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Abstract

We formulate a general super duality conjecture on connections between
parabolic categories O of modules over Lie superalgebras and Lie algebras of type
A, based on a Fock space formalism of their Kazhdan-Lusztig theories which was
initiated by Brundan. We show that the Brundan-Kazhdan-Lusztig (BKL) polyno-
mials for gl(m|n) in our parabolic setup can be identified with the usual parabolic
Kazhdan-Lusztig polynomials. We establish some special cases of the BKL conjecture
on the parabolic category O of gl(m|n)-modules and additional results which support
the BKL conjecture and super duality conjecture.
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§9. The Category of gl(2|1)-Modules

References

81. Introduction
81.1. The earlier work

In 2003 Brundan [Brl] obtained a purely algebraic and conceptual solu-
tion to the problem of finding finite-dimensional irreducible characters of the
complex Lie superalgebra gl(m|n). Earlier Serganova [Se] found an algorithm
for computing these irreducible characters using a mixture of algebraic and ge-
ometric technique. This problem can be traced back three decades earlier to
Kac [K1, K2], where initial progress was made. In the meantime, there has
been a tremendous amount of work towards it with various partial results (see
[Se, Brl, CWZ] for more references).

In Brundan’s approach, the Hecke algebra modules and their bar-invariant
basis in the standard Kazhdan-Lusztig (KL) theory [KL1, KL2, Deo| are re-
placed by the module A™V Q@ A"V* over the quantum group U,sls and its
Lusztig-Kashiwara canonical basis/global basis, where V denotes the natural

Ugslo-module. The Fock space AV Q A"V* at ¢ = 1 should be regarded
+

m|n
modules. Such a Fock space approach has been further applied successfully

as the Grothendieck group of the category O of finite-dimensional gl(m|n)-
to study the finite-dimensional irreducible and tilting characters of other Lie
superalgebras [Br3, CWZ2]. In [Brl], for the first time, a Kazhdan-Lusztig
conjecture for the full category O of gl(m|n)-modules is formulated using the
canonical basis theory of the module V& @ (V*)&n,

Subsequently in a joint work [CWZ] of the authors with Zhang, a connec-
tion between O + ., of gl(m+ n)-modules, as-

m|n m+n
sociated with the maximal parabolic subalgebra p,, ,,, was formulated. Roughly

and the parabolic category O

speaking, by developing further the Fock space formalism we showed that for
+

mins With respect to n, afford

a fixed m the inverse limits lim O::Lln and lim O
isomorphic Kazhdan-Lusztig theories, and moreover, we conjectured an equiv-
alence of the two categories.

§1.2. The conjectures

Fix an s-tuple of positive integers m = (my,...,m,) with )~ m, =m. In
the present paper we formulate a parabolic version of Brundan’s conjecture for



SUPER DUALITY CONJECTURES 1221

a category O;ln of gl(m|n)-modules with respect to a fairly general parabolic

subalgebra pp, ,, and a super duality conjecture on the equivalence of categories
+ +

man> Where OF .,

of li;n(‘);‘n and 1<iinO stands for an analogous parabolic
category of gl(m + n)-modules.

According to this version of Brundan-Kazhdan-Lusztig (BKL) conjecture,
the parabolic Verma, tilting, and irreducible modules in O;m correspond re-
spectively to the monomial, canonical, and dual canonical basis elements in
the Fock space €M™ := @A™V @ A"V* (or rather in a suitable topological
completion). On the other hand, one has an increasingly better known reformu-
lation of the Kazhdan-Lusztig conjecture (theorem of Beilinson-Bernstein [BB]
and Brylinski-Kashiwara [BK]; see Soergel [So2] for tilting module characters)
that the tilting and irreducible modules in O 1, correspond to the canonical
and dual canonical basis elements in the Fock space €M™ :=@&) A"V @ A"V.
Alternatively, the KL conjecture can also be viewed as a special case of the
parabolic BKL conjecture with n = 0.

Even though the formulation of the above conjectures in such a parabolic
generality seems inevitable or unsurprising to some experts after the works [Brl]
and [CWZ], we hope that the general reader may still find it worthwhile and
helpful, as it clarifies the scope and the limitation of these new developments.
Sometimes a more general conjecture has a better chance for (partial) verifica-
tion as they involve simpler combinatorics (compare the treatment of parabolic
KL polynomials by Deodhar [Deo] and its impact on the related development

of parabolic KL conjectures).

§1.3. The main results

We establish various compatibility results on the bar involution, canonical
and dual canonical bases of the Fock spaces €™ and €™*" when n varies. In
particular there is a canonical isomorphism of these spaces at the limit n — oo.
This allows us to identify Brundan’s KL polynomials with the classical type A
parabolic KL polynomials. We show that the canonical basis elements in €™I",
and then in €™+, stabilize in a suitable sense for n > 0. We further establish
in Theorem 4.8 a positivity result on the expansion of the divided powers of
Chevalley generators acting on (dual) canonical basis elements, confirming a
parabolic version of [Brl, Conjecture 2.28]. As a corollary it follows that every
canonical basis element in the Fock space €™I™ is a finite sum of monomials.

In an approach different from [CWZ], we establish in Section 3 properties
of tilting modules in O;‘n for varying n without assuming either the validity of
the BKL conjecture or using explicit formulas of canonical basis. We introduce
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+

min for varying

truncation functors that interpolate the categories O;‘n and O
n, and establish various compatibility results. In particular, we prove a stability
result for the tilting modules U, ()\) in O;‘n for a given weight A, i.e., the
U, (X) have the same finite Verma flag structures for every n >> 0 (where it is
understood that a tail of zeros is added to A for larger n). The connections
between canonical bases in various Fock spaces €™ and €™+ further allow
us to establish the same stability result for tilting modules in O, ,,. (We are
not aware of any other proofs even though such a statement appears to be
classical).

The parabolic BKL conjecture for O;ln would follow from the properties
of the truncation maps and functors established in this paper, under the as-
sumption of the validity of the super duality conjecture. Also, it would follow
from the validity of Brundan’s conjecture on the full category O. However,
the parabolic formulation of this paper can still be useful, since most of our
results stated above either do not make sense or cannot be proved for now in
the setup of the full category O or its associated Fock space.

Note that the known proofs of the classical Kazhdan-Lusztig conjectures
ultimately rely on geometric machinery. For lack of such geometric tools, the
BKL conjecture, or the super duality conjecture in general, presently appears to
lie beyond our reach. We obtain some partial verification of the BKL conjecture
under some “regularity” condition on the weights. In the special case when
m = (1,1) and n is arbitrary, we establish the parabolic BKL conjecture and a
weak version of the super duality conjecture, where among others the method
of the sly-categorification of Chuang-Rouquier [CR] is used. We also establish
the parabolic BKL conjecture in another special case when m = (m,1) and
n = 1. In both cases, we find explicit formulas for the canonical basis and
thus the weights of Verma modules of Verma flags of the tilting modules. (Our
approach can be adapted to give a purely algebraic proof of the usual type
A Kazhdan-Lusztig conjecture in the corresponding parabolic and low rank
cases).

§1.4. The organization
The layout of this paper is as follows.

e In Section 2, we define the canonical and dual canonical bases for the Fock
spaces €™ and investigate their relationship for varying n under the
truncation maps.

e In Section 3, we formulate the parabolic BKL conjecture on O;Lm and
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establish various results on tilting modules.

e In Section 4, we reformulate the classical parabolic Kazhdan-Lusztig con-
jecture of type A by means of the Fock space €™ and also present our
general super duality conjecture. We obtain a key isomorphism result on
Fock spaces which underlies the super duality conjecture.

e In Section 5, we adapt the powerful machinery of the sly-categorification
of Chuang-Rouquier to the category O;‘n. Some formal consequences of
the sly-categorification are used in the subsequent sections.

e In Section 6, as a preparation for the next sections, we establish several
. . . . . +
technical results regarding the tilting modules in the category Om|n. We
also give an explicit description of the tilting modules when the weights
satisfy a regularity condition, which partially verifies the parabolic BKL

conjecture.

e In Section 7, we establish the parabolic BKL conjecture and a weak version
of the super duality conjecture when m = (1, 1). In Section 8, we establish
the parabolic BKL conjecture for (9;271'1.

e In Section 9, we focus on the category O;l of gl(2]|1)-modules. We work out
explicitly the Verma flag structures for the tilting and projective modules,
as well as the composition series of Verma modules. We further classify the
projective tilting modules.

We often omit the details of proofs when they are very similar or even
identical to those for the special case (i.e. m = m) treated in [Brl] and [CWZ]
to keep the paper within a reasonable size. The reader is recommended to have
copies of these two papers at hand when reading the present paper.

82. Basics of ¢-Multilinear Algebra

In this section we set up various notations, compatible with [CWZ] which
is our special case when m = m. We refer to [CWZ, Section 2] for more detail
(also see [Brl]).

§2.1. The quantum group

The quantum group U,gl., is the Q(g)-algebra generated by E,, F,, K1,
a € Z, subject to the relations
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K,K;'=K, 'K, =1, K,K,=K,K,,
KaEbKa—l = oo —dabr1 KanKa—l — Pavtri—bar
Ean - FbEa = 6a,b(Ka,a+l — Ka+17a)/(q _ qfl),

E. By = EyE,, F.,F,=FF,, if|a—b| > 1,
E?Ey,+ EyE? = (¢ + ¢ Y E,EyE,, if la —b| = 1,
F2Fy 4+ FyF2 = (q+q HF,FyF,, if |a — b = 1.

Here and below K, := KaKljl for a # b € Z. Define the bar involution on
U,9l, to be the anti-linear automorphism ~ : E, — E,, F, — F,, K, —
K. Here by anti-linear we mean with respect to the automorphism of Q(q)
given by ¢ — ¢~ .

Let V be the natural U,gl -module with basis {v,}eez and W := V* the
dual module with basis {w, }aez such that we(vs) = (—¢) ™ %dq,p. We have

da — _
Kavb =q bvbv Eavb - 5a+1,bva7 Favb - 5a,bva+17

)

Kawb == qi abwba anb == 5a,bwa+1; Fawb == 5a+1,bwa~

As in [Brl, CWZ] we shall use the comultiplication A on U,gl . defined by:
A(Ea) =1 ® Ea + Ea ® Ka+1,aa
AF)=F, 014+ Kga11 ®F,, A(K,)=K,®K,.
We let U = Uysls denote the subalgebra with generators Eg, Fy, Kq 441,00 € Z.
For k > 0, set [k] = q:__qulk and [k]! = [k][k — 1]---[1], and introduce

the divided power E&) = E*/[k]!, F{¥) = F¥/[k]l. One has the following
comultiplication formula

k
A(F®)) = Zqi(kfi)Ké,a_i_lFékfi) © FD.
=0

§2.2. The Fock space £™T"
For m € N,n € NU oo, we let
I(m|n):={-m,-m+1,..., -1} U{1,2,...,n}.
Given an s-tuple of positive integers

m=(my,...,ms), where mq + -+ +mg = m,
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we denote by Sy,+, the symmetric group of (finite) permutations on I(m|n),
by Smjn its Young subgroup Sy, X -+ S, X Sy, and by wg the longest element
in Sy, for n finite. Denote by 7;; the transposition interchanging ¢ and j.

For n € NUoo, we let Z™" or Z™™ be the set of integer-valued functions
on I(m|n). Set (for a finite n)

= {f €2 f(=m) > > f(=mtm — 1),
f=m+mq)>---> f(—m+my +mg — 1),
o flemg) > > f(=1), f(1) > - > f(n)]

ZR={f e 2P | f(n) > 1—n}.

LR = {f € L7 | f(m) > - > f=m+my — 1),
f=m+mq)>---> f(—m+mi+ma—1),...,
f(=mg) >---> f(=1), f(1) > f(2) > ---; f(i) =1 — i for i > 0}.

Occasionally, we shall denote Zfioo = ZTJ“’O.

For n € N, one can define a right action of the Hecke algebra H,, of type
A on the tensor space V€™ which commutes with the action via the (n — 1)st-
iterated comultiplication A"~! of U following Jimbo [Jim]. One can define
the space A™V of finite g-wedges as a quotient space of V& via the skew ¢-
symmetrizer from H, and then the space AV of infinite-wedges by taking
the limit n — oo appropriately as done in [KMS]. These spaces are naturally
U-modules. The g-wedge vy, N --- A g, is an element of A"V, which is the
image of vy, ® -+ ® v,, under the canonical map when A™V is regarded as a
quotient of V®". The elements v,, A -+ A Vg, , for a3 > -+ > a, and a; € Z,
form a basis for A™V. Similarly, the U-module A>*°V has a basis given by the
infinite g-wedges vy, A Umy A Umg A ---, where m; > mg > m3 > ---, and
m; = 1 —i for i > 0 (our A*V is Fgy in [KMS]). Alternatively, A*V has a
basis

|>\> = UN, AUrg—1 AUxz—2 Ay,

where A = (A1, Ag,...) runs over the set of all partitions.
For n € NU oo, the space

S

emtn = Q) A"V XAV,

a=1

is acted upon by U via the s-th iterated comultiplication A®. It has the mono-
mial basis

Ky= Vel—m,—m+mi1) @ Vf[—mtmy,—mtmq+ms) @ @ Vf[—m,,—1] ® Vg[1,n];
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where f runs over the set ZT+" and we have denoted by, for given a < b,

Vfla,b] = Vffab+1) = Vf(a) AN Vf(at1) N A V()

The Bruhat ordering < on Z™*™, which comes from the Bruhat ordering
on Sy, 4n, is the transitive closure of the relation f < f -7, if f(i) < f(j), for
i,j € I(m|n) with i < j. This induces the Bruhat ordering < on Z*".

