Symmetric Crystals for \mathfrak{gl}_{∞}

Dedicated to Professor Heisuke Hironaka on the occasion of his seventy-seventh birthday

Ву

Naoya Enomoto* and Masaki Kashiwara**

Abstract

In the preceding paper, we formulated a conjecture on the relations between certain classes of irreducible representations of affine Hecke algebras of type B and symmetric crystals for \mathfrak{gl}_{∞} . In the present paper, we prove the existence of the symmetric crystal and the global basis for \mathfrak{gl}_{∞} .

§1. Introduction

Lascoux-Leclerc-Thibon ([LLT]) conjectured the relations between the representations of Hecke algebras of $type\ A$ and the crystal bases of the affine Lie algebras of type A. Then, S. Ariki ([A]) observed that it should be understood in the setting of affine Hecke algebras and proved the LLT conjecture in a more general framework. Recently, we presented the notion of symmetric crystals and conjectured that certain classes of irreducible representations of the affine Hecke algebras of $type\ B$ are described by symmetric crystals for \mathfrak{gl}_{∞} ([EK]).

The purpose of the present paper is to prove the existence of symmetric crystals in the case of \mathfrak{gl}_{∞} .

Let us recall the Lascoux-Leclerc-Thibon-Ariki theory. Let \mathcal{H}_n^A be the affine Hecke algebra of type A of degree n. Let \mathcal{K}_n^A be the Grothendieck group

Communicated by T. Kawai. Received May 14, 2007. Revised November 18, 2007.

²⁰⁰⁰ Mathematics Subject Classification(s): Primary 17B37; Secondary 20C08.

Key words: crystal bases, affine Hecke algebras, LLT conjecture.

The second author is partially supported by Grant-in-Aid for Scientific Research (B) 18340007, Japan Society for the Promotion of Science.

^{*}Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan. e-mail: henon@kurims.kyoto-u.ac.jp

^{**}e-mail: masaki@kurims.kyoto-u.ac.jp

of the abelian category of finite-dimensional H_n^A -modules, and $K^A = \bigoplus_{n \geqslant 0} K_n^A$. Then it has a structure of Hopf algebra by the restriction and the induction. The set $I = \mathbb{C}^*$ may be regarded as a Dynkin diagram with I as the set of vertices and with edges between $a \in I$ and ap_1^2 . Here p_1 is the parameter of the affine Hecke algebra usually denoted by q. Let \mathfrak{g}_I be the associated Lie algebra, and \mathfrak{g}_I^- the unipotent Lie subalgebra. Let U_I be the group associated to \mathfrak{g}_I^- . Hence \mathfrak{g}_I is isomorphic to a direct sum of copies of $A_{\ell-1}^{(1)}$ if p_1^2 is a primitive ℓ -th root of unity and to a direct sum of copies of \mathfrak{gl}_{∞} if p_1 has an infinite order. Then $\mathbb{C} \otimes K^A$ is isomorphic to the algebra $\mathscr{O}(U_I)$ of regular functions on U_I . Let $U_q(\mathfrak{g}_I)$ be the associated quantized enveloping algebra. Then $U_q^-(\mathfrak{g}_I)$ has an upper global basis $\{G^{\mathrm{up}}(b)\}_{b\in B(\infty)}$. By specializing $\bigoplus \mathbb{C}[q,q^{-1}]G^{\mathrm{up}}(b)$ at q=1, we obtain $\mathscr{O}(U_I)$. Then the LLTA-theory says that the elements associated to irreducible H^A -modules corresponds to the image of the upper global basis.

In [EK], we gave analogous conjectures for affine Hecke algebras of type B. In the type B case, we have to replace $U_q^-(\mathfrak{g}_I)$ and its upper global basis with symmetric crystals (see § 2.3). It is roughly stated as follows. Let H_n^B be the affine Hecke algebra of type B of degree n. Let K_n^B be the Grothendieck group of the abelian category of finite-dimensional modules over H_n^B , and $K^B = \bigoplus_{n \geqslant 0} K_n^B$. Then K^B has a structure of a Hopf bimodule over K^A . The group U_I has the anti-involution θ induced by the involution $a \mapsto a^{-1}$ of $I = \mathbb{C}^*$. Let U_I^{θ} be the θ -fixed point set of U_I . Then $\mathscr{O}(U_I^{\theta})$ is a quotient ring of $\mathscr{O}(U_I)$. The action of $\mathscr{O}(U_I) \simeq \mathbb{C} \otimes K^A$ on $\mathbb{C} \otimes K^B$, in fact, descends to the action of $\mathscr{O}(U_I^{\theta})$.

We introduce $V_{\theta}(\lambda)$ (see § 2.3), a kind of the q-analogue of $\mathcal{O}(U_I^{\theta})$. The conjecture in [EK] is then:

- (i) $V_{\theta}(\lambda)$ has a crystal basis and a global basis.
- (ii) K^B is isomorphic to a specialization of $V_{\theta}(\lambda)$ at q=1 as an $\mathcal{O}(U_I)$ -module, and the irreducible representations correspond to the upper global basis of $V_{\theta}(\lambda)$ at q=1.

Remark. In [KM], Miemietz and the second author gave an analogous conjecture for the affine Hecke algebras of type D.

In the present paper, we prove that $V_{\theta}(\lambda)$ has a crystal basis and a global basis for $\mathfrak{g} = \mathfrak{gl}_{\infty}$ and $\lambda = 0$.

More precisely, let $I = \mathbb{Z}_{\text{odd}}$ be the set of odd integers. Let α_i $(i \in I)$ be

the simple roots with

$$(\alpha_i, \alpha_j) = \begin{cases} 2 & \text{if } i = j, \\ -1 & \text{if } i = j \pm 2, \\ 0 & \text{otherwise.} \end{cases}$$

Let θ be the involution of I given by $\theta(i) = -i$. Let $\mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})$ be the algebra over $\mathbf{K} := \mathbb{Q}(q)$ generated by E_i , F_i , and invertible elements T_i $(i \in I)$ satisfying the following defining relations:

- (i) the T_i 's commute with each other,
- (ii) $T_{\theta(i)} = T_i$ for any i,
- (iii) $T_i E_j T_i^{-1} = q^{(\alpha_i + \alpha_{\theta(i)}, \alpha_j)} E_j$ and $T_i F_j T_i^{-1} = q^{(\alpha_i + \alpha_{\theta(i)}, -\alpha_j)} F_j$ for $i, j \in I$,
- (iv) $E_i F_j = q^{-(\alpha_i, \alpha_j)} F_j E_i + (\delta_{i,j} + \delta_{\theta(i),j} T_i)$ for $i, j \in I$,
- (v) the E_i 's and the F_i 's satisfy the Serre relations (see Definition 2.1 (4)).

Then there exists a unique irreducible $\mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})$ -module $V_{\theta}(0)$ with a generator ϕ satisfying $E_i \phi = 0$ and $T_i \phi = \phi$ (Proposition 2.11). We define the endomorphisms \widetilde{E}_i and \widetilde{F}_i of $V_{\theta}(0)$ by

$$\widetilde{E}_i a = \sum_{n \ge 1} F_i^{(n-1)} a_n, \quad \widetilde{F}_i a = \sum_{n \ge 0} f_i^{(n+1)} a_n,$$

when writing

$$a = \sum_{n \geqslant 0} F_i^{(n)} a_n$$
 with $E_i a_n = 0$.

Here $F_i^{(n)} = F_i^n/[n]!$ is the divided power. Let \mathbf{A}_0 be the ring of functions $a \in \mathbf{K}$ which do not have a pole at q = 0. Let $L_{\theta}(0)$ be the \mathbf{A}_0 -submodule of $V_{\theta}(0)$ generated by the elements $\widetilde{F}_{i_1} \cdots \widetilde{F}_{i_{\ell}} \phi$ ($\ell \geq 0, i_1, \ldots, i_{\ell} \in I$). Let $B_{\theta}(0)$ be the subset of $L_{\theta}(0)/qL_{\theta}(0)$ consisting of the $\widetilde{F}_{i_1} \cdots \widetilde{F}_{i_{\ell}} \phi$'s. In this paper, we prove the following theorem.

Theorem (Theorem 4.15).

- (i) $\widetilde{F}_i L_{\theta}(0) \subset L_{\theta}(0)$ and $\widetilde{E}_i L_{\theta}(0) \subset L_{\theta}(0)$.
- (ii) $B_{\theta}(0)$ is a basis of $L_{\theta}(0)/qL_{\theta}(0)$,
- (iii) $\widetilde{F}_i B_{\theta}(0) \subset B_{\theta}(0)$, and $\widetilde{E}_i B_{\theta}(0) \subset B_{\theta}(0) \sqcup \{0\}$,

(iv) $\widetilde{F}_i\widetilde{E}_i(b) = b$ for any $b \in B_{\theta}(0)$ such that $\widetilde{E}_ib \neq 0$, and $\widetilde{E}_i\widetilde{F}_i(b) = b$ for any $b \in B_{\theta}(0)$.

By this theorem, $B_{\theta}(0)$ has a similar structure to the crystal structure. Namely, we have operators $\widetilde{F}_i \colon B_{\theta}(0) \to B_{\theta}(0)$ and $\widetilde{E}_i \colon B_{\theta}(0) \to B_{\theta}(0) \sqcup \{0\}$, which satisfy (iv). Moreover $\varepsilon_i(b) := \max \left\{ n \in \mathbb{Z}_{\geqslant 0} \mid \widetilde{E}_i^n b \in B_{\theta}(0) \right\}$ is finite. We call it the *symmetric crystal* associated with (I, θ) . Contrary to the usual crystal case, $\widetilde{E}_{\theta(i)}b$ may coincide with \widetilde{E}_ib in the symmetric crystal case.

Let – be the bar operator of $V_{\theta}(0)$. Namely, – is a unique endomorphism of $V_{\theta}(0)$ such that $\overline{\phi} = \phi$, $\overline{av} = \overline{av}$ and $\overline{F_iv} = F_i\overline{v}$ for $a \in \mathbf{K}$ and $v \in V_{\theta}(0)$. Here $\overline{a}(q) = a(q^{-1})$. Let $V_{\theta}(0)_{\mathbf{A}}$ be the smallest submodule of $V_{\theta}(0)$ over $\mathbf{A} := \mathbb{Q}[q, q^{-1}]$ such that it contains ϕ and is stable by the $F_i^{(n)}$'s.

Then we prove the existence of global basis:

Theorem (Theorem 5.5).

- (i) For any $b \in B_{\theta}(0)$, there exists a unique $G_{\theta}^{low}(b) \in V_{\theta}(0)_{\mathbf{A}} \cap L_{\theta}(0)$ such that $\overline{G_{\theta}^{low}(b)} = G_{\theta}^{low}(b)$ and $b = G_{\theta}^{low}(b) \mod qL_{\theta}(0)$,
- (ii) $\{G_{\theta}^{low}(b)\}_{b\in B_{\theta}(0)}$ is a basis of the \mathbf{A}_0 -module $L_{\theta}(0)$, the \mathbf{A} -module $V_{\theta}(0)_{\mathbf{A}}$ and the \mathbf{K} -vector space $V_{\theta}(0)$.

We call $G_{\theta}^{low}(b)$ the lower global basis. The $\mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})$ -module $V_{\theta}(0)$ has a unique symmetric bilinear form (\bullet, \bullet) such that $(\phi, \phi) = 1$ and E_i and F_i are transpose to each other. The dual basis to $\{G_{\theta}^{low}(b)\}_{b \in B_{\theta}(0)}$ with respect to (\bullet, \bullet) is called an *upper global basis*.

Let us explain the strategy of our proof of these theorems. We first construct a PBW type basis $\{P_{\theta}(\mathfrak{m})\phi\}_{\mathfrak{m}}$ of $V_{\theta}(0)$ parametrized by the θ -restricted multisegments \mathfrak{m} . Then, we explicitly calculate the actions of E_i and F_i in terms of the PBW basis $\{P_{\theta}(\mathfrak{m})\phi\}_{\mathfrak{m}}$. Then, we prove that the PBW basis gives a crystal basis by the estimation of the coefficients of these actions. For this we use a criterion for crystal bases (Theorem 4.1).

§2. General Definitions and Conjectures

§2.1. Quantized universal enveloping algebras and its reduced q-analogues

We shall recall the quantized universal enveloping algebra $U_q(\mathfrak{g})$. Let I be an index set (for simple roots), and Q the free \mathbb{Z} -module with a basis $\{\alpha_i\}_{i\in I}$.

Let (\bullet, \bullet) : $Q \times Q \to \mathbb{Z}$ be a symmetric bilinear form such that $(\alpha_i, \alpha_i)/2 \in \mathbb{Z}_{>0}$ for any i and $(\alpha_i^{\vee}, \alpha_j) \in \mathbb{Z}_{\leq 0}$ for $i \neq j$ where $\alpha_i^{\vee} := 2\alpha_i/(\alpha_i, \alpha_i)$. Let q be an indeterminate and set $\mathbf{K} := \mathbb{Q}(q)$. We define its subrings \mathbf{A}_0 , \mathbf{A}_{∞} and \mathbf{A} as follows.

$$\begin{aligned} \mathbf{A}_0 &= \left\{ f \in \mathbf{K} \mid f \text{ is regular at } q = 0 \right\}, \\ \mathbf{A}_\infty &= \left\{ f \in \mathbf{K} \mid f \text{ is regular at } q = \infty \right\}, \\ \mathbf{A} &= \mathbb{Q}[q, q^{-1}]. \end{aligned}$$

Definition 2.1. The quantized universal enveloping algebra $U_q(\mathfrak{g})$ is the **K**-algebra generated by elements e_i, f_i and invertible elements t_i $(i \in I)$ with the following defining relations.

- (1) The t_i 's commute with each other.
- (2) $t_j e_i t_i^{-1} = q^{(\alpha_j, \alpha_i)} e_i$ and $t_j f_i t_i^{-1} = q^{-(\alpha_j, \alpha_i)} f_i$ for any $i, j \in I$.

(3)
$$[e_i, f_j] = \delta_{ij} \frac{t_i - t_i^{-1}}{q_i - q_i^{-1}}$$
 for $i, j \in I$. Here $q_i := q^{(\alpha_i, \alpha_i)/2}$.

(4) (Serre relation) For $i \neq j$,

$$\sum_{k=0}^{b} (-1)^k e_i^{(k)} e_j e_i^{(b-k)} = 0, \ \sum_{k=0}^{b} (-1)^k f_i^{(k)} f_j f_i^{(b-k)} = 0.$$

Here $b = 1 - (\alpha_i^{\vee}, \alpha_i)$ and

$$\begin{aligned} e_i^{(k)} &= e_i^k / [k]_i! \,, \ f_i^{(k)} &= f_i^k / [k]_i! \,, \\ [k]_i &= (q_i^k - q_i^{-k}) / (q_i - q_i^{-1}) \,, \ [k]_i! = [1]_i \cdots [k]_i \,. \end{aligned}$$

Let us denote by $U_q^-(\mathfrak{g})$ (resp. $U_q^+(\mathfrak{g})$) the **K**-subalgebra of $U_q(\mathfrak{g})$ generated by the f_i 's (resp. the e_i 's).

Let e_i' and e_i^* be the operators on $U_q^-(\mathfrak{g})$ (see [K1, 3.4]) defined by

$$[e_i, a] = \frac{(e_i^* a)t_i - t_i^{-1} e_i' a}{q_i - q_i^{-1}} \quad (a \in U_q^-(\mathfrak{g})).$$

These operators satisfy the following formulas similar to derivations:

(2.1)
$$e'_{i}(ab) = e'_{i}(a)b + (\operatorname{Ad}(t_{i})a)e'_{i}b, e^{*}_{i}(ab) = ae^{*}_{i}b + (e^{*}_{i}a)(\operatorname{Ad}(t_{i})b).$$

Note that in [K1], the operator e_i'' was defined. It satisfies $e_i'' = -\circ e_i' \circ -$, while e_i^* satisfies $e_i^* = *\circ e_i' \circ *$. They are related by $e_i^* = \operatorname{Ad}(t_i) \circ e_i''$.

The algebra $U_q^-(\mathfrak{g})$ has a unique symmetric bilinear form $(\, \bullet \, , \, \bullet \,)$ such that (1,1)=1 and

$$(e'_i a, b) = (a, f_i b)$$
 for any $a, b \in U_q^-(\mathfrak{g})$.

It is non-degenerate and satisfies $(e_i^*a, b) = (a, bf_i)$. The left multiplication of f_j, e'_i and e_i^* have the commutation relations

$$e'_{i}f_{j} = q^{-(\alpha_{i},\alpha_{j})}f_{j}e'_{i} + \delta_{ij}, \ e^{*}_{i}f_{j} = f_{j}e^{*}_{i} + \delta_{ij} \operatorname{Ad}(t_{i}),$$

and both the e'_i 's and the e'_i 's satisfy the Serre relations.

Definition 2.2. The reduced q-analogue $\mathcal{B}(\mathfrak{g})$ of \mathfrak{g} is the **K**-algebra generated by e'_i and f_i .

§2.2. Review on crystal bases and global bases

Since e'_i and f_i satisfy the q-boson relation, any element $a \in U_q^-(\mathfrak{g})$ can be uniquely written as

$$a = \sum_{n > 0} f_i^{(n)} a_n \quad \text{with } e_i' a_n = 0.$$

Here
$$f_i^{(n)} = \frac{f_i^n}{[n]_i!}$$
.

Definition 2.3. We define the modified root operators \widetilde{e}_i and \widetilde{f}_i on $U_q^-(\mathfrak{g})$ by

$$\widetilde{e}_i a = \sum_{n\geqslant 1} f_i^{(n-1)} a_n, \quad \widetilde{f}_i a = \sum_{n\geqslant 0} f_i^{(n+1)} a_n.$$

Theorem 2.4 ([K1]). We define

$$L(\infty) = \sum_{\ell \geqslant 0, i_1, \dots, i_\ell \in I} \mathbf{A}_0 \tilde{f}_{i_1} \cdots \tilde{f}_{i_\ell} \cdot 1 \subset U_q^-(\mathfrak{g}),$$

$$\mathbf{B}(\infty) = \left\{ \tilde{f}_{i_1} \cdots \tilde{f}_{i_\ell} \cdot 1 \mod qL(\infty) \mid \ell \geqslant 0, i_1, \cdots, i_\ell \in I \right\} \subset L(\infty)/qL(\infty).$$

Then we have

(i)
$$\widetilde{e}_i L(\infty) \subset L(\infty)$$
 and $\widetilde{f}_i L(\infty) \subset L(\infty)$,

(ii)
$$B(\infty)$$
 is a basis of $L(\infty)/qL(\infty)$,

(iii) $\widetilde{f}_i B(\infty) \subset B(\infty)$ and $\widetilde{e}_i B(\infty) \subset B(\infty) \cup \{0\}$.

We call $(L(\infty), B(\infty))$ the crystal basis of $U_q^-(\mathfrak{g})$.

Let – be the automorphism of **K** sending q to q^{-1} . Then $\overline{\mathbf{A}_0}$ coincides with \mathbf{A}_{∞} .

Let V be a vector space over \mathbf{K} , L_0 an \mathbf{A}_0 -submodule of V, L_∞ an \mathbf{A}_∞ -submodule, and $V_{\mathbf{A}}$ an \mathbf{A} -submodule. Set $E := L_0 \cap L_\infty \cap V_{\mathbf{A}}$.

Definition 2.5 ([K1], [K2, 2.1]). We say that $(L_0, L_\infty, V_{\mathbf{A}})$ is balanced if each of L_0 , L_∞ and $V_{\mathbf{A}}$ generates V as a **K**-vector space, and if one of the following equivalent conditions is satisfied.

- (i) $E \to L_0/qL_0$ is an isomorphism,
- (ii) $E \to L_{\infty}/q^{-1}L_{\infty}$ is an isomorphism,
- (iii) $(L_0 \cap V_{\mathbf{A}}) \oplus (q^{-1}L_{\infty} \cap V_{\mathbf{A}}) \to V_{\mathbf{A}}$ is an isomorphism,
- (iv) $\mathbf{A}_0 \otimes_{\mathbb{Q}} E \to L_0$, $\mathbf{A}_{\infty} \otimes_{\mathbb{Q}} E \to L_{\infty}$, $\mathbf{A} \otimes_{\mathbb{Q}} E \to V_{\mathbf{A}}$ and $\mathbf{K} \otimes_{\mathbb{Q}} E \to V$ are isomorphisms.

Let – be the ring automorphism of $U_q(\mathfrak{g})$ sending q, t_i , e_i , f_i to q^{-1} , t_i^{-1} , e_i , f_i .

Let $U_q(\mathfrak{g})_{\mathbf{A}}$ be the **A**-subalgebra of $U_q(\mathfrak{g})$ generated by $e_i^{(n)}$, $f_i^{(n)}$ and t_i . Similarly we define $U_q^-(\mathfrak{g})_{\mathbf{A}}$.

Theorem 2.6. $(L(\infty), L(\infty)^-, U_a^-(\mathfrak{g})_{\mathbf{A}})$ is balanced.

Let

$$\mathbf{G}^{\mathrm{low}} \colon L(\infty)/qL(\infty) {\overset{\sim}{\longrightarrow}} E := L(\infty) \cap L(\infty)^- \cap U_q^-(\mathfrak{g})_{\mathbf{A}}$$

be the inverse of $E \xrightarrow{\sim} L(\infty)/qL(\infty)$. Then $\{G^{low}(b) \mid b \in B(\infty)\}$ forms a basis of $U_q^-(\mathfrak{g})$. We call it a (lower) *global basis*. It is first introduced by G. Lusztig ([L]) under the name of "canonical basis" for the A, D, E cases.

Definition 2.7. Let

$$\{G^{up}(b) \mid b \in B(\infty)\}$$

be the dual basis of $\{G^{\text{low}}(b) \mid b \in B(\infty)\}$ with respect to the inner product (\bullet, \bullet) . We call it the upper global basis of $U_q^-(\mathfrak{g})$.

§2.3. Symmetric crystals

Let θ be an automorphism of I such that $\theta^2 = \operatorname{id}$ and $(\alpha_{\theta(i)}, \alpha_{\theta(j)}) = (\alpha_i, \alpha_j)$. Hence it extends to an automorphism of the root lattice Q by $\theta(\alpha_i) = \alpha_{\theta(i)}$, and induces an automorphism of $U_q(\mathfrak{g})$.

Definition 2.8. Let $\mathcal{B}_{\theta}(\mathfrak{g})$ be the **K**-algebra generated by E_i , F_i , and invertible elements T_i ($i \in I$) satisfying the following defining relations:

- (i) the T_i 's commute with each other,
- (ii) $T_{\theta(i)} = T_i$ for any i,

(iii)
$$T_i E_j T_i^{-1} = q^{(\alpha_i + \alpha_{\theta(i)}, \alpha_j)} E_j$$
 and $T_i F_j T_i^{-1} = q^{(\alpha_i + \alpha_{\theta(i)}, -\alpha_j)} F_j$ for $i, j \in I$,

(iv)
$$E_i F_j = q^{-(\alpha_i, \alpha_j)} F_j E_i + (\delta_{i,j} + \delta_{\theta(i),j} T_i)$$
 for $i, j \in I$,

(v) the E_i 's and the F_i 's satisfy the Serre relations (Definition 2.1 (4)).

We set
$$E_i^{(n)} = E_i^n/[n]_i!$$
 and $F_i^{(n)} = F_i^n/[n]_i!$.

Lemma 2.9. Identifying $U_q^-(\mathfrak{g})$ with the subalgebra of $\mathcal{B}_{\theta}(\mathfrak{g})$ by the morphism $f_i \mapsto F_i$, we have

$$(2.2) T_i a = \left(\operatorname{Ad}(t_i t_{\theta(i)}) a \right) T_i,$$

$$(2.3) E_i a = \left(\operatorname{Ad}(t_i) a \right) E_i + e_i' a + \left(\operatorname{Ad}(t_i) (e_{\theta(i)}^* a) \right) T_i$$

for $a \in U_q^-(\mathfrak{g})$.

Proof. The first relation is obvious. In order to prove the second, it is enough to show that if a satisfies (2.3), then $f_j a$ satisfies (2.3). We have

$$\begin{split} E_i(f_j a) &= (q^{-(\alpha_i, \alpha_j)} f_j E_i + \delta_{i,j} + \delta_{\theta(i),j} T_i) a \\ &= q^{-(\alpha_i, \alpha_j)} f_j (\left(\operatorname{Ad}(t_i) a\right) E_i + e_i' a + \left(\operatorname{Ad}(t_i) (e_{\theta(i)}^* a)\right) T_i) \\ &+ \delta_{i,j} a + \delta_{\theta(i),j} \left(\operatorname{Ad}(t_i t_{\theta(i)}) a\right) T_i \\ &= (\left(\operatorname{Ad}(t_i) (f_j a)\right) E_i + e_i' (f_j a) + \left(\operatorname{Ad}(t_i) (e_{\theta(i)}^* (f_j a)\right) T_i. \end{split}$$

The following lemma can be proved in a standard manner and we omit the proof.

Let $\mathbf{K}[T_i^{\pm}; i \in I]$ be the commutative \mathbf{K} -algebra generated by invertible elements T_i $(i \in I)$ with the defining relations $T_{\theta(i)} = T_i$. Then the map $U_q^-(\mathfrak{g}) \otimes \mathbf{K}[T_i^{\pm}; i \in I] \otimes U_q^+(\mathfrak{g}) \to \mathcal{B}_{\theta}(\mathfrak{g})$ induced by the multiplication is bijective.

