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The Étale Theta Function and
Its Frobenioid-Theoretic Manifestations

By

Shinichi Mochizuki∗

Abstract

We develop the theory of the tempered anabelian and Frobenioid-theoretic aspects
of the “étale theta function”, i.e., the Kummer class of the classical formal algebraic
theta function associated to a Tate curve over a nonarchimedean mixed-characteristic
local field. In particular, we consider a certain natural “environment” for the study of
the étale theta function, which we refer to as a “mono-theta environment” — essen-
tially a Kummer-theoretic version of the classical theta trivialization — and show that
this mono-theta environment satisfies certain remarkable rigidity properties involving
cyclotomes, discreteness, and constant multiples, all in a fashion that is compatible
with the topology of the tempered fundamental group and the extension structure of
the associated tempered Frobenioid.
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Introduction

The fundamental goal of the present paper is to study the tempered an-
abelian [cf. [André], [Mzk14]] and Frobenioid-theoretic [cf. [Mzk17], [Mzk18]]
aspects of the theta function of a Tate curve over a nonarchimedean mixed-
characteristic local field. The motivation for this approach to the theta function
arises from the long-term goal of overcoming various obstacles that occur when
one attempts to apply the Hodge-Arakelov theory of elliptic curves [cf. [Mzk4],
[Mzk5]; [Mzk6], [Mzk7], [Mzk8], [Mzk9], [Mzk10]] to the diophantine geometry
of elliptic curves over number fields. That is to say, the theory of the present
paper is motivated by the expectation that these obstacles may be overcome
by translating the [essentially] scheme-theoretic formulation of Hodge-Arakelov
theory into the language of the geometry of categories [e.g., the “temperoids”
of [Mzk14], and the “Frobenioids” of [Mzk17], [Mzk18]]. In certain respects,
this situation is reminiscent of the well-known classical solution to the problem
of relating the dimension of the first cohomology group of the structure sheaf
of a smooth proper variety in positive characteristic to the dimension of its
Picard variety — a problem whose solution remained elusive until the founda-
tions of the algebraic geometry of varieties were reformulated in the language of
schemes [i.e., one allows for the possibility of nilpotent sections of the structure
sheaf].

Since Hodge-Arakelov theory centers around the theory of the theta func-
tion of an elliptic curve with bad multiplicative reduction [i.e., a “Tate curve”],
it is natural to attempt to begin such a translation by concentrating on such
theta functions on Tate curves, as is done in the present paper. Indeed, Hodge-
Arakelov theory may be thought of as a sort of “canonical analytic continuation”
of the theory of theta functions on Tate curves to elliptic curves over number
fields. Here, we recall that although classically, the arithmetic theory of theta
functions on Tate curves is developed in the language of formal schemes in,
for instance, [Mumf] [cf. [Mumf], pp. 306-307], this theory only addresses the
“slope zero portion” of the theory — i.e., the portion of the theory that involves
the quotient of the fundamental group of the generic fiber of the Tate curve that
extends to an étale covering in positive characteristic. From this point of view,
the relation of the theory of §1, §2 of the present paper to the theory of [Mumf]
may be regarded as roughly analogous to the relation of the theory of p-adic
uniformizations of hyperbolic curves developed in [Mzk1] to Mumford’s theory
of Schottky uniformations of hyperbolic curves [cf., e.g., [Mzk1], Introduction,
§0.1; cf. also Remark 5.10.2 of the present paper].

Frequently in classical scheme-theoretic constructions, such as those that
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appear in the scheme-theoretic formulation of Hodge-Arakelov theory, there is
a tendency to make various arbitrary choices in situations where, a priori, some
sort of indeterminacy exists, without providing any sort of intrinsic justifica-
tion for these choices. Typical examples of such choices involve the choice of
a particular rational function or section of a line bundle among various possi-
bilities related by a constant multiple, or the choice of a natural identification
between various “cyclotomes” [i.e., isomorphic copies of the module of N -th
roots of unity, for N ≥ 1 an integer] appearing in a situation [cf., e.g., [Mzk13],
Theorem 4.3, for an example of a crucial rigidity result in anabelian geometry
concerning this sort of “choice”].

One important theme of the present paper is the study of phenomena that
involve some sort of “extraordinary rigidity” [cf. Grothendieck’s famous use of
this expression in describing his anabelian philosophy]. This sort of “extraordi-
nary rigidity” may be thought of as a manifestation of the very strong canoni-
cality present in the theory of theta functions on Tate curves that allows one,
in Hodge-Arakelov theory, to effect a “canonical analytic continuation” of this
theory on Tate curves to elliptic curves over global number fields. The various
examples of “extraordinary rigidity” that appear in the theory of the étale theta
function may be thought of as examples of intrinsic, category-theoretic “justi-
fications” for the arbitrary choices that appear in classical scheme-theoretic
discussions. Such category-theoretic “justifications” depend heavily on the
“proper category-theoretic formulation” of various scheme-theoretic “venues”.
In the theory of the present paper, one central such category-theoretic for-
mulation is a mathematical structure that we shall refer to as a mono-theta
environment [cf. Definition 2.13, (ii)]. Roughly speaking:

The mono-theta environment is essentially a Kummer-theoretic ver-
sion — i.e., a Galois-theoretic version obtained by extracting various
N -th roots [for N ≥ 1 an integer] — of the theta trivialization that
appears in classical formal scheme-theoretic discussions of the theta
function on a Tate curve.

A mono-theta environment may be thought of as a sort of common core for, or
bridge between, the [tempered] étale- and Frobenioid-theoretic approaches to
the étale theta function [cf. Remarks 2.18.2, 5.10.1, 5.10.2, 5.10.3].

We are now ready to discuss the main results of the present paper. First,
we remark that

the reader who is only interested in the definition and basic tempered
anabelian properties of the étale theta function may restrict his/her
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attention to the theory of §1, the main result of which is a tempered
anabelian construction of the étale theta function [cf. Theorems 1.6,
1.10].

On the other hand, the main results of the bulk of the paper, which concern
more subtle rigidity properties of the étale theta function involving associated
mono-theta environments and tempered Frobenioids, may be summarized as
follows:

A mono-theta environment is a category/group-theoretic invariant of
the tempered étale fundamental group [cf. Corollary 2.18] associated
to [certain coverings of] a punctured elliptic curve [satisfying certain
properties] over a nonarchimedean mixed-characteristic local field, on
the one hand, and of a certain tempered Frobenioid [cf. Theorem 5.10,
(iii)] associated to such a curve, on the other. Moreover, a mono-theta
environment satisfies the following rigidity properties:

(a) cyclotomic rigidity [cf. Corollary 2.19, (i); Remark 2.19.4];

(b) discrete rigidity [cf. Corollary 2.19, (ii); Remarks 2.16.1,
2.19.4];

(c) constant multiple rigidity [cf. Corollary 2.19, (iii); Re-
marks 5.12.3, 5.12.5]

— all in a fashion that is compatible with the topology of the tem-
pered fundamental group as well as with the extension structure
of the tempered Frobenioid [cf. Corollary 5.12 and the discussion of
the following remarks].

In particular, the phenomenon of “cyclotomic rigidity” gives a “category-
theoretic” explanation for the special role played by the first power [i.e., as
opposed to the M -th power, for M > 1 an integer] of [the l-th root, when one
works with l-torsion points, for l ≥ 1 an odd integer, of] the theta function
[cf. Remarks 2.19.2, 2.19.3, 5.10.3, 5.12.5] — a phenomenon which may also
be seen in “scheme-theoretic” Hodge-Arakelov theory [a theory that also ef-
fectively involves [sections of] the first power of some ample line bundle, and
which does not generalize in any evident way to arbitrary powers of this ample
line bundle].

One further interesting aspect of cyclotomic rigidity in the theory of the
present paper is that it is obtained essentially as the result of a certain com-
putation involving commutators [cf. Remark 2.19.2]. Put another way, one
may think of this cyclotomic rigidity as a sort of consequence of the nonabelian
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structure of [what essentially amounts, from a more classical point of view, to]
the “theta-group”. This application of the structure of the theta-group differs
substantially from the way in which the structure of the theta-group is used in
more classical treatments of the theory of theta functions — namely, to show
that certain representations, such as those arising from theta functions, are
irreducible. One way to understand this difference is as follows. Whereas clas-
sical treatments that center around such irreducibility results only treat certain
l-dimensional subspaces of the l2-dimensional space of set-theoretic functions
on the l-torsion points of an elliptic curve, Hodge-Arakelov theory is concerned
with understanding [“modulo” the l-dimensional subspace which has already
been well understood in the classical theory!] the entire l2-dimensional func-
tion space that appears [cf. [Mzk4], §1.1]. Put another way, the l-dimensional
subspace which forms the principal topic of the classical theory may be thought
of as corresponding to the space of holomorphic functions [cf. [Mzk4], §1.4.2];
by contrast, Hodge-Arakelov theory — cf., e.g., the arithmetic Kodaira-Spencer
morphism of [Mzk4], §1.4 — is concerned with understanding deformations of
the holomorphic structure, from an arithmetic point of view. Moreover, from
the point of view of considering such deformations of holomorphic structure, it
is convenient, and, indeed, more efficient, to work “modulo variations contained
within the subspace corresponding to the holomorphic functions” — which, at
any rate, may be treated, as a consequence of the classical theory of irreducible
representations of the theta-group, as a single “irreducible unit”! This is pre-
cisely the point of view of the “Lagrangian approach” of [Mzk5], §3, an approach
which allows one to work “modulo the l-dimensional subspace of the classical
theory”, by applying various isogenies that allow one to replace the “entire
l2-dimensional function space” associated to the original elliptic curve by an
l-dimensional function space that is suited to studying “arithmetic deforma-
tions of holomorphic structure” in the style of Hodge-Arakelov theory. In the
present paper, these isogenies of the “Lagrangian approach to Hodge-Arakelov
theory” correspond to the various coverings that appear in the discussion at the
beginning of §2; the resulting “l-dimensional function space” then corresponds,
in the theory of the present paper, to the space of functions on the labels that
appear in Corollary 2.9.

Here, it is important to note that although the above three rigidity proper-
ties may be stated and understood to a certain extent without reference to the
Frobenioid-theoretic portion of the theory [cf. §2], certain aspects of the inter-
dependence of these rigidity properties, as well as the meaning of establishing
these rigidity properties under the condition of compatibility with the topology
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of the tempered fundamental group as well as with the extension structure of
the tempered Frobenioid, may only be understood in the context of the theory
of Frobenioids [cf. Corollary 5.12 and the discussion of the following remarks].
Indeed, one important theme of the theory of the present paper — which may,
roughly, be summarized as the idea that sometimes

“less (respectively, more) data yields more (respectively, less) infor-
mation”

[cf. Remark 5.12.9] — is precisely the study of the rather intricate way in
which these various rigidity/compatibility properties are related to one another.
Typically speaking, the reason for this [at first glance somewhat paradoxical]
phenomenon is that “more data” means more complicated systems made up of
various components, hence obligates one to keep track of the various indeter-
minacies that arise in relating [i.e., without resorting to the use of “arbitrary
choices”] these components to one another. If these indeterminacies are suffi-
ciently severe, then they may have the effect of obliterating certain structures
that one is interested in. By contrast, if certain portions of such a system are
redundant, i.e., in fact uniquely and rigidly — i.e., “canonically” — determined
by more fundamental portions of the system, then one need not contend with
the indeterminacies that arise from relating the redundant components; this
yields a greater chance that the structures of interest are not obliterated by the
intrinsic indeterminacies of the system.

One way to appreciate the “tension” that exists between the various rigid-
ity properties satisfied by the mono-theta environment is by comparing the the-
ory of the mono-theta environment to that of the bi-theta environment [cf. Def-
inition 2.13, (iii)]. The bi-theta environment is essentially a Kummer-theoretic
version of the pair of sections — corresponding to the “numerator” and “de-
nominator” of the theta function — of a certain ample line bundle on a Tate
curve. One of these two sections is the theta trivialization that appears in the
mono-theta environment; the other of these two sections is the “algebraic sec-
tion” that arises tautologically from the original definition of the ample line
bundle.

The bi-theta environment satisfies cyclotomic rigidity and constant multi-
ple rigidity properties for somewhat more evident reasons than the mono-theta
environment. In the case of constant multiple rigidity, this arises partly from
the fact that the bi-theta environment involves working, in essence, with a ratio
[i.e., in the form of a “pair”] of sections, hence is immune to the operation of
multiplying both sections by a constant [cf. Remarks 5.10.4; 5.12.7, (ii)]. On
the other hand, the bi-theta environment fails to satisfy the discrete rigidity
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property satisfied by the mono-theta environment [cf. Corollary 2.16; Remark
2.16.1]. By contrast, the mono-theta environment satisfies all three rigidity
properties, despite the fact that cyclotomic rigidity [cf. the proof of Corollary
2.19, (i); Remark 2.19.2] and constant multiple rigidity [cf. Remarks 5.12.3,
5.12.5] are somewhat more subtle.

Here, it is interesting to note that the issue of discrete rigidity for the
mono-theta and bi-theta environments revolves, in essence, around the fact
that Ẑ/Z �= 0, i.e., the gap between Z and its profinite completion Ẑ — cf.
Remark 2.16.1. On the other hand, the subtlety of constant multiple rigidity
for mono-theta environments revolves, in essence, around the nontriviality of
the extension structure of a Frobenoid [i.e., as an “extension by line bundles of
the base category” — cf. Remarks 5.10.2, 5.12.3, 5.12.5, 5.12.7]. Put another
way:

The mono-theta environment may be thought of as a sort of transla-
tion apparatus that serves to translate the “global arithmetic gap
between Z and Ẑ” [cf. Remark 2.16.2 for more on the relation of this
portion of the theory to global arithmetic bases] into the “nontrivial-
ity of the local geometric extension” constituted by the extension
structure of the tempered Frobenioid under consideration.

This sort of relationship between the global arithmetic gap between Z and Ẑ

and the theory of theta functions is reminiscent of the point of view that theta
functions are related to “splittings of the natural surjection Z � Z/NZ”, a
point of view that arises in Hodge-Arakelov theory [cf. [Mzk4], §1.3.3].

The contents of the present paper are organized as follows. In §1, we dis-
cuss the purely tempered étale-theoretic anabelian aspects of the theta function
and show, in particular, that the “étale theta function” — i.e., the Kummer
class of the usual formal algebraic theta function — is preserved by isomor-
phisms of the tempered fundamental group [cf. Theorems 1.6; 1.10]. In §2,
after studying various coverings and quotient coverings of a punctured elliptic
curve, we introduce the notions of a mono-theta environment and a bi-theta
environment [cf. Definition 2.13] and study the “group-theoretic constructibil-
ity” and rigidity properties of these notions [cf. Corollaries 2.18, 2.19]. In §3,
we define the “tempered Frobenioids” in which we shall develop the Frobenioid-
theoretic approach to the étale theta function; in particular, we show that
these tempered Frobenioids satisfy various nice properties which allow one to
apply the extensive theory of [Mzk17], [Mzk18] [cf. Theorem 3.7; Corollary
3.8]. In §4, we develop “bi-Kummer theory” — i.e., a sort of generalization
of the “Kummer class associated to a rational function” to the “bi-Kummer
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data” associated to a pair of sections [corresponding to the numerator and de-
nominator of a rational function] of a line bundle — in a category-theoretic
fashion [cf. Theorem 4.4] for fairly general tempered Frobenioids. Finally, in
§5, we specialize the theory of §3, §4 to the case of the étale theta function,
as discussed in §1. In particular, we observe that a mono-theta environment
may also be regarded as a mathematical structure naturally associated to a
certain tempered Frobenioid [cf. Theorem 5.10, (iii)]. Also, we discuss certain
aspects of the constant multiple rigidity [as well as, to a lesser extent, of the
cyclotomic and discrete rigidity] of a mono-theta environment that may only
be understood in the context of the Frobenioid-theoretic approach to the étale
theta function [cf. Corollary 5.12 and the discussion of the following remarks].

§0. Notations and Conventions

In addition to the “Notations and Conventions” of [Mzk17], §0, we shall
employ the following “Notations and Conventions” in the present paper:

Monoids:

We shall denote by N≥1 the multiplicative monoid of [rational] integers ≥ 1
[cf. [Mzk17], §0].

Let Q be a commutative monoid [with unity]; P ⊆ Q a submonoid. If Q is
integral [so Q embeds into its groupification Qgp; we have a natural inclusion
P gp ↪→ Qgp], then we shall refer to the submonoid

P gp
⋂

Q (⊆ Qgp)

of Q as the group-saturation of P in Q; if P is equal to its group-saturation in
Q, then we shall say that P is group-saturated in Q. If Q is torsion-free [so Q

embeds into its perfection Qpf; we have a natural inclusion P pf ↪→ Qpf], then
we shall refer to the submonoid

P pf
⋂

Q (⊆ Qpf)

of Q as the perf-saturation of P in Q; if P is equal to its perf-saturation in Q,
then we shall say that P is perf-saturated in Q.

Topological Groups:

Let Π be a topological group. Then let us write

Btemp(Π)
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for the category whose objects are countable [i.e., of cardinality ≤ the cardinality
of the set of natural numbers], discrete sets equipped with a continuous Π-action
and whose morphisms are morphisms of Π-sets [cf. [Mzk14], §3]. If Π may be
written as an inverse limit of an inverse system of surjections of countable
discrete topological groups, then we shall say that Π is tempered [cf. [Mzk14],
Definition 3.1, (i)].

We shall refer to a normal open subgroup H ⊆ Π such that the quotient
group Π/H is free as co-free. We shall refer to a co-free subgroup H ⊆ Π as
minimal if every co-free subgroup of Π contains H. Thus, a minimal co-free
subgroup of Π is necessarily unique and characteristic.

Categories:

We shall refer to an isomorphic copy of some object as an isomorph of the
object.

Let C be a category; A ∈ Ob(C). Then we shall write

CA

for the category whose objects are morphisms B → A of C and whose morphisms
[from an object B1 → A to an object B2 → A] are A-morphisms B1 → B2 in
C [cf. [Mzk17], §0] and

C[A] ⊆ C

for the full subcategory of C determined by the objects of C that admit a mor-
phism to A. Given two arrows fi : Ai → Bi (where i = 1, 2) in C, we shall refer
to a commutative diagram

A1
∼→ A2⏐⏐�f1

⏐⏐�f2

B1
∼→ B2

— where the horizontal arrows are isomorphisms in C — as an abstract equiva-
lence from f1 to f2. If there exists an abstract equivalence from f1 to f2, then
we shall say that f1, f2 are abstractly equivalent.

Let Φ : C → D be a faithful functor between categories C, D. Then we
shall say that Φ is isomorphism-full if every isomorphism Φ(A) ∼→ Φ(B) of
D, where A, B ∈ Ob(C), arises by applying Φ to an isomorphism A

∼→ B of
C. Suppose that Φ is isomorphism-full. Then observe that the objects of D
that are isomorphic to objects in the image of Φ, together with the morphisms
of D that are abstractly equivalent to morphisms in the image of Φ, form a
subcategory C′ ⊆ D such that Φ induces an equivalence of categories C ∼→ C′.
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We shall refer to this subcategory C′ ⊆ D as the essential image of Φ. [Thus,
this terminology is consistent with the usual terminology of “essential image”
in the case where Φ is fully faithful.]

Curves:

We refer to [Mzk14], §0, for generalities concerning [families of ] hyperbolic
curves, smooth log curves, stable log curves, divisors of cusps, and divisors of
marked points.

If C log → Slog is a stable log curve, and, moreover, S is the spectrum of a
field, then we shall say that C log is split if each of the irreducible components
and nodes of C is geometrically irreducible over S.

A morphism of log stacks

C log → Slog

for which there exists an étale surjection S1 → S, where S1 is a scheme, such
that C log

1
def= C log ×S S1 may be obtained as the result of forming the quotient

[in the sense of log stacks!] of a stable (respectively, smooth) log curve C log
2 →

Slog
1

def= Slog ×S S1 by the action of a finite group of automorphisms of C log
2

over Slog
1 which acts freely on a dense open subset of every fiber of C2 → S1

will be referred to as a stable log orbicurve (respectively, smooth log orbicurve)
over Slog. Thus, the divisor of cusps of C log

2 determines a divisor of cusps
of C log

1 , C log. Here, if C log
2 → Slog

1 is of type (1, 1), and the finite group
of automorphisms is given by the action of “±1” [i.e., relative to the group
structure of the underlying elliptic curve of C log

2 → Slog
1 ], then the resulting

stable log orbicurve will be referred to as being of type (1, 1)±.
If Slog is the spectrum of a field, equipped with the trivial log structure,

then a hyperbolic orbicurve X → S is defined to be the algebraic [log] stack
[with trivial log structure] obtained by removing the divisor of cusps from
some smooth log orbicurve C log → Slog over Slog. If X (respectively, Y ) is a
hyperbolic orbicurve over a field K (respectively, L), then we shall say that X

is isogenous to Y if there exists a hyperbolic curve Z over a field M together
with finite étale morphisms Z → X, Z → Y . Note that in this situation,
the morphisms Z → X, Z → Y induce finite separable inclusions of fields
K ↪→ M , L ↪→ M . [Indeed, this follows immediately from the easily verified
fact that every subgroup G ⊆ Γ(Z,O×

Z ) such that G
⋃
{0} determines a field is

necessarily contained in M×.]
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§1. The Tempered Anabelian Rigidity of the Étale Theta Function

In this §, we construct a certain cohomology class in the [continuous] group
cohomology of the tempered fundamental group of a once-punctured elliptic
curve which may be regarded as a sort of “tempered analytic” representation of
the theta function. We then discuss various properties of this “étale theta func-
tion”. In particular, we apply the theory of [Mzk14], §6, to show that it is, up to
certain relatively mild indeterminacies, preserved by arbitrary automorphisms
of the tempered fundamental group [cf. Theorems 1.6, 1.10].

Let K be a finite extension of Qp, with ring of integers OK ; K an algebraic
closure of K; S the formal scheme determined by the p-adic completion of
Spec(OK); Slog the formal log scheme obtained by equipping S with the log
structure determined by the unique closed point of Spec(OK); Xlog a stable log
curve over Slog of type (1, 1). Also, we assume that the special fiber of X is
singular and split [cf. §0], and that the generic fiber of the algebrization of Xlog

is a smooth log curve. Write X log def= Xlog ×OK
K for the ringed space with log

structure obtained by tensoring the structure sheaf of X over OK with K. In the
following discussion, we shall often [by abuse of notation] use the notation X log

also to denote the generic fiber of the algebrization of Xlog. [Here, the reader
should note that these notational conventions differ somewhat from notational
conventions typically employed in discussions of rigid-analytic geometry.]

Let us write

Πtp
X

for the tempered fundamental group associated to X log [cf. [André], §4; the
group “πtemp

1 (X log
K )” of [Mzk14], Examples 3.10, 5.6], with respect to some

basepoint. The issue of how our constructions are affected when the basepoint
varies will be studied in the present paper by considering to what extent these
constructions are preserved by inner or, more generally, arbitrary isomorphisms
between fundamental groups [cf. Remark 1.6.2 below]. Here, despite the fact
that the [tempered] fundamental group in question is best thought of not as
“the fundamental group of X” but rather as “the fundamental group of X log”,
we use the notation “Πtp

X ” rather than “Πtp
Xlog” in order to minimize the number

of subscripts and superscripts that appear in the notation [cf. the discussion
to follow in the remainder of the present paper!]; thus, the reader should think
of the underlined notation “Πtp

(−)” as an abbreviation for the “logarithmic tem-
pered fundamental group of the scheme (−), equipped with the log structure
currently under consideration”, i.e., an abbreviation for “πtemp

1 ((−)log)”.
Denote by Δtp

X ⊆ Πtp
X the “geometric tempered fundamental group”. Thus,
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we have a natural exact sequence

1→ Δtp
X → Πtp

X → GK → 1

— where GK
def= Gal(K/K).

Since the special fiber of X is split, it follows that the universal graph-
covering of the dual graph of this special fiber determines [up to composition
with an element of Aut(Z) = {±1}] a natural surjection

Πtp
X � Z

whose kernel, which we denote by Πtp
Y , determines an infinite étale covering

Ylog → Xlog

— i.e., Ylog is a p-adic formal scheme equipped with a log structure; the special
fiber of Y is an infinite chain of copies of the projective line, joined at 0 and
∞; write Y log def= Ylog ×OK

K; Z
def= Gal(Y/X) (∼= Z).

Write ΠX
def= (Πtp

X )∧; ΔX
def= (Δtp

X )∧ [where the “∧” denotes the profinite
completion]. Then we have a natural exact sequence

1→ Ẑ(1)→ Δell
X → Ẑ→ 1

— where we write Δell
X

def= Δab
X = ΔX/[ΔX , ΔX ] for the abelianization of ΔX .

Since ΔX is a profinite free group on 2 generators, we also have a natural exact
sequence

1→ ∧2 Δell
X (∼= Ẑ(1))→ ΔΘ

X → Δell
X → 1

— where we write ΔΘ
X

def= ΔX/[ΔX , [ΔX , ΔX ]]. Let us denote the image of
∧2 Δell

X in ΔΘ
X by (Ẑ(1) ∼=) ΔΘ ⊆ ΔΘ

X . Similarly, we have natural exact se-
quences

1→ Ẑ(1)→ (Δtp
X )ell → Z→ 1

1→ ΔΘ → (Δtp
X )Θ → (Δtp

X )ell → 1

— where we write
Δtp

X � (Δtp
X )Θ � (Δtp

X )ell

for the quotients induced by the quotients ΔX � ΔΘ
X � Δell

X . Also, we shall
write

Πtp
X � (Πtp

X )Θ � (Πtp
X )ell

for the quotients whose kernels are the kernels of the quotients Δtp
X � (Δtp

X )Θ �
(Δtp

X )ell and

Πtp
Y � (Πtp

Y )Θ � (Πtp
Y )ell; Δtp

Y � (Δtp
Y )Θ � (Δtp

Y )ell
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for the quotients of Πtp
Y , Δtp

Y induced by the quotients of Πtp
X , Δtp

X with similar
superscripts. Thus, (Δtp

Y )ell ∼= Ẑ(1); we have a natural exact sequence of abelian
profinite groups 1→ ΔΘ → (Δtp

Y )Θ → (Δtp
Y )ell → 1.

Next, let us write qX ∈ OK for the q-parameter of the underlying elliptic
curve of X log. If N ≥ 1 is an integer, set

KN
def= K(ζN , q

1/N
X ) ⊆ K

— where ζN is a primitive N -th root of unity. Then any decomposition group
of a cusp of Y log determines, up to conjugation by (Δtp

Y )ell, a section GK →
(Πtp

Y )ell of the natural surjection (Πtp
Y )ell � GK whose restriction to the open

subgroup GKN
⊆ GK determines an open immersion

GKN
↪→ (Πtp

Y )ell/N · (Δtp
Y )ell

the image of which is stabilized by the conjugation action of Πtp
X . [Indeed, this

follows from the fact that GKN
acts trivially on (Δtp

X )ell/N · (Δtp
Y )ell.] Thus,

this image determines a Galois covering

YN → Y

such that the resulting surjection Πtp
Y � Gal(YN/Y ), whose kernel we denote by

Πtp
YN

, induces a natural exact sequence 1→ (Δtp
Y )ell ⊗Z/NZ→ Gal(YN/Y )→

Gal(KN/K)→ 1. Also, we shall write

Πtp
YN

� (Πtp
YN

)Θ � (Πtp
YN

)ell; Δtp
YN

� (Δtp
YN

)Θ � (Δtp
YN

)ell

for the quotients of Πtp
YN

, Δtp
YN

induced by the quotients of Πtp
Y , Δtp

Y with similar
superscripts and

Y log
N

for the object obtained by equipping YN with the log structure determined by
the KN -valued points of YN lying over the cusps of Y . Set

YN → Y

equal to the normalization of Y in YN . One verifies easily that the special
fiber of YN is an infinite chain of copies of the projective line, joined at 0 and
∞; each of these points “0” and “∞” is a node on YN ; each projective line
in this chain maps to a projective line in the special fiber of Y by the “N -th
power map” on the copy of “Gm” obtained by removing the nodes; if we choose
some irreducible component of the special fiber of Y as a “basepoint”, then the
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natural action of Z on Y allows one to think of the projective lines in the special
fiber of Y as being labeled by elements of Z. In particular, it follows immediately
that the isomorphism class of a line bundle on YN is completely determined
by the degree of the restriction of the line bundle to each of these copies of the
projective line. That is to say, these degrees determine an isomorphism

Pic(YN ) ∼→ ZZ

— where ZZ denotes the module of functions Z→ Z; the additive structure on
this module is induced by the additive structure on the codomain “Z”. Write

LN

for the line bundle on YN determined by the constant function Z → Z whose
value is 1. Also, we observe that it follows immediately from the above explicit
description of the special fiber of YN that Γ(YN ,OYN

) = OKN
.

Next, write
JN

def= KN (a1/N )a∈KN
⊆ K

— where we note that [since K×
N is topologically finitely generated] JN is a finite

Galois extension of KN . Observe, moreover, that we have an exact sequence

1→ ΔΘ ⊗ Z/NZ (∼= Z/NZ(1))→ (Πtp
YN

)Θ/N · (Δtp
Y )Θ → GKN

→ 1

[cf. the construction of YN ]. Since any two splittings of this exact sequence
differ by a cohomology class ∈ H1(GKN

, Z/NZ(1)), it follows [by the definition
of JN ] that all splittings of this exact sequence determine the same splitting
over GJN

. Thus, the image of the resulting open immersion

GJN
↪→ (Πtp

YN
)Θ/N · (Δtp

Y )Θ

is stabilized by the conjugation action of Πtp
X , hence determines a Galois covering

ZN → YN

such that the resulting surjection Πtp
YN

� Gal(ZN/YN ), whose kernel we denote
by Πtp

ZN
, induces a natural exact sequence 1→ ΔΘ⊗Z/NZ→ Gal(ZN/YN )→

Gal(JN/KN )→ 1. Also, we shall write

Πtp
ZN

� (Πtp
ZN

)Θ � (Πtp
ZN

)ell; Δtp
ZN

� (Δtp
ZN

)Θ � (Δtp
ZN

)ell

for the quotients of Πtp
ZN

, Δtp
ZN

induced by the quotients of Πtp
YN

, Δtp
YN

with
similar superscripts and

Z log
N
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for the object obtained by equipping ZN with the log structure determined by
the [manifestly] JN -valued points of ZN lying over the cusps of Y . Set

ZN → YN

equal to the normalization of Y in ZN . Since Y is “generically of characteristic
zero” [i.e., Y is of characteristic zero], it follows that ZN is finite over Y.

Next, let us observe that there exists a section

s1 ∈ Γ(Y = Y1, L1)

— well-defined up to an O×
K-multiple — whose zero locus on Y is precisely

the divisor of cusps of Y. Also, let us fix an isomorphism of L⊗N
N with L1|YN

,
which we use to identify these two bundles. Note that there is a natural action of
Gal(Y/X) on L1 which is uniquely determined by the condition that it preserve
s1. Thus, we obtain a natural action of Gal(YN/X) on L1|YN

.

Proposition 1.1 (Theta Action of the Tempered Fundamental Group).
(i) The section

s1|YN
∈ Γ(YN , L1|YN

∼= L⊗N
N )

admits an N-th root sN ∈ Γ(ZN , LN |ZN
) over ZN . In particular, if we denote

associated “geometric line bundles” by the notation “V(−)”, then we obtain a
commutative diagram

ZN −→ YN = YN −→ Y1⏐⏐� ⏐⏐� ⏐⏐�
V(LN |ZN

)−→V(LN )−→V(L⊗N
N )−→V(L1)⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐�

ZN −→ YN = YN −→ Y1

— where the horizontal morphisms in the first and last lines are the natural
morphisms ; in the second line of horizontal morphisms, the first and third
horizontal morphisms are the pull-back morphisms, while the second morphism
is given by raising to the N-th power ; in the first row of vertical morphisms,
the morphism on the left (respectively, in the middle; on the right) is that
determined by sN (respectively, s1|YN

; s1); the vertical morphisms in the second
row of vertical morphisms are the natural morphisms; the vertical composites
are the identity morphisms.

(ii) There is a unique action of Πtp
X on LN ⊗OKN

OJN
[a line bundle on

YN×OKN
OJN

] that is compatible with the morphism ZN → V(LN⊗OKN
OJN

)



242 Shinichi Mochizuki

determined by sN [hence induces the identity on s⊗N
N = s1|ZN

]. Moreover, this
action of Πtp

X factors through Πtp
X /Πtp

ZN
= Gal(ZN/X), and, in fact, induces a

faithful action of Δtp
X /Δtp

ZN
on LN ⊗OKN

OJN
.

Proof. First, observe that by the discussion above [concerning the struc-
ture of the special fiber of YN ], it follows that the action of Πtp

X (� Gal(YN/X))
on YN preserves the isomorphism class of the line bundle LN , hence also the
isomorphism class of the line bundle L⊗N

N [i.e., “the identification of L⊗N
N with

L1|YN
, up to multiplication by an element of Γ(YN ,O×

YN
) = O×

KN
”]. In partic-

ular, if we denote by GN the group of automorphisms of the pull-back of LN to
YN ×KN

JN that lie over the JN -linear automorphisms of YN ×KN
JN induced

by elements of Δtp
X /Δtp

YN
⊆ Gal(YN/X) and whose N -th tensor power fixes the

pull-back of s1|YN
, then one verifies immediately [by recalling the definition of

JN ] that GN fits into a natural exact sequence

1→ µN (JN )→ GN → Δtp
X /Δtp

YN
→ 1

— where µN (JN ) ⊆ J×
N denotes the group of N -th roots of unity in JN .

Now I claim that the kernel HN ⊆ GN of the composite surjection

GN � Δtp
X /Δtp

YN
� Δtp

X /Δtp
Y
∼= Z

— where we note that Ker(Δtp
X /Δtp

YN
� Δtp

X /Δtp
Y ) = Δtp

Y /Δtp
YN

∼= Z/NZ(1)
— is an abelian group annihilated by multiplication by N . Indeed, one verifies
immediately, by considering various relevant line bundles on “Gm”, that [if we
write U for the standard multiplicative coordinate on Gm and ζ for a primitive
N -th root of unity, then] this follows from the identity of functions on “Gm”

N−1∏
j=0

f(ζ−j · U) = 1

— where f(U) def= (U − 1)/(U − ζ) represents an element of HN that maps to
a generator of Δtp

Y /Δtp
YN

.
Now consider the tautological Z/NZ(1)-torsor RN → YN obtained by

extracting an N -th root of s1. More explicitly, RN → YN may be thought of
as the finite YN -scheme associated to the OYN

-algebra
N−1⊕
j=0

L⊗−j
N

where the “algebra structure” is defined by the morphism L⊗−N
N → OYN

given
by multiplying by s1|YN

. In particular, it follows immediately from the defi-

nition of GN that GN acts naturally on (RN )JN

def= RN ×OKN
JN . Since s1|YN
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has zeroes of order 1 at each of the cusps of YN , it thus follows immediately
that (RN )JN

is connected and Galois over XJN

def= X ×K JN , and that one has
an isomorphism

GN
∼→ Gal((RN )JN

/XJN
)

arising from the natural action of GN on (RN )JN
. Since the abelian group

Δtp
X /Δtp

YN
acts trivially on µN (JN ), and HN is annihilated by N , it thus follows

formally from the definition of (ΔX)Θ [i.e., as the quotient by a certain “double
commutator subgroup”] that at least “geometrically”, there exists a map from
ZN to RN . More precisely, there is a morphism ZN ×OJN

K → RN over YN .
That this morphism in fact factors through ZN — inducing an isomorphism

ZN
∼→ RN ×OKN

OJN

— follows from the definition of the open immersion GJN
↪→ (Πtp

YN
)Θ/N ·(Δtp

Y )Θ

whose image was used to define ZN → YN [together with the fact that s1|YN

is defined over KN ]. This completes the proof of assertion (i).
Next, we consider assertion (ii). Since the natural action of Πtp

X (�
Gal(YN/X)) on L1|YN

∼= L⊗N
N preserves s1|YN

, and the action of Πtp
X on

YN preserves the isomorphism class of the line bundle LN , the existence and
uniqueness of the desired action of Πtp

X on LN ⊗OKN
OJN

follow immediately
from the definitions [cf. especially the definition of JN ]. Moreover, since sN

is defined over ZN , it is immediate that this action factors through Πtp
X /Πtp

ZN
.

Finally, the asserted faithfulness follows from the fact that s1 has zeroes of
order 1 at the cusps of YN [together with the tautological fact that Δtp

X /Δtp
YN

acts faithfully on YN ].

Next, let us set

K̈N
def= K2N ; J̈N

def= K̈N (a1/N )a∈K̈N
⊆ K

ŸN
def= Y2N×OK̈N

OJ̈N
; ŸN

def= Y2N×K̈N
J̈N ; L̈N

def= LN |ŸN

∼=L⊗2
2N ⊗OK̈N

OJ̈N

and write Z̈N for the composite of the coverings ŸN , ZN of YN ; Z̈N for the
normalization of ZN in Z̈N ; Ÿ

def= Ÿ1 = Y2; Ÿ
def= Ÿ1 = Y2; K̈

def= K̈1 = J̈1 = K2.
Thus, we have a cartesian commutative diagram

V(L̈N )−→V(LN )⏐⏐� ⏐⏐�
ŸN −→ YN

— where, Πtp
X acts compatibly on ŸN , YN , and [by Proposition 1.1, (ii)] on

LN ⊗OKN
OJN

. Thus, since this diagram is cartesian [and JN ⊆ J̈N ], we obtain
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a natural action of Πtp
X on L̈N which factors through Πtp

X /Πtp

Z̈N
. Moreover, we

have a natural exact sequence

1→ Πtp
ZN

/Πtp

Z̈N
→ Πtp

Y /Πtp

Z̈N
→ Gal(ZN/Y )→ 1

— where Πtp
ZN

/Πtp

Z̈N
↪→ Gal(ŸN/YN ) — which is compatible with the conjuga-

tion actions by Πtp
X on each of the terms in the exact sequence.

