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C∗-Crossed Products by R, II

By

Akitaka Kishimoto∗

Abstract

We propose a condition called no energy gap for a flow on a C∗-algebra, which
is expressed in terms of spectral subspaces, and find an equivalent condition on the
primitive ideals of the crossed product which says that any primitive ideal is mono-
tonely increasing or decreasing under the dual flow, when the C∗-algebra is simple
and the flow is outer. We also discuss some examples involving UHF flows.

§1. Introduction

Let α be a flow on a C∗-algebra A, i.e., α is a continuous homomorphism
R into the automorphism group of A (which is equipped with the topology of
pointwise convergence). For this system (A,α) we construct the dual system
(A×αR, α̂) by the method of crossed product, where we know that we keep as
much information as on the original system by the Takesaki-Takai duality. Not
only that there is a merit; part (or much) of the information on α is now mapped
into the C∗-algebra A ×α R. The recent accomplishment on the classification
theory of C∗-algebras gives us some hope that we might be able to get some
insight into α by classifying the crossed products.

In [6] we studied some crossed products by R. A simple case is the crossed
product by a uniformly continuous flow. When A is simple we proved that
A×α R is isomorphic to A⊗C0(R) without using the fact that α is inner and
then proved this fact due to Sakai.

Another case treated there is when α is outer in a strong sense. More
precisely when A is unital and α-simple and α is faithful and has an automor-
phism γ such that γαt = αtγ, t ∈ R and ‖[γn(x), y]‖→0 for any x, y ∈ A, then
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the crossed product A ×α R is simple if and only if (A,α) has neither ground
states nor ceiling states. Hence, in particular, if A×α R is not simple, there is
an ideal I of A×αR such that t �→ α̂t(I) is either decreasing or increasing and⋃
t α̂t(I) is dense in A×α R as well as

⋂
t α̂t(I) = {0} [10]. Here I need not be

primitive.
In this note we continue to study the ideal structures of crossed products

by R along the same lines by introducing the notion of no energy gap, which
is a condition on the spectral subspaces of the flow on invariant hereditary
C∗-subalgebras. We will translate this into a condition on the primitive ideals
of the crossed product. More precisely, if A is simple and αt is outer for all
t �= 0, then the no energy gap condition is equivalent to saying that all primitive
ideals of the crossed product A ×α R is monotone under the dual flow α̂. In
particular we know that the no energy gap condition is stable under cocycle
perturbations in this case.

Before closing this section we give some basic facts which will be frequently
used later.

Let f ∈ L1(R) and define a Fourier transform f̂ of f by

f̂(λ) =
∫
f(t)e−iλtdt.

Let K1(R) be the ideal of L1(R) consisting of f with supp(f̂) compact.
Let α be a flow on a C∗-algebra A. For f ∈ K1(R) and x ∈ A we define

αf (x) =
∫
f(t)αt(x)dt.

The α-spectrum Spα(x) of x is defined as the hull of I ≡ {f ∈ K1(R) | αf (x) =
0}, i.e., the intersection of f̂−1(0), f ∈ I. Note that the α-spectrum of αf (x)
is included in supp(f̂). The spectrum Sp(α) is defined as the hull of {f ∈
K1(R) | αf = 0}.

Let V be a non-empty open subset of R. We denote by Aα(V ) the closure
of the set of x ∈ A with Spα(x) ⊂ V , which is the same as the closure of the
set of αf (x), x ∈ A and f ∈ K1(R) with supp(f̂) ⊂ V ; Aα(V ) is an α-invariant
closed subspace of A. We define S̃p(α) to be the set of p ∈ R such that for any
open neighborhood V of p the linear span of Aα(V )∗AAα(V ) is dense in A.

Let Hα(A) be the set of non-zero α-invariant hereditary C∗-subalgebras
of A. The Connes spectrum R(α) of α is defined to be the intersection of
Sp(α|B) for all B ∈ Hα(A), which is a closed subgroup of R. The strong
Connes spectrum R̃(α) is defined to be the intersection of S̃p(α|B) for all
B ∈ Hα(A), which is a closed subsemigroup of R. See [12, 4, 13, 5] for details.
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For λ > 0 and B ∈ Hα(A) we denote by Bλ the C∗-subalgebra of B
generated by Bα(−λ, λ), where α also denotes the restriction of α to B. Note
that λ �→ Bλ is increasing. We are concerned with the condition that Bλ = B

for all B ∈ Hα and λ > 0; which will be called the no energy gap condition.
This can happen as shown by the following:

Proposition 1.1. Let α be a flow on a C∗-algebra A. If R̃(α) = R,
then α satisfies the no energy gap condition.