Let $\lambda \in P_+ := \{\lambda \in \text{Hom}(Q, \mathbb{Q}) \mid \langle \alpha_i^{\vee}, \lambda \rangle \in \mathbb{Z}_{\geq 0} \text{ for any } i \in I \}$ be a dominant integral weight such that $\theta(\lambda) = \lambda$.

Proposition 2.11.

- (i) There exists a $\mathcal{B}_{\theta}(\mathfrak{g})$ -module $V_{\theta}(\lambda)$ generated by a non-zero vector ϕ_{λ} such that
 - (a) $E_i \phi_{\lambda} = 0$ for any $i \in I$,
 - (b) $T_i \phi_{\lambda} = q^{(\alpha_i, \lambda)} \phi_{\lambda}$ for any $i \in I$,
 - (c) $\{u \in V_{\theta}(\lambda) \mid E_i u = 0 \text{ for any } i \in I\} = \mathbf{K}\phi_{\lambda}.$

Moreover such a $V_{\theta}(\lambda)$ is irreducible and unique up to an isomorphism.

(ii) there exists a unique symmetric bilinear form (\bullet, \bullet) on $V_{\theta}(\lambda)$ such that $(\phi_{\lambda},\phi_{\lambda})=1$ and $(E_{i}u,v)=(u,F_{i}v)$ for any $i\in I$ and $u,v\in V_{\theta}(\lambda)$, and it is non-degenerate.

Set $P_{\theta} = \{ \mu \in P \mid \theta(\mu) = \mu \}$. Then $V_{\theta}(\lambda)$ has a weight Remark~2.12.decomposition

$$V_{\theta}(\lambda) = \bigoplus_{\mu \in P_{\theta}} V_{\theta}(\lambda)_{\mu},$$

where $V_{\theta}(\lambda)_{\mu} = \{u \in V_{\theta}(\lambda) \mid T_i u = q^{(\alpha_i, \mu)} u\}$. We say that an element u of $V_{\theta}(\lambda)$ has a θ -weight μ and write $\operatorname{wt}_{\theta}(u) = \mu$ if $u \in V_{\theta}(\lambda)_{\mu}$. We have $\operatorname{wt}_{\theta}(E_{i}u) = 0$ $\operatorname{wt}_{\theta}(u) + (\alpha_i + \alpha_{\theta(i)}) \text{ and } \operatorname{wt}_{\theta}(F_i u) = \operatorname{wt}_{\theta}(u) - (\alpha_i + \alpha_{\theta(i)}).$

In order to prove Proposition 2.11, we shall construct two $\mathcal{B}_{\theta}(\mathfrak{g})$ -modules, analogous to Verma modules and dual Verma modules.

Lemma 2.13. Let $U_q^-(\mathfrak{g})\phi_{\lambda}'$ be a free $U_q^-(\mathfrak{g})$ -module with a generator ϕ_{λ}' . Then the following action gives a structure of a $\mathcal{B}_{\theta}(\mathfrak{g})$ -module on $U_{\sigma}^{-}(\mathfrak{g})\phi_{\lambda}'$:

(2.4)
$$\begin{cases} T_i(a\phi'_{\lambda}) = q^{(\alpha_i,\lambda)}(\operatorname{Ad}(t_i t_{\theta(i)})a)\phi'_{\lambda}, \\ E_i(a\phi'_{\lambda}) = (e'_i a + q^{(\alpha_i,\lambda)}\operatorname{Ad}(t_i)(e^*_{\theta(i)}a))\phi'_{\lambda}, \\ F_i(a\phi'_{\lambda}) = (f_i a)\phi'_{\lambda} \end{cases}$$

for any $i \in I$ and $a \in U_q^-(\mathfrak{g})$. Moreover $\mathcal{B}_{\theta}(\mathfrak{g}) / \sum_{i \in I} (\mathcal{B}_{\theta}(\mathfrak{g}) E_i + \mathcal{B}_{\theta}(\mathfrak{g}) (T_i - q^{(\alpha_i, \lambda)})) \to U_q^-(\mathfrak{g}) \phi_{\lambda}'$ is an isomorphism.

Proof. We can easily check the defining relations in Definition 2.8 except the Serre relations for the E_i 's.

For $i \neq j \in I$, set $S = \sum_{n=0}^{b} (-1)^n E_i^{(n)} E_j E_i^{(b-n)}$ where $b = 1 - \langle h_i, \alpha_j \rangle$. It is enough to show that the action of S on $U_q^-(\mathfrak{g})\phi_\lambda'$ is equal to 0. We can easily check that $SF_k = q^{-(b\alpha_i + \alpha_j, \alpha_k)} F_k S$. Since $S\phi_\lambda' = 0$, we have $SU_q^-(\mathfrak{g})\phi_\lambda' = 0$.

Hence $U_q^-(\mathfrak{g})\phi_\lambda'$ has a $\mathcal{B}_{\theta}(\mathfrak{g})$ -module structure.

The last statement is obvious.

Lemma 2.14. Let $U_q^-(\mathfrak{g})\phi_{\lambda}''$ be a free $U_q^-(\mathfrak{g})$ -module with a generator ϕ_{λ}'' . Then the following action gives a structure of a $\mathcal{B}_{\theta}(\mathfrak{g})$ -module on $U_q^-(\mathfrak{g})\phi_{\lambda}''$:

(2.5)
$$\begin{cases} T_i(a\phi_{\lambda}^{"}) = q^{(\alpha_i,\lambda)}(\operatorname{Ad}(t_i t_{\theta(i)})a)\phi_{\lambda}^{"}, \\ E_i(a\phi_{\lambda}^{"}) = (e_i^{'}a)\phi_{\lambda}^{"}, \\ F_i(a\phi_{\lambda}^{"}) = \left(f_i a + q^{(\alpha_i,\lambda)}(\operatorname{Ad}(t_i)a)f_{\theta(i)}\right)\phi_{\lambda}^{"} \end{cases}$$

for any $i \in I$ and $a \in U_q^-(\mathfrak{g})$. Moreover, there exists a non-degenerate bilinear form $\langle \bullet, \bullet \rangle \colon U_q^-(\mathfrak{g}) \phi_\lambda' \times U_q^-(\mathfrak{g}) \phi_\lambda'' \to \mathbf{K}$ such that $\langle F_i u, v \rangle = \langle u, E_i v \rangle$, $\langle E_i u, v \rangle = \langle u, F_i v \rangle$, $\langle T_i u, v \rangle = \langle u, T_i v \rangle$ for $u \in U_q^-(\mathfrak{g}) \phi_\lambda'$ and $v \in U_q^-(\mathfrak{g}) \phi_\lambda''$, and $\langle \phi_\lambda', \phi_\lambda'' \rangle = 1$.

Proof. There exists a unique symmetric bilinear form (\bullet, \bullet) on $U_q^-(\mathfrak{g})$ such that (1,1)=1 and f_i and e_i' are transpose to each other. Let us define $\langle \bullet, \bullet \rangle \colon U_q^-(\mathfrak{g}) \phi_\lambda' \times U_q^-(\mathfrak{g}) \phi_\lambda'' \to \mathbf{K}$ by $\langle a \phi_\lambda', b \phi_\lambda'' \rangle = (a,b)$ for $a \in U_q^-(\mathfrak{g})$ and $b \in U_q^-(\mathfrak{g})$. Then we can easily check $\langle F_i u, v \rangle = \langle u, E_i v \rangle$, $\langle T_i u, v \rangle = \langle u, T_i v \rangle$. Since e_i^* is transpose to the right multiplication of f_i , we have $\langle E_i u, v \rangle = \langle u, F_i v \rangle$. Hence the action of E_i , F_i , T_i on $U_q^-(\mathfrak{g})\phi_\lambda''$ satisfy the defining relations in Definition 2.8.

Proof of Proposition 2.11. Since $E_i\phi''_{\lambda} = 0$ and ϕ''_{λ} has a θ -weight λ , there exists a unique $\mathcal{B}_{\theta}(\mathfrak{g})$ -linear morphism $\psi \colon U_q^-(\mathfrak{g})\phi'_{\lambda} \to U_q^-(\mathfrak{g})\phi''_{\lambda}$ sending ϕ'_{λ} to ϕ''_{λ} . Let $V_{\theta}(\lambda)$ be its image $\psi(U_q^-(\mathfrak{g})\phi'_{\lambda})$.

(i) (c) follows from $\{u \in U_q^-(\mathfrak{g}) \mid e_i'u = 0 \text{ for any } i\} = \mathbf{K} \text{ and } U_q^-(\mathfrak{g})\phi_\lambda'' \supset V_\theta(\lambda)$. The other properties (a), (b) are obvious. Let us show that $V_\theta(\lambda)$ is irreducible. Let S be a non-zero $\mathcal{B}_\theta(\mathfrak{g})$ -submodule. Then S contains a non-zero vector v such that $E_iv = 0$ for any i. Then (c) implies that v is a constant multiple of ϕ_λ . Hence $S = V_\theta(\lambda)$.

Let us prove (ii). For $u, u' \in U_q^-(\mathfrak{g})\phi'_{\lambda}$, set $((u, u')) = \langle u, \psi(u') \rangle$. Then it is a bilinear form on $U_q^-(\mathfrak{g})\phi'_{\lambda}$ which satisfies

(2.6)
$$((\phi'_{\lambda}, \phi'_{\lambda})) = 1$$
, $((F_i u, u')) = ((u, E_i u'))$, $((E_i u, u')) = ((u, F_i u'))$, and $((T_i u, u')) = ((u, T_i u'))$.

It is easy to see that a bilinear form which satisfies (2.6) is unique. Since ((u',u)) also satisfies (2.6), ((u,u')) is a symmetric bilinear form on $U_q^-(\mathfrak{g})\phi_\lambda'$. Since $\psi(u')=0$ implies ((u,u'))=0, ((u,u')) induces a symmetric bilinear form on $V_\theta(\lambda)$. Since (\bullet,\bullet) is non-degenerate on $U_q^-(\mathfrak{g})$, $((\bullet,\bullet))$ is a non-degenerate symmetric bilinear form on $V_\theta(\lambda)$.

Lemma 2.15. There exists a unique endomorphism - of $V_{\theta}(\lambda)$ such that $\overline{\phi_{\lambda}} = \phi_{\lambda}$ and $\overline{av} = \overline{av}$, $\overline{F_{i}v} = F_{i}\overline{v}$ for any $a \in \mathbf{K}$ and $v \in V_{\theta}(\lambda)$.

Proof. The uniqueness is obvious.

Let ξ be an anti-involution of $U_q^-(\mathfrak{g})$ such that $\xi(q) = q^{-1}$ and $\xi(f_i) = f_{\theta(i)}$. Let $\tilde{\rho}$ be an element of $\mathbb{Q} \otimes P$ such that $(\tilde{\rho}, \alpha_i) = (\alpha_i, \alpha_{\theta(i)})/2$. Define $c(\mu) = ((\mu + \tilde{\rho}, \theta(\mu + \tilde{\rho})) - (\tilde{\rho}, \theta(\tilde{\rho})))/2 + (\lambda, \mu)$ for $\mu \in P$. Then it satisfies

$$c(\mu) - c(\mu - \alpha_i) = (\lambda + \mu, \alpha_{\theta(i)}).$$

Hence c takes integral values on $Q := \sum_i \mathbb{Z}\alpha_i$.

We define the endomorphism Φ of $U_q^-(\mathfrak{g})\phi_\lambda''$ by $\Phi(a\phi_\lambda'') = q^{-c(\mu)}\xi(a)\phi_\lambda''$ for $a \in U_q^-(\mathfrak{g})_\mu$. Let us show that

(2.7)
$$\Phi(F_i(a\phi_{\lambda}^{"})) = F_i \Phi(a\phi_{\lambda}^{"}) \quad \text{for any } a \in U_q^-(\mathfrak{g}).$$

For $a \in U_q^-(\mathfrak{g})_{\mu}$, we have

$$\Phi(F_i(a\phi_{\lambda}'')) = \Phi(f_i a + q^{(\alpha_i, \lambda + \mu)} a f_{\theta(i)}) \phi_{\lambda}''
= (q^{-c(\mu - \alpha_i)} \xi(a) f_{\theta(i)} + q^{-(\alpha_i, \lambda + \mu) - c(\mu - \alpha_{\theta(i)})} f_i \xi(a)) \phi_{\lambda}''.$$

On the other hand, we have

$$F_i \Phi(a \phi_{\lambda}^{"}) = F_i \left(q^{-c(\mu)} \xi(a) \phi_{\lambda}^{"} \right)$$
$$= q^{-c(\mu)} \left(f_i \xi(a) + q^{(\alpha_i, \lambda + \theta(\mu))} \xi(a) f_{\theta(i)} \right) \phi_{\lambda}^{"}.$$

Therefore we obtain (2.7).

Hence Φ induces the desired endomorphism of $V_{\theta}(\lambda) \subset U_q^-(\mathfrak{g})\phi_{\lambda}''$.

Hereafter we assume further that

there is no
$$i \in I$$
 such that $\theta(i) = i$.

We conjecture that $V_{\theta}(\lambda)$ has a crystal basis under this assumption. This means the following. Since E_i and F_i satisfy the q-boson relation, any $u \in V_{\theta}(\lambda)$ can be uniquely written as $u = \sum_{n \geqslant 0} F_i^{(n)} u_n$ with $E_i u_n = 0$. We define the modified root operators \widetilde{E}_i and \widetilde{F}_i by:

$$\widetilde{E}_i(u) = \sum_{n \ge 1} F_i^{(n-1)} u_n \text{ and } \widetilde{F}_i(u) = \sum_{n \ge 0} F_i^{(n+1)} u_n.$$

Let $L_{\theta}(\lambda)$ be the \mathbf{A}_0 -submodule of $V_{\theta}(\lambda)$ generated by $\widetilde{F}_{i_1} \cdots \widetilde{F}_{i_{\ell}} \phi_{\lambda}$ ($\ell \geqslant 0$ and $i_1, \ldots, i_{\ell} \in I$), and let $B_{\theta}(\lambda)$ be the subset

$$\left\{ \widetilde{F}_{i_1} \cdots \widetilde{F}_{i_\ell} \phi_{\lambda} \bmod q L_{\theta}(\lambda) \mid \ell \geqslant 0, i_1, \dots, i_\ell \in I \right\}$$

of $L_{\theta}(\lambda)/qL_{\theta}(\lambda)$.

Conjecture 2.16. For a dominant integral weight λ such that $\theta(\lambda) = \lambda$, we have

- (1) $\widetilde{F}_i L_{\theta}(\lambda) \subset L_{\theta}(\lambda)$ and $\widetilde{E}_i L_{\theta}(\lambda) \subset L_{\theta}(\lambda)$,
- (2) $B_{\theta}(\lambda)$ is a basis of $L_{\theta}(\lambda)/qL_{\theta}(\lambda)$,
- (3) $\widetilde{F}_i B_{\theta}(\lambda) \subset B_{\theta}(\lambda)$, and $\widetilde{E}_i B_{\theta}(\lambda) \subset B_{\theta}(\lambda) \sqcup \{0\}$,
- (4) $\widetilde{F}_i\widetilde{E}_i(b) = b$ for any $b \in B_{\theta}(\lambda)$ such that $\widetilde{E}_ib \neq 0$, and $\widetilde{E}_i\widetilde{F}_i(b) = b$ for any $b \in B_{\theta}(\lambda)$.

As in [K1], we have

Lemma 2.17. Assume Conjecture 2.16. Then we have

- (i) $L_{\theta}(\lambda) = \{ v \in V_{\theta}(\lambda) \mid (L_{\theta}(\lambda), v) \subset \mathbf{A}_0 \},$
- (ii) Let $(\bullet, \bullet)_0$ be the \mathbb{Q} -valued symmetric bilinear form on $L_{\theta}(\lambda)/qL_{\theta}(\lambda)$ induced by (\bullet, \bullet) . Then $B_{\theta}(\lambda)$ is an orthonormal basis with respect to $(\bullet, \bullet)_0$.

Moreover we conjecture that $V_{\theta}(\lambda)$ has a global crystal basis. Namely we have

Conjecture 2.18. The triplet $(L_{\theta}(\lambda), L_{\theta}(\lambda)^{-}, V_{\theta}(\lambda)^{\text{low}}_{\mathbf{A}})$ is balanced. Here $V_{\theta}(\lambda)^{\text{low}}_{\mathbf{A}} := U_{q}^{-}(\mathfrak{g})_{\mathbf{A}}\phi_{\lambda}$.

Its dual version is as follows.

Let us denote by $V_{\theta}(\lambda)_{\mathbf{A}}^{\text{up}}$ the dual space $\{v \in V_{\theta}(\lambda) \mid (V_{\theta}(\lambda)_{\mathbf{A}}^{\text{low}}, v) \subset \mathbf{A}\}$. Then Conjecture 2.18 is equivalent to the following conjecture. Conjecture 2.19. $(L_{\theta}(\lambda), c(L_{\theta}(\lambda)), V_{\theta}(\lambda)_{\mathbf{A}}^{\mathrm{up}})$ is balanced.

Here c is a unique endomorphism of $V_{\theta}(\lambda)$ such that $c(\phi_{\lambda}) = \phi_{\lambda}$ and $c(av) = \bar{a}c(v)$, $c(E_{i}v) = E_{i}c(v)$ for any $a \in \mathbf{K}$ and $v \in V_{\theta}(\lambda)$. We have $(c(v'), v) = \overline{(v', \bar{v})}$ for any $v, v' \in V_{\theta}(\lambda)$.

Note that $V_{\theta}(\lambda)_{\mathbf{A}}^{\mathrm{up}}$ is the largest **A**-submodule M of $V_{\theta}(\lambda)$ such that M is invariant by the $E_i^{(n)}$'s and $M \cap \mathbf{K}\phi_{\lambda} = \mathbf{A}\phi_{\lambda}$.

By Conjecture 2.19, $L_{\theta}(\lambda) \cap c(L_{\theta}(\lambda)) \cap V_{\theta}(\lambda)_{\mathbf{A}}^{\mathrm{up}} \to L_{\theta}(\lambda)/qL_{\theta}(\lambda)$ is an isomorphism. Let G_{θ}^{up} be its inverse. Then $\{G_{\theta}^{\mathrm{up}}(b)\}_{b\in B_{\theta}(\lambda)}$ is a basis of $V_{\theta}(\lambda)$, which we call the *upper global basis* of $V_{\theta}(\lambda)$. Note that $\{G_{\theta}^{\mathrm{up}}(b)\}_{b\in B_{\theta}(\lambda)}$ is the dual basis to $\{G_{\theta}^{\mathrm{low}}(b)\}_{b\in B_{\theta}(\lambda)}$ with respect to the inner product of $V_{\theta}(\lambda)$.

We shall prove these conjectures in the case $\mathfrak{g} = \mathfrak{gl}_{\infty}$ and $\lambda = 0$.

§3. PBW Basis of $V_{\theta}(0)$ for $\mathfrak{g} = \mathfrak{gl}_{\infty}$

§3.1. Review on the PBW basis

In the sequel, we set $I = \mathbb{Z}_{\text{odd}}$ and

$$(\alpha_i, \alpha_j) = \begin{cases} 2 & \text{for } i = j, \\ -1 & \text{for } j = i \pm 2, \\ 0 & \text{otherwise,} \end{cases}$$

and we consider the corresponding quantum group $U_q(\mathfrak{gl}_{\infty})$. In this case, we have $q_i = q$. We write [n] and [n]! for $[n]_i$ and $[n]_i$! for short.

We can parametrize the crystal basis $B(\infty)$ by the multisegments. We shall recall this parametrization and the PBW basis.

Definition 3.1. For $i, j \in I$ such that $i \leq j$, we define a segment $\langle i, j \rangle$ as the interval $[i, j] \subset I := \mathbb{Z}_{\text{odd}}$. A multisegment is a formal finite sum of segments:

$$\mathfrak{m} = \sum_{i \le j} m_{ij} \langle i, j \rangle$$

with $m_{i,j} \in \mathbb{Z}_{\geqslant 0}$. We call m_{ij} the multiplicity of a segment $\langle i,j \rangle$. If $m_{i,j} > 0$, we sometimes say that $\langle i,j \rangle$ appears in \mathfrak{m} . We sometimes write $m_{i,j}(\mathfrak{m})$ for $m_{i,j}$. We sometimes write $\langle i \rangle$ for $\langle i,i \rangle$. We denote by \mathcal{M} the set of multisegments. We denote by \emptyset the zero element (or the empty multisegment) of \mathcal{M} .

Definition 3.2. For two segments $\langle i_1, j_1 \rangle$ and $\langle i_2, j_2 \rangle$, we define the ordering \geq_{PBW} by the following:

$$\langle i_1, j_1 \rangle \geqslant_{\mathrm{PBW}} \langle i_2, j_2 \rangle \Longleftrightarrow \begin{cases} j_1 > j_2 \\ \text{or} \\ j_1 = j_2 \text{ and } i_1 \geqslant i_2. \end{cases}$$

We call this ordering the PBW-ordering.

Definition 3.3. For a multisegment \mathfrak{m} , we define the element $P(\mathfrak{m}) \in U_q^-(\mathfrak{gl}_{\infty})$ as follows.

(1) For a segment $\langle i,j \rangle$, we define the element $\langle i,j \rangle \in U_q^-(\mathfrak{gl}_{\infty})$ inductively by

$$\langle i, i \rangle = f_i,$$

 $\langle i, j \rangle = \langle i, j - 2 \rangle \langle j, j \rangle - q \langle j, j \rangle \langle i, j - 2 \rangle$ for $i < j$.

(2) For a multisegment $\mathfrak{m} = \sum_{i \leqslant j} m_{ij} \langle i, j \rangle$, we define

$$P(\mathfrak{m}) = \overrightarrow{\prod} \langle i, j \rangle^{(m_{ij})}.$$

Here the product $\overrightarrow{\prod}$ is taken over segments appearing in \mathfrak{m} from large to small with respect to the PBW-ordering. The element $\langle i,j \rangle^{(m_{ij})}$ is the divided power of $\langle i,j \rangle$ i.e.

$$\langle i, j \rangle^{(n)} = \begin{cases} \frac{1}{[n]!} \langle i, j \rangle^n & \text{for } n > 0, \\ 1 & \text{for } n = 0, \\ 0 & \text{for } n < 0. \end{cases}$$

Hence the weight of $P(\mathfrak{m})$ is equal to $\operatorname{wt}(\mathfrak{m}) := -\sum_{i \leqslant k \leqslant j} m_{i,j} \alpha_k : t_i P(\mathfrak{m}) t_i^{-1} = q^{(\alpha_i,\operatorname{wt}(\mathfrak{m}))} P(\mathfrak{m}).$

Theorem 3.4 ([L]). The set of elements $\{P(\mathfrak{m}) \mid \mathfrak{m} \in \mathcal{M}\}$ is a **K**-basis of $U_q^-(\mathfrak{gl}_{\infty})$. Moreover this is an **A**-basis of $U_q^-(\mathfrak{gl}_{\infty})_{\mathbf{A}}$. We call this basis the PBW basis of $U_q^-(\mathfrak{gl}_{\infty})$.

Definition 3.5. For two segments $\langle i_1, j_1 \rangle$ and $\langle i_2, j_2 \rangle$, we define the ordering \geqslant_{cry} by the following:

$$\langle i_1, j_1 \rangle \geqslant_{\operatorname{cry}} \langle i_2, j_2 \rangle \Longleftrightarrow \begin{cases} j_1 > j_2 \\ \text{or} \\ j_1 = j_2 \text{ and } i_1 \leqslant i_2. \end{cases}$$

We call this ordering the crystal ordering.

Example 3.6. The crystal ordering is different from the PBW-ordering. For example, we have $\langle -1, 1 \rangle >_{\text{cry}} \langle 1, 1 \rangle >_{\text{cry}} \langle -1 \rangle$, while we have $\langle 1, 1 \rangle >_{\text{PBW}} \langle -1, 1 \rangle >_{\text{PBW}} \langle -1 \rangle$.

Definition 3.7. We define the crystal structure on \mathcal{M} as follows: for $\mathfrak{m} = \sum m_{i,j} \langle i,j \rangle \in \mathcal{M}$ and $i \in I$, set $A_k^{(i)}(\mathfrak{m}) = \sum_{k' \geqslant k} (m_{i,k'} - m_{i+2,k'+2})$ for $k \geqslant i$. Define $\varepsilon_i(\mathfrak{m})$ as $\max \left\{ A_k^{(i)}(\mathfrak{m}) \mid k \geqslant i \right\} \geqslant 0$.

- (i) If $\varepsilon_i(\mathfrak{m}) = 0$, then define $\tilde{e}_i(\mathfrak{m}) = 0$. If $\varepsilon_i(\mathfrak{m}) > 0$, let k_e be the largest $k \ge i$ such that $\varepsilon_i(\mathfrak{m}) = A_k^{(i)}(\mathfrak{m})$ and define $\tilde{e}_i(\mathfrak{m}) = \mathfrak{m} \langle i, k_e \rangle + \delta_{k_e \ne i} \langle i + 2, k_e \rangle$.
- (ii) Let k_f be the smallest $k \ge i$ such that $\varepsilon_i(\mathfrak{m}) = A_k^{(i)}(\mathfrak{m})$ and define $\tilde{f}_i(\mathfrak{m}) = \mathfrak{m} \delta_{k_f \ne i} \langle i + 2, k_f \rangle + \langle i, k_f \rangle$.