Next, let us choose an orientation on the dual graph of the special fiber
of Y. Such an orientation determines a specific isomorphism Z

∼→ Z, hence a
label ∈ Z for each irreducible component of the special fiber of Y. Note that
this choice of labels also determines a label ∈ Z for each irreducible component
of the special fiber of YN , ŸN . Now we define DN to be the effective divisor
on ŸN which is supported on the special fiber and corresponds to the function

Z � j 
→ j2 · log(qX)/2N

— i.e., at the irreducible component labeled j, the divisor DN is equal to
the divisor given by the schematic zero locus of q

j2/2N
X . Note that since the

completion of ŸN at each node of its special fiber is isomorphic to the ring

OJ̈N
[[u, v]]/(uv − q

1/2N
X )

— where u, v are indeterminates — it follows that this divisor DN is Cartier.
Moreover, a simple calculation of degrees reveals that we have an isomorphism
of line bundles on ŸN

OŸN
(DN ) ∼= L̈N

— i.e., there exists a section, well-defined up to an O×
J̈N

-multiple, ∈ Γ(ŸN , L̈N )
whose zero locus is precisely the divisor DN . That is to say, we have a com-
mutative diagram

ŸN
τN−→V(L̈N )−→V(LN )−→V(L⊗N

N )−→V(L1)⏐⏐�id

⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐�
ŸN = ŸN −→ YN = YN −→ Y1

in which the second square is the cartesian commutative diagram discussed
above; the third and fourth squares are the lower second and third squares of
the diagram of Proposition 1.1, (i); τN — which we shall refer to as the theta
trivialization of L̈N — is a section whose zero locus is equal to DN . Moreover,
since the action of Πtp

Y on ŸN clearly fixes the divisor DN , we conclude that
the action of Πtp

Y on ŸN , V(L̈N ) always preserves τN , up to an O×
J̈N

-multiple.
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Next, let M ≥ 1 be an integer that divides N . Then YM → Y (respec-
tively, ZM → Y; ŸM → Y) may be regarded as a subcovering of YN → Y

(respectively, ZN → Y; ŸN → Y). Moreover, we have natural isomorphisms
LM |YN

∼= L
⊗N/M
N ; L̈M |ŸN

∼= L̈
⊗N/M
N . Thus, we obtain a diagram

ŸN
τN−→ V(L̈N ) −→ ŸN⏐⏐� ⏐⏐�(−)N/M

⏐⏐�
ŸM

τM−→V(L̈M )−→ ŸM

in which the second square consists of the natural morphisms, hence commutes;
the first square “commutes up to an O×

J̈N
-, O×

J̈M
-multiple”, i.e., commutes up

to composition, at the upper right-hand corner of the square, with an automor-
phism of V(L̈N ) arising from multiplication by an element of O×

J̈N
, and, at the

lower right-hand corner of the square, with an automorphism of V(L̈M ) arising
from multiplication by an element of O×

J̈M
. [Indeed, this last commutativity

follows from the definition of J̈N , and the easily verified fact that there exist
“τN ’s” which are defined over Y2N .]

Thus, since by the classical theory of the theta function [cf., e.g., [Mumf],
pp. 306-307; the relation “Θ̈(−Ü) = −Θ̈(Ü)” given in Proposition 1.4, (ii),
below], it follows that one may choose τ1 so that the natural action of Πtp

Y on
V(L̈1) [arising from the fact that L̈1 is the pull-back of the line bundle L1 on
Y; cf. the action of Proposition 1.1, (ii)] preserves ±τ1, we conclude, in light
of the definition of J̈N , the following:

Lemma 1.2 (Compatibility of Theta Trivializations). By modifying
the various τN by suitable O×

J̈N
-multiples, one may assume that τ

⊗N1/N2
N1

= τN2 ,
for all positive integers N1, N2 such that N2|N1. In particular, there exists a
compatible system [as N varies over the positive integers ] of actions of Πtp

Y

(respectively, Πtp

Ÿ
) on ŸN , V(L̈N ) which preserve τN . Finally, each action

of this system differs from the action determined by the action of Proposition
1.1, (ii), by multiplication by a(n) 2N-th root of unity (respectively, N-th
root of unity).

Thus, by taking the τN to be as in Lemma 1.2 and applying the natural
isomorphism ΔΘ

∼= Ẑ(1) to the difference between the actions of Πtp
Y , Πtp

Ÿ

arising from Proposition 1.1, (ii), and Lemma 1.2, we obtain the following:

Proposition 1.3 (The Étale Theta Class). The difference between
the natural actions of Πtp

Y arising from Proposition 1.1, (ii); Lemma 1.2, on
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constant multiples of τN determines a cohomology class

ηΘ
N ∈ H1

(
Πtp

Y ,

(
1
2

Z/NZ

)
(1)

)
∼= H1

(
Πtp

Y , ΔΘ ⊗
(

1
2

Z/NZ

))

which arises from a cohomology class ∈ H1(Πtp
Y /Πtp

Z̈N
, ΔΘ ⊗ ( 1

2Z/NZ)) whose
restriction to

H1

(
Δtp

ŸN
/Δtp

Z̈N
, ΔΘ ⊗

(
1
2

Z/NZ

))
= Hom

(
Δtp

ŸN
/Δtp

Z̈N
, ΔΘ ⊗

(
1
2

Z/NZ

))

is the composite of the natural isomorphism Δtp

ŸN
/Δtp

Z̈N

∼→ ΔΘ⊗Z/NZ with the
natural inclusion ΔΘ ⊗ (Z/NZ) ↪→ ΔΘ ⊗ ( 1

2Z/NZ). Moreover, if we set

O×
K/K̈

def= {a ∈ O×
K̈
| a2 ∈ K}

and regard O×
K/K̈

as acting on H1(Πtp
Y , ( 1

2Z/NZ)(1)) via the composite

O×
K/K̈

→ H1

(
GK ,

(
1
2

Z/NZ

)
(1)

)
→ H1

(
Πtp

Y ,

(
1
2

Z/NZ

)
(1)

)

— where the first map is the evident generalization of the Kummer map, which
is compatible with the Kummer map O×

K → H1(GK , (Z/NZ)(1)) relative to the
natural inclusion O×

K ↪→ O×
K/K̈

and the morphism induced on cohomology by

the natural inclusion (Z/NZ) ↪→ ( 1
2Z/NZ); the second map is the natural map

— then the set of cohomology classes

O×
K/K̈

· ηΘ
N ∈ H1

(
Πtp

Y , ΔΘ ⊗
(

1
2

Z/NZ

))

is independent of the choices of s1, sN , τN . In particular, by allowing N

to vary among all positive integers, we obtain a set of cohomology classes

O×
K/K̈

· ηΘ ∈ H1

(
Πtp

Y ,
1
2
ΔΘ

)

each of which is a cohomology class ∈ H1((Πtp
Y )Θ, 1

2ΔΘ) whose restriction to

H1

(
(Δtp

Y )Θ,
1
2
ΔΘ

)
= Hom

(
(Δtp

Y )Θ,
1
2
ΔΘ

)

is the composite of the natural isomorphism (Δtp
Y )Θ ∼→ ΔΘ with the natural

inclusion ΔΘ ↪→ 1
2ΔΘ. Moreover, the restricted classes

O×
K/K̈

· ηΘ|Ÿ ∈ H1

(
Πtp

Ÿ
,
1
2
ΔΘ

)
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arise naturally from classes

O×
K̈
· η̈Θ ∈ H1(Πtp

Ÿ
, ΔΘ)

— where O×
K̈

acts via the composite of the Kummer map O×
K̈
→ H1(GK̈ , ΔΘ)

with the natural map H1(GK̈ , ΔΘ)→ H1(Πtp

Ÿ
, ΔΘ) — “without denominators”.

By abuse of the definite article, we shall refer to any element of the sets O×
K/K̈
·

ηΘ
N , O×

K/K̈
· ηΘ, O×

K̈
· η̈Θ as the “étale theta class”.

Remark 1.3.1. Note that the denominators “ 1
2” in Proposition 1.3 are by

no means superfluous: Indeed, this follows immediately from the fact that the
divisor D1 on Ÿ clearly does not descend to Y.

Let us denote by
U ⊆ Y

the open formal subscheme obtained by removing the nodes from the irreducible
component of the special fiber labeled 0 ∈ Z. If we take the unique cusp lying in
U as the origin, then — as is well-known from the theory of the Tate curve [cf.,
e.g., [Mumf], pp. 306-307] — the group structure on the underlying elliptic
curve of X log determines a group structure on U, together with a unique [in
light of our choice of an orientation on the dual graph of the special fiber of
Y] isomorphism of U with the p-adic formal completion of Gm over OK . In
particular, this isomorphism determines a multiplicative coordinate

U ∈ Γ(U,O×
U )

— which, as one verifies immediately from the definitions, admits a square root

Ü ∈ Γ(Ü,O×
Ü

)

on Ü
def= U×Y Ÿ.

Proposition 1.4 (Relation to the Classical Theta Function). Set

Θ̈ = Θ̈(Ü) def= q
− 1

8
X ·

∑
n∈Z

(−1)n · q
1
2 (n+ 1

2 )2

X · Ü2n+1 ∈ Γ(Ü,OÜ)

so Θ̈ extends uniquely to a meromorphic function on Ÿ [cf., e.g., [Mumf],
pp. 306-307]. Then:

(i) The zeroes of Θ̈ on Ÿ are precisely the cusps of Ÿ; each zero has
multiplicity 1. The divisor of poles of Θ̈ on Ÿ is precisely the divisor D1.
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(ii) We have

Θ̈(Ü) = −Θ̈(Ü−1); Θ̈(−Ü) = −Θ̈(Ü);

Θ̈(qa/2
X Ü) = (−1)a · q−a2/2

X · Ü−2a · Θ̈(Ü)

for a ∈ Z.

(iii) The classes
O×

K̈
· η̈Θ ∈ H1(Πtp

Ÿ
, ΔΘ)

of Proposition 1.3 are precisely the “Kummer classes” associated to O×
K̈

-
multiples of Θ̈, regarded as a regular function on Ÿ . In particular, if L is
a finite extension of K̈, and y ∈ Ÿ (L) is a non-cuspidal point, then the
restricted classes

O×
K̈
· η̈Θ|y ∈ H1(GL, ΔΘ) ∼= H1(GL, Ẑ(1)) ∼= (L×)∧

— where the “∧” denotes the profinite completion — lie in L× ⊆ (L×)∧ and
are equal to the values O×

K̈
· Θ̈(y) of Θ̈ and its O×

K̈
-multiples at y. A similar

statement holds if y ∈ Ÿ (L) is a cusp, if one restricts first to the associated
decomposition group Dy and then to a section GL ↪→ Dy compatible with the
canonical integral structure [cf. [Mzk13], Definition 4.1, (iii)] on Dy. In
light of this relationship between the cohomology classes of Proposition 1.3 and
the values of Θ̈, we shall sometimes refer to these classes as “the étale theta
function”.

Proof. Assertion (ii) is a routine calculation involving the series used to
define Θ̈. A similar calculation shows that Θ̈(±1) = 0. The formula given for
Θ̈(qa/2

X Ü) in assertion (ii) shows that the portion of the divisor of poles sup-
ported in the special fiber of Ÿ is equal to D1. This formula also shows that to
complete the proof of assertion (i), it suffices to show that the given descrip-
tion of the zeroes and poles of Θ̈ is accurate over the irreducible component
of the special fiber of Ÿ labeled 0. But this follows immediately from the fact
that the restriction of Θ̈ to this irreducible component is the rational function
Ü − Ü−1. Finally, in light of assertion (i) [and the fact, observed above, that
Γ(YN ,O×

YN
) = O×

KN
], assertion (iii) is a formal consequence of the construction

of the classes O×
K̈
· η̈Θ.

Proposition 1.5 (Theta Cohomology).

(i) The Leray-Serre spectral sequences associated to the filtration of closed
subgroups

ΔΘ ⊆ (Δtp
Y )Θ ⊆ (Πtp

Y )Θ
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determine a natural filtration 0 ⊆ F 2 ⊆ F 1 ⊆ F 0 = H1((Πtp
Y )Θ, ΔΘ) on the

cohomology module H1((Πtp
Y )Θ, ΔΘ) with subquotients

F 0/F 1 = Hom(ΔΘ, ΔΘ) = Ẑ · log(Θ)
F 1/F 2 = Hom((Δtp

Y )ell/ΔΘ, ΔΘ) = Ẑ · log(U)
F 2 = H1(GK , ΔΘ) ∼→ H1(GK , Ẑ(1)) ∼→ (K×)∧

— where we use the symbol log(Θ) to denote the identity morphism ΔΘ → ΔΘ

and the symbol log(U) to denote the standard isomorphism (Δtp
Y )ell/ΔΘ

∼→
Ẑ(1) ∼→ ΔΘ.

(ii) Similarly, the Leray-Serre spectral sequences associated to the filtration
of closed subgroups

ΔΘ ⊆ (Δtp

Ÿ
)Θ ⊆ (Πtp

Ÿ
)Θ

determine a natural filtration 0 ⊆ F̈ 2 ⊆ F̈ 1 ⊆ F̈ 0 = H1((Πtp

Ÿ
)Θ, ΔΘ) on the

cohomology module H1((Πtp

Ÿ
)Θ, ΔΘ) with subquotients

F̈ 0/F̈ 1 = Hom(ΔΘ, ΔΘ) = Ẑ · log(Θ)
F̈ 1/F̈ 2 = Hom((Δtp

Ÿ
)ell/ΔΘ, ΔΘ) = Ẑ · log(Ü)

F̈ 2 = H1(GK̈ , ΔΘ) ∼→ H1(GK̈ , Ẑ(1)) ∼→ (K̈×)∧

— where we write log(Ü) def= 1
2 · log(U).

(iii) Any class η̈Θ ∈ H1(Πtp

Ÿ
, ΔΘ) arises from a unique class [which, by

abuse of notation, we shall denote by ] η̈Θ ∈ H1((Πtp

Ÿ
)Θ, ΔΘ) that maps to

log(Θ) in the quotient F̈ 0/F̈ 1 and on which a ∈ Z ∼= Z ∼= Πtp
X /Πtp

Y acts as
follows :

η̈Θ 
→ η̈Θ − 2a · log(Ü)− a2

2
· log(qX) + log(O×

K̈
)

— where we use the notation “log” to express the fact that we wish to write the
group structure of (K̈×)∧ additively. Similarly, any inversion automor-
phism ι of Πtp

Y — i.e., an automorphism lying over the action of “−1” on the
underlying elliptic curve of X log which fixes the irreducible component of the
special fiber of Y labeled 0 — fixes η̈Θ + log(O×

K̈
), but maps log(Ü) + log(O×

K̈
)

to −log(Ü) + log(O×
K̈

).

Proof. Assertions (i), (ii) follow immediately from the definitions. Here,
in (i) (respectively, (ii)), we note that the fact that F 0 (respectively, F̈ 0) surjects
onto Hom(ΔΘ, ΔΘ) follows, for instance, by considering the Kummer class of
the meromorphic function Θ̈·Ü−1 on Y (respectively, Θ̈ on Ÿ — cf. Proposition
1.4, (iii)). Assertion (iii) follows from Propositions 1.3; 1.4, (ii), (iii).
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Theorem 1.6 (Tempered Anabelian Rigidity of the Étale Theta Func-
tion). Let X log

α (respectively, X log
β ) be a smooth log curve of type (1, 1)

over a finite extension Kα (respectively, Kβ) of Qp; we assume that X log
α (re-

spectively, X log
β ) has stable reduction over OKα

(respectively, OKβ
), and that

the resulting special fibers are singular and split. We shall use similar no-
tation for objects associated to X log

α , X log
β [but with a subscript α or β] to the

notation that was used for objects associated to X log. Let

γ : Πtp
Xα

∼→ Πtp
Xβ

be an isomorphism of topological groups. Then:

(i) We have: γ(Πtp

Ÿα
) = Πtp

Ÿβ
.

(ii) γ induces an isomorphism

(ΔΘ)α
∼→ (ΔΘ)β

that is compatible with the surjections

H1(GK̈α
, (ΔΘ)α) ∼→ H1(GK̈α

, Ẑ(1)) ∼→ (K̈×
α )∧ � Ẑ

H1(GK̈β
, (ΔΘ)β) ∼→ H1(GK̈β

, Ẑ(1)) ∼→ (K̈×
β )∧ � Ẑ

determined by the valuations on K̈α, K̈β. That is to say, γ induces an iso-
morphism H1(GK̈α

, (ΔΘ)α) ∼→ H1(GK̈β
, (ΔΘ)β) that preserves both the kernel

of these surjections and the elements “1 ∈ Ẑ” in the resulting quotients.

(iii) The isomorphism of cohomology groups induced by γ maps the classes

O×
K̈α
· η̈Θ

α ∈ H1(Πtp

Ÿα
, (ΔΘ)α)

of Proposition 1.3 for Xα to some Πtp
Xβ

/Πtp
Yβ

∼= Z-conjugate of the correspond-
ing classes

O×
K̈β
· η̈Θ

β ∈ H1(Πtp

Ÿβ
, (ΔΘ)β)

of Proposition 1.3 for Xβ.

Proof. Assertion (i) is immediate from the definitions; the discreteness
of the topological group “Z”; and the fact that γ maps Δtp

Xα
onto Δtp

Xβ
[cf.

[Mzk2], Lemma 1.3.8] and preserves decomposition groups of cusps [cf. [Mzk14],
Theorem 6.5, (iii)]. As for assertion (ii), the fact that γ induces an isomorphism
(ΔΘ)α

∼→ (ΔΘ)β is immediate [in light of the argument used to verify assertion
(i)] from the definitions. The asserted compatibility then follows from [Mzk14],
Theorem 6.12; [Mzk2], Proposition 1.2.1, (iv), (vi), (vii).
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Next, we consider assertion (iii). By composing γ with an appropriate
inner automorphism of Πtp

Xβ
, it follows from [Mzk14], Theorem 6.8, (ii), that

we may assume that the isomorphism Πtp

Ÿα

∼→ Πtp

Ÿβ
is compatible with suitable

“inversion automorphisms” ια, ιβ [cf. Proposition 1.5, (iii)] on both sides.
Next, let us observe that it is a tautology that γ is compatible with the symbols
“log(Θ)” of Proposition 1.5, (i), (ii). On the other hand, by Proposition 1.5, (ii),
(iii), the property of “mapping to log(Θ) in the quotient F̈ 0/F̈ 1 and being fixed,
up to a unit multiple, under an inversion automorphism” completely determines
the classes η̈Θ up to a (K̈×)∧-multiple. Thus, to complete the proof, it suffices
to reduce this “indeterminacy up to a (K̈×)∧-multiple” to an “indeterminacy
up to a O×

K̈
-multiple”.

This “reduction of indeterminacy from (K̈×)∧ to O×
K̈

” may be achieved
[in light of the compatibility shown in assertion (ii)] by evaluating the classes
η̈Θ at a cusp that maps to the irreducible component of the special fiber of
Ÿ labeled 0 [e.g., a cusp that is preserved by the inversion automorphism] via
the canonical integral structure, as in Proposition 1.4, (iii), and applying the
fact that, by [Mzk14], Theorem 6.5, (iii); [Mzk14], Corollary 6.11, γ preserves
both the decomposition groups and the canonical integral structures [on the
decomposition groups] of cusps.

Remark 1.6.1. In the proof of Theorem 1.6, (iii), we eliminated the “in-
determinacy” in question by restricting to cusps, via the canonical integral
structure. Another way to eliminate this indeterminacy is to restrict to non-
cuspidal torsion points, which are temp-absolute by [Mzk14], Theorem 6.8, (iii).
This latter approach amounts to invoking the theory of [Mzk13], §2, which is,
in some sense, less elementary [for instance, in the sense that it makes use, in
a much more essential way, of the main result of [Mzk11]] than the theory of
[Mzk13], §4 [which one is, in effect, applying if one uses cusps].

Remark 1.6.2. One way of thinking about isomorphisms of the tempered
fundamental group is that they arise from variation of the basepoint, or un-
derlying set theory, relative to which one considers the associated “temperoids”
[cf. [Mzk14], §3]. Indeed, this is the point of view taken in [Mzk12], in the case
of anabelioids. From this point of view, the content of Theorem 1.6 may be
interpreted as stating that:

The étale theta function is preserved by arbitrary “changes of the un-
derlying set theory” relative to which one considers the tempered fun-
damental group in question.



252 Shinichi Mochizuki

When viewed in this way, Theorem 1.6 may be thought of — especially if
one takes the non-cuspidal approach of Remark 1.6.1 — as a sort of nonar-
chimedean analogue of the so-called functional equation of the classical complex
theta function, which also states that the “theta function” is preserved, in ef-
fect, by “changes of the underlying set theory” relative to which one considers
the integral singular cohomology of the elliptic curve in question, i.e., more
concretely, by the action of the modular group SL2(Z). Note that in the com-
plex case, it is crucial, in order to prove the functional equation, to have not
only the “Schottky uniformization” C× � C×/qZ by C× — which naturally
gives rise to the analytic series representation of the theta function, but is not,
however, preserved by the action of the modular group — but also the full
uniformization of an elliptic curve by C [which is preserved by the action of
the modular group]. This “preservation of the full uniformization by C” in the
complex case may be regarded as being analogous to the preservation of the
non-cuspidal torsion points in the approach to proving Theorem 1.6 discussed
in Remark 1.6.1.

Remark 1.6.3. The interpretation of Theorem 1.6 given in Remark 1.6.2
is reminiscent of the discussion given in the Introduction of [Mzk7], in which
the author expresses his hope, in effect, that some sort of p-adic analogue of
the functional equation of the theta function could be developed.

Remark 1.6.4. One verifies immediately that there are [easier] profinite
versions of the constructions given in the present §1: That is to say, if we
denote by

(Ÿ log)∧ → (Y log)∧ → X log

the profinite étale coverings determined by the tempered coverings Ÿ log →
Y log → X log [so ΠX/ΠY ∧ ∼= Ẑ], then the set of classes O×

K̈
· η̈Θ ∈ H1(Πtp

Ÿ
, ΔΘ)

determines, by profinite completion, a set of classes

O×
K̈
· (η̈Θ)∧ ∈ H1(ΠŸ ∧ , ΔΘ)

on which any ΠX/ΠY ∧ ∼= Ẑ � a acts via

(η̈Θ)∧ 
→ (η̈Θ)∧ − 2a · log(Ü)− a2

2
· log(qX) + log(O×

K̈
)

[cf. Proposition 1.5, (iii)]. Moreover, given Xα, Xβ as in Theorem 1.6, any
isomorphism

ΠXα

∼→ ΠXβ
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preserves these profinite étale theta functions.

In fact, it is possible to eliminate the O×
K̈

-indeterminacy of Theorem 1.6,
(iii), to a substantial extent [cf. [Mzk13], Corollary 4.12]. For simplicity, let us
assume in the following discussion that the following two conditions hold:

(I) K = K̈.
(II) The hyperbolic curve determined by X log is not arithmetic over K

[cf., e.g., [Mzk3], Remark 2.1.1].

As is well-known, condition (II) amounts, relative to the j-invariant of the
elliptic curve underlying X, to the assertion that we exclude four exceptional
j-invariants [cf. [Mzk3], Proposition 2.7].

Now let us write Ẍ log → X log for the Galois [by condition (I)] covering
of degree 4 determined by the “multiplication by 2” map on the elliptic curve
underlying X; write X log → C log for the stack-theoretic quotient of X log by the
natural action of ±1 on [the underlying elliptic curve of] X. Thus, [by condition
(II)] the hyperbolic orbicurve determined by C log is a K-core [cf. [Mzk3],
Remark 2.1.1]. Observe that the covering Ẍ log → C log is Galois, with Galois
group isomorphic to (Z/2Z)3. Moreover, we have two natural automorphisms

εμ ∈ Gal(Ẍ/X) ⊆ Gal(Ẍ/C); ε± ∈ Gal(Ẍ/C)

— i.e., respectively, the unique nontrivial element of Gal(Ẍ/X) that acts triv-
ially on the set of irreducible components of the special fiber; the unique non-
trivial element of Gal(Ẍ/C) that acts trivially on the set of cusps of Ẍ.

Now suppose that we are given a nontrivial element

εZ ∈ Gal(Ẍ/X)

which is �= εμ. Then εZ determines a commutative diagram

Ÿ log −→ Ẍ log −→ Ẋ log −→X log⏐⏐� ⏐⏐�
Ċ log −→ C log

— where Ÿ log → Ẍ log, X log → C log are the natural morphisms; Ẍ log → Ẋ log

is the quotient by the action of εZ; Ẋ log → X log is the quotient by the action
of εμ; Ẋ log → Ċ log is the [stack-theoretic] quotient by the action of ε± · εμ; the
square is cartesian.

Definition 1.7. We shall refer to a smooth log orbicurve over K that
arises, up to isomorphism, as the smooth log orbicurve Ẋ log (respectively, Ċ log)
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constructed above for some choice of εZ as being of type (1, µ2) (respectively,
(1, µ2)±). We shall also apply this terminology to the associated hyperbolic
orbicurves.

Proposition 1.8 (Characteristic Nature of Coverings). For � = α, β,
let Ẋ log

� be a smooth log curve of type (1, µ2) over a finite extension K� of
Qp; write Ÿ log

� , Ẍ log
� , X log

� , Ċ log
� , C log

� for the related smooth log orbicurves [as
in the above discussion]. Then any isomorphism of topological groups

γ : Πtp

Ẋα

∼→ Πtp

Ẋβ
(respectively, γ : Πtp

Ċα

∼→ Πtp

Ċβ
)

induces an isomorphism between the commutative diagrams of outer homo-
morphisms of topological groups

Πtp

Ÿ�
−→Πtp

Ẍ�
−→Πtp

Ẋ�
−→Πtp

X�⏐⏐� ⏐⏐�
Πtp

Ċ�
−→ Πtp

C�

— where � = α, β. A similar statement holds when “Πtp” is replaced by “Π”.

Proof. First, we consider the tempered case. By [Mzk2], Lemma 1.3.8,
it follows that γ is compatible with the respective projections to GK� . By
[Mzk14], Theorem 6.8, (ii) [cf. also [Mzk3], Theorem 2.4], it follows from condi-
tion (II) that γ induces an isomorphism Πtp

Cα

∼→ Πtp
Cβ

that is compatible with γ.
Since [as is easily verified] Δtp

X�
⊆ Δtp

C�
may be characterized as the unique open

subgroup of index 2 that corresponds to a double covering which is a scheme
[i.e., open subgroup of index 2 whose profinite completion contains no torsion
elements — cf., e.g., [Mzk16], Lemma 2.1, (v)], it follows that γ determines an
isomorphism Δtp

Xα

∼→ Δtp
Xβ

, hence also an isomorphism (Δtp
Xα

)ell ∼→ (Δtp
Xβ

)ell.
Moreover, by considering the discreteness of Gal(Y�/X�) ∼= Z�, or, alterna-
tively, the triviality of the action of GK� on Gal(Y�/X�), it follows that this
last isomorphism determines an isomorphism Δtp

Xα
/Δtp

Yα

∼→ Δtp
Xβ

/Δtp
Yβ

∼= Zβ ,
hence [by considering the kernel of the action of Πtp

C�
on Δtp

X�
/Δtp

Y�
] an isomor-

phism Πtp
Xα

∼→ Πtp
Xβ

. Since Ẋ log
� → Ċ log

� may be characterized as the quotient

by the unique automorphism of Ẋ log
� over C log

� that acts nontrivially on the
cusps of Ẋ log

� [where we recall that γ preserves decomposition group of cusps
— cf. [Mzk14], Theorem 6.5, (iii)] but does not lie over X log

� , we thus conclude
that γ induces isomorphisms between the respective Πtp

Ẋ�
, Πtp

Ċ�
, Πtp

X�
, Πtp

C�
that are compatible with the natural inclusions among these subgroups [for a
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fixed “�”]. Moreover, since γ preserves the decomposition groups of cusps of
Πtp

X�
[cf. [Mzk14], Theorem 6.5, (iii)], we conclude immediately that γ is also

compatible with the subgroups Πtp

Ÿ�
⊆ Πtp

Ẍ�
⊆ Πtp

X�
, as desired. The profinite

case is proven similarly [or may be derived from the tempered case via [Mzk14],
Theorem 6.6].

Next, let us suppose that
√
−1 ∈ K

— where we note that “
√
−1” determines a 4-torsion point τ of [the underlying

elliptic curve of] Ẋ whose restriction to the special fiber lies in the interior of
[i.e., avoids the nodes of] the unique irreducible component of the special fiber;
the 4-torsion point “τ−1” determined by “−

√
−1” admits a similar description.

Let
η̈Θ ∈ H1(Πtp

Ÿ
, ΔΘ)

be a class as in Proposition 1.3; write η̈Θ,Z for the Πtp

Ẋ
/Πtp

Ÿ
∼= Z-orbit of η̈Θ.

Definition 1.9. Suppose that
√
−1 ∈ K.

(i) We shall refer to either of the following two sets of values [cf. Proposition
1.4, (iii)] of η̈Θ,Z

η̈Θ,Z|τ , η̈Θ,Z|τ−1 ⊆ K×

as a standard set of values of η̈Θ,Z.

(ii) If η̈Θ,Z satisfies the property that the unique value ∈ O×
K [cf. the value

at
√
−1 of the series representation of Θ̈ given in Proposition 1.4; Proposition

1.4, (ii)] of maximal order [i.e., relative to the valuation on K] of some standard
set of values of η̈Θ,Z is equal to ±1, then we shall say that η̈Θ,Z is of standard
type.

Remark 1.9.1. Observe that it is immediate from the definitions that any
inner automorphism of Πtp

Ċ
arising from Πtp

Ẋ
acts trivially on η̈Θ,Z, and that

the automorphisms εμ, ε± map η̈Θ,Z 
→ −η̈Θ,Z [cf. Proposition 1.4, (ii)]. In
particular, any inner automorphism of Πtp

Ċ
maps η̈Θ,Z 
→ η̈Θ,Z.

The point of view of Remark 1.6.1 motivates the following result:

Theorem 1.10 (Constant Multiple Rigidity of the Étale Theta Function).
For � = α, β, let Ċ log

� be a smooth log curve of type (1, µ2)± over a finite
extension K� of Qp that contains a square root of −1. Let

γ : Πtp

Ċα

∼→ Πtp

Ċβ
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be an isomorphism of topological groups. Suppose that the isomorphism Πtp
Xα

∼→
Πtp

Xβ
induced by γ [cf. Proposition 1.8] maps η̈

Θ,Z
α 
→ η̈

Θ,Z
β [cf. Theorem 1.6,

(iii)]. Then:

(i) The isomorphism γ preserves the property that η̈
Θ,Z
� be of standard

type, a property that determines this collection of classes up to multiplication
by ±1.

(ii) The isomorphism
K×

α
∼→ K×

β

— where we regard K×
� ⊆ (K×

� )∧ as a subset of (K×
�)∧ ∼= H1(GK� , (ΔΘ)�) ⊆

H1(Πtp

Ċ�
, (ΔΘ)�) — induced by [an arbitrary ] γ preserves the standard sets

of values of η̈
Θ,Z
� .

(iii) Suppose that η̈
Θ,Z
� is of standard type, and that the residue charac-

teristic of K� is odd. Then η̈
Θ,Z
� determines a {±1}-structure [cf. [Mzk13],

Corollary 4.12; Remark 1.10.1, (ii), below ] on the (K×
� )∧-torsor at the unique

cusp of Ċ log
� that is compatible with the canonical integral structure and,

moreover, preserved by [arbitrary ] γ.

Proof. First, we observe that assertions (i), (iii) follow formally from as-
sertion (ii) [cf. also the series representation of Proposition 1.4]. Now we verify
assertion (ii), as follows. By applying [Mzk14], Theorem 6.8, (iii), together with
the fact that γ induces isomorphisms between the dual graphs [cf. Theorem 1.6,
(i); [Mzk2], Lemma 2.3] of the special fibers of the various corresponding cov-
erings of Cα, Cβ that appear in the proof of [Mzk14], Theorem 6.8, (iii), it
follows that γ maps [the decomposition group of points of Ÿα lying over] τ to
[the decomposition group of points of Ÿβ lying over] τ±1. Now assertion (ii)
follows immediately.

Remark 1.10.1.

(i) The “±-indeterminacy” of Theorem 1.10, (i), (iii), is reminiscent of,
but stronger than, the indeterminacy up to multiplication by a 12-th root of
unity of [Mzk13], Corollary 4.12. Also, we note that from the point of view of
the technique of the proof of loc. cit., applied in the present context of “Tate
curves”, it is the fact that there is a “special 2-torsion point”, i.e., the 2-torsion
point whose image in the special fiber lies in the same irreducible component
as the origin, that allows one to reduce the “12 = 2 · (3!)” of loc. cit. to “2”.

(ii) We take this opportunity to remark that in [Mzk13], Corollary 4.12,
the author omitted the hypothesis that “K contain a primitive 12-th root of
unity”. The author apologizes for this omission.
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Remark 1.10.2. One observation that one might make is that since The-
orem 1.10 depends on the theory of [Mzk13], §2 [i.e., in the “tempered version”
of this theory given in [Mzk14], §6], one natural approach to further strength-
ening Theorem 1.10 is to consider applying the “absolute p-adic version of the
Grothendieck Conjecture” of [Mzk16], Corollary 2.3, which may be regarded as
a “strengthening” of the theory of [Mzk13], §2. One problem here, however, is
that unlike the portion of the theory of [Mzk13], §2, that concerns [non-cuspidal]
torsion points of once-punctured elliptic curves [i.e., [Mzk13], Corollary 2.6], the
“absolute p-adic version of the Grothendieck Conjecture” of [Mzk16], Corollary
2.3, only holds for elliptic curves which are defined over number fields. More-
over, even if, in the future, this hypothesis should be eliminated, the [somewhat
weaker] theory of [Mzk13], §2, follows “formally” [cf. [Mzk13], Remark 2.8.1]
from certain “general nonsense”-type arguments that hold over any base over
which the relative isomorphism version of the Grothendieck Conjecture [i.e.,
the isomorphism portion of [Mzk11], Theorem A], together with the absolute
preservation of cuspidal decomposition groups [cf. [Mzk13], Theorem 1.3, (iii)],
holds. In particular, by restricting our attention to consequences of this “gen-
eral nonsense” in the style of [Mzk13], §2, one may hope to generalize the
results discussed in the present §1 to much more general bases [such as, for
instance, Zp[[q]][q−1]⊗Qp, where q is an indeterminate intended to suggest the
“q-parameter of a Tate curve”], or, for instance, to the case of “pro-Σ versions
of the tempered fundamental group” [i.e., where Σ is a set of primes containing
p which is not necessarily the set of all prime numbers] — situations in which
it is by no means clear [at least at the time of writing] whether or not it is
possible to prove an “absolute version of the Grothendieck Conjecture”.

Remark 1.10.3.

(i) Note that the étale theta function arises as a cohomology class of a
certain subgroup of the “theta quotient”

Πtp
X � (Πtp

X )Θ

[cf. Propositions 1.3, 1.5]. On the other hand, the very strong rigidity property
of Theorem 1.10, (i), clearly — as one may see, for instance, by considering
automorphisms of the topological group (Πtp

X )Θ — fails to hold if, for instance,
one replaces “Πtp

C�
” by the corresponding “theta quotient” (Πtp

C�
)Θ. Thus, even

though at first glance, the theory of the étale theta function may appear only
to involve the theta quotient (Πtp

X )Θ, in fact, the full tempered fundamental
group Πtp

X plays an essential role in the theory of rigidity properties of the étale
theta function.
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(ii) Relative to the eventual goal of applying the theory of the present
paper to Hodge-Arakelov theory [cf. the Introduction] — which concerns re-
stricting the theta function and its derivatives to torsion points — the necessity
of working with the full tempered fundamental group may be motivated geo-
metrically as follows. The hyperbolic orbicurves involved may be thought of, up
to isogeny [cf. §0], as the hyperbolic curves obtained by removing the l-torsion
points [for some integer l ≥ 1] from an elliptic curve [cf. especially the theory
of §2 below]. At the level of topological surfaces, the complement Sell\tors of
the l-torsion points in an elliptic curve E may be thought of as the result

Sell\tors = Sell\disc

⋃
Sdisc\tors

of gluing the complement Sell\disc of a single disc in an elliptic curve to the
complement Sdisc\tors in a disc of a finite collection of points [i.e., where the
gluing is along the circle which forms the boundary of the discs involved].
The topological fundamental group of Sell\tors may then be thought of as the
amalgamated sum of the fundamental groups of Sell\disc, Sdisc\tors. Now the
fundamental group of Sell\disc is a free group on two generators, which may be
thought of as a basis of the abelian fundamental group of the original elliptic
curve E. This portion of the fundamental group of Sell\tors may be thought
of as corresponding to the “Heisenberg group”, or theta-group — i.e., the theta
quotient discussed in (i) — which plays a fundamental role in the theory of
theta functions, hence in the scheme-theoretic Hodge-Arakelov theory reviewed
in [Mzk4] [cf. especially the discussion of [Mzk4], §1.3.5]. On the other hand,
Sdisc\tors is homotopically equivalent to a bouquet of circles, where the circles
correspond naturally to the l-torsion points of E. Thus, from the point of view
of algebraic topology, the Sdisc\tors portion of Sell\tors may be thought of as the
suspension of the discrete set of l-torsion points [together with some additional
“basepoint”]. On the other hand, from the point of view of arithmetic geome-
try, the circle may be thought of as a sort of “Tate motive” and the “arithmetic
suspension” constituted by the Sdisc\tors portion of Sell\tors as a sort of “an-
abelian Tate twist” of the l-torsion points of E. Moreover, from the point of
view of Hodge-Arakelov theory, the universal covering of the bouquet consti-
tuted by Sdisc\tors may be thought of as the result of “filling in the discrete
set of l-torsion points” by joining these points via continuous line segments —
cf. the original point of view of Hodge-Arakelov theory [discussed in [Mzk4],
§1.3.4] to the effect that the set of torsion points is to be regarded as a “high
resolution approximation” of the underlying real analytic manifold of E. Put
another way, this sort of “continuous version of the l-torsion points” may be
thought of as a sort of “cyclotomic blurring” of the l-torsion points — i.e., a sort
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of space of infinitesimal deformations of the l-torsion points that allows one to
consider derivatives [e.g., of the theta function] at the l-torsion points. Thus,
in summary, relative to these geometric considerations, the topological surface
Sell\tors = Sell\disc

⋃
Sdisc\tors, hence also its group-theoretic counterpart [i.e.,

the full fundamental group under consideration] may be thought of as being
precisely a geometric realization of the content

(theta functions and their derivatives)|l-torsion points

[i.e., where “theta functions” correspond, via theta-groups, to Sell\disc, and
“derivatives at l-torsion points” correspond to Sdisc\tors] of Hodge-Arakelov
theory.

