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Symmetric Crystals for gl

Dedicated to Professor Heisuke Hironaka on the occasion of
his seventy-seventh birthday

By

Naoya ENOMOTO* and Masaki KASHIWARA ™

Abstract

In the preceding paper, we formulated a conjecture on the relations between
certain classes of irreducible representations of affine Hecke algebras of type B and
symmetric crystals for gl . In the present paper, we prove the existence of the
symmetric crystal and the global basis for gl .

81. Introduction

Lascoux-Leclerc-Thibon ([LLT]) conjectured the relations between the rep-
resentations of Hecke algebras of type A and the crystal bases of the affine Lie
algebras of type A. Then, S. Ariki ([A]) observed that it should be understood
in the setting of affine Hecke algebras and proved the LLT conjecture in a more
general framework. Recently, we presented the notion of symmetric crystals
and conjectured that certain classes of irreducible representations of the affine
Hecke algebras of type B are described by symmetric crystals for gl ([EK]).

The purpose of the present paper is to prove the existence of symmetric
crystals in the case of gl .

Let us recall the Lascoux-Leclerc-Thibon-Ariki theory. Let H2 be the
affine Hecke algebra of type A of degree n. Let Kﬁ be the Grothendieck group
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of the abelian category of finite-dimensional HA-modules, and KA = Dr>0 Kﬁ.
Then it has a structure of Hopf algebra by the restriction and the induction.
The set I = C* may be regarded as a Dynkin diagram with I as the set of
vertices and with edges between a € I and ap?. Here p; is the parameter of the
affine Hecke algebra usually denoted by ¢. Let g; be the associated Lie algebra,
and g; the unipotent Lie subalgebra. Let U; be the group associated to g; .
Hence g; is isomorphic to a direct sum of copies of Aél_)l if p? is a primitive
¢-th root of unity and to a direct sum of copies of gl if p; has an infinite
order. Then C ® K is isomorphic to the algebra & (Ur) of regular functions on
Ur. Let U,(gs) be the associated quantized enveloping algebra. Then U, (g91)
has an upper global basis {G"P(b) }yep(o0)- By specializing @ Clg, ¢~ *]G"P(b)
at ¢ = 1, we obtain &(Ur). Then the LLTA-theory says that the elements
associated to irreducible HA-modules corresponds to the image of the upper
global basis.

In [EK], we gave analogous conjectures for affine Hecke algebras of type
B. In the type B case, we have to replace U, (gr) and its upper global basis
with symmetric crystals (see § 2.3). It is roughly stated as follows. Let HE be
the affine Hecke algebra of type B of degree n. Let KE be the Grothendieck
group of the abelian category of finite-dimensional modules over HE, and KB =
@n>0 Kf‘:. Then K® has a structure of a Hopf bimodule over KA. The group
Ut has the anti-involution # induced by the involution a +— a~! of I = C*. Let
U? be the 6-fixed point set of U;. Then &(U?) is a quotient ring of &(Uy).
The action of &(Ur) ~ C @ K* on C ® KB, in fact, descends to the action of
o).

We introduce Vg()) (see § 2.3), a kind of the g-analogue of &(UY). The
conjecture in [EK] is then:

(i) Vp(X) has a crystal basis and a global basis.

(ii) K® is isomorphic to a specialization of Vy(\) at ¢ = 1 as an &(U;)-module,
and the irreducible representations correspond to the upper global basis
of Ve(\) at ¢ = 1.

Remark.  In [KM], Miemietz and the second author gave an analogous
conjecture for the affine Hecke algebras of type D.

In the present paper, we prove that Vy(A) has a crystal basis and a global
basis for g = gl and A = 0.

More precisely, let I = Zyqq be the set of odd integers. Let «; (i € I) be
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the simple roots with
2 ifi =4,
(ai,aj) = -1 ifi:in,

0 otherwise.

Let 6 be the involution of I given by 6(i) = —i. Let By(gl,,) be the algebra
over K:=Q(q) generated by F;, F;, and invertible elements T; (i € I) satisfying
the following defining relations:

(i) the T;’s commute with each other,
(ii) Ty = T; for any 1,
(iii) T,E;T; ! = ¢l@itee@ ) E; and T, F; T = ¢(*t@0@ =) F; for i, j € I,
(iv) EiFj = q ) FE; + (8;,; + dp(sy,;, ;) for 4,5 € I,
(v) the E;’s and the F;’s satisfy the Serre relations (see Definition 2.1 (4)).

Then there exists a unique irreducible By (gl )-module V4 (0) with a generator
¢ satistying E;¢ = 0 and T;¢p = ¢ (Proposition 2.11). We define the endomor-
phisms E; and F; of V4(0) by

Ea = Z Fi("_l)an, Fia = Z fi("H)am

n>1 n>0

when writing
a= Z Fi(n)an with F;a, = 0.
n=0

Here F(") = F'/[n]! is the divided power. Let A be the ring of functions
a € K which do not have a pole at ¢ = 0. Let Lg(0) be the Ag-submodule of
V4(0) generated by the elements F}, - - ”gb (£ >0,i1,...,9¢ € I). Let By(0)
be the subset of Lg(0)/qLg(0) consisting of the F;, - - - Ez(j)’s. In this paper, we
prove the following theorem.

Theorem (Theorem 4.15).
(i) FyLg(0) C Lg(0) and E;Lg(0) C Lg(0),
(i1) Bg(0) is a basis of Ly(0)/qLe(0),

(iii) F;Bg(0) C Bg(0), and E;By(0) C By(0) LI {0},
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(iv) EEZ(I)) =b for any b € By(0) such that E;ib+0, and Elﬁ(b) = b for any
be B@(O).

By this theorem, Bg(0) has a similar structure to the crystal structure.
Namely, we have operators F;: By(0) — By(0) and E;: By(0) — By(0) L {0},
which satisfy (iv). Moreover ¢;(b) := max {n € Z>o | E{Lb € Bg(O)} is finite.
We call it the symmetric crystal associated with (I, ). Contrary to the usual
crystal case, Ea(i)b may coincide with Eib in the symmetric crystal case.

Let — be the bar operator of V4(0). Namely, — is a unique endomorphism
of V4(0) such that ¢ = ¢, @ = av and Fu = F;v for a € K and v € Vp(0).
Here a(q) = a(q™!). Let Vy(0)a be the smallest submodule of V4(0) over
A :=Q[q,q '] such that it contains ¢ and is stable by the Fi(")’s.

Then we prove the existence of global basis:

Theorem (Theorem 5.5).

(i) For any b € By(0), there exists a unique Gi™(b) € Vy(0)a N Lg(0) such
that G (b) = Gi™(b) and b = Gi™(b) mod qLg(0),

(i) {GE™(b)}oen,(0) is a basis of the Ag-module Ly (0), the A-module Vy(0)a
and the K-vector space Vy(0).

We call G (b) the lower global basis. The By(gl.,)-module V4(0) has a
unique symmetric bilinear form (s, «) such that (¢,¢) = 1 and F; and F; are
transpose to each other. The dual basis to {Gle"w(b)}bege(o) with respect to
(e, ) is called an upper global basis.

Let us explain the strategy of our proof of these theorems. We first con-
struct a PBW type basis {Py(m)¢}n of Vy(0) parametrized by the 6-restricted
multisegments m. Then, we explicitly calculate the actions of E; and F; in
terms of the PBW basis { Py(m)¢}y,. Then, we prove that the PBW basis gives
a crystal basis by the estimation of the coefficients of these actions. For this
we use a criterion for crystal bases (Theorem 4.1).

82. General Definitions and Conjectures

§2.1. Quantized universal enveloping algebras and
its reduced g-analogues

We shall recall the quantized universal enveloping algebra U,(g). Let I be
an index set (for simple roots), and @ the free Z-module with a basis {«;}ier.
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Let (o, ¢): @xQ — Z be a symmetric bilinear form such that (a;, a;)/2 € Zsg
for any ¢ and (o, ;) € Zgo for i # j where o) :=2¢; /(;, ;). Let ¢ be an
indeterminate and set K := Q(q). We define its subrings Aj, A and A as
follows.

Aog={f € K| f is regular at ¢ =0},
={f €eK| f is regular at ¢ = o},
A =Qlg,q7 .
Definition 2.1.  The quantized universal enveloping algebra U,(g) is

the K-algebra generated by elements e;, f; and invertible elements ¢; (i € I)
with the following defining relations.

(1) The t;’s commute with each other.
(2) tje; tj_1 = ¢l ¢; and tjf,'tj_l = ¢ (@) f; for any i,j € I.

ti—t; !
(3) lei, f;] = 6ij——L5 for i, j € I. Here q; := q(@)/2,

2 %

(4) (Serre relation) For i # j,
b b
Z (b K, Z f(k f]f(b k) _
k=0 k=0

Here b =1 — (o, ;) and

= cf /KL, £ = f/[R:!
[k]z‘ = (af —aq; )/(Qi -4 ), Uf]i! =[] [K]; .
Let us denote by U, (g) (resp. U, (g)) the K-subalgebra of U, (g) generated

by the f;’s (resp. the e;’s).
Let e; and e} be the operators on U, (g) (see [K1, 3.4]) defined by

fer,a) = LT E G0 ¢y,
qi — q;

These operators satisfy the following formulas similar to derivations:
€}(ab) = €}(a)b + (Ad(t;)a)elb,

ef(ab) = aefb+ (efa)(Ad(t;)b).

(2.1)
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Note that in [K1], the operator e/ was defined. It satisfies e/ = —oe), 0 —, while
ef satisfies ef = % o e} o*. They are related by ef = Ad(t;) oe/.
The algebra U, (g) has a unique symmetric bilinear form (', «) such that
(1,1) =1 and
(eja,b) = (a, f;ib) for any a,b € U, (g).

It is non-degenerate and satisfies (efa,b) = (a,bf;). The left multiplication of
fj.€; and e have the commutation relations

eify = a~ ) fiel + 8, el f = fief + 8 Ad(t),
and both the e}’s and the e}’s satisfy the Serre relations.

Definition 2.2.  The reduced g-analogue B(g) of g is the K-algebra gen-
erated by ¢} and f;.

§2.2. Review on crystal bases and global bases

Since e and f; satisfy the g-boson relation, any element a € U, (g) can be
uniquely written as

a= (™), with e'a, = 0.
> ;

n=0

n
Here fi(") = %
!

Definition 2.3. We define the modified root operators e; and ﬁ on
Uy (g) by
gia = Z fi(nfl)an7 fia — Z fi(n+1)an-
n>1 n=>0

Theorem 2.4 ([K1]).  We define

Lio)= > Aofi,--fi, 1C UL (9),

030, 41,...,i€1

B(c0) = {f o fi, -1 modqL(co) | £> 0,41, ,ig € 1} C L(00)/qL(0).
Then we have
(i) &L(co) C L(c0) and f;L(c0) C L(co),

(ii) B(o0) is a basis of L(o0)/qL(00),
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(i) f;B(co) C B(co) and ¢;B(c0) C B(oo) U {0}.
We call (L(o0), B(00)) the crystal basis of U, (g).

Let — be the automorphism of K sending ¢ to ¢~ *.

with A.
Let V be a vector space over K, Ly an Ag-submodule of V', Lo, an A -
submodule, and VA an A-submodule. Set F := Lo N Lsg N V.

Then A, coincides

Definition 2.5 ([K1], [K2, 2.1]).  We say that (Lo, Lo, Va) is balanced
if each of Loy, Lo, and Va generates V as a K-vector space, and if one of the

following equivalent conditions is satisfied.
(i) E — Lo/qLg is an isomorphism,

)
(i) B — Luoo/q ' Lo is an isomorphism,
(iii) (LoNVa)® (¢ Loo NVA) — VA is an isomorphism,
)

(iv) Ag®@g F — Lo, Acc @ F — Lo, AQQ E — VA and K®g E — V are
isomorphisms.

Let — be the ring automorphism of U,(g) sending g, t;, e;, fi to ¢~ 1, ti_l,

€i, fi-
Let U,(g)a be the A-subalgebra of U,(g) generated by egn), fi(n) and t;.
Similarly we define U, (g)a.-

Theorem 2.6.  (L(00),L(c0)™,U; (g)a) is balanced.
Let
Go: L(00)/qL(00)—=5E := L(co) N L(c0) ™ N U, (9)a

be the inverse of E——L(c0)/qL(cc). Then {G°¥(b) | b € B(co)} forms a basis

of U; (g). We call it a (lower) global basis. It is first introduced by G. Lusztig
([L]) under the name of “canonical basis” for the A, D, E cases.

Definition 2.7. Let
{G"(b) | b € B(oo)}

be the dual basis of {G!°¥(b) | b € B(co)} with respect to the inner product
(e, ). We call it the upper global basis of U, (g).
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§2.3. Symmetric crystals

Let # be an automorphism of I such that 2 = id and (@giy, o(5)) =

(cvi, o). Hence it extends to an automorphism of the root lattice @ by 6(«;)
(i), and induces an automorphism of U, (g).

