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Abstract

In this paper, we prove a prime-to-p version of Grothendieck’s anabelian con-
jecture for hyperbolic curves over finite fields of characteristic p > 0, whose original
(full profinite) version was proved by Tamagawa in the affine case and by Mochizuki
in the proper case.

§0. Introduction

Let k be a finite field of characteristic p > 0 and U a hyperbolic curve over
k. Namely, U = X � S, where X is a proper, smooth, geometrically connected
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curve of genus g over k and S ⊂ X is a divisor which is finite étale of degree
r over k, such that 2 − 2g − r < 0. We have the following exact sequence of
profinite groups:

1→ π1(U ×k k̄, ∗)→ π1(U, ∗)→ Gk → 1.

Here, k̄ is an algebraic closure of k, Gk is the absolute Galois group Gal(k̄/k),
∗ means a suitable geometric point, and π1 stands for the étale fundamen-
tal group. The following result is fundamental in the anabelian geometry of
hyperbolic curves over finite fields.

Theorem (Tamagawa, Mochizuki). Let U , V be hyperbolic curves over
finite fields kU , kV , respectively. Let

α : π1(U, ∗) ∼→ π1(V, ∗)

be an isomorphism of profinite groups. Then α arises from a uniquely deter-
mined commutative diagram of schemes :

Ũ
∼−−−−→ Ṽ⏐⏐� ⏐⏐�

U
∼−−−−→ V

in which the horizontal arrows are isomorphisms, and the vertical arrows are the
profinite étale universal coverings determined by the profinite groups π1(U, ∗),
π1(V, ∗), respectively.

This result was proved by Tamagawa (cf. [Tamagawa1], Theorem (4.3))
in the affine case (together with a certain tame version), and more recently
by Mochizuki (cf. [Mochizuki2], Theorem 3.2) in the proper case. It implies,
in particular, that one can embed a suitable category of hyperbolic curves
over finite fields into the category of profinite groups. It is essential in the
anabelian philosophy of Grothendieck, as was formulated in [Grothendieck], to
be able to determine the image of this functor. Recall that the full structure
of the profinite group π1(U ×k k̄, ∗) is unknown (for any single example of U

which is hyperbolic). Hence, a fortiori, the structure of π1(U, ∗) is unknown.
(Even if we replace the fundamental groups π1(U ×k k̄, ∗), π1(U, ∗) by the tame
fundamental groups πt

1(U ×k k̄, ∗), πt
1(U, ∗), respectively, the situation is just

the same.) Thus, the problem of determining the image of the above functor
seems to be quite difficult, at least for the moment. In this paper we investigate
the following question:
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Question 1. Is it possible to prove any result analogous to the above
Theorem where π1(U, ∗) is replaced by some (continuous) quotient of π1(U, ∗)
whose structure is better understood?

The first quotients that come into mind are the following. Let C (re-
spectively, Cl) be the class of finite groups of order prime to p (respectively,
finite l-groups, where l �= p is a fixed prime number). Let ΔU be the max-
imal pro-prime-to-p (i.e., pro-C) quotient of π1(U ×k k̄, ∗). For a profinite
group Γ, Γl stands for the maximal pro-l (i.e., pro-Cl) quotient of Γ. Thus,
in particular, Δl

U coincides with π1(U ×k k̄, ∗)l. Here, the structures of ΔU

and Δl
U are well understood — ΔU (respectively, Δl

U ) is isomorphic to the
pro-prime-to-p (respectively, pro-l) completion of a certain well-known finitely
generated discrete group (i.e., either a free group or a surface group). Let ΠU

def=
π1(U, ∗)/ Ker(π1(U ×k k̄, ∗) � ΔU ), Π(l)

U
def= π1(U, ∗)/ Ker(π1(U× kk̄, ∗) � Δl

U

be the corresponding quotients of π1(U ×k k̄, ∗), respectively. We shall re-
fer to ΠU as the geometrically pro-ΣU étale fundamental group of U , where
ΣU

def= Primes�{char(k)}, and Primes stands for the set of all prime numbers.

Question 2. Is it possible to prove any result analogous to the above
Theorem where π1(U, ∗) is replaced by ΠU , Π(l)

U , respectively?

Our main result in this paper is the following (cf. Corollary 3.10):

Theorem 1 (A Prime-to-p Version of Grothendieck’s Anabelian Con-
jecture for Hyperbolic Curves over Finite Fields). Let U , V be hyperbolic
curves over finite fields kU , kV , respectively. Let ΣU

def= Primes � {char(kU )},
ΣV

def= Primes � {char(kV )}, and write ΠU , ΠV for the geometrically pro-ΣU

étale fundamental group of U , and the geometrically pro-ΣV étale fundamental
group of V , respectively. Let

α : ΠU
∼→ ΠV

be an isomorphism of profinite groups. Then α arises from a uniquely deter-
mined commutative diagram of schemes :

Ũ
∼−−−−→ Ṽ⏐⏐� ⏐⏐�

U
∼−−−−→ V

in which the horizontal arrows are isomorphisms and the vertical arrows are
the profinite étale coverings corresponding to the groups ΠU , ΠV , respectively.
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As an important consequence of Theorem 1, we deduce in Corollary 3.11
the following prime-to-p version of Uchida’s Theorem on isomorphisms between
absolute Galois groups of function fields (cf. [Uchida]).

Theorem 2. Let X, Y be proper, smooth, geometrically connected
curves over finite fields kX , kY , respectively. Let KX , KY be the function
fields of X, Y , respectively. Let GKX

, GKY
be the absolute Galois groups of

KX , KY , respectively, and let ΓKX
, ΓKY

be their geometrically pro-prime-to-
characteristic quotients (cf. the discussion before Corollary 3.11). Let

α : ΓKX

∼→ ΓKY

be an isomorphism of profinite groups. Then α arises from a uniquely deter-
mined commutative diagram of field extensions :

(KX)∼ ∼−−−−→ (KY )∼�⏐⏐ �⏐⏐
KX

∼−−−−→ KY

in which the horizontal arrows are isomorphisms and the vertical arrows are
the extensions corresponding to the Galois groups ΓKX

, ΓKY
, respectively.

Our proof of Theorem 1 relies substantially on the methods of Tamagawa
and Mochizuki. We shall explain this briefly in the case where U is proper
(hence, U = X). (cf. Theorem 3.9. The general case can be reduced to
this special case.) Starting from ΠX , Tamagawa’s method characterizes group-
theoretically the decomposition groups at points of X in ΠX . The problem
of recovering the points of X from the corresponding decomposition groups is
related to the question of whether the natural map

Xcl → Sub(ΠX)ΠX

from the set of closed points of X to the set of conjugacy classes of closed sub-
groups of ΠX , which maps a point x to the conjugacy class of its decomposition
group Dx, is injective. This map is known to be injective in the full profinite
case, i.e., when one starts from π1(X, ∗) instead of ΠX . In our case we are only
able to prove that the above map is almost injective, i.e., injective outside a
finite set EX ⊂ Xcl. Thus, we can only recover from ΠX the set of points in a
nonempty open subset X � EX .

In [Mochizuki2], Mochizuki developed a theory of cuspidalizations of étale
fundamental groups of proper hyperbolic curves. One of the consequences of
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the main results of this theory is that, starting from ΠX , one can recover in a
functorial way the Kummer theory of open affine subsets US

def= X �S, where S

is a finite set of closed points contained in X �EX . Using Kummer theory, one
then recovers (up to Frobenius twist) the multiplicative group O×

EX
of rational

functions on X whose divisor has support disjoint from EX . Thus, starting
from an isomorphism

ΠX
∼→ ΠY

as in Theorem 1 we can recover, up to Frobenius twist, an injective embedding
between multiplicative groups

O×
EX

↪→ O×
EY

.

The issue is then to show that this embedding arises from a uniquely determined
embedding of fields KX ↪→ KY , between the corresponding function fields. This
kind of problem of recovering the additive structure of function fields has been
treated in [Uchida] and [Tamagawa1], using certain auxiliary functions called
the minimal elements, i.e., functions with a minimal pole. The arguments of
loc. cit. work well in the case of a bijection between multiplicative groups,
but fail in our case where we only have an embedding O×

EX
↪→ O×

EY
between

multiplicative groups. In our case, instead of using minimal elements, we can
recover the additivity by using functions whose divisor has a unique pole. Also,
the fact that we can only evaluate functions at all but finitely many points of X

(or, more precisely, all points of X�EX) presents an additional difficulty, which
we overcome, roughly speaking, by passing to an infinite algebraic extension of
the base field, and using “infinitely many” auxiliary functions.

In §1, we review some (mostly known but partly new) results which show
that various invariants of the curve X (among other things, the set of decom-
position groups at closed points of X) can be recovered group-theoretically,
starting from ΠX . We also prove the almost injectivity of the above map from
the set of closed points of X to the set of conjugacy classes of decomposition
groups. In §2, we review the main results of Mochizuki’s theory of cuspidal-
izations of étale fundamental groups of proper hyperbolic curves, which plays
an essential role in this paper. In §3, we prove our main results, assuming
the results of §4. Finally, In §4, we investigate the problem of recovering the
additive structure of functions mentioned above. Using the above “one pole
argument”, we prove Proposition 4.4, which is used in §3.
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§1. Characterization of Decomposition Groups

Let X be a proper, smooth, geometrically connected curve over a finite
field k = kX of characteristic p = pX > 0. Write K = KX for the function field
of X.

Let S be a (possibly empty) finite set of closed points of X, and set U =
US

def= X � S. We assume that U is hyperbolic.
Fix a separable closure Ksep = Ksep

X of K, and write k = kX for the
algebraic closure of k in Ksep. Write

GK
def= Gal(Ksep/K),

Gk
def= Gal(k/k)

for the absolute Galois groups of K and k, respectively.
The tame fundamental group πt

1(U) with respect to the base point defined
by Ksep (where “tame” is with respect to the complement of U in X) can be
naturally identified with a quotient of GK . Write Gal(Kt

U/K) for this quotient.
(In case S = ∅, we also write Kur

U for Kt
U .) It is easy to see that Kt

U contains
Kk.

Let Σ = ΣX be a set of prime numbers that contains at least one prime
number different from p. Write

Σ† def= Σ � {p}.

Thus, Σ† �= ∅ by our assumption. Denote by ẐΣ†
the maximal pro-Σ† quotient

of Ẑ. Set Σ′ = Σ′
X = Primes � ΣX . We say that Σ is cofinite if �(Σ′) < ∞.

Note that, if Σ is cofinite, then Σ is of (Dirichlet) density 1.
We define K̃U to be the maximal pro-Σ subextension of Kk in Kt

U . Now,
set

ΠU = Gal(K̃U/K),

which is a quotient of πt
1(U) = Gal(Kt

U/K). This fits into the exact sequence

1→ ΔU → ΠU
prU→ Gk → 1.

Here, ΔU is the maximal pro-Σ quotient of πt
1(U), where, for a k-scheme Z, we

set Z
def= Z ×k k.

Define X̃U to be the integral closure of X in K̃U . Define Ũ to be the
integral closure of U in K̃U , which can be naturally identified with the inverse
image (as an open subscheme) of U in X̃U . Define S̃U to be the inverse image
(as a set) of S in X̃U .



Grothendieck’s Anabelian Conjecture 141

For a scheme Z, write Zcl for the set of closed points of Z. Then we have

Xcl = Ucl
∐

S,

(X̃U )cl = Ũcl
∐

S̃U .

Moreover, (X̃U )cl admits a natural action of ΠU , and the corresponding quo-
tient can be naturally identified with Xcl.

For each x̃ ∈ (X̃U )cl, we define the decomposition group Dx̃ ⊂ ΠU (re-
spectively, the inertia group Ix̃ ⊂ Dx̃) to be the stabilizer at x̃ of the natural
action of ΠU on (X̃U )cl (respectively, the kernel of the natural action of Dx̃ on
k(x̃) = k(x) = k). These groups fit into the following commutative diagram in
which both rows are exact:

1→ Ix̃ →Dx̃→Gk(x)→ 1

∩ ∩ ∩

1→ΔU →ΠU → Gk → 1

Moreover, Ix̃ = {1} (respectively, Ix̃ is (non-canonically) isomorphic to ẐΣ†
),

if x̃ ∈ Ũcl (respectively, x̃ ∈ S̃U ). Since Ix̃ is normal in Dx̃, Dx̃ acts on Ix̃ by
conjugation. Since Ix̃ is abelian, this action factors through Dx̃ → Gk(x) and
induces a natural action of Gk(x) on Ix̃.

Lemma 1.1. Assume x̃ ∈ S̃U . Then:
(i) The subgroup I

Gk(x)
x̃ of Ix̃ that consists of elements fixed by the Gk(x)-action

is trivial.
(ii) Assume moreover that Σ is of density 1. Then the map Gk(x) → Aut(Ix̃)
is injective.

Proof. By assumption, Ix̃ 
 ẐΣ†
, and it is well-known that the map

Gk(x) → Aut(Ix̃) = (ẐΣ†
)× coincides with the cyclotomic character and sends

the �(k(x))-th power Frobenius element ϕk(x) ∈ Gk(x), which is a (topological)
generator of Gk(x), to �(k(x)) ∈ (ẐΣ†

)×. The assertion of (i) follows from this,
since �(k(x))− 1 is not a zero divisor of the ring ẐΣ†

. The assertion of (ii) also
follows from this, together with a theorem of Chevalley ([Chevalley], Théorème
1, see also [GS]). More precisely, by applying Chevalley’s theorem to the finitely
generated subgroup 〈�(k(x))〉 of Q×, we see that the map Ẑ → (ẐΣ†

)×, α →
�(k(x))α is injective, as desired.
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Let G be a profinite group. Then, define Sub(G) (respectively, OSub(G))
to be the set of closed (respectively, open) subgroups of G.

By conjugation, G acts on Sub(G). More generally, let H and K be closed
subgroups of G such that K normalizes H. Then, by conjugation, K acts on
Sub(H). We denote by Sub(H)K the quotient Sub(H)/K by this action. In
particular, Sub(G)G is the set of conjugacy classes of closed subgroups of G.

For any closed subgroups H, K of G with K ⊂ H, we have a natural
inclusion Sub(K) ⊂ Sub(H), as well as a natural map Sub(H) → Sub(K),
J → J ∩K. By using this latter natural map, we define

Sub(G) def= lim−→
H∈OSub(G)

Sub(H).

Observe that Sub(G) can be identified with the set of commensurate classes of
closed subgroups of G. (Closed subgroups J1 and J2 of G are called commen-
surate (to each other), if J1 ∩ J1 is open both in J1 and in J2.)