Remark 1.10.4.

(i) As observed in Proposition 1.4, (iii), by restricting the étale theta func-
tion to various [e.g., torsion!] points, one obtains a Kummer-theoretic approach
to considering the theta function as a function on points. In the context of the
theory of the present §1 [and indeed of the present paper], in which one does
not assume [cf. Remark 1.10.2] that the multiplicative groups associated to the
base fields involved that appear in the absolute Galois groups of these fields —
e.g., the “(L×)∧” that appears in Proposition 1.4, (iii) — are equipped with
additive structures [i.e., arising from the addition operation on the field], the
functions that may be obtained in this way are very special. Indeed, if one
may avail oneself of both the additive and multiplicative structures — i.e., the
ring structures — of the fields involved, then it is not difficult to give various
“group-theoretic algorithms” for constructing all sorts of such “functions”. On
the other hand:

If one may only avail oneself of the multiplicative structure, then it
is difficult to construct such functions, except via considering directly
the functions obtained by restricting Kummer classes of meromorphic
functions.

[Of course, the multiplicative structure allows one to construct N -th powers,
for N ≥ 1 an integer, of the values obtained by restricting Kummer classes, but
such N -th powers are simply the values obtained by restricting the Kummer
classes obtained by multiplying the original Kummer classes by N .] Finally,
we recall that the theta function satisfies the unusual property, among mero-
morphic functions on tempered coverings of pointed stable curves, of having a
divisor of poles that is contained in the special fiber and a divisor zeroes that
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does not contain any irreducible components of the special fiber [cf. Proposition
1.4, (i)].

(ii) Even if one allows oneself to consider “Kummer classes”

κ ∈ H1(Π, Ẑ(1))

for Π an arbitrary topological group that surjects onto the absolute Galois group
GK of a finite extension K of Qp, it is not difficult to see that it is a highly
nontrivial operation to construct functions on the set of [conjugacy classes of]
sections of Π � GK . Indeed, if κ is to give rise to a nontrivial function, then
it is natural to assume that it must induce an isomorphism of some isomorph
[cf. §0] of Ẑ(1) inside Π onto Ẑ(1) [cf. the role of “ΔΘ” in Proposition 1.3
in the case of the étale theta function]. On the other hand, if, for instance,
Π = Ẑ(1) � GK , then [cf. the discussion of the “theta quotient” in Remark
1.10.3, (i)] it is easy to see that the resulting κ fails to satisfy the analogue
of the rigidity property of Theorem 1.10, (i). Thus, just as in the discussion
of Remark 1.10.3, one is ultimately led naturally to consider the case where
Π is some sort of [e.g., tempered or profinite] arithmetic group of a hyperbolic
orbicurve, in which case various strong anabelian rigidity properties are known.
Moreover, it is difficult to see how to develop the theory of §2 below — which
makes essential use, in so many ways, of the theory and structure of theta-groups
[i.e., the “theta quotients” of Remark 1.10.3, (i)] — for hyperbolic orbicurves
that are not isogenous to once-punctured elliptic curves.

This state of affairs again serves to highlight the fact that the function
[on, say, torsion points] determined by the étale theta function should
be regarded as a very special and unusual object.

§2. The Theory of Theta Environments

In this §, we begin by discussing various “general nonsense” complements
[cf. Corollaries 2.8, 2.9] to the theory of étale theta functions of §1 involving
coverings [cf. the discussion of the “Lagrangian approach to Hodge-Arakelov
theory” in the Introduction]. This discussion leads naturally to the theory of
the cyclotomic envelope [cf. Definition 2.10] and the associated mono- and
bi-theta environments [cf. Definition 2.13], whose tempered anabelian rigidity
properties [cf. Corollaries 2.18, 2.19] we shall use in §5, below, to relate the
theory of the present §2 to the theory of tempered Frobenioids to be discussed
in §3, §4, below.
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Let X log be a smooth log curve of type (1, 1) over a field K of characteristic
zero. For simplicity, we assume that the hyperbolic curve determined by X log

is not K-arithmetic [i.e., admits a K-core — cf. [Mzk3], Remark 2.1.1]. As
in §1, we shall denote the (profinite) étale fundamental group of X log by ΠX .
Thus, we have a natural exact sequence:

1→ ΔX → ΠX → GK → 1

— where GK
def= Gal(K/K); ΔX is defined so as to make the sequence exact.

Since ΔX is a profinite free group on 2 generators, the quotient

ΔΘ
X

def= ΔX/[ΔX , [ΔX , ΔX ]]

fits into a natural exact sequence

1→ ΔΘ → ΔΘ
X → Δell

X → 1

— where Δell
X

def= Δab
X = ΔX/[ΔX , ΔX ]; we write ΔΘ for the image of ∧2 Δell

X

in ΔΘ
X . Also, we shall write ΠX � ΠΘ

X for the quotient whose kernel is the
kernel of the quotient ΔX � ΔΘ

X .
Now let l ≥ 1 be an integer. One verifies easily by considering the well-

known structure of ΔΘ
X that the subgroup of ΔΘ

X generated by l-th powers of
elements of ΔΘ

X is normal. We shall write ΔΘ
X � ΔX for the quotient of ΔΘ

X

by this normal subgroup. Thus, the above exact sequence for ΔΘ
X determines

a quotient exact sequence

1→ ΔΘ → ΔX → Δ
ell

X → 1

— where ΔΘ
∼= (Z/lZ)(1); Δ

ell

X is a free (Z/lZ)-module of rank 2. Also, we
shall write ΠX � ΠX for the quotient whose kernel is the kernel of the quotient
ΔX � ΔX and Π

ell

X
def= ΠX/ΔΘ.

Let us write x for the unique cusp of X log. Then there is a natural injective
[outer] homomorphism

Dx ↪→ ΠΘ
X

— where Dx ⊆ ΠX is the decomposition group associated to x — which maps
the inertia group Ix ⊆ Dx isomorphically onto ΔΘ. Thus, we have exact
sequences

1→ ΔX → ΠX → GK → 1; 1→ ΔΘ → Dx → GK → 1

— where we write Dx ⊆ ΠX for the image of Dx in ΠX .
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Next, let Π
ell

X � Q be a quotient onto a free (Z/lZ)-module Q of rank
1 such that the restricted map Δ

ell

X → Q is still surjective, but the restricted
map Dx → Q is trivial. Denote the corresponding covering by X log → X log;
write ΠX ⊆ ΠX , ΔX ⊆ ΔX , Δ

ell

X ⊆ Δ
ell

X for the corresponding open subgroups.
Observe that our assumption that the restricted map Dx → Q is trivial implies
that every cusp of X log is K-rational. Let us write ι (respectively, ι) for the
automorphism of X log (respectively, X log) determined by “multiplication by
−1” on the underlying elliptic curve relative to choosing the unique cusp of
X log (respectively, relative to some choice of a cusp of X log) as the origin.
Thus, if we denote the stack-theoretic quotient of X log (respectively, X log) by
the action of ι (respectively, ι) by C log (respectively, C log), then we have a
cartesian commutative diagram:

X log −→X log⏐⏐� ⏐⏐�
C log −→ C log

We shall write ΠC , ΠC for the respective (profinite) étale fundamental groups
of C log, C log. Thus, we obtain subgroups ΔC ⊆ ΠC , ΔC ⊆ ΠC [i.e., the kernels
of the natural surjections to GK ]; moreover, by forming the quotient by the
kernels of the quotients ΠX � ΠX , ΠX � ΠX , we obtain quotients ΠC �
ΠC , ΠC � ΠC , ΔC � ΔC , ΔC � ΔC . Similarly, the quotient ΔX � Δ

ell

X

determines a quotient ΔC � Δ
ell

C . Let ει ∈ ΔC be an element that lifts the
nontrivial element of Gal(X/C) ∼= Z/2Z.

Definition 2.1. We shall refer to a smooth log orbicurve over K that
arises, up to isomorphism, as the smooth log orbicurve X log (respectively, C log)
constructed above for some choice of Π

ell

X � Q as being of type (1, l-tors) (re-
spectively, (1, l-tors)±). We shall also apply this terminology to the associated
hyperbolic orbicurves.

Remark 2.1.1. Note that although X log → X log is [by construction] Ga-
lois, with Gal(X/X) ∼= Q, the covering Clog → C log fails to be Galois in
general. More precisely, no nontrivial automorphism ∈ Gal(X/X) of, say, odd
order descends to an automorphism of Clog over C log. Indeed, this follows from
the fact that ι acts on Q by multiplication by −1.

Proposition 2.2 (The Inversion Automorphism). Suppose that l is
odd. Then:
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(i) The conjugation action of ει on the rank two (Z/lZ)-module ΔX de-
termines a direct product decomposition

ΔX
∼= Δ

ell

X ×ΔΘ

into eigenspaces, with eigenvalues −1 and 1, respectively, that is compatible
with the conjugation action of ΠX . Denote by

sι : Δ
ell

X → ΔX

the resulting splitting of the natural surjection ΔX � Δ
ell

X .

(ii) In the notation of (i), the normal subgroup Im(sι) ⊆ ΠX induces an
isomorphism

Dx
∼→ ΠX/Im(sι)

over GK . In particular, any section of the H1(GK , ΔΘ) ∼= K×/(K×)l-torsor
of splittings of Dx � GK determines a covering

X log → X log

whose corresponding open subgroup we denote by ΠX ⊆ ΠX . Here, the “geo-

metric portion” ΔX of ΠX maps isomorphically onto Δ
ell

X [hence is a cyclic
group of order l], i.e., we have ΔX = Im(sι), ΔX = ΔX · ΔΘ. Finally, the
image of ει in ΔC/ΔX may be characterized as the unique coset of ΔC/ΔX

that lifts the nontrivial element of Gal(X/C) = ΔC/ΔX and normalizes the
subgroup ΔX ⊆ ΔC .

(iii) There exists a unique coset ∈ ΔC/ΔX such that ει has order 2 if
and only if it belongs to this coset. If we choose ει to have order 2, then the open
subgroup generated by ΠX and ει in ΠC [or, alternatively, the open subgroup
generated by GK

∼= ΠX/ΔX and ει in ΠC/ΔX ] determines a double covering

X log → C log which fits into a cartesian commutative diagram

X log −→X log⏐⏐� ⏐⏐�
C log −→ C log

— where X log is as in (ii).

Proof. Assertions (i) and (ii) are immediate from the definitions. To
verify assertion (iii), we observe that Dx

∼= ΠX/ΔX is of index 2 in ΠC/ΔX .
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Thus, ει normalizes Dx
∼= ΠX/ΔX . Since, moreover, l is odd [so H1(GK , ΔΘ),

ΔΘ/H0(GK , ΔΘ) have no elements of order 2], and conjugation by ει induces
the identity on ΔΘ and GK , it follows that ει centralizes Dx

∼= ΠX/ΔX , hence
[a fortiori] GK

∼= ΠX/ΔX . Now assertion (iii) follows immediately.

Remark 2.2.1. We shall not discuss the case of even l in detail here. Nev-
ertheless, we pause briefly to observe that if l = 2, then [since ΔΘ lies in the
center of ΔX ] the automorphism ε± ∈ Gal(Ẍ/C) ∼= Δ

ell

C of §1 acts naturally
on the exact sequence 1 → ΔΘ → ΔX → Δ

ell

X → 1. Since this action is
clearly trivial on ΔΘ, Δ

ell

X , one verifies immediately that this action determines
a homomorphism Δ

ell

X → ΔΘ, i.e., in effect, a 2-torsion point [so long as the
homomorphism is nontrivial] of the elliptic curve underlying X log. Thus, by
considering the case where K is the field of moduli of this elliptic curve [so that
GK permutes the 2-torsion points transitively], we conclude that this homomor-
phism must be trivial, i.e., that every element of Δ

ell

X admits an ε±-invariant
lifting to ΔX .

Definition 2.3. We shall refer to a smooth log orbicurve over K that
arises, up to isomorphism, as the smooth log orbicurve X log (respectively, C log)
constructed in Proposition 2.2 above as being of type (1, l-torsΘ) (respectively,
(1, l-torsΘ)±). We shall also apply this terminology to the associated hyperbolic
orbicurves.

Remark 2.3.1. Thus, one may think of the “single underline” in the no-
tation X log, C log as denoting the result of “extracting a single copy of Z/lZ”,
and the “double underline” in the notation X log, C log as denoting the result of
“extracting two copies of Z/lZ”.

Proposition 2.4 (Characteristic Nature of Coverings). For � = α, β,
let X log

� be a smooth log curve of type (1, l-torsΘ) over a finite extension
K� of Qp, where l is odd; write C log

� , X log
� , C log

� , X log
� , C log

� for the related
smooth log orbicurves [as in the above discussion]. Assume further that X log

�
has stable reduction over OK� , with singular and split special fiber. Then
any isomorphism of topological groups

γ : Πtp
X

α

∼→ Πtp
X

β

(respectively, γ : Πtp
Xα

∼→ Πtp
Xβ

;

γ : Πtp
C

α

∼→ Πtp
C

β

; γ : Πtp
Cα

∼→ Πtp
Cβ

)

induces isomorphisms compatible with the various natural maps between the
respective “Πtp’s” of X log

� , X log
� , C log

� , C log
� , C log

� , Ÿ log
� (respectively, X log

� ,
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C log
� , Ÿ log

� ; C log
� , C log

� , X log

� , X log
� , X log

� , Ÿ log
� ; C log

� , X log
� , X log

� , Ÿ log
� ) where

� = α, β.

Proof. As in the proof of Proposition 1.8, it follows from our assumption
that the hyperbolic curve determined by X log

� admits a K�-core that γ induces
an isomorphism Πtp

Cα

∼→ Πtp
Cβ

[cf. [Mzk3], Theorem 2.4] which [cf. [Mzk2],

Lemma 1.3.8] induces an isomorphism Δtp
Cα

∼→ Δtp
Cβ

; moreover, this last isomor-
phism induces [by considering open subgroups of index 2 whose profinite com-
pletions contain no torsion elements] an isomorphism Δtp

Xα

∼→ Δtp
Xβ

, hence also
[by considering the conjugation action of Πtp

C�
on an appropriate abelian quo-

tient of Δtp
X�

as in the proof of Proposition 1.8] an isomorphism Πtp
Xα

∼→ Πtp
Xβ

,
which preserves the decomposition groups of cusps [cf. [Mzk14], Theorem 6.5,
(iii)]. Also, by the definition of ΔX� , the isomorphism Δtp

Xα

∼→ Δtp
Xβ

deter-

mines an isomorphism ΔXα

∼→ ΔXβ
. In light of these observations, the various

assertions of Proposition 2.4 follow immediately from the definitions [cf. also
Proposition 2.2; Theorem 1.6, (i); the proof of Proposition 1.8].

Now, we return to the discussion of §1. In particular, we assume that K

is a finite extension of Qp.

Definition 2.5. Suppose that l and the residue characteristic of K are
odd, and that K = K̈ [cf. Definition 1.7 and the preceding discussion].

(i) Suppose, in the situation of Definitions 2.1, 2.3, that the quotient Π
ell

X �
Q factors through the natural quotient ΠX � Ẑ determined by the quotient
Πtp

X � Z discussed at the beginning of §1, and that the choice of a splitting
of Dx → GK [cf. Proposition 2.2, (ii)] that determined the covering X log →
X log is compatible with the “{±1}-structure” of Theorem 1.10, (iii). Then
we shall say that the orbicurve of type (1, l-tors) (respectively, (1, l-torsΘ);
(1, l-tors)±; (1, l-torsΘ)±) under consideration is of type (1, Z/lZ) (respectively,
(1, (Z/lZ)Θ); (1, Z/lZ)±; (1, (Z/lZ)Θ)±).

(ii) In the notation of the above discussion and the discussion at the end
of §1, we shall refer to a smooth log orbicurve isomorphic to the smooth log
orbicurve

Ẋ
log

(respectively, Ẋ
log

; Ċ
log

; Ċ
log

)

obtained by taking the composite of the covering

X log (respectively, X log; C log; C log)

of C log with the covering Ċ log → C log, as being of type (1, µ2 × Z/lZ) (respec-
tively, (1, µ2 × (Z/lZ)Θ); (1, µ2 × Z/lZ)±; (1, µ2 × (Z/lZ)Θ)±).
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Remark 2.5.1. Thus, the irreducible components of the special fiber of C,
Ċ may be naturally identified with the elements of (Z/lZ)/{±1}— cf. Corollary
2.9 below for more details.

Proposition 2.6 (Characteristic Nature of Coverings). For � = α, β,
let us assume that we have smooth log orbicurves as in the above discussion,
over a finite extension K� of Qp. Then any isomorphism of topological groups

γ : Πtp

Ẋ
α

∼→ Πtp

Ẋ
β

(respectively, γ : Πtp

Ẋα

∼→ Πtp

Ẋβ

;

γ : Πtp

Ċ
α

∼→ Πtp

Ċ
β

; γ : Πtp

Ċα

∼→ Πtp

Ċβ

)

induces isomorphisms compatible with the various natural maps between the
respective “Πtp’s” of X log

� (respectively, X log
� ; C log

� ; C log
� ) and Ċ log

� , where � =
α, β. A similar statement holds when “Πtp” is replaced by “Π”.

Proof. The proof is entirely similar to the proofs of Propositions 1.8,
2.4.

Remark 2.6.1. Suppose, for simplicity, that K contains a primitive l-th
root of unity. Then we observe in passing that by applying the Propositions
2.4, 2.6 to “isomorphisms of fundamental groups arising from isomorphisms of
the orbicurves in question” [cf. also Remark 2.1.1], one computes easily that
the groups of K-linear automorphisms “AutK(−)” of the various smooth log
orbicurves under consideration are given as follows:

AutK(X log) = µl × {±1}; AutK(X log) = Z/lZ � {±1}
AutK(C log) = µl; AutK(C log) = {1}

— where µl denotes the group of l-th roots of unity in K, and the semi-direct
product “�” is with respect to the natural multiplicative action of ±1 on Z/lZ;
the “AutK(−)’s” of the various “once-dotted versions” of these orbicurves [cf.
Definition 2.5, (ii)] are given by taken the direct product of the “AutK(−)’s”
listed above with Gal(Ċ log/C log) ∼= {±1}.

Next, we consider étale theta functions. First, let us observe that the
covering Ÿ log → C log factors naturally through Ẋ

log
. Thus, the class [which is

only well-defined up to a O×
K-multiple]

η̈Θ ∈ H1(Πtp

Ÿ
, ΔΘ)
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of §1 — as well as the corresponding Πtp

Ẋ
/Πtp

Ÿ
∼= Z-orbit η̈Θ,Z — may be thought

of as objects associated to the “Πtp” of Ẋ
log

, Ċ
log

, X log, C log. On the other
hand, the composites of the coverings Ÿ log → C log, Y log → C log with C log →
C log determine new coverings

Ÿ
log → Ÿ log; Y log → Y log

of degree l. Moreover, the choice of a splitting of Dx → GK [cf. Proposition
2.2, (ii)] that determined the covering X log → X log determines [by considering
the natural map Dx → Πtp

Ÿ
→ (Πtp

Ÿ
)Θ — cf. Proposition 1.5, (ii)] a specific

class ∈ H1(Πtp

Ÿ
, ΔΘ ⊗ Z/lZ), which may be thought of as a choice of η̈Θ up

to an (O×
K)l-multiple [i.e., as opposed to only up to a O×

K -multiple]. Now it

is a tautology that, upon restriction to the covering Ÿ
log → Ÿ log [which was

determined, in effect, by the choice of a splitting of Dx → GK ], the class η̈Θ

determines a class
η̈Θ ∈ H1(Πtp

Ÿ
, l ·ΔΘ)

— as well as a corresponding Πtp

Ẋ
/Πtp

Ÿ
∼= Πtp

Ẋ
/Πtp

Ÿ
∼= l · Z-orbit η̈Θ,l·Z — which

may be thought of as objects associated to the “Πtp” of Ẋ
log

, Ċ
log

, X log, C log,
and which satisfy the following property:

H1(Πtp

Ÿ
, l ·ΔΘ) � η̈Θ 
→ η̈Θ|Ÿ ∈ H1(Πtp

Ÿ
, ΔΘ)

[relative to the natural inclusion l · ΔΘ ↪→ ΔΘ]. That is to say, at a more
intuitive level, η̈Θ may be thought of as an “l-th root of the étale theta function”.

In the following, we shall also consider the l ·Z-orbit η̈Θ,l·Z of η̈Θ, as well as the
Πtp

X /Πtp

Ÿ
∼= Πtp

X /Πtp

Ÿ
∼= {(l · Z)× µ2}-orbits

η̈Θ,l·Z×µ2 , η̈Θ,l·Z×µ2

of η̈Θ, η̈Θ, and the Πtp
X /Πtp

Ÿ
∼= (Z× µ2)-orbit η̈Θ,Z×µ2 of η̈Θ.

Definition 2.7. If η̈Θ,Z is of standard type, then we shall also refer to
η̈Θ,l·Z, η̈Θ,l·Z, η̈Θ,l·Z×µ2 , η̈Θ,l·Z×µ2 , η̈Θ,Z×µ2 as being of standard type.

Corollary 2.8 (Constant Multiple Rigidity of Roots of the Étale Theta
Function). For � = α, β, let us assume that we have smooth log orbi-
curves as in the above discussion, over a finite extension K� of Qp. Let

γ : Πtp
X

α

∼→ Πtp
X

β

(respectively, γ : Πtp
Xα

∼→ Πtp
Xβ

;

γ : Πtp
C

α

∼→ Πtp
C

β

; γ : Πtp
Cα

∼→ Πtp
Cβ

)
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be an isomorphism of topological groups. Then:

(i) The isomorphism γ preserves the property [cf. Theorem 1.6, (iii)] that
η̈Θ,l·Z×µ2

�
(respectively, η̈

Θ,Z×µ2
� ; η̈Θ,l·Z×µ2

�
; η̈

Θ,l·Z×µ2
� ) be of standard type —

a property that determines this collection of classes up to multiplication by
a root of unity of order l (respectively, 1; l; 1).

(ii) Suppose further that the cusps of X� are rational over K�, that the
residue characteristic of K� is prime to l, and that K� contains a primitive
l-th root of unity. Then the {±1}-[i.e., µ2-] structure of Theorem 1.10, (iii),
determines a µ2l (respectively, µ2; µ2l; µ2)-structure [cf. [Mzk13], Corollary
4.12] on the (K×

�)∧-torsor at the cusps of X log

� (respectively, X log
� ; X log

� ; X log
� ).

Moreover, this µ2l (respectively, µ2; µ2l; µ2)-structure is compatible with the
canonical integral structure [cf. [Mzk13], Definition 4.1, (iii)] determined
by the stable model of X log

� and preserved by γ.

(iii) If the data for � = α, β are equal, and γ arises [cf. Proposition
2.6] from an inner automorphism of Πtp

Ẋ�
(respectively, Πtp

Ẋ�
; Πtp

Ċ�
; Πtp

Ċ�
),

then γ preserves η̈Θ,l·Z (respectively, η̈Θ,l·Z; η̈Θ,l·Z; η̈Θ,l·Z) [i.e., without any
constant multiple indeterminacy ].

Proof. First, let us recall the characteristic nature of the various coverings
involved [cf. Propositions 2.4, 2.6]. Now assertion (i) follows immediately from
Theorem 1.10, (i), and the definitions; assertion (ii) follows immediately from
Theorem 1.10, (iii), and the definitions; assertion (iii) follows immediately from
Remark 1.9.1.

Before proceeding, we pause to take a closer look at the cusps of the
various smooth log orbicurves under consideration. First, we recall from the
discussion preceding Lemma 1.2 that the irreducible components of the special
fiber of Ylog may be assigned labels ∈ Z, in a natural fashion. These labels thus
determine labels ∈ Z for the cusps of Y log [i.e., by considering the irreducible
component of the special fiber of Ylog that contains the closure in Y of the
cusp in question]. Moreover, by considering the covering Ÿ

log → Y log, we thus

obtain labels ∈ Z for the cusps of Ÿ
log

. Since the various smooth log orbicurves

Ẋ
log

; Ẋ
log

; Ċ
log

; Ċ
log

; X log; X log; C log; C log

all appear as subcoverings of the covering Ÿ
log → X log, we thus obtain labels

∈ Z for the cusps of these smooth log orbicurves, which are well-defined up to
a certain indeterminacy. If we write

(Z/lZ)±
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for the quotient of the set Z/lZ by the natural multiplicative action of ±1, then
it follows immediately from the construction of these smooth log orbicurves
that this indeterminacy is such that the labels for the cusps of these smooth
log orbicurves may be thought of as well-defined elements of (Z/lZ)±.

Corollary 2.9 (Labels of Cusps). Suppose that K contains a primi-
tive l-th root of unity. Then for each of the smooth log orbicurves

Ẋ
log

; Ċ
log

; Ċ
log

; X log; C log; C log

[as defined in the above discussion], the labels of the above discussion determine
a bijection of the set

(Z/lZ)±

with the set of “AutK(−)”-orbits [cf. Remark 2.6.1] of the cusps of the smooth
log orbicurve. Moreover, in the case of X log, C log, and C log, these bijections are
preserved by arbitrary isomorphisms of topological groups “γ” as in Corollary
2.8.

Proof. The asserted bijections follow immediately by tracing through the
definitions of the various smooth log orbicurves [cf. Remark 2.6.1]. With regard
to showing that these bijections are preserved by “γ” as in Corollary 2.8, we
reduce immediately by Proposition 2.4 to the case of Clog; in this case, the
desired preservation follows immediately from the definition of the labels in
question in the discussion above, together with the fact that such γ always
preserve the dual graphs of the special fibers of the orbicurves in question [cf.
[Mzk2], Lemma 2.3].

Remark 2.9.1. We observe in passing that a bijection as in Corollary 2.9
fails to hold for Ẋ

log
, X log — cf. Remark 2.6.1.

Remark 2.9.2. In the situation of Corollary 2.8, (ii), we make the follow-
ing observation, relative to the labels of Corollary 2.9: The 2l (respectively,
2) trivializations of the (K×

�)∧-torsor at a cusp labeled 0 (respectively, an ar-
bitrary cusp) of X log

� (respectively, X log
� ) determined by the µ2l (respectively,

µ2)-structure under discussion are permuted transitively by the subgroup of
AutK�(X log

� ) (respectively, AutK�(X log
� )) [cf. Remarks 2.1.1, 2.6.1, 2.9.1] that

stabilizes the cusp. In the case of X log

� , at cusps with nonzero labels, the sub-
group of the corresponding “AutK�(−)” that stabilizes the cusp permutes the
2l trivializations under consideration via the action of µl [hence has precisely
two orbits].
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Next, let N ≥ 1 be an integer; set

ΔµN

def= (Z/NZ(1)); ΠµN ,K
def= ΔµN

� GK

— so we have a natural exact sequence 1→ ΔµN
→ ΠµN ,K → GK → 1.

Definition 2.10. If Π � GK is a topological group equipped with an
augmentation [i.e., a surjection] to GK , then we shall write

Π[µN ] def= Π×GK
ΠµN ,K

and refer to Π[µN ] as the cyclotomic envelope of Π � GK [or Π, for short].
Also, if Δ def= Ker(Π � GK), then we shall write

Δ[µN ] def= Ker(Π[µN ] � GK)

— so Δ[µN ] = Δ × ΔµN
; we have a natural exact sequence 1 → Δ[µN ] →

Π[µN ] → GK → 1. Note that, by construction, we have a tautological section
GK → ΠµN ,K of ΠµN ,K � GK , which determines a section

salg
Π : Π→ Π[µN ]

of Π[µN ] � Π, which we shall also call tautological. We shall refer to a µN -
orbit, relative to the action of µN by conjugation, of objects associated to Π[µN ]
[e.g., subgroups of Π[µN ], homomorphisms from Π[µN ] to another topological
group, etc.] as a µN -conjugacy class.

Proposition 2.11 (General Properties of the Cyclotomic Envelope).
For � = α, β, let Π� � GK� be an open subgroup of either the tem-
pered or the profinite fundamental group of a hyperbolic orbicurve over a
finite extension K� of Qp; write Δ� for the kernel of the natural morphism
Π� → GK� . Then:

(i) The kernel of the natural surjection Δ�[µN ] � Δ� is equal to the cen-
ter of Δ�[µN ]. In particular, any isomorphism of topological groups Δα[µN ] ∼→
Δβ [µN ] is compatible with the natural surjections Δ�[µN ] � Δ�.

(ii) The kernel of the natural surjection Π�[µN ] � Π� is equal to the
union of the centralizers of the open subgroups of Π�[µN ]. In particular,
any isomorphism of topological groups Πα[µN ] ∼→ Πβ[µN ] is compatible with
the natural surjections Π�[µN ] � Π�.

Proof. Assertions (i), (ii) follow immediately from the “temp-slimness”
[i.e., the triviality of the centralizers of all open subgroups of] Δ�, Π� [cf.
[Mzk14], Example 3.10].
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Next, let us write

ΠΘ
C

def= ΠC/Ker(ΔX � ΔΘ
X); ΔΘ

C
def= ΔC/Ker(ΔX � ΔΘ

X)

and, in a similar vein, denote by means of a superscript “Θ” the quotients of
the tempered and profinite fundamental groups of Ẋ

log
, Ẋ

log
, Ẋ log, X log, X log,

X log, Ċ
log

, Ċ
log

, Ċ log, C log, C log, C log, determined by these quotients. Also,
let us write

Πell
C

def= ΠC/Ker(ΔX � Δell
X ); Δell

C
def= ΔC/Ker(ΔX � Δell

X )

and denote by means of a superscript “ell” the various induced quotients.

Proposition 2.12 (The Cyclotomic Envelope of the Theta Quotient).
Let Δ∗ be one of the following topological groups:

Δtp
X ; Δtp

Ċ
; Δtp

C ; ΔX ; ΔĊ ; ΔC

Then:

(i) We have an inclusion

Ker
(
ΔΘ

∗ � Δell
∗

)
= l ·ΔΘ ⊆

[
ΔΘ

∗ , ΔΘ
∗

]
of subgroups of ΔΘ

∗ .

(ii) The intersection[
ΔΘ

∗ [µN ], ΔΘ
∗ [µN ]

] ⋂
(l ·ΔΘ)[µN ] ⊆ (l ·ΔΘ)[µN ] ⊆ ΔΘ

∗ [µN ]

coincides with the image of the restriction of the tautological section of
ΔΘ

∗ [µN ] � ΔΘ
∗ to l ·ΔΘ.

Proof. First, we consider the inclusion of assertion (i). Now since l is
odd, the prime-to-2 portion of this inclusion then follows immediately from
the well-known structure of the “theta-group” (Δtp

X )Θ [cf. also the definition
of the covering Clog → C log]; in the case of X log, C log, the pro-2 portion of

this inclusion follows similarly. On the other hand, in the case of Ċ
log

, the
pro-2 portion of this inclusion follows from the fact that, in the notation of
Remark 2.2.1 [i.e., more precisely, when “l = 2”], if we denote by εΔZ , εΔμ ∈
ΔX (⊆ ΔC), εΔ± ∈ ΔC liftings to ΔC of the elements of Δ

ell

C determined by
the automorphisms “εZ”, “εμ”, “ε±” of the discussion preceding Definition 1.7,
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then εΔ± commutes with εΔZ , εΔμ [cf. the observation of Remark 2.2.1], so the
commutator

[εΔZ , εΔ± · εΔμ ] = [εΔZ , εΔμ ]

is a nonzero element of ΔΘ. Assertion (ii) follows formally from assertion
(i).

Remark 2.12.1. Note that the inclusion of Proposition 2.12, (i) — which
will be crucial in the theory to follow — fails to hold if one replaces X log, Ċ

log
,

C log by Ẋ
log

, Ẋ log [one has problems at the prime 2]; Ẋ
log

[one has problems

at the prime 2 and the primes dividing l]; X log, Ċ
log

, C log [one has problems
at the primes dividing l]. (There is no problem, however, if one replaces X log,

Ċ
log

, C log by X log, Ċ log, C log since this just corresponds to the case l = 1.)
Indeed, the original motivation for the introduction of the slightly complicated
coverings X log, Ċ

log
, C log was precisely to avoid these problems.

Next, let us observe that, by subtracting [i.e., if we treat cohomology classes
additively] the reduction modulo N of any member of the collection of [cocycles
determined by the collection of] classes η̈Θ,l·Z×µ2 in H1(Πtp

Ÿ
, l · ΔΘ) from the

[composite with the inclusion into Πtp
Y [µN ] of the] tautological section

salg

Ÿ

def= salg

Πtp
Ÿ

: Πtp

Ÿ
→ Πtp

Ÿ
[µN ] ↪→ Πtp

Y [µN ]

— where we apply the natural isomorphism µN
∼= (l ·ΔΘ)⊗ (Z/NZ) — yields

a new homomorphism: sΘ
Ÿ

: Πtp

Ÿ
→ Πtp

Y [µN ].

Now since the tautological section salg

Ÿ
extends to a tautological section

salg

Πtp
C

: Πtp
C → Πtp

C [µN ] [where we regard Πtp
Y [µN ] as a subgroup of Πtp

C [µN ]], it

follows that the natural outer action

Gal(Y /C) ∼= Πtp
C /Πtp

Y
∼= Πtp

C [µN ]/Πtp
Y [µN ] ↪→ Out(Πtp

Y [µN ])

of Gal(Y /C) on Πtp
Y [µN ] fixes the image of salg

Ÿ
, up to conjugation by an element

of µN . In particular, it follows immediately from the definitions that the various
sΘ

Ÿ
that arise from different choices of [a cocycle contained in] a class ∈ η̈Θ,l·Z×µ2

are obtained as Πtp
X [µN ]-conjugates [where we recall that we have a natural

isomorphism (Πtp
X �) Gal(Ÿ /X) ∼→ (l · Z) × µ2] of any given sΘ

Ÿ
. [Here, we
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note that “conjugation by an element of µN” corresponds precisely to modifying
a cocycle by a coboundary.]

Note, moreover, that we have a natural outer action

K× � (K×)/(K×)N ∼→ H1(GK , µN ) ↪→ H1(Πtp
Y , µN )→ Out(Πtp

Y [µN ])

— where the “ ∼→” is the Kummer map — of K× on Πtp
Y [µN ], which induces

the trivial outer action on both the quotient Πtp
Y [µN ] � Πtp

Y and the kernel of

this quotient. Relative to this natural outer action, replacing η̈Θ,l·Z×µ2 by an

O×
K-multiple of η̈Θ,l·Z×µ2 [cf. Proposition 1.3] corresponds to replacing sΘ

Ÿ
by

an O×
K-conjugate of sΘ

Ÿ
.

Definition 2.13. In the notation of the above discussion:

(i) Write
DY ⊆ Out(Πtp

Y [µN ])

for the subgroup of Out(Πtp
Y [µN ]) generated by the image of K×, Gal(Y /X) (∼=

l · Z). We shall refer to sΘ
Ÿ

: Πtp

Ÿ
→ Πtp

Y [µN ] as the [mod N ] theta section. We

shall refer to salg

Ÿ
: Πtp

Ÿ
→ Πtp

Y [µN ] as the [mod N ] algebraic section.

(ii) We shall refer to as a [mod N ] model mono-theta environment any
[ordered] collection of data as folows:

(a) the topological group Πtp
Y [µN ];

(b) the subgroup DY ⊆ Out(Πtp
Y [µN ]);

(c) the µN -conjugacy class of subgroups ⊆ Πtp
Y [µN ] determined by the

image of the theta section sΘ
Ÿ

.

We shall refer to as a [mod N ] mono-theta environment any [ordered] collection
of data consisting of a topological group Π, a subgroup DΠ ⊆ Out(Π), and
a collection of subgroups sΘ

Π of Π such that there exists an isomorphism of
topological groups Π ∼→ Πtp

Y [µN ] [cf. (a)] mapping DΠ ⊆ Out(Π) to DY [cf.

