-k} , ε_{-k} , *namely, we have*

- (a) *if* $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$ *, then* $F_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{-\ell}(1 + q\mathbf{A}_0)$ *,*
- (b) if $m' \neq \widetilde{F}_{-k}(m)$, then $\text{ord}(F_{m,m'}^{-k}) \geq -\ell + f(\ell + 1 \ell') = -(\ell + \ell' 1)/2$,
- (c) if $m' \neq \widetilde{F}_{-k}(m)$ and $\text{ord}(F_{m,m'}^{-k}) = -(\ell + \ell' 1)/2$, then the following two *conditions hold:*
	- (1) $\xi(\widetilde{F}_{-k}(\mathfrak{m})) > \xi(\mathfrak{m}'),$

 \Box

$$
(2) \ell \geq \ell' \text{ or } \widetilde{F}_{-k}(\mathfrak{m}) \in B''.
$$

Proof. We shall write A_j for $A_j^{-k}(\mathfrak{m})$. Let n_f be as in Definition 4.5 (i).
Note that F^{-k} $\neq 0$ Note that $F_{\mathfrak{m}, \widetilde{F}_{-k}(\mathfrak{m})}^{-k} \neq 0$.

If $F_{\mathfrak{m},\mathfrak{m}'}^{-k} \neq 0$, we have the following four cases. We shall use $[n] \in q^{1-n}(1+\)$ $q\mathbf{A}_0$) for $n > 0$.

Case 1.
$$
m' = m - \langle -k + 2, n \rangle + \langle -k, n \rangle
$$
 for $n > k$.
In this case, we have

$$
F_{\mathfrak{m},\mathfrak{m}'}^{-k} = [m_{-k,n} + 1]q^{\sum_{j>n}(m_{-k+2,j} - m_{-k,j})} \in q^{-A_n}(1 + q\mathbf{A}_0)
$$

and

$$
\ell = \max\{A_j(j \geq -k+2)\},\
$$

$$
\ell' = \max\{A_j (j > n), A_n + 1, A_j + 2 (j < n)\}.
$$

If $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, then $\ell = A_n$ and we obtain (a). Assume $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$. Since $A_n \leq \ell, \ell' - 1$, we have $\text{ord}(F_{\mathfrak{m},\mathfrak{m'}}^{-k}) = -A_n \geqslant -(\ell + \ell' - 1)/2$. Hence we obtain (b). If $\text{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then we have $A_n = \ell = \ell' - 1$. Since $A_j + 2 \leq \ell' = A_n + 1$ for $j < n$, we have $n_f = n$ and $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, which is a contradiction contradiction.

Case 2. $m' = m - \langle -k+2, k \rangle + \langle -k, k \rangle$.

In this case we have

$$
F_{\mathfrak{m},\mathfrak{m}'}^{-k} = [2m_{-k,k} + 2]q^{\sum_{j>k}(m_{-k+2,j}-m_{-k,j})} \in q^{-A_k - \delta(\mathfrak{m}_{-k+2,k} \text{ is even})} (1 + q\mathbf{A}_0).
$$

(i) Assume that $m_{-k+2,k}$ is odd. We have $F_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{-A_k} (1 + q\mathbf{A}_0)$ and

$$
\ell' = \max\{A_j \ (j > k), A_k + 1, A_j + 2 \ (j < k)\}.
$$

If $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, then $\ell = A_k$ and (a) holds. Assume that $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$. We have $A_k \leq \ell, \ell' - 1$ and hence $\text{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -A_k \geqslant -(\ell + \ell' - 1)/2$. If $\mathrm{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then $A_k = \ell = \ell' - 1$, and we have $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, which is a contradiction.

(ii) Assume that $m_{-k+2,k}$ is even. Then $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m}), F_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{-A_k-1}(1+\alpha)$ $q\mathbf{A}_0$) and

$$
\ell' = \max\{A_j \ (j > k), A_k + 3, A_j + 2 \ (j < k)\}.
$$

We have $A_k \leq \ell, \ell' - 3$ and hence $\text{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -A_k - 1 \geqslant -(\ell + \ell' - 1)$ 1)/2. Hence (b) holds. Let us show (c). Assume $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$, and

ord $(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$. Then we have $A_k = \ell = \ell' - 3$. Hence $n_f \le k$ and we have either $\widetilde{F}_{-k}(\mathfrak{m}) = \mathfrak{m} - \delta_{i \ne k} \langle i, k-2 \rangle + \langle i, k \rangle$ with $-k+2 < i \leq k$ or $\widetilde{F}_{-k}(\mathfrak{m}) = \mathfrak{m} - \delta_{k \neq 1} \langle -k+2, k-2 \rangle + \langle -k+2, k \rangle$. Hence we have $\xi(\widetilde{F}_{-k}(\mathfrak{m})) = \pm m_{-k,k} > -m_{-k,k} - 1 = \xi(\mathfrak{m}')$. Hence we obtain (c) (1) .

- (1) Assume $\widetilde{F}_{-k}(\mathfrak{m}) = \mathfrak{m} \delta_{i \neq k} \langle i, k-2 \rangle + \langle i, k \rangle$ with $-k+2 < i \leq k$. Then $k \neq 1$ and $\widetilde{E}_{-k}(\widetilde{F}_{-k}(\mathfrak{m})) = \widetilde{F}_{-k}(\mathfrak{m}) - \langle i, k \rangle + \delta_{i \neq k} \langle i, k - 2 \rangle$. Hence $n_e(\widetilde{F}_{-k}(\mathfrak{m})) = i - 2 < k$. Hence $\widetilde{F}_{-k}(\mathfrak{m}) \in B''$. Therefore we obtain (c) (2).
- (2) Assume $\widetilde{F}_{-k}(\mathfrak{m}) = \mathfrak{m} \delta_{k \neq 1} \langle -k+2, k-2 \rangle + \langle -k+2, k \rangle$. Then $m_{-k+2,k}(\widetilde{F}_{-k}(\mathfrak{m})) = m_{-k+2,k} + 1$ is odd. Hence $\widetilde{F}_{-k}(\mathfrak{m}) \in B''$.