With these notations, we obtain natural maps

D = D[U ] : (X̃U )cl → Sub(ΠU ), x̃ → Dx̃,

I = I[U ] : (X̃U )cl → Sub(ΔU ) ⊂ Sub(ΠU ), x̃ → Ix̃,

which fit into the commutative diagram

(X̃U )cl D−−−−→ Sub(ΠU )

‖
⏐⏐�

(X̃U )cl I−−−−→ Sub(ΔU ),

where the vertical arrow stands for the natural map Sub(ΠU ) → Sub(ΔU ),
J → J ∩ΔU . By composition with the natural map Sub(ΠU )→ Sub(ΠU ), D, I

yield
D = D[U ] : (X̃U )cl → Sub(ΠU ),

I = I[U ] : (X̃U )cl → Sub(ΔU ) ⊂ Sub(ΠU ).

Remark 1.2. Unlike the case of D, I, the maps D, I are essentially un-
changed if we replace U by any covering corresponding to an open subgroup of
ΠU .

Since the maps D, I are ΠU -equivariant, they induce natural maps

DΠU
= D[U ]ΠU

: Xcl → Sub(ΠU )ΠU
,
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IΠU
= I[U ]ΠU

: Xcl → Sub(ΔU )ΠU
⊂ Sub(ΠU )ΠU

,

respectively.

Definition 1.3. Let f : A→ B be a map of sets.
(i) We define μf : B → Z ∪ {∞} by μf (b) = �(f−1(b)). (Thus, f is injective
(respectively, surjective) if μf (b) ≤ 1 (respectively, μf (b) ≥ 1) for any b ∈ B.
We also have f(A) = {b ∈ B | μf (b) ≥ 1}.)
(ii) We say that f is quasi-finite, if μf (b) <∞ for any b ∈ B.
(iii) We say that an element a of A is an exceptional element of f (in A), if
μf (f(a)) > 1. We refer to the set of exceptional elements as the exceptional
set.
(iv) We say that a pair (a1, a2) of elements of A is an exceptional pair of f (in
A), if a1 �= a2 and f(a1) = f(a2) hold.
(v) We say that f is almost injective (in the strong sense), if the exceptional
set of f is finite. (Observe that almost injectivity implies quasi-finiteness.)

Lemma 1.4. Let f : A→ B and g : B → C be maps of sets. Then we
have:

Both f and g are quasi-finite (respectively, almost injective).
⇓

g ◦ f is quasi-finite (respectively, almost injective).
⇓

f is quasi-finite (respectively, almost injective).

Proof. Easy.

Definition 1.5. Denote by EŨ the exceptional set of D in (X̃U )cl

Definition 1.6. Let G be a profinite group and H a closed subgroup.
Then we denote by ZG(H), NG(H) and CG(H) the centralizer, the normalizer
and the commensurator, respectively, of H in G. Namely,

ZG(H) = {g ∈ G | ghg−1 = h for any h ∈ H},
∩

NG(H) = {g ∈ G | gHg−1 = H} ⊃ H,

∩
CG(H) = {g ∈ G | gHg−1 and H are commensurate}.
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Lemma 1.7. Let Z be a closed subgroup of ΠU such that prU (Z) is open
in Gk and that prU |Z is injective. Then prU induces an injection CΠU

(Z) ↪→
Gk, and we have CΠU

(Z) = NΠU
(Z) = ZΠU

(Z) ⊃ Z and (CΠU
(Z) : Z) <∞.

Proof. Take any σ ∈ CΠU
(Z)∩ΔU . Thus, Z0

def= Z∩σZσ−1 is open both
in Z and in σZσ−1. We claim that σ commutes with any element τ of Z0.
Indeed, first, observe that τ ∈ Z0 ⊂ σZσ−1 and στσ−1 ∈ σZ0σ

−1 ⊂ σZσ−1

hold. Or, equivalently, σ−1τσ, τ ∈ Z. Second, observe that prU (σ−1τσ) =
prU (τ ) holds, since prU (σ) = 1. Now since prU |Z is injective, the equality
prU (σ−1τσ) = prU (τ ) implies σ−1τσ = τ , as desired.

Next, we prove σ = 1. To see this, suppose σ �= 1 and take any sufficiently
small, open characteristic subgroup N of ΔU such that σ �∈ N . Set H

def=
〈N, σ〉 ⊂ ΔU . Then the image of σ in H

ab
is nontrivial. (Indeed, the image of

σ in H/N is nontrivial by definition. Since H/N is cyclic, the surjection H →
H/N factors through the surjection H → H

ab
.) Observe that Z0 normalizes H ,

since N is characteristic in ΔU and σ commutes with Z0. So, the open subgroup
H

def= 〈H, Z0〉 of ΠU can be regarded as a semidirect-product extension of Z0

by H and satisfies H ∩ ΔU = H . Now, the image of σ in H
ab

is nontrivial
and fixed by the action of Z0. This is impossible, as can be easily seen by
observing the Frobenius weights in the action of Z0, or of prU (Z0), which is an
open subgroup of Gk.

Thus, we have proved σ = 1, and the first assertion follows from this. In
particular, CΠU

(Z) (↪→ Gk) is abelian, hence the second assertion follows. Fi-
nally, since prU induces an isomorphism CΠU

(Z) ∼→ prU (CΠU
(Z)) and prU (Z)

is open in Gk, the third assertion holds.

The first main result in this § is:

Proposition 1.8. (i) I|S̃U
: S̃U → Sub(ΠU ) is injective.

(ii) EŨ is disjoint from S̃U . (Or, equivalently, EŨ ⊂ Ũcl.)
(iii) Let ρ denote the natural morphism X̃U → X. Then, for each x ∈ X

cl
,

D|ρ−1(x) is injective.
(iv) Let ρ denote the natural morphism X̃U → X. Then, for each x ∈ Xcl,
D|ρ−1(x) is quasi-finite. If, moreover, k(x) = k holds (i.e., x is a k-rational
point of X), then D|ρ−1(x) is injective.
(v) EŨ is ΠU -stable.

Assume, moreover, that Σ is cofinite. Then:
(vi) The quotient EŨ/ΠU is finite.
(vii) D : (X̃U )cl → Sub(ΠU ) is quasi-finite.
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Proof. (i) Take any x̃, x̃′ ∈ S̃U , and assume x̃ �= x̃′. Then there exists
an open subgroup H0 of ΠU , such that the following holds: Let U0 denote the
covering of U corresponding to H0 ⊂ ΠU and X0 the integral closure of X in U0

(i.e., X0 is the smooth compactification of U0), then the images x0, x
′
0 of x̃, x̃′

in X0 are distinct from each other. Moreover, by replacing H0 by a smaller
open subgroup if necessary, we may assume that the cardinality of the point
set X0 � U0 is ≥ 3 (see, e.g., [Tamagawa1], Lemma (1.10)).

Now, to show the desired injectivity, it suffices to prove that Ix̃ ∩ H1 �=
Ix̃′ ∩H1 holds for any open subgroup H1 of H0. Let U1 denote the covering of
U corresponding to H1 ⊂ ΠU and X1 the integral closure of X in U1. Then, by
the choice of H1, we see that the images of x̃, x̃′ in S1

def= X1 � U1 are distinct
from each other and that the cardinality of S1 is ≥ 3. Then it is easy to see
that the images of Ix̃ ∩ H1, Ix̃′ ∩ H1 in H

ab

1 are isomorphic to ẐΣ†
and that

the intersection of these images is {0}. (Observe (the pro-Σ† part of) exact
sequence (1-5) in [Tamagawa1].) Thus, a fortiori, Ix̃ ∩H1 �= Ix̃′ ∩H1 holds, as
desired.
(ii) Take any x̃ ∈ S̃U and x̃′ ∈ (X̃U )cl, such that x̃ �= x̃′ holds; then we
shall prove that the images of x̃, x̃′ by D are distinct from each other. To
see this, it suffices, by definition, to prove that, for any open subgroup H of
ΠU , the images Dx̃ ∩ H, Dx̃′ ∩ H of x̃, x̃′ in Sub(H) are distinct from each
other. Now, replacing U by the covering of U corresponding to H ⊂ ΠU , it
suffices to prove that Dx̃, Dx̃′ are distinct from each other. Now, recall that
Dx̃ ∩ ΔU = Ix̃, Dx̃′ ∩ ΔU = Ix̃′ . Thus, if x̃′ ∈ S̃U , the last assertion follows
from (i). On the other hand, if x̃′ ∈ Ũcl, the last assertion follows from the fact
Ix̃ 
 ẐΣ†

, Ix̃′ = {1}.
(iii) If x ∈ S

def= X � U , the assertion follows from (ii). So, we may and shall
assume x ∈ U

cl
. Take any x̃, x̃′ ∈ ρ−1(x). Then there exists σ ∈ ΔU such that

x̃′ = σx̃ holds. (Such σ is unique by the assumption x ∈ U
cl
, though we do not

use this fact in the proof.) Now, suppose that the images of x̃, x̃′ by D coincide
with each other. Namely, Dx̃ and Dx̃′ = Dσx̃ = σDx̃σ−1 are commensurate
to each other. Thus, σ ∈ CΠU

(Dx̃) ∩ΔU , and it follows from Lemma 1.7 that
σ = 1 holds, hence x̃′ = σx̃ = x̃. Namely, D|ρ−1(x) is injective, as desired.
(iv) Let π denote the natural morphism X → X, so that ρ = π ◦ ρ holds. Since
�(π−1(x)) = [k(x) : k] <∞, the assertions follow directly from (iii).
(v) This follows from the fact that D is ΠU -equivariant.
(vi) To prove this (assuming that Σ is cofinite), we may replace U by any
covering corresponding to an open subgroup of ΠU . Thus, we may assume that
the genus of X is > 1 and that X is non-hyperelliptic. (See, e.g., [Tamagawa1],
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Lemma (1.10) for the former, and either [Tamagawa3], §2 or the proof (in
characteristic zero) of [Mochizuki1], Lemma 10.4(4) for the latter.) We shall
prove that ρ(EŨ ), which can be identified with EŨ/ΠU , is finite, or, more
strongly, that ρ(EŨ ), which can be identified with EŨ/ΔU , is finite.

Take any pair of elements x̃, x̃′ ∈ Ũcl, and denote by x, x′ the images of x̃, x̃′

in U
cl
, respectively. The images prU (Dx̃) and prU (Dx̃′) are open in Gk, hence

so is the intersection G0
def= prU (Dx̃) ∩ prU (Dx̃′). Let s, s′ be the inverse maps

of the isomorphisms prU |Dx̃
: Dx̃ → prU (Dx̃), prU |Dx̃′ : Dx̃′ → prU (Dx̃′),

respectively. Then, it is well-known and easy to see that the map φ : G0 → ΔU ,
γ → s(γ)s′(γ)−1 is a continuous 1-cocycle (with respect to the left, conjugacy
action of G0 on ΔU via the section s′). Thus, φ defines a cohomology class
in H1(G0, ΔU ). We denote by φab

0,X = φab
0,X(x̃, x̃′) the image of this class in

H1(G0, Δab
X ). (Note that the G0-action on Δab

X induced by that on ΔU extends
to a canonical Gk-action, hence, in particular, is independent of the choice of
x̃′.) Moreover, we set

HX
def= lim−→

G∈OSub(Gk)

H1(G, Δab
X )

(where the transition maps are the restriction maps) and denote by φab
X =

φab
X (x̃, x̃′) the image of φab

0,X in HX .
On the other hand, it is well-known that Δab

X is canonically isomorphic
as a Gk-module to the pro-Σ part T (J)Σ of the full Tate module T (J) of
the Jacobian variety J (tensored with k) of X. Thus, by Kummer theory
(for the abelian variety J), we obtain an injective map J(kG)/(J(kG){Σ′}) →
H1(G, Δab

X ), where G is an open subgroup of Gk, kG is the finite extension
of k corresponding to G, and, for an abelian group M , M{Σ′} stands for the
subgroup of torsion elements a of M such that every prime divisor of the order
of a belongs to Σ′. (In fact, the above injective map is bijective by Lang’s
theorem, though we do not use this fact in the proof.) By taking the inductive
limit, we obtain an injective map J(k)/(J(k){Σ′}) → HX . Now, it is widely
known that the image in HX of the class of x − x′ in J

cl
= J(k) coincides

with φab
X . For this, see [NT], Lemma (4.14). (See also [Nakamura2], 2.2 and

[Tamagawa1], Lemma (2.6).)
Suppose moreover that (x̃, x̃′) is an exceptional pair of D. Then it follows

from the various definitions that φab
X ∈ HX is trivial. Therefore the class of

x − x′ in J(k)/(J(k){Σ′}) is trivial, or, equivalently, the class cl(x − x′) in
J(k) lies in J(k){Σ′}. On the other hand, by (iii), it holds that x �= x′, or,
equivalently (by the assumption that the genus of X is > 1), cl(x− x′) �= 0.

Consider the morphism δ : X ×X → J , (P, Q) → cl(P −Q). We claim:
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Claim 1.9. (i) δ|X×X−ι(X) is injective (on k-valued points), where ι :
X → X ×X is the diagonal morphism.
(ii) The image W of δ does not contain any translate of a positive-dimensional
abelian subvariety of J .

Indeed, for (i), suppose that (P, Q), (P ′, Q′) ∈ (X × X � ι(X))(k) have
the same image under δ. Namely, the divisors P −Q and P ′ −Q′ are linearly
equivalent: P − Q ∼ P ′ − Q′, or, equivalently, P + Q′ ∼ P ′ + Q. Since we
have assumed that X is of genus > 1 and non-hyperelliptic, this implies that
P + Q′ and P ′ + Q coincide with each other as divisors. This implies that
either P = P ′, Q = Q′ or P = Q, P ′ = Q′ holds. The former implies that
(P, Q) = (P ′, Q′), as desired, and the latter implies that (P, Q), (P ′, Q′) ∈
ι(X), which contradicts the assumption. For (ii), suppose that W contains
a translate B′ of some positive-dimensional abelian subvariety B of J . As
dim(W ) ≤ dim(X × X) = 2, we have dim(B′) ≤ 2, i.e., either dim(B′) = 2
or dim(B′) = 1. The former implies that B′ = W , since W is defined as the
image of X × X, hence irreducible of dimension ≤ 2. Since 0 ∈ W = B′, we
conclude W = B′ = B. Now, since J is generated by W , we must have J = B.
This implies that the genus of X (i.e., dim(J)) is 2, which implies that X is
hyperelliptic. This contradicts the assumption. So, suppose dim(B′) = 1. By
(i), we see that δ induces a bijective morphism X×X �ι(X)→W �{0}. From
this, we deduce that there exists a finite radicial covering B′′ of B′ that admits
a non-constant morphism to X×X. In particular, considering a suitable one of
two projections, we see that B′′ admits a non-constant morphism to X. This
is absurd, since the genus of B′′ (respectively, X) is 1 (respectively, > 1). This
completes the proof of Claim 1.9.

By Claim 1.9(ii) and [Boxall] (which is the most nontrivial ingredient of
the proof of Proposition 1.8), we see that W (k) ∩ (J(k){Σ′}) is finite. Now,
by Claim 1.9(i), we conclude that there exists a finite subset S of (X ×X)(k)
that contains any pair (x, x′) as above. This implies the desired assertion that
ρ(EŨ ) is a finite set.
(vii) Note that ρ(EŨ ) can be identified with EŨ/ΠU by (v). Thus, the assertion
of (vii) directly follows from (vi) and the first part of (iv).