(b)] and sΘ
Π to the µN -conjugacy class of (c). [In particular, every model mono-

theta environment determines a mono-theta environment.] We shall refer to as
an isomorphism of [mod N ] mono-theta environments M

∼→ M′ between two
[mod N ] mono-theta environments

M
def= (Π,DΠ, sΘ

Π); M′ def= (Π′,DΠ′ , sΘ
Π′)



274 Shinichi Mochizuki

any isomorphism of topological groups Π ∼→ Π′ that maps DΠ 
→ DΠ′ , sΘ
Π 
→

sΘ
Π′ . If N ′|N , M is a mod N mono-theta environment, and M′ is a mod N ′

mono-theta environment, then we shall refer to as a morphism of mono-theta
environments M → M′ any isomorphism MN ′

∼→ M′, where we write MN ′ for
the mod N ′ mono-theta environment induced by M.

(iii) We shall refer to as a [mod N ] model bi-theta environment any [ordered]
collection of data as follows:

(a) the topological group Πtp
Y [µN ];

(b) the subgroup DY ⊆ Out(Πtp
Y [µN ]);

(c) the µN -conjugacy class of subgroups ⊆ Πtp
Y [µN ] determined by the

image of the theta section sΘ
Ÿ

;

(d) the µN -conjugacy class of subgroups ⊆ Πtp
Y [µN ] determined by the

image of the algebraic section salg

Ÿ
.

We shall refer to as a [mod N ] bi-theta environment any collection of data con-
sisting of a topological group Π, a subgroup DΠ ⊆ Out(Π), and an ordered pair
of collections of subgroups sΘ

Π, salg
Π of Π such that there exists an isomorphism

of topological groups Π ∼→ Πtp
Y [µN ] [cf. (a)] mapping DΠ ⊆ Out(Π) to DY

[cf. (b)], sΘ
Π to the µN -conjugacy class of (c), and salg

Π to the µN -conjugacy
class of (d). [In particular, every model bi-theta environment determines a bi-
theta environment.] We shall refer to as an isomorphism of [mod N ] bi-theta
environments B

∼→ B′ between two [mod N ] bi-theta environments

B
def= (Π,DΠ, sΘ

Π, salg
Π ); B′ def= (Π′,DΠ′ , sΘ

Π′ , s
alg
Π′ )

any isomorphism of topological groups Π ∼→ Π′ that maps DΠ 
→ DΠ′ , sΘ
Π 
→

sΘ
Π′ , salg

Π 
→ salg
Π′ . If N ′|N , B is a mod N bi-theta environment, and B′ is a

mod N ′ bi-theta environment, then we shall refer to as a morphism of bi-theta
environments B→ B′ any isomorphism BN ′

∼→ B′, where we write BN ′ for the
mod N ′ bi-theta environment induced by B.

(iv) In the situation of (iii), if η̈Θ,l·Z×µ2 is of standard type, then we shall
refer to the resulting [mod N ] model bi-theta environment as being of standard
type.

Proposition 2.14 (Symmetries of Mono-theta and Bi-theta Environ-
ments). In the notation of the above discussion:
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(i) The subset

(Δtp

Ÿ
)Θ[µN ] ⊇ (l ·ΔΘ)[µN ]

⋂
{γ(β) · β−1 ∈ (Δtp

Y )Θ[µN ] | β ∈ (Δtp
Y )Θ[µN ],

γ ∈ Aut(Πtp
Y [µN ]) s.t. the image of γ in “Out” belongs to DY ,

and γ induces the identity on the quotient Πtp
Y [µN ] � Πtp

Y � GK}

coincides with the image of the tautological section of (l·ΔΘ)[µN ] � (l·ΔΘ).

(ii) Let
tΘ
Ÿ

: Πtp

Ÿ
→ Πtp

Y [µN ]

be a section obtained as a conjugate of sΘ
Ÿ
, relative to the actions of K×,

(l · Z). Write δ for the [1-]cocycle of Πtp

Ÿ
with coefficients in µN obtained by

subtracting sΘ
Ÿ

from tΘ
Ÿ

and

α̈δ ∈ Aut(Πtp

Ÿ
[µN ])

for the automorphism of the topological group Πtp

Ÿ
[µN ] obtained by “shift-

ing” by δ [which induces the identity on both the quotient Πtp

Ÿ
[µN ] � Πtp

Ÿ

and the kernel of this quotient ]. Then α̈δ extends to an automorphism αδ ∈
Aut(Πtp

Y [µN ]) which induces the identity on both the quotient Πtp
Y [µN ] � Πtp

Y

and the kernel of this quotient ; conjugation by αδ maps sΘ
Ÿ

to tΘ
Ÿ

and preserves

the subgroup DY ⊆ Out(Πtp
Y [µN ]).

(iii) Write M
def= (Πtp

Y [µN ],DY , sΘ
Ÿ

) (respectively, B
def= (Πtp

Y [µN ],DY , sΘ
Ÿ

,

salg

Ÿ
)) for the model mono-theta (respectively, bi-theta) environment con-

structed in the above discussion. Then every automorphism of M (respectively,
B) determines an automorphism of Πtp

Y [cf. Proposition 2.11, (ii)], hence an
automorphism of

Πtp
X = Aut(Πtp

Y )×Out(Πtp
Y ) Im(DY )

— where “Im(−)” denotes the image in Out(Πtp
Y ) — as well as [by considering

the cuspidal decomposition groups] an automorphism of the set of cusps of Y .
Relative to the labels ∈ Z on these cusps [cf. Corollary 2.9 and the discussion
preceding it ], this automorphism induces an automorphism ∈ (l · Z) � {±1} of
Z. Moreover, the resulting homomorphism

Aut(M)→ (l · Z) � {±1} (respectively, Aut(B)→ (l · Z) � {±1})
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is surjective (respectively, has image ImN satisfying (N ·l·Z)�{±1} ⊆ ImN ⊆
(N† · l ·Z) � {±1} ⊆ Z � {±1} — where N† def= N if N is odd, N† def= N/2 if N

is even).

Proof. First, we consider assertion (i). Observe that the group (Δtp
Y )Θ[µN ]

is abelian, and that [since GK is center-free — cf., e.g., [Mzk2], Theorem 1.1.1,
(ii)] the automorphisms “γ” of Πtp

Y [µN ] arising from K× restrict to the identity

on (Δtp
Y )Θ[µN ]. Thus, one computes easily that assertion (i) follows immedi-

ately from Proposition 2.12, (ii), in the case where Δ∗ = Δtp
X .

Next, we consider assertion (ii). It is immediate from the definitions that
conjugation by α̈δ maps sΘ

Ÿ
to tΘ

Ÿ
. Since the outer action of Gal(Y /X) (∼=

l · Z) on Πtp
Y [µN ] fixes the section salg

Ÿ
, up to µN -conjugacy, it follows that the

difference cocycle δ determines a cohomology class of

H1(Πtp

Ÿ
, µN )

that lies in the submodule generated by the Kummer classes of K× and “Ü2l·(1/l)

= Ü2” [cf. Proposition 1.5, (ii), (iii)]. Here, we note that the factor of “1/l” in
the exponent of Ü arises from the fact that to work with η̈Θ,l·Z×µ2 amounts to
working with l-th roots of theta functions [cf. the discussion preceding Defini-
tion 2.7]; the factor of “l” arises from the factor of l in “l · Z”.

Since, moreover, the meromorphic function “Ü2” on Ÿ descends to Y , we
thus conclude that δ extends to a cocycle of Πtp

Y with coefficients in µN , hence

that α̈δ extends to an automorphism αδ ∈ Aut(Πtp
Y [µN ]) which induces the

identity on both the quotient Πtp
Y [µN ] � Πtp

Y and the kernel of this quotient.

Since the action by an element of Gal(Y /X) clearly maps Ü2 to a K×-multiple
of Ü2, it thus follows that conjugation by αδ preserves DY ⊆ Out(Πtp

Y [µN ]) [cf.
the definition of DY !], as desired. This completes the proof of assertion (ii).

Finally, assertion (iii) follows immediately from assertion (ii) in the mono-
theta case by considering [in the context of assertion (ii)] the action of an
arbitrary element of l ·Z. In the bi-theta case, we observe that if, in the situation
of assertion (ii), tΘ

Ÿ
is obtained as an N ·(l ·Z)-conjugate of sΘ

Ÿ
, then the cocycle

δ is a coboundary; in particular, [in this case] the automorphism αδ preserves
the µN -conjugacy classes of subgroups determined by the images of sΘ

Ÿ
, tΘ

Ÿ
, salg

Ÿ
.

This shows that ImN ⊇ (N · l · Z) � {±1}. On the other hand, the fact that
ImN ⊆ (N† · l · Z) � {±1} follows immediately by considering, in light of the
cohomology computation of Proposition 1.5, (i), the third displayed formula



The Étale Theta Function 277

of Proposition 1.4, (ii), applied to the “mod N étale theta function”, which
implies [cf. the computation applied in the proof of assertion (ii)] that for any
a · l ∈ ImN [where a ∈ Z], we have 2a ≡ 0 (mod N).

Remark 2.14.1. Note that, in the notation of Proposition 2.14, (ii), al-
though the automorphism α̈δ extends to an automorphism αδ of Πtp

Y [µN ], the

automorphism αδ fails to extend to Πtp
X [µN ] [i.e., since Ü2 fails to descend from

Y to X!]; thus, it is essential to work with homomorphisms sΘ
Ÿ

, tΘ
Ÿ

: Πtp

Ÿ
→

Πtp
Y [µN ], as opposed to composites of such homomorphisms with the natural

inclusion Πtp
Y [µN ] ↪→ Πtp

X [µN ].

Remark 2.14.2. Note that if, in the situation of Proposition 2.14, one tries
to replace Gal(Y /X) by Gal(Y /C), then one must contend with the “inversion
automorphism” [cf. Proposition 1.5, (iii)], which maps Ü 
→ Ü−1. This obliges
one — if one is to retain the property that “conjugation by αδ preserves DY ”
— to enlarge “DY ” so as to include the outer automorphisms of Πtp

Ÿ
[µN ] that

arise from Kummer classes of integral powers of Ü4 = (Ü2) · (Ü−2)−1. On the
other hand, if one enlarges DY in this fashion, then one verifies easily [cf. the
description of the Kummer class of Ü in Proposition 1.5, (ii)] that the subset
considered in Proposition 2.14, (i), is no longer contained in the image of the
tautological section of (l ·ΔΘ)[µN ] � (l ·ΔΘ).

Remark 2.14.3. The existence of “shifting automorphisms” as in Propo-
sition 2.14, (ii) — cf. also the mono-theta portion of Proposition 2.14, (iii) —
may be interpreted as the

“nonexistence of a mono-theta-theoretic basepoint”

[cf. the discussion preceding Corollary 2.9 concerning “labels”] relative to the l ·
Z action on Y — i.e., the nonexistence of a “distinguished irreducible component
of the special fiber of Y” associated to the data constituted by a mod N mono-
theta environment. On the other hand, the description of the poles of the theta
function [cf. Proposition 1.4, (i)] already suggests that the data constituted by
a mod N bi-theta environment [which includes, by considering the “difference”
between the subgroups of Definition 2.13, (iii), (c), (d), a choice of a “specific
mod N étale theta function”] does determine, in effect, a “basepoint modulo
N†” [cf. the bi-theta portion of Proposition 2.14, (iii)], i.e., a distinguished
irreducible component of the special fiber of Y, up to the action of N† · (l · Z).
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Proposition 2.15 (Discrete Rigidity and Z-torsors). Let us regard
N≥1 as equipped with the order relation arising from the monoid structure of
N≥1. [That is to say, for M, M ′ ∈ N≥1, “M ≤ M ′” if and only if M |M ′,
i.e., M divides M ′.] Write T for the category whose objects TM , where
M ∈ N≥1, are copies of Z [which we think of as torsors over Z], and whose
morphisms TM ′ → TM , where M, M ′ ∈ N≥1 satisfy M |M ′, are the composites
of the “identity morphism” TM ′ = Z→ Z = TM with an automorphism of TM

arising from the action of an element ∈M ·Z ⊆ Z. Let E ⊆ N≥1 be a cofinal,
totally ordered subset of N≥1 such that 1 ∈ E. We shall refer to as an
E-system {SM ; βM ′,M}M,M ′∈E of T any projective system

. . . −→ SM ′
βM′,M−→ SM −→ . . .

of objects and morphisms of T indexed by E; we shall refer to as an isomor-
phism of E-systems

{SM ; βM ′,M}M,M ′∈E
∼→ {S′

M ; β′
M ′,M}M,M ′∈E

any collection of isomorphisms αM : SM
∼→ S′

M [for M ∈ E] of T such that
αM ◦ βM ′,M = β′

M ′,M ◦ αM ′ [for M, M ′ ∈ E such that M |M ′]. Then:

(i) (Groups of Automorphisms) If M ∈ N≥1, then we have a natural
isomorphism AutT (TM ) ∼→ M · Z. If M, M ′ ∈ N≥1, then any morphism φ :
TM ′ → TM of T induces [via the condition of compatibility with φ] the injection

AutT (TM ′) ∼→M ′ · Z ↪→M · Z ∼→ AutT (TM )

determined by the natural inclusion M ′ · Z ⊆M · Z.

(ii) (Piecewise Rigid E-systems) Let S∗
def= {SM ; βM ′,M}M,M ′∈E , S′

∗
def= {S′

M ; β′
M ′,M}M,M ′∈E be arbitrary E-systems such that SM = S′

M = T1 for
all M ∈ E. Then there exists an isomorphism of E-systems S∗

∼→ S′
∗.

(iii) (Piecewise Non-rigid E-systems I) For S∗
def= {SM ; βM ′,M}M,M ′∈E

an E-system such that SM = TM for all M ∈ E, let us write jS
M

def= βM,1(0) ∈
T1 = Z ⊆ Ẑ. Then the sequence {jS

M}M∈E converges in Ẑ to some element,
which we denote by jS

∞ ∈ Ẑ. Moreover, the resulting assignment

S∗ 
→ jS
∞ ∈ Ẑ

— where S∗ = {SM ; βM ′,M}M,M ′∈E ranges over the E-systems such that SM =
TM for all M ∈ E — is surjective, and the image of jS

∞ in Ẑ/Z depends only
on the isomorphism class of S∗ as an E-system.
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(iv) (Piecewise Non-rigid E-systems II) There exist non-isomorphic
E-systems {SM ; βM ′,M}M,M ′∈E, {S′

M ; β′
M ′,M}M,M ′∈E such that SM = S′

M =
TM for all M ∈ E.

Proof. Assertions (i) and (ii) are immediate from the definitions. Next,
we consider assertion (iii). The fact that the sequence {jS

M}M∈E converges
follows immediately from the definitions. To verify the asserted surjectivity, let
j∞ ∈ Ẑ; choose a sequence {jM}M∈E of elements of Z such that jM maps to
the image of j∞ in (Z/MZ), and j1 = 0. Then for M, M ′ ∈ E such that M |M ′,
we take SM

def= TM , SM ′
def= TM ′ , βM ′,M to be the composite of the “identity

morphism” TM ′ = Z → Z = TM with the automorphism of TM determined
by the action of jM ′ − jM ∈ M · Z on TM . Now it is immediate that the
“jS

∞” associated to the resulting E-system S∗
def= {SM ; βM ′,M}M,M ′∈E is equal

to j∞, as desired. Finally, the fact that isomorphic E-systems yield the same
element ∈ Ẑ/Z is immediate from the definitions. This completes the proof
of assertion (iii). Assertion (iv) follows by taking S∗ = {SM ; βM ′,M}M,M ′∈E ,
S′
∗ = {S′

M ; β′
M ′,M}M,M ′∈E to be E-systems as in assertion (iii) such that the

associated “jS
∞”, jS′

∞” have distinct images in Ẑ/Z.

Remark 2.15.1. Proposition 2.15 generalizes immediately to the case of
categories equivalent to the category T . We leave the routine details to the
reader.

Remark 2.15.2. Let T be a “connected temperoid” [i.e., the analogue of
a Galois category for topological groups such as tempered fundamental groups
— cf. [Mzk14], Definition 3.1, (ii)]. For simplicity, we suppose that T is the
temperoid associated to a topological group whose topology admits a countable
basis of open subgroups. Then if A → B is a morphism of connected Galois
objects of T , then one verifies immediately that Aut(A) acts transitively on
HomT (A, B). In particular, [cf. Proposition 2.15, (ii)] if A def= {Ai}i∈N, B def=
{Bj}j∈N are cofinal [i.e., among the connected objects of T ] projective systems of
connected Galois objects of T indexed by N [equipped with its usual ordering],
then there exists an isomorphism of projective systems A ∼→ B [which does not
necessarily induce an isomorphism between the various Ai, Bj ]. It is this sort
of projective system that is implicitly used in the proof of [Mzk14], Proposition
3.2, to pass from the temperoid to its associated fundamental group.

Corollary 2.16 (Profinite Non-discrete-ness of Bi-theta Environments).
Fix some member

η̈Θ
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of the collection of [cocycles determined by the collection of ] classes η̈Θ,l·Z×µ2

[cf. the discussion preceding Proposition 2.14] in H1(Πtp

Ÿ
, l·ΔΘ). For M ∈ N≥1,

write
BM

for the model bi-theta environment that arises from [cf. Definition 2.13,
(iii)] the reduction of this η̈Θ modulo M ; ΠM [µM ] � ΠM for the portion
of the data BM constituted by the topological group [together with its natural
surjection] — cf. Definition 2.13, (iii), (a) [so ΠM may be thought of as a
copy of Πtp

Y ]; Π̈M ⊆ ΠM for the subgroup which is the image in ΠM of the

theta section — cf. Definition 2.13, (iii), (c) [so Π̈M may be thought of as a
copy of Πtp

Ÿ
]. Let E ⊆ N≥1 be a cofinal, totally ordered subset of N≥1 [cf.

Proposition 2.15] such that 1 ∈ E. Thus, we obtain a natural projective
system of bi-theta environments

. . . −→ BM ′
βM′,M−→ BM −→ . . .

— where M, M ′ ∈ E; M |M ′. Let j∞ ∈ l · Ẑ. Then there exists a projective
system of bi-theta environments

. . . −→ BM ′
γM′,M−→ BM −→ . . .

— where M, M ′ ∈ E; M |M ′ — such that the following properties hold : (a)
for each γM ′,M , there exist automorphisms α, α′ of the bi-theta environ-
ments BM , BM ′ , respectively, [where α, α′ may depend on the pair (M, M ′)]
such that γM ′,M = α ◦ βM ′,M ◦ α′; (b) the classes [indexed by M ] of

H1(Π̈1, l ·ΔΘ) = H1(Πtp

Ÿ
, l ·ΔΘ)

obtained by transporting the difference of the algebraic and theta sections of BM

down to Π̈1 via the isomorphism Π̈M
∼→ Π̈1 induced by γM,1 converge to the

element of H1(ΠŸ
∧ , l ·ΔΘ) [where Ÿ

∧
is the profinite étale covering deter-

mined by Ÿ — cf. Remark 1.6.4] given by the j∞-conjugate of the restriction

of η̈Θ to Ÿ
∧
.

Proof. In light of the symmetries of bi-theta environments [cf. Proposition
2.14, (iii)], Corollary 2.16 follows immediately from Proposition 2.15, (iii).
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Remark 2.16.1.

(i) Observe that the property discussed in Corollary 2.16 [i.e., Proposition
2.15, (iii)] is indicative of a fundamental qualitative difference between mono-
and bi-theta environments. Indeed, if one allows the integer N ≥ 1 to vary
[multiplicatively, i.e., in N≥1], then the various resulting mono- and bi-theta
environments naturally determine projective systems. Moreover, it is natural to
think of each of the mod N mono- or bi-theta environments appearing in these
projective systems as only being known up to isomorphism [cf. Remarks 5.12.1,
5.12.2 in §5 below for more on this point]. From this point of view, Proposition
2.15, (i), (ii), when applied to mono-theta environments [cf. Corollary 2.19,
(ii), (iii), below], asserts, in effect, that:

If one works with this projective system of mono-theta environments,
then in light of the compatibility of the various [collections of subgroups
determined by the image of the] theta sections of the mono-theta en-
vironments in the projective system, the various mod N étale theta
classes determine, in the projective limit, a

single “discrete” l · Z-torsor

whose reduction modulo N [i.e., the result of applying a change of
structure group via the homomorphism l · Z � l · Z/N · l · Z] appears
in the mod N mono-theta environment.

By contrast, Corollary 2.16 implies that if one tries to carry out such a con-
struction in the case of bi-theta environments, then since the projective system
in question gives rise to a “basepoint indeterminacy” [cf. Proposition 2.14, (iii)],
for the mod N bi-theta environment of the system, given by some group lying
between the groups N · l ·Z, N† · l ·Z, the resulting projective limit necessarily
leads to a “torsor of possible basepoints” over the “non-discrete” profinite limit
group l ·Ẑ def= l ·Z⊗Ẑ. Put another way, the crucial “shifting symmetry” that ex-
ists in the case of a mono-theta environment [cf. Proposition 2.14, (ii); Remark
2.14.3] gives rise to a “constant [i.e., independent of N ] l · Z-indeterminacy”,
hence implies precisely that, in the mono-theta case, the problem of “finding a
common basepoint” for the various (l ·Z/N · l ·Z)-torsors that appear in the pro-
jective system amounts to the issue of trivializing a torsor over the projective
limit

lim←−
N

(l · Z/l · Z) ∼= {0}

— which remains “discrete” — whereas in the case of a bi-theta environment,
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the corresponding torsor is a torsor over the projective limit

lim←−
N

(l · Z/N · l · Z) ∼= l · Ẑ

— which is “essentially profinite”, hence, in particular, “non-discrete”.

(ii) Note that the “non-discreteness” discussed in (i), which arose from the
lack of symmetry of a bi-theta environment, by comparison to a mono-theta
environment [cf. Proposition 2.14, (iii)], cannot be remedied by, for instance,
considering “multi-bi-theta environments” in which instead of considering just
one theta section, one considers an entire (l ·Z/N · l ·Z)-orbit of theta sections.
Indeed, if one considers such orbits, then the resulting projective system requires
one to consider [not an l ·Z-orbit of an étale theta function, but rather] an entire
orbit over the non-discrete profinite group

lim←−
N

(l · Z/N · l · Z) ∼= l · Ẑ

of étale theta functions — i.e., one must contend with essentially the same
“non-discreteness” phenomenon as was discussed in (i).

(iii) The “non-discreteness” phenomenon discussed in (i) may also be for-
mulated from a more “cohomological” point of view, by considering the first
derived functor R1 lim←− of the projective limit lim←−. That is to say, if one consid-
ers the exact sequence of projective systems of modules

{0→ N · l · Z→ l · Z→ (l · Z/N · l · Z)→ 0}N≥1

obtained by allowing the integer N ≥ 1 to vary multiplicatively [and taking
the transition morphisms to be the morphisms determined by identifying the
various copies of l · Z], then the [unique nontrivial] connecting homomorphism
of the long exact sequence associated to the derived functors of “lim←−” yields a
natural isomorphism

(l · Ẑ)/(l · Z) ∼→ R1 lim←− {N · l · Z}N≥1

of the associated “R1 lim←−” with the “nonarchimedean solenoid” (l · Ẑ)/(l · Z).
That is to say, the nonvanishing of this group (l·Ẑ)/(l·Z) is essentially equivalent
to the “non-discreteness” phenomenon discussed in (i).

Remark 2.16.2. Although the present paper is essentially only concerned
with the “local theory” of the theta function [i.e., over finite extensions of Qp],
frequently in applications [cf. [Mzk4], [Mzk5]] it is of interest to develop the
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local theory in such a way that it may be related naturally to the “global the-
ory” [i.e., over number fields]. In such situations, one is typically obligated to
contend with some sort of homomorphism of topological groups

φ : Πtp
X → ΠX

F

relating the tempered fundamental group of the smooth log curve X log [appear-
ing in the theory of the present paper] to the profinite fundamental group of a
smooth log curve X log

F
over a number field F such that X log is obtained from

X log

F
by base-changing to some completion K = Fv of F at a finite prime v.

Moreover, typically, one must assume that φ is only given up to composition
with an inner automorphism [i.e., as an “outer homomorphism”]. Alterna-
tively, one may think of φ “category-theoretically” via its associated morphism
of temperoids [cf. [Mzk14], Proposition 3.2]

T → TF

— i.e., a functor TF → T [obtained by associating to a ΠX
F

-set the Πtp
X -set

determined by composing with φ], which is typically only determined up to
isomorphism. In this situation, connected tempered coverings of X log [e.g., a
finite étale covering of Y log], which correspond to open subgroups H ⊆ Πtp

X ,
are subject to an indeterminacy with respect to conjugation by elements of the
normalizer

NΠX
F

(Im(H))

of the image of H in ΠX
F

— i.e., as opposed to just the “weaker” indeterminacy
with respect to conjugation by elements of the normalizer NΠtp

X
(H), which arises

from working with the topological group Πtp
X up to inner automorphism. In this

situation, since the two normalizers in question in fact coincide — i.e., we have

NΠtp
X

(H) = NΠX
F

(Im(H))

[by Lemma 2.17, (ii), below; the well-known fact that the absolute Galois group
GFv

is equal to its own normalizer in the absolute Galois group GF — cf., e.g.,
[Mzk2], Theorem 1.1.1, (i)] — in the present situation, this state of affairs does
not in fact result in any further indeterminacy [by comparison to the strictly
local situation]. Moreover, the above equality of normalizers also shows that
replacing Πtp

X by H, for instance, does not result [in the present local/global
situation] in any reduction in the indeterminacy to which H is subject.
Thus, when H corresponds to a finite étale covering of Y log, the corresponding
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covering will always be subject to an indeterminacy with respect to the action
of some finite index subgroup of Z [an indeterminacy which results in the sort
of situation discussed in Remark 2.16.1]. Thus, in summary:

The indeterminacy which results in the phenomena discussed in Re-
mark 2.16.1 may be regarded as the inevitable result of attempting
to accommodate simultaneously the “two mutually alien copies of Z”
constituted by the geometric Galois group Z and the arithmetic global
base Z ⊆ Q ⊆ F .

[Here, we remark that the “mutual alienness” of these two copies of Z arises
from the fact that [non-finite] tempered coverings only exist p-adically, hence
fail to descend to coverings defined over a number field.]

Remark 2.16.3. Relative to the analogy between Galois group actions and
differentials [cf. the discussion of [Mzk4]], the equality of the normalizers dis-
cussed in Remark 2.16.2 may be thought of as a sort of group-theoretic version
of the condition that the map from a finite prime of a number field to the global
number field be “unramified”.

Lemma 2.17 (Discrete Normalizers). If G1 is a subgroup of a group
G2, then write NG2(G1) for the normalizer of G1 in G2. Then:

(i) Let F be a group that contains a normal subgroup of finite index G ⊆ F

such that G is a free discrete group of finite rank, H ⊆ F a subgroup
such that the group H

⋂
G is nonabelian. Write F̂ , Ĝ for the profinite

completions of F , G [so we have a natural inclusion F ↪→ F̂ ]. Then N
bF (H) =

NF (H).

(ii) Let Π be the tempered fundamental group of a hyperbolic orbicurve
over a finite extension K� of Qp, H ⊆ Π an open subgroup. Write Π̂ for
the profinite completion of Π. Then N

bΠ(H) = NΠ(H).

Proof. The proof of assertion (i) is similar to [but slightly more involved
than] the proof of the case H = G = F discussed in [André], Lemma 3.2.1:
By replacing H by H

⋂
G = H

⋂
Ĝ, we may assume that H ⊆ G. Let {xi}i∈I

[where I is some index set of cardinality ≥ 2] be a set of generators of H,
a ∈ N

bF (H). Now let us fix two distinct elements i1, i2 ∈ I [so xi1 , xi2 generate a
free subgroup of G of rank 2]. Then there exists a subgroup J ⊆ G ⊆ F of finite
index such that xi1 , xi2 ∈ J , and, moreover, xi1 , xi2 appear in some collection
of free generators of J [cf. [Mzk14], Corollary 1.6, (ii)]. In particular, for each
j = 1, 2, the centralizer of xij

in the profinite completion Ĵ of J is topologically
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generated by xij
[cf., e.g., [Mzk15], Proposition 1.2, (ii)]. Moreover, since J is

of finite index in F , it follows that there exists a b ∈ F such that a ∈ b·Ĵ (⊆ F̂ ).
In particular, it follows that, for each j = 1, 2, b−1axij

a−1b ∈ F
⋂

Ĵ = J is
conjugate to xij

∈ J in Ĵ . Now by a classical result of P. Stebe [cf. [LynSch],
Proposition 4.9], it follows that J is “conjugacy-separated”, hence that for each
j = 1, 2, there exists an aj ∈ b·J (⊆ F ) such that axij

a−1 = ajxij
a−1

j . Thus, for

each j = 1, 2, cj
def= a−1aj belongs to the centralizer of xij

in Ĵ , hence is of the
form x

λj

ij
, for some λj ∈ Ẑ. But this implies that c−1

2 c1 = a−1
2 a1 ∈ F

⋂
Ĵ = J ,

hence [for instance, by considering the image of c1, c2 in the abelianization of Ĵ ]
that c1, c2 ∈ J ⊆ F , so a ∈ F , as desired. Assertion (ii) now follows immediately
from assertion (i) by applying assertion (i) to quotients of Π by characteristic
open subgroups of Π, which contain finite rank free normal subgroups of finite
index.

We are now ready to state the two main results of the present §2 concerning
mono-theta environments.

Corollary 2.18 (Group-theoretic Construction of Mono-theta Environ-
ments). Let N ≥ 1 be an integer ; X log a smooth log curve of type
(1, (Z/lZ)Θ) over a finite extension K of Qp, where l and p are odd, such that
K = K̈; η̈Θ,l·Z×µ2 an associated orbit of l-th roots of étale theta functions;

Y log → X log, Ÿ
log → Y log the corresponding coverings [as in the above discus-

sion]; (l · ΔΘ), (Δtp
X )Θ, (Πtp

X )Θ, (Δtp
Y )Θ, (Πtp

Y )Θ the resulting subquotients of

Πtp
X [as in the above discussion];

Δ[µN ] def= Ker((l ·ΔΘ)[µN ]→ (l ·ΔΘ))

[i.e., the “µN” of “[µN ]”];
η̈Θ,l·Z×µ2 [µN ]

the collection of classes of H1(Πtp

Ÿ
, Δ[µN ]) obtained by applying the natural

surjection (l ·ΔΘ) � Δ[µN ] to η̈Θ,l·Z×µ2 ;

DY ⊆ Out(Πtp
Y [µN ])

the subgroup of Out(Πtp
Y [µN ]) generated by the image of K×, Gal(Y /X) (∼= l·Z)

[cf. Definition 2.13, (i)];

salg

Ÿ
: Πtp

Ÿ
→ Πtp

Y [µN ]; sΘ
Ÿ

: Πtp

Ÿ
→ Πtp

Y [µN ]
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the resulting mod N algebraic and theta sections [determined by a cocycle
representing a member of the collection of classes η̈Θ,l·Z×µ2 ];

MN
def= (Πtp

Y [µN ],DY , sΘ
Ÿ

)

the resulting mod N model mono-theta environment [which, by Proposition
2.14, (ii), is independent, up to isomorphism over the identity of Πtp

Y , of
the choice of [a cocycle representing a member of the collection of classes]
η̈Θ,l·Z×µ2 , among its multiples by a 2l-th root of unity ]. Then:

(i) (Theta-related Subquotients) Let Π•
X be a topological group

that is isomorphic to Πtp
X . Then there exists a “functorial group-theoretic

algorithm” — i.e., an algorithm that invokes only the structure of Π•
X as an

abstract topological group, is functorial with respect to isomorphisms of topo-
logical groups, and is devoid of any reference to any isomorphisms of Π•

X with

Πtp
X — for constructing subquotients

Π•
Y ; Π•

Ÿ
; (Π•

X �) G•
K ; (l ·Δ•

Θ); (Δ•
X)Θ; (Π•

X)Θ; (Δ•
Y )Θ; (Π•

Y )Θ

of Π•
X , as well as a collection of subgroups of Π•

X for each element of

(Z/lZ)±, which have the property that any isomorphism Π•
X

∼→ Πtp
X maps the

above subquotients, respectively, to the subquotients

Πtp
Y ; Πtp

Ÿ
; (Πtp

X �) GK ; (l ·ΔΘ); (Δtp
X )Θ; (Πtp

X )Θ; (Δtp
Y )Θ; (Πtp

Y )Θ

of Πtp
X , and the above collection of subgroups to the collection of cuspidal de-

composition groups of Πtp
X determined by the label ∈ (Z/lZ)± [cf. Corollary

2.9].

(ii) (From Topological Groups to Mono-theta Environments) In
the situation of (i), there exists a “functorial group-theoretic algorithm”

for constructing a mod N mono-theta environment M• def= (Π•,DΠ• , sΘ
Π•),

where
Π• def= Π•

Y ×G•
K

(
{(l ·ΔΘ)⊗ (Z/NZ)} � G•

K

)
[cf. Definition 2.10], “up to isomorphism”. More precisely, there exists a
“functorial group-theoretic algorithm” for constructing a collection of mod N

mono-theta environments {M•
ι }ι∈I , where M•

ι = (Π•,DΠ• , (sΘ
Π•)ι), such that,

for ι1, ι2 ∈ I, there exists an isomorphism M•
ι1

∼→M•
ι2 that induces the identity

on the quotient Π• � Π•
Y .
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(iii) (From Mono-theta Environments to Topological Groups) Let
M• def= (Π•,DΠ• , sΘ

Π•) be a mod N mono-theta environment isomorphic
to MN . Then there exists a “functorial group-theoretic algorithm” —
i.e., an algorithm that invokes only the structure of M• as an abstract mono-
theta environment, is functorial with respect to isomorphisms of mono-theta
environments, and is devoid of any reference to any isomorphisms of M• with
MN — for constructing a quotient

Π•
Y

of Π• which has the property that any isomorphism M• ∼→ MN maps this
quotient, respectively, to the quotient

Πtp
Y

of Πtp
Y [µN ]. Moreover, any such isomorphism M• ∼→ MN also induces an

isomorphism of
Π•

X
def= Aut(Π•

Y )×Out(Π•
Y ) Im(DΠ•)

— where “Im(−)” denotes the image in Out(Π•
Y ) [cf. Proposition 2.11, (ii)];

the topology of Π•
X is the topology determined by taking

Π•
Y

∼→ Aut(Π•
Y )×Out(Π•

Y ) {1} ⊆ Π•
X

to be an open subgroup — with Πtp
X . Finally, M• is isomorphic to the mono-

theta environment obtained by applying the algorithm of (ii) to Π•
X , via an

isomorphism that induces the identity on Π•
Y .

(iv) (Lifting Isomorphisms) For � = α, β, let M� def= (Π�,DΠ� , sΘ
Π�)

be a mod N mono-theta environment; Π�
X be the topological group “Π•

X” of

(iii) [i.e., by taking “M•” to be M�]. Then the natural map [cf. (iii)]

Isomµ(Mα, Mβ)→ Isom(Πα
X , Πβ

X)

— where the superscripted “µ” denotes the set of µN -conjugacy classes of
isomorphisms — is surjective with fibers of cardinality 1 (respectively, 2) if
N is odd (respectively, even). In particular, for any positive integer M such
that M |N , the mod M mono-theta environment M�

M determined by M� in-
duces a natural homomorphism Autµ(M�)→ Autµ(M�

M ) with normal im-
age, whose kernel and cokernel have the same cardinalities [≤ 2], respec-
tively, as the kernel and cokernel of the homomorphism Hom(Z/2Z, Z/NZ)→
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Hom(Z/2Z, Z/MZ) induced by the natural surjection Z/NZ � Z/MZ [hence
is a bijection if N/M is odd ].

Proof. First, we consider assertion (i). An algorithm for constructing the
subquotients

Π•
Y ; Π•

Ÿ
; (l ·Δ•

Θ); (Δ•
X)Θ; (Π•

X)Θ; (Δ•
Y )Θ; (Π•

Y )Θ

(respectively, (Π•
X �) G•

K) is described in the proofs of Propositions 1.8, 2.4
[cf. also the definitions of the various coverings involved!] (respectively, in
the proof of [Mzk2], Lemma 1.3.8). An algorithm for constructing the labels
of cuspidal decomposition groups is described in the proof of Corollary 2.9 [cf.
also the proof of [Mzk2], Lemma 2.3]. This completes the proof of assertion (i).
Assertion (ii) follows immediately from the construction of the model mono-
theta environment in the discussion preceding Definition 2.13; the fact that
the various choices involved in this construction yield isomorphic mono-theta
environments via isomorphisms that induce the identity on the quotient Π• �
Π•

Y is precisely the content of Proposition 2.14, (ii).
Next, we consider assertion (iii). The algorithm for constructing the quo-

tient Π• � Π•
Y is precisely the content of Proposition 2.11, (ii); the construction

of Π•
X then follows immediately, in light of the temp-slimness of Π•

X [cf. the
proof of Proposition 2.11]. The final portion of assertion (iii) [concerning the
compatibility with the algorithm of assertion (ii)] follows immediately from the
definition of a mono-theta environment [cf. Definition 2.13, (ii)] as “data iso-
morphic to a model mono-theta environment” [together with the description
given in the proof of assertion (ii) of the algorithm of assertion (ii)].

