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Abstract

In the preceding paper, we formulated a conjecture on the relations between
certain classes of irreducible representations of affine Hecke algebras of type B and
symmetric crystals for gl∞. In the present paper, we prove the existence of the
symmetric crystal and the global basis for gl∞.

§1. Introduction

Lascoux-Leclerc-Thibon ([LLT]) conjectured the relations between the rep-
resentations of Hecke algebras of type A and the crystal bases of the affine Lie
algebras of type A. Then, S. Ariki ([A]) observed that it should be understood
in the setting of affine Hecke algebras and proved the LLT conjecture in a more
general framework. Recently, we presented the notion of symmetric crystals
and conjectured that certain classes of irreducible representations of the affine
Hecke algebras of type B are described by symmetric crystals for gl∞ ([EK]).

The purpose of the present paper is to prove the existence of symmetric
crystals in the case of gl∞.

Let us recall the Lascoux-Leclerc-Thibon-Ariki theory. Let HA
n be the

affine Hecke algebra of type A of degree n. Let KA
n be the Grothendieck group
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of the abelian category of finite-dimensional HA
n -modules, and KA = ⊕n�0 KA

n .
Then it has a structure of Hopf algebra by the restriction and the induction.
The set I = C∗ may be regarded as a Dynkin diagram with I as the set of
vertices and with edges between a ∈ I and ap2

1. Here p1 is the parameter of the
affine Hecke algebra usually denoted by q. Let gI be the associated Lie algebra,
and g−I the unipotent Lie subalgebra. Let UI be the group associated to g−I .
Hence gI is isomorphic to a direct sum of copies of A(1)

�−1 if p2
1 is a primitive

�-th root of unity and to a direct sum of copies of gl∞ if p1 has an infinite
order. Then C⊗KA is isomorphic to the algebra O(UI) of regular functions on
UI . Let Uq(gI) be the associated quantized enveloping algebra. Then U−

q (gI)
has an upper global basis {Gup(b)}b∈B(∞). By specializing

⊕
C[q, q−1]Gup(b)

at q = 1, we obtain O(UI). Then the LLTA-theory says that the elements
associated to irreducible HA-modules corresponds to the image of the upper
global basis.

In [EK], we gave analogous conjectures for affine Hecke algebras of type
B. In the type B case, we have to replace U−

q (gI) and its upper global basis
with symmetric crystals (see § 2.3). It is roughly stated as follows. Let HB

n be
the affine Hecke algebra of type B of degree n. Let KB

n be the Grothendieck
group of the abelian category of finite-dimensional modules over HB

n , and KB =
⊕n�0 KB

n . Then KB has a structure of a Hopf bimodule over KA. The group
UI has the anti-involution θ induced by the involution a �→ a−1 of I = C∗. Let
Uθ

I be the θ-fixed point set of UI . Then O(Uθ
I ) is a quotient ring of O(UI).

The action of O(UI) � C ⊗ KA on C ⊗ KB, in fact, descends to the action of
O(Uθ

I ).
We introduce Vθ(λ) (see § 2.3), a kind of the q-analogue of O(Uθ

I ). The
conjecture in [EK] is then:

(i) Vθ(λ) has a crystal basis and a global basis.

(ii) KB is isomorphic to a specialization of Vθ(λ) at q = 1 as an O(UI)-module,
and the irreducible representations correspond to the upper global basis
of Vθ(λ) at q = 1.

Remark. In [KM], Miemietz and the second author gave an analogous
conjecture for the affine Hecke algebras of type D.

In the present paper, we prove that Vθ(λ) has a crystal basis and a global
basis for g = gl∞ and λ = 0.

More precisely, let I = Zodd be the set of odd integers. Let αi (i ∈ I) be
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the simple roots with

(αi, αj) =


2 if i = j,

−1 if i = j ± 2,

0 otherwise.

Let θ be the involution of I given by θ(i) = −i. Let Bθ(gl∞) be the algebra
over K :=Q(q) generated by Ei, Fi, and invertible elements Ti (i ∈ I) satisfying
the following defining relations:

(i) the Ti’s commute with each other,

(ii) Tθ(i) = Ti for any i,

(iii) TiEjT
−1
i = q(αi+αθ(i),αj)Ej and TiFjT

−1
i = q(αi+αθ(i),−αj)Fj for i, j ∈ I,

(iv) EiFj = q−(αi,αj)FjEi + (δi,j + δθ(i),jTi) for i, j ∈ I,

(v) the Ei’s and the Fi’s satisfy the Serre relations (see Definition 2.1 (4)).

Then there exists a unique irreducible Bθ(gl∞)-module Vθ(0) with a generator
φ satisfying Eiφ = 0 and Tiφ = φ (Proposition 2.11). We define the endomor-
phisms Ẽi and F̃i of Vθ(0) by

Ẽia =
∑
n�1

F
(n−1)
i an, F̃ia =

∑
n�0

f
(n+1)
i an,

when writing
a =

∑
n�0

F
(n)
i an with Eian = 0.

Here F (n)
i = Fn

i /[n]! is the divided power. Let A0 be the ring of functions
a ∈ K which do not have a pole at q = 0. Let Lθ(0) be the A0-submodule of
Vθ(0) generated by the elements F̃i1 · · · F̃i�

φ (� � 0, i1, . . . , i� ∈ I). Let Bθ(0)
be the subset of Lθ(0)/qLθ(0) consisting of the F̃i1 · · · F̃i�

φ’s. In this paper, we
prove the following theorem.

Theorem (Theorem 4.15).

(i) F̃iLθ(0) ⊂ Lθ(0) and ẼiLθ(0) ⊂ Lθ(0),

(ii) Bθ(0) is a basis of Lθ(0)/qLθ(0),

(iii) F̃iBθ(0) ⊂ Bθ(0), and ẼiBθ(0) ⊂ Bθ(0) 	 {0},
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(iv) F̃iẼi(b) = b for any b ∈ Bθ(0) such that Ẽib 
= 0, and ẼiF̃i(b) = b for any
b ∈ Bθ(0).

By this theorem, Bθ(0) has a similar structure to the crystal structure.
Namely, we have operators F̃i : Bθ(0) → Bθ(0) and Ẽi : Bθ(0) → Bθ(0) 	 {0},
which satisfy (iv). Moreover εi(b) := max

{
n ∈ Z�0 | Ẽn

i b ∈ Bθ(0)
}

is finite.
We call it the symmetric crystal associated with (I, θ). Contrary to the usual
crystal case, Ẽθ(i)b may coincide with Ẽib in the symmetric crystal case.

Let − be the bar operator of Vθ(0). Namely, − is a unique endomorphism
of Vθ(0) such that φ = φ, av = āv̄ and Fiv = Fiv̄ for a ∈ K and v ∈ Vθ(0).
Here ā(q) = a(q−1). Let Vθ(0)A be the smallest submodule of Vθ(0) over
A := Q[q, q−1] such that it contains φ and is stable by the F (n)

i ’s.
Then we prove the existence of global basis:

Theorem (Theorem 5.5).

(i) For any b ∈ Bθ(0), there exists a unique Glow
θ (b) ∈ Vθ(0)A ∩ Lθ(0) such

that Glow
θ (b) = Glow

θ (b) and b = Glow
θ (b) mod qLθ(0),

(ii) {Glow
θ (b)}b∈Bθ(0) is a basis of the A0-module Lθ(0), the A-module Vθ(0)A

and the K-vector space Vθ(0).

We call Glow
θ (b) the lower global basis. The Bθ(gl∞)-module Vθ(0) has a

unique symmetric bilinear form ( • , • ) such that (φ, φ) = 1 and Ei and Fi are
transpose to each other. The dual basis to {Glow

θ (b)}b∈Bθ(0) with respect to
( • , • ) is called an upper global basis.

Let us explain the strategy of our proof of these theorems. We first con-
struct a PBW type basis {Pθ(m)φ}m of Vθ(0) parametrized by the θ-restricted
multisegments m. Then, we explicitly calculate the actions of Ei and Fi in
terms of the PBW basis {Pθ(m)φ}m. Then, we prove that the PBW basis gives
a crystal basis by the estimation of the coefficients of these actions. For this
we use a criterion for crystal bases (Theorem 4.1).

§2. General Definitions and Conjectures

§2.1. Quantized universal enveloping algebras and
its reduced q-analogues

We shall recall the quantized universal enveloping algebra Uq(g). Let I be
an index set (for simple roots), and Q the free Z-module with a basis {αi}i∈I .
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Let ( • , • ) : Q×Q→ Z be a symmetric bilinear form such that (αi, αi)/2 ∈ Z>0

for any i and (α∨
i , αj) ∈ Z�0 for i 
= j where α∨

i := 2αi/(αi, αi). Let q be an
indeterminate and set K := Q(q). We define its subrings A0, A∞ and A as
follows.

A0 = {f ∈ K | f is regular at q = 0} ,
A∞ = {f ∈ K | f is regular at q = ∞} ,

A = Q[q, q−1].

Definition 2.1. The quantized universal enveloping algebra Uq(g) is
the K-algebra generated by elements ei, fi and invertible elements ti (i ∈ I)
with the following defining relations.

(1) The ti’s commute with each other.

(2) tjei t
−1
j = q(αj ,αi) ei and tjfit

−1
j = q−(αj ,αi)fi for any i, j ∈ I.

(3) [ei, fj ] = δij
ti − t−1

i

qi − q−1
i

for i, j ∈ I. Here qi := q(αi,αi)/2.

(4) (Serre relation) For i 
= j,

b∑
k=0

(−1)ke
(k)
i eje

(b−k)
i = 0,

b∑
k=0

(−1)kf
(k)
i fjf

(b−k)
i = 0.

Here b = 1 − (α∨
i , αj) and

e
(k)
i = ek

i /[k]i! , f
(k)
i = fk

i /[k]i! ,

[k]i = (qk
i − q−k

i )/(qi − q−1
i ) , [k]i! = [1]i · · · [k]i .

Let us denote by U−
q (g) (resp. U+

q (g)) the K-subalgebra of Uq(g) generated
by the fi’s (resp. the ei’s).

Let e′i and e∗i be the operators on U−
q (g) (see [K1, 3.4]) defined by

[ei, a] =
(e∗i a)ti − t−1

i e′ia
qi − q−1

i

(a ∈ U−
q (g)).

These operators satisfy the following formulas similar to derivations:

e′i(ab) = e′i(a)b+ (Ad(ti)a)e′ib,

e∗i (ab) = ae∗i b+ (e∗i a)(Ad(ti)b).
(2.1)
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Note that in [K1], the operator e′′i was defined. It satisfies e′′i = −◦e′i ◦−, while
e∗i satisfies e∗i = ∗ ◦ e′i ◦ ∗. They are related by e∗i = Ad(ti) ◦ e′′i .

The algebra U−
q (g) has a unique symmetric bilinear form ( • , • ) such that

(1, 1) = 1 and
(e′ia, b) = (a, fib) for any a, b ∈ U−

q (g).

It is non-degenerate and satisfies (e∗i a, b) = (a, bfi). The left multiplication of
fj , e

′
i and e∗i have the commutation relations

e′ifj = q−(αi,αj)fje
′
i + δij , e

∗
i fj = fje

∗
i + δij Ad(ti),

and both the e′i’s and the e∗i ’s satisfy the Serre relations.

Definition 2.2. The reduced q-analogue B(g) of g is the K-algebra gen-
erated by e′i and fi.

§2.2. Review on crystal bases and global bases

Since e′i and fi satisfy the q-boson relation, any element a ∈ U−
q (g) can be

uniquely written as

a =
∑
n�0

f
(n)
i an with e′ian = 0.

Here f (n)
i =

fn
i

[n]i!
.

Definition 2.3. We define the modified root operators ẽi and f̃i on
U−

q (g) by

ẽia =
∑
n�1

f
(n−1)
i an, f̃ia =

∑
n�0

f
(n+1)
i an.

Theorem 2.4 ([K1]). We define

L(∞) =
∑

��0, i1,...,i�∈I

A0f̃i1 · · · f̃i�
· 1 ⊂ U−

q (g),

B(∞) =
{
f̃i1 · · · f̃i�

· 1 mod qL(∞) | � � 0, i1, · · · , i� ∈ I
}
⊂ L(∞)/qL(∞).

Then we have

(i) ẽiL(∞) ⊂ L(∞) and f̃iL(∞) ⊂ L(∞),

(ii) B(∞) is a basis of L(∞)/qL(∞),
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(iii) f̃iB(∞) ⊂ B(∞) and ẽiB(∞) ⊂ B(∞) ∪ {0}.
We call (L(∞),B(∞)) the crystal basis of U−

q (g).

Let − be the automorphism of K sending q to q−1. Then A0 coincides
with A∞.

Let V be a vector space over K, L0 an A0-submodule of V , L∞ an A∞-
submodule, and VA an A-submodule. Set E := L0 ∩ L∞ ∩ VA.

Definition 2.5 ([K1], [K2, 2.1]). We say that (L0, L∞, VA) is balanced
if each of L0, L∞ and VA generates V as a K-vector space, and if one of the
following equivalent conditions is satisfied.

(i) E → L0/qL0 is an isomorphism,

(ii) E → L∞/q−1L∞ is an isomorphism,

(iii) (L0 ∩ VA) ⊕ (q−1L∞ ∩ VA) → VA is an isomorphism,

(iv) A0 ⊗Q E → L0, A∞ ⊗Q E → L∞, A ⊗Q E → VA and K ⊗Q E → V are
isomorphisms.

Let − be the ring automorphism of Uq(g) sending q, ti, ei, fi to q−1, t−1
i ,

ei, fi.
Let Uq(g)A be the A-subalgebra of Uq(g) generated by e

(n)
i , f (n)

i and ti.
Similarly we define U−

q (g)A.

Theorem 2.6. (L(∞), L(∞)−, U−
q (g)A) is balanced.

Let

Glow : L(∞)/qL(∞) ∼−→E := L(∞) ∩ L(∞)− ∩ U−
q (g)A

be the inverse of E ∼−→L(∞)/qL(∞). Then
{
Glow(b) | b ∈ B(∞)

}
forms a basis

of U−
q (g). We call it a (lower) global basis. It is first introduced by G. Lusztig

([L]) under the name of “canonical basis” for the A, D, E cases.

Definition 2.7. Let

{Gup(b) | b ∈ B(∞)}

be the dual basis of
{
Glow(b) | b ∈ B(∞)

}
with respect to the inner product

( • , • ). We call it the upper global basis of U−
q (g).
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§2.3. Symmetric crystals

Let θ be an automorphism of I such that θ2 = id and (αθ(i), αθ(j)) =
(αi, αj). Hence it extends to an automorphism of the root lattice Q by θ(αi) =
αθ(i), and induces an automorphism of Uq(g).

Definition 2.8. Let Bθ(g) be the K-algebra generated by Ei, Fi, and
invertible elements Ti (i ∈ I) satisfying the following defining relations:

(i) the Ti’s commute with each other,

(ii) Tθ(i) = Ti for any i,

(iii) TiEjT
−1
i = q(αi+αθ(i),αj)Ej and TiFjT

−1
i = q(αi+αθ(i),−αj)Fj for i, j ∈ I,

(iv) EiFj = q−(αi,αj)FjEi + (δi,j + δθ(i),jTi) for i, j ∈ I,

(v) the Ei’s and the Fi’s satisfy the Serre relations (Definition 2.1 (4)).

We set E(n)
i = En

i /[n]i! and F (n)
i = Fn

i /[n]i!.

Lemma 2.9. Identifying U−
q (g) with the subalgebra of Bθ(g) by the mor-

phism fi �→ Fi, we have

Tia =
(
Ad(titθ(i))a

)
Ti,(2.2)

Eia =
(
Ad(ti)a

)
Ei + e′ia+

(
Ad(ti)(e∗θ(i)a)

)
Ti(2.3)

for a ∈ U−
q (g).

Proof. The first relation is obvious. In order to prove the second, it is
enough to show that if a satisfies (2.3), then fja satisfies (2.3). We have

Ei(fja) = (q−(αi,αj)fjEi + δi,j + δθ(i),jTi)a

= q−(αi,αj)fj(
(
Ad(ti)a

)
Ei + e′ia+

(
Ad(ti)(e∗θ(i)a)

)
Ti)

+δi,ja+ δθ(i),j

(
Ad(titθ(i))a

)
Ti

= (
(
Ad(ti)(fja)

)
Ei + e′i(fja) +

(
Ad(ti)(e∗θ(i)(fja)

)
Ti.