Definition 1.10. We define EU to be the image of EŨ in Xcl. (This can
be identified with EŨ/ΠU . Thus, if Σ is cofinite, then it is finite by Proposition
1.8(vi).)

Corollary 1.11. (i) DΠU
|Xcl�EU

: Xcl�EU → Sub(ΠU )ΠU
is injective.
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(ii) EU is disjoint from S. (Or, equivalently, EU ⊂ Ucl.)
Assume, moreover, that Σ is cofinite. Then:

(iii) DΠU
: Xcl → Sub(ΠU )ΠU

is almost injective.

Proof. (i) As D|(X̃U )cl�EŨ
: (X̃U )cl � EŨ → Sub(ΠU ) is injective by

definition and ΠU -equivariant, its quotient by ΠU , which is naturally identified
with DΠU

|Xcl�EU
: Xcl � EU → Sub(ΠU )ΠU

, is also injective. This completes
the proof.
(ii) This follows from Proposition 1.8(ii).
(iii) This follows from (i) and the fact that EU is finite (Proposition 1.8(vi)).

Corollary 1.12. (i) For each x̃ ∈ Ũcl, prU induces an injection

CΠU
(Dx̃) ↪→ Gk,

and we have
CΠU

(Dx̃) = NΠU
(Dx̃) = ZΠU

(Dx̃) ⊃ Dx̃

and
(CΠU

(Dx̃) : Dx̃) <∞.

If, moreover, x̃ ∈ Ũcl � EŨ , we have

CΠU
(Dx̃) = NΠU

(Dx̃) = ZΠU
(Dx̃) = Dx̃.

(ii) For each x̃ ∈ S̃U , we have

CΠU
(Dx̃) = NΠU

(Dx̃) = Dx̃, ZΠU
(Dx̃) = ZDx̃

(Dx̃)

and
CΠU

(Ix̃) = NΠU
(Ix̃) = Dx̃, ZΠU

(Ix̃) = ZDx̃
(Ix̃).

If, moreover, Σ is of density 1, then ZDx̃
(Dx̃) = {1} and ZDx̃

(Ix̃) = Ix̃.
(iii) Assume, moreover, that Σ is cofinite. Then there exists an open subgroup
G0 of Gk, such that, for any open subgroup H of pr−1

U (G0) and any element x̃

of (X̃U )cl = Ũcl
∐

S̃U , we have

CH(Dx̃ ∩H) = NH(Dx̃ ∩H) = Dx̃ ∩H,

ZH(Dx̃ ∩H) =

{
Dx̃ ∩H, for x̃ ∈ Ũcl,

{1}, for x̃ ∈ S̃U .
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In other words, if we replace U by a covering corresponding to such H, we have,
for any x̃ ∈ (X̃U )cl,

CΠU
(Dx̃) = NΠU

(Dx̃) = Dx̃,

ZΠU
(Dx̃) =

{
Dx̃, for x̃ ∈ Ũcl,

{1}, for x̃ ∈ S̃U .

Proof. First, since D|(X̃U )cl�EŨ
: (X̃U )cl�EŨ → Sub(ΠU ) is injective and

ΠU -equivariant, we see that CΠU
(Dx̃) = Dx̃ holds for any x̃ ∈ (X̃U )cl � EŨ .

(i) The first assertion follows from Lemma 1.7. The second assertion follows
from the first assertion and the fact shown at the beginning of the proof.
(ii) Let x̃ ∈ S̃U . Then x̃ �∈ EŨ by Proposition 1.8(ii). Thus, we have CΠU

(Dx̃) =
NΠU

(Dx̃) = Dx̃. From this, we also have ZΠU
(Dx̃) = ZDx̃

(Dx̃).
Next, by Proposition 1.8(i), the map I|S̃U

: S̃U → Sub(ΠU ) is injec-
tive. Since this map is also ΠU -equivariant, we see that CΠU

(Ix̃) = Dx̃. As
CΠU

(Ix̃) ⊃ NΠU
(Ix̃) ⊃ Dx̃, we have NΠU

(Ix̃) = Dx̃. From this, we also have
ZΠU

(Ix̃) = ZDx̃
(Ix̃).

If Σ is of density 1, then this last group coincides with Ix̃ by Lemma 1.1(ii).
In particular, ZDx̃

(Dx̃) ⊂ Ix̃, which implies ZDx̃
(Dx̃) = Ix̃ ∩ ZDx̃

(Dx̃) = {1}
by Lemma 1.1(i).
(iii) Define G0 to be the intersection (in Gk) of Gk(x) for x ∈ EU . Since EU is
finite by Proposition 1.8(vi), G0 is an open subgroup of Gk. By (i) and (ii), it
is easy to see that this G0 satisfies the desired properties.

Next, we shall show that various invariants and structures of U can be re-
covered group-theoretically (or ϕ-group-theoretically) from ΠU , in the following
sense.

Definition 1.13. (i) We say that Π = (Π, Δ, ϕΠ) is a ϕ-(profinite )group,
if Π is a profinite group, Δ is a closed normal subgroup of Π and ϕΠ is an
element of Π/Δ.
(ii) An isomorphism from a ϕ-group Π = (Π, Δ, ϕΠ) to another ϕ-group Π′ =
(Π′, Δ′, ϕΠ′) is an isomorphism Π ∼→ Π′ as profinite groups that induces an
isomorphism Δ ∼→ Δ′, hence also an isomorphism Π/Δ ∼→ Π′/Δ′, such that
the last isomorphism sends ϕΠ to ϕΠ′ .

From now on, we regard ΠU as a ϕ-group by ΠU = (ΠU , ΔU , ϕk), where ϕk

stands for the �(k)-th power Frobenius element in Gk = ΠU/ΔU . We shall say
that an isomorphism α : ΠU

∼→ ΠU ′ of profinite groups is Frobenius-preserving
if α determines an isomorphism of ϕ-groups.
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Definition 1.14. (i) Given an invariant F (U) that depends on the iso-
morphism class (as a scheme) of a hyperbolic curve U over a finite field, we
say that F (U) can be recovered group-theoretically (respectively, ϕ-group-
theoretically) from ΠU , if any isomorphism (respectively, any Frobenius-
preserving isomorphism) ΠU

∼→ ΠV implies F (U) = F (V ) for two such curves
U, V .
(ii) Given an additional structure F(U) (e.g., a family of subgroups, quotients,
elements, etc.) on the profinite group ΠU that depends functorially on a hy-
perbolic curve U over a finite field (in the sense that, for any isomorphism
(as schemes) between two such curves U, V , any isomorphism ΠU

∼→ ΠV in-
duced by this isomorphism U

∼→ V (unique up to composition with inner au-
tomorphisms) preserves the structures F(U) and F(V )), we say that F(U)
can be recovered group-theoretically (respectively, ϕ-group-theoretically) from
ΠU , if any isomorphism (respectively, any Frobenius-preserving isomorphism)
ΠU

∼→ ΠV between two such curves U, V preserves the structures F(U) and
F(V ).

Proposition 1.15. I. The following invariants and structures can be
recovered group-theoretically from ΠU :
(i) The subgroup ΔU of ΠU , hence the quotient Gk = ΠU/ΔU .
(ii) The subsets Σ and Σ† of Primes.

II. The following invariants and structures can be recovered ϕ-group-
theoretically from ΠU :
(iii) The prime number p.
(iv) The cardinality �(k) (or, equivalently, the isomorphism class of the finite
field k).
(v) The genus g = gX of X and the cardinality r = rU

def= �(S), where S
def=

X � U .
(vi) The kernel IU of the natural surjection ΠU → ΠX (which coincides with the
kernel of the natural surjection ΔU → ΔX), hence the quotients ΠX = ΠU/IU ,
ΔX = ΔU/IU .
(vii) The cardinalities �(X(k)), �(U(k)) and �(S(k)).

III. Assume, moreover, that Σ is of density 1. Then the following structure
(hence also (iii)–(vii) above) can be recovered group-theoretically from ΠU :
(viii) The �(k)-th power Frobenius element ϕk ∈ Gk.

Proof. (i) Similar to [Tamagawa1], Proposition (3.3)(ii). (See also
[Mochizuki2], Theorem 1.1(ii).)
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(ii) Note that Δab
U is isomorphic to (ẐΣ†

)2g+r+b−1×Zc
p, where b = bU stands for

the second Betti number of U , i.e., b = 1 (respectively, 0) if r = 0 (respectively,
r > 0), and c stands for the p-rank of the Jacobian variety of X (respectively, 0)
if p ∈ Σ (respectively, p �∈ Σ). (See, e.g., [Tamagawa1], Corollary (1.2).) Here,
we always have 2g + r + b − 1 > c ≥ 0. If, moreover, p ∈ Σ and if we replace
ΠU by a suitable open subgroup, then we have c > 0. (See, e.g., [Tamagawa1],
Lemma (1.9). See also [Tamagawa2], Remark (3.11).) From these, it is easy
to see that Σ and Σ† can be recovered group-theoretically from ΠU . (See also
[Mochizuki2], Theorem 1.1(i).)
(iii) By conjugation, Gk = ΠU/ΔU acts on (Δab

U )Σ
†
, hence on the

rank
ẐΣ† ((Δab

U )Σ
†
)-th exterior power

∧max
ẐΣ† (Δab

U )Σ
†
. Thus, we obtain (purely

group-theoretically) the character

ρdet : Gk → Aut

⎛
⎝max∧

ẐΣ†
(Δab

U )Σ
†

⎞
⎠ = (ẐΣ†

)×.

As in the proof of [Tamagawa1], Proposition (3.4)(i), we have ρdet = εχg+n+b−1
Σ† ,

where χΣ† is the pro-Σ† cyclotomic character and ε is a certain character
(depending on U) with values in {±1}. Now, p can be characterized by
ρdet(ϕk) ∈ ±pZ (⊂ (ẐΣ†

)×). (See also [Mochizuki2], Remark 11.)
(iv) Similar to [Tamagawa1], Proposition (3.4)(iii). (See also [Mochizuki2],
Remark 11.)
(v) Similar to [Tamagawa1], Proposition (3.5). (See also [Mochizuki2], Theorem
1.1(i).)
(vi) Similar to [Tamagawa1], Proposition (3.7).
(vii) Similar to [Tamagawa1], Proposition (3.8). More precisely, by the Lef-
schetz trace formula, we have, for any prime l ∈ Σ†,

�(X(k)) =
2∑

i=0

(−1)i tr(ϕ−1
k | Hi

et(X, Ql))

= 1 + �(k)− tr(ϕ−1
k | H1(ΔX , Ql)).

Here, observe H0
et(X, Ql) = Ql, H2

et(X, Ql) = Ql(1), and

H1
et(X, Ql) = H1(ΔX , Ql).

We also have
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�(U(k)) =
2∑

i=0

(−1)i tr(ϕ−1
k | Hi

c(U, Ql))

=
2∑

i=0

(−1)i tr(ϕk | Hi
et(U, Ql(1)))

= �(k)
2∑

i=0

(−1)i tr(ϕk | Hi
et(U, Ql))

= �(k)
2∑

i=0

(−1)i tr(ϕk | Hi(ΔU , Ql)).

Here, for a profinite group Γ, we define

Hi(Γ, Ql)
def= (lim←−Hi(Γ, Z/lnZ))⊗Zl

Ql,

as usual. Thus, �(X(k)) and �(U(k)) can be recovered ϕ-group-theoretically.
Finally, �(S(k)) can be recovered as �(X(k))− �(U(k)).
(viii) First, in the notation of the proof of (iii) above, the image of (ρdet)2 =
χ2(g+n+b−1) is an open subgroup of the subgroup 〈p〉 of (ẐΣ†

)× (topologically)
generated by p. This characterizes group-theoretically the prime number p (in
(Σ†)′ = Σ′ ∪ {p}), by a theorem of Chevalley ([Chevalley], Théorème 1, see
also [GS]). More precisely, take any prime q ∈ (Σ†)′ distinct from p. Then, by
applying Chevalley’s theorem to the finitely generated subgroup 〈p, q〉 of Q×, we
see that the map Ẑ× Ẑ→ (ẐΣ†

)×, (α, β) → pαqβ is injective, hence that there
does not exist a subgroup of (ẐΣ†

)× that is open both in 〈p〉 and 〈q〉. Next,
define m to be the minimal positive integer with pm ∈ (ρdet)2(Gk) (⊂ (ẐΣ†

)×).
Then ϕk can be characterized by (ρdet)2(ϕk) = pm. (See also [Mochizuki2],
Remark 9.)

Definition 1.16. (i) For each closed subgroup G of Gk, we denote by
kG the subextension of k in k corresponding to G. Observe that, if G is open,
then kG is a finite field.
(ii) For each closed subgroup H of ΠU , we set GH

def= prU (H) and kH
def= kGH

.
We denote by UH the (pro-finite, pro-tame, geometrically pro-Σ) covering of U

corresponding to H. Observe that, if H is open, then UH is a hyperbolic curve
over the finite field kH and H can be identified with ΠUH

.
(iii) Let H be a closed subgroup of ΠU and G a closed subgroup of GH . Then we
set HG

def= H ∩ pr−1
U (G). Observe that UHG

can be identified with UH ×kH
kG.

(iv) For each open subgroup H of ΠU , we set

νU (H) def= �(UH(kH)).
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Corollary 1.17. The map OSub(ΠU ) → Z≥0, H → νU (H) can be
recovered ϕ-group-theoretically from ΠU .

Proof. Since H = ΠUH
, this is immediate from Proposition 1.15(vii).

Finally, we shall prove that the set of decomposition groups in ΠU can be
recovered ϕ-group-theoretically from ΠU . First, we shall treat decomposition
groups at points of S̃U .

Theorem 1.18. (i) The set of inertia groups at points of S̃U (i.e., the
image of the injective map I|S̃U

: S̃U → Sub(ΔU ) ⊂ Sub(ΠU )) can be recovered
ϕ-group-theoretically from ΠU .
(ii) The set of decomposition groups at points of S̃U (i.e., the image of the
injective map D|S̃U

: S̃U → Sub(ΠU )) can be recovered ϕ-group-theoretically
from ΠU .

Proof. (i) This is due to Nakamura. See [Nakamura1], §3 and [Naka-
mura3], 2.1. (See also [Tamagawa1], §7, C.) Strictly speaking, Nakamura only
treats the case over number fields, but his proof relies on Frobenius weights
and the same proof works over finite fields.
(ii) This follows from (i), together with Corollary 1.12(ii).

Next, we shall treat decomposition groups at points of Ũcl. This is done
along the lines of [Tamagawa1], §2, but slightly more subtle than the case of
[Tamagawa1], due to the existence of the exceptional set EŨ .

Definition 1.19. (i) We denote by S(ΠU ) (⊂ Sub(ΠU )) the set of closed
subgroups Z of ΠU such that GZ is open in Gk and that prU |Z : Z → GZ is
an isomorphism.
(ii) For each open subgroup G of Gk, we set

S(ΠU )G
def= {Z ∈ S(ΠU ) | GZ = G}.

