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Vector Valued Hyperfunctions and Boundary
Values of Vector Valued Harmonic and

Holomorphic Functions

By

Pawe�l Domański∗ and Michael Langenbruch∗∗

Abstract

We develop the theory of hyperfunctions with values in a locally convex non-
necessarily metrizable space E and find necessary conditions and sufficient conditions
such that a reasonable theory of E-valued hyperfunctions exists. In particular, we
show that it exists for various spaces of distributions but there is no such theory for
the spaces of real analytic functions and distributions with compact support. We
also show that vector valued hyperfunctions can be interpreted as boundary values
of vector valued harmonic or holomorphic functions and, in many cases, as suitable
cohomology groups.

§1. Introduction

Hyperfunctions were defined and developed by Sato [53] (comp. [54] or
[45]) in the late fifties and early sixties of the twentieth century. They have
become important and useful tools in the theory of differential equations (see
[33]). Soon it turned out that also vector valued hyperfunctions would be inter-
esting, for instance, since some partial differential equations can be interpreted
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as ordinary vector valued equations (e.g., [49], [50], [20]). The analogous the-
ory of vector valued distributions was developed at early stage of the theory
by Schwartz himself via tensor products [55]. In the case of hyperfunctions
an essential difficulty appears: hyperfunctions have no natural linear topology!
Nevertheless Ion and Kawai [28] developed such a theory for hyperfunctions
with values in Fréchet spaces (= metrizable complete locally convex spaces)
using the vector valued Dolbeault complex. Despite of some efforts to ex-
tend the theory beyond the class of metrizable spaces (see [29], [30]) as far as
we know this is the only fully correct theory of vector valued hyperfunctions.
Nevertheless it is of some interest to consider E-valued hyperfuntions for non-
metrizable E (for instance, for various spaces of distributions or spaces of real
analytic functions).

The aim of this paper is not only to develop a theory of vector valued
hyperfunctions far beyond the class of metrizable spaces but also to find the
natural limits of such a theory. Inside a large natural class of locally convex
spaces we characterize those spaces E for which a reasonable theory of E-
valued hyperfuntions exists at all (see Theorem 8.9). To make this statement
more precise: we believe that a reasonable theory of E-valued hyperfunctions
should produce a flabby sheaf such that the set of sections supported by a
compact subset K ⊆ R

d should be equal to L(A (K), E), the space of linear
continuous operators on the space of germs of analytic functions on K (or “the
space of E-valued analytic functionals on K”). As we will prove E-valued
hyperfunctions satisfying these minimal requirements can be constructed for
instance if E is the space of distributions or tempered distributions as well as
for distributional kernels of linear partial differential operators with constant
coefficients over convex sets. On the other hand such a theory is impossible
for E being the space of distributions with compact support or the space of
real analytic functions over a compact set with non-empty interior or over an
open subset of Rd. More generally, for a wide class of locally convex spaces
— the so-called ultrabornological PLS-spaces described later on (which covers
most of the natural non-Banach sheaves of analysis) the theory of E-valued
hyperfunctions is possible if and only if E has the so-called property (PA) (see
Theorem 8.9). Let us add that by now we have a quite extensive knowledge
which spaces have (PA) and which have not (see Section 4).

The existence of E-valued hyperfunctions is intimately connected to the
solvability of the E-valued Laplace equation. A locally convex space E is called
(weakly) d-admissible, d ∈ N, d ≥ 1, if for any (bounded) open set Ω ⊂ Rd the
d-dimensional Laplace operator is surjective on the space of E-valued smooth
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functions on Ω, i.e.

Δd : C∞(Ω, E) → C∞(Ω, E) is surjective.

Clearly every locally convex space is 1-admissible. Surprisingly, we will show
that if E is (d + 1)-admissible then a reasonable theory of d-dimensional E-
valued hyperfunctions is possible. On the other hand, existence of such a theory
implies that E is weakly d-admissible. Therefore we devote the whole Section
4 to study which spaces are d-admissible. In fact, we consider first in Section
3 a more general question, namely if

P (D) : C∞(Ω, E) → C∞(Ω, E) is surjective

for a general hypoelliptic or elliptic linear partial differential operator P (D)
with constant coefficients. We also get analogous statements for hypoelliptic
matrices P (D). Our main tools here are new results on surjectivity of tensor
products obtained in [7] which allow to clarify via the method of Vogt (see
[61], [64]) for which spaces E the operator P (D) is surjective on the space of
smooth E-valued functions. This section contains many results on surjectivity
of various differential operators on spaces of vector valued smooth functions
and therefore it is interesting in itself. In the above mentioned class of PLS-
spaces, d-admissible and weakly d-admissible spaces coincide for all d ≥ 2 and
they are exactly described as the spaces having the so-called property (PA),
see Corollary 4.1.

In the scalar case, hyperfunctions may be defined either as the sheaf gener-
ated by the analytic functionals (which are always compactly supported in the
scalar case) or as the sheaf of the d-th relative cohomology groups supported
in Rd with values in the Oka sheaf of holomorphic functions of d variables. We
present the vector valued case of both approaches in Section 6 and Section 7
correspondingly. Then both approaches are translated to the boundary value
approach for harmonic (Section 6) and holomorphic functions (Section 7). We
will profit a lot from Bengel’s point of view, i.e., considering harmonic function-
als instead of analytic functionals, which lead to a special case of P-functionals
of Bengel (see [2], [54] and also [35]). We explain this identification in Section
5.

In Section 8 we find necessary conditions on a locally convex space E such
that the theory of E-valued hyperfunctions exists. Summarizing, if E is one
of the spaces listed in Corollary 4.8 then such a theory exists and can be built
both using the duality method or boundary values of harmonic functions (see
Section 6) as well as cohomology groups with values in the E-valued Oka sheaf
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or boundary values of holomorphic functions (see Section 7). On the other
hand, no construction of a reasonable sheaf of E-valued hyperfunctions exists
for the spaces E listed in Cor. 4.9 (a) and (b). More precisely, if E is an ultra-
bornological PLS-space then a reasonable theory of E-valued hyperfunctions
exists if and only if E has the property (PA) mentioned above (Thm. 8.9)

§2. Notation and Preliminaries

By E we will always denote a complete locally convex space.
By L(E,F ) we denote the space of continuous linear operators from E to

F always equipped with the topology of uniform convergence on bounded sets,
where E and F are locally convex spaces (to emphasize this we write Lb(E,F )).
By E′

b, E
′
co we denote the dual spaces with the strong and the compact open

topologies, respectively.
By A (Ω) we denote the space of real analytic functions on an open set

Ω ⊂ Rd. This space is equipped with the natural topology (see [44] or [13]) of
the projective limit of inductive limits of Banach spaces:

A (Ω) = proj N∈N ind n∈NH
∞(UN,n),

where (KN )N∈N is a compact exhaustion of Ω, (UN,n)n∈N is a basis of complex
open neighborhoods of KN in Cd (without loss of generality we may assume
that they are domains of holomorphy and UN,n+1 � UN,n) and H∞(UN,n) is
the Banach space of bounded holomorphic functions on UN,n. Let us observe
that A (Ω) = proj N∈NH(KN ), H(KN ) the space of germs of holomorphic
functions on KN ⊂ Cd. For any compact set K ⊂ Cd the space H(K) is a
DFN-space, i.e., the dual of a nuclear Fréchet space. By A (K) we denote the
space of germs of real analytic functions on K ⊆ Rd, clearly A (K) � H(K)
topologically. By H(U) and H(U,E) we define the spaces of scalar and E-
valued holomorphic functions on U ⊆ C

d or on an open subset U of a Stein
manifold. Let us denote by E (E) and O(E) the sheaves of E-valued smooth
and holomorphic functions, respectively. Analogously, E (p,q)(E) denotes the
sheaf of (p, q)-differential forms with smooth coefficients with values in E.

We will write points ξ ∈ Rd+1 as ξ = (x, y) ∈ Rd ×R. For U ⊂ Rd+1 open
let

CΔ(U,E) := {f ∈ C∞(U,E) | Δd+1f = 0}
denote the space of E-valued harmonic functions on U and let

C̃Δ(U,E) := {f ∈ C∞(U,E) | Δd+1f = 0, f(x, y) = f(x,−y) if (x, y) ∈ U}
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be the space of harmonic functions on U which are even with respect to y if U ⊂
Rd+1 is symmetric (with respect to y), that is, if (x,−y) ∈ U for any (x, y) ∈ U .
The space C̃Δ(U,E) is equipped with the topology induced from C∞(U,E) =
C∞(U)⊗̂εE (see [31] for topological tensor products). Analogously, we define
C̃∞(U,E) to be the space of smooth functions even with respect to the last
variable.

Let G always denote the canonical even elementary solution of Δd+1, i.e.

G(x, y) := ln(|(x, y)|)/(2π) if d = 1 and(2.1)

G(x, y) := −|(x, y)|1−d/((d− 1)cd+1) if d ≥ 2

where cd+1 is the area of the unit sphere in Rd+1.
Let us recall that, by a result of Grothendieck [24, part I, p. 39, part II,

p. 82], if E is complete then a function f : Ω → E is infinitely many times
differentiable if and only if u ◦ f ∈ C∞(Ω) for any functional u ∈ E′. This
implies immediately the following lemma:

Lemma 2.1. Let E be a complete locally convex space, Ω ⊂ R
d open

and let f : Ω → E. Then f ∈ C∞(Ω, E) and Pf = 0 for a given linear
differential operator P if and only if

u ◦ f ∈ ker P ⊂ C∞(Ω)

for each u ∈ E′.

Remark 2.2. In fact, it suffices that E is locally complete. Moreover, if
P = ∂̄ this is nothing else but a classical result of Dunford and Grothendieck
that a vector valued function is holomorphic if and only if it is weakly holo-
morphic (see [24, part I, Th. 1]).

Let us recall that a locally convex space X is a PLS-space (PLN-space) if
X = proj N∈NXN , where XN are DFS-spaces, i.e., the strong duals of Fréchet
Schwartz spaces, (DFN-spaces, i.e., the strong duals of nuclear Fréchet spaces).
Clearly the space of distributions D ′(Ω), the spaces of Beurling type ultradis-
tributions D ′

(ω)(Ω) (see [10]) and the space of real analytic functions A (Ω)
are PLN-spaces. Every Fréchet-Schwartz space is a PLS-space. In fact, all
non-Banach spaces appearing naturally in analysis are either PLS-spaces or
LFS-spaces (=inductive limits of sequences of Fréchet Schwartz spaces). For
more details on PLS-spaces see [13].

We will also use some homological tools for locally convex spaces like the
functor Proj1 . Let X = proj N∈NXN , where (XN ) is a sequence of locally
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convex spaces with a sequence of linking maps iN+1
N : XN+1 → XN . We define

Proj1 N∈N(XN ) :=
∏

N∈N

XN/ im σ, σ :
∏

N∈N

XN →
∏

N∈N

XN ,

σ((xN )) := (iN+1
N xN+1 − xN )N∈N.

For reduced spectra of DFS-spaces or Banach spaces (i.e., iN : X → XN has a
dense range for any N ∈ N), Proj1 depends only on X and not on the spectrum
itself. It is worth noting that for any PLS-space X the functor Proj1 X = 0
if and only if X is ultrabornological. For more details on Proj1 functor and
other derived functors see [67].

We will use later the so-called ε-product of locally convex spaces which
is a type of a tensor product. If E and F are complete locally convex spaces
then EεF := L(E′

co, F ) equipped with the topology of uniform convergence on
equicontinuous subsets of E′

co. For instance, if E or F is nuclear then EεF is
the completion of E⊗F with its unique natural topology. For more details see
[31].

Let E and F be locally convex spaces. If for any locally convex space
G every short exact sequence with continuous linear and open onto its image
maps

0 → E → G
q→ F → 0

splits (i.e., q has a continuous linear right inverse) then we write Ext1(F,E) = 0.
If E and F are PLS-spaces and the same holds for all PLS-spaces G, then we
denote it by Ext1PLS(F,E) = 0. In order to distinguish cohomology groups
from spaces of holomorphic functions we denote the former by the letter H

while the latter by H.
For the classical theory of hyperfunctions see [54] or [33]. For the sheaf

theory see [11]. For the relative cohomology see also [32] (comp. [54]). For the
theory of locally convex spaces see [48]. For the theory of topological tensor
products see [31].

§3. Surjectivity of Differential Operators on Spaces of Vector
Valued Smooth Functions

In this section we study the general problem of surjectivity of hypoelliptic
partial differential operators with constant coefficients acting on the space of
vector valued smooth functions. For any Fréchet space E if an operator T :
C∞(Ω) → C∞(Ω) is surjective then T ⊗ id : C∞(Ω, E) → C∞(Ω, E) is also
surjective. This follows from the classical theory of tensor products. The
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case of dual Fréchet spaces E was solved in [61]. The latter paper contains
also some more general examples (for instance D ′(U) or D(U)). We consider
systematically the case when E is either a PLS-space or an LFS-space. We are
mostly interested in classical spaces of analysis. Moreover, we consider not only
individual operators but also systems (matrices) of such differential operators.
The suitable new tools are provided by the papers [6] and [7] as well as [17].

