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On Q-conic Bundles, II

By

Shigefumi Mori∗ and Yuri Prokhorov∗∗

Abstract

A Q-conic bundle germ is a proper morphism from a threefold with only terminal
singularities to the germ (Z � o) of a normal surface such that fibers are connected and
the anti-canonical divisor is relatively ample. We obtain the complete classification of
Q-conic bundle germs when the base surface germ is singular. This is a generalization
of [MP08], which further assumed that the fiber over o is irreducible.

§1. Introduction

This note is a continuation of our previous work [MP08] where we studied
the local structure of Q-conic bundles.

(1.1) Definition. A Q-conic bundle is a projective morphism f :X → Z from
a threefold with only terminal singularities to a surface such that

(i) f∗OX = OZ and all fibers are one-dimensional,

(ii) −KX is f -ample.

For f :X → Z as above and for a point o ∈ Z, we call the analytic germ
(X, f−1(o)red) a Q-conic bundle germ.

In [MP08] we completely classified Q-conic bundle germs over a singular
base and such that the central fiber is irreducible. For convenience of quotations
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we reproduce briefly the classification. For more detailed explanations we refer
to the original paper [MP08].

(1.2) Theorem. Let f : (X,C) → (Z, o) be a Q-conic bundle germ, where C
is irreducible and (Z, o) is singular. Then we are in one of the following cases:

Type No. singularities (Z, o)

toroidal (1.2.1) 1
n (1, a,−a) and 1

n (−1, a,−a),
gcd(n, a) = 1

An−1

(IA)+(IA) (1.2.2) 1
n (a,−1, 1) and 1

n (a + 1, 1,−1), n =
2a+ 1

An−1

(IE∨) (1.2.3) 1
8 (5, 1, 3) A3

(ID∨) (1.2.4) cA/2 or cAx/2 A1

(IA∨) (1.2.5) 1
4 (1, 1, 3) (+(III)) A1

(II∨) (1.2.6) cAx/4 (+(III)) A1

In this paper we consider the case where the base surface is singular and
the central fiber is reducible. Our main result is the following.

(1.3) Theorem. Let f : (X,C) → (Z, o) be a Q-conic bundle germ. Assume
that C is reducible and the base surface (Z, o) is singular. Then (Z, o) is Du
Val of type A1 and (X,C) is the µ2-quotient of the index-two Q-conic bundle
f ′: (X ′, C ′) → (Z ′, o′) over a smooth base, where µ2 acts on (Z ′, o′) freely in
codimension one. Moreover, C ′ has four irreducible components, µ2 does not
fix any of them and X has a unique non-Gorenstein point P . Furthermore, X ′

is given by the following two equations in P(1, 1, 1, 2)y1,...,y4 × C2
u,v



y2
1 − y2

3 = ψ1(y1, . . . , y4;u, v),

y2
2 − y2

3 = ψ2(y1, . . . , y4;u, v),

where µ2 acts as follows :

(y1, y2, y3, y4;u, v) �−→ (−y1,−y2, y3,−y4;−u,−v).
Here ψi = ψi(y1, . . . , y4;u, v) are weighted quadratic in y1, . . . , y4 with respect
to wt(y1, . . . , y4) = (1, 1, 1, 2) and ψi(y1, . . . , y4; 0, 0) = 0. The following are
the only possibilities :

(1.3.1) (X,P ) is a cyclic quotient singularity of type 1
4 (1, 1,−1) and for any

component Ci ⊂ C germ (X,Ci) is of type (IA∨),
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(1.3.2) (X,P ) is a singularity of type cAx/4 and for any component Ci ⊂ C

germ (X,Ci) is of type (II∨).

Conversely, if the quotient (X,C) = (X ′, C ′)/µ2, where (X ′, C ′) and the
action of µ2 are as above, has only terminal singularities, then (X,C) is a
conic bundle germ over C2

u,v/µ2 with reducible central fiber C.

(1.4) Corollary (Reid’s general elephant conjecture). Let f : (X,C) →
(Z, o) be a Q-conic bundle germ. Assume that (Z, o) is singular. Then a general
member F ∈ | −KX | has only Du Val singularities. Moreover, in cases (1.3.1)
and (1.3.2) F does not contain any component of C and is of type A3 and D
respectively.

Below are a series of explicit examples of Q-conic bundles as in (1.3).

(1.5) Example. Consider the subvariety X ′ ⊂ P(1, 1, 1, 2) × C2 defined by
the following two equations:



y2
1 − y2

3 + u2k+1y4 + v2y2
2 = 0,

y2
2 − y2

3 + vy4 = 0.

The projection f ′:X ′ → C2 is a Q-conic bundle of index 2 (cf. [MP08, 12.1.3]).
Define the action of µ2 on X ′ as follows

(y1, y2, y3, y4; u, v) �−→ (−y1, −y2, y3, −y4; −u, −v).

Then X ′/µ2 → C2/µ2 is a Q-conic bundle with a unique non-Gorenstein point
P . The point P is of type (1.3.1) if k = 0 and of type (1.3.2) if k ≥ 1.