Remark 3.8. For $i \in I$, the actions of the operators \tilde{e}_i and \tilde{f}_i on $\mathfrak{m} \in \mathcal{M}$ are also described by the following algorithm:

- Step 1. Arrange the segments in m in the crystal ordering.
- Step 2. For each segment $\langle i, j \rangle$, write -, and for each segment $\langle i+2, j \rangle$, write +.
- Step 3. In the resulting sequence of + and -, delete a subsequence of the form +- and keep on deleting until no such subsequence remains.

Then we obtain a sequence of the form $--\cdots-++\cdots+$.

- (1) $\varepsilon_i(\mathfrak{m})$ is the total number of in the resulting sequence.
- (2) $\widetilde{f}_i(\mathfrak{m})$ is given as follows:
 - (a) if the leftmost + corresponds to a segment $\langle i+2,j\rangle$, then replace it with $\langle i,j\rangle$,
 - (b) if no + exists, add a segment $\langle i, i \rangle$ to \mathfrak{m} .
- (3) $\widetilde{e}_i(\mathfrak{m})$ is given as follows:
 - (a) if the rightmost corresponds to a segment $\langle i,j \rangle$ with i < j, then replace it with $\langle i+2,j \rangle$,
 - (b) if the rightmost corresponds to a segment $\langle i, i \rangle$, then remove it,
 - (c) if no exists, then $\tilde{e}_i(\mathfrak{m}) = 0$.

Let us introduce a linear ordering on the set \mathcal{M} of multisegments, lexicographic with respect to the crystal ordering on the set of segments.

Definition 3.9. For $\mathfrak{m} = \sum_{i \leqslant j} m_{i,j} \langle i,j \rangle \in \mathcal{M}$ and $\mathfrak{m}' = \sum_{i \leqslant j} m'_{i,j} \langle i,j \rangle \in \mathcal{M}$, we define $\mathfrak{m}' < \mathfrak{m}$ if there exist $i_0 \leqslant j_0$ such that $m'_{i_0,j_0} < m_{i_0,j_0}, \ m'_{i,j_0} = m_{i,j_0}$ for $i < i_0$, and $m'_{i,j} = m_{i,j}$ for $j > j_0$ and $i \leqslant j$.

Theorem 3.10.

- (i) $L(\infty) = \bigoplus_{\mathfrak{m} \in \mathcal{M}} \mathbf{A}_0 P(\mathfrak{m}).$
- (ii) $B(\infty) = \{P(\mathfrak{m}) \mod qL(\infty) \mid \mathfrak{m} \in \mathcal{M}\}.$
- (iii) We have

$$\widetilde{e}_i P(\mathfrak{m}) \equiv P(\widetilde{e}_i(\mathfrak{m})) \mod qL(\infty),$$

 $\widetilde{f}_i P(\mathfrak{m}) \equiv P(\widetilde{f}_i(\mathfrak{m})) \mod qL(\infty).$

Note that \widetilde{e}_i and \widetilde{f}_i in the left-hand-side is the modified root operators.

(iv) We have

$$\overline{P(\mathfrak{m})} \in P(\mathfrak{m}) + \sum_{\mathfrak{m}' \leq \mathfrak{m} \atop \mathfrak{m} \neq \mathfrak{m}} \mathbf{A} P(\mathfrak{m}').$$

Therefore we can index the crystal basis by multisegments. By this theorem we can easily see by a standard argument that $(L(\infty), L(\infty)^-, U_q^-(\mathfrak{g})_{\mathbf{A}})$ is balanced, and there exists a unique $G^{\text{low}}(\mathfrak{m}) \in L(\infty) \cap U_q^-(\mathfrak{g})_{\mathbf{A}}$ such that $G^{\text{low}}(\mathfrak{m})^- = G^{\text{low}}(\mathfrak{m})$ and $G^{\text{low}}(\mathfrak{m}) \equiv P(\mathfrak{m}) \mod qL(\infty)$. Then $\{G^{\text{low}}(\mathfrak{m})\}_{\mathfrak{m} \in \mathcal{M}}$ is a lower global basis.

§3.2. θ -restricted multisegments

We consider the Dynkin diagram involution θ of $I := \mathbb{Z}_{\text{odd}}$ defined by $\theta(i) = -i$ for $i \in I$.

We shall prove in this case Conjectures 2.16 and 2.18 for $\lambda=0$ (Theorems 4.15 and 5.5).

We set

$$\begin{split} \widetilde{V}_{\theta}(0) &:= \mathcal{B}_{\theta}(\mathfrak{gl}_{\infty}) / \sum_{i \in I} \left(\mathcal{B}_{\theta}(\mathfrak{gl}_{\infty}) E_i + \mathcal{B}_{\theta}(\mathfrak{gl}_{\infty}) (T_i - 1) + \mathcal{B}_{\theta}(\mathfrak{gl}_{\infty}) (F_i - F_{\theta(i)}) \right) \\ &\simeq U_q^-(\mathfrak{gl}_{\infty}) / \sum_i U_q^-(\mathfrak{gl}_{\infty}) (f_i - f_{\theta(i)}). \end{split}$$

Let $\widetilde{\phi}$ be the generator of $\widetilde{V}_{\theta}(0)$ corresponding to $1 \in \mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})$. Since $F_i \phi_0'' = (f_i + f_{\theta(i)})\phi_0'' = F_{\theta(i)}\phi_0''$, we have an epimorphism of $\mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})$ -modules

$$(3.1) \widetilde{V}_{\theta}(0) \twoheadrightarrow V_{\theta}(0).$$

We shall see later that it is in fact an isomorphism (see Theorem 4.15).

Definition 3.11. If a multisegment \mathfrak{m} has the form

$$\mathfrak{m} = \sum_{-j \leqslant i \leqslant j} m_{ij} \langle i, j \rangle,$$

we call \mathfrak{m} a θ -restricted multisegment. We denote by \mathcal{M}_{θ} the set of θ -restricted multisegments.

Definition 3.12. For a θ -restricted segment $\langle i, j \rangle$, we define its modified divided power by

$$\langle i, j \rangle^{[m]} = \begin{cases} \langle i, j \rangle^{(m)} = \frac{1}{[m]!} \langle i, j \rangle^m \ (i \neq -j), \\ \frac{1}{\prod_{\nu=1}^m [2\nu]} \langle -j, j \rangle^m \quad (i = -j). \end{cases}$$

We understand that $\langle i, j \rangle^{[m]}$ is equal to 1 for m = 0 and vanishes for m < 0.

Definition 3.13. For $\mathfrak{m} \in \mathcal{M}_{\theta}$, we define $P_{\theta}(\mathfrak{m}) \in U_q^-(\mathfrak{gl}_{\infty}) \subset \mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})$ by

$$P_{\theta}(\mathfrak{m}) = \prod_{\langle i,j \rangle \in \mathfrak{m}} \langle i,j \rangle^{[m_{ij}]}.$$

Here the product $\overrightarrow{\prod}$ is taken over the segments appearing in \mathfrak{m} from large to small with respect to the PBW-ordering.

If an element \mathfrak{m} of the free abelian group generated by $\langle i, j \rangle$ does not belong to \mathcal{M}_{θ} , we understand $P_{\theta}(\mathfrak{m}) = 0$.

We will prove later that $\{P_{\theta}(\mathfrak{m})\phi\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ is a basis of $V_{\theta}(0)$ (see Theorem 4.15). Here and hereafter, we write ϕ instead of $\phi_0 \in V_{\theta}(0)$.

§3.3. Commutation relations of $\langle i, j \rangle$

In the sequel, we regard $U_q^-(\mathfrak{gl}_{\infty})$ as a subalgebra of $\mathcal{B}_{\theta}(\mathfrak{gl}_{\infty})$ by $f_i \mapsto F_i$. We shall give formulas to express products of segments by a PBW basis.

Proposition 3.14. For $i, j, k, l \in I$, we have

(1)
$$\langle i, j \rangle \langle k, \ell \rangle = \langle k, \ell \rangle \langle i, j \rangle$$
 for $i \leq j, k \leq \ell$ and $j < k - 2$,

(2)
$$\langle i, j \rangle \langle j + 2, k \rangle = \langle i, k \rangle + q \langle j + 2, k \rangle \langle i, j \rangle$$
 for $i \leqslant j < k$,

(3)
$$\langle j, k \rangle \langle i, \ell \rangle = \langle i, \ell \rangle \langle j, k \rangle$$
 for $i < j \le k < \ell$,

(4)
$$\langle i, k \rangle \langle j, k \rangle = q^{-1} \langle j, k \rangle \langle i, k \rangle$$
 for $i < j \leq k$,

(5)
$$\langle i, j \rangle \langle i, k \rangle = q^{-1} \langle i, k \rangle \langle i, j \rangle$$
 for $i \leq j < k$,

(6)
$$\langle i, k \rangle \langle j, \ell \rangle = \langle j, \ell \rangle \langle i, k \rangle + (q^{-1} - q) \langle i, \ell \rangle \langle j, k \rangle$$
 for $i < j \leqslant k < \ell$.

Proof. (1) is obvious. We prove (2) by the induction on k-j. If k-j=2, it is trivial by the definition. If j < k-2, then $\langle k \rangle$ and $\langle i,j \rangle$ commute. Thus, we have

$$\begin{split} \langle i,j\rangle\langle j+2,k\rangle &= \langle i,j\rangle \big(\langle j+2,k-2\rangle\langle k\rangle - q\langle k\rangle\langle j+2,k-2\rangle\big) \\ &= \big(\langle i,k-2\rangle + q\langle j+2,k-2\rangle\langle i,j\rangle\big)\langle k\rangle - q\langle k\rangle\langle i,j\rangle\langle j+2,k-2\rangle \\ &= \langle i,k-2\rangle\langle k\rangle + q\langle j+2,k-2\rangle\langle k\rangle\langle i,j\rangle \\ &- q\langle k\rangle \big(\langle i,k-2\rangle + q\langle j+2,k-2\rangle\langle i,j\rangle\big) \\ &= \langle i,k\rangle + \langle j+2,k\rangle\langle i,j\rangle. \end{split}$$

In order to prove the other relations, we first show the following special cases.

Lemma 3.15. We have for any $j \in I$

(a)
$$\langle j-2,j\rangle\langle j\rangle = q^{-1}\langle j\rangle\langle j-2,j\rangle$$
 and $\langle j\rangle\langle j,j+2\rangle = q^{-1}\langle j,j+2\rangle\langle j\rangle$,

(b)
$$\langle j \rangle \langle j-2, j+2 \rangle = \langle j-2, j+2 \rangle \langle j \rangle$$
,

(c)
$$\langle j-2,j\rangle\langle j,j+2\rangle = \langle j,j+2\rangle\langle j-2,j\rangle + (q^{-1}-q)\langle j-2,j+2\rangle\langle j\rangle$$
.

Proof. The first equality in (a) follows from

$$\langle j-2,j\rangle\langle j\rangle - q^{-1}\langle j\rangle\langle j-2,j\rangle = (f_{j-2}f_j - qf_jf_{j-2})f_j - q^{-1}f_j(f_{j-2}f_j - qf_jf_{j-2}) = f_{j-2}f_j^2 - (q+q^{-1})f_jf_{j-2}f_j + f_i^2f_{j-2} = 0.$$

We can similarly prove the second.

Let us show (b) and (c). We have, by (a)

$$\langle j-2,j\rangle\langle j,j+2\rangle = \langle j-2,j\rangle\big(\langle j\rangle\langle j+2\rangle - q\langle j+2\rangle\langle j\rangle\big)$$

$$= q^{-1}\langle j\rangle\langle j-2,j\rangle\langle j+2\rangle - q\big(\langle j-2,j+2\rangle + q\langle j+2\rangle\langle j-2,j\rangle\big)\langle j\rangle$$

$$= q^{-1}\langle j\rangle\big(\langle j-2,j+2\rangle + q\langle j+2\rangle\langle j-2,j\rangle\big)$$

$$-q\langle j-2,j+2\rangle\langle j\rangle - q\langle j+2\rangle\langle j\rangle\langle j-2,j\rangle$$

$$= \big(\langle j\rangle\langle j+2\rangle - q\langle j+2\rangle\langle j\rangle\big)\langle j-2,j\rangle$$

$$+q^{-1}\langle j\rangle\langle j-2,j+2\rangle - q\langle j-2,j+2\rangle\langle j\rangle$$

$$= \langle j,j+2\rangle\langle j-2,j\rangle + q^{-1}\langle j\rangle\langle j-2,j+2\rangle - q\langle j-2,j+2\rangle\langle j\rangle.$$

Similarly, we have

$$\langle j-2,j\rangle\langle j,j+2\rangle = (\langle j-2\rangle\langle j\rangle - q\langle j\rangle\langle j-2\rangle)\langle j,j+2\rangle$$

$$= q^{-1}\langle j-2\rangle\langle j,j+2\rangle\langle j\rangle - q\langle j\rangle(\langle j-2,j+2\rangle + q\langle j,j+2\rangle\langle j-2\rangle)$$

$$= q^{-1}(\langle j-2,j+2\rangle + q\langle j,j+2\rangle\langle j-2\rangle)\langle j\rangle$$

$$-q\langle j\rangle\langle j-2,j+2\rangle - q\langle j,j+2\rangle\langle j\rangle\langle j-2\rangle$$

$$= \langle j,j+2\rangle(\langle j-2\rangle\langle j\rangle - q\langle j\rangle\langle j-2\rangle)$$

$$+q^{-1}\langle j-2,j+2\rangle\langle j\rangle - q\langle j\rangle\langle j-2,j+2\rangle$$

$$= \langle j,j+2\rangle\langle j-2,j\rangle + q^{-1}\langle j-2,j+2\rangle\langle j\rangle - q\langle j\rangle\langle j-2,j+2\rangle.$$

Then, (3.2) and (3.3) imply (b) and (c).

We shall resume the proof of Proposition 3.14. By Lemma 3.15 (b), $\langle i, k \rangle$ commutes with $\langle j \rangle$ for i < j < k. Thus we obtain (3).

We shall show (4) by the induction on k-j. Suppose k-j=0. The case i=k-2 is nothing but Lemma 3.15 (a).

If i < k - 2, then

$$\begin{aligned} \langle i, k \rangle \langle k \rangle &= \langle i, k - 4 \rangle \langle k - 2, k \rangle \langle k \rangle - q \langle k - 2, k \rangle \langle i, k - 4 \rangle \langle k \rangle \\ &= q^{-1} \langle k \rangle \langle i, k - 4 \rangle \langle k - 2, k \rangle - \langle k \rangle \langle k - 2, k \rangle \langle i, k - 4 \rangle = q^{-1} \langle k \rangle \langle i, k \rangle. \end{aligned}$$

Suppose k - j > 0. By using the induction hypothesis and (3), we have

$$\begin{split} \langle i,k\rangle\langle j,k\rangle &= \langle i,k\rangle\langle j\rangle\langle j+2,k\rangle - q\langle i,k\rangle\langle j+2,k\rangle\langle j\rangle \\ &= \langle j\rangle\langle i,k\rangle\langle j+2,k\rangle - \langle j+2,k\rangle\langle i,k\rangle\langle j\rangle \\ &= q^{-1}\langle j\rangle\langle j+2,k\rangle\langle i,k\rangle - \langle j+2,k\rangle\langle j\rangle\langle i,k\rangle = q^{-1}\langle j,k\rangle\langle i,k\rangle. \end{split}$$

Similarly we can prove (5).

Let us prove (6). We have

$$\begin{split} \langle i,k\rangle\langle j,\ell\rangle &= \left(\langle i,j-2\rangle\langle j,k\rangle - q\langle j,k\rangle\langle i,j-2\rangle\right)\langle j,\ell\rangle \\ &= q^{-1}\langle i,j-2\rangle\langle j,\ell\rangle\langle j,k\rangle - q\langle j,k\rangle\left(\langle i,\ell\rangle + q\langle j,\ell\rangle\langle i,j-2\rangle\right) \\ &= q^{-1}\left(\langle i,\ell\rangle + q\langle j,\ell\rangle\langle i,j-2\rangle\right)\langle j,k\rangle \\ &\qquad \qquad - q\langle i,\ell\rangle\langle j,k\rangle - q\langle j,\ell\rangle\langle j,k\rangle\langle i,j-2\rangle \\ &= \langle j,\ell\rangle\langle i,k\rangle + (q^{-1}-q)\langle i,\ell\rangle\langle j,k\rangle. \end{split}$$

Lemma 3.16.

- (i) For $1 \leq i \leq j$, we have $\langle -j, -i \rangle \widetilde{\phi} = \langle i, j \rangle \widetilde{\phi}$.
- (ii) For $1 \leq i < j$, we have $\langle -j, i \rangle \widetilde{\phi} = q^{-1} \langle -i, j \rangle \widetilde{\phi}$.

Proof. (i) If i = j, it is obvious. By the induction on j - i, we have

$$\begin{split} \langle -j, -i \rangle \widetilde{\phi} &= (\langle -j, -i-2 \rangle \langle -i \rangle - q \langle -i \rangle \langle -j, -i-2 \rangle) \widetilde{\phi} \\ &= (\langle -j, -i-2 \rangle \langle i \rangle - q \langle -i \rangle \langle i+2, j \rangle) \widetilde{\phi} \\ &= (\langle i \rangle \langle -j, -i-2 \rangle - q \langle i+2, j \rangle \langle -i \rangle) \widetilde{\phi} \\ &= (\langle i \rangle \langle i+2, j \rangle - q \langle i+2, j \rangle \langle i \rangle) \widetilde{\phi} = \langle i, j \rangle \widetilde{\phi}. \end{split}$$

(ii) By (i), we have

$$\begin{split} \langle -j,i\rangle \widetilde{\phi} &= (\langle -j,-1\rangle\langle 1,i\rangle - q\langle 1,i\rangle\langle -j,-1\rangle) \widetilde{\phi} \\ &= (\langle -j,-1\rangle\langle -i,-1\rangle - q\langle 1,i\rangle\langle 1,j\rangle) \widetilde{\phi} \\ &= (q^{-1}\langle -i,-1\rangle\langle -j,-1\rangle - \langle 1,j\rangle\langle 1,i\rangle) \widetilde{\phi} \\ &= (q^{-1}\langle -i,-1\rangle\langle 1,j\rangle - \langle 1,j\rangle\langle -i,-1\rangle) \widetilde{\phi} = q^{-1}\langle -i,j\rangle \widetilde{\phi}. \end{split}$$

Proposition 3.17.

(i) For a multisegment $\mathfrak{m} = \sum_{i \leq j} m_{i,j} \langle i, j \rangle$, we have

$$Ad(t_k)P(\mathfrak{m}) = q^{\sum_i (m_{i,k-2} - m_{i,k}) + \sum_j (m_{k+2,j} - m_{k,j})} P(\mathfrak{m}).$$

(ii)

$$\begin{split} e_k'\langle i,j\rangle^{(n)} &= \begin{cases} q^{1-n}\langle i\rangle^{(n-1)} & \text{if } k=i=j,\\ (1-q^2)q^{1-n}\langle i+2,j\rangle\langle i,j\rangle^{(n-1)} & \text{if } k=i< j,\\ 0 & \text{otherwise,} \end{cases}\\ e_k^*\langle i,j\rangle^{(n)} &= \begin{cases} q^{1-n}\langle i\rangle^{(n-1)} & \text{if } i=j=k,\\ (1-q^2)q^{1-n}\langle i,j\rangle^{(n-1)}\langle i,j-2\rangle & \text{if } i< j=k,\\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Proof. (i) is obvious. Let us show (ii). It is obvious that $e_k'\langle i,j\rangle^{(n)}=0$ unless $i\leqslant k\leqslant j$. It is known ([K1]) that we have $e_k'\langle k\rangle^{(n)}=q^{1-n}\langle k\rangle^{(n-1)}$. We shall prove $e_k'\langle k,j\rangle^{(n)}=(1-q^2)q^{1-n}\langle k+2,j\rangle\langle k,j\rangle^{(n-1)}$ for k< j by the induction on n. By (2.1), we have

$$e'_k\langle k,j\rangle = e'_k(\langle k\rangle\langle k+2,j\rangle - q\langle k+2,j\rangle\langle k\rangle)$$

= $\langle k+2,j\rangle - q^2\langle k+2,j\rangle = (1-q^2)\langle k+2,j\rangle.$

For $n \ge 1$, by the induction hypothesis and Proposition 3.14 (4), we get

$$\begin{split} &[n]e_k'\langle k,j\rangle^{(n)} = e_k'\langle k,j\rangle\langle k,j\rangle^{(n-1)} \\ &= (1-q^2)\langle k+2,j\rangle\langle k,j\rangle^{(n-1)} + q^{-1}\langle k,j\rangle\cdot (1-q^2)q^{2-n}\langle k+2,j\rangle\langle k,j\rangle^{(n-2)} \\ &= (1-q^2)\left\{\langle k+2,j\rangle\langle k,j\rangle^{(n-1)} + q^{1-n}\langle k,j\rangle\langle k+2,j\rangle\langle k,j\rangle^{(n-2)}\right\} \\ &= (1-q^2)(1+q^{-n}[n-1])\langle k+2,j\rangle\langle k,j\rangle^{(n-1)} \\ &= (1-q^2)q^{1-n}[n]\langle k+2,j\rangle\langle k,j\rangle^{(n-1)}. \end{split}$$

Finally we show $e'_k \langle i, j \rangle = 0$ if $k \neq i$. We may assume $i < k \leq j$. If i < k < j, we have

$$\begin{split} e_k'\langle i,j\rangle &= e_k'(\langle i,k-2\rangle\langle k,j\rangle - q\langle k,j\rangle\langle i,k-2\rangle) \\ &= q\langle i,k-2\rangle e_k'\langle k,j\rangle - q(e_k'\langle k,j\rangle)\langle i,k-2\rangle \\ &= q(1-q^2)\langle i,k-2\rangle\langle k+2,j\rangle - q(1-q^2)\langle k+2,j\rangle\langle i,k-2\rangle \\ &= 0. \end{split}$$

The case k = j is similarly proved.

The proof for e_k^* is similar.

§3.4. Actions of divided powers

Lemma 3.18. Let a, b be non-negative integers, and let $k \in I_{>0} := \{k \in I \mid k > 0\}.$

(1) For $\ell > k$, we have

$$\langle -k \rangle \langle -k+2, \ell \rangle^{(a)} \langle -k, \ell \rangle^{(b)} = [b+1] \langle -k+2, \ell \rangle^{(a-1)} \langle -k, \ell \rangle^{(b+1)}$$

$$+ q^{a-b} \langle -k+2, \ell \rangle^{(a)} \langle -k, \ell \rangle^{(b)} \langle -k \rangle.$$

(2) We have

$$\langle -k \rangle \langle -k+2, k \rangle^{(a)} \langle -k, k \rangle^{[b]} = [2b+2] \langle -k+2, k \rangle^{(a-1)} \langle -k, k \rangle^{[b+1]}$$

$$+ q^{a-b} \langle -k+2, k \rangle^{(a)} \langle -k, k \rangle^{[b]} \langle -k \rangle.$$

(3) For k > 1, we have

$$\langle -k \rangle \langle -k+2, k-2 \rangle^{[a]} = (q^a + q^{-a})^{-1} \langle -k+2, k-2 \rangle^{[a-1]} \langle -k, k-2 \rangle$$

$$+ q^a \langle -k+2, k-2 \rangle^{[a]} \langle -k \rangle.$$

(4) If $\ell \leq k-2$, we have

$$\langle \ell, k-2 \rangle^{(a)} \langle k \rangle = \langle \ell, k \rangle \langle \ell, k-2 \rangle^{(a-1)} + q^a \langle k \rangle \langle \ell, k-2 \rangle^{(a)}.$$

(5) For k > 1, we have

$$\langle -k+2, k-2 \rangle^{[a]} \langle k \rangle = (q^a + q^{-a})^{-1} \langle -k+2, k \rangle \langle -k+2, k-2 \rangle^{[a-1]} + q^a \langle k \rangle \langle -k+2, k-2 \rangle^{[a]}.$$

Proof. We show (1) by the induction on a. If a=0, it is trivial. For a>0, we have

$$\begin{split} [a]\langle -k\rangle\langle -k+2,\ell\rangle^{(a)}\langle -k,\ell\rangle^{(b)} \\ &= \left(\langle -k,\ell\rangle + q\langle -k+2,\ell\rangle\langle -k\rangle\right)\langle -k+2,\ell\rangle^{(a-1)}\langle -k,\ell\rangle^{(b)} \\ &= [b+1]q^{1-a}\langle -k+2,\ell\rangle^{(a-1)}\langle -k,\ell\rangle^{(b+1)} \\ &+ q\langle -k+2,\ell\rangle\big\{[b+1]\langle -k+2,\ell\rangle^{(a-2)}\langle -k,\ell\rangle^{(b+1)} \\ &+ q^{a-b-1}\langle -k+2,\ell\rangle^{(a-1)}\langle -k,\ell\rangle^{(b)}\langle -k\rangle\big\} \\ &= [b+1](q^{1-a}+q[a-1])\langle -k+2,\ell\rangle^{(a-1)}\langle -k,\ell\rangle^{(b+1)} \\ &+ q^{a-b}[a]\langle -k+2,\ell\rangle^{(a)}\langle -k,\ell\rangle^{(b)}\langle -k\rangle. \end{split}$$

Since $q^{1-a} + q[a-1] = [a]$, the induction proceeds.