Namely, S(ΠU )G can be identified with the set of group-theoretic sections of
the surjection prU |(ΠU )G

: (ΠU )G → G.

Definition 1.20. Let Z be an element of S(ΠU ).
(i) We define U(Z) to be the set of open subgroups of (ΠU )GZ

that contain Z.
(ii) For each H ∈ U(Z), we define m(H, Z) to be the number of elements s of
(a complete system of representatives of) (ΠU )GZ

/H such that s−1Zs ⊂ H.
Note that this is a group-theoretic invariant.
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(iii) We denote by ν∞(Z) the cardinality of UZ(kZ). (Note that UZ(kZ) can
be identified with the project limit of {UH(kZ)}H∈U(Z).)
(iv) We denote by UZ(kZ)∗ the set of points x of UZ(kZ) such that the residue
field of the image of x in U coincides with kZ . (Observe that this residue field
is included in kZ in general.) We denote by ν∗

∞(Z) the cardinality of UZ(kZ)∗.
(v) We define UZ(k)fin to be the union of UZG

(kG) = UZ(kG) for all open
subgroups G of GZ . (N.B. Since UZ is not of finite type over kZ , we have
UZ(k)fin � UZ(k).) We denote by ν∞(Z) the cardinality (∈ Z≥0 ∪ {∞}) of
UZ(k)fin. Moreover, we define (UZ)cl,fin to be the image of UZ(k)fin in (UZ)cl.

Proposition 1.21. Let Z be an element of S(ΠU ).
(i) Let G be an open subgroup of GZ and x a point of UZG

(kG) ⊂ (UZG
)cl.

Then there exists a unique point x̃ ∈ Ũcl above x. Moreover, Dx̃ contains ZG,
and, in particular, Dx̃ is commensurate to Z.
(ii) Let x̃ ∈ Ũcl and x the image of x̃ in (UZ)cl. Then we have

x ∈ UZ(kZ) ⇐⇒ Z ⊂ Dx̃,

x ∈ UZ(kZ)∗ ⇐⇒ Z = Dx̃,

and
x ∈ (UZ)cl,fin ⇐⇒ Z and Dx̃ are commensurate.

(iii) We have ν∗
∞(Z) ≤ ν∞(Z) ≤ ν∞(Z) and ν∞(Z) ≤ νU ((ΠU )GZ

) <∞.
(iv) Assume, moreover, that Σ is cofinite. Then we have ν∞(Z) <∞.

Proof. (i) Take any point x̃ ∈ Ũcl above x. First note that Dx̃ ∩ ZG is
the decomposition group at x̃ in ZG. Thus, since x is kG-rational, the image
of Dx̃ ∩ ZG by prU must coincide with G. Since prU induces an isomorphism
ZG

∼→ G, this implies that Dx̃ ∩ ZG coincides with ZG. It follows from this
that Dx̃ contains ZG and that there exists only one point (i.e., x̃) of Ũ above x.
Finally, since ZG is open both in Z and in Dx̃, Dx̃ is commensurate to Z. (For
the latter openness, observe that prU induces an isomorphism Dx̃

∼→ prU (Dx̃)
and that prU (ZG) = G is open in prU (Dx̃).)
(ii) First, suppose x ∈ UZ(kZ). Then, by (i), Z ⊂ Dx̃. Conversely, suppose
Z ⊂ Dx̃, Then the decomposition group Dx̃ ∩ Z at x̃ in Z coincides with Z,
which implies x ∈ UZ(kZ).

Next, we define xU to be the image of x in Ucl. Suppose x ∈ UZ(kZ)∗.
Then, by (i), Z ⊂ Dx̃. By the definition of UZ(kZ)∗, we must have k(xU ) = kZ ,
or, equivalently, prU (Dx̃) = prU (Z). This implies Dx̃ = Z. Conversely, suppose
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Z = Dx̃. Then prU (Dx̃) = prU (Z), or, equivalently, k(xU ) = kZ . This implies
x ∈ UZ(kZ)∗.

Finally, for each open subgroup G of GZ , denote by xG the image of x̃ in
(UZG

)cl. Then

x ∈ (UZ)cl,fin

⇐⇒ xG ∈ UZG
(kZG

) for some open subgroup G of GZ

⇐⇒ ZG ⊂ Dx̃ for some open subgroup G of GZ

⇐⇒ Z and Dx̃ are commensurate,

where the second equivalence follows from the first equivalence in the statement
of (ii).
(iii) The first two inequalities are clear. To see the third inequality, it suffices to
prove that the natural map UZ(kZ)→ U(ΠU )GZ

(kZ) is injective. For this, take
x, x′ ∈ UZ(kZ) and suppose that the images of x, x′ in U(ΠU )GZ

(kZ) coincide
with each other. Take the unique points x̃, x̃′ ∈ Ũcl above x, x′, respectively.
Then, by (i), Dx̃ and Dx̃′ are commensurate to each other. On the other hand,
since the images of x̃, x̃′ in (U(ΠU )GZ

)cl coincide with each other and are kZ -

rational, we see that their images in U
cl

must coincide with each other. It
follows from these observations and Proposition 1.8(iii) that x̃ = x̃′, hence that
x = x′, as desired.
(iv) This follows from (ii) and Proposition 1.8(vii). (Observe that the natural
surjective map UZ(k)fin → (UZ)cl,fin is quasi-finite.)

Corollary 1.22. Let Z be an element of S(ΠU ). Then we have
(i) There exists an x̃ ∈ Ũcl such that Z = Dx̃ (respectively, Z ⊂ Dx̃, re-
spectively, Z is commensurate to Dx̃), if and only if ν∗

∞(Z) > 0 (respectively,
ν∞(Z) > 0, respectively, ν∞(Z) > 0).
(ii) There exist more than one x̃ ∈ Ũcl such that Z is commensurate to Dx̃, if
and only if ν∞(Z) > 1.
(iii) There exists an x̃ ∈ Ũcl � EŨ (respectively, x̃ ∈ EŨ ) such that Z = Dx̃ if
and only if ν∞(Z) = ν∗

∞(Z) = 1 (respectively, ν∗
∞(Z) > 0 and ν∞(Z) > 1).

Proof. (i) This is immediate from Proposition 1.21(ii).
(ii) By definition, ν∞(Z) > 1 if and only if ν∞(ZG) > 1 for some open subgroup
G of GZ . Thus, the assertion follows from (the first statement of) Proposition
1.21(ii) and (the uniqueness statement of) Proposition 1.21(i).
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(iii) It follows formally from (i) and (ii) that ν∗
∞(Z) > 0 and ν∞(Z) > 1

(respectively, ≤ 1) if and only if Z = Dx̃ for some x̃ ∈ Ũcl and Z is com-
mensurate to Dx̃ for more than (respectively, at most) one x̃ ∈ Ũcl. This last
statement is equivalent to saying that Z = Dx̃ for some x̃ ∈ EŨ (respectively,
x̃ ∈ Ũcl � EŨ ). This, together with Proposition 1.21(iii) (or, more specifically,
the fact ν∗

∞(Z) ≤ ν∞(Z)), completes the proof.

Proposition 1.23. Let Z be an element of S(ΠU ).
(i) We have

ν∞(Z) = lim
H∈U(Z)

H→Z

νU (H)
m(H, Z)

.

More precisely, there exists an H0 ∈ U(Z) such that, for any H ∈ U(Z) with
H ⊂ H0, we have

ν∞(Z) =
νU (H)

m(H, Z)
.

In particular, ν∞(Z) is a ϕ-group-theoretic invariant.
(ii) Set C

def= CΠU
(Z), which is isomorphic to Ẑ. Then we have

ν∗
∞(Z) =

∑
d|N

μ(N/d)ν∞(Cd),

where N
def= (C : Z), Cd def= {σd | σ ∈ C}, and μ stands for Möbius’ function.

In particular, ν∗
∞(Z) is a ϕ-group-theoretic invariant.

(iii) We have
ν∞(Z) = sup

G∈OSub(GZ)

ν∞(ZG).

In particular, ν∞(Z) is a ϕ-group-theoretic invariant.

Proof. (i) We define U(ΠU )GZ
(kZ)∞ to be the image of UZ(kZ) in

U(ΠU )GZ
(kZ)(= U(kZ)). On the one hand, the proof of (the third inequality of)

Proposition 1.21(iii) shows that the natural surjection UZ(kZ)→U(ΠU )GZ
(kZ)∞

is a bijection. On the other hand, since UZ(kZ) = lim←−H∈U(Z)
UH(kZ) and

�(UH(kZ)) < ∞ for each H ∈ U(Z) (hence, in particular, �(U(kZ)) < ∞), we
see that there exists an H0 ∈ U(Z) such that U(ΠU )GZ

(kZ)∞ coincides with the
image of UH0(kZ) in U(ΠU )GZ

(kZ).
Take any H ∈ U(Z) with H ⊂ H0. Then each point of UH(kZ) lies

above some point of U(ΠU )GZ
(kZ)∞. For each point x ∈ UZ(kZ), write x̃ for

the unique point of Ũcl that lies above x. Then, by Proposition 1.21(i), the
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decomposition group at x̃ in (ΠU )GZ
coincides with Z. From this, we see that

m(H, Z) is defined so as to coincide with the cardinality of the fiber of the
map UH(kZ) → U(ΠU )GZ

(kZ) at x(ΠU )GZ
, where x(ΠU )GZ

is the image of x

in U(ΠU )GZ
(kZ). From these, we conclude that the quantity νU (H)/m(H, Z)

coincides with the cardinality �(U(ΠU )GZ
(kZ)∞), as desired.

The last assertion follows from the first assertion and Corollary 1.17.
(ii) First, by Lemma 1.7, we see that C ∈ S(ΠU ) and that C is isomorphic
to Ẑ. Let x be a point of UZ(kZ). We claim that x �∈ UZ(kZ)∗ if and only
if there exists Z ′ ∈ S(ΠU ) with Z ′ � Z, such that the image in (UZ′)cl of
x ∈ UZ(kZ) ⊂ (UZ)cl is kZ′ -rational. Indeed, to see the ‘if’ part, observe that
the natural morphism UZ → U factors through UZ → UZ′ . Thus, if the image
of x in (UZ′)cl is kZ′ -rational, so is the image of x in Ucl, hence x �∈ UZ(kZ)∗.
Conversely, suppose x �∈ UZ(kZ)∗ and take the unique point x̃ ∈ Ũcl above x.
As the residue field of the image of x in U is strictly smaller than kZ , the image
of Dx̃ in Gk must be strictly larger than GZ . Now, it is easy to see from this
that Z ′ def= Dx̃ has the desired property.

Now, consider Z ′ ∈ S(ΠU ) with Z ′ ⊃ Z. Then we have Z ⊂ Z ′ ⊂ C, which
implies that Z ′ = Cd for some (unique) d dividing N . We see UZ′ = UC×kC

kZ′ ,
and, in particular, UZ = UC ×kC

kZ . Thus, the image of x in (UZ′)cl is kZ′ -
rational if and only if x ∈ UZ(kZ) = UC(kZ) lies in UZ′(kZ′) = UC(kZ′).

These observations, together with the so-called inclusion-exclusion princi-
ple (see, e.g., [Hall], Chapter 2), imply the desired formula.
(iii) Immediate from the definitions.

Theorem 1.24. The set of decomposition groups at points of Ũcl (re-
spectively, Ũcl � EŨ , respectively, EŨ ) (i.e., the image of the map D|Ũcl :
Ũcl → Sub(ΠU ) (respectively, D|Ũcl�EŨ

: Ũcl � EŨ → Sub(ΠU ), respectively,
D|EŨ

: EŨ → Sub(ΠU ))) can be recovered ϕ-group-theoretically from ΠU .

Proof. This follows formally from Corollary 1.22 and Proposition 1.23.

Corollary 1.25. The set of decomposition groups at points of (X̃U )cl

(i.e., the image of the map D : (X̃U )cl → Sub(ΠU )) can be recovered ϕ-group-
theoretically from ΠU .

Proof. This is immediate from Theorem 1.18(ii) and Theorem 1.24. (See
also [Mochizuki2], Remark 10.)
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§2. Cuspidalizations of Proper Hyperbolic Curves

In this §, we review the main results of Mochizuki’s theory of cuspi-
dalizations of fundamental groups of proper hyperbolic curves, developed in
[Mochizuki2], which plays an important role in this paper. We maintain the
notations of §1 and further assume X = U . (Thus, the finite set S in §1 is
empty, and, in this §, we save the symbol S for another finite set of closed
points of X.) Accordingly, X is a proper hyperbolic curve over a finite field
k = kX .

Recall that ΔX stands for the maximal pro-Σ quotient of π1(X), that ΠX

stands for π1(X)/ Ker(π1(X) � ΔX), and that they fit into the following exact
sequence:

1→ ΔX → ΠX
prX→ Gk → 1.

Similarly, if we write X × X
def= X ×k X, then we obtain (by considering the

maximal pro-Σ quotient ΔX×X of π1(X ×X)) an exact sequence:

1→ ΔX×X → ΠX×X → Gk → 1,

where ΠX×X (respectively, ΔX×X) may be identified with ΠX×Gk
ΠX (respec-

tively, ΔX ×ΔX).

Definition 2.1 (cf. [Mochizuki2], Definition 1.1(i).). Let H be a profinite
group equipped with a homomorphism H → ΠX . Then we shall refer to the
kernel IH of H → ΠX as the cuspidal subgroup of H (relative to H → ΠX). We
shall refer to an inner automorphism of H by an element of IH as a cuspidally
inner automorphism. We shall say that H is cuspidally abelian (respectively,
cuspidally pro-Σ∗, where Σ∗ is a set of prime numbers) (relative to H → ΠX) if
IH is abelian (respectively, if IH is a pro-Σ∗ group). If H is cuspidally abelian,
then observe that H/IH acts naturally (by conjugation) on IH . We shall say
that H is cuspidally central (relative to H → ΠX) if this action of H/IH on
IH is trivial. Also, we shall use the same terminology for H → ΠX when ΠX

is replaced by ΔX , ΠX×X , or ΔX×X .

For a finite subset S ⊂ Xcl write US
def= X � S. Let ΔUS

be the maximal
cuspidally (relative to the natural map to ΔX) pro-Σ† quotient of the maximal
pro-Σ quotient of the tame fundamental group of US (where “tame” is with
respect to the complement of US in X), and let ΠUS

be the corresponding
quotient π1(US)/ Ker(π1(US) � ΔUS

) of π1(US). Thus, we have an exact
sequence:

1→ ΔUS
→ ΠUS

→ Gk → 1,
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which fits into the following commutative diagram:

1→ΔUS
→ΠUS

→Gk→ 1

↓ ↓ ‖

1→ ΔX → ΠX →Gk→ 1.

Further, let ι : X → X ×X be the diagonal morphism, and write

UX×X
def= X ×X � ι(X).