The following lemma can be proved in a standard manner and we omit the
proof.
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Lemma 2.10. Let K[T±
i ; i ∈ I] be the commutative K-algebra gener-

ated by invertible elements Ti (i ∈ I) with the defining relations Tθ(i) = Ti.
Then the map U−

q (g)⊗K[T±
i ; i ∈ I]⊗U+

q (g) → Bθ(g) induced by the multipli-
cation is bijective.

Let λ ∈ P+ := {λ ∈ Hom(Q,Q) | 〈α∨
i , λ〉 ∈ Z�0 for any i ∈ I} be a domi-

nant integral weight such that θ(λ) = λ.

Proposition 2.11.

(i) There exists a Bθ(g)-module Vθ(λ) generated by a non-zero vector φλ such
that

(a) Eiφλ = 0 for any i ∈ I,

(b) Tiφλ = q(αi,λ)φλ for any i ∈ I,

(c) {u ∈ Vθ(λ) | Eiu = 0 for any i ∈ I} = Kφλ.

Moreover such a Vθ(λ) is irreducible and unique up to an isomorphism.

(ii) there exists a unique symmetric bilinear form ( • , • ) on Vθ(λ) such that
(φλ, φλ) = 1 and (Eiu, v) = (u, Fiv) for any i ∈ I and u, v ∈ Vθ(λ), and
it is non-degenerate.

Remark 2.12. Set Pθ = {µ ∈ P | θ(µ) = µ}. Then Vθ(λ) has a weight
decomposition

Vθ(λ) =
⊕

µ∈Pθ

Vθ(λ)µ,

where Vθ(λ)µ =
{
u ∈ Vθ(λ) | Tiu = q(αi,µ)u

}
. We say that an element u of

Vθ(λ) has a θ-weight µ and write wtθ(u) = µ if u ∈ Vθ(λ)µ. We have wtθ(Eiu) =
wtθ(u) + (αi + αθ(i)) and wtθ(Fiu) = wtθ(u) − (αi + αθ(i)).

In order to prove Proposition 2.11, we shall construct two Bθ(g)-modules,
analogous to Verma modules and dual Verma modules.

Lemma 2.13. Let U−
q (g)φ′λ be a free U−

q (g)-module with a generator φ′λ.
Then the following action gives a structure of a Bθ(g)-module on U−

q (g)φ′λ :
Ti(aφ′λ) = q(αi,λ)(Ad(titθ(i))a)φ′λ,

Ei(aφ′λ) =
(
e′ia+ q(αi,λ) Ad(ti)(e∗θ(i)a)

)
φ′λ,

Fi(aφ′λ) = (fia)φ′λ

(2.4)

for any i ∈ I and a ∈ U−
q (g).

Moreover Bθ(g)/
∑

i∈I

(Bθ(g)Ei + Bθ(g)(Ti − q(αi,λ))) → U−
q (g)φ′λ is an iso-

morphism.
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Proof. We can easily check the defining relations in Definition 2.8 except
the Serre relations for the Ei’s.

For i 
= j ∈ I, set S =
∑b

n=0(−1)nE
(n)
i EjE

(b−n)
i where b = 1−〈hi, αj〉. It

is enough to show that the action of S on U−
q (g)φ′λ is equal to 0. We can easily

check that SFk = q−(bαi+αj ,αk)FkS. Since Sφ′λ = 0, we have SU−
q (g)φ′λ = 0.

Hence U−
q (g)φ′λ has a Bθ(g)-module structure.

The last statement is obvious.

Lemma 2.14. Let U−
q (g)φ′′λ be a free U−

q (g)-module with a generator
φ′′λ. Then the following action gives a structure of a Bθ(g)-module on U−

q (g)φ′′λ:
Ti(aφ′′λ) = q(αi,λ)(Ad(titθ(i))a)φ′′λ,

Ei(aφ′′λ) = (e′ia)φ
′′
λ,

Fi(aφ′′λ) =
(
fia+ q(αi,λ)(Ad(ti)a)fθ(i)

)
φ′′λ

(2.5)

for any i ∈ I and a ∈ U−
q (g). Moreover, there exists a non-degenerate bilinear

form 〈 • , • 〉 : U−
q (g)φ′λ×U−

q (g)φ′′λ → K such that 〈Fiu, v〉 = 〈u,Eiv〉, 〈Eiu, v〉 =
〈u, Fiv〉, 〈Tiu, v〉 = 〈u, Tiv〉 for u ∈ U−

q (g)φ′λ and v ∈ U−
q (g)φ′′λ, and 〈φ′λ, φ′′λ〉 =

1.

Proof. There exists a unique symmetric bilinear form ( • , • ) on U−
q (g)

such that (1, 1) = 1 and fi and e′i are transpose to each other. Let us define
〈 • , • 〉 : U−

q (g)φ′λ ×U−
q (g)φ′′λ → K by 〈aφ′λ, bφ′′λ〉 = (a, b) for a ∈ U−

q (g) and b ∈
U−

q (g). Then we can easily check 〈Fiu, v〉 = 〈u,Eiv〉, 〈Tiu, v〉 = 〈u, Tiv〉. Since
e∗i is transpose to the right multiplication of fi, we have 〈Eiu, v〉 = 〈u, Fiv〉.
Hence the action of Ei, Fi, Ti on U−

q (g)φ′′λ satisfy the defining relations in
Definition 2.8.

Proof of Proposition 2.11. Since Eiφ
′′
λ = 0 and φ′′λ has a θ-weight λ, there

exists a unique Bθ(g)-linear morphism ψ : U−
q (g)φ′λ → U−

q (g)φ′′λ sending φ′λ to
φ′′λ. Let Vθ(λ) be its image ψ(U−

q (g)φ′λ).
(i) (c) follows from

{
u ∈ U−

q (g) | e′iu = 0 for any i
}

= K and U−
q (g)φ′′λ ⊃

Vθ(λ). The other properties (a), (b) are obvious. Let us show that Vθ(λ) is
irreducible. Let S be a non-zero Bθ(g)-submodule. Then S contains a non-zero
vector v such that Eiv = 0 for any i. Then (c) implies that v is a constant
multiple of φλ. Hence S = Vθ(λ).

Let us prove (ii). For u, u′ ∈ U−
q (g)φ′λ, set ((u, u′)) = 〈u, ψ(u′)〉. Then it is

a bilinear form on U−
q (g)φ′λ which satisfies

((φ′λ, φ
′
λ)) = 1, ((Fiu, u

′)) = ((u,Eiu
′)), ((Eiu, u

′)) = ((u, Fiu
′)), and

((Tiu, u
′)) = ((u, Tiu

′)).
(2.6)
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It is easy to see that a bilinear form which satisfies (2.6) is unique. Since
((u′, u)) also satisfies (2.6), ((u, u′)) is a symmetric bilinear form on U−

q (g)φ′λ.
Since ψ(u′) = 0 implies ((u, u′)) = 0, ((u, u′)) induces a symmetric bilinear form
on Vθ(λ). Since ( • , • ) is non-degenerate on U−

q (g), (( • , • )) is a non-degenerate
symmetric bilinear form on Vθ(λ).

Lemma 2.15. There exists a unique endomorphism − of Vθ(λ) such
that φλ = φλ and av = āv̄, Fiv = Fiv̄ for any a ∈ K and v ∈ Vθ(λ).

Proof. The uniqueness is obvious.
Let ξ be an anti-involution of U−

q (g) such that ξ(q) = q−1 and ξ(fi) =
fθ(i). Let ρ̃ be an element of Q ⊗ P such that (ρ̃, αi) = (αi, αθ(i))/2. Define
c(µ) =

(
(µ+ ρ̃, θ(µ+ ρ̃)) − (ρ̃, θ(ρ̃))

)
/2 + (λ, µ) for µ ∈ P . Then it satisfies

c(µ) − c(µ− αi) = (λ+ µ, αθ(i)).

Hence c takes integral values on Q :=
∑

i Zαi.
We define the endomorphism Φ of U−

q (g)φ′′λ by Φ(aφ′′λ) = q−c(µ)ξ(a)φ′′λ for
a ∈ U−

q (g)µ. Let us show that

Φ(Fi(aφ′′λ)) = FiΦ(aφ′′λ) for any a ∈ U−
q (g).(2.7)

For a ∈ U−
q (g)µ, we have

Φ(Fi(aφ′′λ)) = Φ
(
fia+ q(αi,λ+µ)afθ(i)

)
φ′′λ

=
(
q−c(µ−αi)ξ(a)fθ(i) + q−(αi,λ+µ)−c(µ−αθ(i))fiξ(a)

)
φ′′λ.

On the other hand, we have

FiΦ(aφ′′λ) = Fi

(
q−c(µ)ξ(a)φ′′λ

)
= q−c(µ)

(
fiξ(a) + q(αi,λ+θ(µ))ξ(a)fθ(i)

)
φ′′λ.

Therefore we obtain (2.7).
Hence Φ induces the desired endomorphism of Vθ(λ) ⊂ U−

q (g)φ′′λ.

Hereafter we assume further that

there is no i ∈ I such that θ(i) = i.

We conjecture that Vθ(λ) has a crystal basis under this assumption. This means
the following. Since Ei and Fi satisfy the q-boson relation, any u ∈ Vθ(λ) can be
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uniquely written as u =
∑

n�0 F
(n)
i un with Eiun = 0. We define the modified

root operators Ẽi and F̃i by:

Ẽi(u) =
∑
n�1

F
(n−1)
i un and F̃i(u) =

∑
n�0

F
(n+1)
i un.

Let Lθ(λ) be the A0-submodule of Vθ(λ) generated by F̃i1 · · · F̃i�
φλ (� � 0 and

i1, . . . , i� ∈ I ), and let Bθ(λ) be the subset{
F̃i1 · · · F̃i�

φλ mod qLθ(λ) | � � 0, i1, . . . , i� ∈ I
}

of Lθ(λ)/qLθ(λ).

Conjecture 2.16. For a dominant integral weight λ such that θ(λ) = λ,
we have

(1) F̃iLθ(λ) ⊂ Lθ(λ) and ẼiLθ(λ) ⊂ Lθ(λ),

(2) Bθ(λ) is a basis of Lθ(λ)/qLθ(λ),

(3) F̃iBθ(λ) ⊂ Bθ(λ), and ẼiBθ(λ) ⊂ Bθ(λ) 	 {0},
(4) F̃iẼi(b) = b for any b ∈ Bθ(λ) such that Ẽib 
= 0, and ẼiF̃i(b) = b for any

b ∈ Bθ(λ).

As in [K1], we have

Lemma 2.17. Assume Conjecture 2.16. Then we have

(i) Lθ(λ) = {v ∈ Vθ(λ) | (Lθ(λ), v) ⊂ A0},
(ii) Let ( • , • )0 be the Q-valued symmetric bilinear form on Lθ(λ)/qLθ(λ)

induced by ( • , • ). Then Bθ(λ) is an orthonormal basis with respect to
( • , • )0.

Moreover we conjecture that Vθ(λ) has a global crystal basis. Namely we
have

Conjecture 2.18. The triplet (Lθ(λ), Lθ(λ)−, Vθ(λ)lowA ) is balanced.
Here Vθ(λ)lowA := U−

q (g)Aφλ.

Its dual version is as follows.
Let us denote by Vθ(λ)up

A the dual space
{
v ∈ Vθ(λ) | (Vθ(λ)lowA , v) ⊂ A

}
.

Then Conjecture 2.18 is equivalent to the following conjecture.
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Conjecture 2.19. (Lθ(λ), c(Lθ(λ)), Vθ(λ)up
A ) is balanced.

Here c is a unique endomorphism of Vθ(λ) such that c(φλ) = φλ and
c(av) = āc(v), c(Eiv) = Eic(v) for any a ∈ K and v ∈ Vθ(λ). We have
(c(v′), v) = (v′, v̄) for any v, v′ ∈ Vθ(λ).

Note that Vθ(λ)up
A is the largest A-submodule M of Vθ(λ) such that M is

invariant by the E(n)
i ’s and M ∩ Kφλ = Aφλ.

By Conjecture 2.19, Lθ(λ) ∩ c(Lθ(λ)) ∩ Vθ(λ)up
A → Lθ(λ)/qLθ(λ) is an

isomorphism. Let Gup
θ be its inverse. Then {Gup

θ (b)}b∈Bθ(λ) is a basis of Vθ(λ),
which we call the upper global basis of Vθ(λ). Note that {Gup

θ (b)}b∈Bθ(λ) is the
dual basis to {Glow

θ (b)}b∈Bθ(λ) with respect to the inner product of Vθ(λ).
We shall prove these conjectures in the case g = gl∞ and λ = 0.

§3. PBW Basis of Vθ(0) for g = gl∞

§3.1. Review on the PBW basis

In the sequel, we set I = Zodd and

(αi, αj) =


2 for i = j,
−1 for j = i± 2,
0 otherwise,

and we consider the corresponding quantum group Uq(gl∞). In this case, we
have qi = q. We write [n] and [n]! for [n]i and [n]i! for short.

We can parametrize the crystal basis B(∞) by the multisegments. We
shall recall this parametrization and the PBW basis.

Definition 3.1. For i, j ∈ I such that i � j, we define a segment 〈i, j〉
as the interval [i, j] ⊂ I := Zodd. A multisegment is a formal finite sum of
segments:

m =
∑
i�j

mij〈i, j〉

with mi,j ∈ Z�0. We call mij the multiplicity of a segment 〈i, j〉. If mi,j > 0,
we sometimes say that 〈i, j〉 appears in m. We sometimes writemi,j(m) formi,j .
We sometimes write 〈i〉 for 〈i, i〉. We denote by M the set of multisegments.
We denote by ∅ the zero element (or the empty multisegment) of M.

Definition 3.2. For two segments 〈i1, j1〉 and 〈i2, j2〉, we define the
ordering �PBW by the following:

〈i1, j1〉 �PBW 〈i2, j2〉 ⇐⇒


j1 > j2
or
j1 = j2 and i1 � i2.
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We call this ordering the PBW-ordering.

Definition 3.3. For a multisegment m, we define the element P (m) ∈
U−

q (gl∞) as follows.

(1) For a segment 〈i, j〉, we define the element 〈i, j〉 ∈ U−
q (gl∞) inductively by

〈i, i〉= fi,

〈i, j〉= 〈i, j − 2〉〈j, j〉 − q〈j, j〉〈i, j − 2〉 for i < j.

(2) For a multisegment m =
∑
i�j

mij〈i, j〉, we define

P (m) =
−→∏

〈i, j〉(mij).

Here the product
−→∏

is taken over segments appearing in m from large to
small with respect to the PBW-ordering. The element 〈i, j〉(mij) is the
divided power of 〈i, j〉 i.e.

〈i, j〉(n) =


1

[n]!
〈i, j〉n for n > 0,

1 for n = 0,

0 for n < 0.

Hence the weight of P (m) is equal to wt(m):=− ∑
i�k�j

mi,jαk: tiP (m)t−1
i =

q(αi,wt(m))P (m).

Theorem 3.4 ([L]). The set of elements {P (m) | m ∈ M} is a K-basis
of U−

q (gl∞). Moreover this is an A-basis of U−
q (gl∞)A. We call this basis the

PBW basis of U−
q (gl∞).

Definition 3.5. For two segments 〈i1, j1〉 and 〈i2, j2〉, we define the
ordering �cry by the following:

〈i1, j1〉 �cry 〈i2, j2〉 ⇐⇒


j1 > j2
or
j1 = j2 and i1 � i2.

We call this ordering the crystal ordering.

Example 3.6. The crystal ordering is different from the PBW-ordering.
For example, we have 〈−1, 1〉 >cry 〈1, 1〉 >cry 〈−1〉, while we have 〈1, 1〉 >PBW

〈−1, 1〉 >PBW 〈−1〉.
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Definition 3.7. We define the crystal structure on M as follows: for
m =

∑
mi,j〈i, j〉 ∈ M and i ∈ I, set A(i)

k (m) =
∑

k′�k(mi,k′ −mi+2,k′+2) for

k � i. Define εi(m) as max
{
A

(i)
k (m) | k � i

}
� 0.

(i) If εi(m) = 0, then define ẽi(m) = 0. If εi(m) > 0, let ke be the largest k � i

such that εi(m) = A
(i)
k (m) and define ẽi(m) = m−〈i, ke〉+δke �=i〈i+2, ke〉.

(ii) Let kf be the smallest k � i such that εi(m) = A
(i)
k (m) and define f̃i(m) =

m − δkf �=i〈i+ 2, kf 〉 + 〈i, kf 〉.

Remark 3.8. For i ∈ I, the actions of the operators ẽi and f̃i on m ∈ M
are also described by the following algorithm:

Step 1. Arrange the segments in m in the crystal ordering.