The proof of (2) is similar by using $\langle -k, k \rangle^{[b]} = [2b] \langle -k, k \rangle^{[b-1]} \langle -k, k \rangle$.

We prove (3) by the induction on a. The case a=0 is trivial. For a>0, we have

$$\begin{split} &[2a]\langle -k\rangle\langle -k+2,k-2\rangle^{[a]} \\ &= \left(\langle -k,k-2\rangle + q\langle -k+2,k-2\rangle\langle -k\rangle\right)\langle -k+2,k-2\rangle^{[a-1]} \\ &= q^{1-a}\langle -k+2,k-2\rangle^{[a-1]}\langle -k,k-2\rangle \\ &+ q\langle -k+2,k-2\rangle\big\{(q^{a-1}+q^{1-a})^{-1}\langle -k+2,k-2\rangle^{[a-2]}\langle -k,k-2\rangle \\ &+ q^{a-1}\langle -k+2,k-2\rangle^{[a-1]}\langle -k\rangle\big\} \\ &= \left(q^{1-a} + \frac{q[2a-2]}{q^{a-1}+q^{1-a}}\right)\langle -k+2,k-2\rangle^{[a-1]}\langle -k,k-2\rangle \\ &+ q^a[2a]\langle -k+2,k-2\rangle^{[a]}\langle -k\rangle \\ &= (q^a+q^{-a})^{-1}[2a]\langle -k+2,k-2\rangle^{[a-1]}\langle -k,k-2\rangle \\ &+ q^a[2a]\langle -k+2,k-2\rangle^{[a]}\langle -k\rangle. \end{split}$$

Similarly, we can prove (4) and (5) by the induction on a.

Lemma 3.19. *For* k > 1 *and* $a, b, c, d \ge 0$, *set*

$$(a,b,c,d) = \langle k \rangle^{(a)} \langle -k+2,k \rangle^{(b)} \langle -k,k \rangle^{[c]} \langle -k+2,k-2 \rangle^{[d]} \widetilde{\phi}.$$

Then, we have

$$\langle -k \rangle (a,b,c,d) = [2c+2](a,b-1,c+1,d)$$

$$+[b+1]q^{b-2c}(a,b+1,c,d-1)$$

$$+[a+1]q^{2d-2c}(a+1,b,c,d).$$

Proof. We shall show first

$$(3.5)^{\langle -k\rangle\langle -k+2, k-2\rangle^{[d]}\widetilde{\phi}} = (\langle -k+2, k\rangle\langle -k+2, k-2\rangle^{[d-1]} + q^{2d}\langle k\rangle\langle -k+2, k-2\rangle^{[d]})\widetilde{\phi}.$$

By Lemma 3.18 (3), we have

$$\begin{split} \langle -k \rangle \langle -k+2, k-2 \rangle^{[d]} \widetilde{\phi} \\ &= \left((q^d + q^{-d})^{-1} \langle -k+2, k-2 \rangle^{[d-1]} \langle -k, k-2 \rangle \right. \\ &+ q^d \langle -k+2, k-2 \rangle^{[d]} \langle -k \rangle) \widetilde{\phi}. \end{split}$$

By Lemma 3.16 and Lemma 3.18 (5), it is equal to

$$\begin{split} \left((q^d + q^{-d})^{-1} q^{-1} \langle -k + 2, k - 2 \rangle^{[d-1]} \langle -k + 2, k \rangle + q^d \langle -k + 2, k - 2 \rangle^{[d]} \langle k \rangle \right) \widetilde{\phi} \\ &= \left((q^d + q^{-d})^{-1} q^{-1} q^{1-d} \langle -k + 2, k \rangle \langle -k + 2, k - 2 \rangle^{[d-1]} \right. \\ &\qquad \qquad + q^d \left((q^d + q^{-d})^{-1} \langle -k + 2, k \rangle \langle -k + 2, k - 2 \rangle^{[d-1]} \right. \\ &\qquad \qquad + q^d \langle k \rangle \langle -k + 2, k - 2 \rangle^{[d]} \right) \right) \widetilde{\phi}. \end{split}$$

Thus we obtain (3.5). Applying Lemma 3.18 (2), we have

$$\begin{split} \langle -k \rangle (a,b,c,d) &= \langle k \rangle^{(a)} \Big([2c+2] \langle -k+2,k \rangle^{(b-1)} \langle -k,k \rangle^{[c+1]} \\ &+ q^{b-c} \langle -k+2,k \rangle^{(b)} \langle -k,k \rangle^{[c]} \langle -k \rangle \Big) \langle -k+2,k-2 \rangle^{[d]} \widetilde{\phi} \\ &= [2c+2] (a,b-1,c+1,d) + q^{b-c} \langle k \rangle^{(a)} \langle -k+2,k \rangle^{(b)} \langle -k,k \rangle^{[c]} \\ &\times \big(\langle -k+2,k \rangle \langle -k+2,k-2 \rangle^{[d-1]} + q^{2d} \langle k \rangle \langle -k+2,k-2 \rangle^{[d]} \big) \widetilde{\phi} \\ &= [2c+2] (a,b-1,c+1,d) + q^{b-2c} [b+1] (a,b+1,c,d-1) \\ &+ q^{(b-c)+2d-c-b} [a+1] (a+1,b,c,d). \end{split}$$

Hence we have (3.4).

Proposition 3.20.

(1) We have

$$\begin{split} \langle -1 \rangle^{(a)} \langle -1, 1 \rangle^{[m]} \widetilde{\phi} &= \sum_{s=0}^{\lfloor a/2 \rfloor} \left(\prod_{\nu=1}^s \frac{[2m+2\nu]}{[2\nu]} \right) q^{-2(a-s)m + \frac{(a-2s)(a-2s-1)}{2}} \\ &\times \langle 1 \rangle^{(a-2s)} \langle -1, 1 \rangle^{[m+s]} \widetilde{\phi}. \end{split}$$

(2) For k > 1, we have

$$\begin{split} \langle -k \rangle^{(n)} \langle -k+2, k-2 \rangle^{[a]} \widetilde{\phi} \\ &= \sum_{i+j+2t=n, j+t=u} q^{2ai+\frac{j(j-1)}{2}-i(t+u)} \\ & \times \langle k \rangle^{(i)} \langle -k+2, k \rangle^{(j)} \langle -k, k \rangle^{[t]} \langle -k+2, k-2 \rangle^{[a-u]} \widetilde{\phi}. \end{split}$$

(3) If $\ell > k$, we have

$$\langle k \rangle^{(n)} \langle k+2, \ell \rangle^{(a)} = \sum_{s=0}^{n} q^{(n-s)(a-s)} \langle k+2, \ell \rangle^{(a-s)} \langle k, \ell \rangle^{(s)} \langle k \rangle^{(n-s)}.$$

Proof. We prove (1) by the induction on a. The case a=0 is trivial. Assume a>0. Then, Lemma 3.18 (2) implies

$$\begin{split} &\langle -1\rangle\langle 1\rangle^{(n)}\langle -1,1\rangle^{[m]}\widetilde{\phi} \\ &= \left([2m+2]\langle 1\rangle^{(n-1)}\langle -1,1\rangle^{[m+1]} + q^{n-m}\langle 1\rangle^{(n)}\langle -1,1\rangle^{[m]}\langle -1\rangle\right)\widetilde{\phi} \\ &= \left([2m+2]\langle 1\rangle^{(n-1)}\langle -1,1\rangle^{[m+1]} + q^{n-m}\langle 1\rangle^{(n)}\langle -1,1\rangle^{[m]}\langle 1\rangle\right)\widetilde{\phi} \\ &= \left([2m+2]\langle 1\rangle^{(n-1)}\langle -1,1\rangle^{[m+1]} + q^{n-2m}[n+1]\langle 1\rangle^{(n+1)}\langle -1,1\rangle^{[m]}\right)\widetilde{\phi}. \end{split}$$

Put

$$c_s = \left(\prod_{\nu=1}^s \frac{[2m+2\nu]}{[2\nu]}\right) q^{-2(a-s)m + \frac{(a-2s)(a-2s-1)}{2}}.$$

Then we have

$$\begin{split} [a+1]\langle -1\rangle^{(a+1)}\langle -1,1\rangle^{[m]}\widetilde{\phi} &= \langle -1\rangle\langle -1\rangle^{(a)}\langle -1,1\rangle^{[m]}\widetilde{\phi} \\ &= \langle -1\rangle\sum_{s=0}^{\lfloor a/2\rfloor}c_s\langle 1\rangle^{(a-2s)}\langle -1,1\rangle^{[m+s]}\widetilde{\phi} \\ &= \sum_{s=0}^{\lfloor a/2\rfloor}c_s\big\{[2(m+s+1)]\langle 1\rangle^{(a-2s-1)}\langle -1,1\rangle^{[m+s+1]} \\ &+ q^{a-2s-2(m+s)}[a-2s+1]\langle 1\rangle^{(a-2s+1)}\langle -1,1\rangle^{[m+s]}\big\}\widetilde{\phi}. \end{split}$$

In the right-hand-side, the coefficients of $\langle 1 \rangle^{a+1-2r} \langle -1, 1 \rangle^{[m+r]} \widetilde{\phi}$ are

$$[2(m+r)]c_{r-1} + q^{a-2m-4r}[a-2r+1]c_r$$

$$= \prod_{\nu=1}^r \frac{[2m+2\nu]}{[2\nu]} q^{-2(a-r+1)m+\frac{(a-2r)(a-2r+1)}{2}} \Big([2r]q^{a-2r+1} + [a-2r+1]q^{-2r} \Big)$$

$$= [a+1] \prod_{\nu=1}^r \frac{[2m+2\nu]}{[2\nu]} q^{-2(a-r+1)m+\frac{(a-2r)((a-2r+1)}{2})}.$$

Hence we obtain (1).

We prove (2) by the induction on n. We use the following notation for short:

$$(i,j,t,a) := \langle k \rangle^{(i)} \langle -k+2,k \rangle^{(j)} \langle -k,k \rangle^{[t]} \langle -k+2,k-2 \rangle^{[a]} \widetilde{\phi}.$$

Then Lemma 3.19 implies that

$$\begin{split} \langle -k \rangle (i,j,t,a) &= [2t+2](i,j-1,t+1,a) \\ &+ [j+1]q^{j-2t}(i,j+1,t,a-1) \\ &+ [i+1]q^{2a-2t}(i+1,j,t,a). \end{split}$$

Hence, by assuming (2) for n, we have

$$[n+1]\langle -k \rangle^{(n+1)} \langle -k+2, k-2 \rangle^{[a]} \widetilde{\phi} = \langle -k \rangle \langle -k \rangle^{(n)} \langle -k+2, k-2 \rangle^{[a]} \widetilde{\phi}$$

$$= \sum_{i+j+2t=n, j+t=u} \left\{ \begin{aligned} &[2t+2]q^{2ai+\frac{j(j-1)}{2}-i(t+u)}(i,j-1,t+1,a-u) \\ &+[j+1]q^{2ai+\frac{j(j-1)}{2}-i(t+u)+j-2t}(i,j+1,t,a-u-1) \\ &+[i+1]q^{2ai+\frac{j(j-1)}{2}-i(t+u)+2a-2u-2t}(i+1,j,t,a-u) \end{aligned} \right\}.$$

Then in the right hand side, the coefficients of (i', j', t', a - u') satisfying i' + j' + 2t' = n + 1, j' + t' = u' are

$$\begin{split} [2t']q^{2ai'+\frac{(j'+1)j'}{2}-i'(t'-1+u')} + [j']q^{2ai'+\frac{(j'-1)(j'-2)}{2}-i'(t'+u'-1)+j'-1-2t'} \\ + [i']q^{2a(i'-1)+\frac{j'(j'-1)}{2}-(i'-1)(t'+u')+2a-2u'-2t'} \\ = q^{2ai'+\frac{j'(j'-1)}{2}-i'(t'+u')} \Big([2t']q^{j'+i'} + [j']q^{i'-2t'} + [i']q^{-(t'+u')} \Big) \\ = q^{2ai'+\frac{j'(j'-1)}{2}-i'(t'+u')} [n+1]. \end{split}$$

We can prove (3) similarly as above.

§3.5. Actions of E_k , F_k on the PBW basis

For a θ -restricted multisegment \mathfrak{m} , we set

$$\widetilde{P}_{\theta}(\mathfrak{m}) = P_{\theta}(\mathfrak{m})\widetilde{\phi}.$$

We understand $\widetilde{P}_{\theta}(\mathfrak{m}) = 0$ if \mathfrak{m} is not a multisegment.

Theorem 3.21. For $k \in I_{>0}$ and a θ -restricted multisegment $\mathfrak{m} = \sum_{-i \leq i \leq j} m_{i,j} \langle i,j \rangle$, we have

$$\begin{split} F_{-k}\widetilde{P}_{\theta}(\mathfrak{m}) &= \sum_{\ell>k} [m_{-k,\ell}+1] q^{\ell'>\ell} \overset{\sum_{\ell'>\ell} (m_{-k+2,\ell'}-m_{-k,\ell'})}{\widetilde{P}_{\theta}} \widetilde{P}_{\theta}(\mathfrak{m}-\langle -k+2,\ell\rangle+\langle -k,\ell\rangle) \\ &+ q^{\sum_{\ell>k} (m_{-k+2,\ell}-m_{-k,\ell})} [2m_{-k,k}+2] \widetilde{P}_{\theta}(\mathfrak{m}-\langle -k+2,k\rangle+\langle -k,k\rangle) \\ &+ q^{\sum_{\ell>k} (m_{-k+2,k}-m_{-k,k})+m_{-k+2,k}-2m_{-k,k}}} \\ &\times [m_{-k+2,k}+1] \widetilde{P}_{\theta}(\mathfrak{m}-\delta_{k\neq 1}\langle -k+2,k-2\rangle+\langle -k+2,k\rangle) \\ &+ \sum_{-k+2< i\leqslant k} q^{\sum_{\ell>k} (m_{-k+2,k}-m_{-k,k})+2m_{-k+2,k-2}-2m_{-k,k}+\sum_{-k+2< j< i} (m_{j,k-2}-m_{j,k})} \\ &\times [m_{i,k}+1] \widetilde{P}_{\theta}(\mathfrak{m}-\delta_{i< k}\langle i,k-2\rangle+\langle i,k\rangle). \end{split}$$

Proof. We divide \mathfrak{m} into four parts

$$\mathfrak{m} = \mathfrak{m}_1 + \mathfrak{m}_2 + \mathfrak{m}_3 + \delta_{k \neq 1} m_{-k+2,k-2} \langle -k+2,k-2 \rangle,$$

where
$$\mathfrak{m}_1 = \sum_{j>k} m_{i,j} \langle i,j \rangle$$
, $\mathfrak{m}_2 = \sum_{j=k} m_{i,j} \langle i,j \rangle$, $\mathfrak{m}_3 = \sum_{-k+2 < i \leqslant j \leqslant k-2} m_{i,j} \langle i,j \rangle$.

Then Proposition 3.14 implies

$$\widetilde{P}_{\theta}(\mathfrak{m}) = P_{\theta}(\mathfrak{m}_1) P_{\theta}(\mathfrak{m}_2) P_{\theta}(\mathfrak{m}_3) \langle -k+2, k-2 \rangle^{[m_{-k+2,k-2}]} \widetilde{\phi}.$$

If k=1, we understand $\langle -k+2,k-2\rangle^{[n]}=1$. By Lemma 3.18 (1), we have

$$\begin{split} \langle -k \rangle P_{\theta}(\mathfrak{m}_{1}) \\ &= \sum_{\ell > k} q^{\sum_{\ell' > \ell} (m_{-k+2,\ell'} - m_{-k,\ell'})} [m_{-k,\ell} + 1] P_{\theta}(\mathfrak{m}_{1} - \langle -k + 2, \ell \rangle + \langle -k, \ell \rangle) \\ &+ q^{\sum_{\ell > k} (m_{-k+2,\ell} - m_{-k,\ell})} P_{\theta}(\mathfrak{m}_{1}) \langle -k \rangle. \end{split}$$

and Lemma 3.18 (2) implies

$$\begin{split} \langle -k \rangle P_{\theta}(\mathfrak{m}_2) &= [2m_{-k,k}+2] P_{\theta}(\mathfrak{m}_2 - \langle -k+2,k \rangle + \langle -k,k \rangle) \\ &+ q^{m_{-k+2,k}-m_{-k,k}} P_{\theta}(\mathfrak{m}_2) \langle -k \rangle. \end{split}$$

Since we have $\langle -k \rangle P_{\theta}(\mathfrak{m}_3) = P_{\theta}(\mathfrak{m}_3) \langle -k \rangle$, we obtain

$$\begin{split} (3.6)\ \langle -k \rangle \widetilde{P}_{\theta}(\mathfrak{m}) &= \sum_{\ell > k} q^{\sum_{\ell' > \ell} (m_{-k+2,\ell'} - m_{-k,\ell'})} [m_{-k,\ell} + 1] \\ &\qquad \times \widetilde{P}_{\theta}(\mathfrak{m} - \langle -k + 2, \ell \rangle + \langle -k, \ell \rangle) \\ &+ q^{\sum_{\ell > k} (m_{-k+2,\ell} - m_{-k,\ell})} [2m_{-k,k} + 2] \\ &\qquad \times \widetilde{P}_{\theta}(\mathfrak{m} - \langle -k + 2, k \rangle + \langle -k, k \rangle) \\ &+ q^{\sum_{\ell \geqslant k} (m_{-k+2,\ell} - m_{-k,\ell})} P_{\theta}(\mathfrak{m}_1 + \mathfrak{m}_2 + \mathfrak{m}_3) \\ &\qquad \times \langle -k \rangle \langle -k + 2, k - 2 \rangle^{[m_{-k+2,k-2}]} \widetilde{\phi}. \end{split}$$

By (3.5), we have

$$\begin{split} \langle -k \rangle \langle -k+2, k-2 \rangle^{[m_{-k+2,k-2}]} \widetilde{\phi} \\ &= \langle -k+2, k \rangle \langle -k+2, k-2 \rangle^{[m_{-k+2,k-2}-1]} \widetilde{\phi} \\ &+ \delta_{k \neq 1} q^{2m_{-k+2,k-2}} \langle k \rangle \langle -k+2, k-2 \rangle^{[m_{-k+2,k-2}]} \widetilde{\phi}. \end{split}$$

Hence the last term in (3.6) is equal to

$$\begin{split} q^{\sum_{\ell\geqslant k}(m_{-k+2,\ell}-m_{-k,\ell})-m_{-k,k}} \\ \times [m_{-k+2,k}+1] \widetilde{P}_{\theta}(\mathfrak{m}-\delta_{k\neq 1}\langle -k+2,k-2\rangle + \langle -k+2,k\rangle) \\ + \delta_{k\neq 1} q^{\sum_{\ell\geqslant k}(m_{-k+2,\ell}-m_{-k,\ell})+2m_{-k+2,k-2}} \\ \times P_{\theta}(\mathfrak{m}_1+\mathfrak{m}_2+\mathfrak{m}_3) \langle k\rangle \langle -k+2,k-2\rangle^{[m_{-k+2,k-2}]} \widetilde{\phi}. \end{split}$$

For $k \neq 1$, Lemma 3.18 (4) implies

$$P_{\theta}(\mathfrak{m}_3)\langle k\rangle = \sum_{-k+2 < i \leqslant k} q^{\sum_{-k+2 < j < i} m_{j,k-2}} \langle i,k\rangle P_{\theta}(\mathfrak{m}_3 - \delta_{i < k}\langle i,k-2\rangle),$$

and Proposition 3.14 implies

$$P_{\theta}(\mathfrak{m}_2)\langle i,k\rangle = q^{-\sum_{j\leq i} m_{j,k}} [m_{i,k} + 1] P_{\theta}(\mathfrak{m}_2 + \langle i,k\rangle).$$

Hence we obtain

$$\begin{split} P_{\theta}(\mathfrak{m}_{1})P_{\theta}(\mathfrak{m}_{2})P_{\theta}(\mathfrak{m}_{3})\langle k\rangle\langle -k+2,k-2\rangle^{[m_{-k+2,k-2}]}\widetilde{\phi} \\ &= \sum_{-k+2 < i \leqslant k} q^{\sum_{-k+2 < j < i} m_{j,k-2} - \sum_{-k \leqslant j < i} m_{j,k}} \\ &\times [m_{i,k}+1]\widetilde{P}_{\theta}(\mathfrak{m} - \delta_{i < k}\langle i,k-2\rangle + \langle i,k\rangle). \end{split}$$

Thus we obtain the desired result.

Theorem 3.22. For $k \in I_{>0}$ and a θ -restricted multisegment $\mathfrak{m} = \sum_{-j \leqslant i \leqslant j} m_{i,j} \langle i,j \rangle$, we have

$$\begin{split} E_{-k}\widetilde{P}_{\theta}(\mathfrak{m}) &= (1-q^2) \sum_{\ell > k} q^{1+\sum\limits_{\ell' \ge \ell} (m_{-k+2,\ell'} - m_{-k,\ell'})} \\ &= (1-q^2) \sum_{\ell > k} q^{1+\sum\limits_{\ell' \ge \ell} (m_{-k+2,\ell} - m_{-k,\ell'})} \\ &\qquad \qquad \times [m_{-k+2,\ell} + 1] \widetilde{P}_{\theta}(\mathfrak{m} - \langle -k,\ell \rangle + \langle -k+2,\ell \rangle) \\ &\qquad \qquad \qquad + (1-q^2) q^{1+\sum\limits_{\ell > k} (m_{-k+2,\ell} - m_{-k,\ell}) + m_{-k+2,k} - 2m_{-k,k}} \\ &\qquad \qquad \qquad \times [m_{-k+2,k} + 1] \widetilde{P}_{\theta}(\mathfrak{m} - \langle -k,k \rangle + \langle -k+2,k \rangle) \\ &\qquad \qquad \qquad + (1-q^2) \sum_{-k+2 < i \le k-2} q^{1+\sum\limits_{\ell > k} (m_{-k+2,\ell} - m_{-k,\ell}) + 2m_{-k+2,k-2} - 2m_{-k,k} + \sum\limits_{-k+2 < i' \le i} (m_{i,k-2} - m_{i',k})} \\ &\qquad \qquad \qquad \times [m_{i,k-2} + 1] \widetilde{P}_{\theta}(\mathfrak{m} - \langle i,k \rangle + \langle i,k-2 \rangle) \\ &\qquad \qquad \qquad + \delta_{k \ne 1} (1-q^2) q^{1+\sum\limits_{\ell > k} (m_{-k+2,\ell} - m_{-k,\ell}) + 2m_{-k+2,k-2} - 2m_{-k,k}} \\ &\qquad \qquad \qquad \times [2(m_{-k+2,k-2} + 1)] \widetilde{P}_{\theta}(\mathfrak{m} - \langle -k+2,k \rangle + \langle -k+2,k-2 \rangle) \\ &\qquad \qquad \qquad \qquad \qquad \qquad \times \widetilde{P}_{\theta}(\mathfrak{m} - \langle k \rangle) \end{split}$$

Proof. We shall divide \mathfrak{m} into

$$\mathfrak{m} = \mathfrak{m}_1 + \mathfrak{m}_2 + \mathfrak{m}_3$$

where $\mathfrak{m}_1 = \sum_{i \leqslant j,j > k} m_{i,j} \langle i,j \rangle$ and $\mathfrak{m}_2 = \sum_{i \leqslant k} m_{i,k} \langle i,k \rangle$ and $\mathfrak{m}_3 = \sum_{i \leqslant j < k} m_{i,j} \langle i,j \rangle$. By (2.3) and Proposition 3.17, we have

$$\begin{split} E_{-k}\widetilde{P}_{\theta}(\mathfrak{m}) &= \left(\left(e'_{-k}P_{\theta}(\mathfrak{m}_{1}) \right) P_{\theta}(\mathfrak{m}_{2} + \mathfrak{m}_{3}) \right. \\ &\left. \left. + \left(\operatorname{Ad}(t_{-k})P_{\theta}(\mathfrak{m}_{1}) \right) \left(e'_{-k}P_{\theta}(\mathfrak{m}_{2} + \mathfrak{m}_{3}) \right) \right. \\ &\left. + \left. \operatorname{Ad}(t_{-k}) \left\{ P_{\theta}(\mathfrak{m}_{1}) \left(e_{k}^{*}P_{\theta}(\mathfrak{m}_{2}) \right) \operatorname{Ad}(t_{k}) P_{\theta}(\mathfrak{m}_{3}) \right\} \right) \widetilde{\phi}. \end{split}$$

By Proposition 3.17, the first term is

$$(3.8) \qquad (e'_{-k}P_{\theta}(\mathfrak{m}_{1}))P_{\theta}(\mathfrak{m}_{2} + \mathfrak{m}_{3}) \\ = (1 - q^{2}) \sum_{\ell > k} q^{1 + \sum_{\ell' \geqslant \ell} (m_{-k+2,\ell'} - m_{-k,\ell'})} \\ \times [m_{-k+2,\ell} + 1]P_{\theta}(\mathfrak{m} - \langle -k, \ell \rangle + \langle -k + 2, \ell \rangle).$$