Let P be the free abelian group with basis {e,|a € Z} equipped with a
bilinear form (-|-), for which the e,’s are orthonormal. For later use, we define
the e-weights on Z™*":

(2.1) wte(f) := Z €£(i)> for f € Z™t™.
i€I(m|n)

§2.3. The Fock space ™"
Set (for a finite n)

ZP" = {f ez | f(=m) > > f(=mtmy — 1),
f=m+mq)>---> f(—m+ms +mg —1),
o f=mg) > > f(=1), (1) <--- < fn)

Z? = {f € Z™™ | f(n) <n}.

2T = {f €20 f=m) > > f(=mAma - 1),
f=m+mq) > > f(—m+mi+mg—1),...,

f(=ms) > > f(=1), f(1) < f(2) <---; f(i) =i for i > 0}.

(Occasionally, we also denote Zﬂ_oo = Z'r‘oo.)

Recall that W = V* is the U-module dual to V' with basis {wg}eez. The
space W®™ admits a right action of the Hecke algebra J,, which commutes with
the action via A"~! of the quantum group U. In the same way using the skew
g-symmetrizer, the U-module AW has a basis given by wq, A we, A -+ A wg,
for a3 < ... < a,. Similarly, we construct the space AW of semi-infinite
g-wedges wy, A wy, A -+, where n; =i for ¢ > 0, which carries a U-module

structure. Writing the conjugate partition of X\ as X' = (A}, A}, ...), we set

[
[AL) = wi—x; A wa_yx, A W3— AR

The set {|\,)} is a basis for AW,
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For n € NU oo, we denote

gmin = ® AV (R AW,
a=1

which is acted upon by U via the s-th iterated comultiplication A®. The space
&mIn has the monomial basis

Ky = vfom,—mimi) © Vf[mmtmy,—mtmi+mz) @ @ Vf[—m,,—1] @ Wy[1,n],

where f runs over ZT‘" and Wy p) = wp)y A AWg(n)-
For i € I(m|n) we define d; € Z™" by j —sgn(i)d;;. For f,g € zmn
we write f | g if one of the following holds:

(1) g=f —d; +d; for some i < 0 < j such that f(i) = f(j);
(2) g=f -7y for some i < j < 0 such that f(i) > f(j);
(3) g=f -7y for some 0 < i < j such that f(i) < f(j).

The super Bruhat ordering on Z™™ is defined as follows: for f,g € Z™", we
say that f = g, if there exists a sequence f = hq,...,h, = g € Z™™ such that
hi | ha---h._1 | h,. It can also be described cf. [Brl, §2b] by a number of
inequalities in terms of the e-weights on Z™!", which are defined by:

(2.2) wt(f) == Y —sen(i)esq,  for fezmm
i€l(m|n)

The super Bruhat ordering on Z™" induces a super Bruhat ordering on the
subsets ZT'”,ZTJ‘:L, and Zfl‘x’.

For n € N, the degree of atypicality (or atypicality number) of f € Z™" is

defined to be
= <m+n -y <wtf<f>,ea>|> .

a€Z

For f € Z™> we define #f to be the degree of atypicality of the restriction
of f to I(m|n) for n > 0 (which is clearly well-defined).

If f,g € ZT‘" are comparable under the super Bruhat ordering, then
#f = #g. If #f = 0, we say that f is typical; otherwise f is atypical. An

element ZT‘” is minimal in the super Bruhat ordering if and only if f is typical

and f - 7;; is not conjugate under the action of Sy, to an element in ZT‘”

whenever f(i) > f(j) with i < j <O.



1228 SHUN-JEN CHENG AND WEIQIANG WANG

§2.4. Bases for gmin

Let n € NUoo. For d € N let Sr;‘_"d be the Q(q)-subspace of ™" spanned
by K; with f(i) > —d, for all i € {1,---,n}. Following [Brl, CWZ] we shall
denote a certain topological completion of £™I™ by &mln whose elements may
be viewed as infinite Q(g)-linear combinations of elements in ™" which under
the projection onto Sgllnd are finite sums for all d € N (cf. [Brl, §2-d]).

We can define a auasi—matrix following [Lu2, Chap. 24, 27|, that extends
the bar-involutions on €™° and on €°". Using this we can then construct a
bar-involution on &™I™. The following proposition is a variant of [Brl, Theo-
rem 2.14, Theorem 3.5] and results of Lusztig, and it can be proved similarly.

Proposition 2.1. Let n € NU oco. There exists a unique continuous,
anti-linear bar map ~ : ™" — €™ gych that

(1

K_ Ky, for all f € Zm‘n minimal in the super Bruhat ordering.
Xu=

2 X@, forall X € U and u € gmin,

)
(2)
(3) The bar map is an involution.
(4) K

= K¢+ (), where (x) is a (possibly infinite) Z|q, q~*]-linear combina-
twn of Kg’s, with g € ZT‘” such that g < f.

The next theorem now follows by standard arguments (cf. [KL1, Lu2,
Brl]).

Theorem 2.2.  Letn € NUoo. There exist unique canonical basis {Uy}
and dual canonical basis {L¢}, where f € ZT‘", for E™I™ such that

(1) Uf = Uf and ff = Lf.
(2) Uy € Ky +Z eZquZ[ |Kg and Ly € Ky —|—Z eZm\n IZ[qil]Kg.

(3) U = Ky + (%) and Ly = Ky + (xx), where (x) and (xx) are (possibly
infinite) Z[q,qt]-linear combinations of Ky’s, with g € Zmn such that
9=/

The /Z\ here and further denotes a possibly infinite sum.

Let n € NU oco. Generalizing [Brl], we define the Brundan-Kazhdan-
Lusztig polynomials ug ¢(q) € Zlql, €y,7(q) € Zlg™ '] associated to f,g € Zm‘"
by

(2.3) U= Y ugs(@Fy  Lp= Y LK,

gGZm‘" gELY

m|n
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Note that ug r(q)
9.f

Ly s(q) = 0 unless g < f, uypsr(q) = ¢r5(¢) = 1, and
ug,5(q) € qZlg), Ly,5(a) €

#(@) € ' Zlg "] for g £ f.

Remark 2.3. By studying a certain symmetric bilinear form on gmin
such that (Ly, U_g.,) = dy,4 for all f,g € Z_Tln, one can show (as in [Brl,

2-1,3-c] for the special cases for m = (1,...,1) or m = m) that
(2 4)
= > gt (@ Vg = Y leguo—pun(d Wy fEZET
geZm‘" qum“’
Remark 2.4.  Let n = (nq,...,n,.) € N” for r > 1. One can generalize

readily the bar-involution, the monomial and (dual) canonical bases to the
more general space E™IP := ®5_; A"V ® @;_, A" W. The bases are naturally
parameterized by a set denoted by ZTI", which is an obvious generalization of
VAR

+

§2.5. The truncation map

Let n be finite. Denote by Sfln the subspace of €™ spanned by Ky, for
fe Zmln For oo >n' >n, and f € ZT'" (respectively f € ZT+"/), we define
fm ezt min (respectively f(™) € ZT™) to be the restriction of f to I(m|n).
We define the truncation map to be the Q(g)-linear map

Tepn: € — €I
which sends Ky to Ky if fli) =14, for all i > n+ 1, and to 0 otherwise. We
will write Zv, , as Tt,, when no ambiguity arises.

Proposition 2.5.  For co > n' > n, the truncation map It , ETW

— ET'” commutes with the bar-involution.

Proof. Tt suffices to prove the case n’ = n + 1. The proof of [CWZ,
Proposition 2.8] for the special case when m = m using the quasi R-matrix
carries over to this general situation. 1

Corollary 2.6. Let co >n' > n.
(1) {Uf}feztrr (respectively {Lf}feztrr) is a basis for ST‘"

(2) Ty sends Uy € ETW to Ugeny if f(i) =i for alli > n+1, and to 0
otherwise.
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(3) Ttp . sends Ly € ETW to Ly if f(i) =4 for all i > n+ 1, and to 0
otherwise.

(4) For f,g € Zﬂ_"l such that f(i) = g(i) =i for alli > n+ 1, we have

Ug,f(LI) = Ug(n) §n) (), ég,f(Q) = fg(m,f(m (q)-

§3. The Parabolic Brundan-Kazhdan-Lusztig Theory for gl(m|n)
83.1. The category O;ln

For m,n € N the Lie superalgebra g = gl(m/|n) is generated by the elemen-
tary matrices e;;, where 4,5 € I(m|n). For i € I(m|n), let i = 0 if i < 0 and
i =1if i > 0. Let h be the standard Cartan subalgebra of g consisting of the
diagonal matrices, b the standard Borel subalgebra of the upper triangular ma-
trices, and AT the set of positive roots for g. By means of the natural inclusion
gl(m[n) C gl(m|n+1) via I(m|n) C I(m|n+1), we let gl(m|oo) := lim gl(m|n).

Recall that m = (my,...,ms) with >, m; = m. Consider the Levi sub-
algebra [ := gl(my) @ --- @ gl(ms) ® gl(n) and the corresponding parabolic
subalgebra p := [+ b of g. (We shall occasionally write p,, if we need to keep
track of n.)

Let {0;|i € I(m|n)} be the basis of b* dual to {e;|i € I(m|n)}. Let X,,,
be the set of integral weights A = Ziel(m‘n) Aidi, A; € Z. A symmetric bilinear
form on h* is defined by

(6z|5]) = —sgn(i)(sij, i,j S I(m|n)
Define

Xt = {>‘ € Xm\n ‘ Alm 2 2 A mama—1,

>\—m+m1 Z Z >\—m+m1+m2—17
7)\7ms 2"'2)\717)\1 22/\77,}7
X =ve X 1A 2 0)

m|n

+

We may regard an element A in X! as an element in X1
m|n m

[’

for n’ > n
by adjoining zeros, i.e. letting A; =0 for n’ > i >n+ 1. Let

X++ — X+ ++
- mn’

= lim X
mj|oo mj|oo P
n
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For n € NU oo define

i€l(m|n)

Define a bijection

where fy € Z™" is given by fi(i) = (A + p|d;) for all i € I(m|n). This map
induces bijections X, =~ — ZT'" and X! — ZT". Using this bijection we
define the notions such as the degree of atypicality, e-weight, partial order <,

et cetera, for elements in X:;ln by requiring them to be compatible with those

defined for elements in ZTI".

For \ € X;‘n, we define the parabolic Verma module to be
Kn(A) :=U(g) @u(p) Ln(V),

where LY (\) is the irreducible [-module of highest weight \ extended trivially to
a p-module. The irreducible quotient g-module of K, (\) is denoted by L, ()).
Let [M : L,(\)] denote the multiplicity of the composition factor L,(\) in a
gl(m|n)-module M. When n = co we will make it a convention to drop the
subscript n in K,,(\), L,(\) et cetera.

For n € N, O;‘n is the category of finitely generated gl(m|n)-modules M,
with M semisimple over [, locally finite over p, and

M= P M,

YEXm|n

where as usual M, denotes the y-weight space of M with respect to h. Note

min> When regarded as a module over its even subalgebra,

that any object in O+‘
has finite length by results of the classical category O, and hence it has finite
length as well. Denote by Homyy,|, the Hom space in the category O;ln. We
twist the standard g-module structure on the graded dual M* of such an M
with the automorphism given by the negative supertranspose on g, and denote
the resulting g-module by M”. We denote by O;Tn the full subcategory of O;‘n
which consists of modules whose composition factors are of the form L, () for
A€ X:J;L We let O:;TOO be the category of finitely generated gl(m/|oo)-modules
that are [-semisimple, locally finite over py C gl(m|N) for all finite N, and such
that the composition factors are of the form L()\) for A € X

m|oo”
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83.2. The truncation functor

Let wt(v) denote the weight (or §-weight) of a weight vector v in a gl(m/|n)-
module.

. O++

m|n’

Definition 3.1. For n < n’ < oo, the truncation functor tt, ,,

— O;Jlrn is the exact functor which sends an object M to
te, (M) :=span {v € M | (wt(v)|6x) =0, foralln+1 < k <n'}.

When n’ is clear from the context we will also write tv,, for tv, . (It is easily
checked that tr, (M) € 01T )

O++

mn
tors tt, , in the sense that tt,. ,, = tt, , o tt,r v for n” >n' > n.