The basic idea of the proof is to reduce the problem of classifying Q-
conic bundles (X,C) as in Theorem (1.3) to the case where the central fiber is
irreducible by applying the MMP to a Q-factorialization (Xq, Cq). Then the
resulting Q-conic bundle (X̄, C̄) belongs to the list (1.2). We trace back from
(X̄, C̄) to (X,C). It turns out that in many cases the steps of the MMP do
not affect the singularities of (X̄, C̄). Here we use some results about divisorial
contractions and flips (see §2) based on [KM92] and [Kaw96]. Then the base
change trick allows us to show that (X,C) is a µ2-quotient of an index-two
conic bundle, see §3.

§2. Preliminary Results on Extremal Contractions

(2.1) Let (E�, P �) be a Du Val singularity. (We assume that (E�, P �) is
singular). Assume that µm acts on E� freely outside P � and the quotient
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(E,P ) = (E�, P �)/µm is also Du Val. Then there is a µm-equivariant em-
bedding (E�, P �) ⊂ (C3

x,y,z , 0) such that x, y, z and the equation of E� are
semi-invariant. Let F � ⊂ C3 be the locus of points at which the action of µm is
not free. By our assumption F � is a curve. Define the invariant ς(E�, P �,µm)
as the local intersection number (E� ·F �)0. According to [Rei87, 4.10] we have
only the following cases:

m (E�, P �) → (E,P ) ς(E�, P �,µm)

any Ar−1 → Amr−1 r

4 A2r−2 → D2r+1 2r − 1

2 A2r−1 → Dr+2 2

3 D4 → E6 2

2 Dr+1 → D2r r

2 E6 → E7 3

(2.1.1)

(2.1.2) Let (W,P ) be a three-dimensional terminal singularity of index m > 1
and let E ∈ | − KW | be a divisor having a Du Val singularity at P . As-
sume that (W,P ) is not a cyclic quotient. Let π: (W �, P �) → (W,P ) be the
index-one µm-cover and let (W �, P �) = {φ = 0} ⊂ C4

x1,x2,x3,x4
be a µm-

equivariant embedding. Let E� := π−1(E) and F � ⊂ C4 be the locus of points
at which the action of µm is not free. Since π is free in codimension two,
F � is a curve. Recall that the local intersection number (W � · F �)0 is called
the axial multiplicity of (W,P ) [Mor88, 1a.5]. We denote it by am(W,P ).
By the classification of terminal singularities we may assume that F � is the
x4-axis, and either wt(x1, x2, x3, x4, φ) ≡ (1,−1, a, 0, 0) modm, or m = 4
and wt(x1, x2, x3, x4, φ) ≡ (1,−1, a, 2, 2) mod4, where gcd(a,m) = 1. Since
(E�, P �) is a Du Val singularity, its Zariski tangent space at the origin is three-
dimensional. Hence there is a µm-stable hypersurface H� ⊂ C4 such that
E� = H� ∩W � and H� is smooth.

(2.1.3) Claim. F � ⊂ H�.

Proof. Let ψ be the µm-semi-invariant equation of H�. Then wtψ ≡ a.
Hence ψ does not contain terms xk

4 and so it vanishes on F �.

(2.1.4) We define the invariant ς(W,E, P ) as the local intersection number
(E� · F �)0 inside H�. Clearly it coincides with ς(E�, P �,µm) defined above.
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(2.1.5) Lemma. Assume that (W,P ) is not a cyclic quotient singularity.
The invariant ς(W,E, P ) does not depend on the choice of E and ς(W,E, P ) =
am(W,P ).

Proof. Both sides of the equality coincide with the order of vanishing of
φ|F�.

(2.1.6) Corollary. Let (W,P ) is a three-dimensional terminal singularity of
index m > 1 which is not a cyclic quotient and let E ∈ |−K(W,P )| be a member
having a Du Val singularity of A-type at P . Then E is isomorphic to a general
member Egen ∈ | −K(W,P )|.

Proof. By the above lemma we have ς(E�, P �,µm) = ς(E�
gen, P

�,µm) =
am(W,P ). Then the statement follows by the first line in (2.1.1).

(2.2) Proposition. Let ϕ: (V,Γ) → (W, o) be the analytic germ of a divisorial
extremal contraction of threefolds with terminal singularities (in particular, W
is Q-Gorenstein) such that the central fiber Γ := ϕ−1(o)red is one-dimensional
and irreducible.

(i) The point (W, o) cannot be of type cAx/4.

(ii) If (W, o) is of type cAx/2, then (V,Γ) has a unique non-Gorenstein point
which is of type (II∨).

(iii) If (W, o) is analytically isomorphic to

{x1x2 + x2
3 + x2k

4 = 0}/µ2(1, 1, 0, 1),(2.2.1)

then (V,Γ) has a unique non-Gorenstein point P which is locally imprimi-
tive of index 4 and splitting degree 2. Moreover, P ∈ (V,Γ) is either of type
(II∨) or (IA∨) and in the second case (X,P ) is a cyclic quotient singularity.