The second term is

$$(\mathrm{Ad}(t_{-k})P_{\theta}(\mathfrak{m}_{1}))(e'_{-k}P_{\theta}(\mathfrak{m}_{2}+\mathfrak{m}_{3}))$$

$$=q^{\sum_{\ell>k}(m_{-k+2,\ell}-m_{-k,\ell})}\frac{[m_{-k,k}][m_{-k+2,k}+1]}{[2m_{-k,k}]}$$

$$\times (1-q^{2})q^{1-m_{-k,k}+m_{-k+2,k}}P_{\theta}(\mathfrak{m}-\langle -k,k\rangle+\langle -k+2,k\rangle).$$

Let us calculate the last part of (3.7). We have

$$\begin{split} \operatorname{Ad}(t_{-k}) \Big(P_{\theta}(\mathfrak{m}_{1}) \big(e_{k}^{*} P_{\theta}(\mathfrak{m}_{2}) \big) \operatorname{Ad}(t_{k}) P_{\theta}(\mathfrak{m}_{3}) \Big) \\ &= q^{\sum_{\ell} (m_{-k+2,\ell} - m_{-k,\ell}) + \sum_{i \leqslant k-2} m_{i,k-2} - \delta_{k=1}} P_{\theta}(\mathfrak{m}_{1}) \big(e_{k}^{*} P_{\theta}(\mathfrak{m}_{2}) \big) P_{\theta}(\mathfrak{m}_{3}). \end{split}$$

We have

$$\begin{split} e_k^*P_\theta(\mathfrak{m}_2) &= q^{1-m_k - \sum\limits_{i < k} m_{i,k}} P_\theta(\mathfrak{m}_2 - \langle k \rangle) \\ &+ (1-q^2) \sum\limits_{-k < i < k} q^{1-m_{i,k} - \sum\limits_{i' < i} m_{i',k}} P_\theta(\mathfrak{m}_2 - \langle i,k \rangle) \langle i,k-2 \rangle \\ &+ \frac{[m_{-k,k}]}{[2m_{-k,k}]} (1-q^2) q^{1-m_{-k,k}} P(\mathfrak{m}_2 - \langle -k,k \rangle) \langle -k,k-2 \rangle. \end{split}$$

For -k < i < k, we have

$$\begin{split} \langle i, k-2 \rangle P_{\theta}(\mathfrak{m}_{3}) \\ &= q^{-\sum\limits_{i'>i} m_{i',k-2}} [(1+\delta_{i=-k+2})(m_{i,k-2}+1)] P_{\theta}(\mathfrak{m}_{3}+\langle i, k-2 \rangle). \end{split}$$

By Lemma 3.16, we have

$$\begin{split} \langle -k, k-2 \rangle P_{\theta}(\mathfrak{m}_{3}) \widetilde{\phi} \\ &= q^{-\sum\limits_{-k+2 \leqslant k \leqslant k-2} m_{i,k-2}} P_{\theta}(\mathfrak{m}_{3}) \langle -k, k-2 \rangle \widetilde{\phi} \\ &= q^{-\sum\limits_{-k+2 \leqslant k \leqslant k-2} m_{i,k-2} - \delta_{k \neq 1}} P_{\theta}(\mathfrak{m}_{3}) \langle -k+2, k \rangle \widetilde{\phi} \\ &= q^{-m_{-k+2,k-2} - \sum\limits_{-k+2 \leqslant i \leqslant k-2} m_{i,k-2} - \delta_{k \neq 1}} \langle -k+2, k \rangle P_{\theta}(\mathfrak{m}_{3}) \widetilde{\phi}. \end{split}$$

Hence we obtain

$$\begin{split} P_{\theta}(\mathfrak{m}_{1}) \left(e_{k}^{*} P_{\theta}(\mathfrak{m}_{2}) \right) P_{\theta}(\mathfrak{m}_{3}) \widetilde{\phi} \\ &= q^{1 - \sum\limits_{i \leqslant k} m_{i,k}} \widetilde{P}_{\theta}(\mathfrak{m} - \langle k \rangle) \\ &+ (1 - q^{2}) \sum_{-k+2 < i \leqslant k-2} q^{1 - \sum\limits_{i' \leqslant i} m_{i',k} - \sum\limits_{i' > i} m_{i',k-2}} \\ &\qquad \qquad \times [m_{i,k-2} + 1] \widetilde{P}_{\theta}(\mathfrak{m} - \langle i,k \rangle + \langle i,k-2 \rangle) \\ &+ (1 - q^{2}) \delta_{k \neq 1} q^{1 - m_{-k,k} - m_{-k+2,k} - \sum\limits_{-k+2 \leqslant i} m_{i,k-2}} \\ &\qquad \qquad \times [2(m_{-k+2,k-2} + 1)] \widetilde{P}_{\theta}(\mathfrak{m} - \langle -k+2,k \rangle + \langle -k+2,k-2 \rangle) \\ &+ (1 - q^{2}) q^{2(1 - m_{-k,k}) - m_{-k+2,k-2} - \sum\limits_{-k+2 \leqslant i \leqslant k-2} m_{i,k-2} - \delta_{k \neq 1}} \\ &\qquad \qquad \times \frac{[m_{-k+2,k} + 1][m_{-k,k}]}{[2m_{-k,k}]} P(\mathfrak{m} - \langle -k,k \rangle + \langle -k+2,k \rangle). \end{split}$$

Hence the coefficient of $\widetilde{P}_{\theta}(\mathfrak{m} - \langle k \rangle)$ in $E_{-k}\widetilde{P}_{\theta}(\mathfrak{m})$ is

$$q^{\ell} = q^{(m_{-k+2,\ell} - m_{-k,\ell}) + \sum_{i \leqslant k-2} m_{i,k-2} - \delta_{k=1} + 1 - \sum_{i \leqslant k} m_{i,k}} = q^{\ell > k} (m_{-k+2,\ell} - m_{-k,\ell}) - 2m_{-k,k} + \delta_{k \neq 1} \left(1 - m_{k,k} + 2m_{-k+2,k-2} + \sum_{-k+2 < i \leqslant k-2} (m_{i,k-2} - m_{i,k}) \right)}.$$

The coefficient of $\widetilde{P}_{\theta}(\mathfrak{m} - \langle -k, k \rangle + \langle -k+2, k \rangle)$ in $E_{-k}\widetilde{P}_{\theta}(\mathfrak{m})$ is

$$(1-q^{2})q^{1+\sum\limits_{\ell\geqslant k}(m_{-k+2,\ell}-m_{-k,\ell})}\frac{[m_{-k,k}][m_{-k+2,k}+1]}{[2m_{-k,k}]}$$

$$+q^{\sum\limits_{\ell}(m_{-k+2,\ell}-m_{-k,\ell})+\sum\limits_{i\leqslant k-2}m_{i,k-2}-\delta_{k=1}+2(1-m_{-k,k})-m_{-k+2,k-2}-\sum\limits_{-k+2\leqslant i\leqslant k-2}m_{i,k-2}-\delta_{k\neq 1}}{\times(1-q^{2})\frac{[m_{-k+2,k}+1][m_{-k,k}]}{[2m_{-k,k}]}}$$

$$=(1-q^{2})q^{1+\sum\limits_{\ell\geqslant k}(m_{-k+2,\ell}-m_{-k,\ell})}\frac{[m_{-k,k}][m_{-k+2,k}+1]}{[2m_{-k,k}]}(1+q^{-2m_{-k,k}})$$

$$=(1-q^{2})q^{1-m_{-k,k}+\sum\limits_{\ell\geqslant k}(m_{-k+2,\ell}-m_{-k,\ell})}[m_{-k+2,k}+1]$$

$$=(1-q^{2})q^{1+m_{-k+2,k}-2m_{-k,k}+\sum\limits_{\ell\geqslant k}(m_{-k+2,\ell}-m_{-k,\ell})}[m_{-k+2,k}+1]$$

$$=(1-q^{2})q^{1+m_{-k+2,k}-2m_{-k,k}+\sum\limits_{\ell\geqslant k}(m_{-k+2,\ell}-m_{-k,\ell})}[m_{-k+2,k}+1].$$

For $-k+2 < i \le k-2$, the coefficient of $\widetilde{P}_{\theta}(\mathfrak{m} - \langle i, k \rangle + \langle i, k-2 \rangle)$ in $E_{-k}\widetilde{P}_{\theta}(\mathfrak{m})$ is

$$\begin{aligned} &(1-q^2)q^{\ell} &(m_{-k+2,\ell}-m_{-k,\ell}) + \sum\limits_{i'\leqslant k-2} m_{i',k-2} - \delta_{k=1} + 1 - \sum\limits_{i'\leqslant i} m_{i',k} - \sum\limits_{i'>i} m_{i',k-2} \\ &= (1-q^2) \\ &= (1-q^2) \\ & \stackrel{1+\sum\limits_{\ell>k} (m_{-k+2,\ell}-m_{-k,\ell}) + 2m_{-k+2,k-2} - 2m_{-k,k} + \sum\limits_{-k+2 < i'\leqslant i} (m_{i,k-2}-m_{i',k})}{-k+2 < i'\leqslant i} \\ &\times q^{l} & [m_{i,k-2}+1]. \end{aligned}$$

Finally, for $k \neq 1$, the coefficient of $\widetilde{P}_{\theta}(\mathfrak{m} - \langle -k+2, k \rangle + \langle -k+2, k-2 \rangle)$ in $E_{-k}\widetilde{P}_{\theta}(\mathfrak{m})$ is

$$\begin{split} &(1-q^2)q^{\sum\limits_{\ell}(m_{-k+2,\ell}-m_{-k,\ell})+\sum\limits_{i\leqslant k-2}m_{i,k-2}-\delta_{k=1}+1-m_{-k,k}-m_{-k+2,k}-\sum\limits_{-k+2< i}m_{i,k-2}}\\ &\qquad \qquad \times[2(m_{-k+2,k-2}+1)]\\ &=(1-q^2)q^{1+\sum\limits_{\ell>k}(m_{-k+2,\ell}-m_{-k,\ell})+2m_{-k+2,k-2}-2m_{-k,k}}[2(m_{-k+2,k-2}+1)]. \end{split}$$

Theorem 3.23. For k > 0 and $\mathfrak{m} \in \mathcal{M}_{\theta}$, we have

$$\begin{split} E_k \widetilde{P}_{\theta}(\mathfrak{m}) &= \sum_{\ell > k} (1 - q^2) q^{1 + \sum_{\ell' \geqslant \ell} (m_{k+2,\ell'} - m_{k,\ell'})} \\ & \times [m_{k+2,\ell} + 1] \widetilde{P}_{\theta}(\mathfrak{m} - \langle k, \ell \rangle + \langle k + 2, \ell \rangle) \\ & + q^{1 + \sum_{\ell > k} (m_{k+2,\ell} - m_{k,\ell}) - m_{k,k}} \widetilde{P}_{\theta}(\mathfrak{m} - \langle k \rangle), \\ F_k \widetilde{P}_{\theta}(\mathfrak{m}) &= \sum_{\ell \geqslant k} q^{\sum_{\ell' > \ell} (m_{k+2,\ell'} - m_{k,\ell'})} [m_{k,\ell} + 1] \widetilde{P}_{\theta}(\mathfrak{m} - \delta_{\ell \neq k} \langle k + 2, \ell \rangle + \langle k, \ell \rangle). \end{split}$$

Proof. The first follows from $e_{-k}^* P_{\theta}(\mathfrak{m}) = 0$ and Proposition 3.17, and the second follows from Proposition 3.20.

§4. Crystal Basis of $V_{\theta}(0)$

§4.1. A criterion for crystals

We shall give a criterion for a basis to be a crystal basis. Although we treat the case for modules over $\mathcal{B}(\mathfrak{g})$ in this paper, similar results hold also for $U_q(\mathfrak{g})$.

Let $\mathbf{K}[e, f]$ be the ring generated by e and f with the defining relation $ef = q^{-2}fe + 1$. We define the divided power by $f^{(n)} = f^n/[n]!$.

Let P be a free \mathbb{Z} -module, and let α be a non-zero element of P.

Let M be a $\mathbf{K}[e,f]$ -module. Assume that M has a weight decomposition $M=\oplus_{\xi\in P}M_{\xi}$, and $eM_{\lambda}\subset M_{\lambda+\alpha}$ and $fM_{\lambda}\subset M_{\lambda-\alpha}$.

Assume the following finiteness conditions:

(4.1) for any
$$\lambda \in P$$
, dim $M_{\lambda} < \infty$ and $M_{\lambda + n\alpha} = 0$ for $n \gg 0$.

Hence for any $u \in M$, we can write $u = \sum_{n \geq 0} f^{(n)} u_n$ with $eu_n = 0$. We define endomorphisms \tilde{e} and \tilde{f} of M by

$$\tilde{e}u = \sum_{n \geqslant 1} f^{(n-1)}u_n,$$
$$\tilde{f}u = \sum_{n \geqslant 0} f^{(n+1)}u_n.$$

Let B be a crystal with weight decomposition by P. In this paper, we consider only the following type of crystals. We have wt: $B \to P$, $\tilde{f}: B \to B$, $\tilde{e}: B \to B \sqcup \{0\}$, $\varepsilon: B \to \mathbb{Z}_{\geq 0}$ satisfying the following properties, where $B_{\lambda} := \text{wt}^{-1}(\lambda)$:

- (i) $\tilde{f}B_{\lambda} \subset B_{\lambda-\alpha}$ and $\tilde{e}B_{\lambda} \subset B_{\lambda+\alpha} \sqcup \{0\}$ for any $\lambda \in P$,
- (ii) $\tilde{f}\tilde{e}(b) = b$ if $\tilde{e}b \neq 0$, and $\tilde{e} \circ \tilde{f} = \mathrm{id}_B$,
- (iii) for any $\lambda \in P$, B_{λ} is a finite set and $B_{\lambda+n\alpha} = \emptyset$ for $n \gg 0$,
- (iv) $\varepsilon(b) = \max\{n \ge 0 \mid \tilde{e}^n b \ne 0\}$ for any $b \in B$.

Set $\operatorname{ord}(a) = \sup \{ n \in \mathbb{Z} \mid a \in q^n \mathbf{A}_0 \}$ for $a \in \mathbf{K}$. We understand $\operatorname{ord}(0) = \infty$.

Let $\{C(b)\}_{b\in B}$ be a system of generators of M with $C(b)\in M_{\mathrm{wt}(b)}$: $M=\sum_{b\in B}\mathbf{K}C(b)$.

Let ξ be a map from B to an ordered set. Let $c: \mathbb{Z} \to \mathbb{R}$, $f: \mathbb{Z} \to \mathbb{R}$ and $e: \mathbb{Z} \to \mathbb{R}$. Assume that a decomposition $B = B' \cup B''$ is given.

Assume that we have expressions:

(4.2)
$$eC(b) = \sum_{b' \in B} E_{b,b'}C(b'),$$

(4.3)
$$fC(b) = \sum_{b' \in B} F_{b,b'}C(b').$$

Now consider the following conditions for these data, where $\ell=\varepsilon(b)$ and $\ell'=\varepsilon(b')$:

$$(4.4)$$
 $c(0) = 0$, and $c(n) > 0$ for $n \neq 0$,

$$(4.5) \quad c(n) \leqslant n + c(m+n) + e(m) \quad \text{for } n \geqslant 0,$$

$$(4.6) \quad c(n) \leqslant c(m+n) + f(m) \quad \text{for } n \leqslant 0,$$

$$(4.7)$$
 $c(n) + f(n) > 0$ for $n > 0$,

$$(4.8)$$
 $c(n) + e(n) > 0$ for $n > 0$,

(4.9)
$$\operatorname{ord}(F_{b,b'}) \ge -\ell + f(\ell + 1 - \ell'),$$

$$(4.10) \operatorname{ord}(E_{b,b'}) \ge 1 - \ell + e(\ell - 1 - \ell'),$$

(4.11)
$$F_{b,\tilde{f}b} \in q^{-\ell}(1+q\mathbf{A}_0),$$

(4.12)
$$E_{b,\tilde{e}b} \in q^{1-\ell}(1+q\mathbf{A}_0)$$
 if $\ell > 0$,

$$(4.13) \operatorname{ord}(F_{b,b'}) > -\ell + f(\ell + 1 - \ell') \quad \text{if } b' \neq \tilde{f}b, \, \xi(\tilde{f}b) \not> \xi(b'),$$

$$(4.14) \text{ ord}(F_{b,b'}) > -\ell + f(\ell + 1 - \ell') \text{ if } \tilde{f}b \in B', b' \neq \tilde{f}b \text{ and } \ell \leqslant \ell' - 1,$$

$$(4.15) \text{ ord}(E_{b,b'}) > 1 - \ell + e(\ell - 1 - \ell') \text{ if } b \in B'', b' \neq \tilde{e}b \text{ and } \ell \leqslant \ell' + 1.$$

Theorem 4.1. Assume the conditions (4.4)–(4.15). Let L be the \mathbf{A}_0 -submodule $\sum_{b \in B} \mathbf{A}_0 C(b)$ of M. Then we have $\tilde{e}L \subset L$ and $\tilde{f}L \subset L$. Moreover we have

$$\tilde{e}C(b) \equiv C(\tilde{e}b) \mod qL$$
 and $\tilde{f}C(b) \equiv C(\tilde{f}b) \mod qL$ for any $b \in B$.

Here we understand C(0) = 0.

We shall divide the proof into several steps.

Write

$$C(b) = \sum_{n \ge 0} f^{(n)} C_n(b) \quad \text{with } eC_n(b) = 0.$$

Set

$$L_0 = \sum_{b \in B, \ n \geqslant 0} \mathbf{A}_0 f^{(n)} C_0(b).$$

Set for $u \in M$, $\operatorname{ord}(u) = \sup \{ n \in \mathbb{Z} \mid u \in q^n L_0 \}$. If u = 0 we set $\operatorname{ord}(u) = \infty$, and if $u \notin \bigcup_{n \in \mathbb{Z}} q^n L_0$, then $\operatorname{ord}(u) = -\infty$.

We shall use the following two recursion formulas (4.16) and (4.17). We have

$$eC(b) = \sum_{n \ge 1} q^{1-n} f^{(n-1)} C_n(b)$$
$$= \sum_{n \ge 0} E_{b,b'} f^{(n)} C_n(b').$$

Hence we have

(4.16)
$$C_n(b) = \sum_{b' \in B_{\lambda + \alpha}} q^{n-1} E_{b,b'} C_{n-1}(b') \text{ for } n > 0 \text{ and } b \in B_{\lambda}.$$

If $\ell := \varepsilon(b) > 0$, then we have

$$fC(\tilde{e}b) = \sum_{b' \in B, \ n \geqslant 0} F_{\tilde{e}b,b'} f^{(n)} C_n(b')$$
$$= \sum_{n > 0} [n+1] f^{(n+1)} C_n(\tilde{e}b).$$

Hence, we have by (4.11)

$$\begin{array}{l} \delta_{n \neq 0}[n] C_{n-1}(\tilde{e}b) = \sum_{b'} F_{\tilde{e}b,b'} C_n(b') \\ \in q^{1-\ell} (1+q\mathbf{A}_0) C_n(b) + \sum_{b' \neq b} F_{\tilde{e}b,b'} C_n(b'). \end{array}$$

Therefore we obtain

$$(4.17) \quad C_n(b) \in \delta_{n \neq 0}(1 + q\mathbf{A}_0)q^{\ell-n}C_{n-1}(\tilde{e}b) + \sum_{b' \neq b} q^{\ell-1}\mathbf{A}_0 F_{\tilde{e}b,b'}C_n(b')$$
if $\ell \searrow$

Lemma 4.2. ord $(C_n(b)) \ge c(n-\ell)$ for any $n \in \mathbb{Z}_{\ge 0}$ and $b \in B$, where $\ell := \varepsilon(b)$.

Proof. For $\lambda \in P$, we shall show the assertion for $b \in B_{\lambda}$ by the induction on $\sup \{n \in \mathbb{Z} \mid M_{\lambda + n\alpha} \neq 0\}$. Hence we may assume

(4.18)
$$\operatorname{ord}(C_n(b)) \geqslant c(n-\ell) \text{ for any } n \in \mathbb{Z}_{\geqslant 0} \text{ and } b \in B_{\lambda+\alpha}.$$

(i) Let us first show $C_n(b) \in \mathbf{K}L_0$.

Since it is trivial for n = 0, assume that n > 0. Since $C_{n-1}(b') \in \mathbf{K}L_0$ for $b' \in B_{\lambda+\alpha}$ by the induction assumption (4.18), we have $C_n(b) \in \mathbf{K}L_0$ by (4.16).

(ii) Let us show that $\operatorname{ord}(C_n(b)) \geqslant c(n-\ell)$ for $n \geqslant \ell$.

If n=0, then $\ell=0$ and the assertion is trivial by (4.4). Hence we may assume that n>0.

We shall use (4.16). For $b' \in B_{\lambda+\alpha}$, we have

$$\operatorname{ord}(C_{n-1}(b')) \geqslant c(n-1-\ell')$$
 where $\ell' = \varepsilon(b')$

by the induction hypothesis (4.18). On the other hand, $\operatorname{ord}(E_{b,b'}) \ge 1 - \ell + e(\ell - 1 - \ell')$ by (4.10). Hence,

$$\operatorname{ord}(q^{n-1}E_{b,b'}C_{n-1}(b')) \ge (n-1) + (1 - \ell + e(\ell - 1 - \ell')) + c(n-1 - \ell')$$

$$= (n-\ell) + e(\ell - 1 - \ell') + c((n-\ell) + (\ell - 1 - \ell'))$$

$$\ge c(n-\ell)$$

by (4.5).

(iii) In the general case, let us set

$$r = \min \left\{ \operatorname{ord}(C_n(b)) - c(n - \varepsilon(b)) \mid b \in B_\lambda, \ n \geqslant 0 \right\} \in \mathbb{R} \cup \{\infty\}.$$

Assuming r < 0, we shall prove

$$\operatorname{ord}(C_n(b)) > c(n-\ell) + r$$
 for any $b \in B_{\lambda}$,

which leads a contradiction.

By the induction on $\xi(b)$, we may assume that

(4.19) if
$$\xi(b') < \xi(b)$$
, then $\operatorname{ord}(C_n(b')) > c(n - \ell') + r$ where $\ell' := \varepsilon(b')$.

By (ii), we may assume that $n < \ell$. Hence $\tilde{e}b \in B$. By the induction hypothesis (4.18), we have $\operatorname{ord}(q^{\ell-n}C_{n-1}(\tilde{e}b)) \geqslant \ell - n + c((n-1) - (\ell-1)) \geqslant c(n-\ell) > c(n-\ell) + r$. By (4.17), it is enough to show

$$\operatorname{ord}(q^{\ell-1}F_{\tilde{e}b,b'}C_n(b')) > c(n-\ell) + r \quad \text{for } b' \neq b.$$

We shall divide its proof into two cases.

(a) $\xi(b') < \xi(b)$.

In this case, (4.19) implies $\operatorname{ord}(C_n(b')) > c(n-\ell') + r$. Hence

$$\operatorname{ord}(q^{\ell-1}F_{\tilde{e}b,b'}C_n(b')) > (\ell-1) + (1-\ell+f(\ell-\ell')) + c(n-\ell') + r$$

= $f(\ell-\ell') + c((n-\ell) + (\ell-\ell')) + r \ge c(n-\ell) + r$

by (4.9) and (4.6).

(b) Case $\xi(b') \not< \xi(b)$.

In this case, $\operatorname{ord}(F_{\tilde{e}b,b'}) > 1 - \ell + f(\ell - \ell')$ by (4.13), and $\operatorname{ord}(C_n(b')) \geqslant c(n - \ell') + r$. Hence,

$$\operatorname{ord}(q^{\ell-1}F_{\tilde{e}b,b'}C_n(b')) > (\ell-1) + (1-\ell+f(\ell-\ell')) + c(n-\ell') + r$$

= $f(\ell-\ell') + c((n-\ell) + (\ell-\ell')) + r \ge c(n-\ell) + r$.

Lemma 4.3. ord
$$(C_{\ell}(b) - C_{\ell-1}(\tilde{e}b)) > 0$$
 for $\ell := \varepsilon(b) > 0$.

Proof.

We divide the proof into two cases: $b \in B'$ and $b \in B''$.

(i) $b \in B'$.

By (4.17), it is enough to show

$$\operatorname{ord}(q^{\ell-1}F_{\tilde{e}b,b'}C_{\ell}(b')) > 0 \quad \text{for } b' \neq b.$$

(a) Case $\ell > \ell' := \varepsilon(b')$.

We have

$$\operatorname{ord}(q^{\ell-1}F_{\tilde{e}b,b'}C_{\ell}(b')) \geqslant (\ell-1) + (1-\ell+f(\ell-\ell')) + c(\ell-\ell') > 0$$

by (4.7).

(b) Case $\ell \leqslant \ell'$.

We have
$$\operatorname{ord}(F_{\tilde{e}b,b'}) > 1 - \ell + f(\ell - \ell')$$
 by (4.14). Hence
$$\operatorname{ord}(q^{\ell-1}F_{\tilde{e}b,b'}C_{\ell}(b')) > (\ell-1) + (1 - \ell + f(\ell - \ell')) + c(\ell - \ell') \geqslant 0$$
 by (4.6) with $n = 0$.