Case 3. $\mathfrak{m}' = \mathfrak{m} - \delta_{k \neq 1} \langle -k + 2, k - 2 \rangle + \langle -k + 2, k \rangle$. In this case, we have

$$
F_{\mathfrak{m},\mathfrak{m}'}^{-k} = [m_{-k+2,k} + 1]q^{\sum_{j>k}(m_{-k+2,j}-m_{-k,j})+m_{-k+2,k}-2m_{-k,k}}
$$

$$
\in q^{-A_k+\delta(m_{-k+2,k} \text{ is odd})}(1+q\mathbf{A}_0).
$$

(i) If $m_{-k+2,k}$ is odd, then $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$, $F_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{-A_k+1}(1+q\mathbf{A}_0)$, and

$$
\ell' = \max\{A_j \ (j > k), A_k - 1, A_j + 2 \ (j < k)\}.
$$

We have $A_k \leq \ell, \ell'+1$ and hence $\text{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -A_k + 1 \geqslant -(\ell+\ell'-1)/2$. If $\text{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then $A_k = \ell = \ell' + 1$, and $n_f = k$. Hence we obtain (c) (2), and $\widetilde{F}_{-k}(\mathfrak{m}) = \mathfrak{m} - \langle -k+2, k \rangle + \langle -k, k \rangle$. Hence $\xi(\widetilde{F}_{-k}(\mathfrak{m})) = m_{-k,k} + 1 > m_{-k,k} = \xi(\mathfrak{m}')$. Hence we obtain (c) (1).

(ii) If $m_{-k+2,k}$ is even, then $F_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{-A_k} (1 + q\mathbf{A}_0)$ and

$$
\ell' = \max\{A_j \ (j > k), A_k + 1, A_j + 2 \ (j < k)\}.
$$

If $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, then $\ell = A_k$ and (a) is satisfied. Assume $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$.
We have $A \leq \ell \ell' - 1$ and have $\text{card}(E^{-k}) = A \geq (\ell + \ell' - 1)/2$. If We have $A_k \leq \ell, \ell'-1$ and hence $\text{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -A_k \geqslant -(\ell+\ell'-1)/2$. If ord $(F_{m,n}^{-k}) = -(\ell+\ell'-1)/2$, then $A_k = \ell = \ell'-1$, and hence $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, which is a contradiction.

Case 4. $\mathfrak{m}' = \mathfrak{m} - \delta_{i \neq k} \langle i, k - 2 \rangle + \langle i, k \rangle$ for $-k + 2 < i \leq k$. We have

$$
F_{\mathfrak{m},\mathfrak{m}'}^{-k} = [m_{i,k} + 1]
$$

\n
$$
\times q^{\sum_{j>k}(m_{-k+2,j}-m_{-k,j})+2m_{-k+2,k-2}-2m_{-k,k}+\sum_{-k+2
\n
$$
\in q^{-A_{i-2}}(1+q\mathbf{A}_0),
$$
$$

882 Naoya Enomoto and Masaki Kashiwara

and

$$
\ell'=\max\{A_j\ (j\geqslant k),A_j\ (j
$$

If $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, then $\ell = A_{i-2}$ and (a) holds. Assume $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$. Since $A_{i-2} \leqslant \ell, \ell'-1$, we have $\text{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -A_{i-2} \geqslant -(\ell+\ell'-1)/2$. Hence we obtain (b). If $\text{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then we have $A_{i-2} = \ell = \ell' - 1$. Hence $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, which is a contradiction.

Proposition 4.13. *Suppose* $k > 0$ *. The conditions* (4.10)*,* (4.12*), and* (4.15) *hold, namely, we have*

- (a) if $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, then $E_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{1-\ell}(1 + q\mathbf{A}_0)$,
- (b) if $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$, then $\text{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) \geq 1 \ell + e(\ell 1 \ell') = -(\ell + \ell' 1)/2$,
- (c) if $m' \neq \widetilde{E}_{-k}(m)$, $\ell \leq \ell' + 1$ and $\text{ord}(E_{m,m'}^{-k}) = -(\ell + \ell' 1)/2$, then $b \notin B''$.

Proof. The proof is similar to the one of the above proposition.

We shall write A_j for $A_j^{-k}(\mathfrak{m})$. Let n_e be as in Definition 4.5 (ii).

Note that $E_{\mathfrak{m},\widetilde{E}_{-k}(\mathfrak{m})}^{-k} \neq 0$ if $\widetilde{E}_{-k}(\mathfrak{m}) \neq 0$. If $E_{\mathfrak{m},\mathfrak{m}'}^{-k} \neq 0$, we have the following five cases.

Case 1. $\mathfrak{m}' = \mathfrak{m} - \langle -k, n \rangle + \langle -k + 2, n \rangle$ for $n > k$.

In this case, we have

$$
E_{\mathfrak{m},\mathfrak{m}'}^{-k} = (1 - q^2)[m_{-k+2,n} + 1]q^{1 + \sum_{j \ge n}(m_{-k+2,j} - m_{-k,j})} \in q^{1 - A_n}(1 + q\mathbf{A}_0)
$$

and

$$
\ell = \max\{A_j(j \geq -k+2)\},\
$$

$$
\ell' = \max\{A_j (j > n), A_n - 1, A_j - 2 (j < n)\}.
$$

If $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, then $\ell = A_n$ and we obtain (a). Assume $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$. Since $A_n \leq \ell, \ell' + 1$, we have $\text{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = 1 - A_n \geqslant -(\ell + \ell' - 1)/2$. Hence we obtain (b). If $\text{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then we have $A_n = \ell = \ell' + 1$. Since $A_j \leq \ell' = A_n - 1$ for $j > n$, we have $n_e = n$ and $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, which is a contradiction.

Case 2. $m' = m - \langle -k, k \rangle + \langle -k + 2, k \rangle$. In this case we have

$$
E_{\mathfrak{m},\mathfrak{m}'}^{-k} = (1 - q^2)[m_{-k+2,k} + 1]q^{1 + \sum_{j>k}(m_{-k+2,j} - m_{-k,j}) + m_{-k+2,k} - 2m_{-k,k}} \n\in q^{1 - A_k + \delta(\mathfrak{m}_{-k+2,k} \text{ is odd})} (1 + q\mathbf{A}_0).
$$

 \Box

(i) Assume that $m_{-k+2,k}$ is odd. Then $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m}), E_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{2-A_k}(1+q\mathbf{A}_0)$ and

 $\ell' = \max\{A_j \ (j > k), A_k - 3, A_j - 2 \ (j < k)\}.$

We have $A_k \leq \ell, \ell' + 3$ and hence $\text{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = 2 - A_k \geqslant -(\ell + \ell' - 1)/2$. Hence (b) holds. If $\text{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then $A_k = \ell = \ell' + 3$. Hence $\ell > \ell' + 1$ and (c) holds.

(ii) Assume that $m_{-k+2,k}$ is even. Then $E_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{1-A_k}(1+q\mathbf{A}_0)$ and

$$
\ell' = \max\{A_j \ (j > k), A_k - 1, A_j - 2 \ (j < k)\}.
$$

If $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, then $\ell = A_k$, and we obtain (a). Assume $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$. We have $A_k \leq \ell, \ell' + 1$ and hence $\text{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = 1 - A_k \geqslant -(\ell + \ell' - 1)/2$. If $\mathrm{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then $A_k = \ell = \ell' + 1$ and $n_e = k$. Hence $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, which is a contradiction.