We shall denote by ΔUX×X
the maximal cuspidally (relative to the natural map

to ΔX×X) pro-Σ† quotient of the maximal pro-Σ quotient of the tame funda-
mental group of (UX×X)k̄ (where “tame” is with respect to the divisor ι(X) ⊂
X×X), and by ΠUX×X

the corresponding quotient π1(UX×X)/ Ker(π1(UX×X)
� ΔUX×X

) of π1(UX×X). Thus, we have an exact sequence:

1→ ΔUX×X
→ ΠUX×X

→ Gk → 1,

which fits into the following commutative diagram:

1→ΔUX×X
→ΠUX×X

→Gk→ 1

↓ ↓ ‖

1→ ΔX×X → ΠX×X →Gk→ 1.

Finally, set
MX

def= Hom
ẐΣ† (H2(ΔX , ẐΣ†

), ẐΣ†
).

Thus, MX is a free ẐΣ†
-module of rank 1, and MX is isomorphic to ẐΣ†

(1)
as a Gk-module (where the “(1)” denotes a “Tate twist”, i.e., Gk acts on
ẐΣ†

(1) via the cyclotomic character) (cf. [Mochizuki2], the discussion following
Proposition 1.1).

For the rest of this §, let X, Y be proper hyperbolic curves over finite fields
kX , kY of characteristic pX , pY , respectively. Let ΣX (respectively, ΣY ) be a
set of prime numbers that contains at least one prime number different from
pX (respectively, pY ). Write ΔX (respectively, ΔY ) for the maximal pro-ΣX

quotient of π1(X) (respectively, the maximal pro-ΣY quotient of π1(Y )), and
ΠX (respectively, ΠY ) for the quotient π1(X)/ Ker(π1(X) � ΔX) of π1(X)
(respectively, the quotient π1(Y )/ Ker(π1(Y ) � ΔY ) of π1(Y )).
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Let
α : ΠX

∼→ ΠY

be an isomorphism of profinite groups.
The following is one of the main results of Mochizuki’s theory.

Theorem 2.2 (Reconstruction of Maximal Cuspidally Abelian Exten-
sions). Let ιX : X → X ×X (respectively, ιY : Y → Y × Y ) be the diagonal
morphism, and write UX×X

def= X × X � ι(X) (respectively, UY ×Y
def= Y ×

Y � ι(Y )). Denote by ΠUX×X
� Πc-ab

UX×X
, ΠUY ×Y

� Πc-ab
UY ×Y

the maximal cusp-
idally (relative to the natural surjections ΠUX×X

� ΠX×X , ΠUY ×Y
� ΠY ×Y ,

respectively) abelian quotients. Then there is a commutative diagram:

Πc-ab
UX×X

αc-ab−−−−→ Πc-ab
UY ×Y⏐⏐� ⏐⏐�

ΠX×X
α×α−−−−→ ΠY ×Y

where αc-ab is an isomorphism which is well-defined up to cuspidally inner
automorphism (i.e., an inner automorphism of Πc-ab

UY ×Y
by an element of the

cuspidal subgroup Ker(Πc-ab
UY ×Y

� ΠY ×Y )). Moreover, the correspondence

α → αc-ab

is functorial (up to cuspidally inner automorphism) with respect to α.

Proof. See [Mochizuki2], Theorem 1.1(iii).

Let x̃ ∈ X̃cl and x the image of x̃ in Xcl. In this and the next §§, we
sometimes refer to the decomposition group Dx̃ as the decomposition group of
ΠX at x, and denote it simply by Dx. Thus, Dx is well-defined only up to
conjugation by an element of ΠX .

For the rest of this §, we shall assume that α is Frobenius-preserving (cf.
Definition 1.14). (Note that this assumption is automatically satisfied in the
case where ΣX and ΣY are of density 1 by Proposition 1.15(viii).) Thus, by
Theorem 1.24, one deduces naturally from α a bijection

φ : Xcl � EX
∼→ Y cl � EY

such that
α(Dx) = Dφ(x)
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holds (up to conjugation) for any x ∈ Xcl � EX . (Note that EX (respectively,
EY ) is a finite set by Proposition 1.8(vi), if ΣX (respectively, ΣY ) is cofinite.)

As an important consequence of Theorem 2.2, we deduce the following:

Corollary 2.3. With the above assumptions, let S ⊂ Xcl � EX , T ⊂
Y cl � EY be finite subsets that correspond to each other via φ. Then α, αc-ab

induce isomorphisms (well-defined up to cuspidally inner automorphisms, i.e.,
inner automorphisms by elements of Ker(Πc-ab

VT
→ ΠY ))

αc-ab
S,T : Πc-ab

US

∼→ Πc-ab
VT

lying over α, where US
def= X�S, VT

def= Y �T , and ΠUS
� Πc-ab

US
, ΠVT

� Πc-ab
VT

,
are the maximal cuspidally abelian quotients (relative to the maps ΠUS

� ΠX ,
ΠVT

� ΠY , respectively). These isomorphisms are functorial with respect to
α, S, T , as well as with respect to passing to connected finite étale coverings
of X, Y , which arise from open subgroups of ΠX , ΠY , in the following sense:
Let ξ : X ′ → X (respectively, η : Y ′ → Y ) be a finite étale covering which
arises from the open subgroup ΠX′ ⊆ ΠX (respectively, ΠY ′ ⊆ ΠY ), such that
α(ΠX′) = ΠY ′ ; set U ′

S′
def= X ′�S′, V ′

T ′
def= Y ′�T ′, S′ def= ξ−1(S), T ′ def= η−1(T );

and denote by α′ the isomorphism ΠX′
∼→ ΠY ′ induced by α. Then we have the

following commutative diagram:

Πc-ab
U ′

S′

(α′)c-ab
S′,T ′−−−−−−→ Πc-ab

V ′
T ′⏐⏐� ⏐⏐�

Πc-ab
US

αc-ab
S,T−−−−→ Πc-ab

VT

where the vertical arrows are the natural maps.

Proof. The proof of [Mochizuki2], Theorem 2.1(i) (where EX = EY = ∅
is assumed) works as it is.

Next, let

1→MX → D → ΠX×X → 1

be a fundamental extension, i.e., an extension whose corresponding extension
class in H2

et(X × X, MX) (via the natural identification H2(ΠX×X , MX) ∼→
H2

et(X × X, MX) (cf. [Mochizuki2], Proposition 1.1)) coincides with the first
(étale) Chern class of the diagonal ι(X) (cf. [Mochizuki2], Proposition 1.5). Let
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x, y ∈ X(k) and write Dx, Dy ⊂ ΠX for the associated decomposition groups
(which are well-defined up to conjugation). Set

Dx
def= D|Dx ×Gk

ΠX , Dx,y
def= D|Dx ×Gk

Dy.

Thus, Dx (respectively, Dx,y) is an extension of ΠX (respectively, Gk) by MX .
Similarly, if D =

∑
i mi.xi, E =

∑
j nj .yj are divisors on X supported on

k-rational points, then set

DD
def=
∑

i

mi.Dxi
, DD,E

def=
∑
i,j

mi.nj .Dxi,yj

where the sums are to be understood as sums of extensions of ΠX , Gk, respec-
tively, by MX , i.e., the sums are induced by the additive structure of MX .

For a finite subset S ⊂ X(k), we shall write

DS
def=
∏
x∈S

Dx

where the product is to be understood as a fiber product over ΠX . Thus, DS

is an extension of ΠX by a product of copies of MX indexed by the points
of S. We shall refer to DS as the S-cuspidalization of ΠX . Observe that if
S′ ⊂ X(k) is a finite subset containing S, then we obtain a natural projection
morphism DS′ → DS . More generally, for a finite subset S ⊂ Xcl which does
not necessarily consist of k-rational points, one can still construct the object
DS by passing to a finite extension kS of k over which the points of S are
rational, performing the above construction over kS , and then descending to k.
(See [Mochizuki2], Remark 5 for more details.)

Proposition 2.4 (Maximal Geometrically Cuspidally Central Quotients).
(i) For S ⊂ Xcl a finite subset, the S-cuspidalization DS of ΠX may be identified
with the quotient ΠUS

� Πc-cn
US

def= ΠUS
/ Ker(ΔUS

� Δc-cn
US

) of ΠUS
, where Δc-cn

US

is the maximal cuspidally central quotient of ΔUS
relative to the natural map

ΔUS
� ΔX .

(ii) The fundamental extension D may be identified with the quotient ΠX×X �
Πc-cn

UX×X

def= ΠUX×X
/ Ker(ΔUX×X

� Δc-cn
UX×X

) of ΠUX×X
, where Δc-cn

UX×X
is the

maximal cuspidally central quotient of ΔUX×X
relative to the natural map

ΔUX×X
� ΔX×X .

Proof. See [Mochizuki2], Proposition 1.6(iii)(iv). (Precisely speaking,
Proposition 1.6(iii) loc. cit. only treats the special case where S ⊂ X(k)
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holds. However, the proof for the general case is easily reduced to this special
case by passing to a finite extension of k. cf. Remark 5 loc. cit.)

Remark 2.5. Let D (respectively, E) be a fundamental extension of X

(respectively, Y ). The isomorphism α : ΠX
∼→ ΠY induces an isomorphism:

D ∼→ E

up to cyclotomically inner automorphisms (i.e., inner automorphisms by ele-
ments of MX , MY ) and the actions of (k×

X)Σ
†
X , (k×

Y )Σ
†
Y , where (k×

X)Σ
†
X (respec-

tively, (k×
Y )Σ

†
Y ) is the maximal Σ†

X - (respectively, Σ†
Y -) quotient of k×

X (respec-
tively, k×

Y ) (cf. [Mochizuki2], Proposition 1.4(ii)). Moreover, let S ⊂ Xcl � EX

and T ⊂ Y cl � EY be as in Corollary 2.3 and write DS (respectively, ET ) for
the S-cuspidalization of ΠX (respectively, the T -cuspidalization of ΠY ). Then
the isomorphism D ∼→ E induces an isomorphism

DS
∼→ ET

lying over α.
On the other hand, let ΠUS

� Πc-cn
US

and ΠVT
� Πc-cn

VT
be the maximal

geometrically cuspidally central quotients (here, US
def= X � S, VT

def= Y � T )
(cf. Proposition 2.4). Note that the isomorphism αc-ab

S,T : Πc-ab
US

∼→ Πc-ab
VT

in
Corollary 2.3 naturally induces an isomorphism

Πc-cn
US

∼→ Πc-cn
VT

lying over α, which is well-defined up to cuspidally inner automorphism. Now,
by Proposition 2.4(i), Πc-cn

US
(respectively, Πc-cn

VT
) may be identified with DS

(respectively, ET ). Thus, we deduce another isomorphism

DS
∼→ ET

lying over α.
Now, the above two isomorphisms between DS and ET coincide with each

other up to cyclotomically inner automorphisms and the actions of (k×
X)Σ

†
X ,

(k×
Y )Σ

†
Y .

Another main result of Mochizuki’s theory is the following, which allows
us to recover ϕ-group-theoretically the maximal cuspidally pro-l extension of
ΠX , in the case where the set of cusps consists of a single rational point.
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Theorem 2.6 (Reconstruction of Maximal Cuspidally Pro-l Extensions).
Let x∗ ∈ X(kX), y∗ ∈ Y (kY ), and set S

def= {x∗}, T
def= {y∗}, US

def= X � S,
VT

def= Y � T . Assume that the Frobenius-preserving isomorphism α : ΠX
∼→

ΠY maps the decomposition group of x∗ in ΠX (which is well-defined up to
conjugation) to the decomposition group of y∗ in ΠY (which is well-defined up
to conjugation). Set Σ def= ΣX = ΣY and p

def= pX = pY . Then, for each prime
l ∈ Σ† (thus, l �= p), there exists a commutative diagram:

Πc-l
US

αc-l

−−−−→ Πc-l
VT⏐⏐� ⏐⏐�

ΠX
α−−−−→ ΠY

in which ΠUS
� Πc-l

US
, ΠVT

� Πc-l
VT

are the maximal cuspidally pro-l quotients
(relative to the maps ΠUS

� ΠX , ΠVT
� ΠY , respectively), the vertical arrows

are the natural surjections, and αc-l is an isomorphism well-defined up to com-
position with a cuspidally inner automorphism (i.e., an inner automorphism
by an element of Ker(Πc-l

VT
→ ΠY )), which is compatible relative to the natural

surjections
Πc-l

US
� Πc-ab,l

US
, Πc-l

VT
� Πc-ab,l

VT
,

where the subscript “c-ab, l” denotes the maximal cuspidally pro-l abelian quo-
tient, with the isomorphism

αc-ab
S,T : Πc-ab

US

∼→ Πc-ab
VT

in Corollary 2.3. Moreover, αc-l is compatible, up to cuspidally inner automor-
phisms, with the decomposition groups of x∗, y∗ in Πc-l

US
, Πc-l

VT
.

Proof. See [Mochizuki2], Theorem 3.1.

§3. Kummer Theory and Anabelian Geometry

We maintain the notations of §2. If n is an integer all of whose prime
factors belong to Σ†, then we have the Kummer exact sequence

1→ μn → Gm → Gm → 1,

where Gm → Gm is the n-th power map. We shall identify μn with MX/nMX

according to the identification in [Mochizuki2], the discussion at the beginning
of §2.
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Consider a subset
E ⊂ Xcl.

(We will set E = EX eventually, but E is arbitrary for the present.) Let
S ⊂ Xcl � E be a finite set. If we consider the above Kummer exact sequence
on the étale site of US

def= X � S and pass to the inverse limit with respect to
n, then we obtain a natural homomorphism

Γ(US ,O×
US

)→ H1(ΠUS
, MX)

(cf. loc. cit.). (Note that here it suffices to consider the group cohomology of
ΠUS

(i.e., as opposed to the étale cohomology of US), since the extraction of
n-th roots of an element of Γ(US ,O×

US
) yields finite étale coverings of US that

correspond to open subgroups of ΠUS
.) Observe that this homomorphism is

injective if Σ† = Primes � {p}, since the abelian group Γ(US ,O×
US

) is finitely
generated and free of p-torsion, hence injects into its pro-prime-to-p completion.

In particular, by allowing S to vary among all finite subsets of Xcl � E,
we obtain a natural homomorphism

O×
E → lim−→

S

H1(ΠUS
, MX),

where
O×

E
def= {f ∈ K×

X | supp(div(f)) ∩ E = ∅}
is the multiplicative group of the units in the ring OE of functions on X which
are regular at all points of E. (Here, KX denotes the function field of X.)
Observe that this homomorphism is injective if Σ† = Primes � {p}.