We have a system of categories with a compatible sequence of func-
We have the natural inclusions gl(m|n) C gl(m|n + 1). The following is a
variant of [CWZ, Lemma 3.5] and can be proved similarly.

Lemma 3.2. Let Y = L or K. We have the natural inclusions
of gl(m|n)-modules: Y,(A) C Y,i1(A) for A € X;T:L. Furthermore,
ttn+1,n(Yn-&-1()‘)) =Y, (N).

It follows that U,K,(\) and U,L,(\) are naturally gl(m|oo)-modules.
They are direct limits of {K,,(\)} and {L,(A)} and isomorphic to K(\) and
L(), respectively. Similarly U, LY (X\) = L%()\) as [-modules.

Corollary 3.3. For Ae X'

mln,,n<n’ < oo, andY = L or K, we have

Y.(A), if Ay =0Vi>n,
e (Vi (V) = { W

otherwise.
Lemma 3.4. Let A € X;rlrn and p € X:rrl‘n be such that p < A. Then
++
we Xm‘n.

Proof. Recall that the super Bruhat ordering = is defined to be the tran-
sitive closure of the three cases of dominance f | g in Subsection 2.3, where only
in the first case therein the set { f(4) }1<i<» will be changed. More precisely, one
particular f(4) involved in an atypical pair is replaced by some smaller integer.

Thus, thanks to X = p, {f.(?) }1<i<n is obtained by consecutively lowering
the values {fx(¢)}1<i<n (which are involved in atypical pairs), whence p €
Xt O

min’
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Given M € O;ln, denote by [M] the corresponding element in the
Grothendieck group G(O:;‘n) of the category O;‘n. Corollary 3.3 and the
exactness of the truncation functor tt, , implies the following.

Proposition 3.5.  For A\, € X:th and n' > n, we also regard \, ju €
X+ by adjoining zeros. Then, [K,(N) : Ly (11)] = [Kp (N) : Ly (1))

m|n’

Given \ € X:‘l|k7 we denote by Jr(A) the set of the highest weights of the
composition factors of Kj(A) and by r(A) the length of a composition series
of Ki(A). Clearly, there exists n(\) € N such that the degree of atypicality
#\ (where we regard A € X by adjoining zeros) is independent of n for

m|n
00 > n > n(A).
Proposition 3.6.

(1) The r(N) and Jn(N) (with the tail of zeros in a weight ignored) are in-
dependent of n > n(\). Furthermore, for n' > n > n()\) the truncation
functor tvn , maps bijectively the set of Jordan-Hélder series for Ky (X)
to the set of Jordan-Hélder series for K, ().

(2) The parabolic Verma module K(\) for A € X:;lloo has a finite composition
series, whose composition factors are of the form L(u) with p € X;‘Oo,
and hence, K(\) € 01T . Furthermore, [K()\) : L(p)] = [Kn()\) : L (1))

Proof. (1) Let n > n(A). [Kn(A) @ Lp(p)] # 0 for some p implies p < .
Thus we have p € X:;T;L and actually p € X;‘J;(A) by the proof of Lemma 3.4,
where indeed f,(i) = fa(¢) for ¢ > n(X). Hence the first statement follows
by Proposition 3.5. Now the second statement follows from the first one and
Lemma 3.3 using the same argument as for [CWZ, Lemma 3.8].

(2) follows from the special case of (1) with n’ = oco. O

§3.3. The tilting modules

Throughout this subsection we assume that n is finite. An object M €
O;‘n is said to have a Verma flag (respectively, a dual Verma flag) if it has a
filtration of gl(m|n)-modules:

such that each M;/M;_; is isomorphic to a parabolic Verma module K, (\?)
(respectively, K, (A\")7) for some A € X . We define (M : K,(u)) for p €

min’
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X ;‘n to be the number of subquotients of a Verma flag of M that are isomorphic

to K, (u). The tilting module associated to A € X:)Cbln in the category O;ln is
an indecomposable gl(m|n)-module U, (\) such that U,(\) has a Verma flag
with K, ()) at the bottom, and Ext' (K, (1), Un()) = 0 for all p € X1, . By
a parabolic version of [Br2] as in Soergel [So2] for the usual semisimple Lie
algebras, the tilting module U, ()\) in the category O:;‘n exists and is unique.
Following [Br2, So2|, the projective cover P, (A) of L, ()\) exists for each A €
X+
min
results (see [Jan, Br2]) adapted to our particular setup.

and admits a finite Verma flag. The following is a synthesis of standard

Proposition 3.7.

(1) Let M be a module with a finite Verma flag and N be a module with a finite
dual Verma flag. Then, Ext'(M,N) =0 for all i > 0.

(2) Let N € O:;;\n' Then the following statements are equivalent:

(a) N has a dual Verma flag;
xt n(A), =0 fora S and all 7 > 0;

b) Ext'(K,(\), N for all A X;‘n d all

(c) Ext!'(K,(\),N)=0 for all A\ € X\

In*

(3) A tilting module in O$|n has a finite dual Verma flag.

Proof. Part (2) can be proved using (1) exactly as for [Jan, Proposi-
tion 4.16]. Part (3) follows from (2) (also see [Br2]).

So it remains to prove (1). Using an induction on the Verma flag length
on M and then an induction on the dual Verma flag length on NNV, it suffices to
show that Ext’ (K, (\), K,(1)7) = 0 for all X\, g and i > 1.

As in [Br2, Lemma 3.6 (iii)], we have Ext"(K,(\), K,,(1)7) = 0 with i = 1.
The Ext’ vanishing for i > 1 follows by a standard induction argument, which
we sketch below for the convenience of the reader. We have an exact sequence

0—K— P,(\) = K,(\) —0,
where K has a finite Verma flag. We get a long exact sequence
s Ext™H(Pa(A), K (n)7) e Ext™™ (K (A), Kn(1)7)
— Bxt' (K, K,(u)7) « --- .
Note that Ext”l'(Pn(/\), Ky (n)7) = 0, since P, (A) is projective. By inductive
assumption, Ext’ (K, (v), K,(¢)7) = 0 for all v, and thus Ext" (K, K, (u)7) =0

by induction on the Verma flag length of K. Hence, Ext™™ (K, ()\), K, (1)) =
0. O
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Corollary 3.8.  We have U,(\) Z U,(\)7.

Proof. We have Ext!(U, ()\), K,,(#)7) = 0 by Proposition 3.7 (1), and
hence by applying the functor 7, Ext! (K, (1), U, (1)) = 0. By the construc-
tion of tilting modules [So2], Homy,, (Ky (), Un(A)) = 0, for p = X, and
Homyy, |, (K (A), Un(A)) = 1. Thus there are no weights in U, ()™ greater than
A, which appears with multiplicity one. Now U,,(\)™ also has a Verma flag by
Proposition 3.7. Thus U, (X\)™ = U, () by uniqueness of tilting modules. O

§3.4. A parabolic version of the Brundan conjecture
The same arguments as in [Br2, So2] give us the following:
(3.2) (Upn(N) : Kp(p)) = [Kn(—wop — 2p + 2p1) = Ly (—woX — 2p + 2p1)],

where we recall that wy is the longest element in the Weyl group Sy, of the
Levi subalgebra [, and p; is half the sum of positive roots of I.

It is well known that each \ € X;rlln (or more generally A € h*) gives rise
to a central character x,. There is a neat characterization of central characters
in terms of e-weights [Brl, Lemma 4.18]: xx = x, for A\, p € X;rrlm if and
only if wt(fy) = wt(f,,). It follows that the category O;‘n has a “block”
decomposition O;‘n = cp 0. Denote the projection functor to OF by pr.,.

Let V be the natural gl(m|n)-module and V* its dual. For a € Z,r > 1 we
define the translation functors ES”, ™ O;ln — O;ln by sending M € OF
to

FéT)M =Ty (ca—earr) (S"Ve M),
(3.3) E"M :=pr (S"V* @ M).

Y+r(€a—€at1)

By convention, set F, = Fél), E, = E((ll). Let (‘):;"% be the full subcategory of
O;‘n consisting of all modules with Verma flags. Let G(O;’@)Q = G(O;’ﬁ) ®z,

Q and let 8m|”|q:1 be the specialization of &™I" as ¢ — 1. Denote the ¢ — 1
specialization of Uy, K¢ by Us(1), K¢(1) et cetera.

Theorem 3.9. Let n € N.

(1) Sending the Chevalley generators E& F (a € Z,r > 1) to the translation
functors ESY FS” defines a Ug—1 -module structure on G(O>)g.

m|n

(2) The linear map i : G(O;’@)Q — &N ) which sends [K,(\)] to Ky, (1),

for each \ € X;‘n, is an isomorphism of Ug—1-modules.
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Proof. This is a straightforward generalization of [Brl, Theorems 4.28,
4.29], and it can be proved similarly. O

The following is a parabolic version of [Brl, Conjecture 4.32].

Conjecture 3.10. [Parabolic Brundan-Kazhdan-Lusztig Conjecture]
Let n € NUoo. The map i : G(O+’ )o — €™I"|,_1 sends [U,(\)] to Uy, (1) for
each A € X:;ln. (The case for n = oo will be clarified and made plausible by
Theorem 3.14 below.)

Conjecture 3.10 can be equivalently reformulated as either of the following
conjectural identities, in light of (2.4), (3.2), and Theorem 3.9: for A\, u € X

(Un(A) : Kn(p)) = wu (1),

m|n’

[K (A): L (ﬂ)] U—woA—2p+2p1,—wo p— 2p+2p[(1)
chLn(N) = > Lua(1)chE,(p).
neEXt,

We note that the validity of [Brl, Conjecture 4.32] would imply Conjecture
3.10.

Remark 3.11.  Let n = (niy,...,n,) € N" with n = Y, _;n,. One
can formulate the more general category OT'“ of gl(m|n)-modules which are
semisimple over &5_,gl(mq) & ®j_,gl(ny). All the statements on tilting mod-
ules and the Brundan-Kazhdan-Lusztig Conjecture in Subsections 3.3 and 3.4
can be readily generalized to this more general setup (cf. Remark 2.4). Brun-
dan’s conjecture [Brl] was formulated for the full category O, i.e. when all m,
and n; are equal to 1.

On the other hand, the BKL conjecture on the irreducible characters in
any parabolic category would follow from the validity of the corresponding
Brundan’s conjecture for the full category O (using the same argument as for
the usual Lie algebras of type A).

83.5. Tilting modules with n varied

Proposition 3.12. For A € X:Trlltlﬂ the truncation functor tv, sends

Un+1(A) to Uy(X) if (A|dnt1) =0, and to 0 otherwise.

Proof. By the construction of tilting modules (cf. [So2, Br2]), Up,4+1(A)
has a Verma flag with subquotients isomorphic to K,y1(u) with u < A, If
(Mdn+1) > 0, then (p]dp+1) > 0 and thus tr, (U,+1(N\)) = 0 by Lemma 3.3.
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Thanks to Lemma 3.4, the truncation functor tr,, preserves Verma flags. It
follows from the commutativity of = with tr,, and Proposition 3.7 that tr,, also
preserves the dual Verma flags. By Proposition 3.7, Ext! (K, (1), ttn(Uni1(N))
= 0. If (A|dn+1) =0, then tr,,(K,4+1 (X)) = K,,(A) and clearly K,,(\) sits at the
bottom of tt,, (Up+1(N)).

To show that tt,,(Up+1(A)) = Up(N), it remains to show that tt, (U,41(N))
is indecomposable. Indeed, this follows by the same argument for [Don, Propo-
sition 1.5] with the help of Proposition 3.7. We recall here that the counter-
part in our setup of ([Don, Proposition 1.5] states that Homyy,, 41 (M, N) —
Homy,,, (te, M, tr, V) is surjective, for M (respectively N) with a finite Verma
(respectively dual Verma) flag. Its proof is elementary and uses induction on
the (dual) Verma length, Lemma 3.4, and the standard fact that

(3.4) Homyyp (Kn(A), Kn(p)") = 6x,,C.

Thus, Endm,(te,Unq1(A)), as a quotient of the local C-algebra
Endpmjnt1(Ung1(A)), is local. This implies that tv,(Un41(A)) is indecompos-

able. 0
Proposition 3.13. For A\, € X;rlrn and n' > n, we also regard \, u €
X:j?;, by adjoining zeros. Then, (U, (A) : Kn(w)) = (Un/(N) : Ky (1))-

Proof. The proof is similar to the proof for Proposition 3.5, now with the
help of Lemma 3.4 and Proposition 3.12. |

Theorem 3.14. Let A\ e X

(1) There exists a unique (up to isomorphism) tilting module U(X) in O

m|oco

with K(\) sitting at the bottom of a Verma flag. Moreover, U(\) =
UnUn(A).

(2) The functor tr, sends U(N) to Up () if (M0p+1) =0 and to 0 otherwise.

(3) We have (UN) : K(p)) = (Un(X) : Ky (@) for n > 0.

(4) The Verma flag length for U(X) and U,(\) for n > 0 is the same (and
finite).