Apart from the applications of the presented results to the problem of
vector valued hyperfunctions presented later on, the results have clear applica-
tions to the question of parameter dependence of solutions of systems of partial
differential equations with constant coefficients (for this problem see [12], [57],
[58], [41], [42], [43], [5], [6], [7]).

The proofs of this section follow the ideas of Vogt’s paper [61] supplemented
by some new tools for PLS-spaces.

We start with some preliminary result.

Proposition 3.1. Let F be an ultrabornological locally convex space and
let E = F ′

b. Then for any complete Montel webbed space G we have algebraically
L(E′

co, G) = L(F,G).

Proof. Clearly, by taking adjoint maps (see [31, 9.3.7, 16.7.6])

L(E′
co, G) ∼= L(G′

co, E) = L(G′
b, F

′
b).

For every operator T ∈ L(G′
b, F

′
b) its dual T ′ : F ′′

b → G is weak*-weak con-
tinuous, so it restricts to a weak-weak continuous map T ′|F : F → G. The
correspondence T → T ′|F is injective. By the webbed closed graph theorem,
T ′|F ∈ L(F,G). Of course, (T ′|F )′ = T .

A matrix P0(D) of linear partial differential operators with constant coef-
ficients is called hypoelliptic iff

{T ∈ D′(Ω)s0 | P0(D)T = 0} ⊂ C∞(Ω)s0 for any open Ω ⊂ R
d.

The main result is the following theorem which for the splitting at P0(D)
is essentially due to Vogt, the rest follows from [17]:

Theorem 3.2. Let Ω ⊆ Rd and let P0(D) be a hypoelliptic matrix of
linear partial differential operators with constant coefficients

P0(D) : C∞(Ω)s0 → C∞(Ω)s1 .
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Assume that the following complex is exact, where Pi(D) are matrices of linear
partial differential operators with constant coefficients (and n ≥ 1):

0 → ker P0(D) → C∞(Ω)s0
P0(D)−→ C∞(Ω)s1(3.2)
P1(D)−→ C∞(Ω)s2 → · · · Pn(D)−→ C∞(Ω)sn+1 .

Then for a complete locally convex space E the corresponding vector valued
complex

0 → ker P0(D)εE→C∞(Ω, E)s0
P0(D)−→ C∞(Ω, E)s1

P1(D)−→ C∞(Ω, E)s2(3.3)

→ · · · Pn(D)−→ C∞(Ω, E)sn+1

is exact if and only if

Proj1 N∈NL(E′
co,KN ) = 0,

where ker P0(D) = projN∈N
KN =: K, the projective spectrum is a reduced

spectrum of Banach spaces.
If E = F ′

b, where F is ultrabornological, then the condition is equivalent to

Proj1 N∈NL(F,KN ) = 0.

The idea of the proof is inspired by some extension of the proof of [63,
Lemma 3.1] and the result is in fact a reformulation of the basic idea of [61].

It is worth noting that Ω ⊆ Rn is P0(D)-convex means that the complex
(3.2) is exact for sn+1 = 0 (i.e., the complex ends with the trivial space). If
s0 = s1 = 1 then P0(D)-convexity means that P0(D) : C∞(Ω) → C∞(Ω) is
surjective. Exactness of the complex (3.3) means in that case that P0(D) :
C∞(Ω, E) → C∞(Ω, E) is surjective.

Proof. Let

ΩK ⊂⊂ ΩK+1 ⊂⊂ · · · ⊂⊂ Ω, Ω =
⋃

N∈N

ΩN

be a compact exhaustion of Ω. Moreover,

C∞(Ω)s0 = projN∈N
C∞(ΩN )s0

and the spectrum (C∞(ΩN )s0 , iN+1
N ), iN+1

N : C∞(ΩN+1)s0 → C∞(ΩN )s0 the
restriction map, is reduced.

By [67, Th. 3.2.8], we have the exact fundamental resolution
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0 −−−−→ C∞(Ω)s0 −−−−→ ∏
N∈N

C∞(ΩN )s0

σ−−−−→ ∏
N∈N

C∞(ΩN )s0 −−−−→ 0

where σ((fN )) := (iN+1
N fN+1 − fN ).

Let us take ϕN ∈ C∞(Rd), suppϕN � ΩN+1, ϕN |ΩN
≡ 1, 0 ≤ ϕN ≤ 1.

For M ≥ N + 1 we define sN+1
M : C∞(ΩN+1)s0 → C∞(ΩM )s0 ,

sN+1
M (f)(x) :=

{
ϕNf(x) for x ∈ ΩN+1,

0 for x 
∈ ΩN+1.

Clearly, sN+1
N+1(f)|ΩN

=f |ΩN
. The map R :

∏
N∈N

C∞(ΩN )s0→∏
N∈N

C∞(ΩN )s0 ,

R((fN )) := (
∑
j≤K

sj
K(fj) − fK)K∈N,

is a linear continuous right inverse for σ. Therefore, for every locally convex
space F and every T ∈ L(F,

∏
N∈N

C∞(ΩN )s0) =
∏

N∈N
L(F,C∞(ΩN )s0) there

is S ∈ L(F,
∏

N∈N
C∞(ΩN )s0) such that σ ◦ S = T . That means

(3.4) Proj1 N∈NL(E′
co, C

∞(ΩN )s0) = 0.

A reduced projective spectrum (KN )N∈N of Banach spaces such that
projN∈N KN = K =: ker P0(D) may be defined as follows:

Let KN be the closure of {f ∣∣
ΩN

| f ∈ K} in C(ΩN ). Since C(ΩN ) is
continuously embedded in D ′(ΩN )s0 , KN is contained in the kernel of

P0(D) : D ′(ΩN )s0 → D ′(ΩN )s1 .

By hypoellipticity, vN : KN → C∞(ΩN )s0 and, by the closed graph theorem,
vN is continuous. Thus projN∈N

KN = K and the projective spectrum (KN )
is equivalent to the projective spectrum induced by (C∞(ΩN ))N∈N on K. Since
all reduced spectra of Banach spaces (KN ) with the projective limit equal K
are equivalent it suffices to show the result for the spectrum (KN ).

Since the projective spectrum induced by (C∞(ΩN )s0)N∈N
on K is equiv-

alent to (KN )N∈N we have the following commutative diagram by [17, Th.
3.6]:
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0 −−−−→ K1 −−−−→ V1 −−−−→ U1 −−−−→ 0	⏐⏐ 	⏐⏐ 	⏐⏐
...

...
...	⏐⏐ 	⏐⏐ 	⏐⏐

0 −−−−→ KN −−−−→ VN
qN−−−−→ UN −−−−→ 0	⏐⏐ 	⏐⏐ 	⏐⏐jN+1

N

0 −−−−→ KN+1 −−−−→ VN+1
qN+1−−−−→ UN+1 −−−−→ 0	⏐⏐ 	⏐⏐ 	⏐⏐

...
...

...	⏐⏐ 	⏐⏐ 	⏐⏐
0 −−−−→ K −−−−→ C∞(Ω)s0

P0(D)−−−−→ im P0(D) −−−−→ 0,

where all rows are exact and the space at the bottom of each column is the
projective limit of the column above. Moreover, the spectra of Fréchet spaces
(VN )N∈N, (UN )N∈N are defined via the definition of graded exactness (comp.
[17, Prop. 3.1]) and thus they are equivalent to the spectra (C∞(ΩN ))N∈N

and the spectrum induced on im P0(D) = ker P1(D) by the same spectrum
(call the latter spectrum by (N(ΩN ))N∈N). Without loss of generality, we may
assume that

jN+1
N = vN ◦ tN , tN : UN+1 → N(ΩN ), vN : N(ΩN ) → UN .

Clearly, N(ΩN ) ⊆ C∞(ΩN ) is nuclear. By [63, Cor. 1.2, Th. 1.8], the map vN

lifts with respect to qN since KN is a Banach space. Thus

q∗N : L(E′
co, VN ) → L(E′

co, UN ), q∗N (T ) := qN ◦ T,
satisfies im q∗N ⊇ jN+1

N

(
L(E′

co, UN+1)
)
. Therefore

0 → (L(E′
co,KN ))N∈N → (L(E′

co, VN ))N∈N → (L(E′
co, UN ))N∈N → 0

is an exact sequence of spectra (see [67]), thus we have the following exact
sequence (apply (3.4) and see [67, Cor. 3.1.5]):

0 → L(E′
co,K) →L(E′

co, C
∞(Ω)s0)

P0(D)−→ L(E′
co, im P0(D))

→ Proj1 L(E′
co,KN ) → 0



Vector Valued Hyperfuntions 1107

since C∞(Ω, E)s0 is naturally identified with L(E′
co, C

∞(Ω)s0). We have thus
proved that

Proj1 L(E′
co,KN ) = 0

is equivalent to the exactness of the sequence

0 → ker P0(D)εE → C∞(Ω, E)s0
P0(D)−→ ker P1(D)εE → 0.

By [17, Th. 5.4 and Th. 3.6], for 1 ≤ k ≤ n− 1 the sequence

(3.5) 0 → ker Pk(D) → C∞(Ω)sk
Pk(D)−→ ker Pk+1(D) → 0

splits. In fact [17, Th. 5.4] assumes that all spaces in the spectrum are of
the form C∞(Ω)s but in the proof the last space is irrelevant. For the sake of
completeness we give below the full proof of the splitting of (3.5).

By [17, Th. 3.6], for 1 ≤ k ≤ n − 1 the sequence (3.5) is graded exact
whenever ker Pk(D) and ker Pk+1(D) are equipped with the grading induced
from C∞(Ω)sk+1 (“graded” notions are explained in [17]).

Theorem 4.5(2) in [17] says that such a sequence splits whenever the fol-
lowing four conditions are satisfied:

(1) ker Pk(D) is a strict graded space;

(2) ker Pk+1(D) is graded isomorphic to a graded subspace of sN;

(3) C∞(Ω)sk is graded isomorphic to sN;

(4) ker Pk(D) satisfies the conditions (a) and (b) of [17, Th. 4.1 (6)].

Now, (3) is exactly [17, Th. 2.4] and, of course, (2) follows. Since, by the same
arguments as above,

(3.6) 0 → ker Pk−1(D) → C∞(Ω)sk−1
Pk−1(D)−→ ker Pk(D) → 0

is graded for k ≥ 1, thus ker Pk(D) is a graded quotient of C∞(Ω)sk−1 thus
strict as a graded quotient of a graded space isomorphic to a strict graded space
sN. So it suffices to show (4). We prove it by [17, Th. 4.7 (iii)]. We apply it to
the graded exact sequence (3.6) and observe that ker Pk−1(D) has a grading
consisiting of Fréchet spaces with the property (Ω) by [17, Th. 5.5 (b)] — see
the definition on page 226 of [17]. This completes the proof that (3.5) splits.

Thus also

0 → ker Pk(D)εE → C∞(Ω, E)sk
Pk(D)−→ ker Pk+1(D)εE → 0
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is exact (and splits). This completes the proof.
In case E = F ′

b with ultrabornological F we can apply Proposition 3.1 and
replace in all places L(E′

co, X) by L(F,X).

Remark 3.3. The same result holds for Pi(D) replaced by hypoellip-
tic matrices of convolution operators Ti and C∞(Ω) replaced by the spaces
E(ω)(Ωk) of ultradifferentiable functions of Beurling type (or E(Mp)(Ωk)) for
the non-quasianalytic case whenever T0 is (ω)-hypoelliptic (see [8]). Indeed, it
suffices to choose (XN ) in the proof of Theorem 3.2 in a suitable way.

The following Corollary generalizes [61, Prop. 2.2].

Corollary 3.4. Let P0(D) : C∞(Ω)s0 → C∞(Ω)s1 be a hypoelliptic
matrix of linear partial differential operators with constant coefficients such
that Ω ⊆ R

d and (3.2) is exact. Let E be a complete locally convex space.
(a) The complex (3.3) is exact if and only if Ext1(E′

co, ker P0(D)) = 0.
(b) If E = F ′

b, where F is an ultrabornological locally convex space then
the complex (3.3) is exact if and only if Ext1(F, ker P0(D)) = 0.

(c) If E is an ultrabornological PLS-space, then the complex (3.3) is exact
if and only if Ext1PLS((ker P0(D))′b, E) = 0.

Proof. (a) and (b): Follows from Theorem 3.2 and [14, Lemma 1.1] since
ker P0(D) ⊆ C∞(Ω)s0 is a nuclear space.

(c): Follows from Theorem 3.2 and [7, Theorem 3.4], note that (kerP0(D))′b
is an LN-space and ker P0(D) is Montel.