Case 3. $\mathfrak{m}' = \mathfrak{m} - \langle -k+2, k \rangle + \delta_{k \neq 1} \langle -k+2, k-2 \rangle$. If $k \neq 1$, we have $E_{\mathfrak{m},\mathfrak{m}'}^{-k} = (1-q^2)[2(m_{-k+2,k-2}+1)]q^{1+\sum_{j>k}(m_{-k+2,j}-m_{-k,j})+2m_{-k+2,k-2}-2m_{-k,k}}$ $\in \, a^{-A_k + \delta(m_{-k+2,k} \text{ is odd})} (1 + a\mathbf{A}_0).$

If $k = 1$, we have

$$
E_{\mathfrak{m},\mathfrak{m}'}^{-k} = q^{\sum_{j>k}(m_{-k+2,j}-m_{-k,j})-2m_{-k,k}} = q^{-A_k + \delta(m_{-k+2,k} \text{ is odd})}.
$$

In the both cases, we have

$$
E_{\mathfrak{m},\mathfrak{m}'}^{-k}\in q^{-A_k+\delta(m_{-k+2,k}\text{ is odd})}(1+q\mathbf{A}_0).
$$

(i) If $m_{-k+2,k}$ is odd, then $E_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{1-A_k}(1+q\mathbf{A}_0)$ and

$$
\ell' = \max\{A_j \ (j > k), A_k - 1, A_j - 2 \ (j < k)\}.
$$

If $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, then $\ell = A_k$ and (a) is satisfied. We have $A_k \leq \ell, \ell' + 1$ and hence $\text{ord}(E_{\mathfrak{m},m}^{-k}) = 1 - A_k \geqslant -(l + l' - 1)/2$. Assume $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$. If $\mathrm{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell+\ell'-1)/2$, then $A_k = \ell = \ell'+1$, and $n_e = k$. Hence $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, which is a contradiction.

(ii) If $m_{-k+2,k}$ is even, then $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m}), E_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{-A_k}(1+q\mathbf{A}_0)$, and

$$
\ell' = \max\{A_j \ (j > k), A_k + 1, A_j - 2 \ (j < k)\}.
$$

We have $A_k \leq \ell, \ell' - 1$ and hence $\text{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -A_k \geqslant -(\ell + \ell' - 1)/2$. Hence we obtain (b). If $\mathrm{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell+\ell'-1)/2$, then $A_k = \ell = \ell'-1$. Hence $n_e(\mathfrak{m}) \geq k$ and $m_{-k+2,k}(\mathfrak{m})$ is even. Hence $\mathfrak{m} \notin B''$.

884 Naoya Enomoto and Masaki Kashiwara

Case 4. $\mathfrak{m}' = \mathfrak{m} - \langle i, k \rangle + \langle i, k - 2 \rangle$ for $-k + 2 < i \leq k - 2$. We have

$$
E_{\mathfrak{m},\mathfrak{m}'}^{-k} = (1 - q^2)[m_{i,k-2} + 1]
$$

\n
$$
\times q^{1 + \sum_{j>k} (m_{-k+2,j} - m_{-k,j}) + 2m_{-k+2,k-2} - 2m_{-k,k} + \sum_{-k+2 < j \leq i} (m_{j,k-2} - m_{j,k})}
$$

\n
$$
\in q^{1 - A_{i-2}}(1 + q\mathbf{A}_0),
$$

and

$$
\ell' = \max\{A_j \ (j \ge k),\ A_j \ (j < i-2),\ A_{i-2} - 1,\ A_j - 2 \ (i \le j \le k-2)\}.
$$

If $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, then $\ell = A_{i-2}$ and (a) holds. Assume $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$. Since $A_{i-2} \leq \ell, \ell' + 1$, we have $\text{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = 1 - A_{i-2} \geqslant -(\ell + \ell' - 1)/2$. Hence we obtain (b). If $\text{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then we have $A_{i-2} = \ell = \ell' + 1$. Hence $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, which is a contradiction.

Case 5. $k \neq 1$ and $\mathfrak{m}' = \mathfrak{m} - \langle k \rangle$. In this case,

$$
E_{\mathfrak{m},\mathfrak{m}'}^{-k} = q^{j \geq k} \sum_{j=1}^{k} (m_{-k+2,j} - m_{-k,j}) - 2m_{-k,k} + 1 - m_{k,k} + 2m_{-k+2,k-2} + \sum_{j=k+2 \leq i \leq k-2} (m_{i,k-2} - m_{i,k})
$$

$$
\in q^{1-A_{k-2}}(1+q\mathbf{A}_0),
$$

and

$$
\ell' = \max\{A_j \ (j \neq k-2), A_{k-2} - 1\}.
$$

If $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, then $\ell = A_{k-2}$ and (a) holds. Assume $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$. Since $A_{k-2} \leq \ell, \ell' + 1$, we have $\text{ord}(E_{\mathfrak{m},\mathfrak{m'}}^{-k}) = 1 - A_{k-2} \geqslant -(\ell + \ell' - 1)/2$. Hence we obtain (b). If $\text{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then we have $A_{k-2} = \ell = \ell' + 1$. Hence $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, which is a contradiction. \Box

Proposition 4.14. *Let* $k \in I_{>0}$ *. Then the conditions in Corollary* 4.4 *holds for* \widetilde{E}_k , \widetilde{F}_k *and* ε_k *, with the same functions* c, e, f *.*

Since the proof is similar to and simpler than the one of the preceding two propositions, we omit the proof.

As a corollary we have the following result. We write ϕ for the generator ϕ_0 of $V_\theta(0)$ for short.

Theorem 4.15.

(i) *The morphism*

$$
\widetilde{V}_{\theta}(0) := U_q^{-}(\mathfrak{g}) / \sum_{k \in I} U_q^{-}(\mathfrak{g}) (f_k - f_{-k}) \to V_{\theta}(0)
$$

is an isomorphism.