Proposition 3.1 (Kummer Classes of Functions). Suppose that S ⊂
Xcl � E is a finite subset. Write

ΔUS
� Δc-ab

US
� Δc-cn

US

for the maximal cuspidally abelian and the maximal cuspidally central quotients,
respectively, relative to the map ΔUS

� ΔX , and

ΠUS
� Πc-ab

US
� Πc-cn

US

for the corresponding quotients of ΠUS
(i.e., Πc-ab

US

def= ΠUS
/ Ker(ΔUS

� Δc-ab
US

),

Πc-cn
US

def= ΠUS
/ Ker(ΔUS

� Δc-cn
US

)). If x ∈ Xcl, then we shall write

Dx[US ] ⊂ ΠUS
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for the decomposition group at x in ΠUS
(which is well-defined up to conju-

gation), and Ix[US ] def= Dx[US ] ∩ ΔUS
for the inertia subgroup of Dx[US ].

Thus, when x ∈ S we have a natural isomorphism of MX with Ix[US ] (cf.
[Mochizuki2], Proposition 1.5(ii)(iii)). Then:
(i) The natural surjections induce the following isomorphisms:

H1(Πc-cn
US

, MX) ∼→ H1(Πc-ab
US

, MX) ∼→ H1(ΠUS
, MX)

In particular, we obtain the following natural homomorphisms:

Γ(US ,O×
US

)→ H1(Πc-cn
US

, MX) ∼→ H1(Πc-ab
US

, MX) ∼→ H1(ΠUS
, MX),

O×
E → lim−→

S

H1(Πc-cn
US

, MX) ∼→ lim−→
S

H1(Πc-ab
US

, MX) ∼→ lim−→
S

H1(ΠUS
, MX),

where S varies among all finite subsets of X � E.
These natural homomorphisms are injective, if, moreover, Σ† = Primes �

{p}.
(ii) Restricting cohomology classes of ΠUS

to the various Ix[US ] for x ∈ S yields
a natural exact sequence:

1→ (k×)Σ
† → H1(ΠUS

, MX)→ ( ⊕
s∈S

ẐΣ†
)

(where we identify Hom
ẐΣ† (Ix[US ], MX) with ẐΣ†

). Moreover, the image (via
the natural homomorphism given in (i)) of Γ(US ,O×

US
) in H1(ΠUS

, MX) is
equal to the inverse image in H1(ΠUS

, MX) of the submodule of

( ⊕
s∈S

Z) ⊂ ( ⊕
s∈S

ẐΣ†
)

determined by the principal divisors (with support in S). A similar statement
holds when ΠUS

is replaced by Πc-cn
US

or Πc-ab
US

.
(iii) If f ∈ Γ(US ,O×

US
), write

κc-cn
f ∈ H1(Πc-cn

US
, MX), κc-ab

f ∈ H1(Πc-ab
US

, MX), κf ∈ H1(ΠUS
, MX)

for the associated Kummer classes. If x ∈ (Xcl � E) � S, then Dx[US ] maps,
via the natural surjection ΠUS

� Gk, isomorphically onto the open subgroup
Gk(x) ⊆ Gk (where k(x) is the residue field of X at x). Moreover, the images
of the pulled back classes

κc-cn
f |Dx[US ] = κc-ab

f |Dx[US ] = κf |Dx[US ] ∈ H1(Dx[US ], MX) 
 H1(Gk(x), MX)


 (k(x)×)Σ
†
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in (k(x)×)Σ
†

are equal to the image in (k(x)×)Σ
†

of the value f(x) ∈ k(x)× of
f at x.

Proof. See [Mochizuki2], Proposition 2.1. (Strictly speaking, Proposition
2.1(ii) loc. cit. only treats the case where S ⊂ X(k), but the same proof works
well for the general case.)

Remark 3.2 (cf. [Mochizuki2], Remark 12). In the situation of Propo-
sition 3.1(iii), assume x ∈ X(k) and S ⊂ X(k) for simplicity. If we think of
the extension Πc-cn

US
of ΠX as being given by the extension DS , where D is a

fundamental extension of ΠX×X (cf. Proposition 2.4(i)), then it follows that
the image of Dx[US ] in Πc-cn

US
may be thought of as the image of Dx[US ] in DS .

This image of Dx[US ] in DS amounts to a section of DS � ΠX � Gk lying
over the section sx : Gk → ΠX corresponding to the rational point x (which is
well-defined up to conjugation). Since DS is defined as a certain fiber product,
this section is equivalent to a collection of sections (regarded as “cyclotomi-
cally outer homomorphisms”, i.e., well-defined up to composition with an inner
automorphism of Dy,x by an element of Ker(Dy,x � Gk))

γy,x : Gk → Dy,x,

where y ranges over all points of S. Namely, from this point of view, Proposition
3.1(iii) may be regarded as saying that the image in (k(x)×)Σ

†
= (k×)Σ

†
of the

value f(x) of the function f ∈ Γ(US ,O×
US

) at x ∈ X(k) may be computed from
its Kummer class, as soon as one knows the sections γy,x : Gk → Dy,x for y ∈ S.
Observe that γy,x depends only on x, y, and not on the choice of S.

Definition 3.3 (cf. [Mochizuki2], Definition 2.1). For x, y ∈ X(k) with
x �= y, we shall refer to the above section (regarded as a cyclotomically outer
homomorphism)

γy,x : Gk → Dy,x

as the Green’s trivialization of D at (y, x). If D is a divisor on X supported on
k-rational points �= x, then multiplication of the various Green’s trivializations
for the points in the support of D yields a section (regarded as a cyclotomically
outer homomorphism)

γD,x : Gk → DD,x

which we shall refer to as the Green’s trivialization of D at (D, x).
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Definition 3.4 (cf. [Mochizuki2], Definition 2.2). Let the notations and
the assumptions as in Corollary 2.3.
(i) Write D (respectively, E) for the fundamental extension of ΠX×X (respec-
tively, ΠY ×Y ) that arises as the quotient of Πc-ab

UX×X
(respectively, Πc-ab

UY ×Y
) by

the kernel of the maximal cuspidally central quotient Δc-ab
UX×X

� Δc-cn
UX×X

(re-
spectively, Δc-ab

UY ×Y
� Δc-cn

UY ×Y
) (cf. Proposition 2.4(ii)). The isomorphism αc-ab

induces naturally an isomorphism:

αc-cn : D ∼→ E

We shall say that α is (S, T )-locally Green-compatible outside exceptional sets
if, for every pair of points (x1, x2) ∈ X(kX) × X(kX) corresponding via φ to
a pair of points (y1, y2) ∈ Y (kY ) × Y (kY ), such that x1 ∈ (Xcl � EX) � S,
y1 ∈ (Y cl � EY ) � T , x2 ∈ S, y2 ∈ T , the isomorphism

Dx1,x2

∼→ Ey1,y2

(obtained by restricting αc-cn to the various decomposition groups) is com-
patible with the Green’s trivializations. We shall say that α is (S, T )-locally
principally Green-compatible outside exceptional sets if, for every point x ∈
X(kX) ∩ S and every principal divisor D supported on kX -rational points �= x

contained in Xcl �EX , corresponding via φ to a pair (y, E) (so y ∈ Y (kY )∩T ),
the isomorphism

DD,x
∼→ EE,y

obtained from αc-cn is compatible with the Green’s trivializations.
(ii) We shall say that α is totally globally Green-compatible (respectively, to-
tally globally principally Green-compatible) outside exceptional sets if, for all
pair of connected finite étale coverings ξ : X ′ → X, η : Y ′ → Y that arise
from open subgroups ΠX′ ⊆ ΠX , ΠY ′ ⊆ ΠY , corresponding to each other via
α, then for any subset S ⊂ Xcl � EX that corresponds, via φ, to T ⊂ Y � EY

the isomorphism
ΠX′

∼→ ΠY ′

induced by α is (S′, T ′)-locally Green-compatible (respectively, (S′, T ′)-locally
principally Green-compatible) outside exceptional sets, where S′ def= ξ−1(S) ⊂
X

′ cl, T ′ def= η−1(T ) ⊂ Y
′ cl are the inverse images of S, T , respectively.

Remark/Definition 3.5. Let J = JX be the Jacobian variety of X.
Let Div0

X�EX
be the group of degree zero divisors on X which are supported
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on points in X � EX . Write DX�EX
for the kernel of the natural homomor-

phism Div0
X�EX

→ J(k)Σ. Here, J(k)Σ stands for the maximal Σ-quotient
J(k)/(J(k){Σ′}) of J(k), where, for an abelian group M , M{Σ′} stands for
the subgroup of torsion elements a of M such that every prime divisor of the
order of a belongs to Σ′. Then DX�EX

sits naturally in the following exact
sequence:

0→ PriX�EX
→ DX�EX

→ J(k){Σ′} → 0,

where PriX�EX

def= O×
EX

/k× stands for the group of principal divisors supported
in X � EX .

Theorem 3.6 (Reconstruction of Functions). In the situation of The-
orem 2.2, assume that α is Frobenius-preserving. Write Σ def= ΣX = ΣY and
p

def= pX = pY (cf. Proposition 1.15(ii)(iii)). Then:
(i) The bijection φ : Xcl �EX

∼→ Y cl �EY induced by α (where EX and EY are
the exceptional sets) induces a natural bijection between the groups DX�EX

,
DY �EY

.
(ii) Assume, moreover, Σ† = Primes � {p}. Then the bijection in (i), to-
gether with the isomorphisms in Corollary 2.3, induces naturally an injective
homomorphism

O×
EX

↪→ (O×
EY

)p−n

,

where pn is the exponent of the p-primary finite abelian group JY (kY ){Σ′}.
The image Im(O×

EX
) of O×

EX
in (O×

EY
)p−n

is “commensurate” to O×
EY

, i.e., the
intersection Im(O×

EX
) ∩O×

EY
has finite indices both in Im(O×

EX
) and in O×

EY
.

Moreover, this injective homomorphism O×
EX

↪→ (O×
EY

)p−n

is functorial in
X, Y , in the following sense: if ξ : X ′ → X is a finite étale covering, arising
from an open subgroup ΠX′ ⊆ ΠX , which corresponds to a finite étale covering
η : Y ′ → Y via α (thus, ΠY ′ = α(ΠX′)), then we have a commutative diagram:

O×
EX′ −−−−→ (O×

EY ′ )
p−n′

�⏐⏐ �⏐⏐
O×

EX
−−−−→ (O×

EY
)p−n

where EX′
def= ξ−1(EX), EY ′

def= η−1(EY ), pn′ ≥ pn is the exponent of the
p-primary finite abelian group JY ′(kY ′){Σ′}, and the vertical arrows are the
natural embeddings.

Proof. (cf. [Mochizuki2], Theorem 2.1(ii).)
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(i) First, φ induces naturally a bijection Div0
X�EX

∼→ Div0
Y �EY

. Second,
the natural homomorphism Div0

X�EX
→ J(kX)Σ can be recovered ϕ-group-

theoretically from ΠX . (Observe the pro-Σ version of [Mochizuki2], Proposi-
tion 2.2(i). See also the discussion before Proposition 2.2 loc. cit.) Thus, α

induces naturally a commutative diagram:

Div0
X�EX

−−−−→ JX(kX)Σ⏐⏐�	
⏐⏐�	

Div0
Y �EY

−−−−→ JY (kY )Σ

where the vertical arrows are the isomorphisms induced by α. From this di-
agram we deduce naturally an isomorphism DX�EX

∼→ DY �EY
between the

kernels of the horizontal arrows.
(ii) From the isomorphism DX�EX

∼→ DY �EY
, we deduce naturally an embed-

ding (PriX�EX
)pn

(⊂ Ker(PriX�EX
→ JY (kY ){Σ′})) ↪→ PriY �EY

, from which
we deduce an embedding (O×

EX
)pn

↪→ (O×
EY

), or, equivalently, an embedding
O×

EX
↪→ (O×

EY
)p−n

, by Corollary 2.3 and Proposition 3.1(i)(ii). The desired
commensurabilty follows from the fact that both JX(kX){Σ′} and JY (kY ){Σ′}
are finite. Finally, the desired commutativity of diagram follows easily from
the functoriality of Kummer theory.

Theorem 3.7 (Totally Globally Principally Green-Compatible Isomor-
phisms Outside Exceptional Sets). In the situation of Theorem 3.6, assume
further that Σ† = Primes�{p}, and that α is totally globally principally Green-
compatible outside exceptional sets. Then α arises from a uniquely determined
commutative diagram of schemes :

X̃
∼−−−−→ Ỹ⏐⏐� ⏐⏐�

X
∼−−−−→ Y

in which the horizontal arrows are isomorphisms and the vertical arrows are
the profinite étale coverings determined by the groups ΠX , ΠY .

Proof. (cf. [Mochizuki2], Corollary 2.1, Remark 22.) Let l �= p be a prime
number and let kl

X , kl
Y be the (unique) Zl-extensions of kX , kY , respectively.

Let X l, Y l be the normalizations of X, Y in KXkl
X , KY kl

Y , respectively. Then
the p-primary abelian subgroups JX(kl

X){Σ′}, JY (kl
Y ){Σ′} of JX(kl

X), JY (kl
Y ),

respectively, are finite. (See, e.g., [Rosen], Theorem 11.6. Alternatively, this
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finiteness, say, for X follows from the fact that the profinite group GLN (Zp) is
almost pro-p, i.e., admits a pro-p open subgroup. Indeed, the action of GkX

on
JX(kX){Σ′} factors through the image ρ(GkX

) of the natural Galois represen-
tation ρ : GkX

→ Aut(Tp(JX)) 
 GLN (Zp), where Tp(JX) is the p-adic Tate
module of JX and N is the Zp-rank of Tp(JX). Now, since GkX

/Gkl
X

 Zl and

l �= p, the image ρ(Gkl
X

) is open in ρ(GkX
). Write k′

X for the finite extension
of kX corresponding to the finite quotient GkX

� ρ(GkX
)/ρ(Gkl

X
). Then, it is

easy to see that JX(kl
X){Σ′} coincides with JX(k′

X){Σ′} (⊂ JX(k′
X)), which

is clearly finite.) So, write pn0 for the exponent of JY (kl
Y ){Σ′}. By passing to

the limit over the finite extensions of kX , kY contained in kl
X , kl

Y , respectively,
we obtain a natural embedding O×

E
Xl

↪→ (O×
E

Y l
)p−n0 , where O×

E
Xl

, O×
E

Y l
are

the multiplicative groups of functions on X l, Y l, whose divisor has support dis-
joint from EXl

def= EX ×kX
kl

X , EY l
def= EY ×kY

kl
Y , respectively (cf. Theorem

3.6(ii)). (Recall that EX ⊂ Xcl, EY ⊂ Y cl are finite by Proposition 1.8(vi).)
Now, we shall apply a result of §4. (Observe that there are no vicious

circles since the discussion of §4 does not depend on the contents of earlier
§§.) More specifically, by Proposition 4.4, the above embedding O×

E
Xl

↪→
(O×

E
Y l

)p−n0 arises from a uniquely determined embedding KXl ↪→ Kp−n0

Y l of
function fields, where KXl , KY l are the function fields of X l, Y l, respectively.
(Observe that the value-preserving assumption in Proposition 4.4 is equiva-
lent to the Green-compatibility assumption. See Remark 3.2. Observe also
that X l(kl

X) is an infinite set by the Weil estimate on numbers of rational
points of curves over finite fields.) This embedding of fields restricts to the
original embedding of multiplicative groups O×

EX
↪→ (O×

EY
)p−n0 (i.e., the re-

striction of O×
E

Xl
↪→ (O×

E
Y l

)p−n0 ). It also restricts to an embedding of fields

KX ↪→ Kp−n0

Y . Indeed, the embedding KXl ↪→ Kp−n0

Y l is Galois-equivariant
with respect to the given isomorphism α : ΠX

∼→ ΠY , hence one obtains
an embedding KX ↪→ Kp−n0

Y by taking Galois invariants. Now, by applying
these arguments to α−1 : ΠY

∼→ ΠX , we see that the image of the embed-
ding KX ↪→ Kp−n0

Y contains Kpm0

Y , where pm0 is the exponent of JX(kl
X){Σ′}.