Proof. We define U(X) to be U,U, (). The same proof for [CWZ, The-
orem 3.16] applies here to prove (1) and (2), with the help of Proposition 3.13
above. (3) and (4) follow by an argument similar to the proof of Proposi-
tion 3.6. O
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Remark 3.15.  Conjecture 3.10 as n varies is compatible with the prop-
erties of truncation maps and the truncation functors (cf. Corollary 2.6 and
Proposition 3.12).

§4. Kazhdan-Lusztig Theory for gl(m + n) Revisited and
Super Duality

§4.1. Kazhdan-Lusztig polynomials and canonical basis for £®+"

In this subsection we give a presentation of certain parabolic Kazhdan-
Lusztig polynomials in terms of the Fock space E™t™ (compare [FKK, Brl,
BK1]).

For n € N let 8T+” denote the subspace of E™*" spanned by elements
of the form Ky, f € Zij” For n’ > n define the truncation map Try 4 :
STJF"/ — 8T+” by sending Ky to Ky if f(i + 1) = —i for all i > n, and to
0 otherwise. This gives rise to Tr, : €M™t — 8T+", for all n, which in turn

allows us to define a topological completion gmtoo lim 8T+", similarly as
n

in [CWZ, 4.2]. For a finite n let £m+n = gm+n,
The following proposition can be established similarly as
[Brl, Theorems 2.14 and 3.5] for the special cases m = (1,...,1) or m = m.

Proposition 4.1. Let n € NUoo. There exists a unique anti-linear bar
map ~ : EWTN s EWMFN gych that

(1) Ky =Ky, for all f € ZH" minimal in the Bruhat ordering.
(2) Xu=Xu, for all X € U and u € E™+n.

(3) The bar map is an involution.
(

4) Ky = Ky + (), where (x) is a (possibly infinite when n = 00) Z[q,q *]-
linear combination of Ky’s with g € Zf“’ such that g < f in the Bruhat
ordering.

The next theorem follows from Proposition 4.1.

Theorem 4.2. Let n € NU oco. There exist unique topological bases
{Us}, {Ly}, where f € ZPF", for E™F™ such that

(1) ﬂf = Uf and Zf = Lf;

(2) Uy e K¢+ dezfﬂqz[qp{g and Ly € Ky + dezf+nq_1Z[q—l]g<g.
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(3) Uy =Kys+(x) and Ly = K+ (xx), where (x) and (xx) are (possibly infinite
when n = o00) Z|q, ¢~ ']-linear combinations of K,’s with g € ZT*‘” such
that g < f. Forn finite, (x) and (xx) are always finite sums.

We define u, (q) € Zlq],ly.7(q) € Zg™'] for f,g € ZTJF” by

(4.1) Uy = Z ug,1(q) Ky, Lf= Z lg.r () Ky

m-+n m-+n
gELY gELY

Note that ug £(q) = lg,¢(¢) = 0 unless g < f and uy s(q) = l5 ¢(¢) = 1. These
polynomials can be identified as (parabolic) Kazhdan-Lusztig polynomials (cf.
Theorem 4.14 below).

Remark 4.3. By the same type of arguments as in [Brl, §3-c] we can
introduce a symmetric bilinear form (-, -) on €™ such that (L5, U_g..,) = 054
for f,g € Z'"*", which readily implies that the matrices [u_f.uy,—g-w,(¢)] and
[l7.4(q™1)] are inverses of each other. Equivalently, we have

Xy = Z u*f'wo,*g'wo(qil)ﬁg: Z [*f'wo’*g'wo(qil)uw erTJrn'

g€Z:_n+n QGZT_H"
Proposition 4.4.

(1) The truncation map Try . : STJF"I — &MY commutes with the bar-
ivolution, where co > n' > n.

(2) Tru ., sends Uy (respectively L) to sy (respectively Ly ) if f(i+1) =
—1i, for alli > mn, and to 0 otherwise.

(3) For f,g € ZTi"/ such that f(i+1)=g(i+ 1) = —i for all i > n, we have

ug,f(q) = ug(n)vf(n) (q), [g,f(q) = [g(n)vf(n)(q).

Proof. Part (1) is proved similarly as [CWZ, Proposition 4.29]. (2) and
(3) are immediate corollaries. |
84.2. A Fock space isomorphism and consequences

Proposition 4.5.

(1) There is an isomorphism of U-modules C : AV — A°V* which sends |\)
to |\,) for each partition X.
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(2) The map C extends naturally to an isomorphism of U-modules

h: gmtoo =, gmloo
which is compatible with the actions of all divided powers E,(ls), Fés).

Proof. Part (1) above is [CWZ, Theorem 6.3]. Recall that ™+ =
®5_ A™V® APV and £ = @¢_ A™V @ A°V*. Then C : AV — A®V*

o

induces a U-module isomorphism § = 1 ® C : g™+° —, gml>  Ope can fur-
ther check that these two topological completions em+oo and M are indeed
compatible under . O

Given A = 3 icimjo0) Nil; € Xt o so that by definition A\>0 :=
(A1, A2,...) is a partition. Denoting by (M, A, ...) the conjugate partition
of A9, we define a weight

—1 0o
A=) Aﬁﬁng;aj € X7
=

i=—m

This actually defines bijections (denoted by f by abuse of notation)

A oxt

m|oo’

X+

m+oco |, 1 m|oco
m-+oo Z—i— — Z

+ )

when coupling with the two bijections X:rrl‘oo — ZT'OO and X

m-+00
m+oo 7 Z+ .

There is a simple combinatorial description for the bijection
(42) zpee L g (FO ) s f = (£ f)

in light of [CWZ, Lemma 6.2], where f>° denotes the restriction of f to I(0]occ)
and Z\ f~° denotes the complement of £~ in Z.

Lemma 4.6.

(1) For f,g € ZTJ“’O, f > g in the Bruhat ordering if and only if f% = g% in
the super Bruhat ordering.

(2) A weight X € X}

mioo 18 minimal in the Bruhat ordering if and only if

PLINS X:;lloo is minimal in the super Bruhat ordering.

Proof. (2) is a special case of (1), so let us prove (1).

Denote by f* the (unique if exists) conjugate in Z7"> of f € Z™*+> under

|oo

the action of Spm4oco. The super Bruhat ordering = on ZT is the transitive

closure of the partial order f > g given by
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(i) g=(f —d; +d;)" for some i <0 < j such that f(i) = f(j);
(i) g = (f - 7;)" for some i < j < 0 such that f(i) > f(j).

On the other hand, the Bruhat ordering > on ZTJ“’O is the transitive
closure of the partial order f > g given by

(") g = (f-7y)" for some i < 0 < j such that f(i) > f(j);
(i) g = (f - 7;)7" for some i < j < 0 such that f(i) > f(j).

Exactly as explained in the proof of [CWZ, Lemma 6.6] when m = m,
under the explicit bijection f : Zf+°°—>ZT|°° given by (4.2), the Step (i)
corresponds to Step (i’). Now clearly the Step (ii) corresponds to (ii’) by (4.2).
This proves (1). O

Theorem 4.7.  The isomorphism f : gmtoo __, gmloo pacihe following

properties:

(1) 4(Xy) = Kyu for each f € Zf‘*‘oo;

(2) 1 is compatible with the bar involutions, i.e., §(@) = b(u) for each u €
Em-{-oo;

(3) 4(Lys) = Lys for each f € ZP+;
(4) §(Uys) = Uys for each f € ZPF>.
(5) For f,g € ZP"™, we have ug ;(q) = ugs 41 (q), and Uy 5(q) = Ly s:(q).

Proof. (1) follows from the definitions and Proposition 4.5. (2) follows
from Proposition 4.5, Lemma 4.6 (2) and the characterizations of the bar invo-
lutions. (3) and (4) follow from (1), (2), Lemma 4.6, and the characterizations
of these bases. O

The following verifies a parabolic version of [Brl, Conjecture 2.28].

Theorem 4.8.

(1) The Brundan-Kazhdan-Lusztig polynomials satisfy the following positivity:
up(9) € Ng], lua(=q™") € Nlg] for all X, p € X

|
(2) For each a € Z,r > 1, and | € ZT'", the coefficients of EéT)Uf,FéT)Uf

)Lf,FéT)Lf) in the expansion in terms of the canonical

basis {U,} (respectively, the dual canonical basis {L,}) lie in N[g,q™'].

(respectively E
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Remark 4.9. Set n = 0 in Theorem 4.8, and we are in the setup of the
Fock space corresponding to usual parabolic category Of of gl(m)-modules.
It is folklore that Theorem 4.8 (2) with n = 0 should be true and indeed a
proof is known to Lusztig [Lu3]. Theorem 4.8 (2) with n = 0 would also follow
from the graded lifts in the sense of Beilinson, Ginzburg and Soergel [BGS]
of the category O} and the divided power translation functors E((Zr), Fy), for
a € Z,r > 1. For example, a complete proof in a special case of such a lift of
the divided powers has been written down by Frenkel, Khovanov and Stroppel
[FKS, Theorems 3.6, 5.3] (see Remark 5.6 therein for the general category O,
and the parabolic case should follow too). We thank Jon Brundan for the
reference and clarification.

Proof. (1) Tt suffices to prove when n is finite. Let us identify the
Kazhdan-Lusztig polynomials for gl(m|n) with the usual Kazhdan-Lusztig poly-
nomials for gl(m + N) for finite n and N. Given \,u € X[ we obtain

m|n’
Ao € X:;loo the extension of A by zeros, and A € X:;Jroo. Write M, =
((A2)<°|(A\5.)>?). Assuming the lengths of the partitions (uf )% and (A\f_)>°

are no larger than IV, we have )\E’O(N), ui’o(N) € X;IFIL\,. Then,

W (@) = U a (@) = 1 e (@) = 1 s v 5 on (9)-

Similarly, we have £, x(¢) = [Hh’(N) N () (q).
The general case of w, x(q), €, 1(q) for A\, € X;‘n can be easily reduced

to the case considered above as follows. Let 1., := (—1,...,—1[1,...,1) €

Xt Note that w3 (9) = Utk Atk (@) Gen (@) = Lutht g Atk (@)
and also that A + k1,,, € X;;Trn, for \ € X:ﬂn and k£ > 0.

Thus our result follows from the corresponding well-known positivity re-
sults of Kazhdan-Lusztig polynomials which was proved using deep geometric
techniques [KL2, BB, BK].

(2) Let 1,,),, € Z™I" denote the function given by L (i) = 1, for all
i € I(m|n). The formula for Us_j with k& € Z, is obtained from U; by
shifting the weights in the monomials that appear in Uy by —k1,,,,. Also if we
write X§ Uy = 2, 247(q)Uy, with 2g7(q) € Zlg, ¢ "], then X"\ Us_p1,,, =
>0 2ef(@Ug—t1,,, (here X = E, F). Thus it suffices to verify (2) within STln

by assuming a < n and f € ZT_L" Using the truncation maps we can pass to

m|n?

the case when n = oo (see Corollary 2.6). By Proposition 4.5 and Theorem 4.7,
this amounts to prove the corresponding statement for Uy and Ly in €™+°°.
But this follows from the validity of the corresponding statement in E™+" for
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n finite (see Remark 4.9) and the property of the truncation map Trs , in
Proposition 4.4. O

As explained in [Brl, 2-k], the positivity in Theorem 4.8 (2) together with
(a parabolic variant of) the algorithm in [Brl, 2-j] for computing the canonical
basis elements in ™! imply the following.

Corollary 4.10.  Let n be finite. Every canonical basis element Uy in
the completion 83_"'” actually lies in Sinl", that is, Uy is a finite sum of mono-
mials K.

Remark 4.11.  Such a finiteness of canonical basis elements in €™I" sup-
ports Conjecture 3.10, since it is compatible with the fact that a Verma flag of
any tilting module in O;‘n is finite.

Corollary 4.12. Letco > n > ng, f € ZTJ':L", and extend f to f(™ €
Zﬂ_" by letting ) (i) =i for ng <i <mn. Let ny > 0 be the smallest integer
such that # ) = #f, for all n > ng. Then Upw) contains the same (finite)
number of monomials for all co > n > ny.

Proof. Let co > n > ny. Also write Upm) = Z_ﬁf(n) Ug, f(n) (@)K, It
follows from g < f(™ and n > ny that g € X;rlrn and g = ggn) for g1 € X;‘tlf.
Recall that Tv, ,, (K,) = Kgl,Ttn’nf(Uf(n)) = Usinp. Thus when applying
the truncation map %v,,, to the previous identity for Uswm), every nonzero

monomial survives, and we obtain that U, = D= Ug, e () Ky, O

Corollary 4.13.  Letn > ng, f € Z1"™, and extend f to {1 € 2™
by letting ™ (i) =1 —i for ng < i < n. Then, there exists ng > 0 such that
the number of monomials in Uz is independent of n > ny.