- (ii) ${P_{\theta}(\mathfrak{m})\phi}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ *is a basis of the* **K***-vector space* $V_{\theta}(0)$ *.*
- (iii) *Set*

$$
L_{\theta}(0) := \sum_{\ell \geqslant 0, i_1, \dots, i_{\ell} \in I} \mathbf{A}_0 \widetilde{F}_{i_1} \cdots \widetilde{F}_{i_{\ell}} \phi \subset V_{\theta}(0),
$$

\n
$$
\mathbf{B}_{\theta}(0) = \left\{ \widetilde{F}_{i_1} \cdots \widetilde{F}_{i_{\ell}} \phi \operatorname{mod} q L_{\theta}(0) \mid \ell \geqslant 0, i_1, \dots, i_{\ell} \in I \right\}
$$

Then, $B_{\theta}(0)$ *is a basis of* $L_{\theta}(0)/qL_{\theta}(0)$ *and* $(L_{\theta}(0), B_{\theta}(0))$ *is a crystal basis of* $V_{\theta}(0)$ *, and the crystal structure coincides with the one of* \mathcal{M}_{θ} *.*

- (iv) *More precisely, we have*
	- (a) $L_{\theta}(0) = \bigoplus$ $\bigoplus_{\mathfrak{m}\in\mathcal{M}_{\theta}}\mathbf{A}_0P_{\theta}(\mathfrak{m})\phi,$
	- (b) $B_{\theta}(0) = \{P_{\theta}(\mathfrak{m})\phi \mod qL_{\theta}(0) \mid \mathfrak{m} \in \mathcal{M}_{\theta}\},\$
	- (c) *for any* $k \in I$ *and* $m \in M_\theta$ *, we have*
		- (1) $\widetilde{F}_k P_\theta(\mathfrak{m}) \phi \equiv P_\theta(\widetilde{F}_k(\mathfrak{m})) \phi \bmod qL_\theta(0)$,
		- (2) $\widetilde{E}_k P_\theta(\mathfrak{m}) \phi \equiv P_\theta(\widetilde{E}_k(\mathfrak{m})) \phi \bmod qL_\theta(0)$, *where we understand* $P_{\theta}(0) = 0$ *,*
		- (3) $\widetilde{E}_k^n P_\theta(\mathfrak{m})\phi \in qL_\theta(0)$ *if and only if* $n > \varepsilon_k(\mathfrak{m})$.

Proof. Let us recall that $P_{\theta}(\mathfrak{m})\phi \in V_{\theta}(0)$ is the image of $\widetilde{P}_{\theta}(\mathfrak{m}) \in$ $\widetilde{V}_{\theta}(0)$. By Theorem 3.21, $\{\widetilde{P}_{\theta}(\mathfrak{m})\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ generates $\widetilde{V}_{\theta}(0)$. Let us set \widetilde{L} = $\sum_{\mathfrak{m}\in\mathcal{M}_{\theta}}\mathbf{A}_0P_{\theta}(\mathfrak{m})\subset V_{\theta}(0)$. Then Theorem 4.1 implies that

$$
\widetilde{F}_k \widetilde{P}_\theta(\mathfrak{m}) \equiv \widetilde{P}_\theta(\widetilde{F}_k(\mathfrak{m})) \bmod q \widetilde{L} \text{ and } \widetilde{E}_k \widetilde{P}_\theta(\mathfrak{m}) \equiv \widetilde{P}_\theta(\widetilde{E}_k(\mathfrak{m})) \bmod q \widetilde{L}.
$$

Hence the similar results hold for $L_0 := \sum_{\mathfrak{m} \in \mathcal{M}_{\theta}} \mathbf{A}_0 P_{\theta}(\mathfrak{m}) \phi \subset V_{\theta}(0)$ and $P_{\theta}(\mathfrak{m}) \phi$.

Let us show that

(A) ${P_{\theta}(\mathfrak{m})\phi \mod qL_0}_{\mathfrak{m}\in \mathcal{M}_{\theta}}$ is linearly independent in L_0/qL_0 ,

by the induction of the θ -weight (see Remark 2.12). Assume that we have a linear relation $\sum_{\mathfrak{m}\in S} a_{\mathfrak{m}} P_{\theta}(\mathfrak{m})\phi \equiv 0 \mod qL_0$ for a finite subset S and $a_{\mathfrak{m}} \in \mathbb{Q}\setminus\{0\}$.
We may assume that all \mathfrak{m} in S have the same 0 weight. Take $\mathfrak{m} \subset S$. If \mathfrak{m} is We may assume that all \mathfrak{m} in S have the same θ -weight. Take $\mathfrak{m}_0 \in S$. If \mathfrak{m}_0 is the empty multisegment \emptyset , then $S = {\emptyset}$ and $P_{\theta}(\mathfrak{m}_0)\phi = \phi$ is non-zero, which is a contradiction. Otherwise, there exists k such that $\varepsilon_k(\mathfrak{m}_0) > 0$ by Lemma 4.11. Applying \widetilde{E}_k , we have $\sum_{\mathfrak{m}\in S} a_{\mathfrak{m}} \widetilde{E}_k P_\theta(\mathfrak{m}) \phi \equiv \sum_{\mathfrak{m}\in S, \ \widetilde{E}_k(\mathfrak{m})\neq 0} a_{\mathfrak{m}} P_\theta(\widetilde{E}_k(\mathfrak{m})) \phi \equiv$ $0 \mod qL_0$. Since $\widetilde{E}_k(\mathfrak{m}) \ (\widetilde{E}_k(\mathfrak{m}) \neq 0)$ are mutually distinct, we have $a_{\mathfrak{m}_0} = 0$ by the induction hypothesis. It is a contradiction.

.

Thus we have proved (A). Hence ${P_{\theta}(\mathfrak{m})\phi}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ is a basis of $V_{\theta}(0)$, which implies that $\{\tilde{P}_{\theta}(\mathfrak{m})\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ is a basis of $V_{\theta}(0)$. Thus we obtain (i) and (ii).

Let us show (iv) (a). Since $\widetilde{F}_{i_1} \cdots \widetilde{F}_{i_\ell} \phi \equiv P_\theta(\widetilde{F}_{i_1} \cdots \widetilde{F}_{i_\ell} \emptyset) \phi \mod qL_0$, we have $L_{\theta}(0) \subset L_0$ and $L_0 \subset L_{\theta}(0) + qL_0$. Hence Nakayama's lemma implies $L_0 = L_\theta(0)$. The other statements are now obvious. \Box

§5. Global Basis of $V_\theta(0)$

§5.1. Integral form of $V_{\theta}(0)$

In this section, we shall prove that $V_{\theta}(0)$ has a lower global basis. In order to see this, we shall first prove that ${P_{\theta}(\mathfrak{m})\phi}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ is a basis of the **A**-module $V_{\theta}(0)$ **A**. Recall that $\mathbf{A} = \mathbb{Q}[q, q^{-1}]$, and $V_{\theta}(0)$ **A** = $U_q^-(\mathfrak{gl}_{\infty})$ **A** ϕ .