Step 2. For each segment 〈i, j〉, write −, and for each segment 〈i+ 2, j〉, write
+.

Step 3. In the resulting sequence of + and −, delete a subsequence of the form
+− and keep on deleting until no such subsequence remains.

Then we obtain a sequence of the form −− · · · − + + · · ·+.

(1) εi(m) is the total number of − in the resulting sequence.

(2) f̃i(m) is given as follows:

(a) if the leftmost + corresponds to a segment 〈i+ 2, j〉, then replace it
with 〈i, j〉,

(b) if no + exists, add a segment 〈i, i〉 to m.

(3) ẽi(m) is given as follows:

(a) if the rightmost − corresponds to a segment 〈i, j〉 with i < j, then
replace it with 〈i+ 2, j〉,

(b) if the rightmost − corresponds to a segment 〈i, i〉, then remove it,

(c) if no − exists, then ẽi(m) = 0.

Let us introduce a linear ordering on the set M of multisegments, lexico-
graphic with respect to the crystal ordering on the set of segments.
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Definition 3.9. For m =
∑

i�j

mi,j〈i, j〉 ∈ M and m′ =
∑

i�j

m′
i,j〈i, j〉 ∈

M, we define m′ <
cry

m if there exist i0 � j0 such that m′
i0,j0

< mi0,j0 , m
′
i,j0

=

mi,j0 for i < i0, and m′
i,j = mi,j for j > j0 and i � j.

Theorem 3.10.

(i) L(∞) =
⊕

m∈M
A0P (m).

(ii) B(∞) = {P (m) mod qL(∞) | m ∈ M}.
(iii) We have

ẽiP (m)≡ P (ẽi(m)) mod qL(∞),

f̃iP (m)≡ P (f̃i(m)) mod qL(∞).

Note that ẽi and f̃i in the left-hand-side is the modified root operators.

(iv) We have
P (m) ∈ P (m) +

∑
m′ <

cry
m

AP (m′).

Therefore we can index the crystal basis by multisegments. By this the-
orem we can easily see by a standard argument that (L(∞), L(∞)−, U−

q (g)A)
is balanced, and there exists a unique Glow(m) ∈ L(∞) ∩ U−

q (g)A such that
Glow(m)− = Glow(m) and Glow(m) ≡ P (m) mod qL(∞). Then {Glow(m)}m∈M
is a lower global basis.

§3.2. θ-restricted multisegments

We consider the Dynkin diagram involution θ of I := Zodd defined by
θ(i) = −i for i ∈ I.

· · · · · · ◦
��

θ

��
◦
�� ��

◦
�� ��

◦ ◦ ◦ · · · · · · .

−5 −3 −1 1 3 5

We shall prove in this case Conjectures 2.16 and 2.18 for λ = 0 (Theorems 4.15
and 5.5).

We set

Ṽθ(0) := Bθ(gl∞)/
∑

i∈I

(Bθ(gl∞)Ei + Bθ(gl∞)(Ti − 1) + Bθ(gl∞)(Fi − Fθ(i))
)

� U−
q (gl∞)/

∑
i

U−
q (gl∞)(fi − fθ(i)).
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Let φ̃ be the generator of Ṽθ(0) corresponding to 1 ∈ Bθ(gl∞). Since Fiφ
′′
0 =

(fi + fθ(i))φ′′0 = Fθ(i)φ
′′
0 , we have an epimorphism of Bθ(gl∞)-modules

Ṽθ(0) � Vθ(0).(3.1)

We shall see later that it is in fact an isomorphism (see Theorem 4.15).

Definition 3.11. If a multisegment m has the form

m =
∑

−j�i�j

mij〈i, j〉,

we call m a θ-restricted multisegment. We denote by Mθ the set of θ-restricted
multisegments.

Definition 3.12. For a θ-restricted segment 〈i, j〉, we define its modi-
fied divided power by

〈i, j〉[m] =


〈i, j〉(m) =

1
[m]!

〈i, j〉m (i 
= −j),
1∏m

ν=1[2ν]
〈−j, j〉m (i = −j).

We understand that 〈i, j〉[m] is equal to 1 form = 0 and vanishes form < 0.

Definition 3.13. For m ∈ Mθ, we define Pθ(m) ∈ U−
q (gl∞) ⊂ Bθ(gl∞)

by

Pθ(m) =
−→∏

〈i,j〉∈m

〈i, j〉[mij ].

Here the product
−→∏

is taken over the segments appearing in m from large to
small with respect to the PBW-ordering.

If an element m of the free abelian group generated by 〈i, j〉 does not belong
to Mθ, we understand Pθ(m) = 0.

We will prove later that {Pθ(m)φ}m∈Mθ
is a basis of Vθ(0) (see Theo-

rem 4.15). Here and hereafter, we write φ instead of φ0 ∈ Vθ(0).

§3.3. Commutation relations of 〈i, j〉

In the sequel, we regard U−
q (gl∞) as a subalgebra of Bθ(gl∞) by fi �→ Fi.

We shall give formulas to express products of segments by a PBW basis.

Proposition 3.14. For i, j, k, l ∈ I, we have
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(1) 〈i, j〉〈k, �〉 = 〈k, �〉〈i, j〉 for i � j, k � � and j < k − 2,

(2) 〈i, j〉〈j + 2, k〉 = 〈i, k〉 + q〈j + 2, k〉〈i, j〉 for i � j < k,

(3) 〈j, k〉〈i, �〉 = 〈i, �〉〈j, k〉 for i < j � k < �,

(4) 〈i, k〉〈j, k〉 = q−1〈j, k〉〈i, k〉 for i < j � k,

(5) 〈i, j〉〈i, k〉 = q−1〈i, k〉〈i, j〉 for i � j < k,

(6) 〈i, k〉〈j, �〉 = 〈j, �〉〈i, k〉 + (q−1 − q)〈i, �〉〈j, k〉 for i < j � k < �.

Proof. (1) is obvious. We prove (2) by the induction on k−j. If k−j = 2,
it is trivial by the definition. If j < k − 2, then 〈k〉 and 〈i, j〉 commute. Thus,
we have

〈i, j〉〈j + 2, k〉= 〈i, j〉(〈j + 2, k − 2〉〈k〉 − q〈k〉〈j + 2, k − 2〉)
=
(〈i, k − 2〉 + q〈j + 2, k − 2〉〈i, j〉)〈k〉 − q〈k〉〈i, j〉〈j + 2, k − 2〉

= 〈i, k − 2〉〈k〉 + q〈j + 2, k − 2〉〈k〉〈i, j〉
−q〈k〉(〈i, k − 2〉 + q〈j + 2, k − 2〉〈i, j〉)

= 〈i, k〉 + 〈j + 2, k〉〈i, j〉.

In order to prove the other relations, we first show the following special cases.

Lemma 3.15. We have for any j ∈ I

(a) 〈j − 2, j〉〈j〉 = q−1〈j〉〈j − 2, j〉 and 〈j〉〈j, j + 2〉 = q−1〈j, j + 2〉〈j〉,

(b) 〈j〉〈j − 2, j + 2〉 = 〈j − 2, j + 2〉〈j〉,

(c) 〈j − 2, j〉〈j, j + 2〉 = 〈j, j + 2〉〈j − 2, j〉 + (q−1 − q)〈j − 2, j + 2〉〈j〉.

Proof. The first equality in (a) follows from

〈j − 2, j〉〈j〉 − q−1〈j〉〈j − 2, j〉
=
(
fj−2fj − qfjfj−2

)
fj − q−1fj

(
fj−2fj − qfjfj−2

)
= fj−2f

2
j − (q + q−1)fjfj−2fj + f2

j fj−2 = 0.

We can similarly prove the second.
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Let us show (b) and (c). We have, by (a)

〈j − 2, j〉〈j, j + 2〉 = 〈j − 2, j〉(〈j〉〈j + 2〉 − q〈j + 2〉〈j〉)
= q−1〈j〉〈j − 2, j〉〈j + 2〉 − q

(〈j − 2, j + 2〉 + q〈j + 2〉〈j − 2, j〉)〈j〉
= q−1〈j〉(〈j − 2, j + 2〉 + q〈j + 2〉〈j − 2, j〉)

−q〈j − 2, j + 2〉〈j〉 − q〈j + 2〉〈j〉〈j − 2, j〉
=
(〈j〉〈j + 2〉 − q〈j + 2〉〈j〉)〈j − 2, j〉

+q−1〈j〉〈j − 2, j + 2〉 − q〈j − 2, j + 2〉〈j〉
= 〈j, j + 2〉〈j − 2, j〉 + q−1〈j〉〈j − 2, j + 2〉 − q〈j − 2, j + 2〉〈j〉.

(3.2)

Similarly, we have

〈j − 2, j〉〈j, j + 2〉 =
(〈j − 2〉〈j〉 − q〈j〉〈j − 2〉)〈j, j + 2〉

= q−1〈j − 2〉〈j, j + 2〉〈j〉 − q〈j〉(〈j − 2, j + 2〉 + q〈j, j + 2〉〈j − 2〉)
= q−1

(〈j − 2, j + 2〉 + q〈j, j + 2〉〈j − 2〉)〈j〉
−q〈j〉〈j − 2, j + 2〉 − q〈j, j + 2〉〈j〉〈j − 2〉

= 〈j, j + 2〉(〈j − 2〉〈j〉 − q〈j〉〈j − 2〉)
+q−1〈j − 2, j + 2〉〈j〉 − q〈j〉〈j − 2, j + 2〉

= 〈j, j + 2〉〈j − 2, j〉 + q−1〈j − 2, j + 2〉〈j〉 − q〈j〉〈j − 2, j + 2〉.

(3.3)

Then, (3.2) and (3.3) imply (b) and (c).

We shall resume the proof of Proposition 3.14. By Lemma 3.15 (b), 〈i, k〉
commutes with 〈j〉 for i < j < k. Thus we obtain (3).

We shall show (4) by the induction on k− j. Suppose k− j = 0. The case
i = k − 2 is nothing but Lemma 3.15 (a).

If i < k − 2, then

〈i, k〉〈k〉= 〈i, k − 4〉〈k − 2, k〉〈k〉 − q〈k − 2, k〉〈i, k − 4〉〈k〉
= q−1〈k〉〈i, k − 4〉〈k − 2, k〉 − 〈k〉〈k − 2, k〉〈i, k − 4〉 = q−1〈k〉〈i, k〉.

Suppose k − j > 0. By using the induction hypothesis and (3), we have

〈i, k〉〈j, k〉= 〈i, k〉〈j〉〈j + 2, k〉 − q〈i, k〉〈j + 2, k〉〈j〉
= 〈j〉〈i, k〉〈j + 2, k〉 − 〈j + 2, k〉〈i, k〉〈j〉
= q−1〈j〉〈j + 2, k〉〈i, k〉 − 〈j + 2, k〉〈j〉〈i, k〉 = q−1〈j, k〉〈i, k〉.

Similarly we can prove (5).
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Let us prove (6). We have

〈i, k〉〈j, �〉=
(〈i, j − 2〉〈j, k〉 − q〈j, k〉〈i, j − 2〉)〈j, �〉

= q−1〈i, j − 2〉〈j, �〉〈j, k〉 − q〈j, k〉(〈i, �〉 + q〈j, �〉〈i, j − 2〉)
= q−1

(〈i, �〉 + q〈j, �〉〈i, j − 2〉)〈j, k〉
−q〈i, �〉〈j, k〉 − q〈j, �〉〈j, k〉〈i, j − 2〉

= 〈j, �〉〈i, k〉 + (q−1 − q)〈i, �〉〈j, k〉.

Lemma 3.16.

(i) For 1 � i � j, we have 〈−j,−i〉φ̃ = 〈i, j〉φ̃.

(ii) For 1 � i < j, we have 〈−j, i〉φ̃ = q−1〈−i, j〉φ̃.

Proof. (i) If i = j, it is obvious. By the induction on j − i, we have

〈−j,−i〉φ̃= (〈−j,−i− 2〉〈−i〉 − q〈−i〉〈−j,−i− 2〉)φ̃
= (〈−j,−i− 2〉〈i〉 − q〈−i〉〈i+ 2, j〉)φ̃
= (〈i〉〈−j,−i− 2〉 − q〈i+ 2, j〉〈−i〉)φ̃
= (〈i〉〈i+ 2, j〉 − q〈i+ 2, j〉〈i〉)φ̃ = 〈i, j〉φ̃.

(ii) By (i), we have

〈−j, i〉φ̃= (〈−j,−1〉〈1, i〉 − q〈1, i〉〈−j,−1〉)φ̃
= (〈−j,−1〉〈−i,−1〉 − q〈1, i〉〈1, j〉)φ̃
= (q−1〈−i,−1〉〈−j,−1〉 − 〈1, j〉〈1, i〉)φ̃
= (q−1〈−i,−1〉〈1, j〉 − 〈1, j〉〈−i,−1〉)φ̃ = q−1〈−i, j〉φ̃.

Proposition 3.17.

(i) For a multisegment m =
∑

i�j mi,j〈i, j〉, we have

Ad(tk)P (m) = q
P

i(mi,k−2−mi,k)+
P

j(mk+2,j−mk,j)P (m).
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(ii)

e′k〈i, j〉(n) =


q1−n〈i〉(n−1) if k = i = j,

(1 − q2)q1−n〈i+ 2, j〉〈i, j〉(n−1) if k = i < j,

0 otherwise,

e∗k〈i, j〉(n) =


q1−n〈i〉(n−1) if i = j = k,

(1 − q2)q1−n〈i, j〉(n−1)〈i, j − 2〉 if i < j = k,

0 otherwise.

Proof. (i) is obvious. Let us show (ii). It is obvious that e′k〈i, j〉(n) = 0
unless i � k � j. It is known ([K1]) that we have e′k〈k〉(n) = q1−n〈k〉(n−1).
We shall prove e′k〈k, j〉(n) = (1 − q2)q1−n〈k + 2, j〉〈k, j〉(n−1) for k < j by the
induction on n. By (2.1), we have

e′k〈k, j〉= e′k(〈k〉〈k + 2, j〉 − q〈k + 2, j〉〈k〉)
= 〈k + 2, j〉 − q2〈k + 2, j〉 = (1 − q2)〈k + 2, j〉.

For n � 1, by the induction hypothesis and Proposition 3.14 (4), we get

[n]e′k〈k, j〉(n) = e′k〈k, j〉〈k, j〉(n−1)

= (1 − q2)〈k + 2, j〉〈k, j 〉(n−1) + q−1〈k, j〉· (1 − q2)q2−n〈k + 2, j〉〈k, j〉(n−2)

= (1 − q2)
{
〈k + 2, j〉〈k, j〉(n−1) + q1−n〈k, j〉〈k + 2, j〉〈k, j〉(n−2)

}
= (1 − q2)(1 + q−n[n− 1])〈k + 2, j〉〈k, j〉(n−1)

= (1 − q2)q1−n[n]〈k + 2, j〉〈k, j〉(n−1).

Finally we show e′k〈i, j〉 = 0 if k 
= i. We may assume i < k � j. If i < k < j,
we have

e′k〈i, j〉= e′k(〈i, k − 2〉〈k, j〉 − q〈k, j〉〈i, k − 2〉)
= q〈i, k − 2〉e′k〈k, j〉 − q(e′k〈k, j〉)〈i, k − 2〉
= q(1 − q2)〈i, k − 2〉〈k + 2, j〉 − q(1 − q2)〈k + 2, j〉〈i, k − 2〉
= 0.

The case k = j is similarly proved.
The proof for e∗k is similar.
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§3.4. Actions of divided powers

Lemma 3.18. Let a, b be non-negative integers, and let k ∈ I>0 :=
{k ∈ I | k > 0}.
(1) For � > k, we have

〈−k〉〈−k + 2, �〉(a)〈−k, �〉(b) = [b+ 1]〈−k + 2, �〉(a−1)〈−k, �〉(b+1)

+qa−b〈−k + 2, �〉(a)〈−k, �〉(b)〈−k〉.

(2) We have

〈−k〉〈−k + 2, k〉(a)〈−k, k〉[b] = [2b+ 2]〈−k + 2, k〉(a−1)〈−k, k〉[b+1]

+qa−b〈−k + 2, k〉(a)〈−k, k〉[b]〈−k〉.

(3) For k > 1, we have

〈−k〉〈−k + 2, k − 2〉[a] = (qa + q−a)−1〈−k + 2, k − 2〉[a−1]〈−k, k − 2〉
+qa〈−k + 2, k − 2〉[a]〈−k〉.