Proof. By a truncation map argument similar to the proof of Corol-
lary 4.12, the number of monomial terms in Uy is weakly increasing as n
increases. But this number has to stabilize, since it is bounded according to
Corollary 4.12 and Theorem 4.7 (4). O

§4.3. The category O}

m-+n

Let n € N. We shall think of gl(m + n) as the Lie algebra of complex
matrices whose rows and columns are parameterized by I(m|n). Let e;5, 4,5 €
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I(m|n) be the elementary matrices. We denote by h. (respectively b.) the
standard Cartan (respectively Borel) subalgebra of gl(m +n), which consists of
the diagonal (respectively the upper triangular) matrices. Let {d},% € I(m|n)}
be the basis of h% dual to {e;,? € I(m|n)}. Introduce the Levi subalgebra
[ = @f_,gl(m;) ® gl(n) and the corresponding parabolic subalgebra q = [+ b,
of gl(m + n). Let gl(m + oo) = lim gl(m + n).

Define the symmetric bilinear form (:|-). on b by
(67105)c = 04, i,7 € I(mn).

Let X,,+n be the set of integral weights A = ) Aid}, A; € Z. Define

i€I(m|n

X+

m4n ‘T {>\ € Xonan | Aom =0 2> )\—m+m1—17
)\7m+m1 >z A7m+ml+mgfla
a)‘—ms 2 Z)\—la)\l Z Z)\n}a

Xt ={ e XF,, | A >0}

m-+n

oyt oYt /
We may regard an element A in X1, as an element in X7V, for n’ >n

by adjoining zeros. Set

o xt T YT
Xmtoo = Xmpoo == Hm X 1
n

For n € NU oo define

-1

pr==>" i+ (1-5)d
j=1

i=—m

Define a bijection
(4.3) Xpn — 2™, A= [,

where fy € Z™T" is given by f\(i) = (A + p'|0}). for all i € I(m|n). This map

induces bijections X, — ZP*" and X1t — ZT™. Using this bijection

we define the notions such as e-weight, partial order <, et cetera, for elements

in X +n by requiring them to be compatible with those defined for elements
in Zmt"

o,

Given A € X;rl_m, n € N U oo, we define as usual the parabolic Verma
module

Kn(N) = U(gl(m + n)) @u(q) Ly (V)

and its irreducible quotient gl(m + n)-module L, (X).
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Let n € N. Denote by Ot , = the category of finitely generated gl(m + n)-

m-+n
modules M that are locally finite over ¢, semisimple over [ and

M= @ M,

’YEXm+n

where as usual M, denotes the y-weight space of M with respect to f.. The
parabolic Verma module X,,(\) and the irreducible module £,,(\) for A € X}

m-+n

belong to O Denote by OF 1 the full subcategory of Of _~ which consists

m+n- m-+n m-+n
of gl(m + n)-modules M whose composition factors are isomorphic to L,,(\)

with A € X}t . Given M € OF

m+n- m+n’
the usual gl(m + n)-module structure. Further twisting the gl(m + n)-action

we endow the restricted dual M* with

on M* by the automorphism given by the negative transpose of gl(m + n), we
obtain another g-module denoted by M™.
Tilting modules U, (A\) for A € X . in Of

m+n min Were constructed as in

[Col, So2] and are known to have Verma flags. The character formula of the
tilting module U,,(p) in O |, is given by [So2]: for A, u € X%

m-+n’
(44) (Un (V) : Ko (12)) = [Kn(—woss — 26 + 200) : L(—wod — 20 + 2p)].

We remark that for n € NU oo the gl(m + n)-module X,,()) is irreducible
+

if and only if A is a minimal weight in X,

in the Bruhat ordering.

Denote by O;ﬁ_oo the category of finitely generated gl(m + oo)-modules
that are l-semisimple, locally finite over q N gl(m + N), for every N, and such
that the composition factors are of the form L(\), A € X &

m-+oo*

§4.4. Kazhdan-Lusztig theory and (dual) canonical bases

We will write [y ¢(q), tg,7(q) for [, x(q),tu2(q), where f, g correspond to
N Zern
T,

The following is an increasingly better known reformulation, in terms of

\, i, respectively, under the bijection X} in
dual canonical and canonical bases, of the Kazhdan-Lusztig conjecture, proved
in [BB, BK], combined with the translation principle and the character formula
of tilting modules [So2]. The proof in [CWZ, Theorem 5.4] for the special case
(i.e. m = m) works in the current setup as well (also cf. Brundan-Kleshchev
[BK1)).

Theorem 4.14.  In the Grothendieck group G(Oj;_,rn), forve Xt

m—+n’
we have

[Un(v)] = Z W (1)[Kn ()]

pext

m-+n
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Theorem 4.14 is equivalent to the following character formula by Re-
mark 4.3 and (4.4):

chlpn(¥) = D Liu(1)ch K (p).
pext

m-+n

Recall the e-weight on X,,1, defined in (2.1). Denote by x, the central
character associated to A € X,,1,. By Harish-Chandra’s theorem x, = x,
for \, u € X,pyp if and only if A = o - p for some o € S, 4, Or equivalently
wt(A) = wt(u) € P. We denote by OF the block in Of ., associated to

m-+n

v € P, and by pr, the projection functor onto Oj . Let V be the natural
gl(m + n)-module and V* its dual. For a € Z,r > 1 we define the translation
functors E,(f), For, ot by sending M € OF to

m-+n m-n

FcET)M = Py r(ea—€at1) (S"V & M), Ez(zT)M = pr’v+r(sa—6a+1)(STV* ® M).

Let 052 be the full subcategory of Of . consisting of all modules with Verma

m-+n m-n

flags. Let G(O52 ) = G(O52,) ©2Q and let €™F7|,_; be the specialization

m-+n m-+n
of EMT" a5 ¢ — 1.

Theorem 4.15. Letn € N.

(1) Sending the Chevalley generators Eér), F (a € Z,r > 1) to the translation

functors Ec(f), F defines a Ug—1-module structure on G((‘)Iﬁn)@,

(2) The linear map i : G(OLL))g — ™47 ,—1, which sends [K,(N)] to K, (1),

m-+n

for each X\ € X5, is an isomorphism of Uy—1-modules.

(3) The map i sends [U,(N)] to Uy, (1), for each X € X,

m-+n-*

+

min> We have

Equivalently, for A\, u € X

(Un(A) : K () = uu,k(l)v
[Kn(A) : Ln(p)] = U—woA—2p"+2p1,—wop—2p'+2py (1).

Proof. The map ¢ is certainly a vector space isomorphism. One checks
that the action of the translation functors on the parabolic Verma modules is
compatible with the action of the divided powers of the Chevalley generators
of Uy=1 on the monomial basis. Thus (1) and (2) follow. Now (3) follows from
Theorem 4.14 and the definition of KL polynomials u, , and [, ,. O
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84.5. The case as n—

+

m-+n
Subsection 3.2 (cf. [Don]), we can establish the counterparts of Subsection 3.5.

By studying truncation functors Tr for O with varying n, analogous to
The following theorem should be compared to Theorem 3.14. Note that
Corollary 4.13 is used in proving (4) below.

Theorem 4.16. Let A e XT

m-+oo*

(1) There exists a unique tilting module U(X) in OF% _ with K(N\) sitting at

m-+o0o

the bottom of a Verma flag. Moreover, UW(A) = U, U, (N).
(2) The functor tr, sends U(A) to Up(N) if (Mdns1)e =0 and to 0 otherwise.
(3) We have (U(A) : K(u)) = (Up(N) : Kp()) for n>> 0.

(4) The Verma flag lengths for W(A) and Uy, (A) for n > 0 are the same (and
finite).

The following proposition follows from Theorem 4.14, Corollary 4.13, and
the properties of the truncation maps,/functors.

Proposition 4.17.  Let n > ng and A € X1 F Extend X to \(™ €

m-+ng

X4 by letting A (i) = 0 for ng < i < n. Then, there exists ny > 0 such

m-n

that the Verma flag structure of Uym 4s independent of n > ny.

84.6. A general super duality conjecture

Based on Conjecture 3.10, Theorems 4.15 and 4.7 we propose the following
conjecture which generalizes [CWZ, Conjecture 6.10], which will be referred to
as the general super duality conjecture.

Conjecture 4.18. For a tuple of positive integers m, the categories
OFT and OLT __ are equivalent.

m|oo m-+-00

Remark 4.19.  We regard Conjecture 4.18 as a pointer toward a profound
connection between representation theories of Lie algebras and Lie superalge-
bras. One should keep in mind some variations of the conjecture such as an
isomorphism of the full subcategories of modules with Verma flags, or an equiv-
alence of derived categories, et cetera.

The validity of Conjecture 4.18 implies the validity of the parabolic
Brundan-Kazhdan-Lusztig Conjecture 3.10, by using the Kazhdan-Lusztig the-
ory for gl(m + n) as formulated in Theorem 4.15 and the properties of trun-
cation maps/functors (see Corollary 2.6 and Proposition 3.12). In particular,
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the original Brundan conjecture for the full category O of gl(m|1)-modules (cf.
Remark 3.11) would follow from the super duality conjecture.

85. Application of the Chuang-Rouquier sl;-Categorification

+

min

85.1. The sly-categorification and category O

This subsection is a super analogue of Chuang-Rouquier [CR, 7.4].

Let {u;} be a Zy-homogeneous basis of g = gl(m|n), and {u’} be its dual
basis with respect to the supersymmetric bilinear form (a,b) := str(ab), where
ab denotes the matrix multiplication of a,b € gl(m|n). The Casimir C :=
> (=1D)ily;u lies in the center of the enveloping algebra U(g). By means of
the standard matrix elements, we readily see that

C = Z (—1)jeijeji.

i,j€I(m|n)

Recall that j = 0 if j < 0 and j = 1 if j > 0. Denote by {z;}icr(m|n) the
standard basis for the natural g-module V, and set |z;| = i.

Given a g-module M, we let X5; € Endg(V ® M) the adjoint map associ-
ated to the action map g x M — M (by identifying g = End(V)). It follows
that

X(v®@m)=Q(vem),

where

0= Z (—1)56U ®6J2

i,j€I(m|n)

This defines an endomorphism X of the functor V ® —. One verifies that (with
all the superalgebra signs cancelling)

(5.1) Q:E(AQ(C’)—C®1—1®C’),
where Ay denotes the coproduct on U(g). We also define
Ty € Endg(V @V ® M), vV @m i (~1)Y @ v m.

This defines an endomorphism 7' of the functor V@ V ® —.
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Recall that the degenerate affine Hecke algebra Hy is an algebra generated
by X;(t=1,...,¢) and s;(i = 1,...,£ — 1), subject to the following relations:

s?=1, 88115 =8i115Sit+1,
8i8j = 8;8i, |Z—j| > ].,
zjsi=sixj, (JF#i,i41),
(5.2) Tip18; — ST =1,
Tilj = TjTs, (’L?é])
The following is a super generalization of a theorem of Arakawa-Suzuki
[AS].
Proposition 5.1.  There is an algebra homomorphism
Hy — Endy(V®* @ M),

S; 1§£_Z ® Tyei-1gr, x; — 1§€—z ® Xyei-1gp-

Proof. All the relations are straightforward to check except (5.2). The
relation (5.2) is equivalent to the following identity in Endy(V ® V ® M) for
g-module M:

Tavo(ly ® X)) = Xvem oTy — lvgveum.
Indeed, given a,b € I(m|n), we calculate that

XveuTu (@, @ m) = (—1)™ Xy g (2 ® 20 © m)
= Z (—1)ag+;+@+;)56ij$b ® eji(xa ®m)

i,j€I(m|n)
= Z (_1)a5+j+(i+;)56ij$b ® €jiTq @M
i,j€I(m|n)
+ > (—1)@ DO e 0y @ 2, @ ejim
i,j€I(m|n)
=2,z @m + T Z (71)5“%3)%& ® e;;xp @ ejim

syl (m|n)

= (lvgvenm + T o (y ® Xu))(wa @ 7 @ m).
O

We write A —, p if there exists i € I(m]|0) such that \;—i = a, u;—i = a+1,
or if there exists ¢ € I(0|n) such that —\;+i = a+1, —p;+i = a, and in addition,
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Aj = pj, for all j # i. Given two (integral) blocks O,Jyr, O;C in the category O;ln
corresponding to v, € P, we write v —, 7' if there exists A, u € h* such that
K,(\) € 0F and K,(u) € O,JYF,. Denote by pr., the projection onto the block
0F. We can rewrite the translation functors F, (3.3) as

F, = @ pr,, o (V®—)opr,.
Y Y=y
Proposition 5.2.  The translation functor F, can be identified with the
generalized (a — m)-eigenspace of X acting on V ® —.

Proof. It suffices to check the proposition on a parabolic Verma module
K, ()\). The Casimir acts on K,(\) as the scalar multiplication by ¢y := (A +
2p,A\). By (5.1), Q acts on a subquotient K, (A + §;) in V ® K, (\) (where we
recall V = L, (6_,,)) as the multiplication by

1
§(Cx\+6i —cyn—c¢s_,,)
1
= S(A+8i 429, A+ 8:) = (A+20,0) = (6o + 29, 0-m))

1 1

JA—i—m, if i € I(m]0)
] Xi+i—m—1, ificI(0n).