Corollary 3.5. Let P0(D) and Ω be as in Corollary 3.4. If E1 is a
complete quotient of E such that all compact sets in E1 are images of compact
sets in E (for instance, if E1 is a complete quotient of a PLS-space E, see
[18, Lemma 1.5]) then exactness of the complex (3.3) implies exactness of the
complex :

0 → ker P0(D)εE1 →C∞(Ω, E1)s0
P0(D)−→ C∞(Ω, E1)s1

→ · · · Pn(D)−→ C∞(Ω, E1)sn+1 .

The same holds if F1 is an ultrabornological subspace of an ultrabornological
space F and E = F ′

b, E1 = (F1)′b.

Proof. In the first case (E1)′co ⊆ E′
co topologically. In the second case

F1 ⊆ F topologically. The result follows by [14, Cor. 1.2] and Corollary
3.4.
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The definitions of the properties (PA) and (PΩ) were introduced in [7]
and [6], respectively. For the reader’s convenience we recall them. A PLS-
space X = proj N∈N ind n∈N(XN,n, ‖ · ‖N,n) satisfies (PA) if and only if

∀ N ∃ M ∀ K ∃ n ∀ m ∀ η > 0 ∃ k, C, r0 > 0 ∀ r > r0 ∀ x′ ∈ X ′
N :

(3.7) ‖x′ ◦ iMN ‖∗M,m ≤ C

(
rη‖x′ ◦ iKN‖∗K,k +

1
r
‖x′‖∗N,n

)
,

where ‖ · ‖∗ denotes the dual norm for ‖ · ‖. Analogously, a PLS-space X has
(PΩ) if

∀ N ∃ M ∀ K ∃ n ∀ m ∃ η > 0 ∃ k, C, r0 > 0 ∀ r < r0 ∀ x′ ∈ X ′
N :

the condition (3.7) holds.
Let us observe that a PLS-space X with (PA) or (PΩ) is ultrabornological

since Proj1 X = 0 (see [7, Prop. 4.2] and [6, Cor. 5.2]).
The property (Ω) for kernels of hypoelliptic linear partial differential op-

erators of constant coefficients is due to Petzsche [52].

Corollary 3.6. Let P0(D) be as in Corollary 3.4 and let Ω be convex.
If E is a PLS-space with property (PA) then the complex (3.3) is exact.

Proof. If P0(D) is an individual operator and Ω is convex, then the kernel
of P0(D) : D ′(Ω) → D ′(Ω) has property (PΩ) by [6, Cor. 8.4]. Exactly the
same proof works for matrices P0(D). Since P0(D) is hypoelliptic the kernel
ker P0(D) in D ′(Ω)s0 and in C∞(Ω)s0 is exactly the same. By the proof of [19,
Cor. 2] and the webbed open mapping theorem the topologies coincide as well.
So the kernel in C∞(Ω) has (PΩ) and because of metrizability also (Ω) . By
[7, Theorem 4.1], Ext1PLS((ker P0(D))′b, E) = 0. This completes the proof by
Corollary 3.4 (c).

Lemma 3.7. Let E be an ultrabornological PLS-space and let F be a
Fréchet space having property (DN) . Assume that there is an unbounded
increasing sequence of positive real numbers α := (αj), sup α2j

αj
<∞, such that

Λ∞(α) ↪→ FN and F is Λ1(α)-nuclear. Then Ext1PLS(F ′
b, E) = 0 implies that

E has (PA).

Proof. By Remark 5.3 (d) in [64], it follows that F satisfies the assump-
tions of [64, Th. 5.2]. In the proof of the latter theorem it is shown that there
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is ν0 ∈ N such that for every μ ∈ N there is κ ∈ N, θ ∈ (0, 1) and a constant C
such that there is an increasing sequence of real numbers (αj), limj αj = +∞,
lim supj

αj+1
αj

= D < +∞ and there is a sequence (xj) ⊆ F ′ such that

‖xj‖∗κ = 1, ‖xj‖∗μ = eαjθ, ‖xj‖∗ν0
= eαj .

On the other hand, [7, Th. 3.1] implies the condition (G):

∀ N, ν ∃ M ≥ N,μ ≥ ν ∀ K ≥M,κ ≥ μ ∃ n ∀ m ≥ n ∃ k ≥ m,S

∀ y ∈ E′
N , x ∈ F ′

ν : ‖y ◦ iMN ‖∗M,m‖x ◦ jμ
ν ‖∗μ

≤ S
(‖y‖∗N,n‖x‖∗ν + ‖y ◦ iKN‖∗K,k‖x ◦ jκ

ν ‖∗κ
)

;

We take arbitrary N , choose ν = ν0, choose M , μ by (G), then take K, κ = κ0,
θ. Finally we take n, m, k, S according (G). Putting xj as x in (G) we get

‖y ◦ iMN ‖∗M,me
αjθ ≤ S(‖y‖∗N,ne

αj + ‖y ◦ iKN‖∗K,k).

Dividing by eαjθ we get

‖y ◦ iMN ‖∗M,m ≤ S(‖y‖∗N,ne
αj(1−θ) + ‖y ◦ iKN‖∗K,ke

−αjθ).

Let us choose
(eθ−1)αj+1 ≤ r ≤ (eθ−1)αj ,

then for big j:
e−αjθ ≤ e−αj+1θ 1

2D ≤ r
θ

1−θ · 1
2D .

Thus for η := θ
1−θ · 1

2D and r small enough we get:

‖y ◦ iMN ‖∗M,m ≤ CS

(
‖y‖∗N,n

1
r

+ rη‖y ◦ iKN‖∗K,k

)
.

We have proved that

∀ N ∃ M ∀ K ∃ n, η0 ∀ m ∃ k(m), S ∀ η < η0, r ∈]0, 1[ ∀ y ∈ E′
N

‖y ◦ iMN ‖∗M,m ≤ S

(
‖y‖∗N,n

1
r

+ rη‖y ◦ iKN‖∗K,k

)
.

The last part of the proof of [7, Th. 4.4] shows that this implies (PA) for
E.

The exactness in (a) below for E (0,p)(X,E), p > 0, is due to Palamodov
[51].
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Corollary 3.8. Let E be an ultrabornological PLS-space.
(a) If X is a d-dimensional Stein manifold then the E-valued Dolbeault

complex

0 → H(X,E) → E (0,0)(X,E) ∂̄−→ E (0,1)(X,E) ∂̄−→ · · · ∂̄−→ E (0,d)(X,E) → 0

is exact if and only if E has (PA).
(b) If V ⊆ C

d is an open pseudoconvex set then the E-valued complex

0 → H(V \ R
d, E) → E (0,0)(V \ R

d, E) ∂̄−→ E (0,1)(V \ R
d, E) ∂̄−→ · · ·

∂̄−→ E (0,d−1)(V \ R
d, E)

is exact if and only if E has (PA).

Proof. (a): Since the corresponding scalar-valued sequence is exact then
the splitting for E (0,p), p > 0, holds always and follows from [17, Cor. 5.6]. It is
known that H(X) has (Ω) [66, p. 78]. By [7, Th. 4.1] Ext1PLS(H(X)′b, E) = 0.
This completes the proof of the sufficiency part by Corollary 3.4 (c).

Necessity. It is proved in [64, Sect. 7B] that F = H(X) satisfies assump-
tions of Lemma 3.7. Then the result follows from it and Corollary 3.4 (c).

(b): Since H p
V ∩Rd(V,O) = 0 for p 
= d by Sato’s theorem [32, Th. 2.7],

H p(V \R
d,O) = 0 for p < d−1. Thus the corresponding scalar valued sequence

is exact. We apply Corollary 3.4 (c).
Sufficiency. For d = 1 the space H(V \Rd) has (Ω) since V \Rd is a Stein

manifold, use [66, p. 78]. For d > 1 the cohomology group H 1
Rd∩V (V,O) = 0

by [32, Th. 2.7]. By [32, Th. 1.1], we have an exact sequence

H(V ) → H(V \ R
d) → H 1

Rd∩V (V,O),

thus H(V \ Rd) has (Ω) as a quotient of H(V ) ∈ (Ω) (see [66, p. 78]). By [7,
Th. 4.1], Ext1PLS(H(V \ Rd)′b, E) = 0.

Necessity. By [60, Satz 1.5, Cor. 5.3, Satz 5.4], we observe that H(V \Rd)
is Λ1(α)-nuclear for αj := j1/d and it has (DN) . Since Cd ⊂ ⋃

j xj + (V \Rd)
for suitable chosen xj then

Λ∞(α) � H(Cd) ↪→
∏
j

H(xj + (V \ R
d)) � H(V \ R

d)N.

Thus we apply Lemma 3.7 and Corollary 3.4 (c).

The following result is a generalization of [61, Prop. 4.2] (comp. [64, Th.
7.1]).
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Corollary 3.9. Let P (D) : C∞(Ω) → C∞(Ω) be an elliptic linear par-
tial differential operator with constant coefficients and let Ω ⊆ Rd, d > 1, be an
arbitrary open set. If E is an ultrabornological PLS-space then

P (D) : C∞(Ω, E) → C∞(Ω, E)

is surjective if and only if E has the property (PA).

Proof. Sufficiency. By [61, Prop. 3.4], ker P (D) has property (Ω) . By
[7, Th. 4.1], Ext1PLS((ker P (D))′b, E) = 0 and the result follows from Corollary
3.4 (c).

Necessity. Let us denote K := ker P (D), K = proj ν∈NKν , where (Kν) is
a reduced projective spectrum of Banach spaces. It is proved in [64, proof of
Th. 7.1] that the kernel ker P (D) ⊆ C∞(Ω) satisfies assumptions of Lemma
3.7. Apply Corollary 3.4 (c).

Now, we consider the dual case, i.e. LFS-spaces. The next result general-
izes [61, Prop. 1.1].

Corollary 3.10. Let P0(D) be a hypoelliptic matrix of linear partial
differential operators with constant coefficients like in Corollary 3.4. Similarly,
let Ω ⊆ Rd, d > 1, satisfy the assumptions of Cor. 3.4 and E be a complete
locally convex space containing a complemented copy of ϕ (the countable direct
sum of C) then the complex (3.3) is never exact.

Proof. Clearly, E′
co contains a complemented copy of ω (the space of all

sequences). Thus, by Cor. 3.4 (a), Cor. 3.5 and the exactness of (3.3), imply
that

Ext1(ω, ker P0(D)) = 0.

By [63, Lemma 3.2] and the remarks before [63, Th. 3.3] it follows that for any
compact set K ⊆ Ω the space of restrictions of elements in ker P0(D) to K is
finite dimensional. This cannot be true for d > 1.

§4. Admissible Spaces

Recall that a locally convex space E is called (weakly) d-admissible, d ∈ N,
d ≥ 1, if for any (bounded) open set Ω ⊂ Rd the d-dimensional Laplace operator
is surjective on the space of E-valued smooth functions on Ω, i.e.

Δd : C∞(Ω, E) → C∞(Ω, E) is surjective.
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We will provide many concrete examples of locally convex spaces which are d-
admissible (or which are not). The results of this section are direct consequences
of the previous section.

For ultrabornological PLS-spaces E d-admissibility is independent of d by
Corollary 3.9:

Corollary 4.1. The following are equivalent for an ultrabornological
PLS-space E:

a) P (D) : C∞(Ω, E) → C∞(Ω, E) is surjective for some elliptic operator
P (D) and some open set Ω ⊆ R

n and some n ∈ N, n > 1.
b) E is weakly d-admissible for some d ≥ 2
c) E is d-admissible for any d ∈ N

d) E has (PA)

As we will see later on from Theorem 6.9 and Corollary 8.5 it follows
that (d+1)-admissibility implies weak d-admissibility. But the general relation
between (weak) d-admissibility for various d is unclear.

Problem 4.2. Does there exist a locally convex space E such that for
d ≥ 2 E is d-admissible but not (d + 1)-admissible and vice versa? The same
problem for weak admissibility.

We prepare now some auxiliary results on (PA) for spaces of operators.

Proposition 4.3. Let X be a regular LFS-space and Y be a PLS-space
then Lb(X,Y ) is a PLS-space. In particular, this is so if X and Y are Fréchet
Schwartz spaces.

Proof. If X = ind N proj nXN,n, Y = proj N ind nYN,n where XN,n,
YN,n are Banach spaces and XN := proj nXN,n, YN := ind nYN,n are Fréchet
Schwartz spaces and DFS-spaces, respectively, then algebraically

L(X,Y ) = proj N ind nL(XN,n, YN,n).

Clearly, X is reflexive, Montel and, by [67, remarks on p. 110, Cor. 6.7, Cor.
3.3.10], its dual is an ultrabornological barrelled reflexive PLS-space. Therefore

Lb(X,Y ) = X ′εY,

where X ′ = proj N ind nX
′
N,n. By [31, Sec. 16], topologically

X ′εY = proj NX
′
NεYN
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and by [3, 4.3] X ′
NεYN are DFS-spaces.