(4) If � � k − 2, we have

〈�, k − 2〉(a)〈k〉 = 〈�, k〉〈�, k − 2〉(a−1) + qa〈k〉〈�, k − 2〉(a).

(5) For k > 1, we have

〈−k + 2, k − 2〉[a]〈k〉= (qa + q−a)−1〈−k + 2, k〉〈−k + 2, k − 2〉[a−1]

+qa〈k〉〈−k + 2, k − 2〉[a].

Proof. We show (1) by the induction on a. If a = 0, it is trivial. For
a > 0, we have

[a]〈−k〉〈−k + 2, �〉(a)〈−k, �〉(b)
=
(〈−k, �〉 + q〈−k + 2, �〉〈−k〉)〈−k + 2, �〉(a−1)〈−k, �〉(b)

= [b+ 1]q1−a〈−k + 2, �〉(a−1)〈−k, �〉(b+1)

+q〈−k + 2, �〉{[b+ 1]〈−k + 2, �〉(a−2)〈−k, �〉(b+1)

+qa−b−1〈−k + 2, �〉(a−1)〈−k, �〉(b)〈−k〉}
= [b+ 1](q1−a + q[a− 1])〈−k + 2, �〉(a−1)〈−k, �〉(b+1)

+qa−b[a]〈−k + 2, �〉(a)〈−k, �〉(b)〈−k〉.
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Since q1−a + q[a− 1] = [a], the induction proceeds.
The proof of (2) is similar by using 〈−k, k〉[b] = [2b]〈−k, k〉[b−1]〈−k, k〉.
We prove (3) by the induction on a. The case a = 0 is trivial. For a > 0,

we have

[2a]〈−k〉〈−k + 2, k − 2〉[a]

=
(〈−k, k − 2〉 + q〈−k + 2, k − 2〉〈−k〉)〈−k + 2, k − 2〉[a−1]

= q1−a〈−k + 2, k − 2〉[a−1]〈−k, k − 2〉
+q〈−k + 2, k − 2〉{(qa−1 + q1−a)−1〈−k + 2, k − 2〉[a−2]〈−k, k − 2〉

+qa−1〈−k + 2, k − 2〉[a−1]〈−k〉}
=
(
q1−a +

q[2a− 2]
qa−1 + q1−a

)〈−k + 2, k − 2〉[a−1]〈−k, k − 2〉

+qa[2a]〈−k + 2, k − 2〉[a]〈−k〉
= (qa + q−a)−1[2a]〈−k + 2, k − 2〉[a−1]〈−k, k − 2〉

+qa[2a]〈−k + 2, k − 2〉[a]〈−k〉.

Similarly, we can prove (4) and (5) by the induction on a.

Lemma 3.19. For k > 1 and a, b, c, d � 0, set

(a, b, c, d) = 〈k〉(a)〈−k + 2, k〉(b)〈−k, k〉[c]〈−k + 2, k − 2〉[d]
φ̃.

Then, we have

〈−k〉(a, b, c, d) = [2c+ 2](a, b− 1, c+ 1, d)

+[b+ 1]qb−2c(a, b+ 1, c, d− 1)

+[a+ 1]q2d−2c(a+ 1, b, c, d).

(3.4)

Proof. We shall show first

〈−k〉〈−k + 2, k − 2〉[d]φ̃

=
(〈−k + 2, k〉〈−k + 2, k − 2〉[d−1] + q2d〈k〉〈−k + 2, k − 2〉[d]

)
φ̃.

(3.5)

By Lemma 3.18 (3), we have

〈−k〉〈−k + 2, k − 2〉[d]φ̃

=
(
(qd + q−d)−1〈−k + 2, k − 2〉[d−1]〈−k, k − 2〉

+qd〈−k + 2, k − 2〉[d]〈−k〉)φ̃.
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By Lemma 3.16 and Lemma 3.18 (5), it is equal to(
(qd + q−d)−1q−1〈−k + 2, k − 2〉[d−1]〈−k + 2, k〉 + qd〈−k + 2, k − 2〉[d]〈k〉)φ̃

=
(
(qd + q−d)−1q−1q1−d〈−k + 2, k〉〈−k + 2, k − 2〉[d−1]

+qd
(
(qd + q−d)−1〈−k + 2, k〉〈−k + 2, k − 2〉[d−1]

+qd〈k〉〈−k + 2, k − 2〉[d]
))
φ̃.

Thus we obtain (3.5). Applying Lemma 3.18 (2), we have

〈−k〉(a, b, c, d) = 〈k〉(a)
(
[2c+ 2]〈−k + 2, k〉(b−1)〈−k, k〉[c+1]

+qb−c〈−k + 2, k〉(b)〈−k, k〉[c]〈−k〉
)
〈−k + 2, k − 2〉[d]φ̃

= [2c+ 2](a, b− 1, c+ 1, d) + qb−c〈k〉(a)〈−k + 2, k〉(b)〈−k, k〉[c]
×(〈−k + 2, k〉〈−k + 2, k − 2〉[d−1] + q2d〈k〉〈−k + 2, k − 2〉[d]

)
φ̃

= [2c+ 2](a, b− 1, c+ 1, d) + qb−2c[b+ 1](a, b+ 1, c, d− 1)

+q(b−c)+2d−c−b[a+ 1](a+ 1, b, c, d).

Hence we have (3.4).

Proposition 3.20.

(1) We have

〈−1〉(a)〈−1, 1〉[m]
φ̃ =

�a/2�∑
s=0

(
s∏

ν=1

[2m+ 2ν]
[2ν]

)
q−2(a−s)m+ (a−2s)(a−2s−1)

2

×〈1〉(a−2s)〈−1, 1〉[m+s]φ̃.

(2) For k > 1, we have

〈−k〉(n)〈−k + 2, k − 2〉[a]
φ̃

=
∑

i+j+2t=n,j+t=u

q2ai+ j(j−1)
2 −i(t+u)

×〈k〉(i)〈−k + 2, k〉(j)〈−k, k〉[t]〈−k + 2, k − 2〉[a−u]
φ̃.

(3) If � > k, we have

〈k〉(n)〈k + 2, �〉(a) =
n∑

s=0

q(n−s)(a−s)〈k + 2, �〉(a−s)〈k, �〉(s)〈k〉(n−s).
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Proof. We prove (1) by the induction on a. The case a = 0 is trivial.
Assume a > 0. Then, Lemma 3.18 (2) implies

〈−1〉〈1〉(n)〈−1, 1〉[m]φ̃

=
(
[2m+ 2]〈1〉(n−1)〈−1, 1〉[m+1] + qn−m〈1〉(n)〈−1, 1〉[m]〈−1〉)φ̃

=
(
[2m+ 2]〈1〉(n−1)〈−1, 1〉[m+1] + qn−m〈1〉(n)〈−1, 1〉[m]〈1〉)φ̃

=
(
[2m+ 2]〈1〉(n−1)〈−1, 1〉[m+1] + qn−2m[n+ 1]〈1〉(n+1)〈−1, 1〉[m])

φ̃.

Put

cs =

(
s∏

ν=1

[2m+ 2ν]
[2ν]

)
q−2(a−s)m+

(a−2s)(a−2s−1)
2 .

Then we have

[a+ 1]〈−1〉(a+1)〈−1, 1〉[m]φ̃ = 〈−1〉〈−1〉(a)〈−1, 1〉[m]φ̃

= 〈−1〉
�a/2�∑
s=0

cs〈1〉(a−2s)〈−1, 1〉[m+s]
φ̃

=
�a/2�∑
s=0

cs
{
[2(m+ s+ 1)]〈1〉(a−2s−1)〈−1, 1〉[m+s+1]

+qa−2s−2(m+s)[a− 2s+ 1]〈1〉(a−2s+1)〈−1, 1〉[m+s]}
φ̃.

In the right-hand-side, the coefficients of 〈1〉a+1−2r〈−1, 1〉[m+r]
φ̃ are

[2(m+ r)]cr−1 + qa−2m−4r[a− 2r + 1]cr

=
r∏

ν=1

[2m+ 2ν]
[2ν]

q−2(a−r+1)m+
(a−2r)(a−2r+1)

2

(
[2r]qa−2r+1 + [a− 2r + 1]q−2r

)
= [a+ 1]

r∏
ν=1

[2m+ 2ν]
[2ν]

q−2(a−r+1)m+ (a−2r)((a−2r+1)
2 .

Hence we obtain (1).
We prove (2) by the induction on n. We use the following notation for

short:

(i, j, t, a) := 〈k〉(i)〈−k + 2, k〉(j)〈−k, k〉[t]〈−k + 2, k − 2〉[a]φ̃.

Then Lemma 3.19 implies that

〈−k〉(i, j, t, a) = [2t+ 2](i, j − 1, t+ 1, a)

+[j + 1]qj−2t(i, j + 1, t, a− 1)

+[i+ 1]q2a−2t(i+ 1, j, t, a).
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Hence, by assuming (2) for n, we have

[n+ 1]〈−k〉(n+1)〈−k + 2, k − 2〉[a]φ̃ = 〈−k〉〈−k〉(n)〈−k + 2, k − 2〉[a]φ̃

=
∑

i+j+2t=n,j+t=u


[2t+ 2]q2ai+ j(j−1)

2 −i(t+u)(i, j − 1, t+ 1, a− u)
+[j + 1]q2ai+ j(j−1)

2 −i(t+u)+j−2t(i, j + 1, t, a− u− 1)
+[i+ 1]q2ai+ j(j−1)

2 −i(t+u)+2a−2u−2t(i+ 1, j, t, a− u)

 .

Then in the right hand side, the coefficients of (i′, j′, t′, a − u′) satisfying i′ +
j′ + 2t′ = n+ 1, j′ + t′ = u′ are

[2t′]q2ai′+ (j′+1)j′
2 −i′(t′−1+u′) + [j′]q2ai′+ (j′−1)(j′−2)

2 −i′(t′+u′−1)+j′−1−2t′

+[i′]q2a(i′−1)+
j′(j′−1)

2 −(i′−1)(t′+u′)+2a−2u′−2t′

= q2ai′+ j′(j′−1)
2 −i′(t′+u′)

(
[2t′]qj′+i′ + [j′]qi′−2t′ + [i′]q−(t′+u′)

)
= q2ai′+ j′(j′−1)

2 −i′(t′+u′)[n+ 1].

We can prove (3) similarly as above.

§3.5. Actions of Ek, Fk on the PBW basis

For a θ-restricted multisegment m, we set

P̃θ(m) = Pθ(m)φ̃.

We understand P̃θ(m) = 0 if m is not a multisegment.

Theorem 3.21. For k ∈ I>0 and a θ-restricted multisegment m =∑
−j�i�j mi,j〈i, j〉, we have

F−kP̃θ(m)

=
∑
�>k

[m−k,� + 1]q
P

�′>�

(m−k+2,�′−m−k,�′ )
P̃θ(m − 〈−k + 2, �〉 + 〈−k, �〉)

+q
P

�>k

(m−k+2,�−m−k,�)

[2m−k,k + 2]P̃θ(m − 〈−k + 2, k〉 + 〈−k, k〉)

+q
P

�>k

(m−k+2,k−m−k,k)+m−k+2,k−2m−k,k

×[m−k+2,k + 1]P̃θ(m − δk �=1〈−k + 2, k − 2〉 + 〈−k + 2, k〉)

+
∑

−k+2<i�k

q

P
�>k

(m−k+2,k−m−k,k)+2m−k+2,k−2−2m−k,k+
P

−k+2<j<i

(mj,k−2−mj,k)

×[mi,k + 1]P̃θ(m − δi<k〈i, k − 2〉 + 〈i, k〉).
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Proof. We divide m into four parts

m = m1 + m2 + m3 + δk �=1m−k+2,k−2〈−k + 2, k − 2〉,
where m1 =

∑
j>k

mi,j〈i, j〉, m2 =
∑

j=k

mi,j〈i, j〉, m3 =
∑

−k+2<i�j�k−2

mi,j〈i, j〉.
Then Proposition 3.14 implies

P̃θ(m) = Pθ(m1)Pθ(m2)Pθ(m3)〈−k + 2, k − 2〉[m−k+2,k−2]φ̃.

If k = 1, we understand 〈−k + 2, k − 2〉[n] = 1. By Lemma 3.18 (1), we have

〈−k〉Pθ(m1)

=
∑
�>k

q
P

�′>�(m−k+2,�′−m−k,�′ )[m−k,� + 1]Pθ(m1 − 〈−k + 2, �〉 + 〈−k, �〉)

+q
P

�>k(m−k+2,�−m−k,�)Pθ(m1)〈−k〉,
and Lemma 3.18 (2) implies

〈−k〉Pθ(m2) = [2m−k,k + 2]Pθ(m2 − 〈−k + 2, k〉 + 〈−k, k〉)
+qm−k+2,k−m−k,kPθ(m2)〈−k〉.

Since we have 〈−k〉Pθ(m3) = Pθ(m3)〈−k〉, we obtain

〈−k〉P̃θ(m) =
∑

�>kq
P

�′>�(m−k+2,�′−m−k,�′)[m−k,� + 1](3.6)

×P̃θ(m − 〈−k + 2, �〉 + 〈−k, �〉)
+q

P
�>k(m−k+2,�−m−k,�)[2m−k,k + 2]

×P̃θ(m − 〈−k + 2, k〉 + 〈−k, k〉)
+q

P
��k(m−k+2,�−m−k,�)Pθ(m1 + m2 + m3)

×〈−k〉〈−k + 2, k − 2〉[m−k+2,k−2]φ̃.

By (3.5), we have

〈−k〉〈−k + 2, k − 2〉[m−k+2,k−2]φ̃

= 〈−k + 2, k〉〈−k + 2, k − 2〉[m−k+2,k−2−1]φ̃

+δk �=1q
2m−k+2,k−2〈k〉〈−k + 2, k − 2〉[m−k+2,k−2]φ̃.

Hence the last term in (3.6) is equal to

q
P

��k(m−k+2,�−m−k,�)−m−k,k

×[m−k+2,k + 1]P̃θ(m − δk �=1〈−k + 2, k − 2〉 + 〈−k + 2, k〉)
+δk �=1q

P
��k(m−k+2,�−m−k,�)+2m−k+2,k−2

×Pθ(m1 + m2 + m3)〈k〉〈−k + 2, k − 2〉[m−k+2,k−2]φ̃.
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For k 
= 1, Lemma 3.18 (4) implies

Pθ(m3)〈k〉 =
∑

−k+2<i�k

q
P

−k+2<j<i mj,k−2〈i, k〉Pθ(m3 − δi<k〈i, k − 2〉),

and Proposition 3.14 implies

Pθ(m2)〈i, k〉 = q−
P

j<i mj,k [mi,k + 1]Pθ(m2 + 〈i, k〉).

Hence we obtain

Pθ(m1)Pθ(m2)Pθ(m3)〈k〉〈−k + 2, k − 2〉[m−k+2,k−2]φ̃

=
∑

−k+2<i�k

q
P

−k+2<j<i mj,k−2−
P

−k�j<i mj,k

×[mi,k + 1]P̃θ(m − δi<k〈i, k − 2〉 + 〈i, k〉).

Thus we obtain the desired result.

Theorem 3.22. For k ∈ I>0 and a θ-restricted multisegment m =∑
−j�i�j

mi,j〈i, j〉, we have

E−kP̃θ(m)

= (1 − q2)
∑
�>k

q
1+

P
�′��

(m−k+2,�′−m−k,�′ )

×[m−k+2,� + 1]P̃θ(m − 〈−k, �〉 + 〈−k + 2, �〉)

+(1 − q2)q
1+

P
�>k

(m−k+2,�−m−k,�)+m−k+2,k−2m−k,k

×[m−k+2,k + 1]P̃θ(m − 〈−k, k〉 + 〈−k + 2, k〉)

+(1 − q2)
∑

−k+2<i�k−2

q
1+

P
�>k

(m−k+2,�−m−k,�)+2m−k+2,k−2−2m−k,k+
P

−k+2<i′�i

(mi,k−2−mi′k)

×[mi,k−2 + 1]P̃θ(m − 〈i, k〉 + 〈i, k − 2〉)

+δk �=1(1 − q2)q
1+

P
�>k

(m−k+2,�−m−k,�)+2m−k+2,k−2−2m−k,k

×[2(m−k+2,k−2 + 1)]P̃θ(m − 〈−k + 2, k〉 + 〈−k + 2, k − 2〉)

+q
P

�>k

(m−k+2,�−m−k,�)−2m−k,k+δk �=1(1−mk,k+2m−k+2,k−2+
P

−k+2<i�k−2
(mi,k−2−mi,k))

×P̃θ(m − 〈k〉).