Definition 2.8. Let By(g) be the K-algebra generated by E;, F;, and
invertible elements T; (i € I) satisfying the following defining relations:

(i) the T;’s commute with each other,
(ii) Ty = T; for any i,
(ili) TiE;T; " = ¢t ) B and T, F;T; = ¢l@itee@—) F; fori,j € I,
(iv) EiFj = q @) FE; + (8;,5 + 0oy ;T;) for i, € 1,
(v) the E;’s and the F;’s satisfy the Serre relations (Definition 2.1 (4)).
We set E™ = E"/[n];! and F"™) = Fr/[n];!.

Lemma 2.9.  Identifying U, (g) with the subalgebra of By(g) by the mor-
phism f; — F;, we have
(2.2) T;a = (Ad(titegiy)a)T;,
(2.3) Eia = (Ad(t;)a) E; + eja + (Ad(t;)(egiya)) Ti

forae U, (g).

Proof. The first relation is obvious. In order to prove the second, it is
enough to show that if a satisfies (2.3), then f;a satisfies (2.3). We have

(g~ @) [ Ei + 6 j + Sp(3) 5 Ti)ar

g0 £;((Ad(t:)a) i + eja + (Ad(t;)(ef;ya)) Th)
05,50 4 093y 5 (Ad(titg(i))a)Ti

= ((Ad(t:)(fja)) Ei + €j(fia) + (Ad(t:) (s (fia)) T

Ei(f;a)

O

The following lemma can be proved in a standard manner and we omit the
proof.
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Lemma 2.10.  Let K[T/5;i € I] be the commutative K-algebra gener-
ated by invertible elements T; (i € I) with the defining relations Ty = T;.
Then the map Uy (g) ® K[TFicll® Uf(g) — By(g) induced by the multipli-
cation is bijective.

Let A € Py :={X € Hom(Q, Q) | (o, \) € Z> for any i € I} be a domi-

K2

nant integral weight such that 6(\) = A.
Proposition 2.11.

(i) There exists a Bp(g)-module Vo(X) generated by a non-zero vector ¢y such
that

(a) E;pr =0 for anyiel,
(b) Tipx = g @M gy foranyiel,
(c) {u e Vo(\) | Bsu=0 for anyi € I} = Key.

Moreover such a Vy(A) is irreducible and unique up to an isomorphism.

(i) there exists a unique symmetric bilinear form (o, ) on Vy(\) such that
(dx, @2) = 1 and (Eju,v) = (u, Fyv) for any i € I and u,v € Vy(\), and
it is non-degenerate.

Remark 2.12.  Set Py = {u € P | 6(n) = p}. Then Vp(A) has a weight
decomposition

VoA = @D Vo),

HEPy
where Vp(N),, = {u € Vop(N) | Tyu = > u}. We say that an element u of
Vo(A) has a 8-weight p and write wtg(u) = pif u € Vop(X),. We have wtg(E;u) =
wto(u) + (o + ag(s)) and wtg(Fiu) = wtg(u) — (a; + ag(i))-

In order to prove Proposition 2.11, we shall construct two Byg(g)-modules,
analogous to Verma modules and dual Verma modules.

Lemma 2.13. Let U, (g)¢) be a free Uy (g)-module with a generator ¢\ .
Then the following action gives a structure of a By(g)-module on U ()¢} :

Ti(adh) = ¢'*M (Ad(tite(y)a) dh,

(2.4) Ei(adh) = (¢ja + ¢ N Ad(t;)(ef;)a)) A,
Fi(ag)) = (fia)¢)

foranyi €I and a € U, (g).

Moreover By(g)/ > (By(9)E: + Bo(9)(T; — ¢')) — U (9)¢) is an iso-
i€l
morphism.
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Proof. We can easily check the defining relations in Definition 2.8 except
the Serre relations for the E;’s.

Fori#jel set S=3"_(-1)"EMEEY™ where b=1— (hi, a;). Tt
is enough to show that the action of S on U, (g)¢), is equal to 0. We can easily
check that SFy = ¢~ ¢t [ S Since S¢y = 0, we have SU, (g)¢h = 0.

Hence U, (g)#\ has a Bp(g)-module structure.

The last statement is obvious. a

Lemma 2.14.  Let U (g)¢X be a free U, (g)-module with a generator
@\. Then the following action gives a structure of a Bg(g)-module on U (g)@}:

T;(agy) = q>+N (Ad(titg(iy)a) By,
(2.5) Ei(agh) = (eja)¢y,
Fi(ag}) = (fia + ¢ N (Ad(t:)a) faci)) OX

foranyi €I and a € U, (g). Moreover, there exists a non-degenerate bilinear
form (o, ) U (9)\ xU, (9)9) — K such that (Fju,v) = (u, Ejv), (Eju,v) =
(u, Fyv), (Tiu,v) = (u, Tv) foru € Uy (g)¢) and v € Uy (g)dy, and (¢}, ¢}) =
1.

Proof. There exists a unique symmetric bilinear form (e, «) on U, (g)
such that (1,1) = 1 and f; and e} are transpose to each other. Let us define
(o) +): Uy (9)64 x Uy (2)6 — K by (ad, b6) = (a,b) for a € U (g) and b e
U, (g)- Then we can easily check (Fyu,v) = (u, Eyv), (Tju,v) = (u, T;v). Since
ef is transpose to the right multiplication of f;, we have (F;u,v) = (u, Fjv).
Hence the action of E;, F;, T; on U, (g)¢% satisfy the defining relations in
Definition 2.8. 0

Proof of Proposition 2.11. Since E;¢y = 0 and ¢} has a §-weight A, there
exists a unique Bg(g)-linear morphism ¢: U, (g)¢) — U, (g)¢% sending ¢ to
Py Let Vy(A) be its image (U, (g)@)-

(i) (c) follows from {u € U, (g) | €ju =0 for any i} = K and U, (g)¢} D
Vo(A). The other properties (a), (b) are obvious. Let us show that Vy(A) is
irreducible. Let S be a non-zero By(g)-submodule. Then S contains a non-zero
vector v such that F;u = 0 for any i. Then (c) implies that v is a constant
multiple of ¢5. Hence S = Vp(A).

Let us prove (ii). For u,u" € Uy (g)¢), set (u,u")) = (u,¥(u’)). Then it is
a bilinear form on U, (g)¢) which satisfies

((¢l)\7 ¢l)\)) =1, ((Flu7u/)> = ((U7Eiu,)>ﬂ ((Eiuau,» = ((’LL7 Fiu,))? and

@6) (o) = (. T,
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It is easy to see that a bilinear form which satisfies (2.6) is unique. Since
(v, u)) also satisfies (2.6), (u,u")) is a symmetric bilinear form on U, (g)¢).
Since t(u') = 0 implies (u,u’)) = 0, (u,u’)) induces a symmetric bilinear form
on Vp(A). Since (+, +) is non-degenerate on U, (g), ((+, +)) is a non-degenerate
symmetric bilinear form on Vy(A).

1

Lemma 2.15.  There exists a unique endomorphism — of Vy(\) such
that ¢y = ¢ and av = av, Fyv = F;v for any a € K and v € Vy()\).

Proof. The uniqueness is obvious.

Let ¢ be an anti-involution of U, (g) such that £(q) = ¢~" and £(f;) =
fo(i). Let p be an element of Q ® P such that (p, ;) = (i, ag;y)/2. Define
c(p) = ((u+p,0(n+p) — (5,0(p))) /2 + (A, ) for € P. Then it satisfies

(i) = el = ai) = (A + 1, ag(i))-

Hence c takes integral values on Q := )", Za.
We define the endomorphism @ of U, (g)#y by ®(a¢y) = g~ *M¢(a)gy for
a € Uy (g),- Let us show that

(2.7) O(F;(ady)) = F;®(apy) for any a € U, (9)-
For a € U; (g),, we have

O(Fi(agy)) =@ (fia + ¢ Mafy) oX
= (q*C(H*ai)g(a)fe(i) + q*(ai,>\+u)76(u*ae(n)fi€(a)) v,

On the other hand, we have

Fi®(ag}) = Fi(¢~"¢(a)g5)
=W (fi(a) + ¢ IE(a) for)) 85

Therefore we obtain (2.7).
Hence @ induces the desired endomorphism of Vp(\) C U (g)#Y. O

Hereafter we assume further that
there is no ¢ € I such that (i) = i.

We conjecture that Vy(\) has a crystal basis under this assumption. This means
the following. Since E; and F; satisfy the g-boson relation, any u € Vy(\) can be
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uniquely written as u = Zn>0 Fi(n)un with F;u, = 0. We define the modified
root, operators EZ and ﬁl by:

Ei(w) =" F" Vu, and Fy(u) = Y F" PV,

n>1 n=0

Let Lg(\) be the Ag-submodule of Vy(\) generated by Fj, - Fj,¢x (£ > 0 and
i1,...,0¢ € I), and let By(A) be the subset

{ﬁ - Fy,¢5 mod qLg(A) | £ 0, iy, ..., i¢ € I}
of Lo(A)/qLe(N).

Conjecture 2.16.  For a dominant integral weight A such that 8(A) = A,
we have

(

2) By()) is a basis of Ly(A\)/qLg()N),
6(\) C Bg()), and E;Bg()\) C By(\) L {0},
(

= b for any b € By(\) such that E;b # 0, and E;F;(b) = b for any
b€ Bg(A).

As in [K1], we have

Lemma 2.17.  Assume Conjecture 2.16. Then we have
(i) Lo(A) ={v € Vo(N) | (Lo(A),v) C Ao},

(ii) Let (o, ¢)o be the Q-valued symmetric bilinear form on Lg(X\)/qLg(N)
induced by («, ). Then Bg(\) is an orthonormal basis with respect to

('a ')0'

Moreover we conjecture that Vy(\) has a global crystal basis. Namely we
have

Conjecture 2.18.  The triplet (Lg()\), Lg(A)~, Vo(A)™) is balanced.

Here Vo(N)R¥ := U, (g)adx.

Its dual version is as follows.
Let us denote by Vy(A)y the dual space {v € Vy(A) | (Vo(N)g¥,v) C A}.
Then Conjecture 2.18 is equivalent to the following conjecture.
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Conjecture 2.19.  (Lg(A),c(Lo(N)), Vo(AN) ) is balanced.

Here ¢ is a unique endomorphism of Vy(\) such that ¢(¢y) = ¢ and
clav) = ac(v), ¢(Ew) = Eic(v) for any a € K and v € Vp(A\). We have
(c(v'),v) = (v, D) for any v,v" € Vp(A).

Note that Vp(A)} is the largest A-submodule M of V() such that M is
invariant by the Ei(")’s and M NKoy = Ao,.

By Conjecture 2.19, Lg(A) N ¢(Lg(N)) N Vo(A)'s — Lg(X)/qLe(N) is an
isomorphism. Let G,” be its inverse. Then {Gy” (D) }sep, (2 is a basis of Vi(X),
which we call the upper global basis of Vy(X). Note that {G"(b)}pep, () is the
dual basis to {G§™ (b) }pen, (1) With respect to the inner product of Vp(A).

We shall prove these conjectures in the case g = gl,, and A = 0.

§3. PBW Basis of Vj(0) for g =gl
83.1. Review on the PBW basis
In the sequel, we set I = Zyqq and

2 fori=j,
(i) = ¢ —1for j =i+ 2,
0 otherwise,

and we consider the corresponding quantum group U,(gl,,). In this case, we
have g; = g. We write [n] and [n]! for [n]; and [n];! for short.

We can parametrize the crystal basis B(oo) by the multisegments. We
shall recall this parametrization and the PBW basis.

Definition 3.1.  For i,j € I such that ¢ < j, we define a segment (3, j)
as the interval [i,j] C I := Zoqa- A multisegment is a formal finite sum of
segments:

1<
with m; ; € Zxo. We call m;; the multiplicity of a segment (i, j). If m; ; > 0,
we sometimes say that (i, j) appears in m. We sometimes write m; ;(m) for m; ;.
We sometimes write (i) for (i,i). We denote by M the set of multisegments.
We denote by () the zero element (or the empty multisegment) of M.

Definition 3.2.  For two segments (i1,j1) and (ia,j2), we define the
ordering >pgw by the following:
J1> 72
(i1,71) ZpBW (i2,j2) <= { or
J1=Jj2 and i1 > ia.
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We call this ordering the PBW-ordering.

Definition 3.3.  For a multisegment m, we define the element P(m) €
Uy (gly,) as follows.

(1) For a segment (7, j), we define the element (i, j) € U (gl.,) inductively by

(i,9) = fi,
(i,9) = (i,5 = 2)(,3) — 4(4,4) (i, 5 —2) fori<j.

(2) For a multisegment m = Z mi; (1, 7), we define
(Y]
N

P(m) = [T (i,5)").

N
Here the product || is taken over segments appearing in m from large to
small with respect to the PBW-ordering. The element (3, j)(m“ ) is the
divided power of (i, j) i.e.