For the Fréchet Schwartz case it suffices to observe that any Fréchet
Schwartz space is a PLS-space. Indeed, it follows from the result of Hein-
rich [25] that if T : E → F is compact, E, F Banach spaces, then T factorizes
through two compact operators. Using that inductively one can prove that T
factorizes through an LS-space and we apply that for compact linking maps
in+1
n : Yn+1 → Yn, where Y = proj nYn is an arbitrary Fréchet Schwartz

space.

Remark 4.4. It is worth noting that if Y is an ultrabornological PLS-
space then Lb(X,Y ) � Lb(Y ′, X ′) via taking adjoints. The above proof shows
that

Lb(X,Y ) = proj N ind nLb(XN,n, YN,n)

with the notation from the proof.

Proposition 4.5. The PLS-space L(Λ1
∞(α),Λ∞

∞(β)) has (PA) (here
the superscript means the type of norms used).

Proof. It is easy to show that L(Λ1
∞(α),Λ∞

∞(β)) is a Köthe type PLS-
space of matrices (i.e. sequences indexed by (u, v) ∈ N × N) with the Köthe
type matrix:

aN,n;v,u := exp(Nβu − nαv).

By [7, Th. 4.3], it suffices to check (PA) on unit vectors only, i.e., after taking
logarithms to show that

(4.8)

∀ N ∃ M ∀ K ∃ n ∀ m, θ ∈]0, 1[ ∃ k, C ∀ u, v : −Mβu +mαv

≤ max [(−θNβu + θnαv − (1 − θ)Kβu + (1 − θ)kαv) ;−Nβu + nαv] + C.

Assume that
−Mβu +mαv > −Nβu + nαv

thus

βu <

(
m− n

M −N

)
αv.

Then

[−M + θN + (1 − θ)K]βu < [−M + θN + (1 − θ)K]
(
m− n

M −N

)
αv
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and by choosing k big enough it is smaller than

[θn+ (1 − θ)k −m]αv

for every v. This implies (4.8).

Corollary 4.6. If X and Y are nuclear Fréchet spaces such that X has
(DN) and Y has (Ω) , then the PLS-space Lb(X,Y ) has (PA).

Proof. By the results in [59] (comp. [17, Prop. 1.3]) we have the following
short exact sequences

0 → X
j→ s→ s→ 0, 0 → s→ s

q→ Y → 0.

Every operator T : X → Y extends to T1 : s→ Y via the embedding j using the
splitting result [48, 30.1]. Analogously, by the same result, T1 lifts to T2 : s→ s

via q. We have proved that the map Φ : Lb(s, s) → Lb(X,Y ), Φ(V ) := q ◦V ◦ j
is a surjection. By [64], Proj1 L(X,YN ) = 0 thus Lb(X,Y ) is ultrabornological
with its PLS-topology. By the webbed open mapping theorem Φ is open and
Lb(X,Y ) is a topological quotient of the PLS-space Lb(s, s). Thus (PA) for
Lb(X,Y ) follows from Proposition 4.5 and the fact that (PA) is inherited by
quotients.

Corollary 4.7. Let X and Y be nuclear Fréchet spaces.

1. For X = Λr(α) the PLS-space Lb(X,Y ) has (PA) if and only if Y has (Ω)
and r = ∞.

2. For Y = Λr(α) the PLS-space Lb(X,Y ) has (PA) if and only if X has
(DN).

Proof. It follows from the fact that (PA) for Lb(X,Y ) implies Proj1 L(X,
YN ) = 0 and results of [64] as well as the fact that X ′ is a complemented
subspace of Lb(X,Y ) so if the latter space has (PA) the space X = X ′′ must
have (DN).

Using the results of Section 3 we could describe spaces E for which the
complex (3.3) is exact in the hypoelliptic or elliptic case for general Ω or convex
Ω. Since we are mainly interested in the case of one elliptic operator P (D) :
C∞(Ω) → C∞(Ω) we make such a survey only for that case. For the definition
of various spaces appearing below see [13], [10], [38] and [21]. Sequence space
representations are known for many more spaces of analysis. So we can give
only a selection of corresponding examples here. Clearly, many of them are
already contained in [61].
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Corollary 4.8. Let P (D) : C∞(Ω) → C∞(Ω) be a linear elliptic oper-
ator with constant coefficients and let Ω ⊆ Rd be an arbitrary open set.

The following spaces E are ultrabornological PLS-spaces with property
(PA) so, in particular, the map P (D) : C∞(Ω, E) → C∞(Ω, E) is surjective
and E is a d-admissible space for any d ≥ 1:

• an arbitrary Fréchet Schwartz space;

• the strong dual of a power series space of infinite type Λ′
∞(α);

• a PLS-type power series space Λr,s(α, β) whenever s = ∞ or Λr,s(α, β) is
a Fréchet space;

• the strong dual of any space of holomorphic functions H(U)′, where U

is a Stein manifold with the strong Liouville property (for instance, for
U = Cd);

• the space of germs of holomorphic functions H(K) where K is a completely
pluripolar compact subset of a Stein manifold (for instance K consists of
one point);

• the space of tempered distributions S ′ and the space of Fourier ultra-
hyperfunctions P ′

∗∗;

• the spaces of distributions D ′(U) and ultradistributions of Beurling type
D ′

(ω)(U) for any open set U ⊆ Rn;

• the weighted distribution spaces (K{pM})′ of Gelfand and Shilov if the
weight M satisfies

sup
|y|≤1

M(x+ y) ≤ C inf
|y|≤1

M(x+ y) if x ∈ R
d.

• the kernel of any linear partial differential operator with constant coeffi-
cients in D ′(U) or in D ′

(ω)(U) when U is convex ;

• the space Lb(X,Y ) where X has (DN), Y has (Ω) and both are nuclear
Fréchet spaces. In particular, Lb(Λ∞(α),Λ∞(β)) if both spaces are nuclear.

Proof. By Corollary 3.9, surjectivity of P (D) : C∞(Ω, E) → C∞(Ω, E)
for an ultrabornological PLS-space E is equivalent with the condition (PA) for
E. By [7, Th. 4.3] and the remarks preceding that theorem the space Λ′

r(α) has
(PA) iff r = ∞, the space Λr,s(α, β) has (PA) iff s = ∞ or it is a Fréchet space
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and the spaces D ′(U), D ′
(ω)(U) have (PA) for any open set U ⊆ R

n. Moreover,
it is known that S ′, P ′

∗∗ and (K{pM})′ are isomorphic to some Λ′
∞(α) (see

[38] and [62]) so they have (PA) as well. By [7, Prop. 5.4], also the kernel
of any linear partial differential operator P (D) with constant coefficients in
D ′(U), U convex, has (PA). An analogous proof works for kernels of P (D) in
D ′

(ω)(U). Finally, if U is a Stein manifold, then H(U)′ has (A) or, equivalently,
(PA) if and only if U has the strong Liouville property, i.e, every bounded
plurisubharmonic function on U is constant [68, Th. 2.3.7]. The last statement
follows from Corollary 4.6.

Corollary 4.9. Let P (D) : C∞(Ω) → C∞(Ω) be a linear elliptic oper-
ator with constant coefficients and let Ω ⊆ Rd be an arbitrary open set.

(a) The following ultrabornological PLS-spaces E do not have (PA), so, in
particular, the map P (D) : C∞(Ω, E) → C∞(Ω, E) for d > 1 is not surjective
and E is not a weakly d-admissible space for any d > 1:

• the strong dual of a power series space of finite type Λ′
0(α);

• the space of ultradifferentiable functions of Roumieu type E{ω}(U), where
ω is a non-quasianalytic weight and U ⊆ Rn is an arbitrary open set ;

• the strong dual of any space of holomorphic functions H(U)′ where U is
a Stein manifold which does not have the strong Liouville property (for
instance, U = Dn the polydisc, U = Bn the unit ball etc.);

• the space of germs of holomorphic functions H(K) where K is compact and
not completely pluripolar (for instance, K = D

n
or K = Bn);

• the space of distributions (or ultradistributions) with compact support
E ′(U) (or E ′

(ω)(U)) for U ⊆ R
n open

• the space of real analytic functions A (U) for any open set U ⊆ Rn.

(b) For the following LFS-spaces E the map P (D) : C∞(Ω, E)→C∞(Ω, E)
is not surjective for any d > 1 and E is not weakly d-admissible for any d > 1:

• the spaces of test functions D(U);

• the spaces of test functions for ultradistributions D(ω)(U), the space of ul-
tradistributions of Roumieu type with compact support E ′

{ω}(U), where ω is
a non-quasianalytic weight, U ⊆ Rn is an arbitrary open set ;

• the strong dual A (U)′b for an arbitrary open set U ⊆ Rn.
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Proof. (a) This follows as in the proof of 4.8. Notice that the space of
real analytic functions A (U) or E{ω}(U) contains a complemented copy of some
Λ′

0(α) (see [15, Prop. 5.6] and [62]) thus the result follows by the corresponding
result on duals of finite type power series spaces.

(b) The spaces D(U), D(ω)(U), E ′(U) and E ′
{ω}(U), ω a non-quasinalytic

weight, contain complemented copies of ϕ (see [62]) so by Corollary 3.10 the
result follows.

The space A (U) is ultrabornological (see [13, Ex. 3.4 (b)]) thus, by Corol-
lary 3.4

Ext1(A (U), ker P (D)) = 0

is a necessary condition for A (U)′b. By [14, Th. 2.3], this implies that ker P (D)
has the property (Ω) . This cannot be true by [65, Th. 3].

Problem 4.10. Is any PLS-type non-Fréchet power series space
Λr,s(α, β), s = 0 a d-admissible space for d > 1?

Remark 4.11. Every Fréchet space E is d-admissible and P (D) :C∞(Ω, E)
→ C∞(Ω, E) as above is surjective.

§5. Vector Valued Analytic Functionals and the
Grothendieck-Tillmann Duality

The crucial role in the theory of hyperfunctions is played by the so-called
analytic functionals, i.e, elements of A (K)′ for K � Rd. Thus for vector val-
ued hyperfunctions we need vector valued analytic functionals, i.e., elements of
L(A (K), E). We will explain here a method which allows us to replace holo-
morphic functions with harmonic ones in the definition of analytic functionals.

E is always a complete locally convex space in this section.
For a compact set K ⊂ R

d let C̃Δ(K) := ind Rd+1⊃U⊃K C̃Δ(U) denote the
harmonic germs near K which are even with respect to the last variable. We
start with an easy lemma (comp. [16, Prop. 2.3]).

Lemma 5.1. For any compact set K ⊂ R
d, A (K) is isomorphic to

C̃Δ(K) via the solution of the Cauchy problem

Δd+1(f) = 0, f(x, 0) = g(x), ∂yf(x, 0) = 0, near K.

Thus L(A (K), E) can be identified with L(C̃Δ(K), E) if K ⊂ Rd is compact.
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The space L(C̃Δ(K), E) may be identified with the quotient space

C̃Δ(Rd+1 \K,E)/C̃Δ(Rd+1, E)

by a vector valued version of the Grothendieck-Tillmann-duality (see [23], [56],
[2]) which is the basic general tool for our approach and which we will introduce
now. For f ∈ C̃Δ(Rd+1 \K,E) we define H(f) : C̃Δ(K) → E as follows. For
g ∈ C̃Δ(K) let

(5.9) H(f)(g) :=
∫
f(ξ)Δd+1(φg)(ξ)dξ

if g ∈ C̃Δ(U) for a neighborhood U of K and a test function φ ∈ D(U) which is
1 near K. The definition of H(f)(g) is independent of φ since for any e′ ∈ E′

(5.10) e′ (H(f)(g)) =
∫
e′ ◦ f(ξ)Δd+1(φg)(ξ)dξ = H(e′ ◦ f)(g)

and since for f scalar valued (i.e., f ∈ C̃Δ(Rd+1 \K)) the number H(f)(g) is
independent of φ by [2, Satz 2b)].

Theorem 5.2. For any compact set K ⊂ Rd the mapping

H : C̃Δ(Rd+1 \K,E)/C̃Δ(Rd+1, E) → Lb(C̃Δ(K), E)

is a topological isomorphism.

Proof. First, we show that H as defined above is a continuous map:

H : C̃Δ(Rd+1 \K,E) → Lb(C̃Δ(K), E).

Let f ∈ C̃Δ(Rd+1 \K,E). Then H(f) ∈ L(C̃Δ(K), E) since for g ∈ C̃Δ(U)
and J := supp(grad(φ)) ⊂ U compact we have for any continuous seminorm p

on E

p(H(f)(g)) ≤ C1 sup
ξ∈ eJ

|g(ξ)| sup
ξ∈J

|p(f(ξ))|

if J̃ is a compact neighborhood of J in U . This also shows the continuity of H.
We will show now, that H(f) = 0 if and only if f ∈ C̃Δ(Rd+1, E). If f ∈

C̃Δ(Rd+1, E) then e′ ◦ f ∈ C̃Δ(Rd+1) and hence e′ (H(f)(g)) = H(e′ ◦ f)(g) = 0
for any e′ ∈ E′ by (5.10) and the scalar result (see [56], [2]).