Finally, we consider assertion (iv). First, we observe that the functoriality
of the “functorial group-theoretic algorithm” of assertion (iii) yields a natural
map Isomµ(Mα, Mβ)→ Isom(Πα

X , Πβ
X). The surjectivity of this map follows by

applying the “functorial group-theoretic algorithm” of assertion (ii), in light of
the final portion of assertion (iii) concerning the relation with the algorithm
of assertion (ii) [cf., especially, the fact that the isomorphism of mono-theta
environments appearing in this final portion induces the identity on “Π•

Y ”]. The

fibers of this map are torsors over [the isomorphic groups] Ker(Autµ(M�) →
Aut(Π�

X)) [where � ∈ {α, β}]. To simplify notation, let us set M• def= M�. Next,
let us observe that by Corollary 2.19, (i), below [where one checks immediately
that there are no “vicious circles” in the reasoning], the natural isomorphism

(l ·Δ•
Θ)⊗ Z/NZ

∼→ Ker(Π• � Π•
Y )



The Étale Theta Function 289

is preserved by automorphisms of M•. Thus, Ker(Autµ(M•) → Aut(Π•
X))

— which consists of automorphisms that act as the identity on Π•
Y , hence [by

applying the above natural isomorphism] also on Ker(Π• � Π•
Y ) — is naturally

isomorphic to the group

Hom(Π•
Y /Π•

Ÿ
, Ker(Π• � Π•

Y ))

— which is of cardinality 1 (respectively, 2) if N is odd (respectively, even).
Moreover, it follows immediately from this description of Ker(Autµ(M•) →
Aut(Π•

X)) that the natural homomorphism Autµ(M•) � Autµ(M•
M ) is as de-

scribed in the statement of assertion (iv). This completes the proof of assertion
(iv).

Remark 2.18.1. It follows immediately from Proposition 2.14, (iii), that,
for instance, the bijectivity [i.e., “if N/M is odd”] of the latter portion of Corol-
lary 2.18, (iv), is false for bi-theta environments.

Remark 2.18.2. Thus, in a word, Corollary 2.18 may be interpreted as as-
serting that a mono-theta environment may be regarded as an object naturally
constructed from/associated to the tempered fundamental group. On the other
hand, as we shall see in §5, a mono-theta environment also appears as an object
this may be naturally constructed from/associated to a certain Frobenioid. In
fact:

One of the main motivating reasons, from the point of view of the au-
thor, for the introduction of the notion of a mono-theta environment
was precisely the fact that it provides a convenient common ground
for relating the [tempered-]étale-theoretic and Frobenioid-theoretic ap-
proaches to the theta function.

This point of view will be discussed in more detail in Remark 5.10.1 in §5 below.

Corollary 2.19 (Rigidity Properties of Mono-theta Environments). In
the notation of Corollary 2.18:

(i) (Cyclotomic Rigidity) Let M• def= (Π•,DΠ• , sΘ
Π•) be a mod N mono-

theta environment isomorphic to MN . Thus, by Corollary 2.18, (iii), we
obtain a topological group Π•

X from M• to which Corollary 2.18, (i), (ii), may
be applied. Then there exists a “functorial group-theoretic algorithm” —
i.e., an algorithm that invokes only the structure of M• as an abstract mono-
theta environment, is functorial with respect to isomorphisms of mono-theta
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environments, and is devoid of any reference to any isomorphisms of M• with
MN — for constructing subquotients

Π•|(l·Δ•
Θ) ⊆ Π•|(Δ•

Y )Θ ⊆ Π•|(Π•
Y )Θ

[cf. the notation of Corollary 2.18, (i)] of Π• which have the property that any
isomorphism M• ∼→ MN maps these subquotients, respectively, to the subquo-
tients

(l ·ΔΘ)[µN ] ⊆ (Δtp
Y )Θ[µN ] ⊆ (Πtp

Y )Θ[µN ]

of Πtp
Y [µN ]. Moreover, there exists a “functorial group-theoretic algorithm” for

constructing two splittings of the natural surjection

Π•|(l·Δ•
Θ) � (l ·Δ•

Θ)

— hence, in particular, [by forming the difference of these two splittings ] an
isomorphism of cyclotomes

((l ·Δ•
Θ) �) (l ·Δ•

Θ)⊗ (Z/NZ) ∼→ Π•
µ

def= Ker(Π•|(l·Δ•
Θ) � (l ·Δ•

Θ))

— which have the property that any isomorphism M• ∼→ MN maps these two
splittings, respectively, to the two splittings of the surjection

(l ·ΔΘ)[µN ] � (l ·ΔΘ)

determined by the algebraic and theta sections salg

Ÿ
, sΘ

Ÿ
[and hence the above

isomorphism of cyclotomes to the natural isomorphism of cyclotomes deter-
mined by salg

Ÿ
, sΘ

Ÿ
— cf. the construction preceding Definition 2.13].

(ii) (Discrete Rigidity) Let E ⊆ N≥1 be a cofinal, totally ordered
subset of N≥1 [cf. Proposition 2.15] such that 1 ∈ E. Thus, by letting the
integer N vary in E, we obtain a natural projective system

. . . −→MM ′
β∗

M′,M−→ MM −→ . . .

of model mono-theta environments indexed by E [cf. Corollary 2.16].
Then any projective system

. . . −→M•
M ′

γ∗
M′,M−→ M•

M −→ . . .

— where M, M ′ ∈ E; M•
M is a mod M mono-theta environment — is iso-

morphic to the above natural projective system, i.e., there exists a collection
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of isomorphisms αM : MM
∼→ MM such that γ∗

M ′,M ◦ αM ′ = αM ◦ β∗
M ′,M , for

M, M ′ ∈ E satisfying M |M ′ [cf. Proposition 2.15, (ii)].

(iii) (Constant Multiple Rigidity) Suppose that η̈Θ,l·Z×µ2 is of stan-
dard type [cf. Definitions 1.9, (ii); 2.7]. Let Π•

X be a topological group

that is isomorphic to Πtp
X . Then there exists a “functorial group-theoretic

algorithm” — i.e., an algorithm that invokes only the structure of Π•
X as an

abstract topological group, is functorial with respect to isomorphisms of topo-
logical groups, and is devoid of any reference to any isomorphisms of Π•

X with

Πtp
X — for constructing a collection of classes of

H1(Π•
Ÿ

, (l ·Δ•
Θ))

[cf. the notation of Corollary 2.18, (i)] which has the property that any iso-
morphism Π•

X
∼→ Πtp

X maps the above collection of classes to the collection of
classes of

H1(Ÿ , (l ·ΔΘ))

given by some multiple of the collection of classes η̈Θ,l·Z×µ2 by an l-th root of
unity [cf. Corollary 2.8, (i)]. In particular, given any projective system of
mono-theta environments

. . . −→M•
M ′

γ∗
M′,M−→ M•

M −→ . . .

as in (ii), by taking a compatible system of members of the above collections
of classes associated to the [“Π•

X” arising, as in Corollary 2.18, (iii), from
the] M•

M , applying the isomorphisms of cyclotomes of (i), and adding the
resulting classes to the [“theta”] sections [cf. Definition 2.13, (i), (c)] of each
M•

M , one obtains a projective system of bi-theta environments

. . . −→ B•
M ′

γM′,M−→ B•
M −→ . . .

that is isomorphic to some “natural projective system of bi-theta en-
vironments” [of standard type]

. . . −→ BM ′
βM′,M−→ BM −→ . . .

[i.e., there exist isomorphisms αM : BM
∼→ B•

M such that γM ′,M ◦ αM ′ =
αM ◦ βM ′,M , for M, M ′ ∈ E satisfying M |M ′] as in Corollary 2.16.

Proof. First, we consider assertion (i). Observe that since the theta and
algebraic [i.e., “tautological”] sections coincide over Ker(Π•

Y � (Π•
Y )Θ) [cf.
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Proposition 1.3], it follows that Ker(Π• � Π•|(Π•
Y )Θ) may be constructed as the

image via the theta section [cf. Definition 2.13, (ii), (c)] of Ker(Π•
Y � (Π•

Y )Θ).
The subquotients

Π•|(l·Δ•
Θ) ⊆ Π•|(Δ•

Y )Θ ⊆ Π•|(Π•
Y )Θ

may then be constructed as the inverse images via the resulting quotient
Π•|(Π•

Y )Θ � (Π•
Y )Θ of the subquotients (l ·Δ•

Θ) ⊆ (Δ•
Y )Θ ⊆ (Π•

Y )Θ of Corollary
2.18, (i). The splitting of the natural surjection

Π•|(l·Δ•
Θ) � (l ·Δ•

Θ)

corresponding to the theta section may then be obtained directly from the
“theta section portion” of the data that constitutes a mono-theta environment
[cf. Definition 2.13, (ii), (c)]; the splitting corresponding to the algebraic sec-
tion [i.e., the “tautological section”] may then be constructed via the algorithm
described in Proposition 2.14, (i). This completes the proof of assertion (i).
Assertion (ii) follows immediately from Corollary 2.18, (iv). Here, relative to
the point of view of Remark 2.16.1, (iii), we note that assertion (ii) may be
thought of as a consequence of the fact that [as is easily verified] the “R1 lim←−’s”
of the projective system “{Hom(Z/2Z, Z/NZ)}N∈E” of Corollary 2.18, (iv),
as well as the projective system “{µN}N∈E” [cf. the superscripted “µ’s” of
Corollary 2.18, (iv)], vanish.

Finally, we consider assertion (iii). An algorithm for constructing the étale
theta function of standard type is described in the proofs of Theorems 1.6, 1.10;
Corollary 2.8, (i) [cf. also the proof of [Mzk14], Theorem 6.8, (iii)]. [Here, we
recall in passing that this “algorithm” consists essentially of restricting [can-
didates for] the étale theta function to the decomposition groups of certain
torsion points.] The remainder of assertion (iii) follows, in light of the cyclo-
tomic rigidity of assertion (i) and the discrete rigidity of assertion (ii), from
the construction of the model bi-theta environment in the discussion preceding
Definition 2.13.

Remark 2.19.1. One way to try to eliminate the indeterminacy discussed
in Remarks 2.16.1, 2.16.2 is to attempt to work with profinite coverings of X log

that correspond to the covering X log → X log for “l infinite”. On the other
hand, such coverings amount to taking N-th roots [for all integers N ≥ 1] of
the theta function. In particular, when N is a power of p, this has the effect
of annihilating the differentials of the curve under consideration. Since the
differentials of the curve play an essential role in the proof of the main result
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of [Mzk11], it thus seems unrealistic [at least at the time of writing] to expect
to generalize the main result of [Mzk11] [hence also the theory of §1, which
depends on this result of [Mzk11] in an essential way] so as to apply to such
profinite coverings.

Remark 2.19.2. The “cyclotomic rigidity” of Corollary 2.19, (i), is a con-
sequence of the theta section portion of the data that constitutes a mono-theta
environment [cf. Definition 2.13, (ii), (c)], together with the subtle property of
the commutator [−,−] discussed in Proposition 2.12 [which takes the place of
the algebraic section, an object which does not appear in a mono-theta envi-
ronment]. Note that this subtle property depends in an essential way on the
fact that the étale theta class in question determines an isomorphism between
the subquotient ΔΘ of the tempered fundamental group and the cyclotomic
coefficients under consideration [cf. Proposition 1.3]. In particular:

This subtle property fails to hold if instead of considering η̈Θ,l·Z×µ2

over Ÿ
log

— i.e., the first power of an l-th root of the theta function
[cf. the discussion preceding Definition 2.7] — one attempts to use
some M -th power of the l-th root of the theta function for M > 1.

Put another way, if one tries to work with such an M -th power, where M > 1,
then one ends up only being able to assert the desired “cyclotomic rigidity”
for the submodule M · µN ⊆ µN [for, say, N divisible by M ]; that is to say,
the “remainder” of µN is not rigid, but rather subject to an indeterminacy
with respect to the action of Ker((Z/NZ)× � (Z/(N/M)Z)×). Alternatively,
if, instead of working with torsion coefficients [i.e., µN ] one works with Ẑ-flat
coefficients [e.g., the inverse limit of the µN , as N ranges over the integers
≥ 1], then one may still obtain the [Ẑ-flat analogue of the] desired “cyclotomic
rigidity” property of Corollary 2.19, (i), for M > 1, but only at the cost of
working with “profinite coverings” whose finite subcoverings are “immune”
to automorphism indeterminacy, which [cf. Corollary 5.12 and the following
remarks in §5 below] appears to be somewhat unnatural.

Remark 2.19.3. In the context of the projective systems discussed in
Corollary 2.19, (ii), (iii), if one writes Δ[µ∞] for the inverse limit of the Δ[µN ]

[as N ranges over the integers ≥ 1], then one may think of the isomorphism

(l ·ΔΘ) ∼→ Δ[µ∞]

arising from the “cyclotomic rigidity” [i.e., the compatible isomorphisms of cy-
clotomes] of Corollary 2.19, (i), as determining a sort of “integral structure”,
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i.e., a sort of “basepoint” corresponding to the first power of the l-th root of
the theta function, relative to the various M -th powers of the l-th root of the
theta function [cf. Remark 2.19.2] obtained by composing this isomorphism
with the map Δ[µ∞] → Δ[µ∞] on Δ[µ∞] given by multiplication by M . Put
another way:

To work in the absence of such a “basepoint” amounts to sacrificing
the datum of an intrisically defined “origin”, or “fixed reference point”,
in the system

. . .
M ·−→ Δ[µ∞] M ·−→ Δ[µ∞] M ·−→ Δ[µ∞] M ·−→ . . .

obtained by multiplication by M on the cyclotome Δ[µ∞].

Put another way, there is no intrinsic way to distinguish “Δ[µ∞]” from “M ·
Δ[µ∞]” — i.e., the distinction between these two objects is entirely a mat-
ter of “arbitrary labels” [which are typically implicit in classical discussions of
arithmetic geometry — cf. the discussion of the Introduction to the present
paper].

Remark 2.19.4. Before proceeding, it is natural to pause and reflect on
the topic of precisely what one gains from the discrete and cyclotomic rigidity
of Corollary 2.19, (i), (ii). On the one hand, discrete rigidity assures one that,
when one works with the projective systems discussed in Corollary 2.19, (ii),
(iii), one may restrict to the Z-translates of [an l-th root of] the theta function
without having to worry about confusion with arbitrary Ẑ-translates, which are
“unnatural”. At the level of theta values [cf., e.g., Proposition 1.4, (iii); the
labels of Corollary 2.9], this means that one obtains values in K×, as opposed
to (K×)∧; in particular, it makes sense to perform [not just multiplication
operations, but also] addition operations involving these values in K× ⊆ K,
which is not possible with arbitrary elements of (K×)∧. On the other hand,
cyclotomic rigidity assures one that one may work with the first power of [an
l-th root of] the theta function without having to worry that this first power
might be “confused with some arbitrary λ-th power”, for λ ∈ Ẑ×. At the level
of theta values [cf., e.g., Proposition 1.4, (iii); the labels of Corollary 2.9], this
means that one need not worry about confusion between the “original desired
values” in K× ⊆ (K×)∧ and arbitrary λ-th powers of such values in (K×)∧,
for λ ∈ Ẑ× — where again it is useful to recall that raising to the λ-th power
on (K×)∧ [for λ ∈ Ẑ×] is not a ring homomorphism [i.e., not compatible with
addition] unless λ = 1.
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Remark 2.19.5. Recall that in the proof of [Mzk13], Theorem 4.3 [cf.
especially the proof of [Mzk2], Lemma 2.5, (ii)], one finds a “group-theoretic
algorithm” for constructing a certain natural isomorphism of cyclotomes, be-
tween one cyclotome of geometric origin — which, in the situation of Corollaries
2.18, 2.19, essentially amounts to (l ·ΔΘ) — and one cyclotome of arithmetic
origin — which, in the situation of Corollaries 2.18, 2.19, arises from GK .
If one combines this isomorphism of cyclotomes with the isomorphism of cy-
clotomes given in Corollary 2.19, (i), the resulting “two-layer isomorphism of
cyclotomes structure” is reminiscent of the “Griffiths semi-transversality” of
the “crystalline theta object” in the Hodge-Arakelov theory of elliptic curves
[cf. [Mzk5], Theorem 2.8], which arises from the “two-layer deformation” that
occurs in the consideration of the “crystalline theta object” [i.e., a deformation
of the elliptic curve, together with a deformation of an ample line bundle on
the deformed elliptic curve].

§3. Tempered Frobenioids

In the present §3, we construct certain Frobenioids [cf. the theory of
[Mzk17], [Mzk18]] arising from the geometry of line bundles on tempered cov-
erings of a p-adic curve. After discussing various basic properties of these
“tempered Frobenioids” [cf. Theorem 3.7; Corollary 3.8], we explain how cer-
tain aspects of the theory of the étale theta function discussed in §1, §2 may be
interpreted from the point of view of tempered Frobenioids [cf. Example 3.9].

Let L be a finite extension of Qp [where p is a prime number], with ring
of integers OL and residue field kL; T the formal scheme given by the p-adic
completion of Spec(OL); Tlog the formal log scheme obtained by equipping T

with the log structure determined by the unique closed point of Spec(OL); Zlog

a stable log curve over Tlog. Also, we assume that the special fiber ZkL
of Z is

split, and that the generic fiber of the algebrization of Zlog is a smooth log curve.
Write Z log def= Zlog ×OL

L for the ringed space with log structure obtained by
tensoring the structure sheaf of Z over OL with L. In the following discussion,
we shall often [by abuse of notation] use the notation Z log also to denote the
generic fiber of the algebrization of Zlog [cf. §1].

The universal covering of the dual graph of the special fiber Zlog
kL

of Zlog

determines an infinite Galois étale covering

Zlog
∞ → Zlog

of Zlog; such “universal combinatorial coverings” appear in the theory of the
tempered fundamental group [cf. [André], §4; [Mzk14], Example 3.10]. Thus,
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Zlog
∞ is a formal log scheme; write Z log

∞
def= Zlog

∞ ×OL
L. Also, we shall refer to

the inverse image of the divisor of cusps of Zlog in Zlog
∞ as the divisor of cusps

of Zlog
∞ and to Zlog

∞ as the stable model of Z log
∞ .

Definition 3.1.

(i) A divisor on Z∞ whose support lies in the special fiber (Z∞)kL
(respec-

tively, the divisor of cusps of Zlog
∞ ; the union of the special fiber and divisor

of cusps of Zlog
∞ ) will be referred to as a non-cuspidal log-divisor (respectively,

cuspidal log-divisor; log-divisor) on Zlog
∞ . Write

DIV(Zlog
∞ ) (respectively, DIV+(Zlog

∞ ); Div(Zlog
∞ ); Div+(Zlog

∞ ))

for the monoid of log-divisors (respectively, effective log-divisors; Cartier log-
divisors; effective Cartier log-divisors) on Zlog. Thus, we have natural inclusions

Div+(Zlog
∞ ) ⊆ DIV+(Zlog

∞ ) ⊆ DIV(Zlog
∞ )

Div+(Zlog
∞ ) ⊆ Div(Zlog

∞ ) ⊆ DIV(Zlog
∞ )

and a natural identification DIV(Zlog
∞ ) = DIV+(Zlog

∞ )gp.

(ii) A nonzero meromorphic function on Zlog
∞ whose divisor of zeroes and

poles is a log-divisor will be referred to as a log-meromorphic function on Zlog
∞ .

The group of log-meromorphic functions on Zlog
∞ will be denoted Mero(Zlog

∞ ). A
log-meromorphic function arising from L× will be referred to as constant.

Proposition 3.2 (Divisors and Rational Functions on Universal Combi-
natorial Coverings). In the notation of the above discussion:

(i) There exists a positive integer n such that n ·DIV+(Zlog
∞ ) ⊆ Div+(Zlog

∞ ),
n ·DIV(Zlog

∞ ) ⊆ Div(Zlog
∞ ). In particular, there exists a natural isomorphism

Div+(Zlog
∞ )pf ∼→ DIV+(Zlog

∞ )pf

— where DIV+(Zlog
∞ )pf may be naturally identified with a direct product of

copies of Q≥0, indexed by the cusps [i.e., irreducible components of the divisor
of cusps ] and irreducible components of the special fiber of Zlog

∞ .

(ii) The structure morphism Zlog
∞ → Tlog determines a natural isomor-

phism OL
∼→ Γ(Z∞,OZ∞) — i.e., “all regular functions on Z∞ are con-

stant”.

(iii) Let f be a nonzero meromorphic function on Z∞ such that for
every N ∈ N≥1 [cf. §0], there exists a meromorphic function gN on Z∞ such
that gN

N = f . Then f = 1.
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Proof. To verify assertion (i), let us first observe that the completion
of Z∞ along a node of Z∞ may be identified with the formal spectrum of a
complete local ring of the form OL[[x, y]]/(xy− πe

L), where πL is a uniformizer
of OL, and e is a positive integer; moreover, despite the “infinite” nature of
Z∞, the number of “e’s” that occur at completions of Z∞ along its nodes is
finite [cf. the definition of Zlog

∞ in terms of Zlog!]. Now assertion (i) follows from
the fact that the two irreducible components of the special fiber of this formal
spectrum determine divisors D, E such that e ·D, e · E are Cartier [i.e., since
they occur as the schematic zero loci of “x”, “y”].

Next, we consider assertion (ii). Let 0 �= f ∈ Γ(Z∞,OZ∞); write V (f) for
the schematic zero locus of f on Z∞. Now observe that for each irreducible
component C of (Z∞)kL

, there exists an eC ∈ Z≥0 such that the meromorphic
function

f · π−eC

L

— where πL is a uniformizer of OL — has no zeroes or poles at the generic
point of C. By the discrete structure of Z≥0, it follows that there exists an
irreducible component C1 such that eC1 ≤ eC , for all irreducible components C

of (Z∞)kL
. Thus, the meromorphic function f1

def= f ·π−eC1
L is regular, i.e., f1 ∈

Γ(Z∞,OZ∞), and, moreover, has nonzero restriction to (Z∞)kL
. On the other

hand, since (Z∞)kL
is connected and reduced, and each irreducible component

C of (Z∞)kL
is proper and geometrically integral over kL [since we assumed

that ZkL
of Z is split], it follows that immediately that the natural morphism

kL → Γ((Z∞)kL
,O(Z∞)kL

) is an isomorphism, hence that f1 = λ+πL ·g, where
λ ∈ O×

L , g ∈ Γ(Z∞,OZ∞). Thus, by repeating this argument [with “f” replaced
by “g”] and applying the p-adic completeness of Z∞, we conclude that f ∈ OL,
as desired.

Finally, we consider assertion (iii). Since Z∞ is locally noetherian, it follows
immediately from the existence of the gN that the divisor of zeroes and poles
of f is 0, hence, by assertion (ii), that f is a constant ∈ O×

L . Since L is a finite
extension of Qp, it thus follows from the well-known structure of O×

L that

f ∈
⋂

N∈N≥1

(O×
L )N = {1}

— i.e., that f = 1, as desired.

Next, let K be a finite extension of Qp, with ring of integers OK and
residue field k; K ′ a finite Galois extension of K [cf. Remark 3.3.2 below],
with ring of integers OK′ ; S the formal stack given by forming the stack-
theoretic quotient with respect to the natural action of Gal(K ′/K) of the p-
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adic completion of Spec(OK′); Slog the formal log stack obtained by equipping
S with the log structure determined by the unique closed point of Spec(OK′);
Xlog a stable log orbicurve [cf. §0] over Slog. Also, we assume that the generic
fiber X log def= Xlog×OK

K [of the algebrization] of Xlog is a smooth log orbicurve
[cf. §0]. Write

Btemp(X log)

for the temperoid of tempered coverings of X log [cf. [Mzk14], Example 3.10],
B(Spec(K)) for the Galois category of finite étale coverings of Spec(K), and

D0
def= Btemp(X log)0; Dcnst

def= B(Spec(K))0

— where the superscript “0” denotes the full subcategory constituted by the
connected objects [cf. [Mzk17], §0, for more details]. Thus, if Πtp

X
def= πtemp

1 (X log)
is the tempered fundamental group of X log [cf. [André], §4; [Mzk14], Example
3.10], then the temperoid Btemp(X log) is naturally isomorphic [as a temperoid]
to the temperoid Btemp(Πtp

X ) associated to the tempered group Πtp
X [cf. §0]. In

a similar vein, the Galois category B(Spec(K)) is naturally equivalent to the
Galois category B(GK) associated to the absolute Galois group GK of K. Also,
we observe that the natural surjection Πtp

X � GK determines a natural functor

D0 → Dcnst [cf. [Mzk18], Example 1.3, (ii)]. Write Δtp
X

def= Ker(Πtp
X � GK).

Definition 3.3.

(i) Let Δ be a tempered group [cf. §0]. Then we shall refer to as a tempered
filter on Δ a countable collection of characteristic open subgroups of finite index

Δfil = {Δfil
i }i∈I

of Δ such that the following conditions are satisfied:

(a) We have:
⋂

i∈I Δfil
i = {1}.

(b) Every Δfil
i admits a minimal co-free subgroup [cf. §0] Δfil,∞

i [which
is necessarily characteristic as a subgroup of Δ].

(c) For each open subgroup H ⊆ Δ, there exists a [necessarily unique]
iH ∈ I such that Δfil,∞

iH
⊆ H, and, moreover, for every i ∈ I, Δfil,∞

i ⊆
H implies Δfil,∞

i ⊆ Δfil,∞
iH

.

In the situation of (c), we shall refer to Δfil,∞
iH

as the Δfil-closure of H in Δ.

(ii) We shall refer to a tempered filter on Δtp
X as a tempered filter on X log.

Let
Δfil = {Δfil

i }i∈I
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be a tempered filter on X log. Suppose that Z log → X log is a finite étale
Galois covering that admits a stable model Zlog over the ring of integers of the
extension field of K determined by the integral closure of K in Z log such that
the special fiber of Zlog is split [i.e., Z log is a curve as in the discussion at the
beginning of the present §3], and, moreover, the open subgroup determined by
the [geometric portion of] this covering is equal to one of the Δfil

i ⊆ Δtp
X . Write

Zlog
∞ → Zlog for the “universal combinatorial covering” of Zlog and Z log

∞ → Z log

for the generic fiber of Zlog
∞ → Zlog [so Z log

∞ → Z log corresponds to the subgroup
Δfil,∞

i ⊆ Δtp
X — cf. [André], Proposition 4.3.1; [André], the proof of Lemma

6.1.1]. Then we shall refer to Z log
∞ → X log as a Δfil-covering of X log. If,

moreover, Y log → X log is a connected tempered covering, which determines an
open subgroup H ⊆ Δtp

X , and Δfil,∞
i ⊆ H is the Δfil-closure of H, then we shall

refer to any covering Z log
∞ → Y log whose composite with Y log → X log is the

covering Z log
∞ → X log as a Δfil-closure of Y log → X log. [Thus, the geometric

portion — but not the base field! — of a Δfil-closure of Y log → X log is uniquely
determined up to isomorphism.]

(iii) Let Δfil = {Δfil
i }i∈I be a tempered filter on X log. Then for any con-

nected tempered covering Y log → X log, it makes sense to define

Φ0(Y log) def= lim−→Zlog
∞

Div+(Zlog
∞ )Gal(Zlog

∞ /Y log)

B0(Y log) def= lim−→Zlog
∞

Mero(Z log
∞ )Gal(Zlog

∞ /Y log)

— where the inductive limits range over the Δfil-closures Z log
∞ → Y log of Y log →

X log; the superscript Galois groups denote the submonoids of elements fixed
by the Galois group in question. Moreover, by (i), (c), the assignments Y log 
→
Φ0(Y log), Y log 
→ B0(Y log) determine functors

Φ0 : D0 →Mon; B0 : D0 →Mon

— where “Mon” is the category of commutative monoids [cf. [Mzk17], §0] —
together with a natural transformation

B0 → Φgp
0

[given by assigning to a log-meromorphic function its log-divisor of zeroes and
poles], whose image we denote by Φbirat

0 ⊆ Φgp
0 . Also, we shall write F0 ⊆ B0

for the subfunctor determined by the constant log-meromorphic functions and
Φcnst

0 ⊆ Φgp
0 for the image of F0 in Φgp

0 .

Remark 3.3.1. Note that the set of primes [cf. [Mzk17], §0] of the monoid

Div+(Zlog
∞ )Gal(Zlog

∞ /Y log)
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appearing in the definition of Φ0(Y log) is in natural bijective correspondence
with the set of Gal(Z log

∞ /Y log)-orbits of prime log-divisors on Zlog
∞ [cf. Proposi-

tion 3.2, (i)]. Moreover, since, by definition, different Δfil-closures Z log
∞ → Y log

differ only by an extension of the base field K, it follows immediately that in
the inductive limit appearing in the definition of Φ0(Y log), the maps between
monoids induce isomorphisms of monoids on the respective perfections, hence
that the resulting sets of primes map bijectively to one another.

Remark 3.3.2. Note that by taking the extension field K ′ used to define
the stack structure of S to be “sufficiently large”, one may treat the case
in which X log fails to have stable reduction over OK . Moreover, although at
first sight the choice of K ′ may appear to be somewhat arbitrary, one verifies
immediately that the category D0, as well as the monoids Φ0, B0 on D0, are
unaffected by replacing K ′ by some larger finite Galois extension of K.

Proposition 3.4 (Divisor and Rational Function Monoids). In the
notation of the above discussion:

(i) Φ0(Y log), as well as each of the monoids

Div+(Zlog
∞ )Gal(Zlog

∞ /Y log)

appearing in the inductive limit defining Φ0(Y log), is perf-factorial [cf.
[Mzk17], Definition 2.4, (i)]. Moreover, every endomorphism of Φ0(Y log) or
one of the Div+(Zlog

∞ )Gal(Zlog
∞ /Y log) induced by an endomorphism of Y log over

X log is non-dilating [cf. [Mzk17], Definition 1.1, (i)]. In particular, the func-
tor Φ0 defines a divisorial monoid [cf. [Mzk17], Definition 1.1, (i), (ii)] on
D0 which is, moreover, perf-factorial and non-dilating.

(ii) Suppose that Y log → X log is a connected tempered covering such that
the composite morphism Y log → Spec(K) factors through Spec(L), for some
finite extension L of K, in such a way that Y log is geometrically connected
over L. Then we have natural isomorphisms of monoids

O×
L

∼→ Ker(B0(Y log)→ Φgp
0 (Y log)) ⊆ B0(Y log)

O�
L

∼→ B0(Y log)×Φgp
0 (Y log) Φ0(Y log); L× ∼→ F0(Y log) ⊆ B0(Y log)

— where “O�
L ” is as in [Mzk18], Example 1.1.

Proof. First, we consider assertion (i). Let M be one of the monoids under
consideration. The fact that M is divisorial is immediate from the definitions.
The fact that M is perf-factorial then follows immediately from Proposition
3.2, (i) [cf. also the description of the primes of M in terms of “orbits of prime
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log-divisors” given in Remark 3.3.1]. Now let α be an endomorphism of M

that is induced by an endomorphism of Y log over X log such that α induces the
identity endomorphism on the set of primes of M . Then by considering local
functions on Z∞ that arise from local functions on X and vanish at various
primes of M , it follows that α is the identity, as desired. This completes the
proof of assertion (i). Assertion (ii) follows immediately from Proposition 3.2,
(ii) [and the definitions].

Lemma 3.5 (Perfections and Realifications of Perf-factorial Submonoids).
Let P , Q be perf-factorial monoids such that : (a) P is a submonoid of Q;
(b) P is group-saturated [cf. §0] in Q; (c) R supports Q [cf. [Mzk17],
Definition 2.4, (ii)]. Then:

(i) The inclusion P ↪→ Q extends uniquely to inclusions P pf ↪→ Q,
P rlf ↪→ Q.

(ii) Relative to the inclusions of (i), P pf, P rlf are group-saturated in
Q.

Proof. Indeed, the portion of assertions (i), (ii) involving “P pf” follows
immediately from the definitions. Next, let p ∈ Prime(P ) [where “Prime(−)”
is as in [Mzk17], §0]. Since P is perf-factorial, it follows that the “primary
component” Pp associated to p is isomorphic to Z≥0, Q≥0, or R≥0 [cf. [Mzk17],
Definition 2.4, (i), (b)]. Since R≥0 acts on Q [cf. condition (c)], it thus follows
that the natural homomorphism of monoids Pp ↪→ P ↪→ Q extends [uniquely]
to a homomorphism of monoids P rlf

p ↪→ Q. Next, observe that it follows from
the definition of the realification [cf. [Mzk17], Definition 2.4, (i)] that for every
a ∈ P rlf, there exists an a′ ∈ P pf such that a′ ≥ a. In particular, it follows
that for each q ∈ Prime(Q), the sum of the images of the various “primary
components ap ∈ Pp of a” [as p ranges over the elements of Prime(P )] in
Qq
∼= R≥0 is bounded above [i.e., by the image in Qq

∼= R≥0 of a′, which is well-
defined since a′ ∈ P pf]. Thus, this sum converges to an element of Qq

∼= R≥0.
Now, letting q range over the elements of Prime(Q), we conclude that we obtain
a homomorphism of monoids

P rlf → Qpf
factor = Qrlf

factor

[relative to the notation of [Mzk17], Definition 2.4, (i), (c)]. Since, moreover, Q

is perf-factorial, it follows from [Mzk17], Definition 2.4, (i), (d) [together with
the existence of an a′ ∈ P pf such that a′ ≥ a], that this homomorphism factors
through Q, hence determines a homomorphism of monoids

φ : P rlf → Q
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that is [easily verified to be] uniquely characterized by the property that it ex-
tends the natural homomorphism of monoids P pf ↪→ Q. Write φgp : (P rlf)gp →
Qgp for the induced homomorphism on groupifications. Next, let a, b ∈ P rlf

be such that φgp(a − b) ≥ 0 [i.e., φgp(a − b) ∈ Q]. Then for any a′, b′ ∈ P pf

such that a′ ≥ a, b′ ≤ b, we obtain that φgp(a′ − b′) ≥ φgp(a − b) ≥ 0, hence
[by the portion of assertion (ii) concerning “P pf”] that a′ ≥ b′. On the other
hand, since P is perf-factorial [cf. [Mzk17], Definition 2.4, (i), (d)], it follows
immediately that if a �≥ b, then there exist a′, b′ ∈ P pf(A) such that a′ ≥ a,
b′ ≤ b, a′ �≥ b′. Thus, we conclude that a ≥ b. In particular, if φgp(a− b) = 0,
then it follows that there exists a c ∈ P rlf [i.e., c

def= a− b] such that φ(c) = 0.
On the other hand, if c �= 0, then [cf. [Mzk17], Definition 2.4, (i), (d)] there
exists a c′ ∈ P pf such that 0 < c′ ≤ c, hence that 0 ≤ φ(c′) ≤ 0, so φ(c′) = 0,
in contradiction to the injectivity of the natural homomorphism of monoids
P pf ↪→ Q. Thus, we conclude that φ is injective. This completes the proof of
the portion of assertions (i), (ii) involving “P rlf”.

Remark 3.5.1. Observe that it follows immediately from Lemma 3.5, (i),
that a nonzero submonoid P of an R-monoprime [cf. [Mzk17], §0] monoid Q is
perf-factorial and group-saturated if and only if it is monoprime.

Remark 3.5.2. Note that the injectivity portion of Lemma 3.5, (i), fails to
hold if one omits the crucial hypothesis that P is group-saturated in Q. Indeed,
this may be seen, for instance, by considering an injection P

def= Z≥0 ⊕ Z≥0 ↪→
Q

def= R≥0 that sends the elements (1, 0); (0, 1) of P to [nonzero] Q-linearly
independent elements of R≥0.

Definition 3.6. In the notation of Definition 3.3, (iii):

(i) Let Λ be a monoid type. Define ΦΛ
0 , BΛ

0 , FΛ
0 as follows:

ΦZ
0

def= Φ0; ΦQ
0

def= Φpf
0 ; ΦR

0
def= Φrlf

0

BZ
0

def= B0; B
Q
0

def= B
pf
0 ; BR

0
def= R · Φbirat

0 ⊆ (ΦR
0 )gp

FZ
0

def= F0; F
Q
0

def= F
pf
0 ; FR

0
def= R · Φcnst

0 ⊆ (ΦR
0 )gp

— where Φrlf
0 is as in [Mzk17], Definition 2.4, (i) [cf. Proposition 3.4, (i)].

(ii) Let D be a connected, totally epimorphic category, equipped with a
functor D → D0;

Φ ⊆ ΦR-log def= ΦR
0 |D

a group-saturated [i.e., Φ(A) is group-saturated in ΦR-log(A), ∀A ∈ Ob(D)]
subfunctor in monoids which determines a perf-factorial divisorial monoid on
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D such that the following conditions are satisfied: (a) the [necessarily group-
saturated] submonoid

Φbs-fld def= (R · Φcnst
0 )|D ×(ΦR-log)gp Φ ⊆ ΦR-log

on D is monoprime [cf. [Mzk17], §0]; (b) the image of the resulting homomor-
phism of group-like monoids on D

F
def= FΛ

0 |D×(ΦR-log)gpΦgp → (Φbs-fld)gp = (R·Φcnst
0 )|D×(ΦR-log)gpΦgp ⊆ (ΦR-log)gp

determines a subfunctor in nonzero monoids of (Φbs-fld)gp [i.e., for every A ∈
Ob(D), the homomorphism F(A)→ (Φbs-fld)gp(A) is nonzero]. [Thus, it follows
from these conditions that for every A ∈ Ob(D), the image of the homomor-
phism F(A) → (Φbs-fld)gp(A) contains a nonzero element of Φbs-fld(A).] Write
B

def= BΛ
0 |D ×(ΦR-log)gp Φgp → Φgp. Thus, the data

(D, Φ, B, B→ Φgp)

determines a model Frobenioid
C

[cf. [Mzk17], Theorem 5.2, (ii)]. We shall refer to a Frobenioid C obtained in
this way as a tempered Frobenioid and to Λ as the monoid type of the tempered
Frobenioid C. If C is of rational (respectively, strictly rational) type [a property
which is completely determined by Φ — cf. [Mzk17], Definition 4.5, (ii)], then
we shall say that Φ is rational (respectively, strictly rational).