- by (4.0) with n =
- (ii) Case $b \in B''$.

We use (4.16). By (4.12), it is enough to show that

$$\operatorname{ord}(q^{\ell-1}E_{b,b'}C_{\ell-1}(b')) > 0 \text{ for } b' \neq \tilde{e}b.$$

- (a) Case $\ell 1 > \ell'$. $\operatorname{ord}(q^{\ell-1}E_{b,b'}C_{\ell-1}(b')) \ge e(\ell - 1 - \ell') + c(\ell - 1 - \ell') > 0$ by (4.10) and (4.8).
- (b) Case $\ell 1 \leq \ell'$. ord $(E_{b,b'}) > 1 - \ell + e(\ell - 1 - \ell')$ by (4.15), and ord $(q^{\ell - 1}E_{b,b'}C_{\ell - 1}(b')) > e(\ell - 1 - \ell') + c(\ell - 1 - \ell') \geq 0$ by (4.5) with n = 0.

Hence we have

$$\begin{split} C_n(b) &\equiv 0 \bmod q L_0 \quad \text{for } n \neq \ell := \varepsilon(b), \\ C_\ell(b) &\equiv C_0(\hat{\varepsilon}^\ell b) \bmod q L_0, \\ C(b) &\equiv f^{(\ell)} C_\ell(b) \bmod q L_0, \\ \tilde{f}C(b) &\equiv C(\tilde{f}b) \bmod q L_0, \\ \tilde{e}C(b) &\equiv C(\tilde{e}b) \bmod q L_0, \\ L_0 &:= \sum_{b \in B, \ n \geqslant 0} \mathbf{A}_0 f^{(n)} C_0(b) = \sum_{b \in B} \mathbf{A}_0 C(b). \end{split}$$

Indeed, the last equality follows from the fact that $\{C(b)\}_{b\in B}$ generates L_0/qL_0 . Thus we have completed the proof of Theorem 4.1.

The following is the special case where B' = B'' = B and $\xi(b) = \varepsilon(b)$.

Corollary 4.4. *Assume* (4.4)–(4.12) *and*

(4.20)
$$\operatorname{ord}(F_{b,b'}) > -\ell + f(1 + \ell - \ell') \quad \text{if } \ell < \ell' \text{ and } b' \neq \tilde{f}b,$$

(4.21)
$$\operatorname{ord}(E_{b,b'}) > 1 - \ell + e(\ell - 1 - \ell') \quad \text{if } \ell \leqslant \ell' + 1 \text{ and } b' \neq \tilde{e}b.$$

Then the assertions of Theorem 4.1 hold.

§4.2. Crystal structure on \mathcal{M}_{θ}

We shall define the crystal structure on \mathcal{M}_{θ} .

Definition 4.5. Suppose k > 0. For a θ -restricted multisegment $\mathfrak{m} = \sum_{-j \leq i \leq j} m_{i,j} \langle i, j \rangle$, we set

$$\varepsilon_{-k}(\mathfrak{m}) = \max \left\{ A_j^{(-k)}(\mathfrak{m}) \mid j \geqslant -k+2 \right\},$$

where

$$\begin{split} A_j^{(-k)}(\mathfrak{m}) &= \sum_{\ell \geqslant j} (m_{-k,\ell} - m_{-k+2,\ell+2}) \quad \text{for } j > k, \\ A_k^{(-k)}(\mathfrak{m}) &= \sum_{\ell > k} (m_{-k,\ell} - m_{-k+2,\ell}) + 2m_{-k,k} + \delta(m_{-k+2,k} \text{ is odd}), \\ A_j^{(-k)}(\mathfrak{m}) &= \sum_{\ell > k} (m_{-k,\ell} - m_{-k+2,\ell}) + 2m_{-k,k} - 2m_{-k+2,k-2} \\ &\qquad \qquad + \sum_{-k+2 < i \leqslant j+2} m_{i,k} - \sum_{-k+2 < i \leqslant j} m_{i,k-2} \\ &\qquad \qquad \qquad \text{for } -k+2 \leqslant i \leqslant k-2 \end{split}$$

(i) Let n_f be the smallest $\ell \geqslant -k+2$, with respect to the ordering $\cdots > k+2 > k > -k+2 > \cdots > k-2$, such that $\varepsilon_{-k}(\mathfrak{m}) = A_{\ell}^{(-k)}(\mathfrak{m})$. We define

$$\widetilde{F}_{-k}(\mathfrak{m}) = \begin{cases} \mathfrak{m} - \langle -k+2, n_f \rangle + \langle -k, n_f \rangle & \text{if } n_f > k, \\ \mathfrak{m} - \langle -k+2, k \rangle + \langle -k, k \rangle & \text{if } n_f = k \text{ and } m_{-k+2,k} \text{ is odd,} \\ \mathfrak{m} - \delta_{k \neq 1} \langle -k+2, k-2 \rangle & \text{if } n_f = k \text{ and } m_{-k+2,k} \text{ is even,} \\ + \langle -k+2, k \rangle & \text{if } n_f = k \text{ and } m_{-k+2,k} \text{ is even,} \\ \mathfrak{m} - \delta_{n_f \neq k-2} \langle n_f + 2, k-2 \rangle & \text{if } -k+2 \leqslant n_f \leqslant k-2. \end{cases}$$

(ii) If $\varepsilon_{-k}(\mathfrak{m}) = 0$, then $\widetilde{E}_{-k}(\mathfrak{m}) = 0$. If $\varepsilon_{-k}(\mathfrak{m}) > 0$, then let n_e be the largest $\ell \geqslant -k+2$, with respect to the above ordering, such that $\varepsilon_{-k}(\mathfrak{m}) = A_{\ell}^{(-k)}(\mathfrak{m})$. We define

$$\widetilde{E}_{-k}(\mathfrak{m}) = \begin{cases} \mathfrak{m} - \langle -k, n_e \rangle + \langle -k+2, n_e \rangle & \text{if } n_e > k, \\ \mathfrak{m} - \langle -k, k \rangle + \langle -k+2, k \rangle & \text{if } n_e = k \text{ and} \\ m_{-k+2,k} \text{ is even,} \end{cases}$$

$$\widetilde{E}_{-k}(\mathfrak{m}) = \begin{cases} \mathfrak{m} - \langle -k, k \rangle + \langle -k+2, k \rangle & \text{if } n_e = k \text{ and} \\ +\delta_{k+2,k} \text{ is even,} \end{cases}$$

$$\mathfrak{m} - \langle -k+2, k \rangle & \text{if } n_e = k \text{ and} \\ +\delta_{k+1} \langle -k+2, k-2 \rangle & m_{-k+2,k} \text{ is odd,} \end{cases}$$

$$\mathfrak{m} - \langle n_e + 2, k \rangle & \text{if } -k+2 \leqslant n_e \leqslant k-2.$$

$$+\delta_{n_e \neq k-2} \langle n_e + 2, k-2 \rangle & \text{if } -k+2 \leqslant n_e \leqslant k-2.$$

Remark 4.6. For $0 < k \in I$, the actions of \widetilde{E}_{-k} and \widetilde{F}_{-k} on $\mathfrak{m} \in \mathcal{M}_{\theta}$ are described by the following algorithm.

Step 1. Arrange segments in \mathfrak{m} of the form $\langle -k, j \rangle$ (j > k), $\langle -k+2, j \rangle$ (j > k), $\langle i, k \rangle$ $(-k \le i \le k)$, $\langle i, k-2 \rangle$ $(-k+2 \le i \le k-2)$ in the order

$$\cdots, \langle -k, k+2 \rangle, \langle -k+2, k+2 \rangle, \langle -k, k \rangle, \langle -k+2, k \rangle, \langle -k+2, k-2 \rangle, \\ \langle -k+4, k \rangle, \langle -k+4, k-2 \rangle, \cdots, \langle k-2, k \rangle, \langle k-2, k-2 \rangle, \langle k \rangle.$$

- Step 2. Write signatures for each segment contained in m by the following rules.
 - (i) If a segment is not $\langle -k+2,k \rangle$, then
 - For $\langle -k, k \rangle$, write --,
 - For $\langle -k, j \rangle$ with j > k, write -,
 - For $\langle -k+2, k-2 \rangle$ with k > 1, write ++,
 - For $\langle -k+2, j \rangle$ with j > k, write +,
 - For $\langle j, k \rangle$ with $-k + 2 < j \leq k$, write -,
 - For $\langle j, k-2 \rangle$ with $-k+2 < j \le k-2$, write +,
 - Otherwise, write no signature.
 - (ii) For segments $m_{-k+2,k}\langle -k+2,k\rangle$, if $m_{-k+2,k}$ is even, then write no signature, and if $m_{-k+2,k}$ is odd, then write -+.
- Step 3. In the resulting sequence of + and -, delete a subsequence of the form +- and keep on deleting until no such subsequence remains.

Then we obtain a sequence of the form $--\cdots-++\cdots+$.

- (1) $\varepsilon_{-k}(\mathfrak{m})$ is the total number of in the resulting sequence.
- (2) $\widetilde{F}_{-k}(\mathfrak{m})$ is given as follows:
 - (i) if the leftmost + corresponds to a segment $\langle -k+2, j \rangle$ for j > k, then replace it with $\langle -k, j \rangle$,
 - (ii) if the leftmost + corresponds to a segment $\langle j, k-2 \rangle$ for $-k+2 \leqslant j \leqslant k-2$, then replace it with $\langle j, k \rangle$,
 - (iii) if the leftmost + corresponds to segment $m_{-k+2,k}\langle -k+2,k\rangle$, then replace one of the segments with $\langle -k,k\rangle$,
 - (iv) if no + exists, add a segment $\langle k, k \rangle$ to \mathfrak{m} .
- (3) $\widetilde{E}_{-k}(\mathfrak{m})$ is given as follows:
 - (i) if the rightmost corresponds to a segment $\langle -k, j \rangle$ for $j \geq k$, then replace it with $\langle -k+2, j \rangle$,
 - (ii) if the rightmost corresponds to a segment $\langle j, k \rangle$ for -k+2 < j < k, then replace it with $\langle j, k-2 \rangle$,
 - (iii) if the rightmost corresponds to segments $m_{-k+2,k}\langle -k+2,k\rangle$, then replace one of the segment with $\langle -k+2,k-2\rangle$,
 - (iv) if the rightmost corresponds to a segment $\langle k,k \rangle$ for k>1, then delete it,
 - (v) if no exists, then $\widetilde{E}_{-k}(\mathfrak{m}) = 0$.

Example 4.7.

(1) We shall write $\{a,b\}$ for $a\langle -1,1\rangle + b\langle 1\rangle$. The following diagram is the part of the crystal graph of $B_{\theta}(0)$ that concerns only the 1-arrows and the (-1)-arrows.

$$\phi \xrightarrow{1} \{0, 1\} \xrightarrow{1} \{0, 2\} \xrightarrow{1} \{0, 3\} \xrightarrow{1} \{0, 4\} \xrightarrow{1} \{0, 5\} \cdots$$

$$\phi \xrightarrow{1} \{0, 1\} \xrightarrow{1} \{1, 0\} \xrightarrow{1} \{1, 1\} \xrightarrow{1} \{2, 0\} \xrightarrow{1} \{2, 1\} \cdots$$

Especially the part of (-1)-arrows is the following diagram.

$$\{0,2n\} \xrightarrow{-1} \{0,2n+1\} \xrightarrow{-1} \{1,2n\} \xrightarrow{-1} \{1,2n+1\} \xrightarrow{-1} \{2,2n\} \cdots$$

(2) The following diagram is the part of the crystal graph of $B_{\theta}(0)$ that concerns only the (-1)-arrows and the (-3)-arrows. This diagram is, as a graph, isomorphic to the crystal graph of A_2 .

(3) Here is the part of the crystal graph of $B_{\theta}(0)$ that concerns only the *n*-arrows and the (-n)-arrows for an odd integer $n \geqslant 3$:

$$\phi \xrightarrow[-n]{n} \langle n \rangle \xrightarrow[-n]{n} 2\langle n \rangle \xrightarrow[-n]{n} 3\langle n \rangle \xrightarrow[-n]{n} \cdots$$

Lemma 4.8. For $k \in I_{>0}$, the data \widetilde{E}_{-k} , \widetilde{F}_{-k} , ε_{-k} define a crystal structure on \mathcal{M}_{θ} , namely we have

- (i) $\widetilde{F}_{-k}\mathcal{M}_{\theta} \subset \mathcal{M}_{\theta} \text{ and } \widetilde{E}_{-k}\mathcal{M}_{\theta} \subset \mathcal{M}_{\theta} \sqcup \{0\},$
- (ii) $\widetilde{F}_{-k}\widetilde{E}_{-k}(\mathfrak{m}) = \mathfrak{m} \text{ if } \widetilde{E}_{-k}(\mathfrak{m}) \neq 0, \text{ and } \widetilde{E}_{-k} \circ \widetilde{F}_{-k} = \mathrm{id},$
- (iii) $\varepsilon_{-k}(\mathfrak{m}) = \max \left\{ n \geqslant 0 \mid \widetilde{E}_{-k}^n(\mathfrak{m}) \neq 0 \right\} \text{ for any } \mathfrak{m} \in \mathcal{M}_{\theta}.$

Proof. We shall first show that, for $\mathfrak{m}=\sum_{-j\leqslant i\leqslant j}m_{i,j}\langle i,j\rangle\in\mathcal{M}_{\theta},$ $\widetilde{F}_{-k}(\mathfrak{m})$ is θ -restricted, $\widetilde{E}_{-k}\widetilde{F}_{-k}(\mathfrak{m})=\mathfrak{m}$ and $\varepsilon_{-k}(\widetilde{F}_{-k}\mathfrak{m})=\varepsilon_{-k}(\mathfrak{m})+1$. Let $A_j:=A_j^{(-k)}(\mathfrak{m})$ $(j\geqslant -k+2)$ and let n_f be as in Definition 4.5. Set $\mathfrak{m}'=\widetilde{F}_{-k}\mathfrak{m}$. Let $A_j'=A_j^{(-k)}(\mathfrak{m}')$ and let n_e' be n_e for \mathfrak{m}' .

(i) Assume $n_f > k$. Since $A_{n_f} > A_{n_f-2} = A_{n_f} + m_{-k,n_f-2} - m_{-k+2,n_f}$, we have $m_{-k,n_f-2} < m_{-k+2,n_f}$. Hence $\mathfrak{m}' = \mathfrak{m} - \langle -k+2,n_f \rangle + \langle -k,n_f \rangle$ is θ -restricted. Then we have

$$A'_{j} = \begin{cases} A_{j} & \text{if } j > n_{f}, \\ A_{j} + 1 & \text{if } j = n_{f}, \\ A_{j} + 2 & \text{if } j < n_{f}. \end{cases}$$

Hence $\varepsilon_{-k}(\mathfrak{m}') = A_{n_f} + 1 = \varepsilon_{-k}(\mathfrak{m}) + 1$ and $n'_e = n_f$, which implies $\mathfrak{m} = \widetilde{E}_{-k}(\mathfrak{m}')$.

- (ii) Assume $n_f = k$.
 - (a) If $m_{-k+2,k}$ is odd, then $\mathfrak{m}' = \mathfrak{m} \langle -k+2,k \rangle + \langle -k,k \rangle$ is θ -restricted. We have

$$A'_{j} = \begin{cases} A_{j} & \text{if } j > k, \\ A_{j} + 1 & \text{if } j = k, \\ A_{j} + 2 & \text{if } j < k, \end{cases}$$

Hence $\varepsilon_{-k}(\mathfrak{m}') = \varepsilon_{-k}(\mathfrak{m}) + 1$ and $n'_e = k$, which implies $\mathfrak{m} = \widetilde{E}_{-k}(\mathfrak{m}')$.

(b) Assume that $m_{-k+2,k}$ is even. If $k \neq 1$, then $A_k > A_{-k+2} = A_k - 2m_{-k+2,k-2}$, and hence $m_{-k+2,k-2} > 0$. Therefore $\mathfrak{m}' = \mathfrak{m} - \delta_{k\neq 1} \langle -k+2,k-2 \rangle + \langle -k+2,k \rangle$ is θ -restricted. We have

$$A'_{j} = \begin{cases} A_{j} & \text{if } j > k, \\ A_{j} + 1 & \text{if } j = k, \\ A_{j} + 2 & \text{if } j < k. \end{cases}$$

Hence $\varepsilon_{-k}(\mathfrak{m}') = \varepsilon_{-k}(\mathfrak{m}) + 1$ and $n'_e = k$, which implies $\mathfrak{m} = \widetilde{E}_{-k}(\mathfrak{m}')$.

(iii) Assume $-k+2 \le n_f < k-2$. Since $A_{n_f} > A_{n_f+2} = A_{n_f} + m_{n_f+4,k} - m_{n_f+2,k-2}$, we have $m_{n_f+2,k-2} > m_{n_f+4,k}$. Hence $\mathfrak{m}' = \mathfrak{m} - \langle n_f + 2, k - 2 \rangle + \langle n_f + 2, k \rangle$ is θ -restricted. Then we have

$$A'_{j} = \begin{cases} A_{j} & \text{if } j > n_{f}, \\ A_{j} + 1 & \text{if } j = n_{f}, \\ A_{j} + 2 & \text{if } j < n_{f}. \end{cases}$$

(Here the ordering is as in Definition 4.5 (i).) Hence $\varepsilon_{-k}(\mathfrak{m}') = \varepsilon_{-k}(\mathfrak{m}) + 1$ and $n'_e = n_f$, which implies $\mathfrak{m} = \widetilde{E}_{-k}\mathfrak{m}'$.

(iv) Assume $n_f = k - 2$. It is obvious that $\mathfrak{m}' = \mathfrak{m} + \langle k \rangle$ is θ -restricted. We have

$$A'_{j} = \begin{cases} A_{j} & \text{if } j \neq n_{f}, \\ A_{j} + 1 & \text{if } j = n_{f}. \end{cases}$$

Hence $\varepsilon_{-k}(\mathfrak{m}') = \varepsilon_{-k}(\mathfrak{m}) + 1$ and $n'_e = n_f$, which implies $\mathfrak{m} = \widetilde{E}_{-k}(\mathfrak{m}')$.

Similarly, we can prove that if $\varepsilon_{-k}(\mathfrak{m}) > 0$, then $\widetilde{E}_{-k}(\mathfrak{m})$ is θ -restricted and $\widetilde{F}_{-k}\widetilde{E}_{-k}(\mathfrak{m}) = \mathfrak{m}$. Hence we obtain the desired results.

Definition 4.9. For $k \in I_{>0}$, we define \widetilde{F}_k , \widetilde{E}_k and ε_k by the same rule as in Definition 3.7 for \widetilde{f}_k , \widetilde{e}_k and ε_k .

Since it is well-known that it gives a crystal structure on \mathcal{M} , we obtain the following result.

Theorem 4.10. By \widetilde{F}_k , \widetilde{E}_k , ε_k $(k \in I)$, \mathcal{M}_{θ} is a crystal, namely, we have

- (i) $\widetilde{F}_k \mathcal{M}_{\theta} \subset \mathcal{M}_{\theta}$ and $\widetilde{E}_k \mathcal{M}_{\theta} \subset \mathcal{M}_{\theta} \sqcup \{0\},$
- (ii) $\widetilde{F}_k\widetilde{E}_k(\mathfrak{m}) = \mathfrak{m} \text{ if } \widetilde{E}_k(\mathfrak{m}) \neq 0, \text{ and } \widetilde{E}_k \circ \widetilde{F}_k = \mathrm{id},$
- (iii) $\varepsilon_k(\mathfrak{m}) = \max \left\{ n \geqslant 0 \mid \widetilde{E}_k^n(\mathfrak{m}) \neq 0 \right\} \text{ for any } \mathfrak{m} \in \mathcal{M}_{\theta}.$

The crystal \mathcal{M}_{θ} has a unique highest weight vector.

Lemma 4.11. If $\mathfrak{m} \in \mathcal{M}_{\theta}$ satisfies that $\varepsilon_k(\mathfrak{m}) = 0$ for any $k \in I$, then $\mathfrak{m} = \emptyset$. Here \emptyset is the empty multisegment. In particular, for any $\mathfrak{m} \in \mathcal{M}_{\theta}$, there exist $\ell \geqslant 0$ and $i_1, \ldots, i_{\ell} \in I$ such that $\mathfrak{m} = \widetilde{F}_{i_1} \cdots \widetilde{F}_{i_{\ell}} \emptyset$.

Proof. Assume $\mathfrak{m} \neq \emptyset$. Let k be the largest k such that $m_{k,j} \neq 0$ for some j. Then take the largest j such that $m_{k,j} \neq 0$. Then $j \geqslant |k|$. Moreover, we have $m_{k+2,\ell} = 0$ for any ℓ , and $m_{k,\ell} = 0$ for any $\ell > j$. Hence we have

$$A_j^{(k)}(\mathfrak{m}) = \begin{cases} 2m_{k,j} & \text{if } k = -j, \\ m_{k,j} & \text{otherwise.} \end{cases}$$

Hence $\varepsilon_k(\mathfrak{m}) \geqslant A_i^{(k)}(\mathfrak{m}) > 0$.

§4.3. Estimates of the order of coefficients

By applying Theorem 4.1, we shall show that $\{P_{\theta}(\mathfrak{m})\phi\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ is a crystal basis of $V_{\theta}(0)$ and its crystal structure coincides with the one given in § 4.2.

Let k be a positive odd integer. We define $c, f, e: \mathbb{Z} \to \mathbb{Q}$ by c(n) = |n/2| and f(n) = e(n) = n/2. Then the conditions (4.4)–(4.8) are obvious. Set $\xi(\mathfrak{m}) = (-1)^{m_{-k+2,k}} m_{-k,k}$ and

$$B'' = \{ \mathfrak{m} \in \mathcal{M}_{\theta} \mid -k+2 \leqslant n_e(\mathfrak{m}) < k \} \cup \{ \mathfrak{m} \in \mathcal{M}_{\theta} \mid m_{-k+2,k}(\mathfrak{m}) \text{ is odd} \},$$

$$B' = \mathcal{M}_{\theta} \setminus B''.$$

Here $n_e(\mathfrak{m})$ is n_e given in Definition 4.5 (ii). If $\varepsilon_{-k}(\mathfrak{m}) = 0$, then we understand $n_e(\mathfrak{m}) = \infty$.

We define $F_{\mathfrak{m},\mathfrak{m}'}^{-k}$ and $E_{\mathfrak{m},\mathfrak{m}'}^{-k}$ by the coefficients of the following expansion:

$$\begin{split} F_{-k}P_{\theta}(\mathfrak{m})\widetilde{\phi} &= \sum_{\mathfrak{m}'} F_{\mathfrak{m},\mathfrak{m}'}^{-k} P_{\theta}(\mathfrak{m}') \widetilde{\phi}, \\ E_{-k}P_{\theta}(\mathfrak{m})\widetilde{\phi} &= \sum_{\mathfrak{m}'} E_{\mathfrak{m},\mathfrak{m}'}^{-k} P_{\theta}(\mathfrak{m}') \widetilde{\phi}, \end{split}$$

as given in Theorems 3.21 and 3.22. Put $\ell = \varepsilon_{-k}(\mathfrak{m})$ and $\ell' = \varepsilon_{-k}(\mathfrak{m}')$.

Proposition 4.12. The conditions (4.9), (4.11), (4.13) and (4.14) are satisfied for \widetilde{E}_{-k} , \widetilde{F}_{-k} , ε_{-k} , namely, we have

(a) if
$$\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$$
, then $F_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{-\ell}(1+q\mathbf{A}_0)$,

(b) if
$$\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$$
, then $\operatorname{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) \geqslant -\ell + f(\ell + 1 - \ell') = -(\ell + \ell' - 1)/2$,

- (c) if $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$ and $\operatorname{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' 1)/2$, then the following two conditions hold:
 - (1) $\xi(\widetilde{F}_{-k}(\mathfrak{m})) > \xi(\mathfrak{m}'),$

(2)
$$\ell \geqslant \ell'$$
 or $\widetilde{F}_{-k}(\mathfrak{m}) \in B''$.

Proof. We shall write A_j for $A_j^{-k}(\mathfrak{m})$. Let n_f be as in Definition 4.5 (i). Note that $F_{\mathfrak{m},\widetilde{F}_{-k}(\mathfrak{m})}^{-k} \neq 0$.

If $F_{\mathfrak{m},\mathfrak{m}'}^{-k} \neq 0$, we have the following four cases. We shall use $[n] \in q^{1-n}(1+q\mathbf{A}_0)$ for n>0.

Case 1. $\mathfrak{m}' = \mathfrak{m} - \langle -k+2, n \rangle + \langle -k, n \rangle$ for n > k.

In this case, we have

$$F_{\mathfrak{m},\mathfrak{m}'}^{-k} = [m_{-k,n} + 1]q^{\sum_{j>n}(m_{-k+2,j} - m_{-k,j})} \in q^{-A_n}(1 + q\mathbf{A}_0)$$

and

$$\ell = \max\{A_j (j \ge -k + 2)\},\$$

$$\ell' = \max\{A_j (j > n), A_n + 1, A_j + 2 (j < n)\}.$$

If $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, then $\ell = A_n$ and we obtain (a). Assume $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$. Since $A_n \leqslant \ell, \ell' - 1$, we have $\operatorname{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -A_n \geqslant -(\ell + \ell' - 1)/2$. Hence we obtain (b). If $\operatorname{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then we have $A_n = \ell = \ell' - 1$. Since $A_j + 2 \leqslant \ell' = A_n + 1$ for j < n, we have $n_f = n$ and $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, which is a contradiction.