Conversely, if f ∈ C̃Δ(Rd+1 \ K,E) and H(f) = 0 then H(e′ ◦ f) = 0
and by the scalar result (see [56], [2]) e′ ◦ f can be (uniquely) extended to
fe′ ∈ C̃Δ(Rd+1) and

(5.11) fe′(ξ) =
∫

K

G(ξ − η)e′ ◦ Δ(φf)(η)dη
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for any e′ ∈ E′ and any ξ ∈ K (and G from (2.1)) where φ ∈ D(Rd+1) is fixed
and 1 near K. Since Δ(φf) is continuous on J := supp(grad(φ)), Δ(φf)(J)
is compact in E and the right hand side of (5.11) defines a linear form on E′

which is continuous for the Mackey topology τ (E′, E). Hence (5.11) defines an
E-valued function f on Rd+1 and f ∈ C̃Δ(Rd+1, E) by Lemma 2.1.

Finally, we show that H is surjective. For T ∈ L(C̃Δ(K), E) and ξ ∈
R

d+1 \K let

gξ ∈ C̃Δ(K), gξ(x, y) := (G(ξ − (x, y)) +G(ξ − (x,−y)))/2.

We define
S(T )(ξ) := T (gξ) if ξ ∈ R

d+1 \K.
Clearly, S(T )(ξ) ∈ E and S(T ) ∈ C̃Δ(Rd+1 \K,E) (use e.g. Lemma 2.1). The
mapping

S : Lb(C̃Δ(K), E) → C̃Δ(Rd+1 \K,E)

is continuous since {gξ | ξ ∈ J} is bounded in C̃Δ(K) if J ⊂ R
d+1 \ K is

compact.
We will show that H ◦ S is the identity mapping on L(C̃Δ(K), E) (hence,

H is surjective). This is equivalent to the condition that

e′(H ◦ S(T )(g)) = e′(T (g)) for any g ∈ C̃Δ(K) and e′ ∈ E′.

Since

e′(H ◦ S(T )(g)) =
∫
e′(T (gξ))Δ(φg)(ξ)dξ = H ◦ S(e′ ◦ T )(g)

it suffices to show the result for E = C. Since the set of point evaluations of
derivatives {δ(a)

(x0,0) | x0 ∈ K, a ∈ Nd
0} is total in C̃Δ(K)′b we need to show that

(H ◦ S)(δ(a)
(x0,0))(g) = 〈δ(a)

(x0,0), g〉 if g ∈ C̃Δ(K). Since

S(δ(a)
(x0,0))(ξ) = G(a)(ξ − (x0, 0)) if x0 ∈ K, a ∈ N

d
0

we get

(H ◦ S)(δ(a)
(x0,0))(g) =

∫
G(a)(ξ − (x0, 0))Δ(φg)(ξ)dξ

= 〈G(a)( · − (x0, 0)),Δ(φg)〉D′(Rd+1)

= 〈ΔG(a)( · − (x0, 0)), φg〉D′(Rd+1) = 〈δ(a)
(x0,0), φg〉 = 〈δ(a)

(x0,0), g〉.
The theorem is proved.
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It is well known that A (Rd) is densely embedded in A (K) if K ⊂ R
d is

compact. We may thus identify elements of L(A (J), E) and L(A (K), E) for
different compact sets K, J ⊂ Rd by means of their restrictions to A (Rd). We
then have the following result defining the support of a vector-valued analytic
functional:

Proposition 5.3. Let K, J ⊂ Rd be compact.
a) L(A (K), E) ∩ L(A (J), E) = L(A (K ∩ J), E)
b) For any T ∈ L(A (K), E) there is a minimal compact J ⊂ K such that

T ∈ L(A (J), E). The set J is called the support of T .

Proof. a) Let T ∈ L(A (K), E)∩L(A (J), E) = L(C̃Δ(K), E)∩L(C̃Δ(J),
E) (see Lemma 5.1). Then

H−1(T ) ∈ (C̃Δ(Rd+1 \K,E)/C̃Δ(Rd+1, E)
) ∩ (C̃Δ(Rd+1 \ J,E)/C̃Δ(Rd+1, E)

)
= C̃Δ(Rd+1 \ (K ∩ J), E)/C̃Δ(Rd+1, E)

and T ∈ L(C̃Δ(K ∩ J), E) = L(A (K ∩ J), E) by Theorem 5.2.
b) This is evident by Theorem 5.2 since for any f ∈ C̃Δ(Rd+1 \K,E) there

is a minimal J such that f ∈ C̃Δ(Rd+1 \ J,E).

Notice that there is an essential difference between the scalar and the
vector valued case. Every f ∈ A (Rd)′ has a compact support but in general
(even for Fréchet spaces) T ∈ L(A (Rd), E) need not be compactly supported,
that is, in general there is no compact K ⊂ Rd such that T ∈ L(A (K), E).

Example 5.4. Let T (f) := (f(k))k∈N for f ∈ A (R). Clearly, T ∈
L(A (R),CN), but T is not compactly supported since T (fn) → ej (the canon-
ical jth unit vector) for fn(x) := exp(−n(x − j)2) while fn → 0 in A (K) for
any compact K ⊂ (Rd \ {j}). Hence the statement of Ito [30, Theorem 2.7] is
false (see also the remark before [30, Theorem 2.5]).

§6. The Duality Method

In this section we will introduce vector valued hyperfunctions as the sheaf
generated by equivalence classes of compactly supported vector valued analytic
functionals, this method being sometimes called the duality method (see [30])
which was introduced by Martineau [45]. When doing so we will profit a lot of
Bengel’s point of view of hyperfunctions (i.e. considering harmonic functionals
instead of analytic functionals (see [2], [54] and also [35, 36])). Moreover, we
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will constantly use the Grothendieck-Tillmann-duality of harmonic functionals
and harmonic functions explained in the previous section (see Theorem 5.2).
At the end of this section we interpret hyperfunctions as boundary values of
harmonic functions.

Definition 6.1. For an open and bounded set Ω ⊂ Rd and a locally
convex space E we define the space of E-valued hyperfunctions on Ω by

B(Ω, E) := L(A (Ω), E)/L(A (∂Ω), E).

Since A (Ω) embeds injectively into A (∂Ω) thus Lb(A (∂Ω), E) =
A (∂Ω)′⊗̂εE is dense in Lb(A (Ω), E) = A (Ω)′⊗̂εE (in the topology of uniform
convergence on bounded sets) that is why on B(Ω, E) there is no reasonable lo-
cally convex topology. For T ∈ L(A (Ω̄), E) we denote by [T ] the corresponding
element of B(Ω, E).

In the scalar case (i.e. E = C), restrictions and a sheaf structure may be
defined on BΩ1 := {B(Ω) := B(Ω,C) | Ω ⊂ Ω1 open} for bounded open Ω1

since it is easily seen that for Ω ⊂ Ω1 the canonical injective mapping

(6.1) I : A (Ω)′/A (∂Ω)′ → A (Ω1)′/A (Ω1 \ Ω)′

is surjective, hence an isomorphism. We do not know if the corresponding
condition holds always for the vector valued case (comp. Remark 6.3 and also
Theorem 8.4). The proof of the corresponding vector valued result is more
subtle (compare also the remarks before Remark 6.3). We get it only under
the assumption that

(6.2) Δd+1 : C∞(U,E) → C∞(U,E) is surjective for any open U ⊂ R
d+1,

i.e., that E is (d + 1)-admissible. First we show that B(Ω, E) can be defined
also using a set Ω1 bigger than Ω.

Lemma 6.2. Let E be (d + 1)-admissible. Let Ω2 ⊂ Ω1 ⊂ Rd be open
and bounded. Then the canonical mapping

I : L(A (Ω2), E)/L(A (∂Ω2), E) → L(A (Ω1), E)/L(A (Ω1 \ Ω2), E)

is a bijection.

Proof. The map I is well defined since the continuous and dense em-
bedding of A (Ω1) into A (Ω2) defines the embedding of L(A (Ω2), E) into
L(A (Ω1), E), and L(A (∂Ω2), E) is mapped into L(A (Ω1 \Ω2), E) in this way.
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If T ∈ L(A (Ω2), E)∩L(A (Ω1\Ω2), E) then T ∈ L(A (∂Ω2), E) by Proposition
5.3 since ∂Ω2 = Ω2 ∩ (Ω1 \ Ω2), thus I is injective.

To show that I is surjective it suffices, by Theorem 5.2, to show that the
mapping

L : C̃Δ(Rd+1 \ (Ω1 \ Ω2), E) × C̃Δ(Rd+1 \ Ω2, E) → C̃Δ(Rd+1 \ Ω1, E),

L(f1, f2) := f1 + f2,

is surjective. Choose ϕ ∈ C̃∞(Rd+1 \ ∂Ω2) such that ϕ ≡ 1 near Ω2 and ϕ ≡ 0
near Rd \Ω2. Let f ∈ C̃Δ(Rd+1 \Ω1, E). Then Δd+1(ϕf) may be considered as
a function in C̃∞(Rd+1 \ ∂Ω2, E) and by (6.2) there is g ∈ C̃∞(Rd+1 \ ∂Ω2, E)
such that Δd+1g = Δd+1(ϕf). Then f2 := ϕf − g ∈ C̃Δ(Rd+1 \ Ω2, E) and
f1 := (1 − ϕ)f + g ∈ C̃Δ(Rd+1 \ (Ω1 \ Ω2), E) satisfy f1 + f2 = f .

Ito states (see [30, p.34, l.2]) that Lemma 6.2 always holds if E is complete,
however he does not give a proof that I is surjective. On the other hand,
he states as an open problem (see [30, Problem A]) if for two compact sets
K1,K2 ⊂ Rd the mapping

L : L(A (K1), E) × L(A (K2), E) → L(A (K1 ∪K2), E)

defined by L(T1, T2) := T1 − T2 is surjective. Notice however the following

Remark 6.3. Let Ω2 ⊂ Ω1 ⊂ R
d be open and bounded. The following

are equivalent:
a) The canonical mapping

I : L(A (Ω2), E)/L(A (∂Ω2), E) → L(A (Ω1), E)/L(A (Ω1 \ Ω2), E)

is a bijection.
b) The mapping

L : L(A (Ω1 \ Ω2), E) × L(A (Ω2), E) → L(A (Ω1), E)

is surjective.

Proof. This is evident since I is always injective.

If E is (d + 1)-admissible we can define restrictions on B(Ω, E) using
Lemma 6.2 as follows:
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Definition 6.4. Let E be (d+ 1)-admissible and let

q : L(A (Ω1), E)/L(A (∂Ω1), E) → L(A (Ω1), E)/L(A (Ω1 \ Ω2), E)

be the canonical quotient map. For [T ] ∈ B(Ω1, E)=L(A (Ω1), E)/L(A (∂Ω1),
E) and Ω2 ⊂ Ω1 ⊂ Rd open and bounded we define the restriction
(6.3)
RΩ1,Ω2([T ]) := [T ]

∣∣
Ω2

:=I−1(q([T ]))∈L(A (Ω2), E)/L(A (∂Ω2), E)=B(Ω2, E)

with I from Lemma 6.2.

Lemma 6.5. Let E be (d + 1)-admissible and let Ω ⊂ R
d be open and

bounded. The spaces {B(ω,E) | ω ⊂ Ω open} form a presheaf on Ω (with the
restrictions RΩ1,Ω2 defined in 6.4) satisfying the condition (S1):
if ∪jωj = ω ⊂ Ω, ωj open, such that [T ] ∈ B(ω,E) satisfies [T ]

∣∣
ωj

= 0 for any
j then [T ] = 0.

For the condition (S1) see [11, p. 5].

Proof. Clearly we have Rω1,ω2 ◦Rω2,ω3 = Rω1,ω3 if ω ⊃ ω1 ⊃ ω2 ⊃ ω3 are
open. If [T ] is as above then the support of T (in the sense of Proposition 5.3)
is contained in ω and does not contain any point in ω by assumption, hence
T ∈ L(A (∂ω), E) by Proposition 5.3 b), that is, [T ] = 0.

The sheaf B(E) of E-valued hyperfunctions on Rd is now defined as fol-
lows:

Definition 6.6. Let E be (d+1)-admissible and set B1(Ω, E) :=B(Ω, E)
if Ω ⊂ Rd is open and bounded, and B1(Ω, E) := 0 if Ω ⊂ Rd is open and
unbounded. {B1(Ω, E) | Ω ⊂ Rd open} is a presheaf when considered with the
restrictions RΩ1,Ω2 from Definition 6.4 if Ω1 is bounded and RΩ1,Ω2 := 0 if Ω1

is unbounded. The sheaf B(E) of E-valued hyperfunctions is the associated
sheaf.

It is convenient to discuss B(E) and especially the second sheaf property
(S2) (see e.g. [11, p. 6]) using a boundary value representation of B(E) defined
as follows: For open Ω ⊂ Rd let U(Ω) denote the open sets U ⊂ Rd+1 which
are symmetric with respect to the last variable and satisfy U ∩ R

d = Ω. For
U ∈ U(Ω) we define the space of boundary values of harmonic functions by

(6.4) bv(Ω, E) := C̃Δ(U \ R
d, E)/C̃Δ(U,E).