The statement now follows by comparing with the definition of F,. O

We can identify E, similarly. Note that the notations E and F are
switched in [CR]. Following [CR, 7.4], Propositions 5.1 and 5.2 above im-
ply that E,, F,, X, T satisfy the definition of the sls-categorification (which we
will skip here and refer to [CR, 5.1.1, 5.2.1] for detail).

85.2. A formal consequence

By definition, the (divided power) translation functors Eéi),Féi) for ¢ >
1, are obtained from the functors E*, F* by replacing V®® by the symmetric
products SV*, SV et cetera).

We shall need the following formal consequence of the sly-categorification

(see [CR, Proposition 5.23] and a statement in its proof).

Theorem 5.3.  For every simple object L in O;ln, i<d =max{j|FI(L)
% 0}, and a € Z, the socle and cosocle of FOL are simple and isomorphic.
Furthermore, F\Y L is simple.
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8§6. Some Results on Canonical Basis and Tilting Modules

In this section we establish some miscellaneous results on canonical basis
elements and tilting modules that will be used in subsequent sections.

86.1. The L operators

Let n € N and f € Z™" be Sm|n-conjugate to an element in ZT‘”. Recall
that m =mq +---+ms. Let —m < i <0 < j < nwith f(i) = f(j). We define
the L operators (cf. [Brl])

Lij(f) = f —ald; — dj),

where a is the smallest positive integer such that f—a(d; —d;) and all Ly ;(f) —
a(d; — dj) for —m < i,k <0 <1< j <nwith f(k) = f(I) are Sp,-conjugate
to elements of ZTI".

Now let f € ZT'” and suppose #f = k. Let —m <;,i9,...,i < —1 and
1< g < jr—1 <---<j1 <nbesuchthat f(i;) = f(j;), for i =1,... k. For a
k-tuple 8 = (61, ...,0;) € N¥ we define [Brl]

o =Lo(f) = (Lze:,jk ° "'OLff,jl(f))+’

where the superscript + here stands for the unique Sy,j,-conjugate in ZT'”.

8§6.2. The positive pairs

In this subsection we set m = (mq,mg) with m; + mg = m, and shall
adapt here the notion of positive pairs defined in Z:’_Ll’mz‘o from [CWZ].

Let f € ZT’len. For a pair of integers (i|) such that —m < i < —mso <
j <0, we define the distance of (i|j) (associated to f € ZT™) to be d(ilj) :=
f(@i) — f(4). We call (i|j) an admissible pair for f if f(i) > f(j) and f - 7
affords a (unique) conjugate (f - 7;;)" € ZT‘”. Two admissible pairs (i|j1)
and (ig|j2) for f are said to be disjoint, if i1 # i and j; # jo. Two subsets A;
and Ay of admissible pairs of f are said to be disjoint, if any two admissible
pairs (i1]j1) € A1 and (iz|j2) € Az are disjoint. Let A;f denote the set of
all admissible pairs of f. For k > 1 we define recursively Z’} = {(ilj) €
AFd(ilj) = k and (i]5) disjoint from L=} £5}. Let S*(f) = £F = L Bh.
An element in Z}r is called a positive pair of f. Given a subset X of positive

pairs of f, we denote by fx; the element in ZT‘” obtained by first interchanging
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the values of f at each positive pair in X, and then taking the unique Sp,-
conjugate in ZT‘".

Set I(m|n) = I U Iy U I3, where I, I, I3 are the increasing subintervals
of I(m|n) of length mi, ma, n respectively. We denote by fq, the restriction of

f to I, U, with a <b and let f, = fqq-

§6.3. On tilting modules in O

mi,ma|n

Given )\ € X;q'n, by abuse of notation we denote U, (fx) = Upn(\), Kn(f2)
= K,(\) and L,(fx) = L,()), the respective tilting, parabolic Verma and
irreducible gl(m|n)-modules.

Let f € Zi”’mzl" with m = mj + ma. We denote by K'2(fi2) the
parabolic Verma gl(m; + ms)-module. Likewise the notation K23(fo3) denotes
the parabolic Verma gl(mz|n)-module.

ape my,ma|n
Proposition 6.1.  Let f € Z """,

(i) Let ¥ be a positive pair of f. Assume that Ext'(K'2((fs)12), K'2(f12)) #
0. Suppose that for any g < f with (U,(f)) : Kn(g)) # 0 we have g ¥ fs.
Then (Un(f) : Ku(fs)) = 1.

(ii)) Let —mg < i < 0 < j < n be such that f(i) = f(j). Assume that
Ext!(K23(f2i9), K2(fa3)) # 0. Suppose that for any g < f with (Up(f)) :
Kn(9)) # 0 we have g % fyi?. Then (Un(f) : Kn(fai?)) > 1.

Proof. 'We will only show (i). The proof of (ii) is similar.

Let 3 = (i]j) be such that —m < i < —mgy < j < 0 and f(i) > f(j). Let
g = fx. Let L(l)Z(fH) and L(IJQ (g12) denote the irreducible p,,, m, modules of
highest weights fi2 and gi2 respectively, where p,,, m, is the parabolic subal-
gebra of gl(m; + msg) with Levi subalgebra gl(m1) @ gl(ms). By assumption
there exists a non-split extension T" of gl(m; + mgy)-modules

0— Indg[(77L1+77L2)Lé2(f12) — T — Indg[(77L1+77L2)Lé2 (g12) — 0.

Pmy,m Pmy,m
1,m32 1,m32

Tensoring the above sequence with the simple gl(n)-module L3(f3) = L3(g3),
we obtain a non-split extension of gl(m + ms) @ gl(n)-modules

(6.1)

0 — Ind§i" ) L (f10) @ L3 (f3) — T'— Indd "™ ") L2 (g15) © L3 (g3) — 0.

Py ma Py .mo

By applying an induction functor to (6.1), we obtain a short exact sequence
of gl(m1 + msg|n)-modules

(6.2) 0— K,(f) = T" — K,(g) — 0.
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Taking the invariants of (6.2) with respect to the niradical of the parabolic p
whose Levi is gl(m) @ gl(n) we recover (6.1), and hence the indecomposability
of T" follows from that of T".

Finally from the construction of tilting modules [So2, Br2] our second
hypothesis above assures that (U, (f) : K,(g)) > 1. O

§6.4. Tilting modules with short Verma flags

We recall the following variant of [Brl, Corollary 4.27], which follows from
the fact that E((f), Fér) are exact functors and are both left and right adjoint
to each other.

Lemma 6.2.  Let U be a tilting module in O;ln. Then Xt(lr)U is a direct
sum of tilting modules, where X = E., F.

Lemma 6.3. Let A € Xf'n be atypical. Then the parabolic Verma
module K, (\) is not a tilting module.

Proof. For atypical A\, K, () is reducible since the Kac module (which
is the parabolic Verma module with respect to the parabolic subalgebra whose
Levi subalgebra is gl(m) @ gl(n)) as its quotient is reducible. If K, (\) were
a tilting module, then by Coroallry 3.8 we have K, (\) = K,(\)". But this
is impossible since K, () is reducible and hence cannot have isomorphic socle

|

and cococle.

Proposition 6.4. Let h, f € Z'r‘n be atypical. Suppose that (i) Uy =
XUy, for a product X of ES and F7 with varying a and r, (i) i[U,(h)] =
Un(1), and (iil) Uy has at most three monomial terms. Then XU, (h) = U,(f),
and i[U,(f)] = Uy (1).

Proof. By Theorem 3.9 and the assumptions (i-ii), we have that i[X U, (h)]
= Xi[U,(h)] = XUx(1) = Us(1). It follows from this and Lemma 6.2 that there
is a summand of XU, (h) isomorphic to U,(f). So the proposition follows by
showing that XU, (h) is indecomposable. By the assumption (iii) and The-
orem 3.9, XU, (h) has a Verma flag of length at most three. The weight g
in any Verma K, (g) appearing in a Verma flag of XU, (h) must be atypical
like f. Thus K, (g) is not tilting by Lemma 6.3, and hence XU, (h) has to be
indecomposable. O
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86.5. The typical case

The next proposition is a variant of [Brl, Lemma 2.25] and [Brl, Theorem
4.31]. It can be proved by modifying the arguments therein, using now Theorem
4.15.

Proposition 6.5. Let f € ZTJ”L be typical and let fn, denote the re-
striction of f to the set I(m|0). We have

(i) Up = U, @ wpry A=+ AWy, where Uy, is the corresponding canonical
basis element in E™10,

(i) The linear map i sends [Uy(f)] to Ug(1).

86.6. The regular case

We introduce a Regularity Condition (R) on f € Z[""™:

(R) If f(i) = f(j) = a for some a € Z and —m; —ms < i < 0 < j, then there
exists no k € I(mq + maln)\{4,j} with f(k) =a —1 or f(k) = a.

mi,ma|n

Theorem 6.6.  Suppose that f €Z, satisfies Condition (R). Then
we have

(1) Uf = Z@G{O,l}#f ZEQZ‘*'(f) q|9‘+|E‘Kfé0 n gml,mz\n,
(ii) [Un(f)] = ZOE{O,l}#f Zzg2+(f) [Kn(féf?)] in G(O;l)m2‘n),

(iii) the tilting module U, (f) is T-self-dual and it has a simple cosocle L,(f),
where f = f;(j(f)l) is the minimal weight in a Verma flag of Uy, (f).

In particular, a Verma flag of U,(f) is multiplicity-free and has length
QST (F)+#F

Proof. Let #f = k and {(i1]j1), -+, (ix|jr)} be the set of all pairs of
f with f(i;) = f(je) for 1 < t < k, where 0 < j; < -+ < j. Since f
satisfies (R), we have X+ (fL) = S+ (f) for every 6 € {0,1}#/, and moreover,
Liogs ©Lije = Lie o © Lic -
Take (ig|jr) with f(ix) = f(jx) = ar. Assume without loss of generality
that f is of the form
(v || an).

(We omit the parallel proof when f is of the form (--«|---ag---|--- ag--+).)
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We prove (i) by induction on the atypicality number #f. By Proposi-
tion 6.5, the case #f = 0 boils down to [CWZ, Theorem 4.25].

Let h be defined by h(ji) = ar — 1 and h(s) = f(s), for all s # ji. Note
that #h = #f — 1 and |7 (h)| = [ZT(f)|, and the induction assumption gives
an explicit formula for Uy, in 1= (NI+#f -1 monomial terms. Set X = Eq,—1.
Then XUy, is clearly bar-invariant and by a direct calculation is equal to the
right-hand side in (i), hence it has to coincide with U by definition of canonical
basis. This proves (i).

We prove (ii) and (iii) together in two inductive steps: (1) induction on
the atypicality number #f to reduce to the case when #f = 0; (2) in the
case when #f = 0, induction on the cardinality |7 (f)|. In the initial case
when #f = |ST(f)] = 0, f is minimal in super Bruhat ordering and K, (f)
is irreducible, and hence U, (f) = K,(f) has a simple cosocle. The arguments
(which are based on Method One of the proof of [Brl, Theorem 4.37]) for these
two steps are completely analogous, and we will only present the inductive step
(1) on #f in detail below.

By (R), for each g < f we clearly have F?2,_ K, = 0, hence F2, _ K, (g) =
0 and then F?, L, (g) = 0. It follows by Theorem 5.3 that Fy, 1Ly (g) is irre-
ducible or zero depending on whether or not F,, 1K is zero (or equivalently,
depending on whether (ag —1)-string of the underlying crystal graph has length
1 or 0). Suppose that

(6.3) Homyy,, (X Uy (h), Ln(g)) = Hompy,n (Un(h), Fa,—1Ln(g))

is nonzero for some g = f. By the inductive assumption, the tilting mod-
ule U, (h) has a simple cosocle Ln(ﬁ) Thus, F,, —1L,(g) = Ln(ﬁ) by Theo-
rem 5.3. Hence Fak,lg = h, and thus g = Eak,liz since the (a; — 1)-string
of the underlying crystal graph is of length 1, where E~ak,17 Fak,l denote the
Kashiwara (crystal) operators corresponding to E,, 1, Fy, —1. One checks that
Eak,lﬁ = f. Hence XU,(h) has a simple cosocle Ln(f) and in particular is
indecomposable. This proves (iii).

Now by the induction assumption and Theorem 3.9, we have
(XU, ()] = XilUn ()] = XUy (1) = Ug(1).

It follows by Lemma 6.2 and the indecomposability of XU, (h) that U,(f) =
XU,(h). Together with (i), this proves (ii). O

Remark 6.7.  Setting n = 0, the proof of Theorem 6.6 gives a purely
algebraic proof of the Kazhdan-Lusztig conjecture for the parabolic category

O™ of gl(my 4+ mg)-modules (compare with Theorem 4.14).
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Remark 6.8.  Recall from Remark 2.4 that ZTl’mﬂnl’"? parameterizes
the bases for the space &m12Im1.m2  Suppose that f satisfies the following
condition:

(RR) If f(i) = f(j) = a for some a € Z with i < 0 < j, then there exists no
k € I(my +ma|ny +n2)\{4,7} with f(k) =a—1or f(k) =a.