Lemma 5.1.
$$
V_{\theta}(0)_{\mathbf{A}} = \bigoplus_{\mathfrak{m} \in \mathcal{M}_{\theta}} \mathbf{A} P_{\theta}(\mathfrak{m}) \phi.
$$

Proof. It is clear that $\bigoplus_{m \in \mathcal{M}_{\theta}} \mathbf{A} P_{\theta}(m) \phi$ is stable by the actions of $F_k^{(n)}$ by Proposition 3.20. Hence we obtain $V_{\theta}(0)$ **A** $\subset \bigoplus_{\mathfrak{m}\in\mathcal{M}_{\theta}} AP_{\theta}(\mathfrak{m})\phi$.

We shall prove $P_{\theta}(\mathfrak{m})\phi \in U_q^-(\mathfrak{gl}_{\infty})_{\mathbf{A}}\phi$. It is well-known that $\langle i, j \rangle^{(m)}$ is contained in $U_q^- (\mathfrak{gl}_\infty)_{\mathbf{A}}$, which is also seen by Proposition 3.20 (3). We divide m as $m = m_1 + m_2$, where $m_1 = \sum_{j < i \leq j} m_{ij} \langle i, j \rangle$ and $m_2 = \sum_{k>0} m_k \langle -k, k \rangle$.
There $P(m) = P(m) \cdot P(m)$ and $P(m) \in U^{-1}(\mathfrak{a}^*)$. Hence we were assumed Then $P_{\theta}(\mathfrak{m}) = P(\mathfrak{m}_1)P_{\theta}(\mathfrak{m}_2)$ and $P(\mathfrak{m}_1) \in U_q^-({\mathfrak{gl}}_{\infty})$ **A**. Hence we may assume from the beginning that $\mathfrak{m} = \sum_{0 \le k \le a} m_k \langle -k, k \rangle$. We shall show that $P_\theta(\mathfrak{m})\phi \in V(\Omega)$, by the induction on ϵ $V_{\theta}(0)$ **A** by the induction on a.

Assume $a > 1$. Set $\mathfrak{m}' = \sum_{0 \le k \le a-4} m_k \langle -k, k \rangle$ and $v = P_\theta(\mathfrak{m}')\phi$. Then $\langle -a+2, a-2 \rangle^{[m]} v \in V_{\theta}(0)$ **A** for any m by the induction hypothesis.

We shall show that $\langle -a, a \rangle^{[n]} \langle -a+2, a-2 \rangle^{[m]} v$ is contained in $V_{\theta}(0)$ **A** by the induction on *n*. Since $P_{\theta}(\mathfrak{m}')$ commutes with $\langle a \rangle$, $\langle -a \rangle$, $\langle -a+2, a-2 \rangle$, $\langle -a+2, a \rangle$ and $\langle -a, a \rangle$, Proposition 3.20 (2) implies

$$
\langle -a \rangle^{(2n)} \langle -a+2, a-2 \rangle^{[n+m]} v
$$

=
$$
\sum_{i+j+2t=2n, j+t=u} q^{2(n+m)i+j(j-1)/2-i(t+u)}
$$

$$
\times \langle a \rangle^{(i)} \langle -a+2, a \rangle^{(j)} \langle -a, a \rangle^{[t]} \langle -a+2, -2 \rangle^{[n+m-u]} v,
$$

which is contained in $V_{\theta}(0)_{\mathbf{A}}$. Since we have

$$
\langle a \rangle^{(i)} \langle -a+2, a \rangle^{(j)} \langle -a, a \rangle^{[t]} \langle -a+2, a-2 \rangle^{[n+m-u]} v \in V_{\theta}(0)_{\mathbf{A}}
$$

if $(i, j, t, u) \neq (0, 0, n, n)$ by the induction hypothesis on $n, \langle -a, a \rangle^{[n]} \langle -a+2, a 2\langle m|v\rangle$ is contained in $V_{\theta}(0)$ **A**.

If $a = 1$, we similarly prove $P_{\theta}(\mathfrak{m})\phi \in V_{\theta}(0)$ **A** using Proposition 3.20 (1) \square instead of (2).

*§***5.2. Conjugate of the PBW basis**

We will prove that the bar involution is upper triangular with respect to the PBW basis $\{P_{\theta}(\mathfrak{m})\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$.

First we shall prove Theorem 3.10 (4).

For $a, b \in \mathcal{M}$ such that $a \leq b$, we denote by $\mathcal{M}_{[a,b]}$ (resp. $\mathcal{M}_{\leq b}$) the set of $\mathfrak{m} \in \mathcal{M}$ of the form $\mathfrak{m} = \sum_{a \leq i \leq j \leq b} m_{i,j} \langle i, j \rangle$ (resp. $\mathfrak{m} = \sum_{i \leq j \leq b} m_{i,j} \langle i, j \rangle$).
Similarly we define (M) . For a multisemport $\mathfrak{m} \in M$. we divide \mathfrak{m} into Similarly we define $(\mathcal{M}_{\theta})_{\leqslant b}$. For a multisegment $\mathfrak{m} \in \mathcal{M}_{\leqslant b}$, we divide \mathfrak{m} into $\mathfrak{m} = \mathfrak{m}_b + \mathfrak{m}_{< b}$, where $\mathfrak{m}_b = \sum_{i \leqslant b} m_{i,j} \langle i, b \rangle$ and $\mathfrak{m}_{< b} = \sum_{i \leqslant j < b} m_{i,j} \langle i, j \rangle$.

Lemma 5.2. *For* $n \geq 0$ *and* $a, b \in I$ *such that* $a \leq b$ *, we have*

$$
\overline{\langle a,b\rangle^{(n)}}\in\langle a,b\rangle^{(n)}+\sum_{\substack{\mathfrak{m}\\ \operatorname{crys}}}\mathbf{K} P(\mathfrak{m}).
$$

Proof. We shall first show

(5.1)
$$
\overline{\langle a,b\rangle} \in \langle a,b\rangle + \sum_{a+2\leq k\leq b} \langle k,b\rangle U_q^-(\mathfrak{g})
$$

by the induction on $b - a$. If $a = b$, it is trivial. If $a < b$, we have

$$
\overline{\langle a,b\rangle} = \langle a\rangle \overline{\langle a+2,b\rangle} - q^{-1} \overline{\langle a+2,b\rangle} \langle a\rangle
$$

\n
$$
\in \langle a\rangle \Big(\langle a+2,b\rangle + \sum_{a+2 < k \leqslant b} \langle k,b\rangle U_q^-(\mathfrak{g}) \Big)
$$

\n
$$
-q^{-1} \Big(\langle a+2,b\rangle + \sum_{a+2 < k \leqslant b} \langle k,b\rangle U_q^-(\mathfrak{g}) \Big) \langle a\rangle
$$