Proof. We shall divide m into

m = m1 + m2 + m3



Symmetric Crystals for gl∞ 865

where m1 =
∑

i�j,j>k

mi,j〈i, j〉 and m2 =
∑

i�k

mi,k〈i, k〉 and m3 =
∑

i�j<k

mi,j〈i, j〉.
By (2.3) and Proposition 3.17, we have

E−kP̃θ(m) =
((
e′−kPθ(m1)

)
Pθ(m2 + m3)

+(Ad(t−k)Pθ(m1))(e′−kPθ(m2 + m3))

+ Ad(t−k)
{
Pθ(m1)

(
e∗kPθ(m2)

)
Ad(tk)Pθ(m3)

})
φ̃.

(3.7)

By Proposition 3.17, the first term is(
e′−kPθ(m1)

)
Pθ(m2 + m3)

= (1 − q2)
∑

�>k q
1+

P
�′��

(m−k+2,�′−m−k,�′)

×[m−k+2,� + 1]Pθ(m − 〈−k, �〉 + 〈−k + 2, �〉).
(3.8)

The second term is

(Ad(t−k)Pθ(m1))(e′−kPθ(m2 + m3))

= q
P

�>k(m−k+2,�−m−k,�)
[m−k,k][m−k+2,k + 1]

[2m−k,k]
×(1 − q2)q1−m−k,k+m−k+2,kPθ(m − 〈−k, k〉 + 〈−k + 2, k〉).

(3.9)

Let us calculate the last part of (3.7). We have

Ad(t−k)
(
Pθ(m1)

(
e∗kPθ(m2)

)
Ad(tk)Pθ(m3)

)
= q

P
�

(m−k+2,�−m−k,�)+
P

i�k−2 mi,k−2−δk=1
Pθ(m1)

(
e∗kPθ(m2)

)
Pθ(m3).

We have

e∗kPθ(m2) = q
1−mk−

P
i<k

mi,k

Pθ(m2 − 〈k〉)

+(1 − q2)
∑

−k<i<k

q
1−mi,k−

P
i′<i

mi′,k

Pθ(m2 − 〈i, k〉)〈i, k − 2〉

+
[m−k,k]
[2m−k,k]

(1 − q2)q1−m−k,kP (m2 − 〈−k, k〉)〈−k, k − 2〉.

For −k < i < k, we have

〈i, k − 2〉Pθ(m3)

= q
− P

i′>i

mi′,k−2

[(1 + δi=−k+2)(mi,k−2 + 1)]Pθ(m3 + 〈i, k − 2〉).
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By Lemma 3.16, we have

〈−k, k − 2〉Pθ(m3)φ̃

= q
− P

−k+2�k�k−2
mi,k−2

Pθ(m3)〈−k, k − 2〉φ̃
= q

− P
−k+2�k�k−2

mi,k−2−δk �=1

Pθ(m3)〈−k + 2, k〉φ̃
= q

−m−k+2,k−2−
P

−k+2�i�k−2
mi,k−2−δk �=1〈−k + 2, k〉Pθ(m3)φ̃.

Hence we obtain

Pθ(m1)
(
e∗kPθ(m2)

)
Pθ(m3)φ̃

= q
1− P

i�k

mi,k

P̃θ(m − 〈k〉)

+(1 − q2)
∑

−k+2<i�k−2

q
1− P

i′�i

mi′,k−
P

i′>i

mi′,k−2

×[mi,k−2 + 1]P̃θ(m − 〈i, k〉 + 〈i, k − 2〉)

+(1 − q2)δk �=1q
1−m−k,k−m−k+2,k−

P
−k+2<i

mi,k−2

×[2(m−k+2,k−2 + 1)]P̃θ(m − 〈−k + 2, k〉 + 〈−k + 2, k − 2〉)

+(1 − q2)q
2(1−m−k,k)−m−k+2,k−2−

P
−k+2�i�k−2

mi,k−2−δk �=1

× [m−k+2,k + 1][m−k,k]
[2m−k,k]

P (m − 〈−k, k〉 + 〈−k + 2, k〉).

Hence the coefficient of P̃θ(m − 〈k〉) in E−kP̃θ(m) is

q

P
�

(m−k+2,�−m−k,�)+
P

i�k−2
mi,k−2−δk=1+1− P

i�k

mi,k

= q

P
�>k

(m−k+2,�−m−k,�)−2m−k,k+δk �=1(1−mk,k+2m−k+2,k−2+
P

−k+2<i�k−2
(mi,k−2−mi,k))

.

The coefficient of P̃θ(m − 〈−k, k〉 + 〈−k + 2, k〉) in E−kP̃θ(m) is

(1 − q2)q
1+

P
��k

(m−k+2,�−m−k,�) [m−k,k][m−k+2,k + 1]
[2m−k,k]

+q
P
�

(m−k+2,�−m−k,�)+
P

i�k−2
mi,k−2−δk=1+2(1−m−k,k)−m−k+2,k−2−

P
−k+2�i�k−2

mi,k−2−δk �=1

×(1 − q2)
[m−k+2,k + 1][m−k,k]

[2m−k,k]

= (1 − q2)q1+
P

��k(m−k+2,�−m−k,�) [m−k,k][m−k+2,k + 1]
[2m−k,k]

(1 + q−2m−k,k)

= (1 − q2)q1−m−k,k+
P

��k(m−k+2,�−m−k,�)[m−k+2,k + 1]

= (1 − q2)q1+m−k+2,k−2m−k,k+
P

�>k(m−k+2,�−m−k,�)[m−k+2,k + 1].
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For −k+2 < i � k−2, the coefficient of P̃θ(m−〈i, k〉+ 〈i, k−2〉) in E−kP̃θ(m)
is

(1 − q2)q

P
�

(m−k+2,�−m−k,�)+
P

i′�k−2
mi′,k−2−δk=1+1− P

i′�i

mi′,k−
P

i′>i

mi′,k−2

[mi,k−2 + 1]

= (1 − q2)

×q
1+

P
�>k

(m−k+2,�−m−k,�)+2m−k+2,k−2−2m−k,k+
P

−k+2<i′�i

(mi,k−2−mi′,k)

[mi,k−2 + 1].

Finally, for k 
= 1, the coefficient of P̃θ(m − 〈−k + 2, k〉 + 〈−k + 2, k − 2〉) in
E−kP̃θ(m) is

(1 − q2)q
P
�

(m−k+2,�−m−k,�)+
P

i�k−2
mi,k−2−δk=1+1−m−k,k−m−k+2,k−

P
−k+2<i

mi,k−2

×[2(m−k+2,k−2 + 1)]

= (1 − q2)q
1+

P
�>k

(m−k+2,�−m−k,�)+2m−k+2,k−2−2m−k,k

[2(m−k+2,k−2 + 1)].

Theorem 3.23. For k > 0 and m ∈ Mθ, we have

EkP̃θ(m) =
∑

�>k(1 − q2)q1+
P

�′��(mk+2,�′−mk,�′ )

×[mk+2,� + 1]P̃θ(m − 〈k, �〉 + 〈k + 2, �〉)
+q1+

P
�>k(mk+2,�−mk,�)−mk,k P̃θ(m − 〈k〉),

FkP̃θ(m) =
∑
��k

q
P

�′>�(mk+2,�′−mk,�′)[mk,� + 1]P̃θ(m − δ� �=k〈k + 2, �〉 + 〈k, �〉).

Proof. The first follows from e∗−kPθ(m) = 0 and Proposition 3.17, and
the second follows from Proposition 3.20.

§4. Crystal Basis of Vθ(0)

§4.1. A criterion for crystals

We shall give a criterion for a basis to be a crystal basis. Although we
treat the case for modules over B(g) in this paper, similar results hold also for
Uq(g).

Let K[e, f ] be the ring generated by e and f with the defining relation
ef = q−2fe+ 1. We define the divided power by f (n) = fn/[n]!.

Let P be a free Z-module, and let α be a non-zero element of P .
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Let M be a K[e, f ]-module. Assume that M has a weight decomposition
M = ⊕ξ∈PMξ, and eMλ ⊂Mλ+α and fMλ ⊂Mλ−α.

Assume the following finiteness conditions:

for any λ ∈ P , dimMλ <∞ and Mλ+nα = 0 for n� 0.(4.1)

Hence for any u ∈M , we can write u =
∑

n�0 f
(n)un with eun = 0. We define

endomorphisms ẽ and f̃ of M by

ẽu =
∑
n�1

f (n−1)un,

f̃u =
∑
n�0

f (n+1)un.

Let B be a crystal with weight decomposition by P . In this paper, we consider
only the following type of crystals. We have wt: B → P , f̃ : B → B, ẽ : B →
B 	{0}, ε : B → Z�0 satisfying the following properties, where Bλ := wt−1(λ):

(i) f̃Bλ ⊂ Bλ−α and ẽBλ ⊂ Bλ+α 	 {0} for any λ ∈ P ,

(ii) f̃ ẽ(b) = b if ẽb 
= 0, and ẽ ◦ f̃ = idB,

(iii) for any λ ∈ P , Bλ is a finite set and Bλ+nα = ∅ for n� 0,

(iv) ε(b) = max {n � 0 | ẽnb 
= 0} for any b ∈ B.

Set ord(a) = sup {n ∈ Z | a ∈ qnA0} for a ∈ K. We understand ord(0) =
∞.

Let {C(b)}b∈B be a system of generators of M with C(b) ∈ Mwt(b): M =∑
b∈B KC(b).

Let ξ be a map from B to an ordered set. Let c : Z → R, f : Z → R and
e : Z → R. Assume that a decomposition B = B′ ∪B′′ is given.

Assume that we have expressions:

eC(b) =
∑
b′∈B

Eb,b′C(b′),(4.2)

fC(b) =
∑
b′∈B

Fb,b′C(b′).(4.3)

Now consider the following conditions for these data, where � = ε(b) and
�′ = ε(b′):

c(0) = 0, and c(n) > 0 for n 
= 0,(4.4)
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c(n) � n+ c(m+ n) + e(m) for n � 0,(4.5)

c(n) � c(m+ n) + f(m) for n � 0,(4.6)

c(n) + f(n) > 0 for n > 0,(4.7)

c(n) + e(n) > 0 for n > 0,(4.8)

ord(Fb,b′) � −�+ f(�+ 1 − �′),(4.9)

ord(Eb,b′) � 1 − �+ e(�− 1 − �′),(4.10)

Fb,f̃b ∈ q−�(1 + qA0),(4.11)

Eb,ẽb ∈ q1−�(1 + qA0) if � > 0,(4.12)

ord(Fb,b′) > −�+ f(�+ 1 − �′) if b′ 
= f̃ b, ξ(f̃b) 
> ξ(b′),(4.13)

ord(Fb,b′) > −�+ f(�+ 1 − �′) if f̃ b ∈ B′, b′ 
= f̃ b and � � �′ − 1,(4.14)

ord(Eb,b′) > 1 − �+ e(�− 1 − �′) if b ∈ B′′, b′ 
= ẽb and � � �′ + 1.(4.15)

Theorem 4.1. Assume the conditions (4.4)–(4.15). Let L be the A0-
submodule

∑
b∈B

A0C(b) of M . Then we have ẽL ⊂ L and f̃L ⊂ L. Moreover

we have

ẽC(b) ≡ C(ẽb) mod qL and f̃C(b) ≡ C(f̃ b) mod qL for any b ∈ B.

Here we understand C(0) = 0.

We shall divide the proof into several steps.
Write

C(b) =
∑
n�0

f (n)Cn(b) with eCn(b) = 0.

Set
L0 =

∑
b∈B, n�0

A0f
(n)C0(b).

Set for u ∈M , ord(u) = sup {n ∈ Z | u ∈ qnL0}. If u = 0 we set ord(u) =
∞, and if u 
∈ ∪n∈Zq

nL0, then ord(u) = −∞.
We shall use the following two recursion formulas (4.16) and (4.17).
We have

eC(b) =
∑
n�1

q1−nf (n−1)Cn(b)

=
∑
n�0

Eb,b′f
(n)Cn(b′).
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Hence we have

Cn(b) =
∑

b′∈Bλ+α

qn−1Eb,b′Cn−1(b′) for n > 0 and b ∈ Bλ.(4.16)

If � := ε(b) > 0, then we have

fC(ẽb) =
∑

b′∈B, n�0

Fẽb,b′f
(n)Cn(b′)

=
∑
n�0

[n+ 1]f (n+1)Cn(ẽb).

Hence, we have by (4.11)

δn�=0[n]Cn−1(ẽb) =
∑

b′ Fẽb,b′Cn(b′)
∈ q1−�(1 + qA0)Cn(b) +

∑
b′ �=b Fẽb,b′Cn(b′).

Therefore we obtain

Cn(b) ∈ δn�=0(1 + qA0)q�−nCn−1(ẽb) +
∑
b′ �=b

q�−1A0Fẽb,b′Cn(b′)(4.17)

if � > 0.

Lemma 4.2. ord(Cn(b)) � c(n− �) for any n ∈ Z�0 and b ∈ B, where
� := ε(b).

Proof. For λ ∈ P , we shall show the assertion for b ∈ Bλ by the induction
on sup {n ∈ Z |Mλ+nα 
= 0}. Hence we may assume

ord(Cn(b)) � c(n− �) for any n ∈ Z�0 and b ∈ Bλ+α.(4.18)

(i) Let us first show Cn(b) ∈ KL0.
Since it is trivial for n = 0, assume that n > 0. Since Cn−1(b′) ∈ KL0 for

b′ ∈ Bλ+α by the induction assumption (4.18), we have Cn(b) ∈ KL0 by (4.16).
(ii) Let us show that ord(Cn(b)) � c(n− �) for n � �.

If n = 0, then � = 0 and the assertion is trivial by (4.4). Hence we may
assume that n > 0.

We shall use (4.16). For b′ ∈ Bλ+α, we have

ord(Cn−1(b′)) � c(n− 1 − �′) where �′ = ε(b′)

by the induction hypothesis (4.18). On the other hand, ord(Eb,b′) � 1 − � +
e(�− 1 − �′) by (4.10). Hence,

ord(qn−1Eb,b′Cn−1(b′)) � (n− 1) +
(
1 − �+ e(�− 1 − �′)

)
+ c(n− 1 − �′)

= (n− �) + e(�− 1 − �′) + c((n− �) + (�− 1 − �′))

� c(n− �)
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by (4.5).

(iii) In the general case, let us set

r = min {ord(Cn(b)) − c(n− ε(b)) | b ∈ Bλ, n � 0} ∈ R ∪ {∞}.

Assuming r < 0, we shall prove

ord(Cn(b)) > c(n− �) + r for any b ∈ Bλ,

which leads a contradiction.
By the induction on ξ(b), we may assume that

if ξ(b′) < ξ(b), then ord(Cn(b′)) > c(n− �′) + r where �′ := ε(b′).(4.19)

By (ii), we may assume that n < �. Hence ẽb ∈ B. By the induction
hypothesis (4.18), we have ord(q�−nCn−1(ẽb)) � �− n+ c((n− 1) − (�− 1)) �
c(n− �) > c(n− �) + r. By (4.17), it is enough to show

ord(q�−1Fẽb,b′Cn(b′)) > c(n− �) + r for b′ 
= b.

We shall divide its proof into two cases.

(a) ξ(b′) < ξ(b).

In this case, (4.19) implies ord(Cn(b′)) > c(n− �′) + r. Hence

ord(q�−1Fẽb,b′Cn(b′))> (�− 1) + (1 − �+ f(�− �′)) + c(n− �′) + r

= f(�− �′) + c((n− �) + (�− �′)) + r � c(n− �) + r

by (4.9) and (4.6).

(b) Case ξ(b′) 
< ξ(b).

In this case, ord(Fẽb,b′) > 1 − � + f(� − �′) by (4.13), and ord(Cn(b′)) �
c(n− �′) + r. Hence,

ord(q�−1Fẽb,b′Cn(b′))> (�− 1) + (1 − �+ f(�− �′)) + c(n− �′) + r

= f(�− �′) + c((n− �) + (�− �′)) + r � c(n− �) + r.

Lemma 4.3. ord(C�(b) − C�−1(ẽb)) > 0 for � := ε(b) > 0.

Proof.
We divide the proof into two cases: b ∈ B′ and b ∈ B′′.
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(i) b ∈ B′.

By (4.17), it is enough to show

ord(q�−1Fẽb,b′C�(b′)) > 0 for b′ 
= b.