(iii) If A ∈ Ob(D), then we shall say that an element of Φ(A) is non-
cuspidal (respectively, cuspidal) if it arises [cf. the inductive limit that appears
in the definition of Φ0] from a non-cuspidal (respectively, cuspidal) log-divisor;
we shall say that a prime p of the monoid Φ(A) is non-cuspidal (respectively,
cuspidal) if the primary elements of Φ(A) that are contained in p are non-
cuspidal (respectively, cuspidal). In the following, we shall write

Φ(A)ncsp ⊆ Φ(A); Φ(A)csp ⊆ Φ(A)
Prime(Φ(A))ncsp ⊆ Prime(Φ(A)); Prime(Φ(A))csp ⊆ Prime(Φ(A))

for the submonoids of non-cuspidal and cuspidal elements and the subsets of
non-cuspidal and cuspidal primes, respectively. We shall refer to a pre-step
of C as non-cuspidal (respectively, cuspidal) if its zero divisor is non-cuspidal
(respectively, cuspidal).

(iv) The data [cf. (ii)]

(D, Φbs-fld, F, F→ (Φbs-fld)gp)
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determines a model Frobenioid
Cbs-fld

[cf. [Mzk17], Theorem 5.2, (ii)]. Moreover, the natural inclusion Φbs-fld(−) ⊆
Φ(−) determines a natural faithful functor Cbs-fld → C which may be applied
to think of Cbs-fld as a subcategory of C [cf. Remark 3.6.3 below]. Note that it
follows immediately from the existence of the natural functor D0 → Dcnst that
Cbs-fld is a p-adic Frobenioid in the sense of [Mzk18], Example 1.1, (ii). We shall
refer to the Frobenioid Cbs-fld obtained in this way as the base-field-theoretic
hull of the tempered Frobenioid C. Also, we shall refer to a morphism of the
Frobenioid C as base-field-theoretic if its zero divisor belongs to Φbs-fld(−) ⊆
Φ(−).

(v) We shall say that Φ is cuspidally pure if the following conditions are
satisfied: (a) for every non-cuspidal primary element x ∈ Φ(A), where A ∈
Ob(D), there exists an element y ∈ Φbs-fld(A) such that x ≤ y; (b) we have

Prime(Φ(A)) = Prime(Φ(A))ncsp
⋃

Prime(Φ(A))csp

for every A ∈ Ob(D).

Remark 3.6.1. Note that the group-saturated-ness hypothesis of Definition
3.6, (ii), may be regarded as the condition that “divisors relative to Φ are
effective if and only if they are effective relative to ΦR-log, i.e., if and only if they
are effective in the usual sense”. Alternatively, this hypothesis [together with
the perf-factoriality hypothesis of Definition 3.6, (ii)] may be regarded as the
analogue in the present “tempered context” of the monoprime-ness hypothesis
in [Mzk18], Example 1.1, (ii) — cf. Remark 3.5.1.

Remark 3.6.2. Observe that the base-field-theoretic hull of Definition 3.6,
(iv), is itself a tempered Frobenioid, and, moreover, that every p-adic Frobe-
nioid may be obtained in this way [cf. Remarks 3.5.1, 3.6.1]. In particular, it
follows that “the notion of a p-adic Frobenioid is a special case of the notion
of a tempered Frobenioid”. Also, we observe in passing that Φbs-fld is always
non-dilating and strictly rational.

Remark 3.6.3. It follows immediately from Proposition 3.4, (ii), and the
explicit divisorial description of objects and morphisms of a model Frobenioid
given in [Mzk17], Theorem 5.2, (i) [cf. also the equivalences of categories of
[Mzk17], Definition 1.3, (iii), (d), determined by the operation of taking the
zero divisor of a co-angular pre-step] that the objects of the essential image [cf.
§0] of the natural functor Cbs-fld → C may be described as the objects of C that
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may be “linked” to a Frobenius-trivial object via base-field theoretic pre-steps,
while the morphisms of the essential image of the natural functor Cbs-fld → C
may be described as the base-field theoretic morphisms of C between objects of
the essential image of Cbs-fld → C. In particular, the natural functor Cbs-fld → C
is isomorphism-full [cf. §0]. Thus, no confusion arises from “identifying” Cbs-fld

with its essential image via the natural functor Cbs-fld → C in C [cf. §0].

Remark 3.6.4. If Φ, C are as in Definition 3.6, (ii), then it follows from
Lemma 3.5 [applied to the submonoid Φ ⊆ ΦR-log] that the respective divisor
monoids Φpf, Φrlf of Cpf, Crlf also satisfy the conditions of Definition 3.6, (ii).
That is to say, the perfection and realification of a tempered Frobenioids are
again tempered Frobenioids.

Remark 3.6.5. One verifies immediately that, when applied to a tempered
Frobenioid, the operations of perfection and realification [cf. Remark 3.6.4] are
compatible with the operation of passing to the associated base-field-theoretic
hull of the tempered Frobenioid.

Remark 3.6.6. In the situation of Definition 3.6, (ii), if one supposes fur-
ther that Φ is perfect, then condition (a) follows from condition (b) [or, alter-
natively, from the condition that Φbs-fld(A) be nonzero for each A ∈ Ob(D)].
Indeed, this follows immediately by applying the factorization homomorphism
of [Mzk17], Definition 2.4, (i), (c) [cf. also [Mzk17], Definition 2.4, (i), (d)],
associated to the perf-factorial monoid Φ(A).

Now we have the following “tempered analogue” of [Mzk18], Theorem 1.2:

Theorem 3.7 (Basic Properties of Tempered Frobenioids). In the
notation of Definition 3.6:

(i) If Λ = Z (respectively, Λ = R), then C is of unit-profinite (respec-
tively, unit-trivial) type. For arbitrary Λ, the Frobenioid C is of isotropic,
model [hence, in particular, birationally Frobenius-normalized], and sub-
quasi-Frobenius-trivial type, but not of group-like type.

(ii) Suppose D is of FSMFF-type, and that Φ is non-dilating. Then
C is of standard type. If, moreover, Φ is rational [cf. Definition 3.6, (ii)],
then C is of rationally standard type.

(iii) Let A ∈ Ob(C); AD
def= Base(A) ∈ Ob(D). Write Acnst ∈ Ob(Dcnst)

for the image of AD in Dcnst [cf. the discussion preceding Definition 3.3]. Then
the natural action of AutC(A) on O�(A) and O×(A) factors through
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AutDcnst(Acnst). If, moreover, Λ ∈ {Z, Q}, then this factorization determines a
faithful action of the image of AutC(A) in AutDcnst(Acnst) on O�(A), O×(A).

(iv) If D is slim [cf. [Mzk17], §0], and Λ ∈ {Z, R}, then C is also slim.

Proof. First, we consider assertion (i). In light of the definition of C
as a model Frobenioid, it follows from [Mzk17], Theorem 5.2, (ii), that C is
of isotropic and model type; the fact that C is of sub-quasi-Frobenius-trivial
type follows from [Mzk17], Proposition 1.10, (vi). By Proposition 3.4, (ii)
(respectively, by the definition of the realification of a Frobenioid — cf. [Mzk17],
Proposition 5.3), it follows that if, moreover, Λ = Z (respectively, Λ = R), then
C is of unit-profinite (respectively, unit-trivial) type; the condition imposed
on F in Definition 3.6, (ii), (b), implies immediately that C is not of group-
like type. This completes the proof of assertion (i). As for assertion (ii), let
us first observe that since Πtp

X acts trivially on K×/O×
K , it follows [cf. also

the condition imposed on F in Definition 3.6, (ii), (b)] that every object of
(Cun-tr)birat is Frobenius-compact. Thus, assertion (ii) follows immediately from
the definitions. Assertion (iii) follows immediately from Proposition 3.4, (ii).
Assertion (iv) follows formally from [Mzk17], Proposition 1.13, (iii) [since, by
assertion (i) of the present Theorem 3.7, “condition (b)” of loc. cit. is always
satisfied by objects of C]. This completes the proof of Theorem 3.7.

Remark 3.7.1. We recall [cf. [Mzk18], §0] in passing that if D is of weakly
indissectible (respectively, strongly dissectible; weakly dissectible) type, then so
is C.

Remark 3.7.2. We recall in passing that D0 is slim [cf. [Mzk14], Example
3.10; [Mzk14], Remark 3.4.1] and of FSM-, hence also of FSMFF-, type [cf.
[Mzk18], Example 1.3, (i)].

Corollary 3.8 (Preservation of Base-field-theoretic Morphisms and Hulls).
Suppose that for i = 1, 2, Ci is a tempered Frobenioid whose base category
Di is of FSMFF-type, and whose divisor monoid Φi is non-dilating. Let

Ψ : C1
∼→ C2

be an equivalence of categories. Then:

(i) Suppose, for i = 1, 2, that the base category Di of Ci is Frobenius-
slim. Then Ψ preserves the base-field-theoretic morphisms.

(ii) Suppose, for i = 1, 2, that the base category Di of Ci is Div-slim
[relative to Φi]. Then Ψ preserves the base-field-theoretic morphisms and
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induces a compatible equivalence

Cbs-fld
1

∼→ Cbs-fld
2

of the subcategories Cbs-fld
1 ⊆ C1, Cbs-fld

2 ⊆ C2 given by the respective base-field-
theoretic hulls.

(iii) Suppose that Ψ preserves the base-field-theoretic morphisms, and
that Φ1, Φ2 are cuspidally pure. Then Ψ preserves the non-cuspidal and
cuspidal pre-steps. If, moreover, Φ1, Φ2 are rational, then the induced iso-
morphism of divisor monoids

ΨΦ : Φ1|C1

∼→ Φ2|C2

[lying over Ψ] of [Mzk17], Theorem 4.9, preserves non-cuspidal elements and
primes, as well as cuspidal elements and primes.

Proof. Indeed, by Theorem 3.7, (i), (ii), C1, C2 are of standard and
isotropic type, but not of group-like type. In particular, by [Mzk17], Theo-
rem 3.4, (ii); [Mzk17], Theorem 4.2, (i), it follows that Ψ preserves pre-steps
and primary steps. Moreover, Ψ is compatible with the operation of passing to
the perfection [cf. [Mzk17], Theorem 3.4, (iii)].

Next, we consider assertions (i), (ii). By applying [Mzk17], Theorem 3.4,
(iv), in the case of assertion (i), and [Mzk17], Theorem 3.4, (ii); [Mzk17],
Corollary 4.11, (ii), in the case of assertion (ii), it follows that Ψ preserves
the submonoids “O�(−)”. Now observe [cf. Proposition 3.4, (ii); the equiv-
alences of categories of [Mzk17], Definition 1.3, (iii), (d), determined by the
operation of taking the zero divisor of a co-angular pre-step] that a pre-step
of Ci is base-field-theoretic if and only if its image A → B in Cpf

i may be writ-
ten as a [filtered] projective limit in the category (Cpf

i )coa-pre
B [where “coa-pre”

denotes the subcategory determined by the (necessarily co-angular) pre-steps
of Cpf

i ] of pre-steps A′ → B that are abstractly equivalent [cf. §0] to an endo-
morphism that belongs to “O�(−)”. Thus, Ψ preserves the base-field-theoretic
pre-steps. Note, moreover, that Ψ preserves [cf. [Mzk17], Theorem 3.4, (ii),
(iii)] the factorization [cf. [Mzk17], Definition 1.3, (iv), (a)] of a morphism of
Ci into a composite of a morphism of Frobenius type, a pre-step, and a pull-
back morphism. Thus, we conclude that Ψ preserves the base-field-theoretic
morphisms. This completes the proof of assertion (i). Next, to complete the
proof of assertion (ii), let us observe that, under the assumptions of assertion
(ii), Ψ preserves [cf. [Mzk17], Theorem 3.4, (iii); [Mzk17], Corollary 4.11, (ii)]
the Frobenius-trivial objects. Since Ψ preserves base-field-theoretic pre-steps
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and base-field-theoretic morphisms, it follows from the explicit description of
the base-field-theoretic hull given in Remark 3.6.3 that Ψ preserves the [objects
and morphisms of the] subcategories Cbs-fld

1 ⊆ C1, Cbs-fld
2 ⊆ C2, hence induces an

equivalence of categories Cbs-fld
1

∼→ Cbs-fld
2 , as desired. This completes the proof

of assertion (ii).
Finally, we consider assertion (iii). Since, by assumption, Ψ preserves the

base-field-theoretic pre-steps, we conclude from Definition 3.6, (v), (a) [cf. also
the first equivalence of categories involving pre-steps of [Mzk17], Definition 1.3,
(iii), (d)], that Ψ preserves the primary non-cuspidal steps, hence, [by Definition
3.6, (v), (b)] that Ψ preserves the primary cuspidal steps. Thus, by considering
the “factorization homomorphisms” arising from the fact that Φ1, Φ2 are perf-
factorial [cf. [Mzk17], Definition 2.4, (i), (c)] in the context of the perfections
of C1, C2, it follows that Ψ preserves the non-cuspidal and cuspidal pre-steps.
The remainder of assertion (iii) now follows immediately from the isomorphism
ΨΦ : Φ1|C1

∼→ Φ2|C2 of [Mzk17], Theorem 4.9 [which is applicable in light of
Theorem 3.7, (ii)]. This completes the proof of assertion (iii).

Remark 3.8.1. Note that in the situation of Corollary 3.8, (ii), for suitable
base categories [i.e., of the sort that appear in [Mzk18], Theorem 2.4] one may
apply to the equivalence of categories Cbs-fld

1
∼→ Cbs-fld

2 induced by Ψ the theory
of the category-theoreticity of the Kummer and reciprocity maps, as discussed
in [Mzk18], Theorem 2.4.

Remark 3.8.2. In the situation of Corollary 3.8, suppose further that Ψ
preserves the base-field-theoretic morphisms, and that Φ1, Φ2 are cuspidally
pure and rational [cf. Corollary 3.8, (iii)]. Then observe that by considering
zero divisors of base-field-theoretic pre-steps as in the proof of Corollary 3.8,
(i), (ii), it follows that [in the notation of Corollary 3.8], for C1 ∈ Ob(C1),
C2

def= Ψ(C1), non-cuspidal primes p1, q1 of Φ(C1) such that p1 
→ p2, q1 
→ q2

[where p2, q2 ∈ Prime(Φ(C2))], we obtain, for i = 1, 2, natural isomorphisms

(R≥0
∼=) Φi(Ci)rlfpi

∼→ Φi(Ci)rlfqi
(∼= R≥0)

[i.e., induced by considering the zero divisors of elements of O�(Ci)] which are
compatible with the isomorphism Φ1(C1)

∼→ Φ2(C2) induced by ΨΦ.

Finally, we begin to relate the theory of tempered Frobenioids to the theory
of the étale theta function, as discussed in §1, §2:
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Example 3.9. Theta Functions and Tempered Frobenioids.

(i) Suppose that X log is a smooth log orbicurve of the sort defined in
Definition 2.5, (i), (ii) [i.e., one of the following smooth log orbicurves: “X log”,
“C log”, “X log”, “C log”, “Ẋ

log
”, “Ċ

log
”, “Ẋ

log
”, “Ċ

log
”]. Then there exists

a [1-]commutative diagram of finite log étale Galois coverings of smooth log
orbicurves

U log→ X log⏐⏐� ⏐⏐�
Y log→W log

— where U log, Y log are smooth log curves that arise as generic fibers of stable log
curves Ulog, Ylog over [formal spectra equipped with appropriate log structures
determined by] rings of integers of appropriate finite extensions of K; the di-
agram induces a natural isomorphism Gal(U log/X log) ∼→ Gal(Y log/W log); the
order of the group Gal(U log/X log) ∼= Gal(Y log/W log) is≤ 2; Y log →W log is un-
ramified at the cusps of Y log; Y log is of genus 1. [Thus, for instance, when X log

is “Ċ
log

”, one may take the upper arrow of the diagram to be “Ẋ
log → Ċ

log
”

and the lower arrow of the diagram to be “Ẋ
log → Ċ

log
”.] Write

DU
def= Btemp(U log)0; DX

def= Btemp(X log)0 (= D0)

DY
def= Btemp(Y log)0; DW

def= Btemp(W log)0

— so the above [1-]commutative diagram induces natural functors DU → DX ,
DU → DY , DX → DW , DY → DW [obtained by regarding a tempered covering
of the domain orbicurve of an arrow of the above commutative diagram as a
tempered covering of the codomain curve of the arrow].

(ii) Let us write
Dell

Y ⊆ DY ; Dell
W ⊆ DW

for the full subcategories of tempered coverings that are unramified over the
cusps of Y log, W log [i.e., the “tempered coverings of the underlying elliptic curve
of Y log”]. Thus, by taking the left adjoints to the natural inclusion functors
Dell

Y ↪→ DY , Dell
W ↪→ DW , we obtain natural functors DY → Dell

Y , DW → Dell
W

[cf. [Mzk18], Example 1.3, (ii)], as well as 1-commutative diagrams of natural
functors

Dell
Y ↪→ DY⏐⏐� ⏐⏐�
Dell

W ↪→DW

DY →Dell
Y⏐⏐� ⏐⏐�

DW →Dell
W
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[since Y log →W log is unramified at the cusps of Y log].

(iii) Next, let us denote by ΦW the monoid on DW given by forming the
perfection of the monoid “Φ0” of Definition 3.3, (iii), for some choice of tempered
filter on W log that arises from a tempered filter on Y log [i.e., whose constituent
subgroups ⊆ Δtp

W are contained in Δtp
Y ⊆ Δtp

W ]. Now define

Φell
W ell ⊆ ΦW |Dell

W

as follows: For A ∈ Ob(Dell
W ), we take Φell

W ell(A) to be the perf-saturation [cf.
§0] in ΦW(A) of the submonoid

lim−→
Zlog

∞

Div+(Zlog
∞ )Gal(Zlog

∞ /A) ⊆ ΦW(A)

— where Z log
∞ ranges over the connected tempered coverings Z log

∞ → A in
Dell

W such that the composite covering Z log
∞ → A → W log arises as the generic

fiber of the “universal combinatorial covering” Zlog
∞ of the stable logarithmic

model Zlog of some finite log étale Galois covering Z log →W log [in Dell
W !] with

stable, split reduction over the ring of integers of a finite extension L of K;
the superscript Galois group denotes the submonoid of elements fixed by the
Galois group in question. Here, we pause to observe that the various monoids
that occur in the above inductive limit are all contained in ΦW(A), and that
the induced morphisms on perf-saturations between these monoids are bijective
[cf. Remark 3.3.1]. Indeed, this bijectivity follows immediately from the well-
known structure of the special fibers of the “universal combinatorial coverings”
that appear in the above inductive limit [i.e., “chains of copies of the projective
line” — cf., e.g., the discussion preceding Proposition 1.1]. Set

Φell
W

def= Φell
W ell |DW

⊆ (ΦW |Dell
W

)|DW
⊆ ΦW

— where “|DW
” is with respect to the functor DW → Dell

W defined in (ii). Now
observe that Φell

W is a perfect [cf. the definition of Φell
W ell as a perf-saturation

inside the perfect monoid ΦW |Dell
W

on Dell
W ] and [manifestly — cf. Remark 3.6.1]

group-saturated submonoid of the monoid ΦW on DW , which is, moreover, perf-
factorial, non-dilating [cf. Proposition 3.4, (i); the above observation concerning
the bijectivity of induced morphisms on perf-saturations], and cuspidally pure
[cf. the well-known structure of the special fibers of the “universal combinatorial
coverings” that appear in the above inductive limit]. Also, Φell

W is [manifestly]
independent, up to natural isomorphism, of the choice of tempered filter on W

used to define ΦW .
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(iv) If α : A→ B is any morphism of DW , then set

Dα
def= (DW )B[α] (⊆ (DW )B)

— where we regard α as an object of (DW )B – cf. the notational conventions
of §0; [Mzk17], §0. Thus, D


α is a quasi-temperoid [cf. [Mzk14], Definition
A.1, (ii)]. Also, we observe that DW , DX , DY , DU are special cases of “Dα”
[obtained by taking “α” be the identity morphism of W log, X log, Y log, U log].
Note that we have a natural functor Dα → DW . Now let us write

Φell
α

def= Φell
W |Dα

(⊆ ΦW |Dα
)

and note that it follows immediately from the above discussion that this [sub-]
monoid Φell

α — which is obtained simply by restricting the functor Φell
W via some

functor — is perfect, group-saturated, perf-factorial, non-dilating, and cuspidally
pure. Note, moreover, that the existence of the theta functions discussed in §1
[cf. especially the description of the zeroes and poles of these theta functions
given in Proposition 1.4, (i)] implies that the monoid Φell

α is also rational [cf.
Definition 3.6, (ii); [Mzk17], Definition 4.5, (ii)]. In particular, it follows that:

This monoid Φell
α [along with its perfection and realification — cf.

Remark 3.6.4] gives rise to a tempered Frobenioid [cf. Definition 3.6,
(ii); Remark 3.6.6] of rationally standard type [cf. Theorem 3.7, (ii)]
with perfect divisor monoid over the slim [cf. Remark 3.7.2] base
category Dα of FSM-type [cf. Remark 3.7.2].

§4. General Bi-Kummer Theory

In the present §4, we apply the theory of tempered Frobenioids developed
in §3 to discuss the analogue, for log-meromorphic functions on tempered cov-
erings of smooth log orbicurves over nonarchimedean [mixed-characteristic] lo-
cal fields, of the Kummer theory for p-adic Frobenioids developed in [Mzk18],
§2. One important aspect [i.e., in a word, the “bi” portion of the term “bi-
Kummer”] of the “bi-Kummer theory” theory developed here — by compar-
ison, for instance, to the Kummer theory for arbitrary Frobenioids discussed
in [Mzk18], Definition 2.1 — is that instead of just taking roots of the given
log-meromorphic function, one considers roots of the pair of sections of a line
bundle that correspond, respectively, to the “numerator” and “denominator”
of the log-meromorphic function [cf. Remark 4.3.1 below]. Another important
feature of the theory developed here — by comparison to the theory of [Mzk18],
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§2, for p-adic Frobenioids — is the absence of an analogue of the reciprocity map
[cf. Remark 4.4.1 below]. As we shall see in §5 below [cf. Theorem 5.6 and its
proof], the additional “layer of complexity” that arises from the former feature
has the effect of compensating [to a certain extent, at least in the case of the
situation discussed in §2] for the “handicap” constituted by the latter feature.
Finally, we remark that the theory developed here may be regarded as and,
indeed, was motivated by the goal of developing a Frobenioid-theoretic trans-
lation/generalization — via the theory of base-Frobenius pairs [cf. [Mzk17],
Definition 2.7, (iii); [Mzk17], Proposition 5.6] — of the scheme-theoretic con-
structions of §1.

Let X log, K, D0 = Btemp(X log)0 be as in §3. In the following discussion,
we fix a tempered Frobenioid C whose monoid type is Z, whose divisor monoid
Φ is perfect, whose base category D is of the form

D def= D0[D] (⊆ D0)

[cf. §0], where D ∈ Ob(D0), and whose base-field-theoretic hull we denote by
Cbs-fld ⊆ C. Also, we fix a Frobenius-trivial object A� ∈ Ob(C) such that
Abs

�
def= Base(A�) ∈ Ob(D) is a Galois [cf. [Mzk14], Definition 3.1, (iv)] object.

Thus, Abs
� determines normal open subgroups

H� ⊆ Πtp
X ; Hbs-fld

� ⊆ GK

[i.e., Hbs-fld
� is the image of H� in GK ] of the tempered fundamental group Πtp

X of
X log and the quotient Πtp

X � GK determined by the absolute Galois group of K.
In the following discussion, we shall use the superscript “birat” (respectively,
“bs”) to denote the object or arrow determined by a given object or arrow of C
in the birationalization Cbirat [cf. [Mzk17], Proposition 4.4] (respectively, base
category D) of C.

Recall that pre-steps of C map to isomorphisms in Cbirat [cf. [Mzk17],
Proposition 4.4, (iv)]. In particular, it follows that any base-equivalent pair of
pre-steps s�, s� : A→ B in C determines, by inverting the image of s� in Cbirat,
an element “s� · (s�)−1” ∈ O×(Abirat).

Definition 4.1. Let A ∈ Ob(C).
(i) If f ∈ O×(Abirat), then we shall refer to as a fraction-pair, or, alterna-

tively, as a right fraction-pair [for f ], any base-equivalent pair of pre-steps

s�, s� : A→ B

such that s� · (s�)−1 = f ∈ O×(Abirat), and, moreover, Div(s�), Div(s�) have
disjoint supports [cf. [Mzk17], Proposition 4.1, (iii)]. [Thus, Div(s�), Div(s�)
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are uniquely determined by f .] In this situation, we shall refer to Div(s�) as the
zero divisor and to Div(s�) as the divisor of poles of the fraction-pair (s�, s�);
we shall refer to A (respectively, B) as the domain (respectively, codomain)
of the fraction-pair (s�, s�); if we denote by f |B ∈ O×(Bbirat) the element
determined by (s�, s�) [cf. [Mzk17], Proposition 4.4, (iv)], then we shall refer
to the pair (s�, s�) as a left fraction-pair [for f |B ].

(ii) We shall say that A is Galois if Abs ∈ Ob(D) is Galois. Suppose that
A is Galois. Then, by the definition of D, there is a natural surjective outer
homomorphism

Πtp
X � AutD(Abs)

[cf. the discussion of [Mzk18], Definition 2.2, (i), in the case of p-adic Frobe-
nioids]; write

HAbs ⊆ AutD(Abs)

for the image of H� via this surjection [which is well-defined, since H� is
normal] and

HA ⊆ AutC(A)/O×(A)

for the inverse image of HAbs via the natural injection AutC(A)/O×(A) ↪→
AutD(Abs). If the natural injection HA ↪→ HAbs is a bijection, then we shall
say that A is H�-ample.

(iii) Suppose that A is H�-ample [hence, in particular, Galois], and that
f ∈ O×(Abirat) is an element fixed by the natural action of HA; let N ∈ N≥1.
Then we shall say that A is (N, H�, f)-saturated if the following conditions
are satisfied: (a) there exist pre-steps A′′ → A, A′′ → A′ in C, where A′ is
Frobenius-trivial [hence determines an object of the p-adic Frobenioid Cbs-fld —
cf. Remark 3.6.3], such that A′ is (N, Hbs-fld

� )-saturated [cf. [Mzk18], Definition
2.2, (ii)] as an object of Cbs-fld; (b) there exists a g ∈ O×(Abirat) such that
gN = f .

(iv) We shall say that a morphism α : A → B of C is of base-Frobenius
type if there exist a subgroup G ⊆ AutCB

(α) ⊆ AutC(A) and a factorization
α = α′′ ◦α′ such that the following conditions are satisfied: (a) A is Frobenius-
trivial, Galois, and µN -saturated [cf. [Mzk18], Definition 2.1, (i)], where N

def=
degFr(α); (b) G maps isomorphically to Gal(Abs/Bbs) ⊆ AutD(Abs); (c) α′ is a
base-identity endomorphism of Frobenius type; (d) α′′ is a pull-back morphism;
(e) G, α′, α′′ arise from a base-Frobenius pair of C [cf. Theorem 3.7, (i); [Mzk17],
Proposition 5.6]. In this situation, we shall refer to the subgroup G and the
factorization α = α′′ ◦ α′ as being of base-Frobenius type.
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Remark 4.1.1. Note that in the situation of Definition 4.1, (iv), if α : A→
B is of base-Frobenius type, then by applying Proposition 3.4, (ii), together
with the factorization of [Mzk17], Definition 1.3, (iv), (a), one verifies easily
that A → B is a categorical quotient [cf. [Mzk17], §0] of A by the subgroup
G ·µN (A) ⊆ AutC(A) in the full subcategory of C determined by the Frobenius-
trivial objects [cf. [Mzk17], Theorem 5.1, (iii)].

Proposition 4.2 (Construction of Bi-Kummer Data I: Roots of Fraction-
Pairs). In the notation of the above discussion, let f ∈ O×(Abirat

� ); s�, s� :
A� → B� a right fraction-pair for f [i.e., a left fraction-pair for f |B� ];
N ∈ N≥1. Then:

(i) A pair of morphisms t�, t� : A� → C� is a right fraction-pair for
f if and only if there exists a [necessarily unique] isomorphism v : B�

∼→ C�
such that t� = v ◦ s�, t� = v ◦ s�.

(ii) A pair of morphisms t�, t� : C� → B� is a left fraction-pair for
f |B� if and only if there exists a [necessarily unique] isomorphism v : C�

∼→ A�
such that t� = s� ◦ v, t� = s� ◦ v.

(iii) There exist commutative diagrams in C

AN
s�

N−→ BN⏐⏐�α

⏐⏐�β

A�
s�
−→ B�

AN
s�

N−→ BN⏐⏐�α

⏐⏐�β

A�
s�
−→ B�

— where α, β are isometries of Frobenius degree N ; α is of base-
Frobenius type, with factorization of base-Frobenius type α = α′′◦α′; f |AN

def=
((α′′)birat)∗(f) [cf. [Mzk17], Proposition 1.11, (iv)]; AN is (N, H�, f |AN

)-
saturated; s�N , s�N : AN → BN are base-equivalent pre-steps. In par-
ticular, there exists an element ∈ O×(Abirat

N ) (respectively, ∈ O×(Bbirat
N )) for

which (s�N , s�N ) is a right (respectively, left) fraction-pair, and whose N-th
power is equal to f |AN

(respectively, f |BN

def= (f |AN
)|BN

[cf. the notation of
Definition 4.1, (i)]). In the following, we shall refer to such a pair of commu-
tative diagrams as an N-th root of the fraction-pair (s�, s�), to AN as the
N-domain of this root of a fraction-pair, and to BN as the N-codomain of
this root of a fraction-pair.

(iv) We continue to use the notation of (iii). Let

AN

s�
N−→ BN⏐⏐�α

⏐⏐�β

A�
s�
−→ B�

AN

s�
N−→ BN⏐⏐�α

⏐⏐�β

A�
s�
−→ B�
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be another N-th root of a left fraction-pair (s�, s�) for f |B� ; δ ∈ AutC(A�)
the unique automorphism [cf. (ii)] such that s� = s� ◦ δ, s� = s� ◦ δ; εA :
Abs

N
∼→ Abs

N an isomorphism of D such that αbs = δbs ◦ αbs ◦ εA. Then, after
possibly replacing s�N by u ◦ s�N , for some u ∈ µN (BN ) [where “µN (−)” is
as in [Mzk18], Definition 2.1, (i)], there exist isomorphisms ζA : AN

∼→ AN ,
ζB : BN

∼→ BN in C which fit into commutative diagrams

AN
s�

N−→ BN⏐⏐�ζA

⏐⏐�ζB

AN

s�
N−→ BN

AN
s�

N−→ BN⏐⏐�ζA

⏐⏐�ζB

AN

s�
N−→ BN

and, moreover, satisfy α = δ ◦ α ◦ ζA, β = β ◦ ζB, ζbs
A = εA. Here, ζB is

uniquely determined by ζA; ζA is uniquely determined by εA, up to composi-
tion with an element of µN (AN ). [Thus, ζB is uniquely determined by εA, up
to composition with an element of µN (BN ).] In the following, we shall refer to
such a pair (ζA, ζB) as an isomorphism between the two given N-th roots of
fraction-pairs.

Proof. The sufficiency portion of assertion (i) is immediate. To verify
the necessity portion of assertion (i), observe that by the equivalences of cat-
egories of [Mzk17], Definition 1.3, (iii), (d), the “disjoint supports” condition
[cf. Definition 4.1, (i)] on the Div(−)’s of the components of a fraction-pair
t�, t� : A� → C� implies the existence of isomorphisms v, v′ : B�

∼→ C� such
that t� = v ◦ s�, t� = v′ ◦ s�; since, moreover, t�, t� are base-equivalent, it
follows that v = v′′ ◦ v′, for some v′′ ∈ O×(C�). On the other hand, since
the fraction-pair t�, t� : A� → C� determines the same element of O×(Abirat

� )
as the fraction-pair s�, s� : A� → C�, we thus conclude that v′′ = 1. Note
that the uniqueness of v follows from the total epimorphicity of C. This com-
pletes the proof of assertion (i). The proof of assertion (ii) is entirely similar
[except that one concludes uniqueness from the fact that pre-steps are always
monomorphisms — cf. [Mzk17], Definition 1.3, (v), (a)].

Next, we consider assertions (iii), (iv). First, let us observe that, by the
definition of “log-meromorphic” [cf. Definition 3.1, (ii)], it follows immediately
that over some tempered covering of X log that occurs as the “universal combi-
natorial covering” of a finite étale covering of X log with stable, split reduction,
f admits an N-th root. Since, moreover, the divisor monoid Φ is assumed to
be perfect, it follows that the divisors of zeroes and poles of such an N -th root
belong to Φ(−) of the tempered covering in question. Now since the Frobenioid
C is of model [hence, in particular, pre-model — cf. [Mzk17], Definition 4.5, (i)]
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type [cf. Theorem 3.7, (i)], it follows that C admits a base-Frobenius pair [cf.
[Mzk17], Definition 2.7, (iii)]. Thus, the existence of a pair of commutative
diagrams as in the statement of assertion (iii) follows by translating the above
“scheme-theoretic observations” into the language of Frobenioids — cf. [Mzk17],
Definition 1.3, (iii), (d) [on the existence of pre-steps with prescribed zero divi-
sor]; [Mzk18], Remark 2.2.1 [concerning the issue of “(N, Hbs-fld

� )-saturation”].
Finally, to verify the uniqueness up to isomorphism of such a pair of com-

mutative diagrams as stated in assertion (iv), let us first observe that by replac-
ing α, s�, s� by δ−1 ◦α, s� ◦δ, s� ◦δ, respectively, we may assume without loss
of generality that δ is the identity. Next, let us observe that it follows from the
“(N, H�, f |AN

)-saturated-ness” condition in the statement of assertion (iii) [cf.
also Proposition 3.4, (ii)] that the pull-back ∈ O×(AN ) or ∈ O×(AN ) of any el-
ement ∈ O×(A�) [i.e., via the “pull-back portion” of α, α — cf. Definition 4.1,
(iv), (d)] admits an N-th root. Now [in light of this observation] the existence
of a ζA as desired follows immediately from the uniqueness up to conjugation
by a unit of base-Frobenius pairs of AN , AN [cf. [Mzk17], Proposition 5.6], by
thinking of α, α as categorical quotients [cf. Remark 4.1.1] and applying the
base-triviality and Aut-ampleness of the full subcategory of C determined by
the Frobenius-trivial objects [cf. [Mzk17], Theorem 5.1, (iii)]. The existence
of a ζB as desired follows from the equivalences of categories determined by
pre-steps of [Mzk17], Definition 1.3, (iii), (d). The essential uniqueness of ζA,
ζB as asserted follows immediately from the various conditions imposed on ζA,
ζB. This completes the proof of assertion (iv).

Proposition 4.3 (Construction of Bi-Kummer Data II: Bi-Kummer Roots).
In the notation of Proposition 4.2, (iii):

(i) Let
strv

N : HAN
→ AutC(AN )

be the group homomorphism arising from a base-Frobenius pair of AN [cf.
Theorem 3.7, (i); [Mzk17], Proposition 5.6]. [Thus, strv

N is completely deter-
mined up to conjugation by an element of O×(AN ) — cf. Theorem 3.7, (i);
[Mzk17], Proposition 5.6.] Then there exist unique group homomorphisms

s�-gp
N : HBN

→ AutC(BN ); s�-gp
N : HBN

→ AutC(BN )

such that, relative to the isomorphism HAN

∼→ HBN
determined by the [base-

equivalent! ] pair of morphisms s�N , s�N , we have

s�-gp
N (h) ◦ s�N = s�N ◦ (strv

N |HBN
)(h); s�-gp

N (h) ◦ s�N = s�N ◦ (strv
N |HBN

)(h)
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for all h ∈ HBN
. [In particular, it follows that BN is H�-ample.] In the

following, we shall refer to such a pair (s�-gp
N , s�-gp

N ) as a bi-Kummer N-th
root of the fraction-pair (s�, s�); also, we shall speak of AN , BN as being
the “N-domain”, “N-codomain”, respectively, [cf. Proposition 4.2, (iii)] not
only of the original root of a fraction-pair, also of the resulting bi-Kummer
root.

(ii) In the notation of (i), the collection of bi-Kummer N-th roots, with
N-codomain BN , of a fraction-pair with domain isomorphic to A�, of some
rational function whose pull-back to [the N-codomain] BN is equal to f |BN

, is
equal to the collection of pairs obtained from (s�-gp

N , s�-gp
N ) by

(a) simultaneous conjugation by an element ζAut ∈ O×(BN ), followed by

(b) non-simultaneous conjugation [of, say, s�-gp
N , but not s�-gp

N ] by an ele-
ment u ∈ µN (BN ) [cf. the “u” of Proposition 4.2, (iv)].

(iii) In the notation of (i), the difference s�-gp
N · (s�-gp

N )−1 determines a
twisted homomorphism HBN

→ µN (BN ), hence an element of the coho-
mology module H1(HBN

, µN (BN )), which is equal to the Kummer class [cf.
[Mzk18], Definition 2.1, (ii)]

κf |BN
∈ H1(HBN

, µN (BN ))

of f |BN
[cf. the notation of Proposition 4.2, (iii)]. In particular, this co-

homology class is independent of the [simultaneous and non-simultaneous ]
conjugation operations discussed in (ii).