Lemma 6.7. The definition of bv is independent of the choice of U ∈
U(Ω) if E is (d+ 1)-admissible.
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Proof. When showing that C̃Δ(U1 \R
d, E)/C̃Δ(U1, E) is naturally isomor-

phic to C̃Δ(U \Rd, E)/C̃Δ(U,E) for U1, U ∈ U(Ω) we may assume that U ⊂ U1

and that U1 = (Rd+1 \ Rd) ∪ Ω. The canonical mapping

J : C̃Δ(U1 \ R
d, E)/C̃Δ(U1, E) → C̃Δ(U \ R

d, E)/C̃Δ(U,E)

defined by [f ] �→ [f
∣∣
U\Rd ] is clearly well defined and injective.

Let f ∈ C̃Δ(U \ Rd, E) and choose ϕ ∈ C̃∞(U) such that ϕ ≡ 1 near Ω
and ϕ ≡ 0 near ∂U \ Rd. Then Δd+1(ϕf) ∈ C̃∞(Rd+1 \ ∂Ω, E). Since E is
(d+ 1)-admissible there is g ∈ C̃∞(Rd+1 \ ∂Ω, E) such that

Δd+1g = Δd+1(ϕf) on R
d+1 \ ∂Ω.

Then F (x, y) := (ϕf)(x, y) − g(x, y) ∈ C̃Δ(Rd+1 \ Ω, E) and [F
∣∣
U\Rd ] = [f ].

Hence, J is surjective.

By Lemma 6.7 we may define restrictions in bv(Ω, E) as follows:

Definition 6.8. Let Ω ⊃ Ω1 be open and let [f ] ∈ bv(Ω, E) = C̃Δ(U \
Rd, E)/C̃Δ(U,E) where U ∈ U(Ω). Then U1 := U ∩ (Ω1 × R) ∈ U(Ω1) and we
may define

RΩ,Ω1([f ]) := [f ]
∣∣
Ω1

:= [f
∣∣
U1

] ∈ C̃Δ(U1 \ R
d, E)/C̃Δ(U1, E) = bv(Ω1, E).

For a sheaf F on Rd let F0(Ω) denote the sections of F with compact
support in Ω.

Theorem 6.9. Let E be (d+ 1)-admissible.
a) bv is a sheaf on R

d

b) bv is flabby
c) bv0(Rd, E) is isomorphic to {L(A (K), E) | K ⊂ Ω compact}.
d) bv is isomorphic to the sheaf B(E) of E-valued hyperfunctions.

Proof. a) We clearly have RΩ1,Ω2 ◦RΩ2,Ω3 = RΩ1,Ω3 if Ω1 ⊃ Ω2 ⊃ Ω3 are
open. RΩ,Ωj

([f ]) = 0 iff f ∈ C̃Δ((U \ R
d) ∪ Ωj , E) and hence bv satisfies (S1).

Let ∪jΩj = Ω and let [fj ] ∈ C̃Δ(Uj \ Rd, E)/C̃Δ(Uj , E) = bv(Ωj , E))
such that [fj ]

∣∣
Ωj∩Ωk

= [fk]
∣∣
Ωj∩Ωk

. Then fj

∣∣
Uj∩Uk\Rd − fk

∣∣
Uj∩Uk\Rd =: gjk ∈

C̃Δ(Uj ∩Uk, E) and exactly as in [26, 1.4.5] there are gj ∈ C̃Δ(Uj , E) such that
gjk = gk − gj on Uj ∩Uk (use that E is (d+ 1)-admissible). Then Fj := fj + gj

defines a function F ∈ C̃Δ((∪jUj) \ Rd, E) such that [F ]
∣∣
Ωj

= [fj ] for any j.
This proves (S2).
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b) For [f ] ∈ C̃Δ(U \R
d, E)/C̃Δ(U,E), U ∈U(Ω), the function F ∈C̃Δ(Rd+1\

Ω, E) constructed in the proof of Lemma 6.7 defines an extension [F ] ∈ bv(Rd,

E) of [f ] to Rd.
c) This follows from Theorem 5.2 since [f ] ∈ bv0(Rd, E) iff f ∈ C̃Δ(Rd+1 \

K,E) for some compact K ⊂ Rd.
d) We have the following series of isomorphisms for bounded open Ω ⊂ Rd

B(Ω, E) � L(C̃Δ(Ω), E)/L(C̃Δ(∂Ω), E) �

� C̃Δ(Rd+1 \ Ω, E)/C̃Δ(Rd+1 \ ∂Ω, E) � C̃Δ(Ω × (R \ {0}), E)/C̃Δ(Ω × R, E)

by Theorem 5.2, where the last mapping is defined by restriction and is sur-
jective by the proof of Lemma 6.7. This proves d) since these isomorphisms
are compatible with the respective restrictions and sheafs on Rd are uniquely
determined by their sections on bounded open sets.

Corollary 6.10. The sheaf {B(ω,E) | ω ⊂ Ω open} is a flabby sheaf
on Ω (with the restrictions from Definition 6.4) if E is (d+ 1)-admissible and
if Ω ⊂ Rd is bounded and open.

Theorem 6.9 provides a complete answer to a problem stated by Ito (see
[30, Problem B]) (compare the discussion in Section 4).

The following result will be needed in the homological approach to vector
valued hyperfunctions discussed in the next section.

Theorem 6.11. Let E be (2d+1)-admissible. The following hyperfunc-
tion ∂̄-complex is an exact sequence of sheaves :

0 → O(E) → B(0,0)(E) ∂̄→ B(0,1)(E) → · · · → B(0,d)(E) → 0.

Proof. Notice that here B(E) is the sheaf of E-valued hyperfunctions on
Cd = R2d existing by Theorem 6.9.

To prove the exactness at the first place we argue with Weyl’s lemma for
vector valued hyperfunctions: if U ⊂ Cd = R2d is open and [f ] ∈ B(0,0)(U,E) =
C̃Δ(U×R∗, E)/C̃Δ(U×R, E) (by Theorem 6.9) satisfies ∂̄[f ] = 0 then Δ2d[f ] =
0, that is, Δ2df = u ∈ C̃Δ(U × R, E). For U1 open and bounded with U1 ⊂ U

define v(x, y) := − ∫ y

0

∫ τ

0
u(x, t)dt dτ and g ∈ C∞(U1 × R, E) as follows:

g(x, y) := v(x, y) + p0(x) + p1(x)y,

where

Δ2dp0 = u( · , 0) =: v0 and Δ2dp1 = ∂yu( · , 0) =: v1 on U1.
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Notice that pj := G∗ (φvj), j = 0, 1, solves these equations on U1 if φ ∈ C∞
0 (U)

is 1 near U1. Then Δ2d+1g = 0 and Δ2dg = u on U1 × R. Hence [f ]
∣∣
U1

=
[f

∣∣
U1×R∗

− g] and we may assume that Δ2df = 0 on U1 × R∗. Since also
Δ2d+1f = 0 on U1×R∗, f(x, y) = p0(x) +p1(x)y on U1 ×R+ (and on U1×R−,
respectively) with pj ∈ C∞(U1, E). Hence, [f ] ∈ C∞(U1, E) and f ∈ O(U1, E)
since ∂̄[f ] = 0.

The rest of the theorem may be proved similarly as [54, Theorem 142].
To use this proof also in the vector valued case, one needs the flabbiness of
the sheaf B(E) (guaranteed by Theorem 6.9) and the convolution T ∗ H for
T ∈ L(A (K), E),K ⊂ R

d compact, and H ∈ D ′(Rd). For H ∈ E ′(Rd) we use
the usual formula

〈T ∗H, g〉 := 〈T, Ȟ ∗ g〉 if g ∈ A (Rd)

and get T ∗H ∈ L(A (K ∪ J), E) if supp(H) = J . This definition is extended
to general H ∈ D ′(Rd) as explained on [54, page 62] and the convolution has
the usual properties.

§7. Hyperfunctions and Cohomology Groups

Sato [53] used the relative cohomology groups H d
Ω (V,O) as the definition

of hyperfunctions on open sets Ω ⊂ R
d (where V ⊂ C

d is an open neighborhood
of Ω). This approach is developed here for the E-valued case, when E is an
ultrabornological PLS-spaces. It is worth noting that most of the tools used
here do not work in case E does not have (PA) (see Cor. 3.8) or if E is a
complete locally convex space containing a complemented copy of ϕ (see Cor.
3.10).

The basic tool for this section is the vector-valued Dolbeault-Grothendieck
resolution which is proved as in the scalar case (see [26, Theorem 2.3.3] and
also [29, Th. 2.1.2]):

Theorem 7.1. For any complete locally convex space E the following
sequence of sheaves (the Dolbeault-Grothendieck resolution) is exact in Cd (i.e.,
it is a soft resolution of O(E)):

0 → O(E) → E (0,0)(E) ∂̄−→ E (0,1)(E) ∂̄−→ · · · → E (0,d)(E) → 0.

Sato’s idea and the connection to the harmonic boundary values from
Theorem 6.9 is especially transparent for d = 1. So we consider this (very
special) case first.
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Proposition 7.2. Let E be 2-admissible. For Ω ⊂ R open let V ⊂ C

be a complex neighborhood of Ω containing Ω as a closed set. Then

(7.1) B̃(Ω, E) := H 1
Ω (V,O(E)) � H(V \ Ω, E)/H(V,E)

and this defines a (flabby) sheaf on R which is isomorphic to B(E).

Proof. By [32, Th. 1.1] we have an exact sequence

0 → H 0
Ω (V,O(E)) → H 0(V,O(E))→H 0(V \ Ω,O(E))

→H 1
Ω (V,O(E)) → H 1(V,O(E)) → · · ·

We clearly have H 0
Ω (V,O(E)) = 0. The groups H p(U,O(E)) may be calcu-

lated for p = 0, 1 and open U ⊂ C using the E-valued Dolbeault complex which
is a soft resolution of O(E) of length 1. Specifically, H 1(V,O(E)) = 0 since it
is isomorphic to the first cohomology group of the complex

0 → H(V,E) → E (V,E) ∂̄−→ E (V,E) → 0

which is exact since E is 2-admissible. We thus have the exact sequence

0 → H(V,O(E)) → H(V \ Ω,O(E)) → H 1
Ω (V,O(E)) → 0

showing the isomorphism in (7.1). The sheaf properties may be proved as in
Theorem 6.9. It can be proved analogously as in Theorem 5.2 that H(C \
K,E)/H(C, E) � L(H(K), E). By Lemma 5.1, L(H(K), E) � L(C̃Δ(K), E)
and the latter space is isomorphic to C̃Δ(R2 \K,E)/C̃Δ(R2, E), by Theorem
5.2. Thus the required isomorphism follows.

Now, the proof of the Malgrange vanishing theorem [40, Lemme 3] may be
transferred to the vector valued situation as follows:

Theorem 7.3. Let E be a complete locally convex 2d-admissible space.
Then for any open set U ⊂ Cd we have H p(U,O(E)) = 0 for p ≥ d.

Proof. The E-valued Dolbeault complex is a soft resolution of O(E)
of length d. Thus H p(U,O(E)) can be calculated using this complex and
H p(U,O(E)) = 0 for p > d [11, Th. II.9.8, Th. II.4.1]. The vanishing for
p = d means that

∂̄ : E (0,d−1)(U,E) → E (0,d)(U,E)
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has to be surjective. Clearly E (0,d−1)(U,E) is just (C∞(U,E))d−1 and E (0,d)(U,
E) � C∞(U,E), where

∂̄((fk)d
k=1) =

d∑
k=1

(−1)k+1∂̄kfk,

∂̄k is the Cauchy-Riemann operator with respect to k-th variable, i.e., ∂̄kf :=
∂f
∂z̄k

. By the assumption

Δ2d : C∞(U,E) → C∞(U,E)

is surjective. Thus for any g ∈ C∞(U,E) there is F ∈ C∞(U,E) such that
Δ2dF = 4g. We define fk := (−1)k+1∂kF = ∂F

∂zk
. Now, clearly

∂̄((fk)d
k=1) =

d∑
k=1

∂̄k∂kF =
1
4

Δ2dF = g.

The next result means that Rd is “vector-valued” purely d-codimensional.

Theorem 7.4. Let E is a PLS-space with the property (PA)and let
d ≥ 2. Let Ω be an open set in Rd and let V ⊂ Cd be a complex neighbourhood
of Ω containing Ω as a closed set. Then H p

Ω (V,O(E)) = 0 for p 
= d and
H d

Ω (V,O(E)) = H d−1(V \ Ω,O(E)).

Proof. The proof is similar to the proof of [28, Theorem 2.4]. Clearly
H 0

Ω (V,O(E)) = 0. Let p ≥ 1. By [32, Th. 1.1] we have an exact sequence

· · · → H p−1(V \ Ω,O(E)) → H p
Ω (V,O(E)) → H p(V,O(E)) → . . . .