Proof. For the proof we assume that (W, o) is of type cAx/4, cAx/2,
or as in (2.2.1). We will use the classification [KM92, Th. 2.2]. Let m be
the index of (W, o). Then the canonical class KW is an m-torsion element in
Clsc(W, o). Its pull-back ϕ∗KW is a well-defined Cartier divisor on V \ Γ such
that m(ϕ∗KW ) ∼ 0. Hence Clsc(V,Γ) contains an m-torsion element, say ξ. By
the classification [KM92, Th. 2.2] and by [Mor88, (1.10)] the group Clsc(V,Γ)
can contain a torsion only when (V,Γ) is of type (k1A) (with a point of type
(IA∨)), (II∨), or (k2A).
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Assume that (V,Γ) is of type (k2A). Then by [KM92, Th. 2.2] a general
member D ∈ | −KV | and its image ϕ(D) ∈ | −KW | have only Du Val singu-
larities. Moreover, (ϕ(D), o) is a singularity of type A∗ and so (W, o) is of type
cA/∗. Clearly, the contraction ϕ|D:D → ϕ(D) is crepant. By our assumptions
(W, o) is a singularity given by (2.2.1). So, am(W, o) = 2. By Corollary (2.1.6)
the singularity (ϕ(D), o) is of type A3. Since ϕD:D → ϕ(D) is crepant and V
has two singular points, the only possibility is that D has two singularities of
type A1. But in this case V is of index two and then by [KM92, Th. 4.7] V has
a unique non-Gorenstein point, a contradiction.

In the remaining cases (II∨) and (k1A), V has a unique non-Gorenstein
point P . Then (V,Γ) is locally imprimitive at P and the splitting degree equals
m. In particular, the index of P is > m [Mor88, Cor. 1.16]. Thus if (V,Γ) is of
type (II∨), then we are in the case (ii) or (iii).

Assume that (V,Γ) is of type (k1A). Then by [KM92, Th. 2.2] a general
member D ∈ | −KV | does not contain Γ, has only Du Val singularity at P :=
{D ∩Γ}, and ϕ|D:D → ϕ(D) is an isomorphism. Hence ϕ(D) ∈ |−KW | has a
Du Val singularity of type A at o. In this case, (W, o) cannot be of type cAx/∗.
Thus (W, o) is given by (2.2.1). By Corollary (2.1.6) D 
 ϕ(D) is of type A3.
Since the index of (V, P ) is > 2, (V, P ) must be a cyclic quotient singularity
1
4 (1, 1,−1). So we are in the case (iii). This proves the proposition.

(2.3) Proposition. Let χ: (V,Γ) ��� (V +,Γ+) be a flip of threefolds with
terminal singularities with irreducible flipping curve Γ. Then (V +,Γ+) contains
none of the following configurations of singularities :

(i) two cyclic quotient singularities P+
1 and P+

2 of indices m1 and m2 with
gcd(m1,m2) > 1 such that (V +,Γ+) is locally primitive at P+

1 and P+
2 ;

(ii) an imprimitive point P+ of splitting degree s > 1.

Proof. By [KM92, Cor. 13.4] Γ+ is irreducible. Assume that one of the
cases (i)-(ii) holds. As in [Mor88, Cor. 1.12] there is a d-torsion element ξ+ ∈
Clsc V + for some d > 1. Its proper transform ξ on V is a d-torsion element in
Clsc V . In [KM92] flips are classified into 6 types (k1A), (k2A), (cD/3), (IIA),
(IC), (kAD) according to a general member of the anti-canonical linear system
| −KV | [KM92, Th. 2.2]. The group Clsc V can contain a torsion only in cases
(k1A) and (k2A) (in all other cases the flipping variety is locally primitive and
indices of non-Gorenstein points are coprime, cf. [Mor88, (1.10)]). The torsion
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elements ξ and ξ+ induce the following cyclic µd-coverings:

(V ′,Γ′)
χ′

�����

π

��

(V +′,Γ+′)

π+

��
(V,Γ)

χ ����� (V +,Γ+)

(2.3.1)

Consider the flipping diagram

(V,Γ)
χ �����������

ϕ
����

��
��

��
�

(V +,Γ+)

ϕ+
�����������

(W, o)

By [Mor88, Th. 7.3, 9.10] and [KM92, Th. 2.2], a general member D ∈ |−KV |
has only Du Val singularities. Since the restriction ϕD:D → ϕ(D) is crepant,
the same holds for ϕ(D) ∈ | − KW |. Further, if we put D+ = χ(D), then
D+ ∈ |−KV + | and D+ also has only Du Val singularities. Since KV + ·Γ+ > 0,
D+ ⊃ Γ+.

(2.3.2) First we consider the case where our flip is of type (k1A). Then
V has a unique non-Gorenstein point P and P is of type cA/∗. In this case
D ∩ Γ = {P} and (ϕ(D), o) 
 (D,P ) is of type A∗. Since Clsc V has a torsion,
(V,Γ) is locally imprimitive at P .