(a) Case � > �′ := ε(b′).
We have

ord(q�−1Fẽb,b′C�(b′)) � (�− 1) + (1 − �+ f(�− �′)) + c(�− �′) > 0

by (4.7).

(b) Case � � �′.
We have ord(Fẽb,b′) > 1 − �+ f(�− �′) by (4.14). Hence

ord(q�−1Fẽb,b′C�(b′))> (�− 1) + (1 − �+ f(�− �′)) + c(�− �′) � 0

by (4.6) with n = 0.

(ii) Case b ∈ B′′.

We use (4.16). By (4.12), it is enough to show that

ord(q�−1Eb,b′C�−1(b′)) > 0 for b′ 
= ẽb.

(a) Case �− 1 > �′.
ord(q�−1Eb,b′C�−1(b′)) � e(�−1− �′)+ c(�−1− �′) > 0 by (4.10) and
(4.8).

(b) Case �− 1 � �′.
ord(Eb,b′) > 1−�+e(�−1−�′) by (4.15), and ord(q�−1Eb,b′C�−1(b′)) >
e(�− 1 − �′) + c(�− 1 − �′) � 0 by (4.5) with n = 0.

Hence we have

Cn(b) ≡ 0 mod qL0 for n 
= � := ε(b),

C�(b) ≡ C0(ẽ�b) mod qL0,

C(b) ≡ f (�)C�(b) mod qL0,

f̃C(b) ≡ C(f̃b) mod qL0,

ẽC(b) ≡ C(ẽb) mod qL0,

L0 :=
∑

b∈B, n�0

A0f
(n)C0(b) =

∑
b∈B

A0C(b).
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Indeed, the last equality follows from the fact that {C(b)}b∈B generates L0/qL0.
Thus we have completed the proof of Theorem 4.1.
The following is the special case where B′ = B′′ = B and ξ(b) = ε(b).

Corollary 4.4. Assume (4.4)–(4.12) and

ord(Fb,b′) > −�+ f(1 + �− �′) if � < �′ and b′ 
= f̃ b,(4.20)

ord(Eb,b′) > 1 − �+ e(�− 1 − �′) if � � �′ + 1 and b′ 
= ẽb.(4.21)

Then the assertions of Theorem 4.1 hold.

§4.2. Crystal structure on Mθ

We shall define the crystal structure on Mθ.

Definition 4.5. Suppose k > 0. For a θ-restricted multisegment m =∑
−j�i�j

mi,j〈i, j〉, we set

ε−k(m) = max
{
A

(−k)
j (m) | j � −k + 2

}
,

where

A
(−k)
j (m) =

∑
��j

(m−k,� −m−k+2,�+2) for j > k,

A
(−k)
k (m) =

∑
�>k

(m−k,� −m−k+2,�) + 2m−k,k + δ(m−k+2,k is odd),

A
(−k)
j (m) =

∑
�>k

(m−k,� −m−k+2,�) + 2m−k,k − 2m−k+2,k−2

+
∑

−k+2<i�j+2

mi,k −
∑

−k+2<i�j

mi,k−2

for −k + 2 � j � k − 2.

(i) Let nf be the smallest � � −k + 2, with respect to the ordering · · · >
k + 2 > k > −k + 2 > · · · > k − 2, such that ε−k(m) = A

(−k)
� (m). We

define

F̃−k(m) =



m − 〈−k + 2, nf 〉 + 〈−k, nf 〉 if nf > k,

m − 〈−k + 2, k〉 + 〈−k, k〉 if nf = k and m−k+2,k is odd,

m − δk �=1〈−k + 2, k − 2〉
+〈−k + 2, k〉

if nf = k and m−k+2,k is even,

m − δnf �=k−2〈nf + 2, k − 2〉
+〈nf + 2, k〉

if −k + 2 � nf � k − 2.
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(ii) If ε−k(m) = 0, then Ẽ−k(m) = 0. If ε−k(m) > 0, then let ne be the largest
� � −k + 2, with respect to the above ordering, such that ε−k(m) =
A

(−k)
� (m). We define

Ẽ−k(m) =



m − 〈−k, ne〉 + 〈−k + 2, ne〉 if ne > k,

m − 〈−k, k〉 + 〈−k + 2, k〉 if ne = k and
m−k+2,k is even,

m − 〈−k + 2, k〉
+δk �=1〈−k + 2, k − 2〉

if ne = k and
m−k+2,k is odd,

m − 〈ne + 2, k〉
+δne �=k−2〈ne + 2, k − 2〉

if −k + 2 � ne � k − 2.

Remark 4.6. For 0 < k ∈ I, the actions of Ẽ−k and F̃−k on m ∈ Mθ are
described by the following algorithm.

Step 1. Arrange segments in m of the form 〈−k, j〉 (j > k), 〈−k+2, j〉 (j > k),
〈i, k〉 (−k � i �k), 〈i, k − 2〉 (−k + 2 � i � k − 2) in the order

· · · , 〈−k, k + 2〉, 〈−k + 2, k + 2〉, 〈−k, k〉, 〈−k + 2, k〉, 〈−k + 2, k − 2〉,
〈−k + 4, k〉, 〈−k + 4, k − 2〉, · · · , 〈k − 2, k〉, 〈k − 2, k − 2〉, 〈k〉.

Step 2. Write signatures for each segment contained in m by the following rules.

(i) If a segment is not 〈−k + 2, k〉, then

• For 〈−k, k〉, write −−,

• For 〈−k, j〉 with j > k, write −,

• For 〈−k + 2, k − 2〉 with k > 1, write ++,

• For 〈−k + 2, j〉 with j > k, write +,

• For 〈j, k〉 with −k + 2 < j � k, write −,

• For 〈j, k − 2〉 with −k + 2 < j � k − 2, write +,

• Otherwise, write no signature.

(ii) For segments m−k+2,k〈−k + 2, k〉, if m−k+2,k is even, then write
no signature, and if m−k+2,k is odd, then write −+.

Step 3. In the resulting sequence of + and −, delete a subsequence of the form
+− and keep on deleting until no such subsequence remains.
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Then we obtain a sequence of the form −− · · · − + + · · ·+.

(1) ε−k(m) is the total number of − in the resulting sequence.

(2) F̃−k(m) is given as follows:

(i) if the leftmost + corresponds to a segment 〈−k + 2, j〉 for j > k, then
replace it with 〈−k, j〉,

(ii) if the leftmost + corresponds to a segment 〈j, k − 2〉 for −k+2 � j �
k − 2, then replace it with 〈j, k〉,

(iii) if the leftmost + corresponds to segment m−k+2,k〈−k + 2, k〉, then
replace one of the segments with 〈−k, k〉,

(iv) if no + exists, add a segment 〈k, k〉 to m.

(3) Ẽ−k(m) is given as follows:

(i) if the rightmost − corresponds to a segment 〈−k, j〉 for j � k, then
replace it with 〈−k + 2, j〉,

(ii) if the rightmost − corresponds to a segment 〈j, k〉 for −k+2 < j < k,
then replace it with 〈j, k − 2〉,

(iii) if the rightmost − corresponds to segments m−k+2,k〈−k + 2, k〉, then
replace one of the segment with 〈−k + 2, k − 2〉,

(iv) if the rightmost − corresponds to a segment 〈k, k〉 for k > 1, then
delete it,

(v) if no − exists, then Ẽ−k(m) = 0.

Example 4.7.

(1) We shall write {a, b} for a〈−1, 1〉 + b〈1〉. The following diagram is the
part of the crystal graph of Bθ(0) that concerns only the 1-arrows and the
(−1)-arrows.

{0, 4} 1 ��
−1

�� {0, 5} · · ·
{0, 2} 1 ��

−1
�� {0, 3}

1 �������

−1
��

����
φ

1 ��
−1

�� {0, 1}
1 �������

−1
������� {1, 2} 1 ��

−1
�� {1, 3} · · ·

{1, 0} 1 ��
−1

�� {1, 1}
1��

����

−1
�������

{2, 0} 1 ��
−1

�� {2, 1} · · ·
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Especially the part of (−1)-arrows is the following diagram.

{0, 2n} −1 �� {0, 2n+ 1} −1 �� {1, 2n} −1 �� {1, 2n+ 1} −1 �� {2, 2n} · · ·

(2) The following diagram is the part of the crystal graph of Bθ(0) that concerns
only the (−1)-arrows and the (−3)-arrows. This diagram is, as a graph,
isomorphic to the crystal graph of A2.

2〈−1, 1〉
〈−1, 1〉 + 〈1〉

−1 �����������

−3
		�������

〈−1, 1〉
−1 

�����

−3 ���������� 〈−1, 3〉 + 〈1〉
〈1〉

−1 ��������

−3 ����
���

���
〈−1, 3〉 −1

������������

−3 		������������

〈−3, 3〉
〈1, 3〉

−1
������������

−3

	
		

		
		

		
		

		
		

	
〈3〉 + 〈−1, 1〉 + 〈1〉

〈3〉 + 〈−1, 1〉
−1 �������

−3
		�������

φ

−1

��

















−3

���
��

��
��

��
��

��
��

� 〈−1, 3〉 + 〈3〉
〈1, 3〉 + 〈3〉 −1

����������

−3
		��������

〈1, 3〉 + 2〈3〉
〈3〉 + 〈1〉

−1

������������������

−3 ��
2〈3〉 + 〈−1, 1〉

〈3〉

−1
����������

−3 ��������� 2〈3〉 + 〈1〉 −1

����������

−3 		����������

2〈3〉
−1 

��������

−3 ������������ 3〈3〉 + 〈1〉
3〈3〉 −1

��������������

−3 		���������������

4〈3〉

(3) Here is the part of the crystal graph of Bθ(0) that concerns only the n-
arrows and the (−n)-arrows for an odd integer n � 3:

φ
n ��

−n
�� 〈n〉 n ��

−n
�� 2〈n〉 n ��

−n
�� 3〈n〉 n ��

−n
�� · · · · · ·

Lemma 4.8. For k ∈ I>0, the data Ẽ−k, F̃−k, ε−k define a crystal
structure on Mθ, namely we have
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(i) F̃−kMθ ⊂ Mθ and Ẽ−kMθ ⊂ Mθ 	 {0},
(ii) F̃−kẼ−k(m) = m if Ẽ−k(m) 
= 0, and Ẽ−k ◦ F̃−k = id,

(iii) ε−k(m) = max
{
n � 0 | Ẽn

−k(m) 
= 0
}

for any m ∈ Mθ.

Proof. We shall first show that, for m =
∑

−j�i�j mi,j〈i, j〉 ∈ Mθ,
F̃−k(m) is θ-restricted, Ẽ−kF̃−k(m) = m and ε−k(F̃−km) = ε−k(m) + 1. Let
Aj :=A

(−k)
j (m) (j � −k+2) and let nf be as in Definition 4.5. Set m′ = F̃−km.

Let A′
j = A

(−k)
j (m′) and let n′

e be ne for m′.

(i) Assume nf > k. Since Anf
> Anf−2 = Anf

+m−k,nf−2 −m−k+2,nf
, we

have m−k,nf−2 < m−k+2,nf
. Hence m′ = m − 〈−k + 2, nf 〉 + 〈−k, nf 〉 is

θ-restricted. Then we have

A′
j =


Aj if j > nf ,

Aj + 1 if j = nf ,

Aj + 2 if j < nf .

Hence ε−k(m′) = Anf
+ 1 = ε−k(m) + 1 and n′

e = nf , which implies
m = Ẽ−k(m′).

(ii) Assume nf = k.

(a) If m−k+2,k is odd, then m′ = m−〈−k+2, k〉+ 〈−k, k〉 is θ-restricted.
We have

A′
j =


Aj if j > k,

Aj + 1 if j = k,

Aj + 2 if j < k,

Hence ε−k(m′) = ε−k(m)+1 and n′
e = k, which implies m = Ẽ−k(m′).

(b) Assume that m−k+2,k is even. If k 
= 1, then Ak > A−k+2 =
Ak − 2m−k+2,k−2, and hence m−k+2,k−2 > 0. Therefore m′ = m −
δk �=1〈−k + 2, k − 2〉 + 〈−k + 2, k〉 is θ-restricted. We have

A′
j =


Aj if j > k,

Aj + 1 if j = k,

Aj + 2 if j < k.

Hence ε−k(m′) = ε−k(m)+1 and n′
e = k, which implies m = Ẽ−k(m′).
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(iii) Assume −k + 2 � nf < k − 2. Since Anf
> Anf+2 = Anf

+ mnf +4,k −
mnf +2,k−2, we have mnf +2,k−2 > mnf +4,k. Hence m′ = m − 〈nf + 2, k −
2〉 + 〈nf + 2, k〉 is θ-restricted. Then we have

A′
j =


Aj if j > nf ,

Aj + 1 if j = nf ,

Aj + 2 if j < nf .

(Here the ordering is as in Definition 4.5 (i).) Hence ε−k(m′) = ε−k(m)+1
and n′

e = nf , which implies m = Ẽ−km′.

(iv) Assume nf = k − 2. It is obvious that m′ = m + 〈k〉 is θ-restricted. We
have

A′
j =

{
Aj if j 
= nf ,

Aj + 1 if j = nf .

Hence ε−k(m′) = ε−k(m) + 1 and n′
e = nf , which implies m = Ẽ−k(m′).

Similarly, we can prove that if ε−k(m) > 0, then Ẽ−k(m) is θ-restricted and
F̃−kẼ−k(m) = m. Hence we obtain the desired results.

Definition 4.9. For k ∈ I>0, we define F̃k, Ẽk and εk by the same rule
as in Definition 3.7 for f̃k, ẽk and εk.

Since it is well-known that it gives a crystal structure on M, we obtain
the following result.

Theorem 4.10. By F̃k, Ẽk, εk (k ∈ I), Mθ is a crystal, namely, we
have

(i) F̃kMθ ⊂ Mθ and ẼkMθ ⊂ Mθ 	 {0},

(ii) F̃kẼk(m) = m if Ẽk(m) 
= 0, and Ẽk ◦ F̃k = id,

(iii) εk(m) = max
{
n � 0 | Ẽn

k (m) 
= 0
}

for any m ∈ Mθ.

The crystal Mθ has a unique highest weight vector.

Lemma 4.11. If m ∈ Mθ satisfies that εk(m) = 0 for any k ∈ I, then
m = ∅. Here ∅ is the empty multisegment. In particular, for any m ∈ Mθ,
there exist � � 0 and i1, . . . , i� ∈ I such that m = F̃i1 · · · F̃i�

∅.
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Proof. Assume m 
= ∅. Let k be the largest k such that mk,j 
= 0 for some
j. Then take the largest j such that mk,j 
= 0. Then j � |k|. Moreover, we
have mk+2,� = 0 for any �, and mk,� = 0 for any � > j. Hence we have

A
(k)
j (m) =

{
2mk,j if k = −j,
mk,j otherwise.

Hence εk(m) � A
(k)
j (m) > 0.

§4.3. Estimates of the order of coefficients

By applying Theorem 4.1, we shall show that {Pθ(m)φ}m∈Mθ
is a crystal

basis of Vθ(0) and its crystal structure coincides with the one given in § 4.2.
Let k be a positive odd integer. We define c, f, e : Z → Q by c(n) = |n/2|

and f(n) = e(n) = n/2. Then the conditions (4.4)–(4.8) are obvious. Set
ξ(m) = (−1)m−k+2,km−k,k and

B′′ = {m ∈ Mθ | −k + 2 � ne(m) < k} ∪ {m ∈ Mθ | m−k+2,k(m) is odd} ,
B′ =Mθ \B′′.

Here ne(m) is ne given in Definition 4.5 (ii). If ε−k(m) = 0, then we understand
ne(m) = ∞.

We define F−k
m,m′ and E−k

m,m′ by the coefficients of the following expansion:

F−kPθ(m)φ̃=
∑
m′

F−k
m,m′Pθ(m′)φ̃,

E−kPθ(m)φ̃=
∑
m′

E−k
m,m′Pθ(m′)φ̃,

as given in Theorems 3.21 and 3.22. Put � = ε−k(m) and �′ = ε−k(m′).

Proposition 4.12. The conditions (4.9), (4.11), (4.13) and (4.14) are
satisfied for Ẽ−k, F̃−k, ε−k, namely, we have

(a) if m′ = F̃−k(m), then F−k
m,m′ ∈ q−�(1 + qA0),

(b) if m′ 
= F̃−k(m), then ord(F−k
m,m′) � −�+ f(�+ 1 − �′) = −(�+ �′ − 1)/2,

(c) if m′ 
= F̃−k(m) and ord(F−k
m,m′) = −(� + �′ − 1)/2, then the following two

conditions hold:

(1) ξ(F̃−k(m)) > ξ(m′),
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(2) � � �′ or F̃−k(m) ∈ B′′.