By the excision theorem [32, Th. 1.1] it suffices to take any open neighborhood
V . We thus can assume that V is a pseudoconvex neighborhood by [22]. By
Theorem 7.1 and Corollary 3.8 (a), H p(V,O(E)) = 0 for p ≥ 1. By Theorem
7.1 and Corollary 3.8 (b), H p−1(V \Ω,O(E)) = 0 for d−1 ≥ p ≥ 2. Therefore
H p

Ω (V,O(E)) = 0 for d−1 ≥ p ≥ 2. Since H p−1(V \Ω,O(E)) = 0 for p ≥ d+1
by Theorem 7.3 (which can be applied since E is (2d)-admissible by Corollary
4.1) and Corollary 3.8 (a), H p

Ω (V,O(E)) = 0 for p ≥ d+ 1.
For p = d we complete the above exact sequence by one term on the left

side and get

· · · → H d−1(V,O(E))→H d−1(V \ Ω,O(E)) → H d
Ω (V,O(E))

→H d(V,O(E)) → . . .
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which shows that H d
Ω (V,O(E)) = H d−1(V \ Ω,O(E)) since also H d−1(V,

O(E)) = 0 by Corollary 3.8 (a) since d ≥ 2.
We are thus left with the calculation of H 1

Ω (V,O(E)). For this we consider
the beginning of the above exact sequence

0 = H 0
Ω (V,O(E))→H(V,E) → H(V \ Ω, E)

→H 1
Ω (V,O(E)) → H 1(V,O(E)) = 0.

Since H 1
Ω (V,O) = 0 for d ≥ 2, the restriction H(V ) → H(V \Ω) is onto, hence

a topological isomorphism. Therefore, the restriction H(V,E) → H(V \ Ω, E)
is also onto and thus H 1

Ω (V,O(E)) = 0. This completes the proof of the
theorem.

As in [32, Th. 2.9] it can be proved that B̃(Ω, E) defined as the relative
cohomology groups

H d
Ω (V,O(E)) = H d−1(V \ R

d,O(E)) for d ≥ 2

for V ∩ R
d = Ω forms a flabby sheaf. The space B̃(Ω, E) does not depend

on the open complex neighborhood V of Ω and V can be taken to be a Stein
manifold. By Corollary 3.8 (a) we can calculate H d−1(V \ Rd,O(E)) using a
covering of V \ Rd consisting of the following pseudoconvex sets:

Vj := {z ∈ V : Im zj 
= 0}.

Thus we will get (as in the proof of [32, Th. 2.12] or [28, Sec. 3]):

Corollary 7.5. If E is a PLS-space with the property (PA), then

B̃(Ω, E) = H

⎛⎝ d⋂
j=1

Vj , E

⎞⎠ /
d∑

k=1

H

⎛⎝ d⋂
j=1,j 	=k

Vj , E

⎞⎠ .

For d = 1 this was proved already in Proposition 7.2.

Theorem 7.6. If E is an ultrabornological PLS-space with property
(PA) then

H d
Ω (Cd,O(E)) � L(A (Ω̄), E)/L(A (∂Ω), E)

for every bounded open set Ω ⊆ Rd. Thus the sheaves B̃(E) and B(E) are
isomorphic.
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Proof. The sheaves B(0,p)(E) of differential forms of type (0, p) with co-
efficients in the sheaf of E-valued hyperfunctions in (2d) real variables (existing
by Section 6 and Corollary 4.1) are flabby, thus by Theorem 6.11 and [54, Cor.
to Thm. B 32] for any compact set K ⊆ Rd the groups H p

K(Cd,O(E)) are the
cohomology groups of the complex:

0 → 0 = ΓK(Cd,O(E))→B
(0,0)
K (Cd, E) ∂̄→ B

(0,1)
K (Cd, E)

→ · · · → B
(0,d)
K (Cd, E) → 0.

Now, observe, that

B
(0,p)
K (Cd, E) = L(A (0,d−p)(K), E),

here A (0,d−p)(K) denotes the (0, d−p)-type differential forms with coefficients
being germs in R

2d = C
d of analytic functions in (2d) real variables over a

compact set K ⊆ Rd ⊆ Cd.
As it is proved in [54, proof of Th. 411], the following is an exact sequence

of DFN-spaces:

(7.2) 0 → H(K) → A (0,0)(K) ∂̄0→ A (0,1)(K) ∂̄1→ · · · ∂̄d−1→ A (0,d)(K) → 0

where H(K) is the space of germs of holomorphic functions (in d complex
variables) over K ⊆ Rd ⊆ Cd and A (0,p)(K) is a product of spaces of germs
of holomorphic functions (in (2d) variables) over K ⊆ R2d ⊆ C2d. Thus im ∂̄p

is a closed subspace of A (0,p+1)(K) so its dual is a quotient of A (0,p+1)(K)′.
By Lemma 5.1 and Theorem 5.2, A (K)′ is a quotient of C̃Δ(R2d+1 \K) and
hence a quotient of CΔ(R2d+1 \ K), the latter space has (Ω) by [61, Prop.
3.4]. Thus A (K)′ has (Ω) and (im ∂̄p)′, p ≥ 0, has (Ω) as a quotient of a
space with (Ω). By [7, Th. 4.1], every operator T : ker ∂̄p+1 → E extends to
T̃ : A (0,p)(K) → E, which means that the following sequence is exact:

0 → L(A (0,d)(K), E)
t∂̄d−1→ L(A (0,d−1)(K), E) → · · ·(7.3)

t∂̄0→ L(A (0,0)(K), E) → L(H(K), E).

Now, notice thatH(K) is a complemented subspace of A (K) = A (0,0)(K).
A continuous linear projection Π onto H(K) may be defined by Π(f) := F

where F is the solution of the Cauchy-problem

(∂/∂xj + i∂/∂yj)F = 0, j ≤ d, on a neighborhood V ⊂ R
2d of K

and F (x, 0) = f(x, 0) near K ⊂ R
d



1132 Pawe�l Domański and Michael Langenbruch

via power series expansion. Thus the sequence (7.3) can be prolonged to

0 → L(A (0,d)(K), E)
t∂̄d−1→ L(A (0,d−1)(K), E) → · · ·

t∂̄0→ L(A (0,0)(K), E) → L(H(K), E) → 0

which is exact. Hence

(7.4)
H d

K(Cd,O(E)) � B
(0,d)
K (Cd, E)/∂̄B(0,d−1)

K (Cd, E)

� L(A (0,0)(K), E)/t∂̄0L(A (0,1)(K), E) � L(H(K), E)

since ∂̄ from (7.2) equals t∂̄0.
By the long exact sequence for relative cohomology (see [32, Theorem 1.1

(iii)]) we have the exact sequence

· · · → H d
Ω̄ (Cn,O(E)) → H d

Ω (Cn \ ∂Ω,O(E)) → Hd+1
∂Ω (Cn,O(E)) → · · ·

if Ω ⊂ R
d is open and bounded. By the flabby resolution from Theorem 6.11

we see that H d+1
∂Ω (Cn,O(E)) = 0. Therefore, the restriction B̃0(Cd, E) →

B̃(Ω, E) is surjective and B̃(E) forms a flabby sheaf.
Since the sheaf of cohomology groups is flabby, there is an isomorphism

H d
Ω (Cd,O(E)) � H d

Ω̄ (Cd,O(E))/H d
∂Ω(Cd,O(E)).

This completes the proof by (7.4).

§8. Necessity

We will discuss the necessity of the conditions which were used in this
paper to construct vector valued hyperfunctions.

The following lemma is a basic tool in our considerations. Its proof uses
the main idea from [36, 3.7].

Lemma 8.1. Let Ω,Ω1 ⊂ R
d be open and bounded and let Ω ⊂ Ω1.

Let u ∈ C∞((Ω1×]0,∞[) ∪ Ω, E) be harmonic on Ω1×]0,∞[. Then there is
g ∈ C∞(Ω, E) such that Δdg = u( · , 0) on Ω.

Proof. For (x, y) ∈ Ω × [0,∞[ let

v(x, y) := −
∫ y

1

∫ τ

1

u(x, t)dt dτ.
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Then v ∈ C∞(Ω × [0,∞[, E). Let g(x, y) := v(x, y) − p0(x) − p1(x)y where

(8.1) Δdp0 = −u( · , 1)+∂yu( · , 1) =: v0 and Δdp1 = −∂yu( · , 1) =: v1 on Ω.

Since v0, v1 ∈ C∞(Ω1, E) by assumption, (8.1) may be solved on Ω by means
of the convolution pj := G ∗ (ϕvj)

∣∣
Ω
∈ C∞(Ω, E), where ϕ ∈ C∞

0 (Ω1) is 1 near
Ω. An easy calculation shows that

Δdv(x, y) = −
∫ y

1

∫ τ

1

Δdu(x, t)dt dτ

(8.2)

=
∫ y

1

∫ τ

1

∂2
t u(x, t)dt dτ=u(x, y)+v0(x)+v1(x)y if (x, y)∈Ω×]0,∞[(8.3)

since u is harmonic on Ω×]0,∞[. This implies that Δdg(x, y) = u(x, y) if
(x, y) ∈ Ω×]0,∞[, hence Δdg(x, 0) = u(x, 0) since g, u ∈ C∞(Ω × [0,∞[).

For any complete locally convex space E we always have the following
canonical representation of f ∈ C∞

0 (Rd, E) as boundary value of a harmonic
function:

Lemma 8.2. For f ∈ C∞
0 (Rd, E) let S(f) := G∗(f⊗δy) where δy is the

Dirac measure at zero with respect to the y-variable. Then S(f) ∈ C̃Δ(Rd+1 \
supp(f), E) and S(f)

∣∣
Rd×±]0,∞[

can be (uniquely) extended to S(f)± ∈ C∞(Rd

×± [0,∞[, E) and ∂yS(f)+(x, 0) − ∂yS(f)−(x, 0) = f(x) on Rd.

Proof. We use similar arguments as in [37, 1.2] where the corresponding
result was proved in the scalar case.

Clearly, S(f) ∈ C̃Δ(Rd+1 \ supp(f), E) and

∂yS(f)(x, y) =: vf (x, y) =
sign(y)
cd+1

∫
Rd

f(x− yξ)(1 + |ξ|2)−(d+1)/2dξ if y 
= 0

(see (2.1) and use [27, 3.3.2]). The function vf is odd and defined also for y = ±0
since (1 + |ξ|2)−(d+1)/2 ∈ L1(Rd). Hence we can restrict our considerations to
y ≥ 0.

Let p be a continuous seminorm on E. Then

sup
x
p(vf (x, y)−f(x)/2)≤ 1

cd+1

∫
sup

x
p
(
f(x−yξ)−f(x))

)
(1+|ξ|2)−(d+1)/2dξ→0

if y ↓ 0 by Lebesgue’s dominated convergence theorem. Hence vf extends
to a continuous function on Rd × ±[0,∞[ and vf (x,+0) = f(x)/2 for any
f ∈ C∞

0 (Rd, E).
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Since
∂2

yvf (x, y) = −Δdvf (x, y) = −vΔdf (x, y)

we get

(8.4) ∂yvf (x, η) − ∂yvf (x, y) = −
∫ y

η

∂2
yvf (x, t)dt =

∫ y

η

vΔdf (x, t)dt.

Hence ∂yvf (x, y) extends continuously to R
d × [0,∞[ for any f ∈ C∞

0 (Rd, E).
Observe that

∂2b+j
y ∂a

xvf (x, y) = (−1)b∂j
yvΔb

d∂a
xf (x, y), j = 0, 1, if y > 0

(see [37, (1.9)]). This shows that vf ∈ C∞(Rd × [0,∞[, E). Since S(f)(x, y) −
S(f)(x, η) =

∫ y

η
vf (x, t)dt it follows as above that S(f) ∈ C∞(Rd × [0,∞[).

The following theorem is the main result of this section.

Theorem 8.3. Let Ω ⊂ R
d be bounded and open. Assume that there is

a flabby sheaf F on Ω such that

(8.5)
F0(K) :={T ∈ F(Ω) |suppF (T ) ⊂ K}=L(A (K), E) for any compact K⊂Ω.

Then

(8.6) Δd : C∞(ω,E) → C∞(ω,E) is surjective

if ω is open and ω ⊂ Ω.