(2.3.3) Assume that we are in the case (i). We claim that V + has at least one
analytically non-Q-factorial singular point (�= P+

1 , P
+
2 ). Indeed, since the germ

(V,Γ) has only one non-Gorenstein point, it is locally imprimitive and in the
diagram (2.3.1) π is the splitting cover [Mor88, Cor. 1.12]. Here Γ′ has exactly
d components and V +′ is the relative canonical model of V ′. Since (V +,Γ+) is
locally primitive at P+

1 and P+
2 , the curve Γ+′ is irreducible. Now the map χ′

can be decomposed as follows

χ′:V ′ = V ′
0 ��� V ′

1 ��� · · · ��� V ′
n → V +′,

where every V ′
i ��� V ′

i+1 is a flip along an irreducible curve and V ′
n → V +′ is a

crepant small contraction (cf. [KM92, Proof of 13.5]). Every step V ′
i ��� V ′

i+1

preserves the number of components of the central fiber. Hence the crepant
contraction V ′

n → V +′ is nontrivial and gives us an analytically non-Q-factorial
point Q ∈ Γ+ ⊂ V + (because V +′ → V + is étale outside of P+

1 and P+
2 ). This

proves our claim. Thus the divisor D+ has at least three singular points: P+
1 ,
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P+
2 , and Q. But then ϕ+

D:D+ → ϕ(D) contracts Γ+ to a Du Val singularity of
type D∗ or E∗, a contradiction.

(2.3.4) Now we assume that we are in the case (ii). We claim that the log
divisor KD+ + Γ+ is not plt at P+. Indeed, in the diagram (2.3.1) π+ is the
splitting cover (see [Mor88, Cor. 1.12.1]). In particular, π+ is étale outside
P+, π+−1(P+) is one point, and Γ+′ has s > 1 irreducible components, all of
them pass through π+−1(P+). Let D+′ := π+−1(D+). Since Γ+′ is singular at
π+−1(P+), the log divisor KD+′ + Γ+′ is not plt at this point. This proves our
claim because the restriction π+

D:D+′ → D+ is étale in codimension one (see,
e.g., [Kol92, Cor. 20.4]). Now since the contraction D+ → ϕ(D) is crepant, D+

is dominated by the minimal resolution Dmin of ϕ(D): Dmin → D+ → ϕ(D).
Since KD+ + Γ+ is not plt, the exceptional divisor of Dmin → ϕ(D) is not a
chain of smooth rational curves. Hence (ϕ(D), o) is not a singularity of type
A∗, a contradiction.

(2.3.5) Finally, we consider the case where our flip is of type (k2A). These
flips are described in [Mor02]. We will use notation of [Mor02]. By [Mor02, Th.
4.7] (V +,Γ+) is locally primitive. Hence we have the case (i). Moreover, V +

has exactly two singular points and they are analytically isomorphic to germs
of the following cA/mi singularities:

{ξiηi = Gk−i(ζmi
i , ue(k+2−i))}/µmi

⊂ C4
ξi,ηi,ζi,u/µmi

(1,−1, ai, 0),

where k, ai are some positive numbers and e(j) is some function. Hence these
points coincide with P+

1 and P+
2 . Since P+

i ∈ Γ+ ⊂ V + are cyclic quotient
singularities, we have e(k) = e(k + 1) = 1 (u needs to be eliminated). If we
put δ := a1m2 + a2m1 −m1m2, then δ ≥ d and by definition [Mor02, Def. 3.2]
we have e(3) = 0, e(4) = δα1 ≥ d > 1, e(5) = (δ2ρ2 − 1)α1 + δα2 ≥ d > 1 (see
[Mor02, Rem. 3.6]). Thus, k ≥ 6. On the other hand, by [Mor02, Lemma 3.5,
Cor. 3.7] we have k ≤ 5, a contradiction.

(2.4) Proposition. Let ϕ: (V,Γ) → (W, o) be the germ of a birational crepant
contraction of threefolds with terminal singularities, where Γ is irreducible.

(i) (V,Γ) contains at most two non-Gorenstein points.

(ii) If (V,Γ) is imprimitive at some point P , then (W, o) cannot be a singularity
of type cA/∗.
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Proof. For the proof we assume that V is not Gorenstein. Since ϕ is
crepant, the point (W, o) is not Gorenstein. Let m be its index. Let D ∈
| −K(W,o)| be a general member and let S := ϕ−1(D). Then S ∈ | −K(V,Γ)|
and both S and D have only Du Val singularities. Moreover, the restriction
map ϕS :S → D is crepant. Hence S is dominated by the minimal resolution
Dmin of D and obtained from Dmin by contracting all but one exceptional
curves.

First assume that (V,Γ) has at least three non-Gorenstein points, say P ,
Q, and R. By the classification of Du Val singularities (D, o) is a singularity
of type D∗ or E∗ and S is obtained from D by blowing up the exceptional
curve corresponding to the central vertex in the Dynkin diagram. In this case
exceptional curves on Dmin over (S, P ), (S,Q) and (S,R) form strings and the
proper transform of Γ is adjacent to the ends of them. This means that the
log divisor KS + Γ is plt. The latter implies that the germ (V,Γ) is locally
primitive (cf. (2.3.4)). Now consider the index-one cover π: (W �, o�) → (W, o).
It induces the following diagram

(V �,Γ�) υ ��

ϕ�

��

(V,Γ)

ϕ

��
(W �, o�) π �� (W, o)

(2.4.1)

Since (V,Γ) is locally primitive, Γ� = ϕ�−1(o�) is irreducible. The group µm

naturally acts on Γ� 
 P1 and has exactly two fixed points. Thus we may
assume that υ−1(R) contains no fixed points. But then υ−1(R) consists of
m > 1 non-Gorenstein points of the same index. By [Mor88, Cor. 1.12] there is
a torsion element in Clsc(V �,Γ�) 
 Clsc(W �, o�). This contradicts the fact that
W � \ {o�} is simply connected. Thus (i) is proved.