Case 2.
$$\mathfrak{m}' = \mathfrak{m} - \langle -k+2, k \rangle + \langle -k, k \rangle$$
.

In this case we have

$$F_{\mathfrak{m},\mathfrak{m}'}^{-k} = [2m_{-k,k} + 2]q^{\sum_{j>k}(m_{-k+2,j} - m_{-k,j})} \in q^{-A_k - \delta(\mathfrak{m}_{-k+2,k} \text{ is even})} (1 + q\mathbf{A}_0).$$

(i) Assume that $m_{-k+2,k}$ is odd. We have $F_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{-A_k}(1+q\mathbf{A}_0)$ and

$$\ell' = \max\{A_j \ (j > k), A_k + 1, A_j + 2 \ (j < k)\}.$$

If $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, then $\ell = A_k$ and (a) holds. Assume that $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$. We have $A_k \leq \ell, \ell' - 1$ and hence $\operatorname{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -A_k \geqslant -(\ell + \ell' - 1)/2$. If $\operatorname{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then $A_k = \ell = \ell' - 1$, and we have $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, which is a contradiction.

(ii) Assume that $m_{-k+2,k}$ is even. Then $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m}), F_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{-A_k-1}(1+q\mathbf{A}_0)$ and

$$\ell' = \max\{A_i \ (j > k), A_k + 3, A_j + 2 \ (j < k)\}.$$

We have $A_k \leq \ell, \ell' - 3$ and hence $\operatorname{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -A_k - 1 \geqslant -(\ell + \ell' - 1)/2$. Hence (b) holds. Let us show (c). Assume $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$, and

ord $(F_{\mathfrak{m},\mathfrak{m}'}^{-k})=-(\ell+\ell'-1)/2$. Then we have $A_k=\ell=\ell'-3$. Hence $n_f\leqslant k$ and we have either $\widetilde{F}_{-k}(\mathfrak{m})=\mathfrak{m}-\delta_{i\neq k}\langle i,k-2\rangle+\langle i,k\rangle$ with $-k+2< i\leqslant k$ or $\widetilde{F}_{-k}(\mathfrak{m})=\mathfrak{m}-\delta_{k\neq 1}\langle -k+2,k-2\rangle+\langle -k+2,k\rangle$. Hence we have $\xi(\widetilde{F}_{-k}(\mathfrak{m}))=\pm m_{-k,k}>-m_{-k,k}-1=\xi(\mathfrak{m}')$. Hence we obtain (c) (1).

- (1) Assume $\widetilde{F}_{-k}(\mathfrak{m}) = \mathfrak{m} \delta_{i \neq k} \langle i, k-2 \rangle + \langle i, k \rangle$ with $-k+2 < i \leqslant k$. Then $k \neq 1$ and $\widetilde{E}_{-k}(\widetilde{F}_{-k}(\mathfrak{m})) = \widetilde{F}_{-k}(\mathfrak{m}) \langle i, k \rangle + \delta_{i \neq k} \langle i, k-2 \rangle$. Hence $n_e(\widetilde{F}_{-k}(\mathfrak{m})) = i-2 < k$. Hence $\widetilde{F}_{-k}(\mathfrak{m}) \in B''$. Therefore we obtain (c) (2).
- (2) Assume $\widetilde{F}_{-k}(\mathfrak{m}) = \mathfrak{m} \delta_{k\neq 1} \langle -k+2, k-2 \rangle + \langle -k+2, k \rangle$. Then $m_{-k+2,k}(\widetilde{F}_{-k}(\mathfrak{m})) = m_{-k+2,k} + 1$ is odd. Hence $\widetilde{F}_{-k}(\mathfrak{m}) \in B''$.

Case 3. $\mathfrak{m}' = \mathfrak{m} - \delta_{k\neq 1} \langle -k+2, k-2 \rangle + \langle -k+2, k \rangle$. In this case, we have

$$\begin{split} F_{\mathfrak{m},\mathfrak{m}'}^{-k} &= [m_{-k+2,k}+1] q^{\sum_{j>k} (m_{-k+2,j}-m_{-k,j}) + m_{-k+2,k} - 2m_{-k,k}} \\ &\in q^{-A_k + \delta(m_{-k+2,k} \text{ is odd})} (1+q\mathbf{A}_0). \end{split}$$

(i) If $m_{-k+2,k}$ is odd, then $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$, $F_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{-A_k+1}(1+q\mathbf{A}_0)$, and

$$\ell' = \max\{A_j \ (j > k), A_k - 1, A_j + 2 \ (j < k)\}.$$

We have $A_k \leq \ell, \ell'+1$ and hence $\operatorname{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -A_k+1 \geqslant -(\ell+\ell'-1)/2$. If $\operatorname{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell+\ell'-1)/2$, then $A_k = \ell = \ell'+1$, and $n_f = k$. Hence we obtain (c) (2), and $\widetilde{F}_{-k}(\mathfrak{m}) = \mathfrak{m} - \langle -k+2, k \rangle + \langle -k, k \rangle$. Hence $\xi(\widetilde{F}_{-k}(\mathfrak{m})) = m_{-k,k} + 1 > m_{-k,k} = \xi(\mathfrak{m}')$. Hence we obtain (c) (1).

(ii) If $m_{-k+2,k}$ is even, then $F_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{-A_k}(1+q\mathbf{A}_0)$ and

$$\ell' = \max\{A_j \ (j > k), A_k + 1, A_j + 2 \ (j < k)\}.$$

If $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, then $\ell = A_k$ and (a) is satisfied. Assume $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$. We have $A_k \leqslant \ell, \ell' - 1$ and hence $\operatorname{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -A_k \geqslant -(\ell + \ell' - 1)/2$. If $\operatorname{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then $A_k = \ell = \ell' - 1$, and hence $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, which is a contradiction.

Case 4. $\mathfrak{m}' = \mathfrak{m} - \delta_{i \neq k} \langle i, k - 2 \rangle + \langle i, k \rangle$ for $-k + 2 < i \leq k$. We have

$$\begin{split} F_{\mathfrak{m},\mathfrak{m}'}^{-k} &= [m_{i,k}+1] \\ &\times q^{\sum_{j>k}(m_{-k+2,j}-m_{-k,j})+2m_{-k+2,k-2}-2m_{-k,k}+\sum_{-k+2< j< i}(m_{j,k-2}-m_{j,k})} \\ &\in q^{-A_{i-2}}(1+q\mathbf{A}_0), \end{split}$$

and

$$\ell' = \max\{A_i \ (j \ge k), A_i \ (j < i - 2), A_{i-2} + 1, A_i + 2 \ (i - 2 < j \le k - 2)\}.$$

If $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, then $\ell = A_{i-2}$ and (a) holds. Assume $\mathfrak{m}' \neq \widetilde{F}_{-k}(\mathfrak{m})$. Since $A_{i-2} \leq \ell, \ell' - 1$, we have $\operatorname{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -A_{i-2} \geqslant -(\ell + \ell' - 1)/2$. Hence we obtain (b). If $\operatorname{ord}(F_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then we have $A_{i-2} = \ell = \ell' - 1$. Hence $\mathfrak{m}' = \widetilde{F}_{-k}(\mathfrak{m})$, which is a contradiction.

Proposition 4.13. Suppose k > 0. The conditions (4.10), (4.12), and (4.15) hold, namely, we have

(a) if
$$\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$$
, then $E_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{1-\ell}(1+q\mathbf{A}_0)$,

(b) if
$$\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$$
, then $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) \geqslant 1 - \ell + e(\ell - 1 - \ell') = -(\ell + \ell' - 1)/2$,

(c) if
$$\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$$
, $\ell \leqslant \ell' + 1$ and $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then $b \notin B''$.

Proof. The proof is similar to the one of the above proposition.

We shall write A_j for $A_j^{-k}(\mathfrak{m})$. Let n_e be as in Definition 4.5 (ii).

Note that $E_{\mathfrak{m},\widetilde{E}_{-k}(\mathfrak{m})}^{-k} \neq 0$ if $\widetilde{E}_{-k}(\mathfrak{m}) \neq 0$. If $E_{\mathfrak{m},\mathfrak{m}'}^{-k} \neq 0$, we have the following five cases.

Case 1. $\mathfrak{m}' = \mathfrak{m} - \langle -k, n \rangle + \langle -k+2, n \rangle$ for n > k.

In this case, we have

$$E_{\mathfrak{m},\mathfrak{m}'}^{-k} = (1 - q^2)[m_{-k+2,n} + 1]q^{1 + \sum_{j \ge n}(m_{-k+2,j} - m_{-k,j})} \in q^{1 - A_n}(1 + q\mathbf{A}_0)$$

and

$$\ell = \max\{A_j (j \ge -k + 2)\},$$

$$\ell' = \max\{A_j (j > n), A_n - 1, A_j - 2 (j < n)\}.$$

If $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, then $\ell = A_n$ and we obtain (a). Assume $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$. Since $A_n \leqslant \ell, \ell' + 1$, we have $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = 1 - A_n \geqslant -(\ell + \ell' - 1)/2$. Hence we obtain (b). If $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then we have $A_n = \ell = \ell' + 1$. Since $A_j \leqslant \ell' = A_n - 1$ for j > n, we have $n_e = n$ and $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, which is a contradiction.

Case 2. $\mathfrak{m}' = \mathfrak{m} - \langle -k, k \rangle + \langle -k+2, k \rangle$.

In this case we have

$$\begin{split} E_{\mathfrak{m},\mathfrak{m}'}^{-k} &= (1-q^2)[m_{-k+2,k}+1]q^{1+\sum_{j>k}(m_{-k+2,j}-m_{-k,j})+m_{-k+2,k}-2m_{-k,k}} \\ &\in q^{1-A_k+\delta(\mathfrak{m}_{-k+2,k} \text{ is odd})}(1+q\mathbf{A}_0). \end{split}$$

(i) Assume that $m_{-k+2,k}$ is odd. Then $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m}), E_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{2-A_k}(1+q\mathbf{A}_0)$ and

$$\ell' = \max\{A_j \ (j > k), A_k - 3, A_j - 2 \ (j < k)\}.$$

We have $A_k \leq \ell, \ell' + 3$ and hence $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = 2 - A_k \geqslant -(\ell + \ell' - 1)/2$. Hence (b) holds. If $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then $A_k = \ell = \ell' + 3$. Hence $\ell > \ell' + 1$ and (c) holds.

(ii) Assume that $m_{-k+2,k}$ is even. Then $E_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{1-A_k}(1+q\mathbf{A}_0)$ and

$$\ell' = \max\{A_i \ (j > k), A_k - 1, A_j - 2 \ (j < k)\}.$$

If $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, then $\ell = A_k$, and we obtain (a). Assume $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$. We have $A_k \leq \ell, \ell' + 1$ and hence $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = 1 - A_k \geqslant -(\ell + \ell' - 1)/2$. If $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then $A_k = \ell = \ell' + 1$ and $n_e = k$. Hence $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, which is a contradiction.

Case 3. $\mathfrak{m}' = \mathfrak{m} - \langle -k+2, k \rangle + \delta_{k\neq 1} \langle -k+2, k-2 \rangle$. If $k \neq 1$, we have

$$E_{\mathfrak{m},\mathfrak{m}'}^{-k} = (1 - q^2)[2(m_{-k+2,k-2} + 1)]q^{1+\sum_{j>k}(m_{-k+2,j} - m_{-k,j}) + 2m_{-k+2,k-2} - 2m_{-k,k}}$$

$$\in q^{-A_k + \delta(m_{-k+2,k} \text{ is odd})}(1 + q\mathbf{A}_0).$$

If k = 1, we have

$$E_{\mathfrak{m},\mathfrak{m}'}^{-k} = q^{\sum_{j>k}(m_{-k+2,j}-m_{-k,j})-2m_{-k,k}} = q^{-A_k+\delta(m_{-k+2,k} \text{ is odd})}.$$

In the both cases, we have

$$E_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{-A_k + \delta(m_{-k+2,k} \text{ is odd})} (1 + q\mathbf{A}_0).$$

(i) If $m_{-k+2,k}$ is odd, then $E_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{1-A_k}(1+q\mathbf{A}_0)$ and

$$\ell' = \max\{A_j \ (j > k), A_k - 1, A_j - 2 \ (j < k)\}.$$

If $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, then $\ell = A_k$ and (a) is satisfied. We have $A_k \leq \ell, \ell' + 1$ and hence $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = 1 - A_k \geqslant -(\ell + \ell' - 1)/2$. Assume $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$. If $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then $A_k = \ell = \ell' + 1$, and $n_e = k$. Hence $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, which is a contradiction.

(ii) If $m_{-k+2,k}$ is even, then $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$, $E_{\mathfrak{m},\mathfrak{m}'}^{-k} \in q^{-A_k}(1+q\mathbf{A}_0)$, and

$$\ell' = \max\{A_j \ (j > k), A_k + 1, A_j - 2 \ (j < k)\}.$$

We have $A_k \leq \ell, \ell' - 1$ and hence $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -A_k \geqslant -(\ell + \ell' - 1)/2$. Hence we obtain (b). If $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then $A_k = \ell = \ell' - 1$. Hence $n_e(\mathfrak{m}) \geqslant k$ and $m_{-k+2,k}(\mathfrak{m})$ is even. Hence $\mathfrak{m} \notin B''$. Case 4. $\mathfrak{m}' = \mathfrak{m} - \langle i, k \rangle + \langle i, k - 2 \rangle$ for $-k + 2 < i \leqslant k - 2$. We have

$$\begin{split} E_{\mathfrak{m},\mathfrak{m}'}^{-k} &= (1-q^2)[m_{i,k-2}+1] \\ &\times q^{1+\sum_{j>k}(m_{-k+2,j}-m_{-k,j})+2m_{-k+2,k-2}-2m_{-k,k}+\sum_{-k+2< j\leqslant i}(m_{j,k-2}-m_{j,k})} \\ &\in q^{1-A_{i-2}}(1+q\mathbf{A}_0), \end{split}$$

and

$$\ell' = \max\{A_i \ (j \ge k), \ A_i \ (j < i - 2), \ A_{i-2} - 1, \ A_j - 2 \ (i \le j \le k - 2)\}.$$

If $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, then $\ell = A_{i-2}$ and (a) holds. Assume $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$. Since $A_{i-2} \leq \ell, \ell' + 1$, we have $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = 1 - A_{i-2} \geqslant -(\ell + \ell' - 1)/2$. Hence we obtain (b). If $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then we have $A_{i-2} = \ell = \ell' + 1$. Hence $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, which is a contradiction.

Case 5. $k \neq 1$ and $\mathfrak{m}' = \mathfrak{m} - \langle k \rangle$. In this case,

$$E_{\mathfrak{m},\mathfrak{m}'}^{-k} = q^{j>k} (m_{-k+2,j} - m_{-k,j}) - 2m_{-k,k} + 1 - m_{k,k} + 2m_{-k+2,k-2} + \sum_{-k+2 < i \leqslant k-2} (m_{i,k-2} - m_{i,k}) \\ \in q^{1-A_{k-2}} (1 + q\mathbf{A}_0),$$

and

$$\ell' = \max\{A_i \ (j \neq k - 2), A_{k-2} - 1\}.$$

If $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, then $\ell = A_{k-2}$ and (a) holds. Assume $\mathfrak{m}' \neq \widetilde{E}_{-k}(\mathfrak{m})$. Since $A_{k-2} \leq \ell, \ell' + 1$, we have $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = 1 - A_{k-2} \geqslant -(\ell + \ell' - 1)/2$. Hence we obtain (b). If $\operatorname{ord}(E_{\mathfrak{m},\mathfrak{m}'}^{-k}) = -(\ell + \ell' - 1)/2$, then we have $A_{k-2} = \ell = \ell' + 1$. Hence $\mathfrak{m}' = \widetilde{E}_{-k}(\mathfrak{m})$, which is a contradiction.

Proposition 4.14. Let $k \in I_{>0}$. Then the conditions in Corollary 4.4 holds for \widetilde{E}_k , \widetilde{F}_k and ε_k , with the same functions c, e, f.

Since the proof is similar to and simpler than the one of the preceding two propositions, we omit the proof.

As a corollary we have the following result. We write ϕ for the generator ϕ_0 of $V_{\theta}(0)$ for short.

Theorem 4.15.

(i) The morphism

$$\widetilde{V}_{\theta}(0) := U_q^-(\mathfrak{g}) / \sum_{k \in I} U_q^-(\mathfrak{g})(f_k - f_{-k}) \to V_{\theta}(0)$$

is an isomorphism.

- (ii) $\{P_{\theta}(\mathfrak{m})\phi\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ is a basis of the **K**-vector space $V_{\theta}(0)$.
- (iii) Set

$$L_{\theta}(0) := \sum_{\ell \geqslant 0, \ i_1, \dots, i_{\ell} \in I} \mathbf{A}_0 \widetilde{F}_{i_1} \cdots \widetilde{F}_{i_{\ell}} \phi \subset V_{\theta}(0),$$

$$B_{\theta}(0) = \left\{ \widetilde{F}_{i_1} \cdots \widetilde{F}_{i_{\ell}} \phi \operatorname{mod} q L_{\theta}(0) \mid \ell \geqslant 0, i_1, \dots, i_{\ell} \in I \right\}.$$

Then, $B_{\theta}(0)$ is a basis of $L_{\theta}(0)/qL_{\theta}(0)$ and $(L_{\theta}(0), B_{\theta}(0))$ is a crystal basis of $V_{\theta}(0)$, and the crystal structure coincides with the one of \mathcal{M}_{θ} .

- (iv) More precisely, we have
 - (a) $L_{\theta}(0) = \bigoplus_{\mathfrak{m} \in \mathcal{M}_{\theta}} \mathbf{A}_0 P_{\theta}(\mathfrak{m}) \phi$,
 - (b) $B_{\theta}(0) = \{ P_{\theta}(\mathfrak{m})\phi \mod qL_{\theta}(0) \mid \mathfrak{m} \in \mathcal{M}_{\theta} \},$
 - (c) for any $k \in I$ and $\mathfrak{m} \in \mathcal{M}_{\theta}$, we have
 - (1) $\widetilde{F}_k P_{\theta}(\mathfrak{m}) \phi \equiv P_{\theta}(\widetilde{F}_k(\mathfrak{m})) \phi \operatorname{mod} q L_{\theta}(0),$
 - (2) $\widetilde{E}_k P_{\theta}(\mathfrak{m}) \phi \equiv P_{\theta}(\widetilde{E}_k(\mathfrak{m})) \phi \operatorname{mod} q L_{\theta}(0),$ where we understand $P_{\theta}(0) = 0,$
 - (3) $\widetilde{E}_{k}^{n}P_{\theta}(\mathfrak{m})\phi \in qL_{\theta}(0)$ if and only if $n > \varepsilon_{k}(\mathfrak{m})$.

Proof. Let us recall that $P_{\theta}(\mathfrak{m})\phi \in V_{\theta}(0)$ is the image of $\widetilde{P}_{\theta}(\mathfrak{m}) \in \widetilde{V}_{\theta}(0)$. By Theorem 3.21, $\{\widetilde{P}_{\theta}(\mathfrak{m})\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ generates $\widetilde{V}_{\theta}(0)$. Let us set $\widetilde{L} = \sum_{\mathfrak{m}\in\mathcal{M}_{\theta}} \mathbf{A}_0 \widetilde{P}_{\theta}(\mathfrak{m}) \subset \widetilde{V}_{\theta}(0)$. Then Theorem 4.1 implies that

$$\widetilde{F}_k\widetilde{P}_{\theta}(\mathfrak{m}) \equiv \widetilde{P}_{\theta}(\widetilde{F}_k(\mathfrak{m})) \mod q\widetilde{L} \text{ and } \widetilde{E}_k\widetilde{P}_{\theta}(\mathfrak{m}) \equiv \widetilde{P}_{\theta}(\widetilde{E}_k(\mathfrak{m})) \mod q\widetilde{L}.$$

Hence the similar results hold for $L_0 := \sum_{\mathfrak{m} \in \mathcal{M}_{\theta}} \mathbf{A}_0 P_{\theta}(\mathfrak{m}) \phi \subset V_{\theta}(0)$ and $P_{\theta}(\mathfrak{m}) \phi$. Let us show that

(A) $\{P_{\theta}(\mathfrak{m})\phi \operatorname{mod} qL_0\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ is linearly independent in L_0/qL_0 ,

by the induction of the θ -weight (see Remark 2.12). Assume that we have a linear relation $\sum_{\mathfrak{m}\in S} a_{\mathfrak{m}} P_{\theta}(\mathfrak{m}) \phi \equiv 0 \mod q L_0$ for a finite subset S and $a_{\mathfrak{m}} \in \mathbb{Q} \setminus \{0\}$. We may assume that all \mathfrak{m} in S have the same θ -weight. Take $\mathfrak{m}_0 \in S$. If \mathfrak{m}_0 is the empty multisegment \emptyset , then $S = \{\emptyset\}$ and $P_{\theta}(\mathfrak{m}_0) \phi = \phi$ is non-zero, which is a contradiction. Otherwise, there exists k such that $\varepsilon_k(\mathfrak{m}_0) > 0$ by Lemma 4.11. Applying \widetilde{E}_k , we have $\sum_{\mathfrak{m}\in S} a_{\mathfrak{m}}\widetilde{E}_k P_{\theta}(\mathfrak{m}) \phi \equiv \sum_{\mathfrak{m}\in S,\ \widetilde{E}_k(\mathfrak{m})\neq 0} a_{\mathfrak{m}} P_{\theta}(\widetilde{E}_k(\mathfrak{m})) \phi \equiv 0 \mod q L_0$. Since $\widetilde{E}_k(\mathfrak{m})$ ($\widetilde{E}_k(\mathfrak{m}) \neq 0$) are mutually distinct, we have $a_{\mathfrak{m}_0} = 0$ by the induction hypothesis. It is a contradiction.

Thus we have proved (A). Hence $\{P_{\theta}(\mathfrak{m})\phi\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ is a basis of $V_{\theta}(0)$, which implies that $\{\widetilde{P}_{\theta}(\mathfrak{m})\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ is a basis of $\widetilde{V}_{\theta}(0)$. Thus we obtain (i) and (ii).

Let us show (iv) (a). Since $\widetilde{F}_{i_1} \cdots \widetilde{F}_{i\ell} \phi \equiv P_{\theta}(\widetilde{F}_{i_1} \cdots \widetilde{F}_{i\ell} \emptyset) \phi \mod qL_0$, we have $L_{\theta}(0) \subset L_0$ and $L_0 \subset L_{\theta}(0) + qL_0$. Hence Nakayama's lemma implies $L_0 = L_{\theta}(0)$. The other statements are now obvious.

§5. Global Basis of $V_{\theta}(0)$

§5.1. Integral form of $V_{\theta}(0)$

In this section, we shall prove that $V_{\theta}(0)$ has a lower global basis. In order to see this, we shall first prove that $\{P_{\theta}(\mathfrak{m})\phi\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ is a basis of the **A**-module $V_{\theta}(0)_{\mathbf{A}}$. Recall that $\mathbf{A} = \mathbb{Q}[q,q^{-1}]$, and $V_{\theta}(0)_{\mathbf{A}} = U_q^-(\mathfrak{gl}_{\infty})_{\mathbf{A}}\phi$.

Lemma 5.1.
$$V_{\theta}(0)_{\mathbf{A}} = \bigoplus_{\mathfrak{m} \in \mathcal{M}_{\theta}} \mathbf{A} P_{\theta}(\mathfrak{m}) \phi.$$

Proof. It is clear that $\bigoplus_{\mathfrak{m}\in\mathcal{M}_{\theta}}\mathbf{A}P_{\theta}(\mathfrak{m})\phi$ is stable by the actions of $F_k^{(n)}$ by Proposition 3.20. Hence we obtain $V_{\theta}(0)_{\mathbf{A}}\subset\bigoplus_{\mathfrak{m}\in\mathcal{M}_{\theta}}\mathbf{A}P_{\theta}(\mathfrak{m})\phi$.

We shall prove $P_{\theta}(\mathfrak{m})\phi \in U_q^-(\mathfrak{gl}_{\infty})_{\mathbf{A}}\phi$. It is well-known that $\langle i,j\rangle^{(m)}$ is contained in $U_q^-(\mathfrak{gl}_{\infty})_{\mathbf{A}}$, which is also seen by Proposition 3.20 (3). We divide \mathfrak{m} as $\mathfrak{m} = \mathfrak{m}_1 + \mathfrak{m}_2$, where $\mathfrak{m}_1 = \sum_{-j < i \leqslant j} m_{ij} \langle i,j \rangle$ and $\mathfrak{m}_2 = \sum_{k>0} m_k \langle -k,k \rangle$. Then $P_{\theta}(\mathfrak{m}) = P(\mathfrak{m}_1)P_{\theta}(\mathfrak{m}_2)$ and $P(\mathfrak{m}_1) \in U_q^-(\mathfrak{gl}_{\infty})_{\mathbf{A}}$. Hence we may assume from the beginning that $\mathfrak{m} = \sum_{0 < k \leqslant a} m_k \langle -k,k \rangle$. We shall show that $P_{\theta}(\mathfrak{m})\phi \in V_{\theta}(0)_{\mathbf{A}}$ by the induction on a.