Proof. First, we consider assertion (i). To prove the existence and unique-
ness of s�-gp

N , s�-gp
N , it follows from the general theory of Frobenioids — cf. the

first equivalence of categories involving pre-steps of [Mzk17], Definition 1.3, (iii),
(d); the fact that Frobenioids are always totally epimorphic — that it suffices
to prove that

Div(s�N ), Div(s�N ) ∈ Φ(AN )

are fixed by HAN
. But since N · Div(s�N ), N · Div(s�N ) ∈ Φ(AN ) arise as pull-

backs to AN of elements of Φ(A�) [i.e. Div(s�), Div(s�)], this follows from
the fact that [by definition] H� acts trivially on Abs

� [together with the fact
the monoid Φ(AN ) is torsion-free!]. This completes the proof of assertion (i).
Assertion (iii) follows immediately from the definitions [cf., especially, [Mzk18],
Definition 2.1, (ii)].

Finally, we observe that assertion (ii) follows immediately by applying
Proposition 4.2, (ii), to the fraction-pairs (s�N , s�N ) and (s�N , s�N ) of Proposition
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4.2, (iv) [after possibly replacing s�N by u◦ s�N ]. Indeed, since strv
N is completely

determined up to conjugation by an element of O×(AN ) [cf. Theorem 3.7, (i);
[Mzk17], Proposition 5.6.], we thus conclude that the collection of bi-Kummer
N -th roots under consideration is as stated in assertion (ii). This completes
the proof of assertion (ii).

Remark 4.3.1. Of course, even without applying the somewhat non-
trivial theory of base-Frobenius pairs [i.e., [Mzk17], Proposition 5.6], liftings
to AutC(AN ) of individual elements of HAN

[cf. the notation of Proposition
4.3, (i)] are completely determined up to possible translation by elements of
O×(AN ). The crucial difference, however, between an indeterminacy up to
translation by elements of O×(AN ) and an indeterminacy up to conjugation
by elements of O×(AN ) is that, unlike the former, the latter allows one to
work with sections [i.e., strv

N , s�-gp
N , s�-gp

N ] which are group homomorphisms. Of
course, the Kummer class [which, by Proposition 4.3, (iii), is determined by the
pair (s�-gp

N , s�-gp
N )] is always a [twisted] homomorphism. On the other hand,

the theory of base-Frobenius pairs allows one to work with group homomor-
phisms [i.e., s�-gp

N or s�-gp
N ] even when one is forced to restrict one’s attention

to only one of the two arrows s�N or s�N , i.e., in situations where one is not
allowed to work with the fraction-pair as a “single entity” — cf. the theory of
“Frobenioid-theoretic mono-theta environments” developed in Theorem 5.10
below.

Remark 4.3.2. Note that if N divides N ′ ∈ N≥1, then one verifies immedi-
ately that given an N-th root of the fraction-pair (s�, s�) [e.g., as in Proposition
4.2, (iii)], there exists a “morphism” from a suitable N ′-th root of the fraction-
pair (s�, s�)

AN ′
s�

N′−→ BN ′⏐⏐�α′
⏐⏐�β′

A�
s�
−→ B�

AN ′
s�

N′−→ BN ′⏐⏐�α′
⏐⏐�β′

A�
s�
−→ B�

to the given N -th root of the fraction-pair (s�, s�), i.e., a pair of commutative
diagrams

AN ′
s�

N′−→ BN ′⏐⏐�αN,N′
⏐⏐�βN,N′

AN
s�

N−→ BN

AN ′
s�

N′−→ BN ′⏐⏐�αN,N′
⏐⏐�βN,N′

AN
s�

N−→ BN
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— where αN,N ′ (respectively, βN,N ′) is an isometry of Frobenius degree N ′/N

that is compatible with α′, α (respectively, β′, β); αN,N ′ is of base-Frobenius
type. For instance, such a “morphism” may be constructed by extracting an
“N ′/N -th root” [cf. Proposition 4.2, (iii)] of the [fraction-pair determined by
the] given “N -th root” of the fraction-pair (s�, s�). Moreover, this collection
of data induces a natural morphism

H1(HBN
, µN (BN ))→ H1(HBN′ , µN (BN ′))

that maps κf |BN
to the image of κf |B

N′ in H1(HBN′ , µN (BN ′)) [i.e., via the
natural surjection µN ′(BN ′) � µN (BN ′)]. In particular, by allowing N to
vary, we obtain

a compatible system of roots of the fraction-pair (s�, s�)

hence a compatible system of Kummer classes, which, by Proposition 3.2, (iii),
is sufficient to distinguish f from other elements of O×(Abirat

� ).
We conclude our discussion of “general bi-Kummer theory” by observing

that, up to the various indeterminacies discussed so far, our constructions are
entirely “category-theoretic”:

Theorem 4.4 (Category-theoreticity of Bi-Kummer Data). For i =
1, 2, let pi be a prime number ; Ki a finite extension of Qpi

; X log
i a smooth

log orbicurve over Ki; Ci a tempered Frobenioid, whose monoid type is
Z, whose divisor monoid Φi is perfect and non-dilating, and whose base
category Di is of the form

Di
def= Btemp(X log

i )[Di]

where Di ∈ Ob(Btemp(X log
i )); A�,i ∈ Ob(Ci) a Frobenius-trivial object such

that Abs
�,i

def= Base(A�,i) ∈ Ob(Di) is Galois, hence determines a normal
open subgroup

H�,i ⊆ Πtp
Xi

of the tempered fundamental group Πtp
Xi

of X log
i ; N ∈ N≥1. Suppose that

Ψ : C1
∼→ C2

is an equivalence of categories which induces [cf. Theorem 3.7, (i), (ii);
Remark 3.7.2; [Mzk17], Theorem 3.4, (v)] an equivalence Ψbs : D1

∼→ D2 that
maps Abs

�,1 to an isomorph [cf. §0] of Abs
�,2. Then:
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(i) Ψ maps isomorphs of A�,1 to isomorphs of A�,2 and H�,1-ample
objects to H�,2-ample objects ; Ψbs induces an isomorphism H�,1

∼→ H�,2,
which is well-defined up to composition with inner automorphisms of Πtp

Xi
.

(ii) Ψ induces a 1-compatible equivalence of categories Ψbirat : Cbirat
1

∼→
Cbirat
2 . Moreover, Ψ preserves fraction-pairs, right fraction-pairs, and left

fraction-pairs. Finally, Ψ maps N-th roots of fraction-pairs with domain
isomorphic to A�,1 to N-th roots of fraction-pairs with domain isomorphic to
A�,2.

(iii) For i = 1, 2, let Ai ∈ Ob(Ci) be H�,i-ample; fi ∈ O×(Abirat
i ) an

element fixed by the natural action of HAi
[where “HAi

” is defined as in Defi-
nition 4.1, (ii), by taking “H�” to be H�,i]; N ∈ N≥1. Suppose that A1 
→ A2

via Ψ, and that f1 
→ f2 via Ψbirat. Then A1 is (N, H�,1, f1)-saturated if
and only if A2 is (N, H�,2, f2)-saturated. Suppose that, for i = 1, 2, Ai is
(N, H�,i, fi)-saturated. Then the isomorphism

H1(HA1 , µN (A1))
∼→ H1(HA2 , µN (A2))

maps κf1 
→ κf2 , i.e., is compatible with the Kummer classes of [Mzk18],
Definition 2.1, (ii).

(iv) For i = 1, 2, let Bi ∈ Ob(Ci) be an N-codomain of an N-th root of
a fraction-pair with domain isomorphic to A�,i; write

s�-gp
i , s�-gp

i : HBi
→ AutCi

(Bi)

for the corresponding bi-Kummer N-th root [cf. Proposition 4.3, (i)] and
fi ∈ O×(Bbirat

i ) for the restriction to Bi [i.e., “f |BN
” in the notation of Propo-

sition 4.2, (iii)] of the rational function determined by the original fraction-
pair. Suppose that B1 
→ B2 via Ψ, and that f1 
→ f2 via Ψbirat. Then, up to
the [simultaneous and non-simultaneous ] conjugation operations discussed in
Proposition 4.3, (ii), the isomorphisms

HB1

∼→ HB2 ; AutC1(B1)
∼→ AutC2(B2)

map s�-gp
1 
→ s�-gp

2 , s�-gp
1 
→ s�-gp

2 , i.e., Ψ is compatible with bi-Kummer
N-th roots.

Proof. First, we observe that, for i = 1, 2, Ci is of standard and isotropic
type, but not of group-like type [cf. Theorem 3.7, (i), (ii)]; the base category
Di of Ci is slim [cf. Remark 3.7.2]. Thus, Ψ preserves pre-steps, morphisms
of Frobenius type, Frobenius degrees, isometries, and base-Frobenius pairs [cf.
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[Mzk17], Theorem 3.4, (ii), (iii); [Mzk17], Corollary 5.7, (i), (iv)]. In particular,
[cf. also the existence of Ψbs] Ψ preserves Frobenius-trivial objects. Since the
Frobenioid determined by the Frobenius-trivial objects of Ci is of base-trivial
type [cf. [Mzk17], Theorem 5.1, (iii)], these observations [together with the
existence of Ψbs] imply the portion of assertion (i) concerning Ψ. The portion
of assertion (i) concerning Ψbs follows immediately from the theory of [quasi-]
temperoids [cf. [Mzk14], Proposition 3.2; [Mzk14], Theorem A.4].

Next, we consider assertions (ii), (iii). The existence of Ψbirat follows from
[Mzk17], Corollary 4.10. Next, let us recall that Ψ is compatible with the oper-
ation of passing to the perfection [cf. Theorem 3.7, (i), (ii); [Mzk17], Theorem
3.4, (iii)]. In particular, it follows immediately from the category-theoreticity
of sets of primes given in [Mzk17], Theorem 4.2, (ii), that Ψ preserves base-
equivalent [cf. the existence of Ψbs!] pairs of pre-steps whose Div(−)’s have
disjoint supports. The remainder of assertions (ii), (iii) then follows immedi-
ately from the observations thus far, the existence of Ψbs, and the “manifestly
category-theoretic nature” of “(N, Hbs-fld

�,i )-saturation” [cf. [Mzk18], Definition
2.2, (ii); [Mzk2], Lemma 1.3.8] and Kummer classes [cf. [Mzk18], Definition
2.1, (ii)]. This completes the proof of assertions (ii), (iii).

Finally, we consider assertion (iv). Observe that Ψ preserves base-Frobenius
pairs of Frobenius-trivial objects and [by assertion (ii)] maps N-th roots of
fraction-pairs with domain isomorphic to A�,1 to N -th roots of fraction-pairs
with domain isomorphic to A�,2; Ψbirat maps f1 
→ f2. Thus, assertion (iv)
follows formally from Proposition 4.3, (i), (ii).

Remark 4.4.1. Observe that one crucial difference between the bi-Kummer
theory for tempered Frobenioids considered here and the theory of [Mzk18],
§2, in the case of p-adic Frobenioids is that in the present case, there is no
reciprocity map. This fact may be regarded as a reflection of the fact that
the tempered group Πtp

X is not a profinite group of cohomological dimension 2
whose cohomology admits a duality theory of the sort that GK does. Put an-
other way, although at first glance, the Kummer classes of Proposition 4.3, (iii);
Theorem 4.4, (iii), may appear to constitute a “purely [tempered ] fundamen-
tal group-theoretic presentation” of the Frobenioid-theoretic rational functions
under consideration, in fact:

These Kummer classes still depend on a crucial piece of Frobenioid-
theoretic data — namely, the cyclotome “µN (−)”.

Of course, if one is only interested in this cyclotome up to isomorphism [i.e.,
up to multiplication by an element of (Z/NZ)×], then the cyclotome may be
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thought of as being reconstuctible from the cyclotomic character of Πtp
X [cf.,

e.g., [Mzk2], Proposition 1.2.1, (vi)]. On the other hand, working with the
coefficient cyclotome up to isomorphism amounts, in effect, [at the level of
rational functions] to working with rational functions up to Ẑ×-powers — which
is typically unacceptable in applications [e.g., where one wants, for instance, to
specify the theta function, not the theta function up to Ẑ×-powers!]. This
technical issue of “rigidity of the Frobenioid-theoretic cyclotome” is, in fact, a
central theme of bi-Kummer theory and will be discussed further in §5 below.

§5. The Étale Theta Function via Tempered Frobenioids

In the present §5, we carry out the goal of translating the scheme-theoretic
constructions of §1 into the language of Frobenioids, by applying the general
bi-Kummer theory of §4. This translation yields, in particular, a Frobenioid-
theoretic construction of the mono-theta environments of §2 [cf. Theorem 5.10,
(iii)].

In the following discussion, we return to the situation of Example 3.9.
Suppose further that the morphism α : A → B of Example 3.9, (iv), is the
identity morphism, and that “A” is one of the smooth log orbicurves

X log; C log; X log; C log; Ẋ
log

; Ċ
log

; Ẋ
log

; Ċ
log

[each of which is geometrically connected over the field K = K̈] of Definition
2.5, (i), (ii), for some odd integer l ≥ 1. We shall refer to the case where
“A” is X log, C log, Ẋ

log
, or Ċ

log
as the single underline case and to the case

where “A” is X log, C log, Ẋ
log

, or Ċ
log

as the double underline case. Now the

divisor monoid Φ def= Φell
α on D def= Dα [cf. Example 3.9] determines a tempered

Frobenioid

C

of monoid type Z over the base category D. We would like to apply the theory
of §4 in the present situation. Thus, in the single underline (respectively, double
underline) case, we take the object

A�

of the theory of §4 to be the [Frobenius-trivial] object defined by the trivial
line bundle over the object Ÿ log (respectively, Ÿ

log
) of the discussion preceding

Definition 2.7. Observe that this Abs
� is “characteristic” — that is to say, it
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is preserved by arbitrary self-equivalences of D [cf. Propositions 2.4, 2.6] —
hence, in particular, Galois. Let

Ψ : C ∼→ C

be a self-equivalence of C; N ≥ 1 an integer. Then it follows from Example 3.9,
(iv), that we have the following:

Proposition 5.1 (Applicability of the General Theory). The Frobe-
nioid C is a tempered Frobenioid of rationally standard type over a slim
base category D, whose monoid type is Z, and whose divisor monoid Φ(−) is
perfect, perf-factorial, non-dilating, and cuspidally pure. In particular,
C and the self-equivalence Ψ : C ∼→ C satisfy all of the hypotheses of Corollary
3.8, (i), (ii), (iii); Theorem 4.4 [for “C1”, “C2”, “Ψ : C1

∼→ C2”].

Remark 5.1.1. In Proposition 5.1, as well as in the discussion of the re-
mainder of the present §5, we restrict our attention to self-equivalences, instead
of considering arbitrary equivalences between possibly distinct categories, as in
Theorem 4.4, or “functorial group-theoretic algorithms”, as in Corollaries 2.18,
2.19. We do this, however, mainly to simplify the discussion [in particular, the
notation]. That is to say, the extension to the case of arbitrary equivalences
between possibly distinct categories satisfying similar hypotheses is, for the
most part, immediate. Moreover, by sorting through the various arguments
used in the proofs of the present paper, as well as in the proofs of the results of
[Mzk17], [Mzk18], that are quoted, one concludes immediately the existence of
“functorial category-theoretic algorithms”, in the style of Corollaries 2.18, 2.19.
We leave the routine clerical details to the interested reader.

Next, we reconsider the discussion of §1 [where we take the “N” of §1 to
be l ·N ] from the point of view of the theory of §4. To this end, let us first
observe that by the definition of Ÿ

log
, Z̈ log

l·N [together with the fact that l ·N
is divisible by l], it follows immediately that the covering Z̈ log

l·N → X log factors

through the covering Ÿ
log → X log. Thus, if we pull-back the line bundle L̈l·N

on Ÿl·N [cf. the discussion preceding Lemma 1.2] to Z̈l·N [or, equivalently, the
line bundle Ll·N on Yl·N , first to Zl·N , and then to Z̈l·N ] so as to obtain a line
bundle L̈l·N |Z̈l·N on Z̈l·N , then the pull-backs to Z̈l·N of

(1) the section sl·N ∈ Γ(Zl·N , Ll·N |Zl·N ) of Proposition 1.1, (i);
(2) the theta trivialization τl·N ∈ Γ(Ÿl·N , L̈l·N ) of Lemma 1.2

may be interpreted as morphisms

V(OZ̈l·N )→ V(L̈l·N |Z̈l·N )
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— i.e., as morphisms between objects of C. Now we have the following:

Proposition 5.2 (Bi-Kummer Theory). In the notation of the above
discussion:

(i) The pair of morphisms of C determined by “sl·N”, “τl·N” constitutes
an l ·N-th root of a right fraction-pair [cf. Proposition 4.2, (iii)] of [the
Frobenioid-theoretic version of the log-meromorphic function constituted by ] the
theta function Θ̈ of Proposition 1.4, or, alternatively, an N-th root of a
right fraction-pair [cf. Proposition 4.2, (iii)] of [the Frobenioid-theoretic
version of the log-meromorphic function constituted by ] an l-th root of the
theta function Θ̈ [cf. Remark 4.3.2].

(ii) The group actions of Proposition 1.1, (ii); Lemma 1.2, arising from
“sl·N”, “τl·N”, respectively, are precisely the actions determined by the bi-
Kummer l ·N-th root [cf. Proposition 4.3, (i)] arising from the l ·N -th root
of (i).

(iii) The Kummer class determined by the bi-Kummer l ·N-th root of
(ii) [cf. Proposition 4.3, (iii)] corresponds precisely to the reduction modulo
l ·N of the class “η̈Θ” of Proposition 1.3 — i.e., to the “étale theta func-
tion” — relative to the natural isomorphism [cf. Remark 5.2.1 below ] be-
tween “µl·N (−)” [cf. Proposition 4.3, (iii)] and ΔΘ ⊗ (Z/l ·NZ) [cf. Proposi-
tion 1.3]. Similarly, the Kummer class determined by the bi-Kummer N-th
root of the N-th root of (i) [cf. Proposition 4.3, (iii)] corresponds precisely to
the reduction modulo N of the class “η̈Θ” of the discussion preceding Definition
2.7 — i.e., to an l-th root of the “étale theta function” — relative to the
natural isomorphism between “µN (−) = l ·µl·N (−)” and (l ·ΔΘ)⊗(Z/NZ).

Proof. These assertions follow immediately from the definitions. In the
case of assertion (i), we observe that the “(l ·N, H�, f |Al·N )-saturated-ness”
condition of Proposition 4.2, (iii), follows immediately from the definition of
the field J̈l·N in §1.

Remark 5.2.1. The natural isomorphisms of Proposition 5.2, (iii), con-
stitute a scheme-theoretic ingredient in the otherwise Frobenioid-theoretic for-
mulation of Proposition 5.2 [cf. Remark 4.4.1]. The translation of this final
scheme-theoretic ingredient into category theory is the topic of Proposition 5.5;
Theorems 5.6, 5.7 below.

Next, we consider divisors. Recall that the special fiber of “Ÿ” may be de-
scribed as an infinite chain of copies of the projective line, joined to one another
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at the points “0” an “∞” [cf., e.g., the discussion preceding Proposition 1.1].
In particular, there is a natural bijection [cf. the discussion at the beginning of
§1]

Prime(Φ(A�))ncsp ∼→ Z

which is well-defined, up to the operations of translation by an element of Z

and multiplication by ±1 on Z. Moreover, there is a natural surjection

Prime(Φ(A�))csp � Prime(Φ(A�))ncsp

[i.e., given by considering the “irreducible component of the special fiber that
contains the cusp(s) determined by the cuspidal prime”]. Also, let us observe
that since all the cusps of Ÿ log arise from K̈-rational points, it follows im-
mediately that one has the following cuspidal version of Remark 3.8.2: If p,
q are cuspidal primes of Φ(A�), then there is a natural isomorphism between
“primary components”

Φ(A�)p
∼→ Φ(A�)q

— determined by identifying the elements on each side that arise from [scheme-
theoretic] prime log-divisors.

Next, let us choose an isomorphism Ψ(A�) ∼→ A� of C [cf. Proposition
5.1; Theorem 4.4, (i)]. Let us write

ΨΦ
A� : Φ(A�) ∼→ Φ(A�)

for the automorphism of the monoid Φ(A�) obtained by composing the iso-
morphism of divisor monoids induced by Ψ : C ∼→ C [cf. Corollary 3.8, (iii);
[Mzk17], Theorem 4.9] with the isomorphism Φ(Ψ(A�)) ∼→ Φ(A�) induced by
the chosen isomorphism Ψ(A�) ∼→ A�.

Proposition 5.3 (Category-theoreticity of the Geometry of Divisors).
In the notation of the above discussion, ΨΦ

A� preserves the following objects:

(i) non-cuspidal and cuspidal elements ;

(ii) the natural isomorphisms between distinct non-cuspidal primary
components of Φ(A�) [cf. Remark 3.8.2];

(iii) the natural isomorphisms [described in the discussion above] be-
tween distinct cuspidal primary components of Φ(A�);

(iv) the natural surjection Prime(Φ(A�))csp � Prime(Φ(A�))ncsp;

(v) the natural bijection Prime(Φ(A�))ncsp ∼→ Z [up to translation by
an element of Z and multiplication by ±1];
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(vi) the AutC(A�)-orbit of the divisor of zeroes and poles ∈ Φ(A�)gp

of [the Frobenioid-theoretic version of the log-meromorphic function constituted
by ] the theta function Θ̈ of Proposition 1.4.

Proof. The preservation of (i) (respectively, (ii)) follows immediately from
Corollary 3.8, (iii) (respectively, Remark 3.8.2). To verify the preservation
of the remaining objects, it suffices to consider the well-known “intersection
theory of divisors supported on the chain of copies of the projective line” that
constitutes the special divisor of “Ÿ” as follows:

Let us refer to pairs of elements of Φ(A�)gp whose difference lies in the
image of the birational function monoid of the Frobenioid C as linearly equiv-
alent. Let us refer to an element ∈ Φ(A�)gp which is linearly equivalent to
0 as principal. Let us refer to as cuspidally minimal any cuspidal element of
Φ(A�)gp whose support [cf. [Mzk17], Definition 2.4, (i), (d)] is a finite set of
minimal cardinality among the cardinalities of supports of cuspidal elements of
Φ(A�)gp which are linearly equivalent to the given element.

Now the preservation of (iv) follows by considering the support of primary
cuspidal elements a ∈ Φ(A�) such that, for some b ∈ Φ(A�)csp which is co-
prime to a [i.e., a, b have disjoint supports], b − a is cuspidally minimal and
linearly equivalent to a primary non-cuspidal element n ∈ Φ(A�). That is to
say, [by the well-known intersection theory of divisors supported on the chain
of copies of the projective line] in this situation, n is linearly equivalent to
some element ∈ Φ(A�)gp of the form n1 + n2− a, where n1, n2 ∈ Φ(A�)csp are
primary cuspidal elements that map, respectively, via the natural surjection of
(iv) to the two non-cuspidal primes that are adjacent [in the “chain of copies
of the projective line”] to the non-cuspidal prime determined by n. Moreover,
relative to the isomorphisms of (iii), the multiplicities of n1, n2 are equal to each
other as well as to half the multiplicity of a. Thus, the natural isomorphisms of
(iii) may be obtained by applying the natural isomorphisms of (ii) to the “n”
that occur for various “a”; the natural surjection of (iv) is obtained by mapping
the prime determined by a to the prime determined by n.

To verify the preservation of (v), it suffices to show that the relation of
adjacency [in the “chain of copies of the projective line”] between elements p, q ∈
Φ(A�)ncsp is preserved. But this follows [again from the well-known intersection
theory of divisors supported on the chain of copies of the projective line] by
observing that if a ∈ p, b ∈ q correspond via the natural isomorphisms of (ii),
then p, q are adjacent (respectively, not adjacent) if and only if every cuspidally
minimal c ∈ Φ(A�)gp which is linearly equivalent to a + b has support of
cardinality 4 (respectively, 5 or 6). [Here, the numbers “4”, “5”, “6” correspond
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to the number of non-cuspidal primes that are either contained in or adjacent
to a prime contained in the support of a + b.]

Finally, the preservation of (vi), at least up to Q>0-multiples, follows im-
mediately by considering the principal divisors ∈ Φ(A�)gp in light of the preser-
vation of (i), (ii), (iii), and (v) [cf. the description of the divisor of zeroes and
poles of Θ̈ in Proposition 1.4, (i)]; to eliminate the indeterminacy with respect
to Q>0-multiples, it suffices to consider the zero divisor [cf. Remark 3.8.2] of a
generator of O�(A�)/O×(A�) ∼= Z≥0 [cf. Proposition 3.4, (ii)].

Next, let us recall the characteristic [cf. Propositions 2.4, 2.6] subquotients

Πtp
X � (Πtp

X )Θ; l ·ΔΘ ⊆ (Πtp
X )Θ

of the discussion at the beginning of §1. Thus, for D ∈ Ob(D), these subquo-
tients determine subquotients

AutD(D) � AutΘD(D); (l ·ΔΘ)D ⊆ AutΘD(D)

which are preserved by arbitrary self-equivalences of D [cf. Propositions 2.4,
2.6]. If S ∈ Ob(C), then we shall write (l ·ΔΘ)S

def= (l ·ΔΘ)Sbs .

Definition 5.4. We shall say that S ∈ Ob(C) is (l, N)-theta-saturated
if the following conditions are satisfied: (a) S is µl·N -saturated [cf. [Mzk18],
Definition 2.1, (i)]; (b) (l ·ΔΘ)S ⊗ Z/NZ is of cardinality N .

Now we may begin to address the issue discussed in Remark 5.2.1:

Proposition 5.5 (Frobenioid-theoretic Cyclotomic Rigidity). In the
notation of the above discussion, the second Kummer class of Proposition
5.2, (iii), determines an isomorphism

(l ·ΔΘ)S ⊗ Z/NZ
∼→ µN (S) (= l · µl·N (S))

for all (l, N)-theta-saturated S ∈ Ob(C). This isomorphism is functorial
with respect to the subcategory of C determined by the linear morphisms of
(l, N)-theta-saturated objects.

Proof. Indeed, if S′ ∈ Ob(C) is an l ·N -codomain of an l ·N -th root of
a right fraction-pair of Θ̈ [i.e., as discussed in Proposition 5.2, (i)], then it
follows from the detailed description of the “étale theta class” in Proposition
1.3 that the resulting Kummer class [cf. Proposition 5.2, (iii)] determines an
isomorphism

(l ·ΔΘ)S′ ⊗ Z/NZ
∼→ µN (S′)
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which is manifestly “functorial” [in the evident sense, with respect to l ·N -
codomains of l ·N -th roots of right fraction-pairs of Θ̈]. Thus, we may transport
this isomorphism from S′ to an arbitrary (l, N)-theta-saturated S ∈ Ob(C) by
means of linear morphisms S′′ → S, S′′ → S′ [of C — cf. [Mzk17], Definition
1.3, (i), (b)], which induce isomorphisms

(l ·ΔΘ)S′′ ⊗ Z/NZ
∼→ (l ·ΔΘ)S ⊗ Z/NZ;

(l ·ΔΘ)S′′ ⊗ Z/NZ
∼→ (l ·ΔΘ)S′ ⊗ Z/NZ;

µN (S) ∼→ µN (S′′); µN (S′) ∼→ µN (S′′)

— hence also a [functorial] isomorphism (l · ΔΘ)S ⊗ Z/NZ
∼→ µN (S), which

is independent of the choice of S′, S′′ and the linear morphisms S′′ → S,
S′′ → S′ [precisely because of the original “functoriality” of the isomorphism for
S′].

Theorem 5.6 (Category-theoreticity of Frobenioid-theoretic Cyclotomic
Rigidity). Write C for the tempered Frobenioid of monoid type Z de-
termined by the divisor monoid Φ def= Φell

α on the base category D def= Dα

of Example 3.9, (iv), where we take the morphism α : A→ B of Example 3.9,
(iv), to be the identity morphism and “A” to be one of the smooth log orbicurves

X log; C log; X log; C log; Ẋ
log

; Ċ
log

; Ẋ
log

; Ċ
log

[each of which is geometrically connected over the field K = K̈] of Definition
2.5, (i), (ii), for some odd integer l ≥ 1. Let

Ψ : C ∼→ C

be a self-equivalence of C; N ≥ 1 an integer. Then Ψ preserves the (l, N)-
theta-saturated objects, as well as the natural isomorphism

(l ·ΔΘ)S ⊗ Z/NZ
∼→ µN (S) (= l · µl·N (S))

[for (l, N)-theta-saturated S ∈ Ob(C)] of Proposition 5.5 [i.e., Ψ transports this
isomorphism for S to the corresponding isomorphism for Ψ(S)].

Proof. Indeed, by Proposition 5.1; [Mzk17], Theorem 3.4, (iv), (v), it
follows that Ψ preserves “O×(−)” and induces a 1-compatible equivalence Ψbs :
D ∼→ D, hence, [cf. [Mzk14], Proposition 3.2] an outer automorphism of the
tempered fundamental group of the smooth orbicurve in question. In particular,
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it follows from Propositions 2.4, 2.6 that Ψ preserves “(l · ΔΘ)(−)”. Thus, it
follows immediately that Ψ preserves the (l, N)-theta-saturated objects.

Next, let S2 ∈ Ob(C) be an (l, N)-theta-saturated l ·N-codomain of an
l ·N -th root of a right fraction-pair of Θ̈ [i.e., as discussed in Proposition 5.2,
(i)] such that Sbs

2 is “characteristic” [i.e., its isomorphism class is preserved by
arbitrary self-equivalences of D]; write

s�, s� : S1 → S2

for the pair of base-equivalent pre-steps that appear in this l ·N -th root [so
S1 is Frobenius-trivial]. Now since Ψ preserves pre-steps and Frobenius-trivial
objects and induces a 1-compatible self-equivalence Ψbs : D ∼→ D [cf. the proof
of Theorem 4.4], it follows that Ψ maps this pair of base-equivalent pre-steps
to a pair of base-equivalent pre-steps

t�, t� : T1 → T2

such that T1 is Frobenius-trivial, hence isomorphic to S1 [cf. our assumption
that Sbs

1
∼= Sbs

2 is characteristic; [Mzk17], Theorem 5.1, (iii)] . Moreover, since
Ψ [essentially] preserves the divisor of zeroes and poles of Θ̈ [cf. Proposition
5.3, (vi)], it follows [cf. the equivalences of categories involving pre-steps of
[Mzk17], Definition 1.3, (iii), (d)] that there exist isomorphisms γ1 : S1

∼→ T1,
γ2 : S2

∼→ T2, u ∈ O×(T2) such that γ2 ◦ s� = t� ◦ γ1, u ◦ γ2 ◦ s� = t� ◦ γ1.
Thus, by forming the resulting group homomorphisms

s�-gp, s�-gp : HS2 → AutC(S2); t�-gp, t�-gp : HT2 → AutC(T2)

[cf. Proposition 4.3, (i)] and Kummer classes [cf. Proposition 4.3, (iii)], and
observing that the Kummer class of the “constant function” u does not affect
the restriction of the resulting Kummer classes to (l · ΔΘ)S2 , (l · ΔΘ)T2 , we
conclude that Ψ does indeed transport the natural isomorphism (l · ΔΘ)S2 ⊗
Z/NZ

∼→ µN (S2) of Proposition 5.5 to the corresponding isomorphism for
T2. Moreover, by the construction applied in the proof of Proposition 5.5,
this preservation of the natural isomorphism of Proposition 5.5 in the specific
case of S2 is sufficient to imply the preservation of the natural isomorphism of
Proposition 5.5 for arbitrary (l, N)-theta-saturated S ∈ Ob(C). This completes
the proof of Theorem 5.6.

Theorem 5.7 (Category-theoreticity of the Frobenioid-theoretic Theta
Function). In the notation of Theorem 5.6, Ψ preserves right fraction-
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pairs of [the Frobenioid-theoretic version of the log-meromorphic function con-
stituted by ] an l-th root of the theta function

Θ̈(
√
−1)−1 · Θ̈

of Proposition 1.4 [normalized so as to be “of standard type”], up to possible
multiplication by a 2l-th root of unity and possible translation by an
element of Z (∼= Gal(Ÿ /Ẋ)) [when “A” arises from X log, Ẋ

log
] or l · Z [when

“A” arises from C log, Ċ
log

, X log, Ẋ
log

, C log, Ċ
log

].

Proof. Indeed, this follows immediately by considering compatible systems
as in Remark 4.3.2 and applying the theory of the rigidity of the étale theta
function [cf. Corollary 2.8, (i)], to the Kummer classes of Proposition 5.2,
(iii) [cf. also Theorem 4.4, (iii); Proposition 5.3, (vi)], above, in light of the
crucial isomorphisms (l ·ΔΘ)S⊗Z/NZ

∼→ µN (S) of Proposition 5.5, which, by
Theorem 5.6, are preserved by Ψ.

Remark 5.7.1. Note that the “rigidity up to possible multiplication by
a 2l-th root of unity” asserted in Theorem 5.7 is substantially stronger than
[what was in effect] the preservation of Θ̈ up to multiplication by an arbitrary
constant function ∈ O×(−) [cf. the “u” appearing in the proof of Theorem
5.6], that was observed by considering divisors [i.e., Proposition 5.3, (vi)] in
the proof of Theorem 5.6.

Next, we consider theta environments. For the remainder of the present
§5, we suppose that:

“A” arises from X log.

Write
s�N , s�N : AN → BN

for the pair of base-equivalent morphisms of C determined by the sections
“sl·N”, “τl·N” of the discussion preceding Proposition 5.2 [so s�N , s�N consti-
tute an N-th root of a right fraction-pair of an l-th root of the theta function Θ̈
— cf. Proposition 5.2, (i)]. Note that the zero divisor Div(s�N ) ∈ Φ(AN ) of s�N
descends [relative to the unique morphism Abs

� → A in D] to Φ(A) [cf. Propo-
sition 1.4, (i)]; in particular, it follows that BN is Aut-ample. Thus, the group
homomorphism strv

N : AutD(Abs
N ) → AutC(AN ) arising from a base-Frobenius

pair of AN [cf. Proposition 5.1; Theorem 3.7, (i); [Mzk17], Proposition 5.6],
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which is completely determined [cf. Proposition 5.1; Theorem 3.7, (i); [Mzk17],
Proposition 5.6] up to conjugation by an element ofO×(AN ), determines unique
group homomorphisms

s�-gp
N : AutD(Bbs

N )→ AutC(BN ); s�-gp
N : HBN

→ AutC(BN )

such that, relative to the isomorphisms AutD(Abs
N ) ∼→ AutD(Bbs

N ), HAN

∼→ HBN

determined by the [base-equivalent!] pair of morphisms s�N , s�N , we have

s�-gp
N (g) ◦ s�N = s�N ◦ (strv

N |AutD(Bbs
N ))(g); s�-gp

N (h) ◦ s�N = s�N ◦ (strv
N |HBN

)(h)

for all g ∈ AutD(Bbs
N ), h ∈ HBN

[cf. Propositions 4.3, (i); 5.2, (ii)]. Write

EN
def= s�-gp

N (Im(Πtp
Y )) · µN (BN ) ⊆ AutC(BN )

— where Im(Πtp
Y ) denotes the image of Πtp

Y ⊆ Πtp
X via the natural outer homo-

morphism Πtp
X � AutD(Bbs

N ) [cf. Definition 4.1, (ii)].

Lemma 5.8 (Conjugation by Constants). In the notation of the above
discussion, write

(K×)1/N ⊆ O×(Bbirat
N )

for the subgroup of elements whose N-th power lies in the image of the nat-
ural inclusion K× ↪→ O×(Bbirat

N ); (O×
K)1/N def= (K×)1/N

⋂
O×(BN ). Then

(O×
K)1/N is equal to the set of elements of O×(BN ) that normalize the sub-

group EN ⊆ AutC(BN ). In particular, we have a natural outer action of

(O×
K)1/N/µN (BN ) ∼→ O×

K

on EN ; this outer action extends to an outer action of (K×)1/N/µN (BN ) ∼→
K× on EN .

Proof. Indeed, since Y is geometrically connected over K, it follows im-
mediately that the set of elements of O×(BN ) that normalize the subgroup
EN ⊆ AutC(BN ) is equal to the set of elements on which Πtp

Y [i.e., GK , via

the natural surjection Πtp
Y � GK ] acts via multiplication by an element of

µN (BN ). But this last set is easily seen to coincide with (O×
K)1/N .

Lemma 5.9 (First Properties of Frobenioid-theoretic Theta Environments).
In the notation of the above discussion:

(i) s�-gp
N |HBN

, s�-gp
N factor through EN .



332 Shinichi Mochizuki

(ii) We have a natural exact sequence

1→ µN (BN )→ EN → Im(Πtp
Y )→ 1

— where Im(Πtp
Y ) denotes the image of Πtp

Y ⊆ Πtp
X via the natural outer homo-

morphism Πtp
X � AutD(Bbs

N ) [cf. Definition 4.1, (ii)].

(iii) We have a natural outer action

l · Z ∼→ Πtp
X /Πtp

Y → Out(EN )

determined by conjugating via the composite of the natural outer homomorphism
Πtp

X � AutD(Bbs
N ) with s�-gp

N : AutD(Bbs
N )→ AutC(BN ).