1

W<’L,j>n for n > O,
<Z7.]>(n) =31 for n = 0,
0 for n < 0.
Hence the weight of P(m) is equal to wt(m):=— > m; jay: t;P(m)t; " =

1<k

gt m) P (m).

Theorem 3.4 ([L]).  The set of elements {P(m) | m € M} is a K-basis
of Uy (9ls). Moreover this is an A-basis of Uy (gl )a- We call this basis the
PBW basis of U (gls)-

Definition 3.5. For two segments (i1, j1) and (i2,j2), we define the
ordering >, by the following:
J1>J2
<i17j1> Zery <i27j2> = 4§ or
J1 = J2 and 71 < ia.

We call this ordering the crystal ordering.

Example 3.6. The crystal ordering is different from the PBW-ordering.
For example, we have (—1,1) >¢y (1,1) >cy (—1), while we have (1,1) >ppw
<—17 1> >pPBW <—1>
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Definition 3.7.  We define the crystal structure on M as follows: for
m=>"m;;({i,j) € Mand i€l set A,(j)(m) = Y prsk(Mik — Miyopi9) for
k > i. Define ¢;(m) as max {A,(f)(m) | k> z} > 0.

(i) Ife;(m) = 0, then define &;(m) = 0. If &;(m) > 0, let ke be the largest k > i
such that e;(m) = A" (m) and define &(m) = m — (i, ko) + 0k, 2 (i +2, ke).

(ii) Let ks be the smallest k& > ¢ such that ;(m) = A,(;)(m) and define f;(m) =
m— 5kf;éi<i + 2, kf> + <i, kf>.

Remark 3.8.  For i € I, the actions of the operators ¢; and fv, onme M
are also described by the following algorithm:

Step 1. Arrange the segments in m in the crystal ordering.

Step 2. For each segment (i, j), write —, and for each segment (i 4 2, j), write
+.

Step 3. In the resulting sequence of + and —, delete a subsequence of the form
+— and keep on deleting until no such subsequence remains.

Then we obtain a sequence of the form — — -+ — 4+ + -+ 4.
(1) €;(m) is the total number of — in the resulting sequence.
(2) fi(m) is given as follows:

(a) if the leftmost + corresponds to a segment (i 4 2,7), then replace it
with (7, j),

(b) if no + exists, add a segment (i,) to m.

(3) €;(m) is given as follows:

(a) if the rightmost — corresponds to a segment (i,7) with ¢ < j, then
replace it with (i + 2, j),

(b) if the rightmost — corresponds to a segment (i,7), then remove it,

(c) if no — exists, then €;(m) = 0.

Let us introduce a linear ordering on the set M of multisegments, lexico-
graphic with respect to the crystal ordering on the set of segments.
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Definition 3.9. Form = ) m;;(i,j) € M and m' = > m] (i, j) €
i i<
M, we define m’ ny m if there exist ig < jo such that mj ., < mq, j,, m

m; j, for i <ig, and m; ; = m; ; for j > jo and i < j.

I
%,J0

Theorem 3.10.
(i) L(o0) = mg?w AoP(m).
(i) B(oc) = {P(m)mod gL(oc) | m € M}.
(iii) We have

e;iP(m) = P(¢é;(m)) modqL(c0),
fiP(m) = P(fi(m)) modgL(co).
Note that €; and f; in the left-hand-side is the modified Toot operators.

(iv) We have L
P(m) € P(m)+ Y  AP(mw).

m’ <m
cry

Therefore we can index the crystal basis by multisegments. By this the-
orem we can easily see by a standard argument that (L(oco), L(o0)™, U, (g)a)
is balanced, and there exists a unique G'*¥(m) € L(co) N U, (g)a such that
GV (m)~ = G°Y(m) and G%(m) = P(m) mod gL(c0). Then {GY(m)}mem

is a lower global basis.

§3.2. Of-restricted multisegments

We consider the Dynkin diagram involution 6 of I := Z,qq defined by
0(i) = —ifori el

We shall prove in this case Conjectures 2.16 and 2.18 for A = 0 (Theorems 4.15

and 5.5).
We set
Vo(0) :=Ba(gle)/ 3 (Bo(alo) Ei + Bo(gloo)(Ti — 1) + By(aloo ) (Fi — Fy(iy))

iel

~ Uy (9ls0)/ S Uy (8e0)(fi = foci))-
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Let ¢ be the generator of 179(0) corresponding to 1 € By(gl,,). Since F;¢) =
(fi + foi)) P60 = Fo(iydo, we have an epimorphism of By(gl,,)-modules

(3-1) Vo (0) — V5(0).
We shall see later that it is in fact an isomorphism (see Theorem 4.15).

Definition 3.11. If a multisegment m has the form
m= Z msj <Za J>7
—J<isy

we call m a 0-restricted multisegment. We denote by My the set of f-restricted
multisegments.

Definition 3.12.  For a f-restricted segment (7, j), we define its modi-
fied divided power by

(i, )™ = W@mm (i # —j),

1
,>[m] _ !

(i,7

—~

We understand that (i, 7)™ is equal to 1 for m = 0 and vanishes for m < 0.

Definition 3.13.  For m € My, we define Py(m) € U, (gl,) C Ba(gl)
by

Py(m) = ﬁ (i,j>[m”].

Here the product ﬁ is taken over the segments appearing in m from large to
small with respect to the PBW-ordering.

If an element m of the free abelian group generated by (i, j) does not belong
to Mg, we understand Py(m) = 0.

We will prove later that {Py(m)¢}mer, is a basis of Vy(0) (see Theo-
rem 4.15). Here and hereafter, we write ¢ instead of ¢¢ € Vy(0).

§3.3. Commutation relations of (i, j)

In the sequel, we regard U, (gl,,) as a subalgebra of By(gl,,) by fi — F;.
We shall give formulas to express products of segments by a PBW basis.

Proposition 3.14.  Fori,j, k,l € I, we have
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(1) (6,4)(k, ) = (k, ) (i, §) fori < j, k<l andj<k—2,
(2) (@00 +2,k) = (i k) + (i + 2,k) (i, j) fori <j <k,
(3) (G, k)i £) = (@, ) (G, k) fori <j <k <,

(4) (i, k)G, k) = a7 (4, k) (i k) fori<j <k,

(5) (i, 5)(i, k) = q= (i, k) (i, j) fori < j <k,

(6) (i, k)(j,0) = (4, 0)(i, k) + (g71 — @) (3, 0)(j, k) fori < j<k <L

Proof. (1) is obvious. We prove (2) by the induction on k—j. If k—j = 2,
it is trivial by the definition. If j < k — 2, then (k) and (7, j) commute. Thus,
we have

(G, )G+ 2, k)=, 5) (G + 2,k —2)(k) — q(k)(j + 2,k — 2))

= (i, k = 2) + (g + 2,k — 2)(i, 5)) (k) — q(k) (5, 5) (G + 2,k — 2)
(i,k —2)(k) + q(j + 2,k — 2)(k) (3, J)

—q(k)((i k= 2) + q(j + 2,k — 2)(i, j))
= (i, k) + (j + 2,k) (i, j).

In order to prove the other relations, we first show the following special cases.
Lemma 3.15.  We have for any j € 1

(@) (G —=2,0)0) =¢G00 —2.4) and (j)(G.5+2) = ¢ (4,5 + 2)(j),

(b) NG -27+2)=0-27+2)0),

(© G=2,00,0+2) =i +2)0—2.0) + @' =) — 2,5 +2)(5).
Proof. The first equality in (a) follows from

<.7 - 27.7><.7> - q71<‘7><‘7 - 27.7)
= (fimafy —afifi—2)fi — ¢ fi(Fimafy — afifi-2)
= fi—of? = (a+a ) fifi—2fi + f1fi—2=0.

We can similarly prove the second.
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Let us show (b) and (c). We have, by (a)

(G—2,000,0+2) =G — 2,0 (G +2) —ali +2)())
=¢GN -2,00+2) —q((G—2.7+2) +a(i +2)(G —2,5) ()
q

(G- 2,0+ 2) +ali +2)( - 2,5)
(3.2) =i — 2,7 +2)(J) — (i +2)(5){F — 2,7)

= ((NG+2)—qG+2)U) G —2.4)
+¢ NG —20+2) —q(i —2,7+2)()
=i +20 20+ UG —2,+2) —q(f — 2,5 +2){j)

Similarly, we have

(G=2,0)0,0+2)= (G —2)() —a(i){G —2) 0,7 +2)
=q ' =2)(5,5 +2)() —a() (G — 2,7 +2) + (5,5 +2)(j — 2))
=q (-2 +2) +q0, i + 20 - 2) ()
(3.3) —q()G —2,5+2) —q(4,j +2)(5){j — 2)
=G, +2) (G —2)() — () —2)
+q7NG = 2,5+ 2)(5) —a(i) (i — 2,5 +2)
=i +20 -2+ =2,7+2){) — a0 —2,7+2).
Then, (3.2) and (3.3) imply (b) and (c). |

We shall resume the proof of Proposition 3.14. By Lemma 3.15 (b), (i, k)
commutes with (j) for ¢ < j < k. Thus we obtain (3).

We shall show (4) by the induction on k — j. Suppose k —j = 0. The case
i = k — 2 is nothing but Lemma 3.15 (a).

If i < k — 2, then

(i, k) (k) = (i, k = 4)(k = 2, k) (k) — q(k = 2, k) (i, k = 4)(k)
=q (k) (i, k — ) (k — 2, k) — (k)(k — 2,k) (i, k — 4) = ¢~ (k) (i, k).

Suppose k — j > 0. By using the induction hypothesis and (3), we have

(1, k) (j, k) = (i, k) ()T + 2, k) — (i, k) (G + 2, k) ()
@)@ k)G +2,k) = (G +2,k) (k) ()
=q (2, k) k) — G+ 2, k)G k) = ¢ G, k) (0 ).

Similarly we can prove (5).
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Let us prove (6). We have

(i, k) (3, 0) = ((i,5 — 2) (4, k) — q(4, k) (i, j 2>)< >
q 1<w—2><9€><ﬂf ) = q(3 k)Y ((i, 0) + q(, ) (i, 5 — 2))
g (i, 0 + q(5, 0)(i, 5 — 2)) (j, k)

—q(i,0)(J, k) — q(4, ) (4, k) (i, 7 — 2)
=, 0 k) + (¢ — )i, O, k).

Lemma 3.16.

(i) For1<i<j, we have (—j,—i)$ = (i, j)o.

(ii) For 1 <i < j, we have (—j,i)¢ = ¢~ {—i, j)¢.

Proof. (i) If i =j, it is obvious. By the induction on j — i, we have

—j, —i — 2)(—i) — q(—i)(—j, =i — 2))¢
—j, —i = 2)(i) — q{—i)(i + 2,5))

i) (—j,—i—2) — qli + 2,5)(—i))$

i) (i +2,5) — (i +2,5)(i)é = (i, §)o.

(ii) By (i), we have

(=5, 1) = ({(—j, ~1)(1,0) — q(1,3){~5,~1))
= (=4, —1)(—i,—1) — q(1,9)(1,5))¢
= (g~ (—i,~1)(~j, —1) — (1,5)(1,4))
= (g~ (=i, —=1)(1, 5) — (1, 5){—i, 1)) = ¢~ (~i, j)o.

Proposition 3.17.
(i) For a multisegment m =3, .m; (i, j), we have

Ad(tg)P(m) = g2 (k=2 =mik) T30 (Mat2.5=m15) p(m).



SYMMETRIC CRYSTALS FOR gl 857

(i)
ql—n<i>(n—1) ka- =7 = j,
ei )™ =3 (1= g (i +2,)(i,5) "V if k=i <},
0 otherwise,
g (@)= ifi=j=k,
eii, )™ = (1= g =", )V, —2) ifi<j=k,
0 otherwise.

Proof. (i) is obvious. Let us show (ii). Tt is obvious that e} (i, )™ = 0
unless i < k < j. Tt is known ([K1]) that we have e} (k)™ = ¢'="(k)(»=1.
We shall prove e} (k, j)™ = (1 — ¢*)¢" " (k + 2, j){k,§)(*~V) for k < j by the
induction on n. By (2.1), we have

ek, ) = e ((k)(k + 2, 5) — q(k + 2, 5)(k))
= <k+27.7> _q2<k+27j> = (1 _q2)<k+27j>'

For n > 1, by the induction hypothesis and Proposition 3.14 (4), we get

[n)es, (k, )™ = €.k, 3) (K, )Y
= (1 =)k +2,5) k5 )" D 4+ ¢k, 5)- (1= )@ "k +2,5) (k, )2
= (1= ¢) {{k+ 2,300k, 07D + ¢ (k) (b + 2, (k) "2 |
= (1= )+ q "0 — 1))k +2,5)(k,5)"Y
= (1= )" ")k +2,5) (k, )" Y.

Finally we show €}, (i,7) = 0 if k # 9. We may assume 1 < k < j. If i < k < j,
we have

er (i, ) = e (i, k — 2)(k, j) — q(k, j) (i, k — 2))
= q<i’k - 2>€;€<l€,j> - q(e%(k,g))(z,k - 2>
=q(1 = ¢*)(i,k — 2)(k +2,7) — q(1 — ¢°){(k + 2, 5) (i, k — 2)
=0.