Assume a > 1. Set $\mathfrak{m}' = \sum_{0 < k \leq a-4} m_k \langle -k, k \rangle$ and $v = P_{\theta}(\mathfrak{m}')\phi$. Then $\langle -a+2, a-2 \rangle^{[m]} v \in V_{\theta}(0)_{\mathbf{A}}$ for any m by the induction hypothesis.

We shall show that $\langle -a, a \rangle^{[n]} \langle -a+2, a-2 \rangle^{[m]} v$ is contained in $V_{\theta}(0)_{\mathbf{A}}$ by the induction on n. Since $P_{\theta}(\mathfrak{m}')$ commutes with $\langle a \rangle$, $\langle -a \rangle$, $\langle -a+2, a-2 \rangle$, $\langle -a+2, a \rangle$ and $\langle -a, a \rangle$, Proposition 3.20 (2) implies

$$\begin{split} \langle -a \rangle^{(2n)} \langle -a+2, a-2 \rangle^{[n+m]} v \\ &= \sum_{i+j+2t=2n, \ j+t=u} q^{2(n+m)i+j(j-1)/2-i(t+u)} \\ &\qquad \times \langle a \rangle^{(i)} \langle -a+2, a \rangle^{(j)} \langle -a, a \rangle^{[t]} \langle -a+2, -2 \rangle^{[n+m-u]} v, \end{split}$$

which is contained in $V_{\theta}(0)_{\mathbf{A}}$. Since we have

$$\langle a \rangle^{(i)} \langle -a+2, a \rangle^{(j)} \langle -a, a \rangle^{[t]} \langle -a+2, a-2 \rangle^{[n+m-u]} v \in V_{\theta}(0)_{\mathbf{A}}$$

if $(i,j,t,u) \neq (0,0,n,n)$ by the induction hypothesis on $n, \langle -a,a \rangle^{[n]} \langle -a+2,a-2 \rangle^{[m]} v$ is contained in $V_{\theta}(0)_{\mathbf{A}}$.

If a=1, we similarly prove $P_{\theta}(\mathfrak{m})\phi \in V_{\theta}(0)_{\mathbf{A}}$ using Proposition 3.20 (1) instead of (2).

§5.2. Conjugate of the PBW basis

We will prove that the bar involution is upper triangular with respect to the PBW basis $\{P_{\theta}(\mathfrak{m})\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$.

First we shall prove Theorem 3.10 (4).

For $a, b \in \mathcal{M}$ such that $a \leqslant b$, we denote by $\mathcal{M}_{[a,b]}$ (resp. $\mathcal{M}_{\leqslant b}$) the set of $\mathfrak{m} \in \mathcal{M}$ of the form $\mathfrak{m} = \sum_{a \leqslant i \leqslant j \leqslant b} m_{i,j} \langle i,j \rangle$ (resp. $\mathfrak{m} = \sum_{i \leqslant j \leqslant b} m_{i,j} \langle i,j \rangle$). Similarly we define $(\mathcal{M}_{\theta})_{\leqslant b}$. For a multisegment $\mathfrak{m} \in \mathcal{M}_{\leqslant b}$, we divide \mathfrak{m} into $\mathfrak{m} = \mathfrak{m}_b + \mathfrak{m}_{< b}$, where $\mathfrak{m}_b = \sum_{i \leqslant b} m_{i,j} \langle i,b \rangle$ and $\mathfrak{m}_{< b} = \sum_{i \leqslant j < b} m_{i,j} \langle i,j \rangle$.

Lemma 5.2. For $n \ge 0$ and $a, b \in I$ such that $a \le b$, we have

$$\overline{\langle a,b\rangle^{(n)}} \in \langle a,b\rangle^{(n)} + \sum_{\substack{\mathfrak{m} \, < \, n \, \langle a,b\rangle \\ \operatorname{cry}}} \mathbf{K} P(\mathfrak{m}).$$

Proof. We shall first show

$$\overline{\langle a,b\rangle} \in \langle a,b\rangle + \sum_{a+2\leqslant k\leqslant b} \langle k,b\rangle U_q^-(\mathfrak{g})$$

by the induction on b - a. If a = b, it is trivial. If a < b, we have

$$\begin{split} \overline{\langle a,b\rangle} &= \langle a\rangle \overline{\langle a+2,b\rangle} - q^{-1} \overline{\langle a+2,b\rangle} \langle a\rangle \\ &\in \langle a\rangle \Big(\langle a+2,b\rangle + \sum_{a+2 < k \leqslant b} \langle k,b\rangle U_q^-(\mathfrak{g}) \Big) \\ &- q^{-1} \Big(\langle a+2,b\rangle + \sum_{a+2 < k \leqslant b} \langle k,b\rangle U_q^-(\mathfrak{g}) \Big) \langle a\rangle \\ &\subset \langle a,b\rangle + (q-q^{-1}) \langle a+2,b\rangle \langle a\rangle + \sum_{a+2 < k \leqslant b} (\langle k,b\rangle \langle a\rangle U_q^-(\mathfrak{g}) + \langle k,b\rangle U_q^-(\mathfrak{g})). \end{split}$$

Hence we obtain (5.1). We shall show the lemma by the induction on n. We may assume n > 0 and

$$\overline{\langle a,b\rangle^{n-1}}\in \langle a,b\rangle^{n-1}+\sum_{\substack{\mathfrak{m}\,<\,(n-1)\langle a,b\rangle\\\mathrm{cry}}}\mathbf{K}P(\mathfrak{m}).$$

Hence we have

$$\overline{\langle a,b\rangle^n} = \overline{\langle a,b\rangle} \, \overline{\langle a,b\rangle^{n-1}} \in \langle a,b\rangle^n + \sum_{a < k \leqslant b} \langle k,b\rangle U_q^-(\mathfrak{g}) + \sum_{\substack{\mathfrak{m} < (n-1)\langle a,b\rangle}} \mathbf{K} \langle a,b\rangle P(\mathfrak{m}).$$

For $a < k \le b$ and $\mathfrak{m} \in \mathcal{M}$ such that $\operatorname{wt}(\mathfrak{m}) = \operatorname{wt}(n\langle a, b \rangle) - \operatorname{wt}(\langle k, b \rangle)$, we have $\mathfrak{m} \in \mathcal{M}_{[a,b]}$ and $\mathfrak{m}_b = \sum_{a \le i \le b} m_{i,b} \langle i, b \rangle$ with $\sum_i m_{i,b} = n - 1$. In particular, $m_{a,b} \le n - 1$. Hence $\langle k, b \rangle P(\mathfrak{m}) \in \mathbf{K} P(\mathfrak{m} + \langle k, b \rangle)$ and $\mathfrak{m} + \langle k, b \rangle < n\langle a, b \rangle$.

If
$$\mathfrak{m} \underset{\text{cry}}{<} (n-1)\langle a,b\rangle$$
, then $\langle a,b\rangle P(\mathfrak{m}) \in \mathbf{K} P(\langle a,b\rangle + \mathfrak{m})$ and $\langle a,b\rangle + \mathfrak{m} \underset{\text{cry}}{<} n\langle a,b\rangle$.

Proposition 5.3. For $\mathfrak{m} \in \mathcal{M}$,

$$\overline{P(\mathfrak{m})} \in P(\mathfrak{m}) + \sum_{\substack{\mathfrak{n} \, < \, \mathfrak{m} \\ \operatorname{cry}}} \mathbf{K} P(\mathfrak{n}).$$

Proof. Put $\mathfrak{m} = \sum_{i \leqslant j \leqslant b} m_{i,j} \langle i, j \rangle$ and divide $\mathfrak{m} = \mathfrak{m}_b + \mathfrak{m}_{< b}$. We prove the claim by the induction on b and the number of segments in \mathfrak{m}_b . Suppose $\mathfrak{m}_b = m \langle a, b \rangle + \mathfrak{m}_1$ with $m = m_{a,b} > 0$, where $\mathfrak{m}_1 = \sum_{a < i \leqslant b} m_{i,b} \langle i, b \rangle$.

(i) Let us first show that

(5.2)
$$\overline{P(\mathfrak{m}_b)} \in P(\mathfrak{m}_b) + \sum_{\mathfrak{m}' < \mathfrak{m}_b \atop \operatorname{cry}} \mathbf{K} P(\mathfrak{m}').$$

We have $\overline{P(\mathfrak{m}_b)} = \overline{P(\mathfrak{m}_1)} \cdot \overline{\langle a, b \rangle^{(m)}}$. Since $\overline{P(\mathfrak{m}_1)} \in P(\mathfrak{m}_1) + \sum_{\mathfrak{m}'_{\text{cry}} \leq \mathfrak{m}_1} \mathbf{K} P(\mathfrak{m}'_1)$ by the induction hypothesis, and $\overline{\langle a, b \rangle^{(m)}} \in \langle a, b \rangle^{(m)} + \sum_{\mathfrak{m}''_{\text{cry}} \leq m \langle a, b \rangle} \mathbf{K} P(\mathfrak{m}'')$, we have

$$\overline{P(\mathfrak{m}_b)} \in P(\mathfrak{m}_b) + \sum_{\mathfrak{m}_1' < \mathfrak{m}_1, \ \mathfrak{m}_1' \in \mathcal{M}_{[a+2,b]}} \mathbf{K} P(\mathfrak{m}_1') \langle a,b \rangle^{(m)} + \sum_{\mathfrak{m}_1' \leqslant \mathfrak{m}_1, \ \mathfrak{m}_1'' < m \langle a,b \rangle} \mathbf{K} P(\mathfrak{m}_1') P(\mathfrak{m}_1'').$$

If $\mathfrak{m}'_1 \leq \mathfrak{m}_1$ and $\mathfrak{m}'_1 \in \mathcal{M}_{[a+2,b]}$, then $P((\mathfrak{m}'_1)_{< b})$ and $\langle a,b \rangle^{(m)}$ commute. Hence $P(\mathfrak{m}'_1)\langle a,b \rangle^{(m)} = P(\mathfrak{m}'_1 + m\langle a,b \rangle)$ and $\mathfrak{m}'_1 + m\langle a,b \rangle \leq \mathfrak{m}_b$.

If $\mathfrak{m}'_1 \leqslant \mathfrak{m}_1$, $\mathfrak{m}'_1 \in \mathcal{M}_{[a+2,b]}$ and $\mathfrak{m}'' < m \langle a,b \rangle$, then we can write $\mathfrak{m}''_b = j \langle a,b \rangle + \mathfrak{m}_2$ with j < m and $\mathfrak{m}_2 \in \mathcal{M}_{[a+2,b]}$. Hence we have

$$P(\mathfrak{m}_1')P(\mathfrak{m}'') \in \mathbf{K}P((\mathfrak{m}_1')_b)P(j\langle a,b\rangle)P((\mathfrak{m}_1')_{< b})P(\mathfrak{m}_2)P(\mathfrak{m}_{< b}'').$$

Since $(\mathfrak{m}_1')_{< b}$, $\mathfrak{m}_2 \in \mathcal{M}_{[a+2,b]}$ we have $P((\mathfrak{m}_1')_{< b})P(\mathfrak{m}_2)P(\mathfrak{m}_{< b}'') \in \sum_{\mathfrak{n}_b \in \mathcal{M}_{[a+2,b]}} \mathbf{K} P(\mathfrak{n})$. Hence we have $P(\mathfrak{m}_1')P(\mathfrak{m}'') \in \sum_{\mathfrak{n}_b \in \mathcal{M}_{[a+2,b]}} \mathbf{K} P((\mathfrak{m}_1')_b + j\langle a,b\rangle + \mathfrak{n})$ and $(\mathfrak{m}_1')_b + j\langle a,b\rangle + \mathfrak{n} < \mathfrak{m}_b$. Hence we obtain (5.2). (ii) By the induction hypothesis, $\overline{P(\mathfrak{m}_{< b})} \in P(\mathfrak{m}_{< b}) + \sum_{\mathfrak{m}'' \leq \mathfrak{m}_{< b}} \mathbf{K} P(\mathfrak{m}'')$. Since $\overline{P(\mathfrak{m})} = \overline{P(\mathfrak{m}_{b})} \overline{P(\mathfrak{m}_{< b})}$, (5.2) implies that

$$\overline{P(\mathfrak{m})} \in P(\mathfrak{m}) + \sum_{\mathfrak{m}' < \mathfrak{m}_b, \mathfrak{m}'' \in \mathcal{M}_{< b}} \mathbf{K} P(\mathfrak{m}') P(\mathfrak{m}'') + \sum_{\mathfrak{m}'' < \mathfrak{m}_{< b}} \mathbf{K} P(\mathfrak{m}_b) P(\mathfrak{m}'').$$

For $\mathfrak{m}' < \mathfrak{m}_b$ and $\mathfrak{m}'' \in \mathcal{M}_{< b}$, we have

$$P(\mathfrak{m}')P(\mathfrak{m}'') = P(\mathfrak{m}_b')P(\mathfrak{m}'_{\leq b})P(\mathfrak{m}'') \in \sum_{\mathfrak{n} \in \mathcal{M}_{\leqslant b}, \, \mathfrak{n}_b = \mathfrak{m}_b'} \mathbf{K} P(\mathfrak{n}) \subset \sum_{\substack{\mathfrak{n} < \mathfrak{m} \\ \text{cry}}} \mathbf{K} P(\mathfrak{n}).$$

For $\mathfrak{m}'' < \mathfrak{m}_{< b}$, we have $P(\mathfrak{m}_b)P(\mathfrak{m}'') = P(\mathfrak{m}_b + \mathfrak{m}'')$ and $\mathfrak{m}_b + \mathfrak{m}'' < \mathfrak{m}$. Thus we obtain the desired result.

Proposition 5.4. For $\mathfrak{m} \in \mathcal{M}_{\theta}$, we have

$$\overline{P_{\theta}(\mathfrak{m})}\phi \in P_{\theta}(\mathfrak{m})\phi + \sum_{\mathfrak{m}' \in \mathcal{M}_{\theta}, \mathfrak{m}' \leq \mathfrak{m}} \mathbf{K} P_{\theta}(\mathfrak{m}')\phi.$$

Proof. First note that

$$(5.3) \qquad P(\mathfrak{m})\phi \in \sum_{\mathfrak{n} \in (\mathcal{M}_{\theta})_{\leqslant b}} \mathbf{K} P_{\theta}(\mathfrak{n})\phi \quad \text{for any } b \in I_{>0} \text{ and } \mathfrak{m} \in \mathcal{M}_{[-b,b]},$$

by the weight consideration.

For $\mathfrak{m} \in \mathcal{M}_{\theta}$, $P_{\theta}(\mathfrak{m})$ and $P(\mathfrak{m})$ are equal up to a multiple of bar-invariant scalar. Thus we have

$$\overline{P_{\theta}(\mathfrak{m})} \in P_{\theta}(\mathfrak{m}) + \sum_{\mathfrak{m}' \in \mathcal{M}, \ \mathfrak{m}' < \mathfrak{m} \atop \operatorname{cry}} \mathbf{K} P(\mathfrak{m}')$$

by Proposition 5.3. Hence it is enough to show that

(5.4)
$$P(\mathfrak{m}')\phi \in \sum_{\mathfrak{n} \in \mathcal{M}_{\theta}, \, \mathfrak{n} < \mathfrak{m} \atop \text{cry}} \mathbf{K} P_{\theta}(\mathfrak{n})\phi$$

for $\mathfrak{m}' \in \mathcal{M}$ such that $\mathfrak{m}' < \mathfrak{m}$ and $\operatorname{wt}(\mathfrak{m}') = \operatorname{wt}(\mathfrak{m})$. Put $\mathfrak{m} = \sum_{i \leqslant j \leqslant b} m_{i,j} \langle i, j \rangle$ and write $\mathfrak{m} = \mathfrak{m}_b + \mathfrak{m}_{< b}$. We prove (5.4) by the induction on b. By the assumption on \mathfrak{m}' , we have $\mathfrak{m}' \in \mathcal{M}_{[-b,b]}$ and $\mathfrak{m}'_b \leqslant \mathfrak{m}_b$. Thus $\mathfrak{m}'_b \in \mathcal{M}_\theta$. Hence $\mathbf{K}P(\mathfrak{m}')\phi = \mathbf{K}P_\theta(\mathfrak{m}'_b)P(\mathfrak{m}'_{< b})\phi$.

If $\mathfrak{m}'_b = \mathfrak{m}_b$, then $\mathfrak{m}'_{< b} <_{\operatorname{cry}} \mathfrak{m}_{< b}$, and the induction hypothesis implies $P(\mathfrak{m}'_{< b})\phi \in \sum_{\mathfrak{n} \in \mathcal{M}_{\theta}, \, \mathfrak{n}_{< \mathfrak{r}} \mathfrak{m}_{< b}} \mathbf{K} P_{\theta}(\mathfrak{n})\phi$. Since $P_{\theta}(\mathfrak{m}'_b)P_{\theta}(\mathfrak{n}) = P_{\theta}(\mathfrak{m}'_b + \mathfrak{n})$ and $\mathfrak{m}'_b + \mathfrak{n} <_{\operatorname{cry}} \mathfrak{m}$, we obtain (5.4).

If $\mathfrak{m}'_b <_{\text{cry}} \mathfrak{m}_b$, write $\mathfrak{m}' = \sum_{-b \leqslant i \leqslant j \leqslant b} m'_{i,j} \langle i, j \rangle$. Set $s = m_{-b.b} - m'_{-b,b} \geqslant 0$. Since $\text{wt}(\mathfrak{m}') = \text{wt}(\mathfrak{m})$, we have $\sum_{j < b} m'_{-b,j} = s$. If s = 0, then $\mathfrak{m}'_{< b} \in \mathcal{M}_{[-b+2,b-2]}$, and $P(\mathfrak{m}'_{< b})\phi \in \sum_{\mathfrak{n} \in (\mathcal{M}_{\theta})_{< b}} \mathbf{K} P_{\theta}(\mathfrak{n})\phi$ by (5.3). Then (5.4) follows from $\mathfrak{m}'_b + \mathfrak{n} <_{\text{cry}} \mathfrak{m}$.

Assume s > 0. Since $\mathfrak{m}'_{< b} \in \mathcal{M}_{[-b,b]}$, we have $P(\mathfrak{m}'_{< b})\phi \in \sum_{\mathfrak{n} \in (\mathcal{M}_{\theta}) \leqslant b} \mathbf{K} P_{\theta}(\mathfrak{n})\phi$ by (5.3). We may assume $(1+\theta)\operatorname{wt}(\mathfrak{m}'_{< b}) = (1+\theta)\operatorname{wt}(\mathfrak{n})$ (see Remark 2.12). Hence, we have $s = 2m_{-b,b}(\mathfrak{n}) + \sum_{-b < i \leqslant b} m_{i,b}(\mathfrak{n})$. In particular, $m_{-b,b}(\mathfrak{n}) \leqslant s/2$. We have $\mathfrak{m}'_b + \mathfrak{n} \in \mathcal{M}_{\theta}$ and $P_{\theta}(\mathfrak{m}'_b)P_{\theta}(\mathfrak{n})\phi = P_{\theta}(\mathfrak{m}'_b + \mathfrak{n})\phi$. Since $m_{-b,b}(\mathfrak{m}'_b + \mathfrak{n}) \leqslant (m_{-b,b} - s) + s/2 < m_{-b,b}$, we have $\mathfrak{m}'_b + \mathfrak{n} < \mathfrak{m}$. Hence we obtain (5.4). \square

§5.3. Existence of a global basis

As a consequence of the preceding subsections, we obtain the following theorem.

Theorem 5.5.

- (i) $(L_{\theta}(0), L_{\theta}(0)^{-}, V_{\theta}(0)_{\mathbf{A}})$ is balanced.
- (ii) For $\underset{\theta}{any} \ \mathfrak{m} \in \mathcal{M}_{\theta}$, there exists a unique $G_{\theta}^{low}(\mathfrak{m}) \in L_{\theta}(0) \cap V_{\theta}(0)_{\mathbf{A}}$ such that $\underset{\theta}{G_{\theta}^{low}(\mathfrak{m})} = G_{\theta}^{low}(\mathfrak{m})$ and $G_{\theta}^{low}(\mathfrak{m}) \equiv P_{\theta}(\mathfrak{m})\phi \mod qL_{\theta}(0)$.
- (iii) $G_{\theta}^{low}(\mathfrak{m}) \in P_{\theta}(\mathfrak{m})\phi + \sum_{\mathfrak{n} \leq \mathfrak{m} \atop cry} q\mathbb{Q}[q]P_{\theta}(\mathfrak{n})\phi \text{ for any } \mathfrak{m} \in \mathcal{M}_{\theta}.$
- (iv) $\{G_{\theta}^{low}(\mathfrak{m})\}_{\mathfrak{m}\in\mathcal{M}_{\theta}}$ is a basis of the **A**-module $V_{\theta}(0)_{\mathbf{A}}$, the **A**₀-module $L_{\theta}(0)$ and the **K**-vector space $V_{\theta}(0)$.

Proof. We have already seen that $\overline{P_{\theta}(\mathfrak{m})\phi} = \sum_{\mathfrak{m}' \leqslant \mathfrak{m} \atop \operatorname{cry}} c_{\mathfrak{m},\mathfrak{m}'} P_{\theta}(\mathfrak{m}') \phi$ for $c_{\mathfrak{m},\mathfrak{m}'} \in \mathbf{A}$ with $c_{\mathfrak{m},\mathfrak{m}} = 1$. Let us denote by C the matrix $(c_{\mathfrak{m},\mathfrak{m}'})_{\mathfrak{m},\mathfrak{m}' \in \mathcal{M}_{\theta}}$. Then $\overline{C}C = \operatorname{id}$ and it is well-known that there is a matrix $A = (a_{\mathfrak{m},\mathfrak{m}'})_{\mathfrak{m},\mathfrak{m}' \in \mathcal{M}_{\theta}}$ such that $\overline{A}C = A$, $a_{\mathfrak{m},\mathfrak{m}'} = 0$ unless $\mathfrak{m}' \leqslant \mathfrak{m}$, $a_{\mathfrak{m},\mathfrak{m}} = 1$ and $a_{\mathfrak{m},\mathfrak{m}'} \in q\mathbb{Q}[q]$ for $\mathfrak{m}' < \operatorname{cry}$ \mathfrak{m} . Set $G_{\theta}^{\mathrm{low}}(\mathfrak{m}) = \sum_{\mathfrak{m}' \leqslant \mathfrak{m} \atop \operatorname{cry}} a_{\mathfrak{m},\mathfrak{m}'} P_{\theta}(\mathfrak{m}') \phi$. Then we have $\overline{G_{\theta}^{\mathrm{low}}(\mathfrak{m})} = G_{\theta}^{\mathrm{low}}(\mathfrak{m})$ and $G_{\theta}^{\mathrm{low}}(\mathfrak{m}) \equiv P_{\theta}(\mathfrak{m}) \phi \mod q L_{\theta}(0)$. Since $G_{\theta}^{\mathrm{low}}(\mathfrak{m})$ is a basis of $V_{\theta}(0)_{\mathbf{A}}$, we obtain the desired results.

Errata to "Symmetric crystals and affine Hecke algebras of type B, Proc. Japan Acad., 82, no. 8, 2006, 131–136":

- (i) In Conjecture 3.8, $\lambda = \Lambda_{p_0} + \Lambda_{p_0^{-1}}$ should be read as $\lambda = \sum_{a \in A} \Lambda_a$, where $A = I \cap \{p_0, p_0^{-1}, -p_0, -p_0^{-1}\}$. We thank S. Ariki who informed us that the original conjecture is false.
- (ii) In the two diagrams of $B_{\theta}(\lambda)$ at the end of § 2, λ should be 0.
- (iii) Throughout the paper, $A_\ell^{(1)}$ should be read as $A_{\ell-1}^{(1)}.$

References

- [A] S. Ariki, On the decomposition numbers of the Hecke algebra of G(m,1,n), J. Math. Kyoto Univ. **36** (1996), no. 4, 789–808.
- [EK] N. Enomoto and M. Kashiwara, Symmetric crystals and affine Hecke algebras of type B, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 8, 131–136.
- [K1] M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516.
- [K2] $\frac{}{455-485}$, Global crystal bases of quantum groups, Duke Math. J. **69** (1993), no. 2,
- [KM] M. Kashiwara and V. Miemietz, Crystals and affine Hecke algebras of type D, Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), no. 7, 135–139.
- [Kl1] A. S. Kleshchev, Branching rules for modular representations of symmetric groups. I, J. Algebra 178 (1995), no. 2, 493–511.
- [Kl2] _____, Branching rules for modular representations of symmetric groups. II, J. Reine Angew. Math. 459 (1995), 163–212.
- [Kl3] ______, Branching rules for modular representations of symmetric groups. III. Some corollaries and a problem of Mullineux, J. London Math. Soc. (2) 54 (1996), no. 1, 25–38.
- [Kl4] _____, Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, 163, Cambridge Univ. Press, Cambridge, 2005.
- [LLT] A. Lascoux, B. Leclerc and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205–263.
 - [L] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498.
 - [M] V. Miemietz, On representations of affine Hecke algebras of type B, Ph. D. thesis, Universität Stuttgart (2005), to appear in Algebras and Representation Theory.