From this, we deduce that the embedding KX ↪→ Kp−n0

Y is radicial and maps
KX isomorphically onto Kps

Y for some integer −n0 ≤ s ≤ m0. Thus, in par-
ticular, the original embedding O×

EX
↪→ (O×

EY
)p−n0 induces an isomorphism

O×
EX

∼→ (O×
EY

)ps

. Now, by Theorem 3.6, the image Im(O×
EX

) of O×
EX

in
(O×

EY
)p−n0 (i.e., (O×

EY
)ps

) is commensurate to O×
EY

. This implies s = 0. That

is to say, the embedding KX ↪→ Kp−n0

Y maps KX isomorphically onto KY .
If ξ : X ′ → X is a finite étale covering, arising from an open subgroup
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ΠX′ ⊆ ΠX , which corresponds to a finite étale covering η : Y ′ → Y via α (thus,
ΠY ′ = α(ΠX′)), then the commutative diagram in Theorem 3.6(ii), together
with the above argument, induces a commutative diagram of embeddings of
fields:

KX′
τ ′−−−−→ Kp−n0

′

Y ′�⏐⏐ �⏐⏐
KX

τ−−−−→ Kp−n0

Y

where the vertical arrows are the natural embeddings, pn0
′
, pn0 stand for the

exponents of the p-primary abelian groups JY ′(kl
Y ′){Σ′}, JY (kl

Y ){Σ′}, respec-
tively (note that n′

0 ≥ n0), and the horizontal arrows are the embeddings
obtained above. Applying the above arguments to ΠX

∼→ ΠY and ΠX′
∼→ ΠY ′ ,

we obtain τ (KX) = KY , τ ′(KX′) = KY ′ . Thus, this diagram induces naturally
a commutative diagram:

KX′
∼−−−−→ KY ′�⏐⏐ �⏐⏐

KX
∼−−−−→ KY

where the vertical arrows are the natural embeddings and the horizontal arrows
are isomorphisms of fields. By passing to the limit over all open subgroups of
ΠX we obtain a natural commutative diagram:

KX̃
∼−−−−→ KỸ�⏐⏐ �⏐⏐

KX
∼−−−−→ KY

where KX̃ , KỸ stand for the function fields of X̃, Ỹ , respectively, the vertical
arrows are the natural embeddings, and the horizontal arrows are isomorphisms
of fields. This commutative diagram yields a commutative diagram of schemes
as in the statement of Theorem 3.7 with the desired properties. (cf. the proof
of [Tamagawa1], Theorem (6.3).)

Proposition 3.8 (Total Global Green-Compatibility Outside Exceptional
Sets). In the situation of Theorem 2.2, assume further that α is Frobenius-
preserving. Then the isomorphism α is totally globally Green-compatible outside
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exceptional sets. In particular, if Σ is of density 1, then α is totally globally
Green-compatible outside exceptional sets.

Proof. For the first assertion, the proof of [Mochizuki2], Corollary 3.1
(where Σ† = Primes† and EX = EY = ∅ are assumed) also works well in this
case. (Thus, the main ingredient of the proof is Theorem 2.6.) The second
assertion follows from the first, together with Proposition 1.15(viii).

Theorem 3.9 (A Prime-to-p Version of Grothendieck’s Anabelian Con-
jecture for Proper Hyperbolic Curves over Finite Fields). Let X and Y be
proper hyperbolic curves over finite fields kX , kY , respectively. Let ΣX , ΣY be
subsets of Primes, and assume Σ†

X
def= ΣX�{char(kX)} = Primes�{char(kX)},

Σ†
Y

def= ΣY � {char(kY )} = Primes � {char(kY )}. Write ΠX , ΠY for the ge-
ometrically pro-ΣX étale fundamental group of X, the geometrically pro-ΣY

étale fundamental group of Y , respectively. Let

α : ΠX
∼→ ΠY

be an isomorphism of profinite groups. Then α arises from a uniquely deter-
mined commutative diagram of schemes :

X̃
∼−−−−→ Ỹ⏐⏐� ⏐⏐�

X
∼−−−−→ Y

in which the horizontal arrows are isomorphisms and the vertical arrows are
the profinite étale coverings corresponding to the groups ΠX , ΠY .

Proof. Follows formally from Theorem 3.7 and Proposition 3.8.

As a consequence of Theorem 3.9, we deduce the following:

Corollary 3.10 (A Prime-to-p Version of Grothendieck’s Anabelian Con-
jecture for (Not Necessarily Proper) Hyperbolic Curves over Finite Fields).
Let U , V be (not necessarily proper) hyperbolic curves over finite fields kU ,
kV , respectively. Let ΣU , ΣV be subsets of Primes, and assume Σ†

U
def= ΣU �

{char(kU )} = Primes � {char(kU )}, Σ†
V

def= ΣV � {char(kV )} = Primes �

{char(kV )}. Write ΠU , ΠV for the geometrically pro-ΣU tame fundamental
group of U , the geometrically pro-ΣV tame fundamental group of V , respec-
tively. Let

α : ΠU
∼→ ΠV
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be an isomorphism of profinite groups. Then α arises from a uniquely deter-
mined commutative diagram of schemes :

Ũ
∼−−−−→ Ṽ⏐⏐� ⏐⏐�

U
∼−−−−→ V

in which the horizontal arrows are isomorphisms and the vertical arrows are
the profinite étale coverings corresponding to the groups ΠU , ΠV .

Proof. Let U ′ → U , V ′ → V be any finite étale Galois coverings arising
from the open normal subgroups ΠU ′ ⊆ ΠU , ΠV ′ ⊆ ΠV , which correspond to
each other via α, such that the smooth compactifications X ′, Y ′ of U ′, V ′,
respectively, are hyperbolic, and that the coverings ξ : X ′ → X, η : Y ′ → Y ,
where X, Y are the smooth compactifications of U , V , respectively, are ramified
above all the points of S

def= X � U , T
def= Y � V , respectively. (Observe that

such U ′ → U , V ′ → V are cofinal in the finite étale coverings arising from open
subgroups of ΠU , ΠV , respectively.) Thus, the isomorphism α : ΠU

∼→ ΠV

restricts to an isomorphism α′ : ΠU ′
∼→ ΠV ′ . By Proposition 1.15(vi)(viii), α′

induces naturally an isomorphism α̃′ : ΠX′
∼→ ΠY ′ , which fits into the following

commutative diagram:

ΠU ′
α′−−−−→ ΠV ′⏐⏐� ⏐⏐�

ΠX′
α̃′−−−−→ ΠY ′

in which the vertical maps are the natural surjections.
By Theorem 3.9, the isomorphism α̃′ arises from a uniquely determined

commutative diagram of schemes:

X̃ ′ ∼−−−−→ Ỹ ′⏐⏐� ⏐⏐�
X ′ ∼−−−−→ Y ′

in which the horizontal arrows are isomorphisms and the vertical arrows are
the profinite étale coverings corresponding to the groups ΠX′ , ΠY ′ . Since α̃′ :
ΠX′

∼→ ΠY ′ is equivariant with respect to α : ΠU
∼→ ΠV , this last diagram

is also equivariant with respect to α : ΠU
∼→ ΠV . Thus, by dividing by the
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actions of ΠU , ΠV , we see that it induces naturally a commutative diagram of
schemes:

X ′ ∼−−−−→ Y ′⏐⏐�ξ

⏐⏐�η

X
∼−−−−→ Y

The commutativity of this diagram forces the isomorphisms X ′ ∼→ Y ′ and
X

∼→ Y to preserve the sets of ramified points of ξ, η. Thus, by the choice of
ξ, η, this diagram induces a commutative diagram of schemes:

U ′ ∼−−−−→ V ′⏐⏐�ξ

⏐⏐�η

U
∼−−−−→ V

Finally, by considering this last commutative diagram for any coverings
U ′ → U , V ′ → V as above, we obtain a commutative diagram of schemes
in the assertion of Corollary 3.10, with desired properties. (cf. the proof of
[Tamagawa1], Theorem (6.3).)

Finally, we deduce from our main result a prime-to-p birational version of
Grothendieck’s anabelian conjecture for (function fields of) curves over finite
fields (see Corollary 3.11 below).

Let X be a proper, smooth, geometrically connected curve over a finite
field k = kX of characteristic p = pX > 0. Let KX be the function field of
X. Let GKX

def= Gal(Ksep
X /KX) be the absolute Galois group of KX (where

Ksep
X is a separable closure of KX), which sits naturally in the following exact

sequence:
1→ GKX

→ GKX
→ Gk

def= Gal(k/k)→ 1,

where GKX

def= Gal(Ksep
X /KX) is the absolute Galois group of the function

field KX of X
def= X ×k k, and Gk

def= Gal(k/k) is the absolute Galois group
of k (here, k is the algebraic closure of k in Ksep

X ). Let ΓKX
be the maximal

prime-to-p quotient of GKX
, and let ΓKX

def= GKX
/ Ker(GKX

� ΓKX
) be the

corresponding quotient of GKX
. We shall refer to ΓKX

as the geometrically
pro-prime-to-characteristic quotient of GKX

. As an important consequence
of Corollary 3.10, we deduce the following prime-to-p version of Uchida’s
Theorem on isomorphisms between absolute Galois groups of function fields
(cf. [Uchida]).
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Corollary 3.11 (A Prime-to-p Version of Uchida’s Theorem). Let X,
Y be proper, smooth, geometrically connected curves over finite fields kX , kY ,
respectively. Let KX , KY be the function fields of X, Y , respectively. Let GKX

,
GKY

be the absolute Galois groups of KX , KY , respectively, and let ΓKX
, ΓKY

be their geometrically prime-to-characteristic quotients, respectively. Let

α : ΓKX

∼→ ΓKY

be an isomorphism of profinite groups. Then α arises from a uniquely deter-
mined commutative diagram:

(KX)∼ ∼−−−−→ (KY )∼�⏐⏐ �⏐⏐
KX

∼−−−−→ KY

in which the horizontal arrows are isomorphisms and the vertical arrows are
the extensions corresponding to the groups ΓKX

, ΓKY
, respectively.

Proof. Following the arguments of [Uchida], Lemma 3 (involving Brauer
groups), one can establish a bijection φ : Xcl ∼→ Y cl such that α(Dx) = Dφ(x)

holds for each x ∈ Xcl, where Dx stands for the decomposition group of ΓKX
at

x (which is well-defined up to conjugation). Further, α(Ix) = Iφ(x) also holds
for each x ∈ Xcl, where Ix stands for the inertia subgroup of Dx by the same
argument (involving local class field theory) as in the proof of Lemma 4 loc. cit.
Let S ⊂ Xcl be a finite subset such that U

def= X � S is hyperbolic. Let T
def=

φ(S) and V
def= Y � T . Then α induces naturally an isomorphism ΠU

∼→ ΠV

between the geometrically prime-to-characteristic quotients of π1(U), π1(V ),
respectively. The latter arises, by Corollary 3.10, from a uniquely determined
commutative diagram of schemes:

Ũ
∼−−−−→ Ṽ⏐⏐� ⏐⏐�

U
∼−−−−→ V

By considering this commutative diagram for all finite subsets S ⊂ Xcl, T ⊂ Y cl

as above, we obtain a commutative diagram of field extensions in the assertion
of Corollary 3.11 with desired properties.

Remark 3.12. As was communicated to the authors by the referee, in the
above proof of Corollary 3.11, one may also recover the decomposition groups
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of points, say, for X, as follows: First, one recovers the quotient GkX
of ΓKX

by
abelianizing and dividing by the closure of torsion. In particular, one recovers
the characteristic p = pX of kX as the unique prime number l such that the
maximal pro-l quotient Γl

KX
of the geometric part ΓKX

def= Ker(ΓKX
� GkX

)
is topologically finitely generated. Next, for any prime number l �= p, one
recovers the pro-l cyclotomic character up to multiplication by a character of
finite order as a character χ such that the action of GkX

on the abelianization
Γl,ab

KX
of Γl

KX
has the property that the closure of the union of the χ-eigenspaces

for open subgroups of GkX
is not topologically finitely generated. Then one

recovers the genus of X as the Zl-rank of the quotient of Γl,ab
KX

by this closure.
Once one has the genus, the rest of the reconstruction of the decomposition
groups of points is “standard” (cf. Proposition 1.15 and Theorem 1.18).

Remark 3.13. In [Stix1], [Stix 2], Stix proved a certain relative version of
Grothendieck’s anabelian conjecture for hyperbolic curves over finitely gener-
ated fields in positive characteristics. His proof relies on (the absolute version
of) Grothendieck’s anabelian conjecture for affine hyperbolic curves over the
prime field, proved by Tamagawa in [Tamagawa1]. Using the same arguments as
in [Stix1], one should be able to prove a “prime-to-characteristic” relative ver-
sion of Grothendieck’s anabelian conjecture for hyperbolic curves over finitely
generated fields in positive characteristics, by reducing it to our main results
in Theorem 3.9 and Corollary 3.10.

Remark 3.14. Even after Theorem 3.9 and Corollary 3.10 are established,
it is still unclear to the authors, at the time of writing, whether or not EX = ∅
for ΣX = Primes � {char(k)}.

Indeed, following a standard way in anabelian geometry of approaching this
kind of problem, let us consider the following tautological family of hyperbolic
curves of type (gX , 1):

f : UX×X
def= X ×X � ι(X)→ X.

Then f induces a right exact sequence:

ΔF → ΔUX×X
→ ΔX → 1,

where F is a geometric fiber of f (which is a hyperbolic curve of type (gX , 1)),
and Δ stands for the maximal pro-ΣX quotient of the geometric fundamental
group. Suppose that this right exact sequence is also left exact:

1→ ΔF → ΔUX×X
→ ΔX → 1.
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Then the sequence
1→ ΔF → ΠUX×X

→ ΠX → 1

is also exact, where Π stands for the maximal geometrically pro-ΣX quotient
of the arithmetic fundamental group. Now, take x, x′ ∈ X(k) and suppose
that Dx, Dx′ ⊂ ΠX coincide with each other (up to conjugation). Then, by
pulling back the last exact sequence by Dx, Dx′ ⊂ ΠX , we can easily obtain
the following commutative diagram:

ΠX�{x}
∼−−−−→ ΠX�{x′}⏐⏐� ⏐⏐�

ΠX ΠX

Then, by Theorem 3.9 and Corollary 3.10, we obtain the following commutative
diagram:

X � {x} ∼−−−−→ X � {x′}⏐⏐� ⏐⏐�
X X.