Proof. Let λ > 0 and μ ≥ λ. Let n ∈ N and ν ∈ [0, λ/2) be such that
μ = nλ/2 + ν. We set ε = λ/4(n+ 1).

Let B ∈ Hα(A) and let x ∈ Bα(μ − λ/2, μ + λ/2). Let zi ∈ Bα(λ/2 −
ε, λ/2 + ε) for i = 1, 2, . . . , n and zn+1 ∈ Bα(ν − ε, ν + ε). Then it follows that

xz∗1z
∗
2 · · · z∗n+1 ∈ Bα(−λ, λ) ⊂ Bλ.

Since the hereditary C∗-subalgebra of Bλ generated by z∗n+1zn+1, zn+1 ∈
Bα(ν − ε, ν + ε) is Bλ itself, we get that xz∗1 · · · z∗n ∈ Bλ. Repeating this
process we obtain that x ∈ Bλ. Since this is true for any μ ≥ λ, we get that
B = Bλ.

Certainly this is not the only situation where the no energy gap condition
is satisfied. See section 3 for some examples. We also include some observations
there on the ideals of crossed products by flows.

§2. No Energy Gap

When α is a flow, we denote by δα the infinitesimal generator of α. Let
h ∈ Asa and denote by ad ih the derivation on A defined by x �→ i[x, h]. We
call the flow generated by δα + ad ih an inner perturbation of α.

Theorem 2.1. Let α be a flow on a C∗-algebra A. Suppose that for
each t �= 0 A is αt-simple and T(αt) = T. Then the following conditions are
equivalent :

1. α satisfies the no energy gap condition.

2. All primitive ideals of A×α R are monotone under α̂.

3. For any B ∈ Hα(A) and for any inner perturbation of β of α|B, B(0,λ) is
independent of λ > 0 and B(−λ,0) is independent of λ > 0, where

BV = Bβ(V )∗BBβ(V )

for any open subset V of R.



454 Akitaka Kishimoto

Moreover if the above conditions are satisfied, then R(α) = R (or A ×α R is
prime).

That A is αt-simple means that if I is an αt-invariant ideal of A, then
I = {0} or I = A. Note that Sp(α|B) is unbounded for any B ∈ Hα(A),
because otherwise the Connes spectrum T(αt) must be zero (for any fixed
t �= 0).

Under the situation of the above theorem, if R(α) �= R, then the last
statement implies that α does not satisfy the no energy gap condition. There
are such flows.

Proof of the last statement.
Let I, J be non-zero ideals of A×α R such that α̂t(I) ⊂ I and α̂t(J) ⊂ J

for all t > 0. We shall show that I ∩ J �= {0}.
There are B,C ∈ Hα(A) and non-zero f, g ∈ K1(R) such that U(f)B ⊂ I

and U(g)C ⊂ J , where U is the canonical unitary-multiplier flow of A×αR (see
[7]). Let b = inf supp(f̂); then U(f ′)B ⊂ I for any f ′ ∈ K1(R) with supp(f̂ ′) ⊂
[b,∞). Let x ∈ BAC be a non-zero element such that Spα(x) is compact. It
follows then that if h ∈ K1(R) satisfies that Spα(x) + supp(ĥ) ⊂ (b,∞), then
xU(h) ∈ I. Because if f ′ ∈ K1(R) satisfies that supp(f̂ ′) ⊂ [b,∞) and f̂ ′ = 1
on an open neighborhood of Spα(x) + supp(ĥ), then xU(h) = U(f ′)xU(h) ∈ I.
If C1 is the α-invariant hereditary C∗-subalgebra of A generated by x∗x, this
implies that U(h)∗C1 ⊂ I. Since C1 ⊂ C, we also have that U(g)C1 ⊂ J . Let
c = max{inf supp(ĥ), inf supp(ĝ)}. For all k ∈ K1(R) with supp(k̂) ⊂ [c,∞)
we get that U(k)C1 ⊂ I ∩ J . Thus I ∩ J �= {0}.

The same procedure applies to two non-zero ideals which are monotonely
increasing under α̂.