Now assume that (V,Γ) contains an imprimitive point P . By the proof
of (i) S has at most two singular points and the log divisor KS + Γ is not plt
at P . On the other hand, assume that (D, o) is a point of type A∗. Then the
exceptional curves of the minimal resolution Dmin → S and Γ form a chain.
Hence KS + Γ is not plt, a contradiction.

(2.5) Proposition (cf. [Mor88, 1.14]). Let f : (X,C) → (Z, o) be the germ
of a contraction from a threefold with only terminal singularities to a surface
such that

(i) −KX is nef and big,

(ii) C := f−1(o)red is a curve having at least three components,
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(iii) each KX -trivial component Cj ⊂ C contains a non-Gorenstein point.

Then X has index > 1 at all singular points of C.

Proof. By the Kawamata-Viehweg vanishing theorem we have R1f∗OX =
0. Hence C is a union of P1’s whose configuration is a tree. Let P ∈ C be
a singular point and let Ci ⊂ C be a component passing through P . We
have gr0Ci

ω 
 O(−1). Indeed, take a positive integer m such that mKX is
Cartier. Then there is a natural embedding (gr0Ci

ω)⊗m ↪→ OCi
(mKX). Since

KX ·Ci ≤ 0 we have deg gr0Ci
ω ≤ 0. Moreover, if KX ·Ci < 0, then deg gr0Ci

ω <

0. Assume that KX · Ci = 0 Since Ci contains a non-Gorenstein point, the
above embedding is not an isomorphism and so again deg gr0Ci

ω < 0. On the
other hand, Ci is contractible over Z. Hence, by the Grauert-Riemenshneider
vanishing theorem we have H1(gr0Ci

ω) = 0. This shows gr0Ci
ω 
 O(−1).

Now let Cj be another component of C passing through P . As above,
gr0Cj

ω 
 O(−1). Consider the following exact sequence

0 −→ gr0Ci∪Cj
ω −→ gr0Ci

ω ⊕ gr0Cj
ω −→ F −→ 0,

where SuppF = P . Since Ci∪Cj �= C, Ci∪Cj is contractible over Z and again
by the Grauert-Riemenshneider vanishing H1(gr0Ci∪Cj

ω) = 0. This implies
gr0Ci∪Cj

ω 
 gr0Ci
ω ⊕ gr0Cj

ω. So gr0Ci∪Cj
ω is not locally free at P and this

point cannot be Gorenstein.

§3. The Proof of the Main Theorem

In this section we prove Theorem (1.3).

(3.1) Notation. Let f : (X,C) → (Z, o) be a Q-conic bundle germ with
reducible central fiber C. Then ρ(X/Z) > 1. Recall that according to [MP08,
Th. 1.2.7] (Z, o) is either smooth or Du Val of type A (see also the construction
(3.1.2) below). We assume that (Z, o) is singular of type An−1, n ≥ 2.

(3.1.1) Lemma. Notation as above.

(i) If (X,C) has a point P such that either

(a) P is of type cAx/4, or

(b) for each component Ci ⊂ C passing through P the germ (X,Ci) is
locally imprimitive at P .

Then P is the only non-Gorenstein point on X.
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(ii) Conversely, if P is a unique non-Gorenstein point on X, then all the com-
ponents Ci ⊂ C pass through P and the germ (X,Ci) is locally imprimitive
at P . If furthermore (X,P ) is of index 4, then (X,C) is a quotient of an
index two Q-conic bundle germ (X ′, C ′) over a smooth base by µ2, where
the action is free in codimension one, C ′ has four irreducible components
and µ2 does not fix any of them.

Proof. Let P ∈ X be a point as in (i). For each component Ci ⊂ C pass-
ing through P the germ (X,Ci) is an extremal neighborhood and by [KM92,
Th. 2.2] (X,Ci) has no non-Gorenstein point other than P . Since each sin-
gular point of C is not Gorenstein [Kol99, Prop. 4.2], [MP08, 4.4.2] and C is
connected, P is the only non-Gorenstein point on the whole X.

Now assume that P is the only non-Gorenstein point. Consider the base
change [MP08, 2.4]: (X ′, C ′) → (X,C). Here (X ′, C ′) is a conic bundle germ
over a smooth base and X ′ → X is a µn-cover étale outside P . Thus (X,C) =
(X ′, C ′)/µn. If µn fixes a component C ′

i ⊂ C, then there are two µn-fixed
points on Ci and they give us two non-Gorenstein points on X, a contradiction.
So the first assertion of (ii) is proved.

Finally assume that (X,P ) is of index 4. Since the index of (X,P ) is
divisible by n, n = 4 or 2. If n = 4, then X ′ is Gorenstein. In this case, by
[Pro97, Th. 2.4] C is irreducible, a contradiction. Thus n = 2 and (X ′, C ′) is
of index 2. By the above, µ2 does not fix any component of C ′. On the other
hand, C ′ has at most four components [MP08, Th. 12.1]. Hence C ′ has exactly
four components. This proves the lemma.