\n
$$
\subset \langle a,b\rangle + (q-q^{-1}) \langle a+2,b\rangle \langle a\rangle + \sum_{a+2 < k \leqslant b} (\langle k,b\rangle \langle a\rangle U_q^-(\mathfrak{g}) + \langle k,b\rangle U_q^-(\mathfrak{g})).
$$

Hence we obtain (5.1) . We shall show the lemma by the induction on n. We may assume $n > 0$ and

$$
\overline{\langle a,b\rangle^{n-1}}\in\langle a,b\rangle^{n-1}+\sum_{\substack{\mathfrak{m}<(n-1)\langle a,b\rangle\\ \operatorname{crys}}}\mathbf{K} P(\mathfrak{m}).
$$

Hence we have

$$
\overline{\langle a,b\rangle^n}=\overline{\langle a,b\rangle}\;\overline{\langle a,b\rangle^{n-1}}\in\langle a,b\rangle^n+\sum_{a
$$

For $a < k \leq b$ and $\mathfrak{m} \in \mathcal{M}$ such that $\text{wt}(\mathfrak{m}) = \text{wt}(n \langle a, b \rangle) - \text{wt}(\langle k, b \rangle)$, we have $\mathfrak{m} \in \mathcal{M}_{[a,b]}$ and $\mathfrak{m}_b = \sum_{a \leq i \leq b} m_{i,b} \langle i, b \rangle$ with $\sum_i m_{i,b} = n - 1$. In particular, $m_{a,b} \leqslant n-1$. Hence $\langle k, b \rangle P(\mathfrak{m}) \in \mathbf{K}P(\mathfrak{m}+\langle k, b \rangle)$ and $\mathfrak{m}+\langle k, b \rangle \leqslant n \langle a, b \rangle$.

If $\mathfrak{m} \leq (n-1)\langle a,b\rangle$, then $\langle a,b\rangle P(\mathfrak{m}) \in \mathbf{K}P(\langle a,b\rangle + \mathfrak{m})$ and $\langle a,b\rangle + \mathfrak{m} \leq \text{crys}$ $n\langle a,b\rangle$.

Proposition 5.3. *For* $m \in \mathcal{M}$,

$$
\overline{P(\mathfrak{m})} \in P(\mathfrak{m}) + \sum_{\substack{\mathfrak{n} < \mathfrak{m} \\ \text{cry}}} \mathbf{K} P(\mathfrak{n}).
$$

Proof. Put $\mathfrak{m} = \sum_{i \leq j \leq b} m_{i,j} \langle i, j \rangle$ and divide $\mathfrak{m} = \mathfrak{m}_b + \mathfrak{m}_{\leq b}$. We prove the claim by the induction on b and the number of segments in \mathfrak{m}_b . Suppose $m_b = m\langle a, b \rangle + m_1$ with $m = m_{a,b} > 0$, where $m_1 = \sum_{a < i \leqslant b} m_{i,b} \langle i, b \rangle$. (i) Let us first show that

(5.2)
$$
\overline{P(\mathfrak{m}_b)} \in P(\mathfrak{m}_b) + \sum_{\mathfrak{m}' \leq \mathfrak{m}_b} \mathbf{K} P(\mathfrak{m}').
$$

We have $\overline{P(\mathfrak{m}_b)} = \overline{P(\mathfrak{m}_1)} \cdot \overline{\langle a, b \rangle^{(m)}}$. Since $\overline{P(\mathfrak{m}_1)} \in P(\mathfrak{m}_1) + \sum_{\mathfrak{m}'_1 \leq \mathfrak{m}_1} \mathbf{K} P(\mathfrak{m}'_1)$ by the induction hypothesis, and $\overline{\langle a,b\rangle^{(m)}} \in \langle a,b\rangle^{(m)} + \sum_{\mathfrak{m}'' < \mathfrak{m}'a,b\rangle} \mathbf{K}P(\mathfrak{m}''),$ we have

$$
\overline{P(\mathfrak{m}_b)} \in P(\mathfrak{m}_b) + \sum_{\mathfrak{m}'_1 < \mathfrak{m}_1, \ \mathfrak{m}'_1 \in \mathcal{M}_{[a+2,b]}} \mathbf{K} P(\mathfrak{m}'_1) \langle a,b \rangle^{(m)} + \sum_{\mathfrak{m}'_1 \leqslant \mathfrak{m}_1, \ \mathfrak{m}''_1 < \mathfrak{m}'_1 \leqslant m \langle a,b \rangle} \mathbf{K} P(\mathfrak{m}'_1) P(\mathfrak{m}'').
$$

If $\mathfrak{m}'_1 \n\leq \mathfrak{m}_1$ and $\mathfrak{m}'_1 \in \mathcal{M}_{[a+2,b]}$, then $P((\mathfrak{m}'_1)_{< b})$ and $\langle a, b \rangle^{(m)}$ commute. Hence $P(\mathfrak{m}_1')\langle a,b\rangle^{(m)} = P(\mathfrak{m}_1' + m\langle a,b\rangle)$ and $\mathfrak{m}_1' + m\langle a,b\rangle \underset{\text{cry}}{\lt} \mathfrak{m}_b$.

If $m'_1 \leq m_1, m'_1 \in \mathcal{M}_{[a+2,b]}$ and $m'' \leq m \langle a, b \rangle$, then we can write $m''_b =$ $j\langle a, b \rangle + \mathfrak{m}_2$ with $j < m$ and $\mathfrak{m}_2 \in \mathcal{M}_{[a+2,b]}$. Hence we have

$$
P(\mathfrak{m}'_1)P(\mathfrak{m}'') \in \mathbf{K}P((\mathfrak{m}'_1)_b)P(j\langle a,b\rangle)P((\mathfrak{m}'_1)_{< b})P(\mathfrak{m}_2)P(\mathfrak{m}''_{< b}).
$$

Since $(\mathfrak{m}'_1)_{< b}, \mathfrak{m}_2 \in \mathcal{M}_{[a+2,b]}$ we have $P((\mathfrak{m}'_1)_{< b}) P(\mathfrak{m}_2) P(\mathfrak{m}''_{< b}) \in \sum_{\mathfrak{n}_b \in \mathcal{M}_{[a]}}$ $\in \sum_{\mathfrak{n}_b \in \mathcal{M}_{[a+2,b]}} \mathbf{K}P(\mathfrak{n}).$ Hence we have $P(\mathfrak{m}'_1)P(\mathfrak{m}'') \in \sum_{\mathfrak{n}_b \in \mathcal{M}_{[a+2,b]}} \mathbf{K}P((\mathfrak{m}'_1)_b+j\langle a,b\rangle+\mathfrak{n})$ and $(\mathfrak{m}'_1)_b+j\langle a,b\rangle+\mathfrak{n}'_1$ $j\langle a,b\rangle + \mathfrak{n} \leq \mathfrak{m}_b$. Hence we obtain (5.2) .