Let I, J be non-zero ideals of A×α R such that α̂t(I) ⊂ I and α̂t(J) ⊃ J

for all t > 0. We will show that I ∩ J �= ∅.
There are B,C ∈ Hα(A) and f, g ∈ K1(R) such that U(f)B ⊂ I and

U(g)C ⊂ J . Let b = inf supp(f̂) and c = sup supp(ĝ). Let H be the closed
linear span of BAC, which is α-invariant. It follows that Sp(α|H) is not
bounded (because Sp(α|B) is not bounded). Hence there is x ∈ H such that
Spα(x) ⊂ (b− c+ λ, b− c+ λ+ 1) for some λ > 1. If h ∈ K1(R) satisfies that
supp(ĥ) ⊂ (c− λ, c− λ+ 1), we obtain that xU(h) ∈ I ∩ J . This implies that
I ∩ J �= {0}.

Let I, J be non-zero ideals of A×αR. Then I (resp. J) are given as I1∩I2
(resp. J1 ∩ J2), where I1 and J1 are monotonely decreasing and I2 and J2 are
monotonely increasing under α̂. Then I ∩ J = (I1 ∩ J1) ∩ (I2 ∩ J2), which is
non-empty by the above arguments. This completes the proof that A×α R is
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prime, which implies R(α) = R together with α-simplicity of A (see [12]).

Proof of (1)⇒(2).
Let P be a non-zero primitive ideal of A×α R. Since A is α-simple, P is

not invariant under α̂.
Suppose that s �→ α̂s(P ) is periodic and let s0 be the smallest positive

s with α̂s(P ) = P . Since P contains a non-zero element of the form U(f)x
with x ∈ A and f ∈ L1(R), it contains all U(eins0tf)x, n ∈ Z, where U is
the canonical unitary-multiplier flow implementing α and U(f) =

∫
f(t)Utdt.

Let B be the α-invariant hereditary C∗-subalgebra generated by xx∗. Then
{f ∈ L1(R) | U(f)B ⊂ P} is a non-zero proper ideal of L1(R) invariant under
the multiplication by t �→ eis0t. Let ρ be an irreducible representation of A×αR
such that the kernel of ρ is equal to P . Then it follows that the spectrum of
UB ≡ ρ(U)|[ρ(B)Hρ] is a proper closed subset invariant under the translation
by s0, where ρ is the unique extension of ρ to a representation of the multiplier
algebra of A×α R. If λ > 0 is smaller than a gap of the spectrum, then ρ(Bλ)
leaves invariant the spectral subspace of UB corresponding to a closed interval
bounded by gaps bigger than λ. Since this is invariant under UB , it follows
that Bλ �= B. This contradiction shows that P cannot be periodic under α̂.

Now P satisfies that α̂s(P ) �= P for any s �= 0. If ρ is an irreducible
representation of A×α R on a Hilbert space H such that its kernel is P , then
it follows that π = ρ|A is irreducible. This follows by showing that the center
of the weak closure of the image of∫ ⊕

R

ρα̂tdt

is 1 ⊗ L∞(R) (see [8]). Let V = ρ(U) and B ∈ Hα(A). Then (1) implies that
Sp(V |[π(B)H]) is connected for the reasoning as in the preceding paragraph.
Note that Sp(V |[π(B)H]) is unbounded because otherwise α|B is uniformly
continuous, which implies that T(αt) = {0} for all t, a contradiction. Hence
Sp(V |[π(B)H]) is either R, (−∞, μ], or [μ,∞) for some μ.

If Sp(V |[π(B)H]) = R for all B ∈ Hα(A), then P = {0}, contradicting
the choice of P .

Suppose that Sp(V |[π(B)H]) is bounded below for some B ∈ Hα(A). Let
D ∈ Hα(A). We will show that Sp(V |π(D)H]) cannot be bounded above. Let
a ∈ DAB be a non-zero element with compact α-spectrum. Let D1 be the
hereditary C∗-subalgebra generated by αs(a)Bαt(a)∗, s, t ∈ R. Then D1 ∈
Hα(A) and D1 ⊂ D. For x ∈ B, s, t ∈ R, and ξ ∈ H, we have that

Vtπ(αs(a)x)ξ = π(αs+t(a))Vtπ(x)ξ.
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From this we can conclude that Sp(V |π(D1)H]) is bounded below. Hence
Sp(V |π(D)H]) is either R or bounded below. Since P is a closed linear span
of elements of the form U(f)x, this shows that the kernel of ρα̂s increases in s,
i.e., α̂s(P ) ⊂ P for s > 0.

In the same way we prove the conclusion in the other case.