Proof. We shall write Aj for A−k
j (m). Let nf be as in Definition 4.5 (i).

Note that F−k

m, eF−k(m)

= 0.

If F−k
m,m′ 
= 0, we have the following four cases. We shall use [n] ∈ q1−n(1+

qA0) for n > 0.
Case 1. m′ = m − 〈−k + 2, n〉 + 〈−k, n〉 for n > k.
In this case, we have

F−k
m,m′ = [m−k,n + 1]q

P
j>n(m−k+2,j−m−k,j) ∈ q−An(1 + qA0)

and

� = max{Aj(j � −k + 2)},
�′ = max{Aj (j > n), An + 1, Aj + 2 (j < n)}.

If m′ = F̃−k(m), then � = An and we obtain (a). Assume m′ 
= F̃−k(m). Since
An � �, �′ − 1, we have ord(F−k

m,m′) = −An � −(�+ �′ − 1)/2. Hence we obtain
(b). If ord(F−k

m,m′) = −(� + �′ − 1)/2, then we have An = � = �′ − 1. Since
Aj + 2 � �′ = An + 1 for j < n, we have nf = n and m′ = F̃−k(m), which is a
contradiction.

Case 2. m′ = m − 〈−k + 2, k〉 + 〈−k, k〉.
In this case we have

F−k
m,m′ = [2m−k,k + 2]q

P
j>k(m−k+2,j−m−k,j) ∈ q−Ak−δ(m−k+2,k is even)(1 + qA0).

(i) Assume that m−k+2,k is odd. We have F−k
m,m′ ∈ q−Ak(1 + qA0) and

�′ = max{Aj (j > k), Ak + 1, Aj + 2 (j < k)}.

If m′ = F̃−k(m), then � = Ak and (a) holds. Assume that m′ 
= F̃−k(m).
We have Ak � �, �′ − 1 and hence ord(F−k

m,m′) = −Ak � −(� + �′ − 1)/2.
If ord(F−k

m,m′) = −(� + �′ − 1)/2, then Ak = � = �′ − 1, and we have
m′ = F̃−k(m), which is a contradiction.

(ii) Assume that m−k+2,k is even. Then m′ 
= F̃−k(m), F−k
m,m′ ∈ q−Ak−1(1 +

qA0) and

�′ = max{Aj (j > k), Ak + 3, Aj + 2 (j < k)}.

We have Ak � �, �′ − 3 and hence ord(F−k
m,m′) = −Ak − 1 � −(� + �′ −

1)/2. Hence (b) holds. Let us show (c). Assume m′ 
= F̃−k(m), and
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ord(F−k
m,m′) = −(� + �′ − 1)/2. Then we have Ak = � = �′ − 3. Hence

nf � k and we have either F̃−k(m) = m − δi �=k〈i, k − 2〉 + 〈i, k〉 with
−k+2 < i � k or F̃−k(m) = m− δk �=1〈−k+2, k− 2〉+ 〈−k+2, k〉. Hence
we have ξ(F̃−k(m)) = ±m−k,k > −m−k,k − 1 = ξ(m′). Hence we obtain
(c) (1).

(1) Assume F̃−k(m) = m−δi �=k〈i, k−2〉+〈i, k〉 with −k+2 < i � k. Then
k 
= 1 and Ẽ−k(F̃−k(m)) = F̃−k(m) − 〈i, k〉 + δi �=k〈i, k − 2〉. Hence
ne(F̃−k(m)) = i − 2 < k. Hence F̃−k(m) ∈ B′′. Therefore we obtain
(c) (2).

(2) Assume F̃−k(m) = m − δk �=1〈−k + 2, k − 2〉 + 〈−k + 2, k〉. Then
m−k+2,k(F̃−k(m)) = m−k+2,k + 1 is odd. Hence F̃−k(m) ∈ B′′.

Case 3. m′ = m− δk �=1〈−k+ 2, k− 2〉+ 〈−k+ 2, k〉. In this case, we have

F−k
m,m′ = [m−k+2,k + 1]q

P
j>k(m−k+2,j−m−k,j)+m−k+2,k−2m−k,k

∈ q−Ak+δ(m−k+2,k is odd)(1 + qA0).

(i) If m−k+2,k is odd, then m′ 
= F̃−k(m), F−k
m,m′ ∈ q−Ak+1(1 + qA0), and

�′ = max{Aj (j > k), Ak − 1, Aj + 2 (j < k)}.

We have Ak � �, �′ +1 and hence ord(F−k
m,m′) = −Ak +1 � −(�+�′−1)/2.

If ord(F−k
m,m′) = −(� + �′ − 1)/2, then Ak = � = �′ + 1, and nf = k.

Hence we obtain (c) (2), and F̃−k(m) = m− 〈−k+ 2, k〉+ 〈−k, k〉. Hence
ξ(F̃−k(m)) = m−k,k + 1 > m−k,k = ξ(m′). Hence we obtain (c) (1).

(ii) If m−k+2,k is even, then F−k
m,m′ ∈ q−Ak(1 + qA0) and

�′ = max{Aj (j > k), Ak + 1, Aj + 2 (j < k)}.

If m′ = F̃−k(m), then � = Ak and (a) is satisfied. Assume m′ 
= F̃−k(m).
We have Ak � �, �′ − 1 and hence ord(F−k

m,m′) = −Ak � −(�+ �′ − 1)/2. If
ord(F−k

m,m′) = −(�+�′−1)/2, then Ak = � = �′−1, and hence m′ = F̃−k(m),
which is a contradiction.

Case 4. m′ = m − δi �=k〈i, k − 2〉 + 〈i, k〉 for −k + 2 < i � k. We have

F−k
m,m′ = [mi,k + 1]

×q
P

j>k(m−k+2,j−m−k,j)+2m−k+2,k−2−2m−k,k+
P

−k+2<j<i(mj,k−2−mj,k)

∈ q−Ai−2(1 + qA0),
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and

�′ = max{Aj (j � k), Aj (j < i− 2), Ai−2 + 1, Aj + 2 (i− 2 < j � k − 2)}.
If m′ = F̃−k(m), then � = Ai−2 and (a) holds. Assume m′ 
= F̃−k(m). Since
Ai−2 � �, �′ − 1, we have ord(F−k

m,m′) = −Ai−2 � −(� + �′ − 1)/2. Hence we
obtain (b). If ord(F−k

m,m′) = −(� + �′ − 1)/2, then we have Ai−2 = � = �′ − 1.
Hence m′ = F̃−k(m), which is a contradiction.

Proposition 4.13. Suppose k > 0. The conditions (4.10), (4.12), and
(4.15) hold, namely, we have

(a) if m′ = Ẽ−k(m), then E−k
m,m′ ∈ q1−�(1 + qA0),

(b) if m′ 
= Ẽ−k(m), then ord(E−k
m,m′) � 1− �+ e(�− 1− �′) = −(�+ �′ − 1)/2,

(c) if m′ 
= Ẽ−k(m), � � �′ + 1 and ord(E−k
m,m′) = −(�+ �′ − 1)/2, then b 
∈ B′′.

Proof. The proof is similar to the one of the above proposition.
We shall write Aj for A−k

j (m). Let ne be as in Definition 4.5 (ii).
Note that E−k

m, eE−k(m)

= 0 if Ẽ−k(m) 
= 0. If E−k

m,m′ 
= 0, we have the
following five cases.

Case 1. m′ = m − 〈−k, n〉 + 〈−k + 2, n〉 for n > k.
In this case, we have

E−k
m,m′ = (1 − q2)[m−k+2,n + 1]q1+

P
j�n(m−k+2,j−m−k,j) ∈ q1−An(1 + qA0)

and

� = max{Aj(j � −k + 2)},
�′ = max{Aj (j > n), An − 1, Aj − 2 (j < n)}.

If m′ = Ẽ−k(m), then � = An and we obtain (a). Assume m′ 
= Ẽ−k(m). Since
An � �, �′ + 1, we have ord(E−k

m,m′) = 1 − An � −(� + �′ − 1)/2. Hence we
obtain (b). If ord(E−k

m,m′) = −(� + �′ − 1)/2, then we have An = � = �′ + 1.
Since Aj � �′ = An − 1 for j > n, we have ne = n and m′ = Ẽ−k(m), which is
a contradiction.

Case 2. m′ = m − 〈−k, k〉 + 〈−k + 2, k〉.
In this case we have

E−k
m,m′ = (1 − q2)[m−k+2,k + 1]q1+

P
j>k(m−k+2,j−m−k,j)+m−k+2,k−2m−k,k

∈ q1−Ak+δ(m−k+2,k is odd)(1 + qA0).
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(i) Assume thatm−k+2,k is odd. Then m′ 
= Ẽ−k(m), E−k
m,m′ ∈ q2−Ak(1+qA0)

and
�′ = max{Aj (j > k), Ak − 3, Aj − 2 (j < k)}.

We have Ak � �, �′ + 3 and hence ord(E−k
m,m′) = 2−Ak � −(�+ �′ − 1)/2.

Hence (b) holds. If ord(E−k
m,m′) = −(� + �′ − 1)/2, then Ak = � = �′ + 3.

Hence � > �′ + 1 and (c) holds.

(ii) Assume that m−k+2,k is even. Then E−k
m,m′ ∈ q1−Ak(1 + qA0) and

�′ = max{Aj (j > k), Ak − 1, Aj − 2 (j < k)}.
If m′ = Ẽ−k(m), then � = Ak, and we obtain (a). Assume m′ 
= Ẽ−k(m).
We have Ak � �, �′ + 1 and hence ord(E−k

m,m′) = 1−Ak � −(�+ �′ − 1)/2.
If ord(E−k

m,m′) = −(�+ �′ − 1)/2, then Ak = � = �′ + 1 and ne = k. Hence
m′ = Ẽ−k(m), which is a contradiction.

Case 3. m′ = m − 〈−k + 2, k〉 + δk �=1〈−k + 2, k − 2〉. If k 
= 1, we have

E−k
m,m′ = (1 − q2)[2(m−k+2,k−2 + 1)]q1+

P
j>k(m−k+2,j−m−k,j)+2m−k+2,k−2−2m−k,k

∈ q−Ak+δ(m−k+2,k is odd)(1 + qA0).

If k = 1, we have

E−k
m,m′ = q

P
j>k(m−k+2,j−m−k,j)−2m−k,k = q−Ak+δ(m−k+2,k is odd).

In the both cases, we have

E−k
m,m′ ∈ q−Ak+δ(m−k+2,k is odd)(1 + qA0).

(i) If m−k+2,k is odd, then E−k
m,m′ ∈ q1−Ak(1 + qA0) and

�′ = max{Aj (j > k), Ak − 1, Aj − 2 (j < k)}.
If m′ = Ẽ−k(m), then � = Ak and (a) is satisfied. We have Ak � �, �′ + 1
and hence ord(E−k

m,m′) = 1−Ak � −(�+ �′ − 1)/2. Assume m′ 
= Ẽ−k(m).
If ord(E−k

m,m′) = −(�+ �′ − 1)/2, then Ak = � = �′ + 1, and ne = k. Hence
m′ = Ẽ−k(m), which is a contradiction.

(ii) If m−k+2,k is even, then m′ 
= Ẽ−k(m), E−k
m,m′ ∈ q−Ak(1 + qA0), and

�′ = max{Aj (j > k), Ak + 1, Aj − 2 (j < k)}.
We have Ak � �, �′ − 1 and hence ord(E−k

m,m′) = −Ak � −(� + �′ − 1)/2.
Hence we obtain (b). If ord(E−k

m,m′) = −(�+�′−1)/2, then Ak = � = �′−1.
Hence ne(m) � k and m−k+2,k(m) is even. Hence m 
∈ B′′.



884 Naoya Enomoto and Masaki Kashiwara

Case 4. m′ = m − 〈i, k〉 + 〈i, k − 2〉 for −k + 2 < i � k − 2.
We have

E−k
m,m′ = (1 − q2)[mi,k−2 + 1]

×q1+
P

j>k(m−k+2,j−m−k,j)+2m−k+2,k−2−2m−k,k+
P

−k+2<j�i(mj,k−2−mj,k)

∈ q1−Ai−2(1 + qA0),

and

�′ = max{Aj (j � k), Aj (j < i− 2), Ai−2 − 1, Aj − 2 (i � j � k − 2)}.
If m′ = Ẽ−k(m), then � = Ai−2 and (a) holds. Assume m′ 
= Ẽ−k(m). Since
Ai−2 � �, �′ + 1, we have ord(E−k

m,m′) = 1 − Ai−2 � −(�+ �′ − 1)/2. Hence we
obtain (b). If ord(E−k

m,m′) = −(� + �′ − 1)/2, then we have Ai−2 = � = �′ + 1.
Hence m′ = Ẽ−k(m), which is a contradiction.

Case 5. k 
= 1 and m′ = m − 〈k〉. In this case,

E−k
m,m′ = q

∑
j>k

(m−k+2,j−m−k,j)−2m−k,k+1−mk,k+2m−k+2,k−2+
∑

−k+2<i�k−2
(mi,k−2−mi,k)

∈ q1−Ak−2(1 + qA0),

and
�′ = max{Aj (j 
= k − 2), Ak−2 − 1}.

If m′ = Ẽ−k(m), then � = Ak−2 and (a) holds. Assume m′ 
= Ẽ−k(m). Since
Ak−2 � �, �′ + 1, we have ord(E−k

m,m′) = 1 − Ak−2 � −(�+ �′ − 1)/2. Hence we
obtain (b). If ord(E−k

m,m′) = −(�+ �′ − 1)/2, then we have Ak−2 = � = �′ + 1.
Hence m′ = Ẽ−k(m), which is a contradiction.

Proposition 4.14. Let k ∈ I>0. Then the conditions in Corollary 4.4
holds for Ẽk, F̃k and εk, with the same functions c, e, f .

Since the proof is similar to and simpler than the one of the preceding two
propositions, we omit the proof.

As a corollary we have the following result. We write φ for the generator
φ0 of Vθ(0) for short.

Theorem 4.15.

(i) The morphism

Ṽθ(0) := U−
q (g)/

∑
k∈I

U−
q (g)(fk − f−k) → Vθ(0)

is an isomorphism.
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(ii) {Pθ(m)φ}m∈Mθ
is a basis of the K-vector space Vθ(0).

(iii) Set

Lθ(0) :=
∑

��0, i1,...,i�∈I

A0F̃i1 · · · F̃i�
φ ⊂ Vθ(0),

Bθ(0) =
{
F̃i1 · · · F̃i�

φmod qLθ(0) | � � 0, i1, . . . , i� ∈ I
}
.

Then, Bθ(0) is a basis of Lθ(0)/qLθ(0) and (Lθ(0),Bθ(0)) is a crystal
basis of Vθ(0), and the crystal structure coincides with the one of Mθ.

(iv) More precisely, we have

(a) Lθ(0) =
⊕

m∈Mθ

A0Pθ(m)φ,

(b) Bθ(0) = {Pθ(m)φmod qLθ(0) | m ∈ Mθ},
(c) for any k ∈ I and m ∈ Mθ, we have

(1) F̃kPθ(m)φ ≡ Pθ(F̃k(m))φmod qLθ(0),

(2) ẼkPθ(m)φ ≡ Pθ(Ẽk(m))φmod qLθ(0),
where we understand Pθ(0) = 0,

(3) Ẽn
kPθ(m)φ ∈ qLθ(0) if and only if n > εk(m).

Proof. Let us recall that Pθ(m)φ ∈ Vθ(0) is the image of P̃θ(m) ∈
Ṽθ(0). By Theorem 3.21, {P̃θ(m)}m∈Mθ

generates Ṽθ(0). Let us set L̃ =∑
m∈Mθ

A0P̃θ(m) ⊂ Ṽθ(0). Then Theorem 4.1 implies that

F̃kP̃θ(m) ≡ P̃θ(F̃k(m)) mod qL̃ and ẼkP̃θ(m) ≡ P̃θ(Ẽk(m)) mod qL̃.

Hence the similar results hold for L0 :=
∑

m∈Mθ
A0Pθ(m)φ ⊂ Vθ(0) and Pθ(m)φ.

Let us show that

(A) {Pθ(m)φmod qL0}m∈Mθ
is linearly independent in L0/qL0,

by the induction of the θ-weight (see Remark 2.12). Assume that we have a lin-
ear relation

∑
m∈S amPθ(m)φ ≡ 0 mod qL0 for a finite subset S and am ∈ Q\{0}.