(3.1.2) Let q:Xq → X be a Q-factorialization. (It is possible that q is the
identity map.) Run the MMP over Z: Xq = X0 ��� XN+1 = X̄. Since X/Z
is a rational curve fibration, XN+1 is not a minimal model over Z. Therefore,
at the end we get an extremal contraction f̄ : X̄ → Z̄ of Fano type over Z.
Since the composition fq:Xq → Z has only one-dimensional fibers, Z = Z̄

and Xq ��� X̄ is a sequence of flips and extremal divisorial contractions that
contract a divisor to a curve which is not contained in the fiber over o ∈ Z.
Thus we have the following diagram:
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(Xq, Cq)

f
q

��

g0 �����

q

��

(X1, C1) ������ · · · ������ (XN , CN )
gN �� (X̄, C̄)

f̄

��

(X,C)

f

�� (Z, o)

Here each Xk has a morphism fk:Xk → Z with connected one-dimensional
fibers and Ck := f−1

k (o) is the central fiber (with reduced structure). Since
ρ(X̄/Z) = 1, f̄ : X̄ → Z̄ is a Q-conic bundle with irreducible central fiber C̄.
Since the base (Z, o) is singular, X̄ is not Gorenstein. So f̄ is classified in
[MP08], see also (1.2).

(3.1.3) Note that each component of the central fiber Ck is contractible and
the resulting variety is again projective over Z (because it has one-dimensional
fibers over Z). Hence each component of Ck generates an extremal ray (not
necessarily K-negative). This implies that all our flipping curves are irreducible
and all the divisorial contractions have irreducible fibers. Note also that all the
varieties Xk are analytically Q-factorial at each point on Ck (again because
Xk → Z has one-dimensional fibers, cf. [Mor88, Proof of 1.7]).

The following is the key argument in the proof.

(3.2) Proposition. In the above notation one of the following holds.

(3.2.1) There is a component Cq
0 ⊂ Cq containing two cyclic quotient sin-

gularities P q and Qq of index n. No other components of Cq pass through P q

and Qq.

(3.2.2) There is a point P q ∈ (Xq, Cq) of index m > 1 which is contained in
only one component Cq

0 ⊂ Cq and such that (Xq, Cq
0 ) is locally imprimitive at

P q. The following are the possibilities for (n,m): (4, 8), (2, 4), and (2, 2).

(3.2.3) There is a point P q ∈ (Xq, Cq) which is contained in exactly two
components Cq

0 , C
q
1 ⊂ Cq and such that both germs (Xq, Cq

i ) are locally im-
primitive at P q. The point (Xq, P q) is of type cAx/4 or 1

4 (1, 1,−1). Here
n = 2.

Moreover, there is an n-torsion element ξq ∈ Clsc(Xq, Cq) which is not
Cartier at P q (and at Qq is the case (3.2.1)).
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Proof. Since (Z, o) is of type An−1, there is an n-torsion element η ∈
Cl(Z, o). Put ξ̄ := f̄∗η, ξl := f∗l η, and ξq := fq ∗η.

Assume that (X̄, C̄) is either toroidal of type (IA)+(IA). Let P̄ , Q̄ be the
singular points of X̄. Then ξ̄ is not Cartier at P̄ and Q̄. We claim that the map
ψ: X̄ ��� Xq is an isomorphism near P̄ and Q̄. Indeed, by induction, since P̄ , Q̄
are cyclic quotient singularities of index n, there is no divisorial contractions
over these points by [Kaw96] and by Proposition (2.3) on each step the proper
transform of C̄ cannot be a flipped curve. So if we put P q := ψ(P̄ ), Qq := ψ(Q̄),
and Cq

0 := ψ(C̄), we get the case (3.2.1).
Now assume that (X̄, C̄) is of type (IE∨), (IA∨), or (II∨). Let P̄ be a

(unique) non-Gorenstein point. Then (X̄, P̄ ) is either a cyclic quotient singu-
larity or of type cAx/4 and again ξ̄ is not Cartier at P̄ . Moreover, (X̄, C̄) is
locally imprimitive at P̄ . As above, there is no divisorial contractions over P̄
by [Kaw96] and Proposition (2.2) and the proper transform of C̄ cannot be a
flipped curve by Proposition (2.3). Put P q := ψ(P̄ ) and Cq

0 := ψ(C̄). We get
the case (3.2.2).