Denote by X7 (— f34) the set of positive pairs of — f34. Since f satisfies Condition
(RR), we have X7 (f12) = SF(f1%) and SF(—fa4) = SH(—f51)), for any 0 €
{0,1}#/. The argument for Theorem 6.6 can be modified easily to establish
the following formula for the canonical basis:

Uy = Z Z Z qle‘HZH‘Fle;‘fp'

0e{0,1}# sCx+(£19) TCE+(—£9)

Here f;"r denotes the function obtained from f¢ by first interchanging the val-
ues of f at each positive pair in ¥ and I', and then taking the unique conjugate
under Sy, X Spmy X Sp, X Sy, in ZTl’mzml’"z.

The corresponding multiplicity-free formula holds for the tilting module in
the category OT“lenhn? (see Remark 3.11).

Remark 6.9.  For f satisfying the condition (R) or (RR), the formulae
for Uy and U, (f) above support Conjecture 3.10.

§7. The Category O, of gl(2|n)-Modules

1,1|n

In this section, we analyze completely the case for m = (1,1). We find ex-

plicit formulas for canonical basis in €1/, and establish the parabolic Brundan

+

Conjecture 3.10 for the category O 1n®

87.1. A procedure for canonical basis

For f € Zi’l‘n, we denote X, = (—2|j) if there exists j > 0 with f(—2) =
f(J), and otherwise set X, = (). Similarly, denote Xy,, = (—1|j) if there exists
j >0 with f(—1) = f(j), and otherwise set Xy,, = 0. If X5, UXys,, =0, then
#f = 0. Below we give a procedure to reduce any f such that Xy, UXy,, # 0
to g such that X, UX . =0.

Procedure 7.1. Let f € Z_l‘_H'n be such that Xy, UXy,, # 0.

Step 1 If Xy, =0 go to Step 4. Otherwise go to Step 2.
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Step 2 If f(—2) # f(—1), go to Step 3. Otherwise let h be the function obtained

from f by setting h(—1) = h(=2) = f(—2) — 1 and h(i) = f(3), fori > 0.
(2)
Let X = Ff(—2)—1‘ Stop.

Step 3 Let h be the function obtained from f by setting h(—2) = f(=2) — 1 and
h(i) = f(i), fori# —2. Let X = Fy(_y_1. Stop.

Step 4 If f(—2) = f(—1) — 1 go to Step 5. Otherwise we let h be the function
defined by h(=1) = f(=1) — 1 and h(s) = f(s), for s # —1. Let X =
Ff(,l),l. Stop

Step 5 If there exists i > 0 with f(i) = f(—2) — 1, go to Step 6. Otherwise go to
Step 3.

Step 6 Let j > 0 with f(—1) = f(j). Let k > 1 be the smallest integer such that
fG)—k#f(j—k+1). Let h be defined by h(j — k) = f(j — k) — 1 and
h(s) = f(s), fors #j—k. Let X = F(j_j)—1. Stop.

As can be seen case by case below, repeated application of the above
procedure will produce in finite steps an element g such that #¢g = 0.

Theorem 7.2.  Let f be such that Xy, UXy,, # 0. Let X and h be as
defined in Procedure 7.1. Then we have

(i) Uy = XUy, in EVL,

(i)

(i) i[Un(f)] = Uy (1),
)

(iv) the tilting module Uy (f) is T-self-dual and it has a simple cosocle.

XUn(h) = Un(f) in OF

1,1|n’

The proof of Theorem 7.2 will be postponed to the following subsections.
We note the following immediate consequence.

Theorem 7.3.  The Conjecture 3.10 for the category Ofl‘n holds.
Proof. The case of typical weights is taken care by Proposition 6.5. The
case of atypical weights follows from Theorem 7.2. a

Below as usual we will denote by - - - an expression with no a or a —1. The
proof for Theorem 7.2 is done case by case, and the main argument in most
cases is the same as the one for Theorem 6.6. In particular, a main point of
the argument is to check if the assumption in Theorem 5.3 is also satisfied.
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8§7.2. Proof of Theorem 7.2, I

In the subsection, we consider the case when |X¢,,| = 1. Here we have the
following possibilities:

In (i) weset h=(a—1la—1]---a---) and X = Féi)l. We note that h is
a typical weight and hence we have Ua_1jqa—1..a--) = K(a—1]a—1|---a--)- Thus

Ualal--a-) = XU@a—-1ja=1]--a--)
= Kala|--a-) + K (afa-1]--a-1-) + q2K(a\a|~~~a—1-~. )

It follows now from Proposition 6.4 that U, (f) = XU,(h). Alternatively we
can show this using the same type of argument as in the proof of Theorem 6.6
as follows. Suppose that g < f in the Bruhat ordering. Then g must be of the
form (alal---a---), (@—1la|---a—1---), (ala—1|--a—1---), (---|a---)
or (a|---|--+). It is easy to see that Y3L,(g) = 0, where Y = E,_;. Thus in
this case the assumptions of Theorem 5.3 is satisfied and hence Y(?)L,,(g) is
irreducible. Therefore the same argument for Theorem 6.6 can be applied to
show that XU, ((a — 1la — 1|---a---)) has a simple cosocle and is isomorphic
to Up((alal---a--+)).

In (ii) we set h = (a —1lla—1]---a—1,a---) and X = Féz)l Now any
weight less than h is of the form (---la —1|---a--+)or (---la—1]---a---).
Thus upon application of X the ¢g-power is preserved. It follows therefore that
XU@-1ja-1]--a-1,a--) = Utala|--a—1,a..-)- Furthermore it is easy to check that if
g = f,then Y3g = 0, and hence the assumption in Theorem 5.3 is also satisfied.
Thus XU,((a—1la—1|---a—1,a---)) =Uy((ala|---a—1,a---)).

In (iii) set h = (e — 1lla —1]--ra —1,a--+) and X = F,_ 1. If g <
h, then g is of the form (---la — 1|---a---) or (a —1|--+|---a---) and so
we see that Uy = XU,. If ¢ < f, then g is of the form (ala — 1|---a —
La-), (a=1la|---a—L,a--), (---ja=1]---a—=1---), (@a=1]---|---a—1---),
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(-++la|---a---)or (a|]--+|--a---). Let Y = E,_; and we see that Y?g = 0
satisfying the assumption of Theorem 5.3.

In (iv) set h = (a—1|--+|---a---) and X = F,_1. If g < h, then g is
of the form (@ — 1|--+|---a---), (-~-la—1|---a--+), or (a —1ja—1|---a —
1,a---). From this we see that XU, = Uy. If g = f, then g is of the form
@-|--a-),(@1l--|-a=1---), (@la=1|---a=1,a---), (a—1la|- - a—
La---)or (---]a|---a---). So we have Y2g =0, for Y = E,_;.

In (v)set h=(a—1la—1|---a---), while in (vi) set h = (a—1]---| - a—

l,a---). Here X = F,_1. In either case we have XU, = Uy and if g < f, then
Y2g=0,for Y = E, ;.

§7.3. Proof of Theorem 7.2, I

In this subsection, we consider the case when |Xy,| = 0 and |Zg,,| = 1.
Here we have the following possibilities.

Gi) f=(-la|---a—1,a---)
(iii) f=(a—1al---a---).

In (i) we set h = (~+-|la —1|---a---), while in (ii) we set h = (---|a —
1]---a—1,a---). In both cases X = F,_; and it is easy to see that in either
case we have XUp, = Uy. In (i) if g < f, then g is of the form (---|a[---a---),

@-|-a-), (la=1]---a=1---), (@a=1]---|---a=1---), (a—1]a| ---a—
La---)or (ala—1]---a—1,a---). Clearly Y2g =0, for Y = E,_;.
In (i) if g < f, then g is of the form (---|a|---a—1,a---)or (a|---|---a—

1,a---). Also we have Y2g = 0. So in both cases the hypothesis of Theorem 5.3
is satisfied, and thus U, (f) = XU, (h).

Finally for (iii) we consider first the case f = (a—1|a|---a---), where a—2
is not contained in ---. We set X = F,_s and h = (a—2|a|---a---). It is easy
to check that Uy = XUj,. Nextlet g =(a —2[a —1]---a---) and X' = F,_;.
Again it is easy to see that U, = X'Uy, so that we have Uy = XX'U,. Now g
is typical and hence U, = K. Thus we obtain

Uf = XX/KQ = K(a—l\a\ma“-) + qK(a_l‘a_1|..4a_1...) + qK(a_2|a_1|...a_2...)

By Proposition 6.4 XX'U,(g) is isomorphic to U,(f). Now X'U,(g) has a
parabolic Verma flag of length two, and hence by Proposition 6.4 again, we see
that X'U,,(g) = U,(h). Thus we conclude that XU, (h) = U,(f).
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We will use x ~ y to denote the sequence of integers from x to y. Suppose
that f = (a—1la|--+,(a—k+1) ~(a—2),a---) and a —k is not in - - -, where
k > 3. We consider the following sequence

(a*1|a|"'a(a*k+1)~(a72),a~~~)Eﬁk

(a—1la]--,a—k (a—k+2) ~(a—2),a---) "

(a—1lal-a—ka—k+1,(a—k+3)~(a—2),a--) "=+ ...
P @ =1lal - (a—k) ~ (@=3),a) = g
Lemma 7.4. Let x, y and a be distinct and z,y > a. Let f =

(zly|---a---y--), where --- denotes an expression with no x, a and a — 1.
Leth=(zly|--~a—1---y---) and X = E,_1. Then XU, = Uy.

Proof. Any g < h is of the form (z|y|---a —1---y---), (ylz| ---a —
1.-.y.-.>7(x‘a|.-.a—1-.-a...)or(a‘x|...a—1...a...). D

Thus we have
Eakaakarl T Ea74Ea73Ug = Uf

Now Uy = K(a—1ja|--a-) T @K (a—1ja=1]--a=1--) T IK(a—2]a—1]--a—2---)- A simple
calculation shows that

Ur = Ka—1ja|--a) T @B (a=1]a=1]---a=1---) T WK (a—kla=1]--a—k---)-

Now Proposition 6.4 shows that U, (f) has a Verma flag consisting of parabolic
Verma modules of these three highest weights. Now every FEg_j4;---
E,_4E,_3Uy, for every i > 0, contains three monomials, and thus E,_j4;- -
E,_4E, 3U,(g) is a tilting module by Proposition 6.4. In particular E,_j11 - -
E,_4E. 3U,(g) = U,(h) and hence E,_U,(h) = U,(f).

§7.4. Formulas for canonical basis elements

In this subsection, we provide a complete list of formulas for the canonical
basis elements in &-1" (except the trivial case when f is typical). They are

computed using Procedure 7.1, and thus by Theorem 7.2 we find explicit Verma

+
1,1|n

Recall that we use = ~ a to denote the sequence of integers from z to a,

flag weights of the tilting modules in the category O as well.

and we shall use T ~ a the sequence of integers from z + 1 to a. We assume
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c>a>b.

Atypicality 2 :

(A1) Utajp|--znbra) = Kappl--znbma ) + @B (bla]-Gabra-)
+ 4K ) wnba) T @K (b zmbmi)
+ QQK(Q;M...%@NG._.) + P K ()b bz )-

(A2) Uap|..-gmb-iman) = Kalpl-gmbeman) T QK (@]b]- bz
T 4K 1y )yt mae) T U @lal - GbGran)
+ CE o) gobeana) T qu(y|a|..AyNa..gNa.i.)
+ K gy ynbooni) T EK o gofana )

(43) Utpla]-grinbra-) = Kjal- gngnbra) + 3K ) gugnina-n)
T 4K @) granbran) T B (ylp)-ynnbrian)
+ K (a)p|. growmbrao ) + QQK(ym...ywwgwa... )

(A4) Uplal-+-gb-imar) = Koplal gt dma) T 0K 1)y s

2
T K o) goberana) T K iy gz )

Atypicality 1 (b < z < a is assumed below) :

(B1) Utale|--zma-) = Kafe]-z~a) T 0B (alc]-zni-)-
(B2) Uajp|..-5~ae) = Kapp)-zma) + WK blal -z ) + W (@p]. i)

+ qZK(bm...xNa...).
(B3) Utaja|-s~a-) = Kalal-s~a-) + W (lalsmar ) + @K (alalana)-
(B4) Uclal--zma-) = Kiclal-z~a-) T 0B (ale)-zna) T 0B (cla)zna-)

+ K (gle)orznto )
(B5) Ulal-z~a-) = Kplal-z~a) T AE (bla]-ana-)-
(B6) Utslal--gng~ar) = Kalal- guivar) + 1B (ofo]- grana-)

4K yle)ynina)-
() Utalal-s~a-) = Kalal-gmar) + W afe]zna ) + C K (zla]onae)-

(This last weight is special in the sense that it has three identical values.)