We may assume that all m in S have the same θ-weight. Take m0 ∈ S. If m0 is
the empty multisegment ∅, then S = {∅} and Pθ(m0)φ = φ is non-zero, which is
a contradiction. Otherwise, there exists k such that εk(m0) > 0 by Lemma 4.11.
Applying Ẽk, we have

∑
m∈S amẼkPθ(m)φ ≡∑m∈S, eEk(m) �=0 amPθ(Ẽk(m))φ ≡

0 mod qL0. Since Ẽk(m) (Ẽk(m) 
= 0) are mutually distinct, we have am0 = 0
by the induction hypothesis. It is a contradiction.
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Thus we have proved (A). Hence {Pθ(m)φ}m∈Mθ
is a basis of Vθ(0), which

implies that {P̃θ(m)}m∈Mθ
is a basis of Ṽθ(0). Thus we obtain (i) and (ii).

Let us show (iv) (a). Since F̃i1 · · · F̃i�φ ≡ Pθ(F̃i1 · · · F̃i�∅)φmod qL0, we
have Lθ(0) ⊂ L0 and L0 ⊂ Lθ(0) + qL0. Hence Nakayama’s lemma implies
L0 = Lθ(0). The other statements are now obvious.

§5. Global Basis of Vθ(0)

§5.1. Integral form of Vθ(0)

In this section, we shall prove that Vθ(0) has a lower global basis. In order
to see this, we shall first prove that {Pθ(m)φ}m∈Mθ

is a basis of the A-module
Vθ(0)A. Recall that A = Q[q, q−1], and Vθ(0)A = U−

q (gl∞)Aφ.

Lemma 5.1. Vθ(0)A =
⊕

m∈Mθ

APθ(m)φ.

Proof. It is clear that
⊕

m∈Mθ
APθ(m)φ is stable by the actions of F (n)

k

by Proposition 3.20. Hence we obtain Vθ(0)A ⊂ ⊕
m∈Mθ

APθ(m)φ.

We shall prove Pθ(m)φ ∈ U−
q (gl∞)Aφ. It is well-known that 〈i, j〉(m) is

contained in U−
q (gl∞)A, which is also seen by Proposition 3.20 (3). We divide

m as m = m1 + m2, where m1 =
∑

−j<i�j mij〈i, j〉 and m2 =
∑

k>0mk〈−k, k〉.
Then Pθ(m) = P (m1)Pθ(m2) and P (m1) ∈ U−

q (gl∞)A. Hence we may assume
from the beginning that m =

∑
0<k�amk〈−k, k〉. We shall show that Pθ(m)φ ∈

Vθ(0)A by the induction on a.
Assume a > 1. Set m′ =

∑
0<k�a−4mk〈−k, k〉 and v = Pθ(m′)φ. Then

〈−a+ 2, a− 2〉[m]v ∈ Vθ(0)A for any m by the induction hypothesis.
We shall show that 〈−a, a〉[n]〈−a+ 2, a− 2〉[m]v is contained in Vθ(0)A by

the induction on n. Since Pθ(m′) commutes with 〈a〉, 〈−a〉, 〈−a + 2, a − 2〉,
〈−a+ 2, a〉 and 〈−a, a〉, Proposition 3.20 (2) implies

〈−a〉(2n)〈−a+ 2, a− 2〉[n+m]v

=
∑

i+j+2t=2n, j+t=u

q2(n+m)i+j(j−1)/2−i(t+u)

×〈a〉(i)〈−a+ 2, a〉(j)〈−a, a〉[t]〈−a+ 2,−2〉[n+m−u]
v,

which is contained in Vθ(0)A. Since we have

〈a〉(i)〈−a+ 2, a〉(j)〈−a, a〉[t]〈−a+ 2, a− 2〉[n+m−u]
v ∈ Vθ(0)A

if (i, j, t, u) 
= (0, 0, n, n) by the induction hypothesis on n, 〈−a, a〉[n]〈−a+2, a−
2〉[m]v is contained in Vθ(0)A.
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If a = 1, we similarly prove Pθ(m)φ ∈ Vθ(0)A using Proposition 3.20 (1)
instead of (2).

§5.2. Conjugate of the PBW basis

We will prove that the bar involution is upper triangular with respect to
the PBW basis {Pθ(m)}m∈Mθ

.
First we shall prove Theorem 3.10 (4).
For a, b ∈ M such that a � b, we denote by M[a,b] (resp. M�b) the set

of m ∈ M of the form m =
∑

a�i�j�bmi,j〈i, j〉 (resp. m =
∑

i�j�bmi,j〈i, j〉).
Similarly we define (Mθ)�b. For a multisegment m ∈ M�b, we divide m into
m = mb + m<b, where mb =

∑
i�bmi,j〈i, b〉 and m<b =

∑
i�j<bmi,j〈i, j〉.

Lemma 5.2. For n � 0 and a, b ∈ I such that a � b, we have

〈a, b〉(n) ∈ 〈a, b〉(n) +
∑

m <
cry

n〈a,b〉
KP (m).

Proof. We shall first show

〈a, b〉 ∈ 〈a, b〉 +
∑

a+2�k�b

〈k, b〉U−
q (g)(5.1)

by the induction on b− a. If a = b, it is trivial. If a < b, we have

〈a, b〉= 〈a〉〈a+ 2, b〉 − q−1〈a+ 2, b〉〈a〉
∈ 〈a〉

(
〈a+ 2, b〉 +

∑
a+2<k�b

〈k, b〉U−
q (g)

)
−q−1

(
〈a+ 2, b〉 +

∑
a+2<k�b

〈k, b〉U−
q (g)

)
〈a〉

⊂ 〈a, b〉 + (q − q−1)〈a+ 2, b〉〈a〉 +
∑

a+2<k�b

(〈k, b〉〈a〉U−
q (g) + 〈k, b〉U−

q (g)).

Hence we obtain (5.1). We shall show the lemma by the induction on n. We
may assume n > 0 and

〈a, b〉n−1 ∈ 〈a, b〉n−1 +
∑

m <
cry

(n−1)〈a,b〉
KP (m).

Hence we have

〈a, b〉n = 〈a, b〉 〈a, b〉n−1 ∈ 〈a, b〉n +
∑

a<k�b

〈k, b〉U−
q (g) +

∑
m <

cry
(n−1)〈a,b〉

K〈a, b〉P (m).
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For a < k � b and m ∈ M such that wt(m) = wt(n〈a, b〉)− wt(〈k, b〉), we have
m ∈ M[a,b] and mb =

∑
a�i�bmi,b〈i, b〉 with

∑
imi,b = n − 1. In particular,

ma,b � n− 1. Hence 〈k, b〉P (m) ∈ KP (m + 〈k, b〉) and m + 〈k, b〉 <
cry

n〈a, b〉.
If m <

cry
(n − 1)〈a, b〉, then 〈a, b〉P (m) ∈ KP (〈a, b〉 + m) and 〈a, b〉 + m <

cry

n〈a, b〉.

Proposition 5.3. For m ∈ M,

P (m) ∈ P (m) +
∑

n <
cry

m

KP (n).

Proof. Put m =
∑

i�j�bmi,j〈i, j〉 and divide m = mb + m<b. We prove
the claim by the induction on b and the number of segments in mb. Suppose
mb = m〈a, b〉 + m1 with m = ma,b > 0, where m1 =

∑
a<i�bmi,b〈i, b〉.

(i) Let us first show that

P (mb) ∈ P (mb) +
∑

m′ <
cry

mb

KP (m′).(5.2)

We have P (mb) = P (m1) · 〈a, b〉(m). Since P (m1) ∈ P (m1) +
∑

m′
1 <
cry

m1
KP (m′

1)

by the induction hypothesis, and 〈a, b〉(m) ∈ 〈a, b〉(m) +
∑

m′′ <
cry

m〈a,b〉 KP (m′′),

we have

P (mb) ∈ P (mb) +
∑

m′
1 <
cry

m1, m′
1∈M[a+2,b]

KP (m′
1)〈a, b〉(m) +

∑
m′

1 �
cry

m1, m′′ <
cry

m〈a,b〉
KP (m′

1)P (m′′).

If m′
1 <

cry
m1 and m′

1 ∈ M[a+2,b], then P ((m′
1)<b) and 〈a, b〉(m) commute. Hence

P (m′
1)〈a, b〉(m) = P (m′

1 +m〈a, b〉) and m′
1 +m〈a, b〉 <

cry
mb.

If m′
1 �

cry
m1, m′

1 ∈ M[a+2,b] and m′′ <
cry

m〈a, b〉, then we can write m′′
b =

j〈a, b〉 + m2 with j < m and m2 ∈ M[a+2,b]. Hence we have

P (m′
1)P (m′′) ∈ KP ((m′

1)b)P (j〈a, b〉)P ((m′
1)<b)P (m2)P (m′′

<b).

Since (m′
1)<b, m2 ∈ M[a+2,b] we have P ((m′

1)<b)P (m2)P (m′′
<b) ∈

∑
nb∈M[a+2,b]

KP (n).

Hence we have P (m′
1)P (m′′) ∈∑nb∈M[a+2,b]

KP ((m′
1)b+j〈a, b〉+n) and (m′

1)b+
j〈a, b〉 + n <

cry
mb. Hence we obtain (5.2).
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(ii) By the induction hypothesis, P (m<b) ∈ P (m<b) +
∑

m′′ <
cry

m<b
KP (m′′).

Since P (m) = P (mb) P (m<b), (5.2) implies that

P (m) ∈ P (m) +
∑

m′ <
cry

mb,m′′∈M<b

KP (m′)P (m′′) +
∑

m′′ <
cry

m<b

KP (mb)P (m′′).

For m′ <
cry

mb and m′′ ∈ M<b, we have

P (m′)P (m′′) = P (m′
b)P (m′

<b)P (m′′) ∈
∑

n∈M�b, nb=m′
b

KP (n) ⊂
∑

n <
cry

m

KP (n).

For m′′ <
cry

m<b, we have P (mb)P (m′′) = P (mb + m′′) and mb + m′′ <
cry

m. Thus

we obtain the desired result.

Proposition 5.4. For m ∈ Mθ, we have

Pθ(m)φ ∈ Pθ(m)φ+
∑

m′∈Mθ,m′ <
cry

m

KPθ(m′)φ.

Proof. First note that

P (m)φ ∈
∑

n∈(Mθ)�b

KPθ(n)φ for any b ∈ I>0 and m ∈ M[−b,b],(5.3)

by the weight consideration.
For m ∈ Mθ, Pθ(m) and P (m) are equal up to a multiple of bar-invariant

scalar. Thus we have

Pθ(m) ∈ Pθ(m) +
∑

m′∈M, m′ <
cry

m

KP (m′)

by Proposition 5.3. Hence it is enough to show that

P (m′)φ ∈
∑

n∈Mθ, n <
cry

m

KPθ(n)φ(5.4)

for m′ ∈ M such that m′ <
cry

m and wt(m′) = wt(m). Put m =
∑

i�j�bmi,j〈i, j〉
and write m = mb + m<b. We prove (5.4) by the induction on b. By the
assumption on m′, we have m′ ∈ M[−b,b] and m′

b �
cry

mb. Thus m′
b ∈ Mθ. Hence

KP (m′)φ = KPθ(m′
b)P (m′

<b)φ.
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If m′
b = mb, then m′

<b <cry m<b, and the induction hypothesis implies
P (m′

<b)φ ∈ ∑
n∈Mθ, n <

cry
m<b

KPθ(n)φ. Since Pθ(m′
b)Pθ(n) = Pθ(m′

b + n) and

m′
b + n <

cry
m, we obtain (5.4).

If m′
b <

cry
mb, write m′ =

∑
−b�i�j�bm

′
i,j〈i, j〉. Set s = m−b.b −m′

−b,b � 0.

Since wt(m′) = wt(m), we have
∑

j<bm
′
−b,j = s. If s = 0, then m′

<b ∈
M[−b+2,b−2], and P (m′

<b)φ ∈∑n∈(Mθ)<b
KPθ(n)φ by (5.3). Then (5.4) follows

from m′
b + n <

cry
m.

Assume s > 0. Since m′
<b ∈ M[−b,b], we have P (m′

<b)φ ∈ ∑
n∈(Mθ)�b

KPθ(n)φ

by (5.3). We may assume (1 + θ) wt(m′
<b) = (1 + θ) wt(n) (see Remark 2.12).

Hence, we have s = 2m−b,b(n) +
∑

−b<i�b

mi,b(n). In particular, m−b,b(n) � s/2.

We have m′
b+n ∈ Mθ and Pθ(m′

b)Pθ(n)φ = Pθ(m′
b+n)φ. Since m−b,b(m′

b+n) �
(m−b,b − s) + s/2 < m−b,b, we have m′

b + n <
cry

m. Hence we obtain (5.4).

§5.3. Existence of a global basis

As a consequence of the preceding subsections, we obtain the following
theorem.

Theorem 5.5.

(i) (Lθ(0), Lθ(0)−, Vθ(0)A) is balanced.

(ii) For any m ∈ Mθ, there exists a unique Glow
θ (m) ∈ Lθ(0) ∩ Vθ(0)A such

that Glow
θ (m) = Glow

θ (m) and Glow
θ (m) ≡ Pθ(m)φ mod qLθ(0).

(iii) Glow
θ (m) ∈ Pθ(m)φ+

∑
n <
cry

m qQ[q]Pθ(n)φ for any m ∈ Mθ.

(iv) {Glow
θ (m)}m∈Mθ

is a basis of the A-module Vθ(0)A, the A0-module Lθ(0)
and the K-vector space Vθ(0).

Proof. We have already seen that Pθ(m)φ =
∑

m′ �
cry

m cm,m′Pθ(m′)φ for

cm,m′ ∈ A with cm,m = 1. Let us denote by C the matrix (cm,m′)m,m′∈Mθ
. Then

CC = id and it is well-known that there is a matrix A = (am,m′)m,m′∈Mθ
such

that AC = A, am,m′ = 0 unless m′ �
cry

m, am,m = 1 and am,m′ ∈ qQ[q] for m′ <
cry

m. Set Glow
θ (m) =

∑
m′ �

cry
m am,m′Pθ(m′)φ. Then we have Glow

θ (m) = Glow
θ (m)

and Glow
θ (m) ≡ Pθ(m)φ mod qLθ(0). Since Glow

θ (m) is a basis of Vθ(0)A, we
obtain the desired results.
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Errata to “Symmetric crystals and affine Hecke algebras of type B, Proc. Japan
Acad., 82, no. 8, 2006, 131–136” :

(i) In Conjecture 3.8, λ = Λp0 + Λp−1
0

should be read as λ =
∑

a∈A

Λa, where

A = I ∩ {p0, p
−1
0 ,−p0,−p−1

0 }. We thank S. Ariki who informed us that
the original conjecture is false.

(ii) In the two diagrams of Bθ(λ) at the end of § 2, λ should be 0.

(iii) Throughout the paper, A(1)
� should be read as A(1)

�−1.

References

[A] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m, 1, n), J. Math.
Kyoto Univ. 36 (1996), no. 4, 789–808.

[EK] N. Enomoto and M. Kashiwara, Symmetric crystals and affine Hecke algebras of
type B, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 8, 131–136.

[K1] M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras,
Duke Math. J. 63 (1991), no. 2, 465–516.

[K2] , Global crystal bases of quantum groups, Duke Math. J. 69 (1993), no. 2,
455–485.

[KM] M. Kashiwara and V. Miemietz, Crystals and affine Hecke algebras of type D, Proc.
Japan Acad. Ser. A Math. Sci. 83 (2007), no. 7, 135–139.

[Kl1] A. S. Kleshchev, Branching rules for modular representations of symmetric groups.
I, J. Algebra 178 (1995), no. 2, 493–511.

[Kl2] , Branching rules for modular representations of symmetric groups. II, J.
Reine Angew. Math. 459 (1995), 163–212.

[Kl3] , Branching rules for modular representations of symmetric groups. III. Some
corollaries and a problem of Mullineux, J. London Math. Soc. (2) 54 (1996), no. 1,
25–38.

[Kl4] , Linear and projective representations of symmetric groups, Cambridge
Tracts in Mathematics, 163, Cambridge Univ. Press, Cambridge, 2005.

[LLT] A. Lascoux, B. Leclerc and J.-Y. Thibon, Hecke algebras at roots of unity and
crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1,
205–263.

[L] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer.
Math. Soc. 3 (1990), no. 2, 447–498.

[M] V. Miemietz, On representations of affine Hecke algebras of type B, Ph. D. thesis,
Universität Stuttgart (2005), to appear in Algebras and Representation Theory.