The case k = j is similarly proved.
The proof for e} is similar. 1
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83.4. Actions of divided powers

Lemma 3.18.

Let a, b be non-negative integers, and let k € Iy :=
{kell|k>0}.

(1) For ¢ >k, we have

(=) (k42,0 <k, F = b+ 1](—k + 2,07 =k, )0+
+qaib<7k + 23 €>(a)<7k,£>(b)<7k>
(2) We have

(=) (=K + 2, k) @D (—k, k) = [2b + 2](—k 4 2, k) @~V (—k, k) b+
"=k 4 2, k) (k) PN E).

(3) For k> 1, we have

(—E)(—k 42,k — 2l = (¢* + ¢ Y~k + 2,k — 2)lo" Nk k — 2)
+q(—k 4+ 2,k — 2)la(— k).

(4) If £ < k — 2, we have

0k —2) (k)Y = (0, k) (0, k —2)@™D 4 (k) (0, k — 2)(@

(5) For k> 1, we have

(=k+ 2,k =2 = (¢° + )" N~k + 2,k)(—k + 2,k — 2)[a—1]
+q (k) (—k + 2,k — 2)lel,

Proof. We show (1) by the induction on a. If @ = 0, it is trivial. For
a > 0, we have

[a)(—k) (—k + 2,0 (~k, )®

= ((=k, &) + g(—k + 2,0)(—k)) (=k + 2, 0) @~ (—k, 0)®)
= b+ 1"~k 4 2,0)@ D ¢)(+D)

+q(—k +2,0{[b+ 1](—k + 2,0 @2 (—k, £)*+V

+q* N =k + 2,0 (—k, 0) O (~K)}
= b+ 1](¢" " + qla — 1)) (—k + 2,0) @D (—k, 0)>+D)

+q*a)(—k + 2,0 (—k, 0)®) (—F).
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Since ¢'~% + g[a — 1] = [a], the induction proceeds.
The proof of (2) is similar by using (—k, k) = [20](—k, k)= (—k, k).
We prove (3) by the induction on a. The case a = 0 is trivial. For a > 0,
we have

[2a)(—k)(—k + 2,k — 2)[
= ((—k,k —2) + q(—k + 2,k — 2)(—k)) (~k + 2,k — 2)[*~1]
= ¢ =k 42,k — 2)lo7 Uk k- 2)
+q(—k+2,k = 2){(¢" '+ ¢ TN~k + 2,k — 2) (K K —2)
+q*H(—k+ 2,k —2)l7 ()}
q[2a — 2]

a—1
W)(—k—k 2,k — 2yl k—2)

— (q17a+
+¢%2a)(—k + 2,k — 2)l2(—E)

= (" + ¢ ) 2a)(—k + 2,k — 2)lo" U~k k —2)
+¢%[2a)(—k + 2, k — 2)l9(— k).

Similarly, we can prove (4) and (5) by the induction on a. O
Lemma 3.19. Fork >1 and a,b,c,d > 0, set
(a,b,¢,d) = (k) (~k + 2, k) (—k, &)1V (~k + 2,k — 2)1 9.
Then, we have

(=k)(a,b,c,d)=[2¢c+ 2](a,b—1,c+1,d)
(3.4) +[b+1]¢"2(a,b+1,¢,d — 1)
+la +1]¢**7*(a + 1,b, ¢, d).

Proof. We shall show first

(k) (—k + 2,k — 2)[ g

@5 _ ((—k + 2, k) (—k + 2,k — 2471 1 @24k (—k + 2,k — 2)14) .

By Lemma 3.18 (3), we have
(—k)(—k 42,k —2)ldg
= ((¢*+ ¢ N~k +2,k -2k k- 2)
g~k + 2,k — 2 (k).
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By Lemma 3.16 and Lemma 3.18 (5), it is equal to
(@ +q ) g =k + 2,k =2k + 2,k) + ¢~k + 2,k — 2)lU(k)) §
= ((qd +a )T T~k + 2, k) (<K + 2,k — 2)l4 Y
+q*((¢* + ¢~k + 2, k) (~k + 2,k — 2)l41]
RN~k + 2,k - 2)9)) 3.
Thus we obtain (3.5). Applying Lemma 3.18 (2), we have
(k) (a, b, c,d) = (k) ({20 + 2]~k + 2, K) 7D (ke Ryl
g =k + 2, k) O (—k, )L (—k>) (—k+2,k—2)dg5
=[2¢+2/(a,b—1,c+1,d) + " (k) D (—k + 2, k) (—k, k)]
X ((=k + 2, k) (—k + 2,k — 2)47 1 1 24y (—k + 2,k — 2)[ @)

=[2¢+2|(a,b—1,c+1,d) + ¢" " %[b+1](a,b+1,¢,d — 1)
+q(b_c)+2d_c_b[a +1](a+1,b,¢,d).

Hence we have (3.4). O
Proposition 3.20.
(1) We have

UL o
(~1@(-1,1M"g =" (H T V) B —
s=0

% <1>(a—23)<_1’ 1>[m+s]$.

(2) For k> 1, we have

(k)™ (—k 4+ 2,k — 2)l"g

_ Z g2 162D ()

i+j+2t=n,j+t=u
X <k>(7’)<7]€ + 2, k>(])<7k, k>[t]<7k + 2, k o 2>[a7u]$'

(3) If £ > k, we have

<k>(n)<k+2 0) (a) Zq(n s)(a— s)<k+2 £> a— s)<k €>(s <k>("*s).

s=0
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Proof. 'We prove (1) by the induction on a. The case a = 0 is trivial.
Assume a > 0. Then, Lemma 3.18 (2) implies

(—1)(1) W (-1, 1>[m]¢>

= (2m +2)(1 1><—171>“”+” +"" ><”><—1 1>[“”<—1>)€s
= ([2m+2 1)<_ >[m+1] +qn—m< >(n) 1 )(b
= (2m +2()" V=1 D 4 4 1] ><"+1>< L"),
Put
B s [2m+21/] —2(a—s)m (a725)(g—2571)
Cs = <V=1 7[21/] ) q * .

Then we have

[a+ (-1 (1, 1) = (—1)(-1)@ (1, 1)I"g

= (1) > e(nye) (-1, 1) Hlg

s=0
la/2]
= Z co{[2(m + s + D)(1)le=2s=1 (1, 1>[m+s+1]
s=0

+qa—2s—2(m+s) [a — 925+ 1]<1>(a—2s+1) <71’ 1>[m+5] }5
In the right-hand-side, the coefficients of (1)2+1=27(—1, 1)["*"14 are

[Q(m +7)]er—1 + qo—2m—ar [a —2r + 1]c,

2 2 a—2r)(a—2r
_ H m + V] g~ Hamrime LR GRD ([QT]qa—ZT-‘rl Yla—2r+ l}q—Zr)

[2m—|—21/] C9(a—r+1)ma La=2r)((a=2r+1)
:[a+11HWq omrstims e,
v=1

Hence we obtain (1).
We prove (2) by the induction on n. We use the following notation for
short:

(i, 4.t a) = (YD (—k + 2, k) (—k, ) (—k + 2,k — 2)1 g,
Then Lemma 3.19 implies that
(=k)(i,j,t,a) =2t +2](i,5 — 1,t + 1,a)
+[i +1]¢ (0,5 + 1, t,a — 1)
+li + 1?2 (i + 1, 4,t, a).
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Hence, by assuming (2) for n, we have

[+ 1(=k) "D~k + 2,k — )G = (B} (~k) W (~k + 2,k — 211§
[Qt + 2]q2ai+J(J‘;l) —i(t+u) (’L,j —1,t+1,a— u)
- > [ + 1Rt TR i =2 G ]t — - 1)

iU

i+j+2t=n,j+t=u +[Z + 1}q2ai+ ;1) —i(t+u)+2a—2u—2t(i +1,5,t,a — u)

Then in the right hand side, the coefficients of (¢/,j',t,a — ) satisfying ¢’ +
jJ+2=n+1,7+t =u are

[Qt/]qQai’+ G0’ (e~ 1) n [j/]q2ai’+w—i’(t'+u’—1)+j'—1—2t’

+[i/]qza(i’f1)+@7(1"71)(t’+u’)+2a72u’72t’

= PR (2T [ i) )

_ q2ai/+]"(];71) —i/(t'—i-u')[n + 1]

We can prove (3) similarly as above. O

83.5. Actions of Ej, I}, on the PBW basis
For a f-restricted multisegment m, we set
Py(m) = Py(m)g.

We understand Py(m) = 0 if m is not a multisegment.

Theorem 3.21. For k € I.g and a O-restricted multisegment m =

> j<ici Mig{is j), we have

F_kﬁg(m)
> (m—k+2,2’_m—k,£’) ~

= [mope + g Py(m — (—k +2,0) + (=K, 1))

>k

S (Mm_py2e—m_py) ~
+q*=* [2m_kk +2|Po(m — (—k + 2,k) + (—k, k))

S (M_pyo k=M g k) FM g2 g —2M gk

+qf>r
X[m_pra g + 1Py(m — Sppr (—k + 2,k — 2) + (—k + 2, k)

+Z qe§k(m—k+2,k*m—k,k)+2m—k+2,k—2*2m—k,k_‘|;c+2z<j<i(mj,k—2*mj,k,)
—k+2<i<k

[mix + 1 Py(m — 8 (is k — 2) + (i, k).
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Proof. We divide m into four parts
m=my +my +m3 + Op1M_pyok—2(—k+2,k—2),

where my = > m; ;(i,7), mo = Y m,;;(i,j), mg = > m ; (i, j).
>k j=k —k+2<i<j<h—2
Then Proposition 3.14 implies

Py(m) = Py(my)Pp(ma) Py(mz)(—k + 2, k — 2)[m-r+2r-2lg,
If k = 1, we understand (—k + 2,k — 2)["l = 1. By Lemma 3.18 (1), we have
(=F)Py(m1)

= Z q22/>z(m—k+2,e’_m—k,e’)[m_k,z + 1]P9(m1 _ <,k + 2’ g) + <,]€7 g>)
>k
+q2€>k(mfk+2,f_mfk,i)P6(ml)<_k>7

and Lemma 3.18 (2) implies
(=k)Pp(ma) = [2m_p . + 2] Pp(ma — (—k + 2, k) + (—k, k)
Hq MR Tk Py (mg)(—k).
Since we have (—k)Py(ms) = Py(ms)(—k), we obtain
(3.6) <—]€>]39(m) = Z@>quy>e(m7“2‘ll7m7“l)[m—k,e +1]
Xﬁ@(m - <_k + 27£> + <_ka€>)
+qZ£>k(m—k+2,£7m—k,€)[Qm_k p+ 2]
Xﬁ@(m - <_k + 27 k> + <_k7 k>)
gezk Mok Tk Py (my + my 4 mg)
X (—k)(—k + 2, k — 2)[m—rszk-2l g
By (3.5), we have
(—k)(—k + 2,k — 2)Im w22y
= (—k+ 2, k) (—k + 2,k — 2)m—rr2r2=1 g
O g () (k4 2, — 2) eI,
Hence the last term in (3.6) is equal to
qu;k(m—k+2,e*m—k,e)*m—k,k
X [m_pson + 1Po(m — Sppr(—k + 2,k — 2) + (=k + 2,k))
_Hgk#lqzzgk(m—k+2,e*m—k,,e)+2m—k,+2,k,—2

X Py(my + mg + mg) (k) (—k + 2,k — 2>[m’k+2’k’2]q~5.
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For k # 1, Lemma 3.18 (4) implies
Py(ma) (k) = Y qEowre<i<i ko2 (i k) Py(mg — dick (i k — 2)),
—k+2<i<k

and Proposition 3.14 implies
Py(mg) (i, k) = g~ 2a<i ™k [my 4, + 1] Py(mg + (3, k)).
Hence we obtain

Py(my) Py(ma) Py(ms) (k) (—k + 2, k — 2)[m—r+20-2lg
= Z qz—k+2<j<i,mjyk*Q_Z_k<j<imj,k
—k+2<i<k N
x[mi gk + 1 Py(m — Gicy (i, k — 2) + (i, k).
Thus we obtain the desired result. 0

Theorem 3.22. For k € Iy and a 0O-restricted multisegment m =

> mi (i, 7)), we have
—J<isy

E_Py(m)

14+ 30 (Mo pr =My or)

Sro) e

>k X[m_pyoe+ 1 Py(m = (—k, ) + (—k +2,0))

14+ 3 (Mokqo,0—M_k ) +M_pp2,k—2Mm_jk &

+(1—¢*g X [m_kp2p + 1 Pp(m — (—k, k) + (—k +2,k))

14+ > (Mogyoe—m_g0)+2m_pqo k—2—2m_g g+ 2 (M4 k—2—m;y)

+1-¢*) > g ks
—k+2<i<k—2 ~ . .
’ X [mip—a + 1 Py(m — (i, k) + (i, k — 2))

14+ 3 (M_py2e—m g 0)+2m _py2x—2—2m gk

+0k1(1 —g*)g  &*
X[2(m_pio2h2+ 1)]Ps(m— (—k + 2,k) + (—k + 2,k — 2))

Z(m,k+272—m,k,g)—2m7k,k+5k¢1(l—mk,k+2m7k+2,k72+ > (mi,k72_mi,k))
+ql>k —k+2<i<k—2
ng(m—<k>).