(Observe that the commutativity follows from the uniqueness assertion in The-
orem 3.9.) This implies x = x′, as desired.

However, it is unclear to the authors, at the time of writing, whether or not
the above left exactness (i.e., the injectivity of ΔF → ΔUX×X

) is valid. (Note
that this is a purely topological (or even purely group-theoretical) problem.)

§4. Recovering the Additive Structure

In this §, we complete the proofs of the results of §3 by investigating the
problem of recovering the additive structure of function fields of curves.

Let X, Y be proper, smooth, geometrically connected curves over fields kX ,
kY , respectively. Let Xcl, Y cl be the set of closed points of X, Y , respectively.
Let EX ⊂ Xcl, EY ⊂ Y cl be finite subsets, and let

φ : Xcl � EX
∼→ Y cl � EY

be a (set-theoretic) bijection. Write

OEX

def= {f ∈ KX | ∀x ∈ EX , ordx(f) ≥ 0},

OEY

def= {g ∈ KY | ∀y ∈ EY , ordy(g) ≥ 0},
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where KX , KY denote the function fields of X, Y , respectively. These are the
semi-local rings of functions on X, Y that are regular at all points of EX , EY ,
respectively. Then we have

O×
EX

= {f ∈ K×
X | supp(div(f)) ∩EX = ∅},

O×
EY

= {g ∈ K×
Y | supp(div(g)) ∩EY = ∅}.

Let
ι : O×

EX
↪→ O×

EY

be an embedding of multiplicative groups.

Definition 4.1. The map ι : O×
EX

↪→ O×
EY

is called order-preserving,
relative to the bijection φ, if, for each x ∈ Xcl � EX , we have a commutative
diagram:

O×
EY

ordφ(x)−−−−−→ Z

ι

�⏐⏐ ex

�⏐⏐
O×

EX

ordx−−−−→ Z

where the right vertical map is the multiplication by a positive integer ex on Z.

Definition 4.2. The map ι : O×
EX

↪→ O×
EY

is called value-preserving,
relative to the bijection φ, if, for each x ∈ Xcl �EX , there exists an embedding
of multiplicative groups

ιx : k(x)× ↪→ k(φ(x))×,

where k(x), k(φ(x)) are the residue fields of X, Y at x, φ(x), respectively, such
that, for any f ∈ O×

EX
with ordx(f) = 0, the equalities

ordφ(x)(ι(f)) = 0, ιx(f(x)) = ι(f)(φ(x))

hold.

Remark 4.3. (i) Assume that the map ι is order-preserving relative to φ.
Then ι induces naturally an embedding k×

X ↪→ k×
Y of the multiplicative groups

k×
X , k×

Y of kX , kY , respectively. We extend this embedding to an embedding
kX ↪→ kY (of multiplicative monoids) by letting 0 → 0. We denote this last
embedding also by ι.
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(ii) Assume that the map ι is order-preserving and value-preserving relative
to φ. For each x ∈ Xcl � EX , we extend ιx to an embedding k(x) ∪ {∞} ↪→
k(φ(x))∪ {∞} by letting 0 → 0, ∞ → ∞, and denote this last embedding also
by ιx. Then the equality

ιx(f(x)) = ι(f)(φ(x))

holds for any x ∈ Xcl � EX and any f ∈ O×
EX

.

Our aim in this § is to prove the following:

Proposition 4.4 (Recovering the Additive Structure). Let ι : O×
EX

↪→
O×

EY
be an embedding of multiplicative groups which is order-preserving and

value-preserving relative to a bijection φ : Xcl � EX
∼→ Y cl � EY , where EX ⊂

Xcl, EY ⊂ Y cl are finite subsets. Assume further that X(kX) is an infinite set.
Then ι arises from a uniquely determined embedding KX ↪→ KY of function
fields.

The rest of this § will be devoted to the proof of Proposition 4.4. Thus,
we shall assume that the embedding

ι : O×
EX

↪→ O×
EY

is order-preserving and value-preserving relative to a bijection

φ : Xcl � EX
∼→ Y cl � EY ,

and that X(kX) is an infinite set, hence, in particular, that kX is an infinite
field.

Lemma 4.5 (Recovering the Additive Structure of Constants). The
map ι preserves the additive structure of the constant fields kX , kY , respectively,
i.e.,

ι(λ + μ) = ι(λ) + ι(μ)

holds for any λ, μ ∈ kX (cf. Remark 4.3(i)).

Proof. Fix a point x0 ∈ Xcl �EX . Then, by the Riemann-Roch theorem,
we can find a non-constant function f ∈ O×

EX
such that the pole divisor div(f)∞

is of the form n·x0 for some integer n > 0. Next, observe that f+α ∈ O×
EX

holds
for infinitely many α ∈ k×

X (namely, for any α ∈ k×
X �({−f(x) | x ∈ EX}∩k×

X)).
For α ∈ k×

X with f + α ∈ O×
EX

, we shall analyze the divisor of the function
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ι(f +α)−ι(f). (Observe that ι(f +α)−ι(f) �= 0, since ι is injective.) We claim:
(i) the support of the divisor div(ι(f +α)− ι(f)) is contained in {φ(x0)}∪EY ,
and (ii) the support of the pole divisor div(ι(f + α) − ι(f))∞ is contained
in {φ(x0)}. Indeed, let x ∈ Xcl � (EX ∪ {x0}), and let y = φ(x). Then,
ordy(ι(f+α)) = ex ordx(f+α) ≥ 0 and ordy(ι(f)) = ex ordx(f) ≥ 0. Moreover,
ι(f + α)(y) �= ι(f)(y) as follows from the value-preserving assumption, since
(f+α)(x) �= f(x). Thus, y does not belong to the support of div(ι(f+α)−ι(f)),
hence (i) follows. Next, as ι(f), ι(f +α) ∈ O×

EY
, we have ι(f +α)− ι(f) ∈ OEY

.
Thus, ι(f + α)− ι(f) has no poles in EY , and (ii) follows.

Further, the order of ι(f +α)− ι(f) at the possible pole φ(x0) is bounded:

ordφ(x0)(ι(f + α)− ι(f)) ≥ min(ordφ(x0)(ι(f + α)), ordφ(x0)(ι(f))) = −nex0 .

This implies the boundedness of the zero divisor of ι(f + α)− ι(f), hence also
that there are only finitely many possibilities for the divisor of zeroes and poles
of ι(f + α) − ι(f). We deduce from this that there exists an infinite subset
A ⊂ k×

X , such that f + α ∈ O×
EX

holds for all α ∈ A, and that the divisor
div(ι(f + α)− ι(f)) is constant for α ∈ A (i.e., div(ι(f + α)− ι(f)) (α ∈ A) is
independent of α).

Let α, β ∈ A with α �= β. Thus,

ι(f + β)− ι(f)
ι(f + α)− ι(f)

= c ∈ k×
Y .

Further, c = ι(β)
ι(α) , as is easily seen by evaluating the function ι(f+β)−ι(f)

ι(f+α)−ι(f) at
φ(x1), where x1 is a zero of f . (Observe x1 /∈ EX .) Thus, we have the equality

ι(β)(ι(f + α)− ι(f)) = ι(α)(ι(f + β)− ι(f))

which is equivalent to

(∗) ι(f)(ι(α)− ι(β)) = ι(α)ι(f + β)− ι(β)ι(f + α).

Let

g
def= gα,β

def=
β(f + α)
(α− β)f

∈ O×
EX

.

Note that g = β(1+αf−1)
(α−β) is non-constant, since f is non-constant. Moreover,

we have
g + 1 =

α(f + β)
(α− β)f

∈ O×
EX

.

We will show the identity ι(g + 1) = ι(g) + 1. Indeed,

ι(g + 1)− ι(g) =
ι(α)ι(f + β)
ι(α− β)ι(f)

− ι(β)ι(f + α)
ι(α− β)ι(f)

(∗)
=

ι(α)− ι(β)
ι(α− β)

.
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Moreover,
ι(α)− ι(β)
ι(α− β)

= 1,

as follows by evaluating the function ι(g +1)− ι(g) at φ(x2), where x2 is a zero
of g. (Observe x2 /∈ EX .) Thus,

ι(g + 1) = ι(g) + 1.

Next, let λ, μ ∈ kX , and we shall show the identity ι(λ + μ) = ι(λ) + ι(μ).
If one (or both) of λ, μ is 0, this identity clearly holds. So, we may and shall
assume λ, μ ∈ k×

X and set η
def= λ/μ ∈ k×

X . First, assume that

η ∈ kX � ({g(x) | x ∈ EX} ∩ kX)

and let x3 ∈ Xcl be a zero of g − η. Thus, x3 /∈ EX , and, by evaluating the
identity ι(g+1) = ι(g)+1 at φ(x3), we obtain ι(η)+1 = ι(η+1). To show this
equality for general η, we shall fix (f and) β ∈ A and make α ∈ A�{β} vary in
the expression of g = gα,β . More precisely, take any α ∈ (A�{β})�{ (η+1)βf(x)

ηf(x)−β |
x ∈ EX}. Then g = gα,β satisfies η /∈ kX � ({g(x) | x ∈ EX} ∩ kX). Thus, by
the preceding argument, we conclude that

ι(η) + 1 = ι(η + 1)

holds in general.
Finally, we obtain

ι(λ + μ) = ι(μ)ι(η + 1) = ι(μ)(ι(η) + 1) = ι(λ) + ι(μ),

as desired.

Corollary 4.6. The map ι : kX → kY is an embedding of fields.

Proof. ι is multiplicative by definition and additive by Lemma 4.5.

Corollary 4.7. For each x ∈ X(kX)�EX , the map ιx : k(x)→ k(φ(x))
is an embedding of fields.

Proof. For each x ∈ Xcl � EX , consider the following diagram

k(x) ιx−−−−→ k(φ(x))�⏐⏐ �⏐⏐
kX

ι−−−−→ kY
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where the vertical arrows are evaluation maps. By the value-preserving prop-
erty, this diagram is commutative. If, moreover, x ∈ X(kX), we have kX

∼→
k(x). Thus, Corollary 4.7 follows from Corollary 4.6.

Next, let Z[O×
EX

], Z[O×
EY

] be the group algebras of the multiplicative
groups O×

EX
, O×

EY
, respectively, over Z. The group homomorphism ι : O×

EX
↪→

O×
EY

extends uniquely to a ring homomorphism

ι′ : Z[O×
EX

]→ Z[O×
EY

].

Namely,

ι′
(∑

i

nifi

)
def=
∑

i

niι(fi)

where ni ∈ Z, fi ∈ O×
EX

. Further, let RX , RY be the Z-subalgebras of KX ,
KY , respectively, generated by O×

EX
, O×

EY
, respectively. Observe that RX , RY

may be naturally regarded as quotient rings of Z[O×
EX

], Z[O×
EY

], respectively.

Lemma 4.8. The ring homomorphism ι′ : Z[O×
EX

] → Z[O×
EY

] induces
a (unique) ring homomorphism ιR : RX → RY . More precisely, The composite
of ι′ : Z[O×

EX
] → Z[O×

EY
] and the natural surjection Z[O×

EY
] → RY factors

through the natural surjection Z[O×
EX

]→ RX .

Proof. Take any element

F =
∑

i

nifi ∈ Z[O×
EX

],

where ni ∈ Z, fi ∈ O×
EX

, such that the image FX of F in RX is 0. Then we
have to show that the image FY of F in RY is also 0. To avoid confusion, we
shall denote a sum in a ring R by means of

∑
R. Then the assumption FX = 0

can be expressed as the equality∑
i

RX
nifi = 0.

Let Si ⊂ Xcl denote the (finite) set of poles of fi and consider a point x ∈
X(kX) � (EX ∪ ∪iSi). By evaluating the above equality at x, we obtain the
equality ∑

i

k(x) nifi(x) = 0.

By Corollary 4.7 and the value-preserving property at x, this last equality
implies the equality ∑

i

k(φ(x)) niι(fi)(φ(x)) = 0,
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or, equivalently, the equality

FY (φ(x)) = 0

in k(φ(x)). Since x is an arbitrary point in the infinite set X(kX)�(EX∪∪iSi),
this implies FY = 0 in RY , as desired.

Lemma 4.9. For each f ∈ OEX
(respectively, f ∈ OEY

), there exist
g, h ∈ O×

EX
(respectively, g, h ∈ O×

EY
), such that f = g + h. In particular, we

have RX = OEX
(respectively, RY = OEY

).

Proof. It suffices to prove the assertions for X. For each f ∈ OEX
,

consider the subset AX
def= k×

X � ({f(x) | x ∈ EX} ∩ k×
X) of O×

EX
. Since kX

is infinite and EX is finite, AX is nonempty, so we can take α ∈ AX ⊂ O×
EX

.

By the definition of AX , we have f − α ∈ O×
EX

. Thus, g
def= α and h

def= f − α

satisfy the desired conditions. In particular, we have OEX
⊂ RX . Since the

other inclusion RX ⊂ OEX
is clear, this completes the proof.

Lemma 4.10. The ring homomorphism ιR : RX → RY in Lemma 4.8
is injective.

Proof. Take any f ∈ RX with ιR(f) = 0. By Lemma 4.9, f ∈ RX = OEX

can be written as f = g + h for some g, h ∈ O×
EX

. Now we have

ι(g) = ιR(g) = ιR(f) + ιR(−h) = ι(−h).

Since ι is injective, this shows g = −h, hence f = 0, as desired.

Corollary 4.11. The ring homomorphism ιR : RX → RY extends
uniquely to an embedding KX ↪→ KY of fields.

Proof. This follows from Lemmas 4.9 and 4.10.

This completes the proof of Proposition 4.4.

Remark 4.12. The above proof of Proposition 4.4 relies on the value-
preserving property at all but finitely many points of Xcl (or, more precisely,
all points of Xcl � EX). This is in contrast to the proof of [Tamagawa1],
Lemma (4.7), which relies on the value-preserving property at only finitely
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many points. Thus, unlike the case of [Tamagawa1], Theorem (4.3), we need,
at least for the time being, to resort to Mochizuki’s theory of cuspidalizations
to prove Corollary 3.10, even in the affine case.

We should also remark here that the birational version given in Corol-
lary 3.11 is independent of Mochizuki’s theory of cuspidalizations, although we
resorted to Corollary 3.10 in the present proof of Corollary 3.11 for the sake
of simplicity. Indeed, once the bijection φ : Xcl ∼→ Y cl is established so that
α(Dx) = Dφ(x) for each x ∈ Xcl, we can construct an embedding ι : K×

X ↪→ K×
Y

directly from α : ΓKX

∼→ ΓKY
(via Kummer theory or via class field theory),

such that ι is order-preserving and value-preserving relative to φ.
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