Finally consider the case where (X̄, C̄) is of type (ID∨). Then n = 2, i.e.,
(Z, o) is of type A1. Let P̄ be a (unique) non-Gorenstein point. Then (X̄, C̄) is
locally imprimitive at P̄ and (X̄, P̄ ) is of type cA/2 or cAx/2. Moreover, in the
first case, (X̄, P̄ ) is analytically isomorphic to a singularity given by (2.2.1).
If there is no divisorial contractions over P̄ , we can argue as above and get
the case (3.2.2). Otherwise on some step, the map ψk+1: X̄ ��� Xk+1 is an
isomorphism near P̄ and there is a divisorial contraction gk:Xk → Xk+1 which
blows up a curve passsing through Pk+1 := ψk+1(P̄ ). Let Ck,0 := g−1

k (Pk+1)
and let Ck,1 be the proper transform of C̄ on Xk. By Proposition (2.2) Xk

has exactly one non-Gorenstein point Pk on Ck,0. Moreover, Pk is either a
cyclic quotient singularity 1

4 (1, 1,−1) or of type cAx/4 and (Xk, Ck,0) is locally
imprimitive at Pk of splitting degree 2. Note that ξk = g∗kξk+1 is not Cartier
at some point of Ck,0. Since Pk is the only non-Gorenstein point on Ck,0, ξk is
not Cartier at Pk. Now if Ck,1 does not pass through Pk, then as above we get
the case (3.2.2). Assume that Ck,0 ∩ Ck,1 = {Pk}.

We claim that (Xk, Ck,1) is locally imprimitive at Pk. Indeed, ξk defines
the double cover πk: (X ′

k, C
′
k) → (Xk, Ck) which is étale outside SingXk. Since

ξk is not Cartier at Pk, πk does not split over Pk. Hence, C ′
k,1 := π−1

k (Ck,1)
is connected. On the other hand, since (X̄, C̄) is locally imprimitive at P̄ ,
the curve C ′

k,1 is reducible. This means that Ck,1 is locally imprimitive at Pk.
Finally as above the map Xk ��� Xq is an isomorphism near Pk. We get case
(3.2.3).
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(3.3) Proposition. Notation as in (3.1). Then (X,C) contains only one
non-Gorenstein point P . This point is either a cyclic quotient 1

4 (1, 1,−1) or
of type cAx/4. Moreover, for each component Ci ⊂ C the germ (X,Ci) is
imprimitive at P and (Z, o) is of type A1.

Proof. By Proposition (3.2) there is a component Cq
0 � Cq as in (3.2.1),

(3.2.2), or (3.2.3). First assume that Cq
0 is not contracted by q:Xq → X.

Put C0 := q(Cq
0 ). Then (X,C0) is an extremal neighborhood. In the case

(3.2.1) it has two cyclic quotient singularities at q(P q) and q(Qq) and no other
components of C pass through q(P q) and q(Qq). On the other hand, C �= C0

and intersection points C0 ∩ (C − C0) are non-Gorenstein [Kol99, Prop. 4.2],
[MP08, 4.4.2]. Thus the extremal neighborhood (X,C0) has at least three non-
Gorenstein points. This contradicts [Mor88, Th. 6.2]. Similarly, in the case
(3.2.2), (X,C0) is locally imprimitive at q(P q) and no other components of C
pass through q(P q). We get a contradiction by Lemma (3.1.1). Consider the
case (3.2.3). If Cq

1 is not contracted by q, then we are done by Lemma (3.1.1).
If Cq

1 is contracted by q, then q(C1) is a point of type cAx/4 by Proposition
(2.4) and because P q is of index 4. Then again the assertion follows by Lemma
(3.1.1).

From now on we assume that q contracts Cq
0 , i.e., KXq · Cq

0 = 0. In the
case (3.2.3) by symmetry and by the above arguments we may assume that q
contracts Cq

1 . Consider the decomposition

q:Xq ϕ−→ Xδ δ−→ X,

where ϕ contracts all the KXq -trivial components of Cq except for Cq
0 . Put

Cδ := ϕ(Cq) and Cδ
0 := ϕ(Cq

0 ). Thus −KXδ is nef and big over Z and Cδ
0 is

the only KXδ -trivial curve on Xδ/Z. Let Cδδ := Cδ − Cδ
0 . Then Cδδ has at

least two components. Let P := δ(Cδ
0) and Rδ = Cδδ ∩ Cδ

0 . By Proposition
(2.5) Rδ is not Gorenstein.

In the case (3.2.1), Cδ
0 contains at least three non-Gorenstein points: Rδ,

P δ := ϕ(P q), and Qδ := ϕ(Qq). This contradicts Proposition (2.4).
In the case (3.2.2), P δ := ϕ(P q) is a locally imprimitive point of (Xδ, Cδ

0).
By Proposition (2.4) the singularity (X,P = δ(Cδ

0)) is not of type cA/∗. If the
index of (X,P ) is ≥ 4, then (X,P ) is of type cAx/4 and we can apply Lemma
(3.1.1). Thus we assume that (X,P ) is of index 2 and n = 2. Let Ci ⊂ C be a
component passing through P . By [Mor88, Cor. 1.16] (X,Ci) is primitive at P .
Further, ξ := f∗η = q∗ξ

q is an 2-torsion element of Clsc(X,C) and is not Cartier
at P . This defines a double étale in codimension one cover (X ′, C ′

i) → (X,Ci)
which does not splits over P . Hence there is a point Q ∈ (X,Ci) of even index.
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This contradicts the classification [KM92, Th. 2.2] (cf. [Mor07]).
Consider the case (3.2.3). Then P δ := ϕ(P q) is a point of index ≥ 4

(because ϕ is a crepant contraction). Recall that ϕ contracts Cq
1 by our as-

sumption. Then by Proposition (2.4) (Xδ, P δ) is a point of type cAx/4. As in
the proof of Proposition (2.4), let D ∈ |−K(X,δ(P δ))| be a general element and
let S := δ−1(D). Then both D and S have only Du Val singularities and the
contraction δS :S → D is crepant. Since (S, P δ) is not of type A∗, the germ
(D,P ) also cannot be of type A∗. Hence, (X,P ) is not of type cA/∗ and so
it is of type cAx/4 (because its index is ≥ 4). Then the assertion follows by
Lemma (3.1.1).