Proof. We shall divide m into

m=m; + mg +mg3
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where my = > my;(i,5) and mg = > m; (i, k) and mg = > m; ;(i,]).
i<j,j>k i<k i<j<k
By (2.3) and Proposition 3.17, we have
E_ By(m) = ((e/_,cpg(ml))Rg(m2 +my)
(3.7) +(Ad(t_r)Po(my)) (e, Pp(mz 4+ m3))

+ Ad(ty) {Po(m1) (¢ Po(mz)) Ad(t) Po(ms) } )
By Proposition 3.17, the first term is

(¢ Pp(m1)) Py(mz + m3)

1+ 3 (Mg —M g pr)

B8 =(-)Tempa
X[m—k+2,l + ]-]P9(m - <7k’£> + <7k + 23£>)

The second term is

(Ad(t—x)Py(m1))(e”  Pp(mz + m3))

(3.9) = qze>k(m—k+2,e—m—k,4) (g ]lm k2 + 1]
[2m_k)/€]
><(1 _ q2>q1—m7k,k+m—k+2,kpa(m _ <_k7 k> + <_k + 27 k->)

Let us calculate the last part of (3.7). We have

Ad(t_y) (pa (my) (e} Pp(mg)) Ad(t) Py (m3)>

Sm kg2 =Mk )+ cp_o Mik—2—0k=1
- <

=q Pe(ml)(ezPe(m2>)P9<m3)-
We have
) I—mp— 33 mik
ipma) =0 By (1)
) l—mi,k—‘/z:_mi/,k . .
+1-¢*) Y ¢ TS Py(mg — (i k) (i, k — 2)
—k<i<k
k) (4 gy (g — (k) (k- 2).

[2m_k)/€]
For —k < i < k, we have

<i, k‘ — 2>P9(m3)

- Myl k—2

=q V> [(1 + 6i:7k+2)(mi7k;72 + 1)]P9(m3 + <i, k — 2))
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By Lemma 3.16, we have

(—k,k —2)Py(m3)¢

_ > M, k—2 e
=g —hkte<k<he2 Pg(m3)<_k> k— 2>¢
_ > M k—2—0k1 e
=q —k+2Si<r-2 Py(m3)(—k +2,k)¢
—M_g42 k—2— Z mi,k*’z—ék#l e
=q —kt2<i<h—2 (=k +2,k) Py(m3)o.

Hence we obtain
Pe(ml)(eZPe(mz))Pe(mg)&f
1= mik ~
—q = By(m - (k)
1- 3 mi',k*_z M —2

i) Y g A

—k+2<i<k—2 ~ ) .
X [mj g—2 + 1] Po(m — (i, k) + (i, k — 2))
I=m_j k=M kt2,k— 2 Mik—2
+(1 _ q2)5k¢1q —k+2<i

X[2(M—ppoh2 + 1)]Po(m — (—k 4+ 2,k) + (—k + 2,k — 2))

) 2(1—m_p, ) —M_fq2,k—2— Z My k-2 —0k1
(1 7 )q —k42<i<k—2
— 1 -
% [m k+2,k ][‘ v k’k]P(m <_]€’ k;> —+ <—k + 2, k>)

[Qm,k,k]

Hence the coefficient of Py(m — (k) in E_jPy(m) is

Sm_pq2e—m_pe)+ > M k—2—0k=1+1—> mi
q° i<kh2 i<k

Z(m—k+2,£*m—k,£)*2m—k,k+6k¢1(I*mk,k+2m—k+2,k—2+ > (mi,k—zfmi,k))
= ¢©>* Chto<i<k—2

The coefficient of Py(m — (—k, k) + (—k + 2, k)) in E_, Py(m) is

(1= gy s ol + 1]
[2m . x]

So(Mm_py2e—m_x,¢) My g—2—0k=1+2(1—Mm_g k) —M_gy2,k—2—> Mir—2—0kz1
+q° i<khe2 Chi2<i<k-2

M_gt2,k + 1 [m_g k]
(2m_y.x]

X(lqu)[

= (1 — ?)g T Xezr(morszemm—r0) [m—k’k[gz—:"]'jvk +1 (14 g 2m=rk)

_ (1 _ q2)qlfm—k,k+Zz;k(m—k+2,e*m—k,z)[m_k+27k 4 1]

=(1- q2)q1+m—k+2,k_2m—k,k+Z£>k(mfk+2,i_m—k,£)[mik+2’k +1].
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For —k+2 < i < k—2, the coefficient of Py(m — (i, k) + (i, k—2)) in E_;Py(m)
is

Do(Meogq2 =Mk )+ 20 My o _o—0Ok=1+1= 30 My = 35 My 4o

2 2 i - il <i il >4
(1-q7)q* Sk < > [mi s + 1]
2
=(1-q)
14+ 3 (Meopyo, =Mk 0)+2m_pyo k—2-2m_ g x+ > (M r_2—my )
Xq >k —k+2<i/ <i [mi,k—Q + 1]'

Finally, for k # 1, the coefficient of Py(m — (—k + 2,k) + (—k + 2,k — 2)) in
E,kPg(m) is

S (m_pq2,0—m_k,0)+ Mi g—2—O0k=1+1—Mm_p xk—M_jq2,k— 2, Mjr_2
7 i<ke2 _kTo<i

(1-¢*)q
X[2(M_pt2,k—2 + 1)]

14+ 3 (Mg 0—m_ k) +2m_pqo pk_2—2Mm_p &
Iy

=(1-¢%*q 2(m—gt2,k—2 + 1)].

Theorem 3.23.  For k>0 and m € My, we have

Ekﬁ@(m) = 21— q2)q1+zf’>é(mk+2,e’—mk,e/)
X[mk+2,l + ].]Pg(m — <k,€> + <k 4 2,£>)
+q1+z"'>‘"’(mk“'z_mW)—mk,kﬁe(m _ <k>)

b

Fkﬁg(m) = Z qzl’>£(mk+2v@'_mkw@’) [mk,l + ]_]]59(m — 5[¢k<k‘ + 2,£> -+ <k, e))
>k

Proof. The first follows from e* ,Py(m) = 0 and Proposition 3.17, and
the second follows from Proposition 3.20. O

§4. Crystal Basis of Vp(0)
84.1. A criterion for crystals

We shall give a criterion for a basis to be a crystal basis. Although we
treat the case for modules over B(g) in this paper, similar results hold also for
Uq(g)-

Let Kle, f] be the ring generated by e and f with the defining relation
ef = q 2fe+ 1. We define the divided power by f() = f/[n]!.

Let P be a free Z-module, and let & be a non-zero element of P.
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Let M be a Kle, f]-module. Assume that M has a weight decomposition
M = ®¢epMe, and eMy C Myiq and fMy C My_,.
Assume the following finiteness conditions:

(4.1) for any A € P, dim M) < oo and M1, =0 for n > 0.

Hence for any v € M, we can write u = ano fMuy, with eu,, = 0. We define
endomorphisms € and f of M by

éu = Z f=Ny,,,

n>=1

fu= Z FH Dy,

n>=0

Let B be a crystal with weight decomposition by P. In this paper, we consider
only the following type of crystals. We have wt: B — P, f: B — B,é:B—
BU{0}, e: B — Zx satisfying the following properties, where B :=wt~1(\):

(i) fBx C Byr_q and éBy C Byyq U {0} for any \ € P,

(iii) for any A € P, B, is a finite set and By ynq = 0 for n > 0,

)

(ii) fé(b)=bifeb+#0, and éo f =idp,
)
)

(iv) e(b) =max{n > 0| é"b # 0} for any b € B.

Set ord(a) =sup{n € Z| a € ¢" Ao} for a € K. We understand ord(0) =

Let {C(b) }vep be a system of generators of M with C'(b) € Mypy: M =
e KOO).

Let £ be a map from B to an ordered set. Let ¢: Z — R, f: Z — R and
e: Z — R. Assume that a decomposition B = B’ U B” is given.

Assume that we have expressions:

(4.2) eC(b) = > EpyC(),
beB
(4.3) fCM) =Y FyC®).

veB

Now consider the following conditions for these data, where ¢ = e(b) and
0 =e(l):

(4.4) ¢(0) =0, and ¢(n) > 0 for n # 0,
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n+cm+n)+e(lm) forn >0,
(m+n)+ f(m) forn <0,

)
>0+ f(l+1-1),
>1—Ll+e(l—1-1),
4.11) F, 5, € ¢ (14 qAy),
Eyer € 7741+ qAg) if £ >0,
ord(Fyp) > =L+ f(L+1—=0) it b # fb, £(fb) # £(V),
ord(Fyp) > L+ fl+1—0)if fbe B,V # foand £ < 0 —1,
ord(Epp)>1—Ll+e(l—1—0)ifbe B', b #éband ¢ < ' +1.

)

Theorem 4.1.  Assume the conditions (4.4)—(4.15). Let L be the Ag-

submodule " AgC(b) of M. Then we have éL C L and fL C L. Moreover
beB
we have

eC(b) = C(éb)modqL and fC(b) = C(fb)modqL for anyb e B.
Here we understand C'(0) = 0.

We shall divide the proof into several steps.
Write
C(b) =Y fMC,(b) with eC,(b) =0.
n=0
Set
Lo = Z Ao f™Co(b).
beB, n>0

Set for u € M, ord(u) =sup{n € Z | u € ¢"Lo}. If u =0 we set ord(u) =
00, and if u &€ Unezq™ Lo, then ord(u) = —oc0.

We shall use the following two recursion formulas (4.16) and (4.17).

We have

eC(b)=> g " f"=ICy(b)
n>1

=Y Epy fMC ().

n>=0



870 NAOYA ENOMOTO AND MASAKI KASHIWARA

Hence we have
(416)  Cu(d)= Y. ¢"'EpyCnoa(b)) forn>0andbe By.
Y €Bxta
If £ :=¢(b) > 0, then we have
fo(eb) = Z Fayp f™C, ()

v eB, n>0
= [n+1f"IC, (éb).

n=0

Hence, we have by (4.11)
6n¢0[n]Cn_1(éb) = Zb’ ng,brC’n(b’)
€ q" (1 + qA0)Cr(b) + Yy Feopy Cr().
Therefore we obtain
(4.17)  Cn(b) € dnzo(l + qA0)g" "Cro1(éb) + > q" Ao Fappr Cu (V)
b #£b
if £> 0.

Lemma 4.2. ord(Cy (b)) > c¢(n —{) for any n € Zso and b € B, where
C:=¢e(b).

Proof. For A € P, we shall show the assertion for b € B) by the induction
on sup {n € Z | Mxjna # 0}. Hence we may assume

(4.18) ord(Cp(b)) = c(n — ) for any n € Zso and b € Byy,.

(i) Let us first show C,,(b) € KLo.

Since it is trivial for n = 0, assume that n > 0. Since C,_1 (V") € KL for
b € Byiq by the induction assumption (4.18), we have C),(b) € KLg by (4.16).
(ii) Let us show that ord(C, (b)) = ¢(n — ¢) for n > £.

If n = 0, then ¢ = 0 and the assertion is trivial by (4.4). Hence we may
assume that n > 0.

We shall use (4.16). For V' € By1, we have

ord(Cp,_1 (b)) = e(n—1—4¢) where £ =¢&(V)
by the induction hypothesis (4.18). On the other hand, ord(Epp) > 1 — £ +
e({ —1—1¢) by (4.10). Hence,
ord(¢" ' By Cr (W) 2 (n—1)+ (1—L+e(t—1-0)) +c(n—1-1)
=n—0O+el—-1-0)+c((n—0)+(—-1-1"))
>c(n—1{)
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by (4.5).
(iii) In the general case, let us set
r = min{ord(C, (b)) —c(n —e(b)) | b€ By, n > 0} € RU {c0}.
Assuming r < 0, we shall prove
ord(Cy (b)) > e¢(n —¥€) +r for any b € By,

which leads a contradiction.
By the induction on £(b), we may assume that

(4.19) if £(b') < £(b), then ord(Cy, (b)) > c(n — ') + r where £/ :=g(b').

By (ii), we may assume that n < ¢. Hence éb € B. By the induction
hypothesis (4.18), we have ord(¢*"C,,_1(éb)) = —n+c((n—1)— (£ —1)) >
ce(n—20)>c(n—4£)+r. By (4.17), it is enough to show

ord(q"  Fspp O (b)) > c¢(n — £) 417 for b/ #b.
We shall divide its proof into two cases.
(a) £(b) <&(b).
In this case, (4.19) implies ord(C,(b")) > ¢(n — ¢') + r. Hence
ord(q" Fappy Cu(6) > (€ = 1) + (L= €+ f(L = £)) +c(n— ) + 7
=fUl—-0)+c((n=—0+U-))+r=cn—_4)+r
by (4.9) and (4.6).