Proof of (2)⇒(3).
Suppose that (3) does not hold. We may suppose there is a B ∈ Hα(A),

h ∈ Bsa, and μ > λ > 0 such that

B(0,λ) � B(0,μ),

where B(0,λ) = Bβ(0, λ)∗BBβ(0, λ) and β denotes the flow generated by δα +
ad ih. Since an approximate identity for B(0,λ) (resp. B(0,μ)) can be chosen
from Bβ(−λ, λ) it follows that B(0,λ) ∩ Bλ � B(0,μ) ∩ Bλ, where Bλ is the
C∗-subalgebra generated by Bβ(−λ, λ). Let φ be a pure state of B(0,μ) ∩ Bλ
such that φ|B(0,λ) ∩Bλ = 0. We also denote by φ the unique extension of φ to
a pure state of Bλ. We extend φ to a pure state of B and uniquely to a pure
state of A. Then it follows by the lemma below that φ is β-invariant, where
we use the assumption that A is αt-simple and T(αt) = T for all t �= 0 (which
implies that A is βt-simple and T(βt) = T).

In the GNS representation πφ we define a unitary flow V by

Vtπφ(x)Ωφ = πφβt(x)Ωφ, x ∈ A.

Let K = [πφ(B)Ωφ] = [πφ(B)Hφ]. Then it follows that Sp(V |K) � 0 and

Sp(V |K) ∩ (0, λ) = ∅, Sp(V |K) ∩ [λ, μ) �= ∅.
Thus the spectrum of V |K is not connected and hence the kernel of the ir-
reducible representation πφ × V of A ×β R is not monotone under β̂. Since
(A ×α R, α̂) is isomorphic to (A ×β R, β̂) by the Takesaki-Takai duality, (2)
does not hold.

Lemma 2.2. Suppose that A(0,λ) � A for some λ > 0, where A(0,λ) is
the hereditary C∗-subalgebra of A generated by x∗x, x ∈ Aα(0, λ). Let φ be a
pure state of Aλ such that φ|A(0,λ) ∩ Aλ = 0, where Aλ is the C∗-subalgebra
generated by Aα(−λ, λ). Then φ is a ceiling state on Aλ, i.e., φ(x∗x) = 0 for
any x ∈ Aλ with Spα(x) ⊂ (0,∞) and uniquely extends to an α-invariant pure
state of A.

Proof. Note that Aλ is α-invariant and A(0,λ) ∩ Aλ � Aλ. We will show
that φ|Aλ is a ceiling state.
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We consider elements of the form x1x2 · · ·xn, where the α-spectrum of each
xi is a subset of (−λ, 0), (−λ/2, λ/2), or (0, λ). We write S(xi) = −1, 0,+1
depending on which of (−λ, 0), (−λ/2, λ/2), or (0, λ) we regard Spα(xi) as a
subset of. Note that the linear span of those elements are dense in Aλ.

By the following arguments these monomials x1 · · ·xn is expressed as a
linear combination of y1y2 · · · ym where S(y1) = · · · = S(ym) = 1,−1 with
m ≤ n or S(y1) = 0 with m = 1. If S(xi−1) = 1 and S(xi) = −1 or S(xi−1) =
S(xi) = 0, then xi−1xi can be expressed as z1 + z2 + z3 with S(zi) = i −
2, i = 1, 2, 3 because Spα(xi−1xi) ⊂ (−λ, λ). If S(xi−1) = 1 and S(xi) = 0,
then xi−1xi can be expressed as xi−1z1 + z2 + z3 + z4 with S(z1) = 1 and
S(zi) = i−3, i = 2, 3, 4 (by expressing xi as z1 +y with Spα(z1) ⊂ (0, λ/2) and
Spα(y) ⊂ (−λ/2, ε′) for a sufficiently small ε′ > 0 and then expressing xi−1y

as z2 + z3 + z4). By applying this kind of replacements to the products xi−1xi
with S(xi−1) �= S(xi) or S(xi−1) = 0 = S(xi) finitely many times we reach the
desired conclusion.

Let x ∈ Aλ be such that Spα(x) is a compact subset of (0,∞). Then
there is an f ∈ K1(R) such that supp(f) ⊂ (0,∞) and αf (x) = x. We
approximate x by a linear combination of elements of the form y1y2 · · · yn with
S(y1) = · · · = S(yn) = ±1 and z with S(z) = 0. Then applying αf we
conclude that x can be approximated by a linear combination of elements of
the form αf (y1y2 · · · yn) with S(y1) = · · · = S(yn) = 1 and αf (z). Since
φ(aαt(y1 · · · yn)) = 0, t ∈ R and φ(aαf (z)) = 0 for any a ∈ Aλ, this implies
that φ(x∗x) = 0. Namely φ is a ceiling state on Aλ.

We will show that φ has a unique extension to a pure state of A, which is
necessarily α-invariant.