87.5. Super duality: a weak version

The following weak version of Conjecture 4.18 holds in the case m = (1,1).
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Theorem 7.5. The categories OF and OF admit isomorphic

1,100 (1,1)4o0
Kazhdan-Lusztig theories. In particular, for f,g € ZS_MH_OO we have

Proof. In light of Theorem 7.2 (iii), Theorem 3.14 and Corollary 2.6 we
see that

g (1) =ty s (1) = (Un(f™) 1 Kn(g™)) = (U(f) : K(g)), n>0.

By Theorem 4.16, Theorem 4.14 and Proposition 4.4 we have for [/, ¢ €
Zs_l,l)+oo

g (1) = g prom (1) = (Un(F) : K (g'™)) = (UF) : K(g'), n>0.

Now the first identity in the theorem follows by Theorem 4.7.

The second identity in the theorem follows by Remarks 2.3 and 4.3, Theo-
rem 4.15 and (3.2), together with the corresponding compatibility of truncation
functors on irreducible representations and truncation maps on dual canonical
basis elements. O

§8. The Category O of gl(m + 1|1)-Modules
m,1|1

In this section, we analyze completely the case for m = (m,1) and n =

1. We find explicit formulas for canonical basis in €' and establish the

+

parabolic BKL Conjecture 3.10 for the category O 11

§8.1. A procedure

Denote ¢, = (i|1) if there exists i < —1 with f(i) = f(1), and otherwise
set X7, = 0. Also denote X5, = (—1]1) if f(—1) = f(1), and otherwise set
Yoy = 0. If Y, UXg, = (), then #f = 0.

Procedure 8.1. Let f € ZT’IH be such that Xy, UXy,, # 0.
Step 1 If ¥y, =0, go to Step 5. Otherwise let Xy, = (i|1) and go to Step 2.

Step 2 Ifi < —1 and f(i +1) = f(i) — 1, replace i by i + 1 and repeat Step 2.
Otherwise go to Step 3.
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Step 3 If f(i) = f(—1), go to Step 4. Otherwise we set h(i) = f(i) — 1 and
h(s) = f(s), for s #i. Let X = Fy;y_1. Stop.

Step 4 Set h(i) = h(—1) = f(i) — 1, and h(s) = f(s), for s # i,—1. Let

2

X = F}(g)_l. Stop.

Step 5 We have f(—1) = f(1). If there exists i < —1 such that f(i) = f(—1)—
1, go to Step 2. Otherwise set h(—=1) = f(—=1) — 1, and h(s) = f(s),
for s # —1. Let X = Fy_1y_1. Stop.

88.2. Formulas for canonical basis
We will leave the straightforward verification of the following to the reader.

Proposition 8.2.  Let f be such that Xy, UXy,, # 0. Let X and h be
as defined in Procedure 8.1. Then we have XUy = Uy.

Repeated application of Procedure 8.1 will produce an element g with
#g = 0. By Proposition 6.5 we have U, = U, ® wy(1). Thus the above
procedure computes all canonical basis elements in €. Below we present
a complete list of formulas for the canonical basis elements (except the really
simple case when f is typical). We caution that some cases will be missing if
m is too small.

Atypical cases:
(C1) U.ambmizofpla) = K(cambrzo|pla) T A (mbozfplo), @ >b > 2.
(©2) Ut anifala) = K(antfola) T 9K (anaTT o las1]a)
+ qK (. Gmae ot 1)zt1) T qu(...aNzi..‘zm, a—1>zx.
(C3) Ui waTtacija) = KiaaTjastja) T M (aia—1-lala)
+ ¢ K( a1 Ja—1Ja—1)-
(C4) Uf.ciinglala) = K(cang-|ala) T UK (. gan|c|a)
T 4K cgngfa—1la—1) T U o 1))
+ qZK(.A.aa,hm...Mm), a—1>ux.
(C5)  Ugnz.lala) = K(@a~z-|ala) T K (@~z.-la—1]a—1)
+ qK(a,a/—TNz.--\a—uz)’ a—1>ux.

(C6) Ugaaja) = KaaTjale) T EGa T Jar1ja—1)-
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- K

(e Tlala) = K(eaaTlaja) TP (20T |c|a)

2
+ qK(-uc,Zi,a/f\lm\afHafl) + @K ga-1-|cla—1)-

(C8) U.dzanslcla) = K(-dgang|cla) T WK (- dGrm|c|z)

+ qK(-~ch--~a~i~-|d|a) + QZK(...J)C.. d>c>a.

‘anvz--|d|x)?
(©9) Ul anzehfpla) = E(amsoedfpla) T I (aman e b fpla)
+ qK(.A.GNQ..Ag’b.A.Ma) + qQK(A..aNx.“ab“.Mz), r>e>b

(T1) U..anzlala) = K(andjala) T K (- .anF-|a—1]a—1)
+aK, + PK( Gmgefalr), a—1>z.

-~»a7a/f\1~w~-\a71|z)

(T lala) = K(aaTTfaja) T (o aaTT jam1ja=1)
+@°K(aa—1-|ala—1)-

(In the cases (T1, T2) the weights have three identical values.)

The case of (C8) (respectively (C9)), when no such d (respectively e) exists,
is obtained by dropping the last two terms.

88.3. Structure of tilting modules in O:z,lu

We shall denote the tilting modules in O:m‘l by U(f) et cetera.

Theorem 8.3.  For any f € ZT’lll we have i([U(f)]) = Us(1).

Proof. For typical f, this follows from Proposition 6.5. So let us now
assume that f is atypical.

Each canonical basis element Uy in Subsection 8.2 is obtained by applying
a sequence of Chevalley generators dictated by Procedure 8.1 to a canonical
basis element of typical weight. Applying the same sequence of translation
functors gives us a sum of tilting modules, denoted by M (f), whose Verma
flag weights are identical to those for the monomials in Uy, by Lemma 6.2
and Theorem 3.9. It follows by Proposition 8.2 that i([M(f)]) = Us(1). So it
remains to show that M (f) = U(f). Noting that U(f) is a summand of M (f),
it suffices to prove that M(f) is indecomposable. We argue case by case using
Proposition 6.1 and Proposition 6.4 as follows.

The indecomposability of M (f) follows from Proposition 6.4 if the number
of monomials is at most three. So it remains to check the cases of (T1), (C2),
(C4), (C7) and (C8) and (C9) (in the last cases we only need to consider them
when they have four terms).
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For f of the form in (T1), the Verma modules with the first two weights
among four weights in (T1) must lie in the same tilting module by Propo-
sition 6.1 (ii). Now M(f) is a direct sum of at most two tilting modules,
by Lemma 6.3. If M(f) were a direct sum of two tilting modules, it has
to be U(f) ® U(f3) where f3 = (~'~a,c751 ~ x---la — 1]z) and f* =
(-++@~ z--|a|z) are the third and fourth weights in (T1). Note that (U(f3) :
K(f*) = (U(f?) : K(f*) = 1 and that the cosocle of U(f?) is L(f*). How-
ever, L(f%) cannot be the socle of K(f3). For consider the embedding of
gl(m+1)®gl(1)-modules K'2(---a,a — 1~z |a—1)®L3(z) D K2(---d,a—
1~a---]a)® L3(z), which we may regard as an embedding of p-modules. In-
ducing to gl(m + 1|1) we get an embedding K(f3) 2 K(f*). But K(f*) is
not irreducible, and its socle is not L(f*). This implies that U(f3) cannot
have isomorphic socle and cosocle and hence is not 7-self-dual, contradicting
Corollary 3.8.

Next consider a weight f of the form in (C2). Since the Verma modules
of the first two weights in (C2) belong to the same tilting module by Proposi-
tion 6.1 (i), we have by Lemma 6.3 that M (f) = U(f) or M(f) = U(f)@U(f?),
where f3 is the third weight in (C2). But the second possibility cannot occur
since f3 is of the form (T1) and U(f3) has Verma flag length four by the
previous paragraph.

For f of the form in (C4), the second and the third weights are not com-
parable under the super Bruhat ordering. Hence using Proposition 6.1 the first
three terms lie in the tilting module U(f). By Lemma 6.3, M(f) has to be
indecomposable, and thus equal to U(f).

The same argument for (C4) is applicable to (C7).

Finally, the two cases of (C8) and (C9) in the case when we have four terms
can be verified using Proposition 6.1 (i) and the socle-cosocle argument. U

Remark 8.4. In light of the above theorem, the formulas for canonical
basis in Subsection 8.2 provide explicit information on the weights of a Verma
flag of any tilting module in (f):; 11

Corollary 8.5.  Let f be such that X, U Xy, # 0. Let X and h be
defined as in Procedure 8.1. Then we have U(f) = XU(h).
§9. The Category of gl(2|1)-Modules

In this section we work out explicitly the Verma flag structures for tilting
modules, projective modules, and the composition series of Verma modules in
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the category O;‘ll. The results here can be generalized to the category O:;L

+
1+1|n

41 in
Section 8 readily and to the category O in Section 7 with more complicated

notations.

89.1. The main tools

Denote by P(X) the projective cover of L(\). By abuse of notations, we
shall also write P(fx) = P(\). Recall the BGG reciprocity for projective mod-
ules:

(9-1) (P(fx) s K(fu)) = [K(fu) : L))
By [Br2, (7.4)],
(9-2) (U2 = K(fu) = [K(=fu) : L(=2)]-

In the following diagrams, 7 (for i > 0) denotes —i, and the weights are
described using elements in Z?' via the bijection Xo; = Z21, X fy. We
will be only concerned about the block B of K(00|0) in the category O;\r
Any block of atypicality 1 in the category 02+|1 is isomorphic to B. A block of
atypicality 0 is very simple and will be omitted.

§9.2. The poset of weights in the block B

The poset of p-shifted weights in Z2' for the block B is listed in the
following diagram. Our convention is that arrows point to lower weights in the
super Bruhat ordering.



SUPER DUALITY CONJECTURES 1267

03)3 — 30/3

02]2 —— 20|2

00/0

011 «—— 10|1

022 «——— 20|2

03[3 ——— 30|3

89.3. The Verma flag structures of tilting modules in %

Based on Theorem 7.2 (with n = 1) or Theorem 8.3 (with m = 1) and the
explicit formulas for canonical basis in Subsection 8.2, we list the weights of
the Verma modules (each with multiplicity 1) which appear in a Verma flag of
a tilting module U(f) in the block 9B as follows. Recall from Theorem 7.2 that
every such U(f) has a simple cosocle.
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v~ | (i>1)
0i|i e i0|4
i+10i+1
U(i0[7) ~ T (i>1)
o[
01T —— 10 00[0 —— 10
U(00]0) ~ T . U(011) ~ T
000 011
000
U(10[1) ~ T

01]1 ——— 10|1

0,5 —10j 1
voin~ | (>2)

0;

0,j—1j—1 —— j—1,0[j—1
viol~ | | (> 2)

051 — J0lj

89.4. The composition series of Verma modules in ‘B

The weights of the composition factors of a Verma module K(f) in the
block B are listed as follows. The calculation is based on (9.2) and the Verma
flag structure of tilting modules in Subsection 9.3.
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K (0i]i) ~ T T (i>1)
Gili  —— 0l
T 101
K (i0[i) ~ T (i>1)
i0li
1)1 —— 10[1 00/0
K(00]0) ~ T . K(011) ~ T
000 01/1
011

K (10]1) ~00|0

I

011 «—— 10|1

0,j—1]j ~ 1
KOjl~ ] (>2)

0

0,j=1[j -1 ——— j-10[j-1

KGolj)~ | | (>2)

05 — J0lj
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89.5. The Verma flag structures of projective modules in 8B

The weights of the Verma modules (each with multiplicity 1) which appear

in a Verma flag of

a projective module in the block 9B are listed as follows. The

calculation is based on (9.1) and Subsection 9.4.

P(i0]2) ~

P(0i]1) ~

P(10[]1) ~

P(00]0) ~

P(5015) =

P(0j]5) ~

Gli —— 0

| | (i >2)

0i—1fi—1 —— i —10[i — 1

it
| (i >2)

0i—1i—1

011 —— 10[i 011

T . POI1) ~ T

000 000 —— 10J1

00/0

I

011 —— 10|1

jolj
| (G>1)
j+1,0[j+1
0jlj e 0l

| | (G =1)

0,j+1j+1 —— j+1,0[j+1
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89.6. The projective tilting modules in B

By Theorem 7.2 for n = 1, the tilting module U (07 — 1|i — 1) in the block
B has a simple cosocle L(i0[7) for i > 1. Thus the nontrivial gl(2|1)-module
homomorphism 7_; : P(i0li) — U(0i — 1]i — 1) has to be surjective. By
observation from the previous diagrams, U(0i — 1]i — 1) and P(i0]i) have the
same Verma flag multiplicity and thus the same composition series. It follows
that 7_; is indeed an isomorphism.

Similarly, there is a g[(2|1)-module isomorphism =; : P(0i|i) — U(i +
1,0]i + 1) for ¢ > 0. Again by observation from the diagrams, the remaining
tilting modules are not projective.

The above discussion can be summarized in the following.

+

Proposition 9.1.  The projective tilting modules in the category 02‘1

consist of U(i0[i) fori >0 and U(04]j) for j < 0.
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