(b) Case £(b) £ £(b)-

In this case, ord(Feppr) > 1 — £+ f(£ —¢') by (4.13), and ord(C, (b)) >
c(n — ") + r. Hence,

ord(q"  Fapp Cr(b) > (U= 1)+ (1 =L+ f(L =) +c(n—) +r
=fll—)+c((n=0O+U=l))+r>cn—0)+7.
O

Lemma 4.3. ord(Cy(b) — Cr—1(€b)) > 0 for £:=e(b) > 0.

Proof.
We divide the proof into two cases: b € B’ and b € B”.
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(i) be B
By (4.17), it is enough to show

ord(¢*  Fappy Co(b)) > 0 for b #b.

(a) Case £ >0 :=¢(V).
We have

ord(¢"  Fapy CoW) = (U —1)+ (1 =L+ f(L =) +c(t—0)>0

by (4.7).
(b) Case £ < 0.
We have ord(Feppr) > 1— £+ f(£ —¢') by (4.14). Hence

ord(q"  Fappy Co(W) > (U= 1)+ (L —L+f(L =) +c(t—0)=0
by (4.6) with n = 0.

(ii) Case b e B".
We use (4.16). By (4.12), it is enough to show that
ord(q" T Ep 1 Cp_1 (V') > 0 for b/ # éb.

(a) Case £ —1> /.
ord(¢" ' Eppy Co—1 (V) = e(d—1—0")+c(f—1—¢") > 0 by (4.10) and
(4.8).

(b) Case £ —1< /.
ord(Epp) > 1—L+e(f—1—£') by (4.15), and ord(¢* ' By Cp_1 (b)) >
el —1—0)+c(l—1—-1)>0Dby (4.5) with n =0.

|

Hence we have

Cn(b) =0modgLy for n # £ :=e(b),
Ci(b) = Co(&b) mod g Lo,

C(b) = fOC,(b) mod gLy,

fC(b) = C(fb) mod gL,

eC(b) = C(eb) mod qLy,

Lo:= Y AofM™Co(b) =D AeC(b).

bEB, n>0 beB
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Indeed, the last equality follows from the fact that {C'(b) }sc p generates Lo/qLo.
Thus we have completed the proof of Theorem 4.1.
The following is the special case where B’ = B” = B and {(b) = £(b).

Corollary 4.4.  Assume (4.4)—(4.12) and

(4.20)  ord(Fyp) > €+ f(1+£—0) ift <l and ¥ # fb,
(4.21)  ord(Epy) >1—L+e(l—1—4) if <l +1 and V' # éb.

Then the assertions of Theorem 4.1 hold.

84.2. Crystal structure on My
We shall define the crystal structure on M.
Definition 4.5.  Suppose &k > 0. For a #-restricted multisegment m =

> my (i, 7)), we set

£_p(m) = max {A§"“>(m) 17> —k+ 2} :

where
Alg-_k)(m) = Z(m—k,e —M_pyoe42) forj >k,
(>3]
Agc_k)(m) = Z(m—k,e = Mokt2,0) +2mpk +0(m_prop is 0dd),
>k

A;-fk)(m) = Z(mfk,f — M_jt2,0) +2M_j k — 2M_fy2 k—2

>k
+ Z Mk — Z M k—2
—k2<i<iH2 —k+2<igy
for —k+2<j<k—-2.
(i) Let ny be the smallest £ > —k + 2, with respect to the ordering --- >
k+2>k>—k+2>-->k—2 such that ¢_,(m) = A" (m). We

define
m— (—k‘—i—?,nf)—i—(—k,nf) if ny > k,
m—(—k+2,k)+ (—k, k) if ng =k and m_p49 is odd,
=~ m-—20 —k+4+2,k—2
F_p(m) = k2 ) if ng =k and m_j42 is even,

+(—k+2,k)
m— 5nf¢k_2<nf + 2,k — 2>

if —k+2<ny<k-2
+<nf—|-2,k‘>
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(i) If e_p(m) = 0, then E_j(m) = 0. If e_j(m) > 0, then let n, be the largest
¢ > —k + 2, with respect to the above ordering, such that e_j(m) =
Aéfk) (m). We define

m—(—k,ne)+ (—=k+2,n.) if n. >k,

Mo~k k) 4+ (—k42k) ne=kand
M_j42k IS even,

m— (—k +2,k) if ne = k and
+op21(—k+ 2,k —2) M_j+2,k is odd,

m— (n. + 2, k)

if—k+2<n.<k—2.
—1—5%7%,2(116 +2,k— 2>

Remark 4.6. For 0 < k € I, the actions of E,k and ﬁ,k onm € My are
described by the following algorithm.

Step 1. Arrange segments in m of the form (—k, j) (j > k), (=k+2,7) (j > k),
(i,k) (=k <i<k), (i,k—2) (—k+2<i<k—2) in the order

o (k4 2), (—k+ 2,k +2), (=K, k), (—k+2,k), (—k+ 2,k — 2),
(—k+4,k), (-k+4,k—2), - (k—2,k),(k—2,k—2), (k).

Step 2. Write signatures for each segment contained in m by the following rules.

(i) If a segment is not (—k + 2, k), then
e For (—k, k), write ——,
e For (—k,j) with j > k, write —,
o For (—k + 2,k —2) with k > 1, write ++,
o For (—k + 2,j) with j > k, write +,
e For (j,k) with —k + 2 < j < k, write —,
e For (j,k —2) with —k+2 < j <k — 2, write +,
e Otherwise, write no signature.
(ii) For segments m_jyo (—k + 2,k), if m_j12 is even, then write
no signature, and if m_j42 1 is odd, then write —+.

Step 3. In the resulting sequence of + and —, delete a subsequence of the form
+— and keep on deleting until no such subsequence remains.
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Then we obtain a sequence of the form — —--- — + + -+ - 4.

(1) e_x(m) is the total number of — in the resulting sequence.

(2) F_i(m) is given as follows:
(i) if the leftmost + corresponds to a segment (—k + 2, j) for j > k, then
replace it with (—k, j),

(ii) if the leftmost + corresponds to a segment (j, k — 2) for —k+2 < j <
k — 2, then replace it with (j, k),

(iii) if the leftmost + corresponds to segment m_jy2 k(—k + 2, k), then
replace one of the segments with (—k, k),

(iv) if no + exists, add a segment (k, k) to m.

(3) E_i(m) is given as follows:
(i) if the rightmost — corresponds to a segment (—k,j) for j > k, then
replace it with (—k + 2, j),

(ii) if the rightmost — corresponds to a segment (j, k) for —k+2 < j < k,
then replace it with (j, k — 2),

(iii) if the rightmost — corresponds to segments m_j42.x(—k + 2, k), then
replace one of the segment with (—k + 2,k — 2),

(iv) if the rightmost — corresponds to a segment (k,k) for k& > 1, then
delete it,

(v) if no — exists, then E_,(m) = 0.
Example 4.7.

(1) We shall write {a,b} for a(—1,1) + b(1). The following diagram is the
part of the crystal graph of By(0) that concerns only the 1-arrows and the
(—1)-arrows.

1 L 04 = {05}
1 1 {07 2} 7:;1 {07 3} - 1
o—={0.1} L= {13
- ==, )
B 2.0 21
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Especially the part of (—1)-arrows is the following diagram.
(0,20} — > {0,2n 4+ 1} —> 1,20} — % {1,2n+ 1} > {2,2n} - --
(2) The following diagram is the part of the crystal graph of By(0) that concerns

only the (—1)-arrows and the (—3)-arrows. This diagram is, as a graph,
isomorphic to the crystal graph of As.

/™
i

(3) Here is the part of the crystal graph of By(0) that concerns only the n-

arrows and the (—n)-arrows for an odd integer n > 3:

Lemma 4.8. For k € I.q, the data E,k, 13,;6, e_k define a crystal
structure on Mg, namely we have
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(i) F_xMg C My and E_, My C My U {0},

(i) F_pE_g(m)=m if E_i(m) #0, and E_y o F_j, = id,

(iii) e_x(m) = max {n >0] Eﬁk(m) # 0} for any m € M.

Proof. 'We shall first show that, for m = >° ., .m;;(i,j) € My,
F_j(m) is O-restricted, E_pF_(m) = m and e_p(F_jm) = e_j(m) + 1. Let
A; ::Ag_k)(m) (j =2 —k+2) and let ns be as in Definition 4.5. Set m’ = F_pm.
Let A} = A§7k)(m’) and let n], be n, for m’.

(i) Assume ny > k. Since Ap, > Ap, 2= Ap, + M_pn,—2 — M_ki2n,, We
have m_g ., —2 < M_gy2,n,. Hence m’ =m — (=k +2,ny) + (—k,ny) is
f-restricted. Then we have

Aj ifj>nf,
Aj—I—Q ifj<’l’Lf.

Hence e p(m’) = A,, +1 = e x(m) + 1 and n; = ny, which implies
m=E_i(m').

(ii) Assume ny = k.

(a) If m_gyo is odd, then m’ = m — (—k+2, k) + (—k, k) is f-restricted.
We have
Aj lf] > k,
Aj={A;+1 ifj=k,
Aj + 2 lfj < k?,

Hence e_j,(m’) = e_j(m)+1 and n, = k, which implies m = E_j(m’).

(b) Assume that m_jyop is even. If k # 1, then Ay > A_p4o =
A —2m_j19 k—2, and hence m_j49,—2 > 0. Therefore m’ = m —
Okz1{—k +2,k —2) + (—k + 2, k) is O-restricted. We have

A]’ 1fj>l€,
Ay =S A;+1 ifj=k,
Aj+2 ifj<k.

Hence e_p,(m') = e_j(m)+1 and n, = k, which implies m = E_j(m’).
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(iii) Assume —k +2 < ny <k —2. Since A, > Ay 40 = Ay + Mpyqak —
My, 42,k—2, We have My, yo k2 > My, 44k Hence m’ =m — (ny + 2,k —
2) + (ny + 2, k) is -restricted. Then we have
Aj lfj > ng,
A=A +1 i j =ny,
Aj +2 ifj<ny.

(Here the ordering is as in Definition 4.5 (i).) Hence e_i(m') = e_;(m)+1
and n, = ny, which implies m = E_,m’.

(iv) Assume ny = k — 2. It is obvious that m’ = m + (k) is f-restricted. We
have

v A if j #ny,
o441 ifj=ny.

Hence e_j(m') = e_x(m) 4+ 1 and n, = ns, which implies m = E_(w’).

Similarly, we can prove that if e_j(m) > 0, then E_g(m) is f-restricted and
F_E_i(m) = m. Hence we obtain the desired results. O

Definition 4.9. For k € I.(, we define ﬁk, Ey and g, by the same rule
as in Definition 3.7 for fi, é; and eg.

Since it is well-known that it gives a crystal structure on M, we obtain
the following result.

Theorem 4.10. By Fy, B, ek (k € I), My is a crystal, namely, we
have

(i) FuMy C My and ExMy C Mg {0},
(ii) FpE(m) =m if Ex(m) # 0, and Ey o Fj, = id,
(iii) egx(m) = max {n >0] Eg(m) + O} for any m € M.
The crystal My has a unique highest weight vector.

Lemma 4.11. If m € My salisfies that e(m) = 0 for any k € I, then
m = (). Here () is the empty multisegment. In particular, for any m € My,
there exist £ > 0 and i1,...,ig € I such that m = F;, --- F,,0.
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Proof. Assume m # (). Let k be the largest k such that my, ; # 0 for some
j. Then take the largest j such that my ; # 0. Then j > |k|. Moreover, we
have my42, = 0 for any ¢, and my, = 0 for any ¢ > j. Hence we have

2my; ifk=—j,
A (m) = { e B
my,;  otherwise.

Hence g (m) > A;-k) (m) > 0. O

84.3. Estimates of the order of coefficients

By applying Theorem 4.1, we shall show that {Py(m)d}mer, is a crystal
basis of V(0) and its crystal structure coincides with the one given in § 4.2.

Let k be a positive odd integer. We define ¢, f,e: Z — Q by ¢(n) = |n/2|
and f(n) = e(n) = n/2. Then the conditions (4.4)—(4.8) are obvious. Set
&(m) = (=1)™—k+2km_y . and

={meMy|-k+2<n.(m) <k}U{me Mgy |m_gyor(m)isodd},
=My \ B".

Here n.(m) is n. given in Definition 4.5 (ii). If e_;(m) = 0, then we understand
ne(m) = oco.
We define F'_ 7, and E_

mm by the coefficients of the following expansion:

mm/

F—kPG Z m, m’
E_Pp(m ZEm ot

as given in Theorems 3.21 and 3.22. Put £ = e_;(m) and ¢ = e_j(w’).