(ii) By the induction hypothesis, $\overline{P(\mathfrak{m}_{< b})} \in P(\mathfrak{m}_{< b}) + \sum_{\mathfrak{m}'' \leq \mathfrak{m} < b} \mathbf{K} P(\mathfrak{m}'').$ Since $\overline{P(\mathfrak{m})} = \overline{P(\mathfrak{m}_b)} \; \overline{P(\mathfrak{m}_{, (5.2) implies that$

$$
\overline{P(\mathfrak{m})}\in P(\mathfrak{m})+\sum_{\mathfrak{m}'<\mathfrak{m}_b,\mathfrak{m}''\in \mathcal{M}_{
$$

For $\mathfrak{m}' \leq \mathfrak{m}_b$ and $\mathfrak{m}'' \in \mathcal{M}_{< b}$, we have

$$
P(\mathfrak{m}')P(\mathfrak{m}'')=P(\mathfrak{m}'_{b})P(\mathfrak{m}'_{
$$

For $\mathfrak{m}'' \leq \mathfrak{m}_{\leq b}$, we have $P(\mathfrak{m}_b)P(\mathfrak{m}'') = P(\mathfrak{m}_b + \mathfrak{m}'')$ and $\mathfrak{m}_b + \mathfrak{m}'' \leq \mathfrak{m}$. Thus we obtain the desired result.

Proposition 5.4. *For* $m \in M_\theta$ *, we have*

$$
\overline{P_{\theta}(\mathfrak{m})}\phi \in P_{\theta}(\mathfrak{m})\phi + \sum_{\mathfrak{m}' \in \mathcal{M}_{\theta}, \mathfrak{m}' \leq \mathfrak{m}} \mathbf{K} P_{\theta}(\mathfrak{m}')\phi.
$$

Proof. First note that

(5.3)
$$
P(\mathfrak{m})\phi \in \sum_{\mathfrak{n}\in(\mathcal{M}_{\theta})_{\leqslant b}} \mathbf{K} P_{\theta}(\mathfrak{n})\phi \text{ for any } b \in I_{>0} \text{ and } \mathfrak{m} \in \mathcal{M}_{[-b,b]},
$$

by the weight consideration.

For $\mathfrak{m} \in \mathcal{M}_{\theta}$, $P_{\theta}(\mathfrak{m})$ and $P(\mathfrak{m})$ are equal up to a multiple of bar-invariant scalar. Thus we have

$$
\overline{P_{\theta}(\mathfrak{m})} \in P_{\theta}(\mathfrak{m}) + \sum_{\mathfrak{m}' \in \mathcal{M}, \mathfrak{m}' \leq \mathfrak{m}} \mathbf{K} P(\mathfrak{m}')
$$

by Proposition 5.3. Hence it is enough to show that

(5.4)
$$
P(\mathfrak{m}')\phi \in \sum_{\mathfrak{n}\in \mathcal{M}_{\theta}, \mathfrak{n} \underset{\text{cry}}{\sim}} \mathbf{K} P_{\theta}(\mathfrak{n})\phi
$$

for $\mathfrak{m}' \in \mathcal{M}$ such that $\mathfrak{m}' \underset{\text{cry}}{\leq} \mathfrak{m}$ and $\text{wt}(\mathfrak{m}') = \text{wt}(\mathfrak{m})$. Put $\mathfrak{m} = \sum_{i \leq j \leq b} m_{i,j} \langle i, j \rangle$ and write $m = m_b + m_{\leq b}$. We prove (5.4) by the induction on b. By the assumption on \mathfrak{m}' , we have $\mathfrak{m}' \in \mathcal{M}_{[-b,b]}$ and $\mathfrak{m}'_b \leq \mathfrak{m}_b$. Thus $\mathfrak{m}'_b \in \mathcal{M}_{\theta}$. Hence $\mathbf{K}P(\mathfrak{m}')\phi = \mathbf{K}P_{\theta}(\mathfrak{m}'_b)P(\mathfrak{m}'_{< b})\phi.$

If $m'_b = m_b$, then $m'_{\leq b} \leq_{\text{cry}} m_{\leq b}$, and the induction hypothesis implies $P(\mathfrak{m}'_{\leq b})\phi \in \sum_{\mathfrak{n}\in \mathcal{M}_{\theta}} \mathfrak{n}_{\leq \mathfrak{m}} \mathbf{k} P_{\theta}(\mathfrak{n})\phi$. Since $P_{\theta}(\mathfrak{m}'_{b})P_{\theta}(\mathfrak{n}) = P_{\theta}(\mathfrak{m}'_{b} + \mathfrak{n})$ and $\mathfrak{m}'_b + \mathfrak{n} \leq \mathfrak{m}$, we obtain (5.4).

If $\mathfrak{m}_{b}^j \underset{\text{cry}}{\leq} \mathfrak{m}_b$, write $\mathfrak{m}' = \sum_{-b \leq i \leq j \leq b} m'_{i,j} \langle i, j \rangle$. Set $s = m_{-b,b} - m'_{-b,b} \geq 0$. Since $wt(m') = wt(m)$, we have $\sum_{j < b} m'_{-b,j} = s$. If $s = 0$, then $m'_{\leq b} \in M$ $\mathcal{M}_{[-b+2,b-2]}$, and $P(\mathfrak{m}'_{\leq b})\phi \in \sum_{\mathfrak{n}\in(\mathcal{M}_{\theta})_{\leq b}} \mathbf{K}P_{\theta}(\mathfrak{n})\phi$ by (5.3). Then (5.4) follows from $\mathfrak{m}'_b + \mathfrak{n} \underset{\text{cry}}{\leq} \mathfrak{m}$.

Assume $s > 0$. Since $\mathfrak{m}'_{\leq b} \in \mathcal{M}_{[-b,b]}$, we have $P(\mathfrak{m}'_{\leq b})\phi \in \sum_{\mathfrak{n} \in (\mathcal{M}_{\theta})}$ $\in \sum_{\mathfrak{n} \in (\mathcal{M}_{\theta})_{\leqslant b}} \mathbf{K} P_{\theta}(\mathfrak{n}) \phi$ by (5.3). We may assume $(1 + \theta)$ wt $(m'_{\leq b}) = (1 + \theta)$ wt(n) (see Remark 2.12). Hence, we have $s = 2m_{-b,b}(\mathfrak{n}) + \sum_{-b < i \leqslant b} m_{i,b}(\mathfrak{n})$. In particular, $m_{-b,b}(\mathfrak{n}) \leqslant s/2$. We have $\mathfrak{m}'_b + \mathfrak{n} \in \mathcal{M}_{\theta}$ and $P_{\theta}(\mathfrak{m}'_b)P_{\theta}(\mathfrak{n})\phi = P_{\theta}(\mathfrak{m}'_b + \mathfrak{n})\phi$. Since $m_{-b,b}(\mathfrak{m}'_b + \mathfrak{n}) \leq$ $(m_{-b,b} - s) + s/2 < m_{-b,b}$, we have $\mathfrak{m}'_b + \mathfrak{n} \leq \mathfrak{m}$. Hence we obtain (5.4).