Proof. Let ω be open with ω ⊂ Ω and let f ∈ C∞(ω,E).
a) First we represent f as a restriction of some u ∈ F0(Ω). Let ω =

∪jωj where ωj ⊂ ω. Choose ϕj ∈ C∞
0 (ω) such that ϕj = 1 near ωj . Then

ϕjf ∈ C∞
0 (ω,E) and hence Tj := H(S(ϕjf)) ∈ L(A (supp(ϕj)), E) ⊂ F0(Ω)

by Lemma 8.2, Theorem 5.2 and (8.5). Thus uj := RΩ,ωj
(Tj) ∈ F(ωj) is

defined. By the same references we have

Rωk,ωj∩ωk
uk −Rωj ,ωj∩ωk

uj = RΩ,ωj∩ωk
(H(S((ϕk − ϕj)f))) = 0

since (ϕkf − ϕjf)
∣∣
ωj∩ωk

= 0. Since F is a sheaf on Ω there is u ∈ F(ω) by
(S2) such that Rω,ωj

u = uj for any j. Since F is flabby, there is u ∈ F0(Ω)
with suppF (u) ⊂ ω such that RΩ,ωu = u.
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b) We then show that a representation v of u in C̃Δ(Rd+1 \ ω,E) may be
extended to v± ∈ C∞(ω×±[0,∞[, E): By (8.5) we know that u ∈ L(A (ω), E)
and hence H−1(u) =: [v] ∈ C̃Δ(Rd+1 \ω,E)/ C̃Δ(Rd+1, E) by Theorem 5.2. Let
S(ϕkf) =: [vk]. Since RΩ,ωk

(u−Tk) = 0 we conclude that (v−vk) ∈ C̃Δ(Rd+1 \
(ω \ ωk), E). However, vk can be extended to vk,± ∈ C∞(Rd × ±[0,∞[, E) by
Lemma 8.2 such that (∂yvk( · ,+0) − ∂yvk( · ,−0)) = ϕkf . Hence v can be
extended to v± ∈ C∞(ω×±[0,∞[, E) such that ∂yv( · ,+0)−∂yv( · ,−0)) = f

on ω.
Then

h(x, y) := ∂yv(x, y) − ∂yv(x,−y) ∈ C∞(ω × [0,∞[, E)

and Lemma 8.1 implies that there is g ∈ C∞(ω,E) such that Δdg = h(x, 0) = f .
The theorem is proved.

If we restrict our consideration directly to the models for vector valued
hyperfunctions from Section 6, we do not need the flabbiness of F to obtain
the conclusion of Theorem 8.3:

Theorem 8.4. Let ∅ 
= Ω ⊆ R
d be a bounded open set. If either condi-

tion (a) or (b) below holds then

Δd : C∞(ω,E) → C∞(ω,E)

is surjective for any open ω with ω̄ ⊆ Ω.
(a) The canonical mapping

I : L(A(ω), E)/L(A(∂ω), E) → L(A(Ω), E)/L(A(Ω \ ω), E)

is a bijection for any open ω ⊂ Ω and the spaces {B(ω,E) | ω ⊂ Ω open} define
a sheaf on Ω (with the restrictions from Definition 6.4)

(b) For any open ω ⊂ Ω the quotients C̃Δ(U \ Rd, E)/C̃Δ(U,E) are inde-
pendent of U ∈ U(ω) and the spaces {bv(ω,E) | ω ⊂ Ω open} define a sheaf on
Ω (with the restrictions from Definition 6.8)

Proof. The assumption (8.5) of Theorem 8.3 is clearly satisfied in both
cases (use also Theorem 5.2 in case (b)). By the first part of the proof of
Theorem 8.3 we get: for any open ω ⊂ Ω with ω̄ ⊆ Ω and any f ∈ C∞(ω,E)
there are [wf ] ∈ bv(ω,E) = C̃Δ(Ω×R∗, E)/C̃Δ((Ω×R∗)∪ω,E) (in case (b) this
equation holds by assumption since (Ω × R∗) ∪ ω ∈ U(ω)) and [vf ] ∈ B(ω,E)
(in case (a)) representing f . Notice that vf ∈ C̃Δ(Rd+1 \ω,E) by Theorem 5.2.
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By the second part of the proof of Theorem 8.3, vf and wf can be extended
from Rd ×±]0,∞[ as C∞- functions to ω× [0,∞[ and the claim follows by that
proof.

Using Corollary 4.1 we get:

Corollary 8.5. If the assumptions of Theorem 8.3 or Theorem 8.4 (a)
or (b) are satisfied for any bounded set Ω ⊆ R

d for some d ≥ 2 then E is a
weakly d-admissible space. In particular, if E is an ultrabornological PLS-space,
then E has (PA).

In the case of one variable (i.e. d = 1) Theorem 8.4 only gives the fact that
the operator ∂2

x is surjective on C∞(ω,E) if ω is ∂2
x-convex, which is clearly

true for any E. Hence we have to improve the argument for this case and we
will consider differential operators of infinite order defined as follows:

P (z) :=
∏
j∈N

(1 − iz/j2) for z ∈ C.

Then P has the expansion

(8.7) P (z) =
∑
k∈N0

ckz
k where |ck| ≤ Ck+1(k!)2

and

(8.8) |P (z)| ≤ C1e
C1|z|1/2

for some C,C1 by [34, Prop. 4.6].
Let ω ⊆ R be an open set. Let us define the Gevrey class connected with

the weight β, β(t) = t1/2:

γ2(ω,E) := {f ∈ C∞(ω,E) | sup
K
p(f (a)(x))/(Aa2)a <∞

for any compact K ⊂ ω, any continuous seminorm p on E and any A > 0}.
In fact, γ2(ω,E) = E(β)(ω,E) using the definition from [10]. Let

γ2
0(ω) := {f ∈ γ2(ω,C) | supp(f) ⊂⊂ Ω}

endowed with the natural inductive limit topology.

Theorem 8.6. The operator P (D) : γ2
0(ω)′ → γ2

0(ω)′ is a well-defined
hypoelliptic operator which is surjective for convex ω. Moreover ker P (D) �
Λ∞(α) for αj = j2.
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Proof. P (D) is hypoelliptic on γ2
0(ω)′ by [8, Theorem 2.1] since the slowly

decreasing condition [8, (2.1)] follows from (8.8) by application of a standard
minimum modulus theorem (see e.g. [39, Lemma 1.11]). This means that
any T ∈ γ2

0(ω)′ with P (D)T = 0 satisfies T ∈ γ2(ω). The slowly decreasing
condition implies surjectivity of P (D) on γ2

0(ω)′ for convex ω by [9, 2.9, 3.4].
By [46, Th. 3.2], we get the representation of ker P (D).

From the above result and the fact that

γ2(ω,E) = {f ∈ C∞(ω,E) : ∀ u ∈ E′, u ◦ f ∈ γ2(ω)}

it follows that

(8.9) f ∈ γ2(ω,E) if f ∈ C∞(ω,E) and P (D)f = 0.

Notice that the operator J(D) := P (−iD) comes from the entire function
J(z) = P (−iz) and that J(z) = 0 iff z = j2 for some j ∈ N. Hence J(D) is
hyperbolic in γ2(R)′ by [1] (with respect to x > 0 and x < 0), especially there
is an elementary solution F ∈ γ2(R)′ with supp(F ) ⊂] −∞, 0].

Lemma 8.7. Let Ω,Ω1 ⊂ R be open and bounded and let Ω ⊂ Ω1.
Let u ∈ γ2((Ω1×]0,∞[) ∪ Ω, E) be holomorphic on Ω1×]0,∞[. Then there is
g ∈ γ2(Ω, E) such that P (Dx)g = u( · , 0) on Ω where P (Dx) is the operator
defined above.

Proof. Let F ∈ γ2
0(R)′ be the elementary solution for J(D) above, i.e.,

suppF ⊂]−∞, 0]. Choose ϕ ∈ γ2(R) such that ϕ(x) = 1 if x ≤ 1 and ϕ(x) = 0
if x ≥ 2. For (ξ, η) ∈ Ω1×]0,∞[ let

(8.10) v(ξ, η) := (δx ⊗ Fy) ∗ (ϕ(y)u(x, y))(ξ, η) = 〈Fy, ϕ(η − y)u(ξ, η − y)〉y.

The convolution is defined and has the usual properties since gη(y) := ϕ(η −
y)u(ξ, η − y) = 0 if η − 2 ≥ y and since gη ∈ γ2 near ] −∞, 0] if η > 0. Since
u is holomorphic on Ω1×]0,∞[ and hence P (Dx)u = P (−iDy)u = J(Dy)u on
Ω1×]0,∞[, we get

P (Dξ)v(ξ, η) = (δx ⊗ Fy) ∗ (ϕ(y)P (Dx)u(x, y))(ξ, η)

= (δx ⊗ Fy) ∗ (ϕ(y)J(Dy)u(x, y))(ξ, η)

Hence

(8.11) P (Dξ)v(ξ, η) = (δx⊗Fy)∗J(Dy)(ϕ(y)u(x, y))(ξ, η)+(δx⊗Fy)∗w(ξ, η)
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where w(x, y) := ϕ(y)J(Dy)u(x, y) − J(Dy)(ϕ(y)u(x, y)).
The first term of (8.11) gives if 0 < η < 1

(8.12)
(δx ⊗ Fy) ∗ J(Dy)(ϕ(y)u(x, y))(ξ, η) = (δx ⊗ J(Dy)Fy) ∗ (ϕ(y)u(x, y))(ξ, η)

= ϕ(η)u(ξ, η) = u(ξ, η).

Now, we modify the second term in (8.11). We notice that w(x, y) = 0
if y > 2 or y < 1. Let ψ = ψ(x) ∈ γ2

0(Ω1) such that ψ = 1 near Ω. Then
wψ ∈ γ2

0(Ω1 × [1, 2], E) and

h := (δx ⊗ Fy) ∗ (wψ) ∈ γ2(Ω1 × R, E)

with supp(h) ⊂ supp(ψ) × R. Let K ∈ γ2
0(R)′ be an elementary solution for

P (D) which exists by Theorem 8.6. We define

H := (Kx ⊗ δy) ∗ h ∈ γ2(R2, E).

By (8.11) and (8.12) we get

P (Dx)(v(x, y) −H(x, y)) = u(x, y) + (δx ⊗ Fy) ∗ w(x, y)

− (P (Dx)Kx ⊗ δy) ∗ h(x, y)

= u(x, y) + (δx ⊗ Fy) ∗ w(x, y)

− (δx ⊗ Fy) ∗ (wψ)(x, y)

= u(x, y) if (x, y) ∈ Ω×]0, 1[.

(8.13)

Since u ∈ γ2(Ω × [0,∞[, E), this function may be extended to U ∈ γ2(Ω×
] − 1,∞[, E). Indeed, by [47, Theorem 3.1] there exists a continuous linear
extension operator

T : γ2 (Ω × [0,∞[) → γ2 (Ω×] − 1,∞[)

(notice that we only need to show that this extension operator exists locally
with respect to the first variable x) which implies the vector valued extension
result. Using U instead of u in (8.10) we see that v may be extended to
V ∈ γ2(Ω×]− 1,∞[, E), hence both sides of (8.13) are continuous on Ω× [0, 1[
and therefore P (Dx)(V (x, 0) −H(x, 0)) = u(x, 0) on Ω.

Theorem 8.8. Let ∅ 
= Ω ⊂ R be a bounded open set. Assume that
there is a flabby sheaf F on Ω satisfying (8.5) from Theorem 8.3. Then

P (D) : γ2(ω,E) → γ2(ω,E)

is surjective if ω is open and ω̄ ⊂ Ω. In particular, if E is an ultrabornological
PLS-space then E has (PA).



Vector Valued Hyperfuntions 1139

Proof. We repeat the proof of Theorem 8.3 using instead of Theorem 5.2
its analogue for holomorphic functions which gives the topological isomorphism

H : H(C \ ω̄, E)/H(C, E) → Lb(A (ω̄), E).

Also there is an analogue of Lemma 8.2 stating that for any f ∈ γ2
0(R, E)

S(f) := G ∗ (f ⊗ δy) ∈ H(C \ supp(f), E)

and that S(f)
∣∣
R×±]0,∞[

can be uniquely extended to g± ∈ γ2(R × ±[0,∞[, E)
and

g+(x, 0) − g−(x, 0) = f(x) on R.

Finally, we replace Lemma 8.1 by Lemma 8.7 and we get the surjectivity
of P (D) on γ2(ω,E). By Remark 3.3 we get Ext1PLS(ker P (D)′b, E) = 0. By
Theorem 8.6, ker P (D) � Λ∞(α) for stable α. By [7, Th. 4.4], E has (PA).

We can formulate now the final result of our investigations, combining
Theorem 8.8 and Corollary 8.5, and Lemma 4.1 and Theorem 6.9, respectively:

Theorem 8.9. Let E be an ultrabornological PLS-space. Then the fol-
lowing assertions are equivalent :

(a) For any 1 ≤ d <∞ there is a flabby sheaf F on Rd such that

F0(K) := {T ∈ F(Rd) | suppF (T ) ⊂ K}
= L(A (K), E) for any compact K ⊂ R

d.

(b) For some 1 ≤ d < ∞ there is a flabby sheaf F on some open set
∅ 
= Ω ⊆ Rd such that

F0(K) := {T ∈ F(Ω) | suppF (T ) ⊂ K}
= L(A (K), E) for any compact K ⊂ Ω.

(c) E has (PA).
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