Proposition 4.12.  The conditions (4.9), (4.11), (4.13) and (4.14) are
satisfied for E_y, F_j, e_y, namely, we have

(a) if m' = F_j(m), then Fm “ € q7H(1+qAp),

(b) if m' # F_p(m), then ord(F %) > —0+ fU+1—0) = -+ —1)/2,

m,m’

(c) if m' # F_i(m) and ord(F

mm’)_

—(0+ 0 —1)/2, then the following two
conditions hold:

(1) E(Fr(m)) > E(m),
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(2) £ =0 or F_i(m) € B".

Proof. 'We shall write A; for Aj_k(m). Let ny be as in Definition 4.5 (i).
Note that F~~ # 0.
m,F_j(m)

If Fn:’fn, # 0, we have the following four cases. We shall use [n] € ¢'~"(1+
qAy) for n > 0.
Case 1. m' =m — (—k + 2,n) + (—k,n) for n > k.

In this case, we have

Fon = [mogn + 1g2izn(morrzammoka) € g=4n (1 4 gAo)

m,m’

and

£ = max{A;( >~k +2)}
' =max{A; (j >n), A, +1,A;+2 (j <n)}

If m’ = F_j(m), then £ = A,, and we obtain (a). Assume m’ # F_j(m). Since
A, < 0,0 — 1, we have ord( mm/) =—A, > —(+¢ —1)/2. Hence we obtain
(b). If ord(Fm’fn,) = —({+ ¢ —1)/2, then we have A, = ¢ = ¢ — 1. Since
Aj+2< Ul =A,+1for j <n, we have ny =n and m’ = ﬁ_k(m), which is a
contradiction.

Case 2. m' =m — (—k+2,k) + (—k, k).

In this case we have
ok

mm/_

[2m—k7k + 2]q2j>k(m7k+2,j_m—k,j) c q—Ak—J(mkarz,k is cvcn)(l +qu)-
(i) Assume that m_j1oy is odd. We have Fn:’fn, € g% (14 qAy) and
¢ =max{A; (j > k), A +1,A;+2 (j <k)}.

If m’ = F_,(m), then £ = A and (a) holds. Assume that m’ # F_,(m).
We have Ay < £, — 1 and hence ord(F_* ) A =2 —(+0 -1)/2.

If ord(F- %)) = —(¢ + ¢ —1)/2, then Ak ¢ ={¢ —1, and we have

m,m’

m’ = F_,(m), which is a contradiction.

(ii) Assume that m_jyo4 is even. Then m’ # F_j(m), F m, €q 1+
qu) and

(' =max{A; (j >k),Ar +3,4;,+2 (j <k)}.

We have Ay, < £,¢' — 3 and hence ord( mm,) =-A, -1 -+ -
1)/2. Hence (b) holds. Let us show (c). Assume m’ # F_;(m), and
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ord(Fn;’f“,) = —({+¢ —1)/2. Then we have Ay = ¢ = ¢’ — 3. Hence
ny < k and we have either F_p(m) = m— Sitr(i, k —2) + (i,k) with
—k+2<i<kor F_p(m)=m—0ps(—k+2k—2)+ (—k+2, k). Hence
we have £(F_j(m)) = tm_pr > —m_p — 1 = &(m'). Hence we obtain

(c) (1).

(1) Assume F_j(m) = m—08;4, (4, k—2)+ (3, k) with —k+2 < ¢ < k. Then
k# 1 and E_x(F_p(m)) = F_p(m) — (i, k) + 6,1 (i, k — 2). Hence
ne(F_gx(m)) =i — 2 < k. Hence F_,(m) € B”. Therefore we obtain
(c) (2).

(2) Assume F_jp(m) = m — Opr1(—k + 2,k —2) + (=k + 2,k). Then
Mok (F_p(m)) = m_gpay + 1 is odd. Hence F_x(m) € B".

Case 3. m' =m — 021 (—k+2,k—2) + (—k+2,k). In this case, we have

F—k , = [m k2 k + l]qzj>k(mfk+2,j_m*kyj)+m*k+2,k_2m*kyk
m,m - )

c q—Ak+5(mfk+2,k is Odd)(l + QAO)-

(1) If m_g4ok is odd, then m’ # ﬁ_k(m), F‘;k , € ¢ 4T (1 + qAy), and

(' =max{A; (j >k),Ar—1,A;+2 (j <k)}.

We have Ay < £,¢'+1 and hence ord(F_ % ) = —Ap+1> —(0+£'—1)/2.

m,m’
If ord(F%,) = —({+ ¢ —1)/2, then Ay = ¢ = ¢+ 1, and ny = k.

Hence we obtain (c) (2), and F_g(m) = m — (—k + 2, k) + (—k, k). Hence
E(F_k(m)) =m_p i +1>m_p =&(m’). Hence we obtain (c) (1).

(i) If m_g42k is even, then Fnjlfn, € ¢~ (1+4 qAp) and
(' =max{A; (j > k),Ar+1,A;+2 (j <k)}.

If m' = F_j(m), then £ = A, and (a) is satisfied. Assume m’ # F_j(m).
We have Ay, < £,¢' —1 and hence ord(F,;ffn/) =—Ay>—-({+0-1)/2. It

ord(F-% ) = —(0+0'—1)/2, then A, = £ = £'—1, and hence m’ = F_,(m),

m,m’
which is a contradiction.

Case 4. m' =m — ;2 (i, k — 2) + (i, k) for —k +2 < i < k. We have

F_ffn/ = [mir +1]

m

Xq2j>k(m*k+2d_m*k,j)+2m*k+2,k*2_Qm*k,k+2—k+2<j<i(mj,k*Q_mjyk)

€q 2 (1+ qAy),
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and
(':max{Aj (j 2/6)714] (j <i—2)7A¢72+17Aj+2 (i—2<j <I€—2)}

If m = F_j(m), then £ = A;_y and (a) holds. Assume m’ # F_j(m). Since
Ai—o < 4,0 — 1, we have ord(Fn:’]fn,) =—A;, 9> —{+¢ —1)/2. Hence we
obtain (b). If ord(Fn:,’fn/) = —(l+ /¢ —1)/2, then we have A;_o =€ =1¢ — 1.
Hence m’ = F_j(m), which is a contradiction.

O

Proposition 4.13.  Suppose k > 0. The conditions (4.10), (4.12), and
(4.15) hold, namely, we have

(a) if m' = E_g(m), then E_*, € ¢"=(1+ qAy),
(b) if m' # E_j(m), then ord(E k) > 1~ l+e(t—1—0') = —(L+ 0 —1)/2,

(¢) ifm/ £ E_p(m), < +1 and ord(E." ) = —((+ 0 —1)/2, then b & B".

m,m’

Proof. The proof is similar to the one of the above proposition.

We shall write A; for A7 *(m). Let n. be as in Definition 4.5 (ii).

Note that En:,kﬁ,k(m) # 0 if E_k(m) # 0. If E;ffn, # 0, we have the
following five cases.

Case 1. m' =m— (—k,n) + (—=k +2,n) for n > k.

In this case, we have

E k= (1= @) m_gion + g Tz (mrezimmoki) ¢ g1=An(1 4 qAg)

m,m’

and

¢ =max{A;(j > -k +2)},
' =max{A; (j >n),A, —1,4; =2 (j <n)}.

If m' = E_i(m), then ¢ = A,, and we obtain (a). Assume m’ # E_(m). Since
Ap < 0,0+ 1, we have ord(Eg% ) = 1— A, > —(£+ ¢ —1)/2. Hence we
obtain (b). If ord(E %) = —(¢ + ¢ —1)/2, then we have A, = £ = ¢ + 1.
Since A; < ¢' = A,, — 1 for j > n, we have nc =n and m’ = E,k(m), which is
a contradiction.

Case 2. m' =m — (—k, k) + (—k + 2, k).

In this case we have

Bk = (1= @)mspas + g Tomelmssas—moss bmocsas=2m

c ql_Ak+5(m—k+2,k is Odd)(l + qu).
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(i) Assume that m_j o isodd. Thenm’ # E_;(m), Em © € 2 (14qAy)
and
' =max{A; (j > k),Ar—3,4;,—2 (j <k)}.

We have Aj, < £,¢ 43 and hence ord(E_" ) =2— A, > —(0+ ¢ —1)/2.

m,m’

Hence (b) holds. If ord(E_ " ) = —(£ 4 ¢/ —1)/2, then A, = £ = {' + 3.

m,m’

Hence £ > ¢’ 4+ 1 and (c) holds.
(ii) Assume that m_jo is even. Then Em €@ A% (1 + qAp) and
= max{Aj (j > k‘),Ak — 17Aj -2 (j < k)}

If m’ = E_j(m), then £ = Ay, and we obtain (a). Assume m’ # E_g(m).
We have Ak £,¢' + 1 and hence ord(E, F)=1—Ap >+ —1)/2.
If ord(E_* )= —(0+¢ —1)/2, then Ay == +1 and n, = k. Hence

m,m’

m’ = E_,(m), which is a contradiction.
Case 3. m' =m — (—k+2,k) + dpr1(—k + 2,k —2). If k # 1, we have

E— _ (1 _ q2)[2(m—k+2,k—2 + 1)]q1+2j>k(m—k+2,j_m—k,j)+2m—k+2,k—2_2m—k,k

m,m’

c q—Ak+5(m—k+2,k is Odd)(l + qu)~

If £ =1, we have

—k = q2j>k(m*k+2v]'_m*kvj)_2m*kvk — q—Ak-‘r(S(m,]H,z)k is odd)
m,m .

In the both cases, we have

E- m, €q —Ap+8(m_pq2,k is Odd)(l + qAyp).

m,

(i) If m_g4ak is odd, then En:”fn, € ¢*=45(1 4 qAo) and
= max{Aj (j > k‘),Ak — 17Aj -2 (j < k)}

If m' = E_g(m), then ¢ = A and (a) is satisfied. We have Ay < £,/ +1
and hence ord(E_" ) =1— Ay > —(0 4+ —1)/2. Assume m’ # E_;(m).

m,m’
If ord(E_* )= —(0+¢'—1)/2, then Aj, = £ = ¢’ +1, and n, = k. Hence

m,m’

m’ = E_,(m), which is a contradiction.
(ii) If m_g42. is even, then m’ # E_i(m), Ek w €4 ~Ar(1 4+ qAy), and
V= max{Aj (j > k),Ak + 1,Aj -2 (j < k)}

We have Ay < ¢,/ —1 and hence ord(E_" ) = —Apy > —(0 + ¢ —1)/2.

m,m’

Hence we obtain (b). If ord(E_" ) = —(£+£' —1)/2, then Ay = £ = {' —

m,m’
Hence n.(m) > k and m_j12 ,(m) is even. Hence m ¢ B”.
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Case 4. m' =m — (i, k) + (i,k —2) for —k+2<i<k—2.
We have

E7F, = (1 — qz)[mi,k_z + 1]

m,m’ —

43 s (Mekg2, =Mk, i) +2M 2 k—2—2M k20 gy acj<i (Mg k—2—M5 k)

xq
€ ¢ 42 (1+ qAy),

and
E’:maX{A]— (j}k), Aj (j<i*2), Ai_gfl, Aj*2 (Z<]<k72)}

If m' = E_4(m), then £ = A;_5 and (a) holds. Assume m’ # E_j(m). Since
Ao < 0,0 4+ 1, we have ord(E;)’fn,) =1—A; 92> —({+¢ —1)/2. Hence we
obtain (b). If ord(ET;ﬁn,) =—(l+/¢ —1)/2, then we have A, o = =10+ 1.
Hence m’ = E_j(m), which is a contradiction.
Case 5. k #1 and m’ = m — (k). In this case,
Z(m—k+2,j_m—k,j)_Qm—k,k"rl—mk,k+2m—k+2,k—2+ Z (M, k—2—m; k)
Ek qi>F —kf2<i<k—2

m,m’

€ ¢ -2 (14 qAy),
and
' =max{A; (j #k—2),Ap—2 — 1}.

If m" = E_j(m), then £ = Aj_5 and (a) holds. Assume m’ # E_j(m). Since
Ap_g < L,0 4+ 1, we have ord(E-" ) =1 — Aj_y > —(L + ¢ —1)/2. Hence we

m,m’
obtain (b). If ord(En_iffn,) =—(+¢ —1)/2, then we have Ay_o =€ =10+ 1.
Hence m’ = E_j(m), which is a contradiction. O

Proposition 4.14.  Let k € I.g. Then the conditions in Corollary 4.4
holds for Ey, Fy, and e, with the same functions c,e, f.

Since the proof is similar to and simpler than the one of the preceding two
propositions, we omit the proof.

As a corollary we have the following result. We write ¢ for the generator
¢o of Vy(0) for short.

Theorem 4.15.
(i) The morphism
Ta(0) == Uy (8)/ 32 Uy (@) (fi — f-1) — Va(0)

kel

18 an tsomorphism.
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(it) {Po(m)@}menm, is a basis of the K-vector space Vp(0).
(iii) Set

Ly(0) := Z AyF; "'EMCV@(O),
220, i1,...,00 €1

By (0) = {15,» - Fy,¢mod qLg(0) | £ 0,iy,...,i € 1}.