(3.4) Explicit forms. By Proposition (3.3) and Lemma (3.1.1) f : (X,C) →
(Z, o) is a quotient of an index-two Q-conic bundle f ′: (X ′, C ′) → (Z ′, o′) over
a smooth base by µ2, where µ2 acts on X ′ and Z ′ freely in codimension one.
By [MP08, Prop. 12.1.10] there is a µ2-equivariant diagram

X ′ � � ��

f
��������������� P(1, 1, 1, 2) × C2

p

��
C2

where the actions of µ2 on (C2, 0) 
 (Z ′, o′) and P(1, 1, 1, 2) are linear. Fur-
ther, we can make coordinates y1, y2, y3, u, v in P(1, 1, 1, 2) and C2 to be semi-
invariant. By [MP08, Th. 12.1] X ′ is given by two semi-invariant equations



q1(y1, y2, y3) − ψ1(y1, . . . , y4;u, v) = 0,

q2(y1, y2, y3) − ψ2(y1, . . . , y4;u, v) = 0,

where ψi and qi are weighted quadratic in y1, . . . , y4 with respect to
wt(y1, . . . , y4) = (1, 1, 1, 2) and ψi(y1, . . . , y4; 0, 0) = 0. Since the action of
µ2 on Z 
 C2 is free outside 0, this action is given by u �→ −u, v �→ −v. Mod-
ulo multiplication on ±1 and permutations of y1, y2, y3, we may assume also
that y1 �→ −y1, y2 �→ −y2, y3 �→ y3. Otherwise all the points of {y4 = 0} ∩ C ′

are fixed by µ2, while P is the only non-Gorenstein on X.
The central fiber C ′ is defined by q1 = q2 = 0. By Lemma (3.1.1) C ′ has

exactly four components and µ2 does not fix any of them. Thus we may assume
that C ′ = ∪C ′

i, i = 1, 2, 3, 4 and µ2 interchanges C ′
1 and C ′

2 (resp. C ′
3 and C ′

4).
For any two components C ′

i �= C ′
j of C ′, there is a linear form li,j(y1, . . . , y3)

that vanishes along C ′
i∪C ′

j . Then quadratic forms l1,2l3,4, l1,3l2,4, l1,4l2,3 vanish
along C ′. Hence they belong to the pencil λ1q1 +λ2q2 and semi-invariant. This
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implies that the action of µ2 on the pencil is trivial. Moreover, we can put
q1 = l1,3l2,4 and q2 = l1,4l2,3. In view of the µ2-action we may assume that
l1,3 = y1 + y3, l2,4 = y1 − y3, l1,4 = y2 + y3, l2,3 = y2 − y3 after some linear
coordinate change of y1, y2, y3.

We claim that y4 �→ −y4. The arguments below are similar to ones in the
proof of [MP08, Lemma 12.1.12]. Assume to the contrary that y4 �→ y4. Let
U ⊂ P(1, 1, 1, 2) be the chart y4 �= 0. Then U 
 C3

z1,z2,z3
/µ2(1, 1, 1). Let X�

be the pull-back of X ∩ (U × C2
u,v) on C3

z1,z2,z3
× C2

u,v and let P � ∈ X� be the
preimage of P . Since the induced map X� → X is étale in codimension one,
(X�, P �) → (X,P ) is the index-one cover. Hence (X�, P �) → (X,P )/µ2 is also
the index-one cover of the terminal point (X,P )/µ2 of index 4 (the last is true
because the action of µ2 is free in codimension one). Hence the morphism is
a µ4-covering by the structure of terminal singularities. However (X,P )/µ2 is
the quotient of (X�, P �) by commuting µ2-actions:

(z1, z2, z3, u, v) �→ (−z1,−z2,−z3, u, v), (−z1,−z2, z3,−u,−v)
This is a contradiction, and we have y4 �→ −y4 as claimed. This finishes the
proof of Theorem (1.3).

Proof of Corollary (1.4). If C is irreducible, the assertion follows by
[MP08, Proposition (1.3.7)], so we have to check only cases (1.3.1) and (1.3.2).
Thus we assume that X has a unique non-Gorenstein point, say P , and C

is reducible. For each component Ci ⊂ C, the germ (X,Ci) is an extremal
neighborhood with a unique non-Gorenstein point. Let F ∈ | −K(X,P )| be a
general member of the anti-canonical linear system of the germ (X,P ). The
point (F, P ) is Du Val by [Rei87, (6.4), (B)]. Further, F is also a member of
| −K(X,Ci)| for each Ci, see [Mor88, Theorem (7.3)]. Hence F ∈ | −KX |.
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