(iv) Write
EΠ

N
def= EN ×Im(Πtp

Y ) Πtp
Y

— where Im(Πtp
Y ) is as in (ii); EN , EΠ

N are equipped with the evident topologies ;

the homomorphism Πtp
Y � Im(Πtp

Y ) is well-defined up to conjugation by an

element of Πtp
X . Then the natural inclusions µN (BN ) ↪→ EN , Im(Πtp

Y ) ⊆ EN

determine an isomorphism of topological groups

EΠ
N

∼→ Πtp
Y [µN ]

which is an isomorphism of mod N bi-theta environments with respect
to the model bi-theta environment structure of Definition 2.13, (ii), on Πtp

Y [µN ]

and the mod N bi-theta environment structure on EΠ
N determined by the sub-

group of Out(EΠ
N ) generated by the natural outer actions of l ·Z [cf. (iii)], K×

[cf. Lemma 5.8] on EN , together with the µN -conjugacy classes of subgroups
given by the images of the homomorphisms

s�-Π
N , s�-Π

N : Πtp

Ÿ
→ EΠ

N

arising from s�-gp
N , s�-gp

N [cf. (i)]. In particular, omitting the homomorphism
s�-Π

N yields a mod N mono-theta environment.

(v) In the situation of (iv), the cyclotomic rigidity isomorphism arising
from the theory of §2 [cf. Corollary 2.19, (i)] coincides with the Frobenioid-
theoretic isomorphism of Proposition 5.5 [where we take “S” to be BN ].

Proof. Immediate from the definitions [with regard to assertion (iii), cf.
also Proposition 5.2, (ii)].
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We are now ready to state our main result relating the theory of theta
environments of §2 to the theory of tempered Frobenioids discussed in §3, §4,
and the present §5.

Theorem 5.10 (Category-theoreticity of Frobenioid-theoretic Theta En-
vironments). In the notation of Theorem 5.6, suppose further that “A”
arises from X log; write

s�N , s�N : AN → BN

for the pair of base-equivalent morphisms of C determined by the sections “sl·N”,
“τl·N” of the discussion preceding Proposition 5.2 — so s�N , s�N constitute an
N-th root of a right fraction-pair of an l-th root of the theta function Θ̈
[cf. Proposition 5.2, (i)];

EN ⊆ AutC(BN )

for the subgroup defined in the discussion preceding Lemma 5.8;

EΠ
N

def= EN ×Im(Πtp
Y ) Πtp

Y

for the topological group defined in Lemma 5.9, (iv);

ε : EΠ
N → AutC(BN )

for the µN -outer homomorphism [i.e., homomorphism considered up to
composition with an inner automorphism defined by an element of Ker(EΠ

N �
Πtp

Y ) or µN (BN ) ⊆ AutC(BN )] determined by the natural projection EΠ
N →

EN (⊆ AutC(BN )). Then:

(i) The self-equivalence Ψ : C ∼→ C preserves the isomorphism classes of
AN , BN .

(ii) Let β be an isomorphism β : Ψ(BN ) ∼→ BN [cf. (i)]; write

ΨAut : AutC(BN ) ∼→ AutC(BN ); Ψbirat
Aut : AutCbirat(Bbirat

N ) ∼→ AutCbirat(Bbirat
N )

for the automorphisms determined by applying Ψ followed by conjugation by β.
Then ΨAut, Ψbirat

Aut preserve

O×(BN ); (O×
K)1/N ⊆ O×(BN ); O×(Bbirat

N ); (K×)1/N ⊆ O×(Bbirat
N )

and map the data

EN (⊆ AutC(BN )); Im(s�-gp
N ); Im(s�-gp

N )
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— where “Im(−)” denotes the image of the homomorphism in parentheses —
to data

δ1 · EN · δ−1
1 (⊆ AutC(BN )); δ1 · Im(s�-gp

N ) · δ−1
1 ;

δ1 · δ2 · δ3 · Im(s�-gp
N ) · δ−1

3 · δ−1
2 · δ−1

1

for some δ1 ∈ O×(BN ), some δ2 ∈ µ2l·N (BN )
⋂

(O×
K)1/N (⊆ O×(BN )), and

some δ3 ∈ s�-gp
N (AutD(Bbs

N )).

(iii) The operation of applying Ψ followed by conjugation by β preserves
the AutC(BN )-orbit of ε : EΠ

N → AutC(BN ), in a fashion which is com-
patible with the mono-theta environment structure on EΠ

N involving s�-Π
N

discussed in Lemma 5.9, (iv). More precisely : there exists a commutative
diagram

EΠ
N

γ−→ EΠ
N⏐⏐�ε

⏐⏐�κ◦ε

AutC(BN ) ΨAut−→ AutC(BN )

— where κ is an inner automorphism of AutC(BN ); γ is an automorphism of
topological groups which determines an automorphism of mono-theta en-
vironments and is compatible with the Πtp

X -conjugacy class of automorphisms

of Πtp
Y induced by Ψbs [cf. Theorem 4.4].

Proof. First, we observe that by Proposition 5.1, the hypotheses of The-
orem 4.4 are satisfied. Next, we consider assertion (i). Since Ψ preserves
Frobenius-trivial objects [cf. the proof of Theorem 4.4], to show that Ψ pre-
serves the isomorphism class of AN , it suffices to show that the equivalence
Ψbs : D ∼→ D [cf. Theorem 4.4] induced by Ψ preserves the isomorphism class
of the objects of D determined by “Z̈ log

l·N”, “Ÿ
log

”; but this follows immediately
[in light of the definitions of the various tempered coverings involved] from
Proposition 2.4. Now the fact that Ψ preserves the isomorphism class of BN

follows immediately from Proposition 5.3, (vi). This completes the proof of
assertion (i).

Next, we consider assertion (ii). First, we observe that it follows from
the existence of Ψbs and the fact that Ψ preserves pre-steps [cf. the proof of
Theorem 4.4] that Ψ preserves “O�(−)”, as well as base-equivalent pairs of
pre-steps. In particular, it follows that applying Ψ followed by conjugation
by β preserves O�(BN ), O×(BN ), O×(Bbirat

N ). Thus, [cf. Proposition 3.4,
(ii)] we conclude [by considering Galois-, i.e., AutC(BN )-invariants] that Ψbirat

Aut

preserves the image of the natural inclusion K× ↪→ O×(Bbirat
N ), hence also

(K×)1/N , (O×
K)1/N . Finally, the portion of assertion (ii) concerning Im(s�-gp

N ),
Im(s�-gp

N ), EN follows by observing that Ψ preserves N-th roots of fraction
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pairs [cf. Theorem 4.4, (ii)], together with the corresponding bi-Kummer N-th
roots [cf. Theorem 4.4, (iv)], for [the Frobenioid-theoretic version of the log-
meromorphic function constituted by] l-th roots of the theta function [i.e., up to
the indeterminacies discussed in the statement of Theorem 5.7 — cf. Theorem
5.7]. This completes the proof of assertion (ii).

Finally, we consider assertion (iii). First, observe that it follows from the
existence of κ that, in the following argument, we may treat ε as a single
fixed homomorphism, rather than just a “µN -outer homomorphism”. Next, we
observe that by taking κ to be the inner automorphism of AutC(BN ) determined
by conjugating by the element δ1 · δ2 · δ3 ∈ AutC(BN ) of assertion (ii), we may
assume that the restrictions of ΨAut ◦ ε, κ ◦ ε to the image of s�-Π

N : Πtp

Ÿ
→ EΠ

N

coincide, up to composition with an automorphism of the topological group
Πtp

Ÿ
that extends to an automorphism of the topological group Πtp

X [which lies

in the Πtp
X -conjugacy class of automorphisms of Πtp

Y induced by Ψbs]. Thus,
by applying Corollary 2.18, (iv), it follows that we may choose γ so that the
restrictions of ΨAut ◦ ε, κ ◦ ε ◦ γ to the image of s�-Π

N coincide [precisely].
Moreover, by applying the compatible [cf. Lemma 5.9, (v)], category/group-
theoretic [cf. Theorem 5.6; Corollary 2.19, (i)] cyclotomic rigidity isomorphisms
of Proposition 5.5 and Corollary 2.19, (i) [cf. also Remark 2.19.3], it follows
that the restrictions of ΨAut ◦ ε, κ ◦ ε ◦ γ to Ker(EΠ

N � Πtp
Y ) coincide. Thus, we

conclude that the restrictions of ΨAut ◦ ε, κ◦ ε◦γ to Πtp

Ÿ
[µN ] ⊆ Πtp

Y [µN ] ∼→ EΠ
N

[where we apply the isomorphism of Lemma 5.9, (iv)] coincide. Since [Πtp
Y :

Πtp

Ÿ
] = 2, it thus follows that the difference between ΨAut◦ε, κ◦ε◦γ determines

a cohomology class [cf. the proof of Corollary 2.18, (iv)]

∈ H1(Πtp
Y /Πtp

Ÿ
,O×(BN )GK ) ∼= H1(Z/2Z,O×

K) ∼= µ2(BN )

— where the superscript “GK” denotes the subgroup of GK-invariants; we
apply Proposition 3.4, (ii), and recall that K̈ = K. Thus, by composing γ

with an appropriate order two automorphism of mono-theta environments [cf.
Corollary 2.18, (iv), and its proof], we obtain a γ such that ΨAut ◦ ε = κ ◦ ε ◦ γ,
as desired. This completes the proof of assertion (iii).

Remark 5.10.1. Observe that Theorem 5.10, (iii), may be interpreted as
asserting that a mono-theta environment may be “extracted” from the tem-
pered Frobenioids under consideration in a purely category-theoretic fashion. In
particular, by coupling this observation with Corollary 2.18 [cf. also Remark
2.18.2], we conclude that:
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A mono-theta environment may be “extracted” naturally from both
the tempered Frobenioids and the tempered fundamental groups under
consideration in a purely category/group-theoretic fashion.

That is to say, a mono-theta environment may be thought of as a sort of minimal
core common to both the [tempered-]étale-theoretic and Frobenioid-theoretic ap-
proaches to the theta function [cf. Remark 2.18.2]. Put another way, from the
point of view of the general theory of Frobenioids, although the ““étale-like”
[e.g., temperoid]” and “Frobenius-like” portions of a Frobenioid are fundamen-
tally alien to one another in nature [cf. the “fundamental dichotomy” discussed
in [Mzk17], Remark 3.1.3], a mono-theta environment serves as a sort of bridge,
relative to the theory of theta function, between these two fundamentally mu-
tually alien aspects of the structure of a Frobenioid.

Remark 5.10.2. The structure of a Frobenioid may be thought of as con-
sisting of a sort of extension structure of the base category by various line
bundles. From this point of view:

The theta section portion of a mono-theta environment may be thought
as a sort of canonical splitting of this extension, determined by the
theory of the étale theta function [cf. the discussion of canonical-
ity/rigidity in the Introduction].

This point of view is reminiscent [cf. the point of view of Remark 5.10.1]
of the notion of a “canonical uniformizing MF∇-object” discussed in [Mzk1],
Introduction, §1.3.

Remark 5.10.3. One key feature of a mono-theta environment is the in-
clusion in the mono-theta environment of the “distinct cyclotome” µN (BN ) ∼=
Ker(EΠ

N � Πtp
Y ) [i.e., a cyclotome distinct from the various cyclotomes associ-

ated to Πtp
Y ]. Here, we pause to observe that:

This “distinct cyclotome” may be thought of as a sort of “Frobenius
germ” — i.e., a “germ” or “trace” of the “Frobenius structure” of the
tempered Frobenioid C constituted by raising elements of O�(−) to
N≥1-powers.

Indeed, when a mono-theta environment is not considered as a separate, ab-
stract mathematical structure, but rather as a mathematical structure asso-
ciated to the tempered Frobenioid C, the operation of “raising to N≥1-powers”
elements of O�(−) in C is compatible with the natural multiplication action
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of N≥1 on this distinct cyclotome. Moreover, these actions of N≥1 are com-
patible with the operation of forming Kummer classes [e.g., passing from the
Frobenioid-theoretic version of the theta function to its Kummer class, the
“étale theta function”], as well as with the consideration of values ∈ K× of
functions [e.g., the theta function — cf. Proposition 1.4, (iii)], relative to the
reciprocity map on elements of K× [cf. [Mzk18], Theorem 2.4]. On the other
hand, it is important to note that:

These actions of N≥1 only make sense within the tempered Frobenioid
C; that is to say, they do not give rise to an action of N≥1 on the mono-
theta environment [considered as a separate, abstract mathematical
structure].

Indeed, the fact that one does not obtain a natural action of N≥1 on the mono-
theta environment may be understood, for instance, by observing that the
cyclotomic rigidity isomorphism

(l ·ΔΘ)⊗ (Z/NZ) ∼→ Δ[µN ]

[cf. Corollary 2.19, (i); Remark 2.19.3] is not compatible with the endomor-
phism of the “distinct cyclotome” Δ[µN ] given by multiplication by M ∈ N≥1,
unless M ≡ 1 modulo N . [Here, it is useful to recall that there is no natural
action of N≥1 on Πtp

X that induces the multiplication action on N≥1 on l ·ΔΘ!]
Alternatively, this property may be regarded as a restatement of the interpreta-
tion [cf. Remark 2.19.3] of the cyclotomic rigidity of a mono-theta environment
as a sort of “integral structure”, or “basepoint”, relative to the action of N≥1.
Moreover, we remark that it is precisely the presence of this rigidity property
that motivates the interpretation, stated above, of the “distinct cyclotome” as a
sort of “Frobenius germ” — i.e., something that is somewhat less than the “full
Frobenius structure” present in a Frobenioid, but which nevertheless serves as
a sort of “trace”, or “partial, but essential record”, of such a “full Frobenius
structure”.

Remark 5.10.4.

(i) Relative to the theory of §2, which does not involve Frobenioids, the
significance of the introduction of Frobenioids may be understood as follows:

The use of Frobenioids allows one to consider, in a natural way, the
monoid

(Θ̈(
√
−1)−1 · Θ̈)N

[cf. Theorem 5.7] of powers of the theta function.
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This is not possible for “abstract mono-theta environments”, for numerous rea-
sons, centering around the preservation of cyclotomic rigidity [cf. Remarks
2.19.2, 2.19.3, 5.10.3, as well as Remark 5.12.5 below]. One way to under-
stand this phenomenon is to think of the various discrete monoids [i.e., “copies
of N”] that appear in the structure of a Frobenioid as imparting a rigidity to
Frobenioids that takes the place of the cyclotomic rigidity of an abstract mono-
theta environment [cf. Remark 2.19.4]. From this point of view, the tempered
Frobenioid C involved may be thought of as furnishing a sort of “discrete Tate-
module-like unraveling” — i.e., a means of passing from “Q/Z(1)” to “N” [as
opposed to Hom(Q/Z(1), Q/Z(1)) = Ẑ] — of the various abstract mono-theta
environments that appear in the theory [cf. the notion of “Frobenius germs”
discussed in Remark 5.10.3].

(ii) If one is only interested in the monoid “(Θ̈(
√
−1)−1 ·Θ̈)N” of (i), then it

might appear at first glance that instead of working with the tempered Frobe-
nioid C, it suffices instead to work with the associated birationalization Cbirat.
On the other hand, it is precisely by working with C [instead of Cbirat], i.e.,
by working with ample line bundles, that one may access the “numerator” and
“denominator” of a meromorphic function as separate, independent entities.
Moreover, it is this aspect of C that is of crucial importance in relating the
Frobenioid-theoretic aspects of (i) to an abstract mono-theta [i.e., as opposed
to bi-theta, which would force one to sacrifice discrete rigidity — cf. Remark
2.16.1] environment.

(iii) In addition to the significance of the use of Frobenioids as discussed in
(i), more generally the introduction of Frobenioids is useful in that, unlike tem-
pered fundamental groups, Frobenioids tend to be compatible with “Frobenius-
like” structures [e.g., structures that involve some sort of linear ordering] —
cf. the discussion of [Mzk17], Remark 3.1.3. By contrast, by thinking of an
abstract mono-theta environment as arising from the tempered fundamental
group [cf. Corollary 2.18], one may work with such mono-theta environments
in situations in which it is important to be free of the constraints arising from
such “Frobenius-like”, “order-conscious” structures.

Before proceeding, we review a “well-known” result in category theory.

Lemma 5.11 (Non-category-theoreticity of Particular Morphisms in an
Abstract Equivalence Class). Let E be a category; G, H, I ∈ Ob(E) dis-
tinct objects of E ; f : G → H, g : G → G morphisms of E ; αG ∈ AutE(G),
αH ∈ AutE(H), αI ∈ AutE(I) automorphisms. Then there exists a self-
equivalence Ξ : E ∼→ E that induces the identity on Ob(E) and is isomor-
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phic to the identity self-equivalence via an isomorphism that maps

G 
→ αG ∈ AutE(G); H 
→ αH ∈ AutE(H); I 
→ αI ∈ AutE(I);
J 
→ idJ ∈ AutE(J)

— where idJ denotes the identity morphism J → J — for all J ∈ Ob(E) such
that J �= G, H, I. In particular, Ξ maps f 
→ αH ◦ f ◦ α−1

G , g 
→ αG ◦ g ◦ α−1
G .

Proof. First, let us observe that by composing the self-equivalences ob-
tained by applying Lemma 5.11 with two of the three automorphisms αG, αH ,
αI taken to be the identity, we may assume without loss of generality that αH ,
αI are the respective identity automorphisms of H, I. Now [one verifies imme-
diately that] one may define an equivalence of categories [that is isomorphic to
the identity self-equivalence]

Ξ : E ∼→ E

which restricts to the identity on Ob(E) and maps

j 
→ j ◦ (αG)−1; j′ 
→ αG ◦ j′; j′′ 
→ αG ◦ j′′ ◦ α−1
G ; j′′′ 
→ j′′′

for j ∈ HomE(G, J), j′ ∈ HomE(J, G), j′′ ∈ HomE(G, G), j′′′ ∈ HomE(J, J ′),
where G �= J, J ′ ∈ Ob(E). Thus, Ξ satisfies the properties asserted in the
statement of Lemma 5.11.

Finally, we apply the “general nonsense category theory” of Lemma 5.11
to explain certain aspects of the motivation that underlies the theory of mono-
theta environments.

Corollary 5.12 (Constant Multiple Indeterminacy of Systems). In
the notation of Theorem 5.10, assume further that N ′ ≥ 1 is an integer such
that N divides N ′, but M

def= N ′/N �= 1; s�N ′ , s�N ′ : AN ′ → BN ′ an N ′-th
root of a right fraction-pair of an l-th root of the theta function Θ̈ such
that there exists a pair of commutative diagrams

AN ′
s�

N′−→ BN ′⏐⏐�αN,N′
⏐⏐�βN,N′

AN
s�

N−→ BN

AN ′
s�

N′−→ BN ′⏐⏐�αN,N′
⏐⏐�βN,N′

AN
s�

N−→ BN

— where αN,N ′ (respectively, βN,N ′) is an isometry of Frobenius degree
M �= 1; αN,N ′ is of base-Frobenius type [cf. Remark 4.3.2]. Then:

(i) The isomorphism classes of AN , BN , and BN ′ are distinct.
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(ii) There exists a linear morphism ι : BN ′ → BN [cf. the proof of
Proposition 5.5].

(iii) Let
ζ : BN ′ → BN

be either βN,N ′ or ι. Write (O×
K)1/N |A ⊆ O×(AN ) for the subgroup induced by

(O×
K)1/N ⊆ O×(BN ) [cf. Lemma 5.8] via s�N or s�N ; (O×

K)∗ ⊆ O×(BN ′) for the
subgroup

((O×
K)1/N ′

)M/degFr(ζ)

[cf. Lemma 5.8]. [Thus, we have a natural µN ′-outer action of (O×
K)∗/µN ′(BN ′)

on AutC(BN ′) that is compatible, relative to ζ, with the natural µN -outer ac-
tion of (O×

K)1/N/µN (BN ) on AutC(BN ).] Then for any κA ∈ (O×
K)1/N |A,

κB ∈ (O×
K)1/N , κ′ ∈ (O×

K)∗, there exists a self-equivalence

Ξ : C ∼→ C

that is isomorphic to the identity self-equivalence via an isomorphism
that maps

AN 
→ κ−1
A ∈ AutC(AN ); BN 
→ κ−1

B ∈ AutC(BN );

BN ′ 
→ (κ′)−1 ∈ AutC(BN ′)

and all other objects of C to the corresponding identity automorphism. In par-
ticular, Ξ maps

s�N 
→ κ−1
B ◦ s�N ◦ κA; s�N 
→ κ−1

B ◦ s�N ◦ κA; ζ 
→ κ−1
B ◦ ζ ◦ κ′;

and

Im(strv
N ) (⊆ AutC(AN )) 
→ κ−1

A · Im(strv
N ) · κA ⊆ AutC(AN );

Im(s�-gp
N ) (⊆ AutC(BN )) 
→ κ−1

B · Im(s�-gp
N ) · κB ⊆ AutC(BN );

Im(s�-gp
N ) (⊆ AutC(BN )) 
→ κ−1

B · Im(s�-gp
N ) · κB ⊆ AutC(BN )

— where “strv
N ”, “s�-gp

N ”, “s�-gp
N ” are as in the discussion preceding Lemma

5.8.

Proof. First, we consider assertions (i), (ii). Since βN,N ′ is an isometry
of Frobenius degree M , it follows that the pull-back via the morphism Bbs

N ′ →
Bbs

N of D of the line bundle that determines the object BN is isomorphic to
the M -th tensor power of the line bundle that determines the object BN ′ .
Moreover, it follows immediately from the discussion of line bundles in §1 [cf.
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the discussion preceding Proposition 1.1] that all positive tensor powers of
these line bundles are nontrivial, and that the isomorphism classes of these line
bundles are preserved by arbitrary automorphisms of Bbs

N ′ . In particular, we
conclude immediately that BN , BN ′ are non-isomorphic both to one another
and to the Frobenius-trivial object [i.e., object defined by a trivial line bundle]
AN . Moreover, by multiplying by the (M − 1)-th tensor power of the section
of line bundles that determines either of the morphisms s�N ′ , s�N ′ : AN ′ → BN ′

[cf. the discussion of Remark 5.12.5, (iii), below], we obtain a linear morphism
ι : BN ′ → BN . This completes the proof of assertions (i), (ii). Finally, in light
of assertion (i), assertion (iii) follows immediately from Lemma 5.11.

Remark 5.12.1. Let E be a category. Then for any E ∈ Ob(E),

AutE(E)

has a natural group structure. Indeed, this group structure is precisely the
group structure that allows one, for instance, to represent the group structure
of a tempered topological group category-theoretically via temperoids or to rep-
resent [cf. Theorem 5.10, (iii)] the group structure portion of a mono-theta en-
vironment category-theoretically via tempered Frobenioids. On the other hand,
in both of these cases, one is, in fact, not just interested in the group struc-
ture, but rather in the topological group structure of the various objects under
consideration. From this point of view:

Temperoids [or, for that matter, Galois categories] allow one to rep-
resent the topological group structure under consideration via the use
of numerous objects corresponding to the various open subgroups of
the topological group under consideration, as opposed to the use of
a “single universal covering object”, whose automorphism group al-
lows one to represent the entire group under consideration via a single
object, but only at the expense of sacrificing the additional data that
constitutes the topology of the topological group under consideration.

This approach of using “numerous objects corresponding to the various open
subgroups” carries over, in effect, to the theory of tempered Frobenioids, since
such tempered Frobenioids typically appear over base categories given by [the
subcategory of connected objects of] a temperoid.

Remark 5.12.2. In general, if one tries to consider systems [e.g., projective
systems, such as “universal coverings”] in the context of the “numerous objects
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approach” of Remark 5.12.1, then one must contend with the following problem:
Suppose that to each object E in some given collection I of isomorphism classes
of objects of E , one associates certain data

E 
→ DE

[such as the group AutE(E), or some category-theoretically determined subquo-
tient of AutE(E)], which one may think of as a functor on the full subcategory
of E consisting of objects whose isomorphism class belongs to I. Then:

One must contend with the fact there is no natural, “category-
theoretic” choice [cf. Lemma 5.11] of a particular morphism ζ :
E → F , among the various composites

αF ◦ ζ ◦ αE

— where αE ∈ AutE(E), αF ∈ AutE(F ) — for the task of relating DE

to DF .

In particular:

One necessary condition for the data constituted by the functor E 
→
DE to form a coherent system is the condition that the data DE be
invariant with respect to the various automorphisms induced by the
various AutE(E) — i.e., that AutE(E) act as the identity on DE .

One “classical” example of this phenomenon is the category-theoretic recon-
struction of a tempered topological group from its associated temperoid [cf.
[Mzk14], Proposition 3.2; the even more classical case of Galois categories],
where one is obliged to work with topological groups up to inner automor-
phism [cf. also Remark 5.12.8 below].

Remark 5.12.3. Now we return to our discussion of Frobenioid-theoretic
mono-theta environments, in the context of Theorem 5.10, (iii). If, instead of
working with “finite” mono-theta environments, one attempts to work with the
projective system of mono-theta environments determined by letting N vary [cf.
Remark 2.16.1], then one must contend with the “constant multiple indetermi-
nacy” of Corollary 5.12, (iii), relative to κ′, of ζ = βN,N ′ [i.e., where we note
that βN,N ′ may be thought of as a typical morphism appearing in this projec-
tive system]. In particular, the existence of this indeterminacy implies that,
in order to obtain the analogue of Theorem 5.10, (iii) — i.e., to describe, in
a category-theoretic fashion, the relationship between a single abstract, static
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external projective system of mono-theta environments and the projective sys-
tem of mono-theta environments constructed inside a tempered Frobenioid —
one must work with mono-theta environments up to the indeterminacies arising
from the µN -outer action of

AutC(BN ) ⊇ O×(BN ) ⊇ (O×
K)1/N � (O×

K)1/N/µN (BN ) ∼→ O×
K

[cf. Lemma 5.8]. That is to say, one must assume that one only knows the theta
section portion of a mono-theta environment [cf. Definition 2.13, (ii), (c)] up
to a constant multiple. Put another way, one is forced to sacrifice the constant
multiple rigidity of Corollary 2.19, (iii). Moreover, we observe in passing that
attempting to avoid sacrificing “constant multiple rigidity” by working with
bi-theta environments [cf. the discussion preceding Lemma 5.8] does not serve
to remedy this situation, since this forces one to sacrifice “discrete rigidity” [cf.
Remark 2.16.1]. Thus, in summary:

A [finite, not profinite!] mono-theta enviroment serves in effect to
maximize the rigidity, i.e., to minimize the indeterminacy, of the [l-th
roots of the] theta function that one works with in the following three
crucial respects:

(a) cyclotomic rigidity [cf. Corollary 2.19, (i); Remark 2.19.4];

(b) discrete rigidity [cf. Corollary 2.19, (ii); Remarks 2.16.1, 2.19.4];

(c) constant multiple rigidity [cf. Corollary 2.19, (iii); the discussion
of the present Remark 5.12.3; Remark 5.12.5 below]

— all in a fashion that is compatible with the category-theoretic rep-
resentation of the topology of the tempered fundamental group dis-
cussed in Remark 5.12.1.

This “extraordinary rigidity” of a mono-theta environment, along with the
“bridging aspect” discussed in Remarks 2.18.2, 5.10.1, 5.10.2, 5.10.3, were, from
the point of view of the author, the main motivating reasons for the introduc-
tion of the notion of a mono-theta environment.

Remark 5.12.4. With regard to the projective systems of mono-theta en-
vironments discussed in Remark 5.12.3, if, instead of trying to relate a single
abstract such system to a Frobenioid-theoretic system, one instead takes the
approach of relating, at each finite step [i.e., at each constituent object of the
system], an abstract mono-theta environment to a Frobenioid-theoretic mono-
theta environment via Theorem 5.10, (iii) — hence, in particular, taking into
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account the “AutC(BN )-orbit” indeterminacies that occur at each step when
one considers such relationships — then one can indeed establish a category-
theoretic relationship between projective systems of mono-theta environments
external and internal to the Frobenioid C without sacrificing the cyclotomic,
discrete, or constant multiple rigidity properties discussed in Remark 5.12.3.
Put another way, the difference between “attempting to relate whole systems
at once as in Remark 5.12.3” and “applying Theorem 5.10, (iii), at each finite
step” may be thought of as a matter of “how one arranges one’s parentheses”,
that is to say, as the difference between

(
. . .−→ externalN ′ −→ externalN −→ . . .

)
⏐⏐�(

. . .−→ internalN ′ −→ internalN −→ . . .
)

[i.e., the approach discussed in Remark 5.12.3, which forces one to sacrifice
constant multiple rigidity] and

. . .−→

⎛
⎜⎝

externalN ′⏐⏐�
internalN ′

⎞
⎟⎠−→

⎛
⎜⎝

externalN⏐⏐�
internalN

⎞
⎟⎠−→ . . .

[i.e., “applying Theorem 5.10, (iii), at each finite step” — cf. the projective
systems discussed in Corollary 2.19, (iii)].

Remark 5.12.5.

(i) Suppose that instead of working with first powers of l-th roots of the
theta function, one tries instead to consider an M -th power version [where
M > 1 is an integer] of the mono-theta environment. As discussed in Remark
2.19.2, if one takes the most naive approach to doing this, then one must
sacrifice cyclotomic rigidity in the sense that instead of obtaining cyclotomic
rigidity for “µN” [where, say, N is divisible by M ], one obtains cyclotomic
rigidity only for the submodule “M · µN ⊆ µN”. Moreover, the resulting
structures end up being intrisically indistinguishable [cf. Remark 2.19.3] from
their first power counterparts, where “N” is replaced by “N/M”. In particular,
in order to consider an “M -th power version” of the mono-theta environment
in a meaningful fashion, one is led to consider, in addition, [the cyclotomic
rigidity isomorphism arising from] some “first power version”, together with
data exhibiting the “M -th power version” as the M -th power of the “first power
version”.
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(ii) Thus, one is led, for instance, to consider systems consisting of the
following data: (a) an M -th power version of the mono-theta environment; (b)
a first power version [i.e., the usual version] of the mono-theta environment; (c)
data relating these two versions [i.e., to the effect that the “M -th power ver-
sion” is indeed obtained as the M -th power of the “first power version”]. Here,
(c) amounts, in effect, to the consideration of morphisms such as the morphisms
ι or βN,N ′ of Corollary 5.12. In particular, the phenomenon discussed in Re-
mark 5.12.2 manifests itself, i.e., one must contend with the constant multiple
indeterminacy discussed in Corollary 5.12, (iii).

(iii) One approach to attempting to avoid the constant multiple indeter-
minacy that arose in (ii) [i.e., avoid the use of “ι”, “βN,N ′”] is to consider
collections of data consisting of the following: (a) an M -th power version of
the mono-theta environment; (b) the Frobenioid-theoretic cyclotomic rigidity
isomorphism of Proposition 5.5. At first glance, this allows one to avoid the
“constant multiple indeterminacy” that arises from working with “systems of
objects” [cf. Remark 5.12.2], by restricting the data to data associated to a
single object of the Frobenioid. Closer inspection, however, reveals a more
complicated picture. Indeed, recall from the proof of Proposition 5.5 that the
isomorphism of (b) was obtained by transporting, via linear morphisms, the cy-
clotomic rigidity isomorphism obtained from a first power version of the mono-
theta environment. Moreover, let us observe that this transportation operation
is performed on the data AutD((−)bs), µN (−) [or, more generally, O×(−)] of,
say, BN ′ , BN [cf. the proof of Proposition 5.5] — i.e., data which constitutes
a sort of “semi-simplification” of the “extension structure” of a Frobenioid dis-
cussed in Remark 5.10.2. On the other hand, there is no evident way to extend
such a transportation operation so as to apply to the “extension structure” [cf.
Remark 5.10.2] of the exact sequence

1→ O×(−)→ AutC((−))→ AutD((−)bs)→ 1

[for objects “(−)”, such as BN ′ , BN , which are Aut-ample — cf. the discus-
sion preceding Lemma 5.8]. Put another way, to perform this transportation
operation requires one to work up to an indeterminacy with respect to [so to
speak “unipotent upper-triangular”] “shifting automorphisms” arising from co-
cycles of AutD((−)bs) with coefficients in O×(−) (⊇ µN (−)) [cf. the situation
of Proposition 2.14, (ii)], which includes, in particular, a constant [i.e., O×

K -]
multiple indeterminacy [cf. the collection of cocycles determined by the image
of (O×

K)1/N/µN (BN ) ∼→ O×
K in H1(AutD(Bbs

N ), µN (BN )!]. More generally, by
considering Kummer classes of log-meromorphic functions [such as the étale
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theta function! — cf. the proof of Corollary 5.12], it follows that this “shifting
automorphism indeterminacy” implies, in particular, an indeterminacy which
is, in effect, a sort of Galois/Kummer-theoretic translation of working with line
bundles birationally. Note, moreover, that the cyclotomic rigidity isomorphism
[cf. Corollary 2.19, (i)] arising from the specific splitting determined by the
theta section is not preserved by [so to speak “unipotent upper-triangular”]
“shifting automorphisms”. Thus, in summary:

The operation of relating the isomorphism of (b) to the “M -th power
version” of such a cyclotomic rigidity isomorphism arising from (a) —
i.e., exhibiting the “M -th power version” of (a) as the M -th power of
the isomorphism of (b) — may only be performed after passing to the
“semi-simplified data” AutD((−)bs), µN (−).

On the other hand, applying the operation of “multiplication by M” to the
portion of the “semi-simplified data” constituted by µN (−) amounts precisely
to the situation discussed in Remark 2.19.3 [cf. also (i) above; Remark 5.10.3].
That is to say, this causes problems arising from the intrinsic indistinguisha-
bility of the domain and codomain copies of “µN (−)” that occur when one
multiplies by M . On the other hand, to attempt to assign “distinct labels” to
these domain and codomain copies of “µN (−)” amounts, in essence, to working
with non-isomorphic tensor powers of some line bundle, i.e., to returning, in
effect, to the situation discussed in (ii) above.

(iv) Finally, we note that another aspect of the lack of canonical splittings
of the exact sequence 1→ O×(−)→ AutC((−))→ AutD((−)bs)→ 1 of (iii) is
that, relative to the automorphism indeterminacies discussed in Remark 5.12.2,
there is no natural way to achieve a situation in which the inner automorphism
indeterminacies of the tempered fundamental group [i.e., “AutD((−)bs)”] re-
main, but the constant multiple indeterminacies [i.e., “O×(−)”] are eliminated.

Remark 5.12.6. At this point, it is useful to reflect [cf. Remark 2.19.4] on
the significance of rigidifying the “constant multiple indeterminacy” and “shift-
ing automorphism indeterminacy” of Remarks 5.12.3, 5.12.5. To this end, we
observe that these types of indeterminacy are essentially multiplicative notions
[cf. the cases discussed in Remark 2.19.4]. Thus, to work “modulo these sorts
of indeterminacy” can only be done at the cost of sacrificing the additive struc-
tures [cf. Remark 2.19.4] implicit in the ring/scheme-theoretic origins of the
various objects under consideration. Another important observation in this
context is that the theory of Kummer classes depends essentially on the exten-
sion structure of a Frobenioid, i.e., breaks down completely if one “passes to
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semi-simplifications”, as in Remark 5.12.5, (iii).

Remark 5.12.7.

(i) One way to understand the “constant multiple indeterminacy” phenom-
ena observed in Remarks 5.12.3, 5.12.5 is as a manifestation of the nontriviality
of the extension structure of a Frobenioid discussed in Remark 5.10.2.

(ii) Note that one way to attempt to avoid this “nontrivial extension struc-
ture of a Frobenioid” [which arises essentially from working with nontrivial line
bundles] is to try to work strictly with rational functions [such as the theta func-
tion], i.e., to work with the birationalizations [i.e., in which “all line bundles
becomes trivial”] of the Frobenioid “C” of Theorems 5.6, 5.10; Corollary 5.12.
On the other hand, at the Galois/Kummer-theoretic level, this amounts to
working strictly with étale theta functions [i.e., without theta environments],
hence gives rise to the same “nondiscreteness phenomena” as those that ap-
peared in the case of bi-theta environments [cf. Remarks 2.16.1; 5.10.4, (ii)].

Remark 5.12.8. Of course, the automorphism indeterminacy with regard
to individual objects of a category discussed in Remark 5.12.2 also applies to
the various base categories — i.e., [essentially] connected temperoids — of the
[tempered] Frobenioids that appear in the above discussion. On the other hand,
one verifies immediately that the various objects that we construct out of the
associated tempered fundamental groups are invariant with respect to inner
automorphisms in a fashion that is compatible with the topology of the tem-
pered fundamental group [cf. Remark 5.12.1]. For instance, the construction of
the tempered fundamental group of a connected temperoid involves projective
systems that satisfy the analogue [cf. Remark 2.15.2] of the discrete rigidity
property [cf. Corollary 2.19, (ii)] of a mono-theta environment. Moreover, the
étale theta function is a collection of cohomology classes in the [continuous] co-
homology of the tempered fundamental group, hence is invariant with respect
to inner automorphisms.

Remark 5.12.9. Perhaps a sort of “unifying principle” underlying the
“constant multiple indeterminacy” phenomena observed in Remarks 5.12.3,
5.12.5, on the one hand, and the discrete rigidity discussed in Remark 2.16.1,
on the other, may be expressed in the following fashion:

Although at first glance, two [or many] pieces of data may appear to be
likely to yield “more information” than “one” piece of data, in fact, the
more pieces of data that one considers the greater the indeterminacies
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are that arise in describing the internal relations between these pieces
of data.

Moreover, these greater indeterminacies may [as in the case of systems of objects
of a Frobenioid in Remarks 5.12.3, 5.12.5, or bi-theta environments in Remark
2.16.1] ultimately result in “less information” than the information resulting
from a single piece of data [cf. the discussion in the Introduction].
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