Then, Bg(0) is a basis of Lg(0)/qLg(0) and (Lg(0),Bg(0)) is a crystal
basis of Vy(0), and the crystal structure coincides with the one of M.

(iv) More precisely, we have

(a) Lo(0)= @ AoPy(m)o,
meMy

(b) Bg(0) = {Py(m)pmodqLy(0) | m € My},
(c) for any k € I and m € My, we have
(1) FiPo(m)¢ = Py(Fi(m))dmod qL(0),
(2) EjPs(m)¢p = Py(Ex(m))pmod gLe(0),
where we understand Py(0) = 0,
(3) E};Pg(m)gb € qLp(0) if and only if n > e (m).

Proof. Let us recall that Py(m)¢ € Vu(0) is the image of Pp(m) €
Vo(0). By Theorem 3.21, {Pp(m)}mer, generates Vy(0). Let us set L =
> mem, AoPa(m) C Vp(0). Then Theorem 4.1 implies that

FpPy(m) = Py(Fy(m)) mod gL and EjPy(m) = Py(Ej(m)) mod ¢L.

Hence the similar results hold for Lo:=}_ c ., AoPa(m)¢ C Vp(0) and Pp(m)g.
Let us show that

(A) {Py(m)pmodqLo}menm, is linearly independent in Lg/qLo,

by the induction of the #-weight (see Remark 2.12). Assume that we have a lin-
ear relation ) - ¢ amPp(m)¢ = 0mod gLy for a finite subset S and an,, € Q\{0}.
We may assume that all m in S have the same 0-weight. Take mg € S. If mg is
the empty multisegment ), then S = {@} and Ps(mg)¢ = ¢ is non-zero, which is
a contradiction. Otherwise, there exists k such that 5 (mg) > 0 by Lemma 4.11.
Applying Ey, we have ) ¢ anErPy(m)¢ = ZmeS, B (m) £0 amPy(Er(m))p =
0mod gLg. Since Ex(m) (Ej(m) # 0) are mutually distinct, we have ap, = 0
by the induction hypothesis. It is a contradiction.
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Thus we have proved (A). Hence {Py(m)p}menr, is a basis of Vp(0), which
implies that {Ps(m)}mea, is a basis of Vy(0). Thus we obtain (i) and (ii).

Let us show (iv) (a). Since El -~-E¢¢ = PQ(E1 -~-Eg(2))¢mod qLg, we
have Lg(0) C Lo and Lo C Ly(0) + gLo. Hence Nakayama’s lemma implies

Lo = Ly(0). The other statements are now obvious. O

§5. Global Basis of 14(0)
§5.1. Integral form of 4(0)

In this section, we shall prove that V5(0) has a lower global basis. In order
to see this, we shall first prove that {Py(m)¢p}mer, is a basis of the A-module

Vo(0)a. Recall that A = Q[g,¢™ "], and V4(0)a = U, (al,.)ad-

Lemma 5.1. V3(0)a= @ APy(m)o.
meMy

Proof. 1t is clear that €D, APs(m)¢ is stable by the actions of F,En)
by Proposition 3.20. Hence we obtain Vy(0)a C @D, g, ALo(M).

We shall prove Py(m)¢ € U, (glo,)ad. It is well-known that (i,5)™ is
contained in U, (gl,,)a, which is also seen by Proposition 3.20 (3). We divide
m as m = my + my, where my; = Efj@gj mgj(i,j) and mg = >, mp(—k, k).
Then Pp(m) = P(my)Ps(mz) and P(my) € U, (gl )a- Hence we may assume
from the beginning that m =3, _, - my(—k, k). We shall show that Py(m)¢ €
V5(0)a by the induction on a.

Assume a > 1. Set m" = 37, ., ymy(—k,k) and v = Py(m')¢. Then
(—a+2,a —2)™y € Vy(0)a for any m by the induction hypothesis.

We shall show that (—a,a)"/(—a+ 2, a — 2)[™v is contained in V4(0)a by
the induction on n. Since Py(m’) commutes with (a), (—a), (—a + 2,a — 2),
(—a+2,a) and (—a, a), Proposition 3.20 (2) implies

(—a)® (—a +2,a — 2)PTmly
— Z G2 mi+i(G=1)/2=i(t4)

i+j+2t=2n, j+t=u . . ndm—u
’ ! (@)D (—a+2,a)(—a,a) (—a + 2, —2)" Ty,
which is contained in V4(0)a. Since we have

(@) (—a+ 207 (~a,0)N-a+2,a - 2" "0 € Vy(0)a

if (i,7,t,u) # (0,0,n,n) by the induction hypothesis on n, (—a, a)" (—a+2,a—
2)Imly is contained in V(0)a.
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If a = 1, we similarly prove Py(m)¢ € Vp(0)a using Proposition 3.20 (1)
instead of (2). O

85.2. Conjugate of the PBW basis

We will prove that the bar involution is upper triangular with respect to
the PBW basis { Py(m) }mer, -

First we shall prove Theorem 3.10 (4).

For a,b € M such that a < b, we denote by M, (resp. M) the set
of m € M of the form m = »_ ., ., m;;(i, ) (resp. m = 37, mi; (i, ).
Similarly we define (Mp)<p. For a multisegment m € My, we divide m into

m =m, +mep, where mp =3, my (i, b) and mep =37, ™ (4 7).
Lemma 5.2. Forn >0 and a,b € I such that a < b, we have

(a,b)™ € (a,b)™ + Z KP(m).

mcfyn(a,b>
Proof. We shall first show
(5.1) (a.b) € (a,0) + Y (kDU (g)
a+2<k<h

by the induction on b — a. If @ = b, it is trivial. If a < b, we have

(a,b) = (a)(a+2,b) —q~'{a+2,b)(a)
€ <a><<a+2,b> + 0> <k,b>Uq‘(g))

a+2<k<b

—(fa+20+ Y (kYU (9))

a+2<k<b

Cla,b) +(a—a Na+2.0)a) + Y (k)@ (9) + (k,b)U, (9)).

a+2<k<b

Hence we obtain (5.1). We shall show the lemma by the induction on n. We
may assume n > 0 and

(@b Te(ab)" '+ > KP(m).

m < (n—1){a,b)
cry

Hence we have

(@.0)" = {a,0) (a,5)" T € (a,p)" + > (k,HU; (8)+ > K(a,b)P(m).

a<k<b m < (n—1)(a,b)
cry
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For a < k < b and m € M such that wt(m) = wt(n(a, b)) — wt((k, b)), we have

m € M,y and my, = Zagigb m;p(i,b) with Y. m;, = n — 1. In particular,

Mmap < n— 1. Hence (k,b)P(m) € KP(m+ (k,b)) and m + (k,b) < n(a,b).
cry

If m < (n—1){a,b), then (a,b)P(m) € KP({a,b) +m) and (a,b) + m <
n{a,b). . 0

Proposition 5.3. Forme M,

P(m) € P(m)+ > KP(n).

n<m
cry

Proof. Put m =37, m;;(i,j) and divide m = m + mc,. We prove
the claim by the induction on b and the number of segments in m;. Suppose
my, = mfa,b) + my with m = mg, > 0, where my = Za<i<b mi (2, b).

(i) Let us first show that

(5.2) P(my) € P(my) + > KP(w).

m’ < my
cry

We have P(my) = P(my) - (a,b)™. Since P(m;) € P(my) + KP(m})

m’lcfyml
by the induction hypothesis, and (a,b)™ € (a,b)™ + 3, < m(apy KP(mM"),

we have

P(my) € P(my) + > KPm))a,bn)™+ Y KPm))Pm").

mi <my, m{EMgy2p) m) <my, m"” <m(a,b)
cry cry cry

If m} ny my and m} € M,42, then P((m}) <) and (a,b)™ commute. Hence

P(m}){a,b)™ = P(m) + m(a,b)) and m| + m(a,b) ny myp.

If my < my, mj € Mgq and m” < m(a,b), then we can write my =
cry cry

j(a,b) +my with j < m and my € M{,42). Hence we have
P(m})P(m") € KP((m})y)P(j{a,b))P((m})<p)P(ma)P(m’,).

Since (m})<p, Mg € M{q1a) We have P((m))<p)P(mz)P(m”,) € > KP(n).

npEMa12.]
Hence we have P(m})P(m”) € Z"bEM[a+2 ) KP((m})p+j{a,b)+n)and (m})s+
j{a,b) + n < my. Hence we obtain (5.2).

cry
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(ii) By the induction hypothesis, P(m<p) € P(m<p) + D < o, KP(m").
Since P(m) = P(my) P(m<yp), (5.2) implies that
P(m) € P(m) + > KP(m')P(m")+ Y KP(m,)P(m").

m’ < mp,m’eEM oy m’ <mcy
cry cry

For m’ < my and m"” € M_;, we have
cry
P(m')P(m") = P(m})P(m’,)P(m") € > KP@mcC ) KP(n).

nGMgb,nb:m’b n<m
cry

For m” < m.y, we have P(my)P(m”) = P(mp, +m”) and m, + m” < m. Thus
cry cry

we obtain the desired result. O

Proposition 5.4. For m € My, we have

Py(m)p € Pp(m)p+ > KPRy(w)s.

m’'eMp,m’ <m

oy
Proof. First note that

(5.3) P(m)pe >  KPy(n)¢ foranybe Igand m e M_yy),
nE(Me)gb

by the weight consideration.
For m € My, Py(m) and P(m) are equal up to a multiple of bar-invariant
scalar. Thus we have

Py(m) € Py(m)+ > KP(w))
meM, m’ <m

by Proposition 5.3. Hence it is enough to show that

(5.4) Pm)pe > KPy(n)o
neEMyp, n<m

cry

for m” € M such that m" < m and wt(m') = wt(m). Put m =3, ., m; ;(i, j)
cry SIS
and write m = m, + mo,. We prove (5.4) by the induction on b. By the

assumption on m’, we have m’ € M_; ) and my < my. Thus mj € My. Hence

cry
KP(m')¢ = KPy(my;) P(m’_,)o.
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If my = my, then m’, <., mcy, and the induction hypothesis implies
P60 € Xuerty. n<m., KPo(n)p. Since Py(mj)Py(n) = Py(mj, + n) and

m, +n < m, we obtain (5.4).
cry
If mj ny my, write m’ = ;o ymy (i, 7). Set s =m_pp —ml,, > 0.

Since Wt(m)) = wt(m), we have >°, ,m’, , = s. If s =0, then m_, €

M—pi2p-2, and P(m_y)d € 3- c(aq,), KPo(n)¢ by (5.3). Then (5.4) follows

from mj +n < m.
cry

Assume s > 0. Since m’_, € M|_p3), we have P(m_,)p € > KPy(n)¢
ne(Mo)<e
by (5.3). We may assume (14 ) wt(m’,) = (14 ) wt(n) (see Remark 2.12).

Hence, we have s = 2m_pp(n) + Y, m;p(n). In particular, m_;,(n) < s/2.
—b<igb
We have mj +n € My and Py(m})Py(n)¢ = Py(mj+n)¢. Since m_pp(mj+n) <

(m_pp —8) +5/2 < m_pp, we have mj +n < m. Hence we obtain (5.4). O

cry

§5.3. Existence of a global basis

As a consequence of the preceding subsections, we obtain the following
theorem.

Theorem 5.5.
(i) (Lg(0), Lg(0)~,Vy(0)a) is balanced.

(ii) For any m € My, there exists a unique G (m) € Lg(0) N Vy(0)a such

that G (m) = G (m) and GI°™(m) = Py(m)¢ mod qLg(0).

(i) Gl (m) € Py(m)é+ Xy - v Qg Po(0) for any m € M.
iv) {GIY(m)}men, is a basis of the A-module Vy(0)a, the Ag-module Lg(0
6 0
and the K-vector space Vy(0).

Proof. 'We have already seen that Py(m)¢p = > Con,m Po(m”)¢ for

m' <m
cry

Cmm € A with ¢y m = 1. Let us denote by C the matrix (¢m,m’)m,m em,. Then
CC =id and it is well-known that there is a matrix A = (amm’)mm em, sSuch
that AC = A, aypm =0 unless m’ < M, apm = 1 and @y m € Qg for m’ <

cry

cry

m. Set Gi"(m) =3, < m @mm Po(m’)¢. Then we have G (m) = G™(m)

and GV (m) = Py(m)¢ mod qLg(0). Since Gi™(m) is a basis of Vp(0)a, we
obtain the desired results. |
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Errata to “Symmetric crystals and affine Hecke algebras of type B, Proc. Japan
Acad., 82, no. 8, 2006, 131-136”7 :

(i) In Conjecture 3.8, A = A,, + A1 should be read as A = ZAAQ, where
ae

A =T10{po,py"s—po,—py*}. We thank S. Ariki who informed us that
the original conjecture is false.

(ii) In the two diagrams of By(A) at the end of §2, A should be 0.

(iii) Throughout the paper, Aél) should be read as Aéljl.
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