*§***5.3. Existence of a global basis**

As a consequence of the preceding subsections, we obtain the following theorem.

Theorem 5.5.

- (i) $(L_{\theta}(0), L_{\theta}(0)^{-}, V_{\theta}(0)_{\mathbf{A}})$ *is balanced.*
- (ii) *For any* $\mathfrak{m} \in \mathcal{M}_{\theta}$, there exists a unique $G_{\theta}^{\text{low}}(\mathfrak{m}) \in L_{\theta}(0) \cap V_{\theta}(0)$ **A** such that $\overline{G_{\theta}^{\text{low}}(\mathfrak{m})} = G_{\theta}^{\text{low}}(\mathfrak{m})$ and $G_{\theta}^{\text{low}}(\mathfrak{m}) \equiv P_{\theta}(\mathfrak{m})\phi \mod qL_{\theta}(0)$.
- (iii) $G_{\theta}^{\text{low}}(\mathfrak{m}) \in P_{\theta}(\mathfrak{m})\phi + \sum_{\substack{\mathfrak{n} \leq \mathfrak{m} \\ \text{cry}}} q\mathbb{Q}[q] P_{\theta}(\mathfrak{n})\phi \text{ for any } \mathfrak{m} \in \mathcal{M}_{\theta}.$
- (iv) $\{G_{\theta}^{\text{low}}(\mathfrak{m})\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ *is a basis of the* **A***-module* $V_{\theta}(0)$ **A***, the* **A**₀*-module* $L_{\theta}(0)$ *and the* **K***-vector space* $V_{\theta}(0)$ *.*

Proof. We have already seen that $\overline{P_{\theta}(\mathfrak{m})\phi} = \sum_{\mathfrak{m}' \leq \mathfrak{m}} c_{\mathfrak{m},\mathfrak{m}'} P_{\theta}(\mathfrak{m}')\phi$ for $c_{\mathfrak{m},\mathfrak{m}'} \in \mathbf{A}$ with $c_{\mathfrak{m},\mathfrak{m}} = 1$. Let us denote by C the matrix $(c_{\mathfrak{m},\mathfrak{m}'})_{\mathfrak{m},\mathfrak{m}' \in \mathcal{M}_{\theta}}$. Then $\overline{C}C = id$ and it is well-known that there is a matrix $A = (a_{m,m'})_{m,m' \in \mathcal{M}_{\theta}}$ such that $\overline{AC} = A$, $a_{\mathfrak{m},\mathfrak{m}'} = 0$ unless $\mathfrak{m}' \leqslant$ cry \leqslant m, $a_{\mathfrak{m},\mathfrak{m}} = 1$ and $a_{\mathfrak{m},\mathfrak{m}'} \in q\mathbb{Q}[q]$ for $\mathfrak{m}' \leq$ cry m. Set $G_{\theta}^{\text{low}}(\mathfrak{m}) = \sum_{\mathfrak{m}' \leq \mathfrak{m}} a_{\mathfrak{m},\mathfrak{m}'} P_{\theta}(\mathfrak{m}')\phi$. Then we have $\overline{G_{\theta}^{\text{low}}(\mathfrak{m})} = G_{\theta}^{\text{low}}(\mathfrak{m})$ and $G_{\theta}^{\text{low}}(\mathfrak{m}) \equiv P_{\theta}(\mathfrak{m})\phi \mod qL_{\theta}(0)$. Since $G_{\theta}^{\text{low}}(\mathfrak{m})$ is a basis of $V_{\theta}(0)_{\mathbf{A}}$, we obtain the desired possible. obtain the desired results.

Errata to "Symmetric crystals and affine Hecke algebras of type B, Proc. Japan Acad., 82, no. 8, 2006, 131–136" :

- (i) In Conjecture 3.8, $\lambda = \Lambda_{p_0} + \Lambda_{p_0^{-1}}$ should be read as $\lambda = \sum_{n \in \Lambda}$ $a\overline{\in}A$ Λ_a , where $A = I \cap \{p_0, p_0^{-1}, -p_0, -p_0^{-1}\}.$ We thank S. Ariki who informed us that the original conjecture is false.
- (ii) In the two diagrams of $B_{\theta}(\lambda)$ at the end of § 2, λ should be 0.
- (iii) Throughout the paper, $A^{(1)}_\ell$ should be read as $A^{(1)}_{\ell-1}.$

References

- [A] S. Ariki, On the decomposition numbers of the Hecke algebra of *G*(*m,* 1*, n*), J. Math. Kyoto Univ. **36** (1996), no. 4, 789–808.
- [EK] N. Enomoto and M. Kashiwara, Symmetric crystals and affine Hecke algebras of type B, Proc. Japan Acad. Ser. A Math. Sci. **82** (2006), no. 8, 131–136.
- [K1] M. Kashiwara, On crystal bases of the *Q*-analogue of universal enveloping algebras, Duke Math. J. **63** (1991), no. 2, 465–516.
- [K2] $____\$, Global crystal bases of quantum groups, Duke Math. J. **69** (1993), no. 2, 455–485.
- [KM] M. Kashiwara and V. Miemietz, Crystals and affine Hecke algebras of type D, Proc. Japan Acad. Ser. A Math. Sci. **83** (2007), no. 7, 135–139.
- [Kl1] A. S. Kleshchev, Branching rules for modular representations of symmetric groups. I, J. Algebra **178** (1995), no. 2, 493–511.
- [Kl2] $____\$, Branching rules for modular representations of symmetric groups. II, J. Reine Angew. Math. **459** (1995), 163–212.
- [Kl3] $_____\$ Branching rules for modular representations of symmetric groups. III. Some corollaries and a problem of Mullineux, J. London Math. Soc. (2) **54** (1996), no. 1, 25–38.
- [Kl4] , *Linear and projective representations of symmetric groups*, Cambridge Tracts in Mathematics, 163, Cambridge Univ. Press, Cambridge, 2005.
- [LLT] A. Lascoux, B. Leclerc and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. **181** (1996), no. 1, 205–263.
	- [L] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. **3** (1990), no. 2, 447–498.
	- [M] V. Miemietz, On representations of affine Hecke algebras of type B, Ph. D. thesis, Universität Stuttgart (2005), to appear in Algebras and Representation Theory.