Let p be the support projection of φ in A∗∗
λ , where we regard A∗∗

λ as a
subalgebra of A∗∗. Let D be the C∗-algebra generated by pAp; p is the identity
of D. Since α∗∗

t (p) = p, α∗∗ restricts to a flow γ on D. From the property
pAα(−λ, λ)p = Cp, we will obtain that Dγ(−λ, λ) = Cp.

To prove this we consider an element y ∈ D obtained as a linear com-
bination of elements of the form px1px2p · · · pxmp with m ≤ n such that
Spα(y) ⊂ (−λ+ ε, λ− ε) for some ε > 0. Note that there is an f ∈ K1(R) such
that αf (y) = y and supp(f̂) ⊂ (−λ+2ε/3, λ−2ε/3). Then by replacing each xi
by a linear combination, we may assume that Spα(xi) ⊂ (λi − ε/3n, λi + ε/3n)
for some λi. (Then y is a linear combination of even more elements of the form
px1px2p · · · pxmp with m ≤ n.) If |∑i λi| < λ − ε/3, then px1px2p · · · pxmp ∈
Cp, which follows by approximating p’s in the middle by an element e ∈ A

with Spα(e) ⊂ (−δ, δ) for a sufficiently small δ > 0. Otherwise since we have
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αf (px1p · · · pxmp) = 0, we can disregard such a monomial. Thus it follows that
y = pyp ∈ Cp.

In this way we conclude that Dγ(−λ, λ) = Cp. Thus we obtain that
Sp(γ)∩ (−λ, λ) = {0} and γ is ergodic. Then it follows that Sp(γ) = {0} or μZ
for some μ ≥ λ. If Sp(γ) = {0}, then it follows that D = Cp, i.e., p is minimal
in A∗∗ and so φ is α-invariant.

Suppose that Sp(γ) = μZ. Then there is a unitary u ∈ D such that
γt(u) = eiμtu and D is generated by u. Since D is abelian and pAp is dense in
pA∗∗p, we obtain that pA∗∗p is abelian (generated by u in the weak∗ topology).
Let c(p) be the central support of p in A∗∗. Then the multiplication by p gives
an isomorphism from Z(A∗∗)c(p) onto pA∗∗p, where Z(A∗∗) is the center of A∗∗.
(For example, if q ∈ pA∗∗p is a projection, then c(q)p = q.) Let U ∈ Z(A∗∗)c(p)
be a unitary such that Up = u. Note that α∗∗

t (U) = eiμtU .
Let ψ be a pure state extension of φ|Aλ. Let β = α2π/μ. Since β(U) = U ,

ψ is β-invariant. Since ψ must be a character on Z(A∗∗)c(p), we may suppose
that ψ(U) = 1.

Let x ∈ Aα(nμ, nμ + λ) for n ∈ Z. Since xU−n can be approximated
by a net in Aα(0, λ), it follows that ψ(x∗x) = ψ(Unx∗xU−n) = 0. Let Ω =
{e2πit/μ | t ∈ (0, λ)}, an open subset of T. Since the linear span of Aα(nμ, nμ+
λ), n ∈ Z is dense in Aβ(Ω), it follows that ψ(x∗x) = 0 for x ∈ Aβ(Ω).
Define a unitary W on the GNS representation space associated with ψ by
Wπψ(x)Ωψ = πψ(β(x))Ωψ, x ∈ A. Then W implements β and Sp(W )∩Ω = ∅,
or A ×β Z is not simple, which implies that T(β) = T̃(β) is not equal to T
since A is β-simple [5]. This contradiction shows that Sp(γ) must be trivial, or
pAp = Cp. This concludes the proof.

Before going to the proof of (3)⇒(1), we prepare a few lemmas.

Lemma 2.3. Let ε ∈ (0, λ) and δ > 0. Let D be the hereditary C∗-
subalgebra of A generated by y∗y with y ∈ Aαλ(−λ− ε,−ε). Suppose that x∗x ∈
D for any x ∈ Aα(−λ− δ,−ε). Then it follows that Aα(−λ− δ,−ε) ⊂ Aλ (and
hence Aα(−λ− δ, λ+ δ) ⊂ Aλ.)

Proof. Let ε′ = min(δ, ε). Let x ∈ Aα(−λ − ε′,−ε) and a ∈ Aλ with
Spα(a) ⊂ (−λ− ε,−ε); from the latter follows that Spα(a∗) ⊂ (ε, λ+ ε). Since
Spα(xa∗) ⊂ (−λ, λ), we obtain that xa∗ ∈ Aλ; it then follows that xa∗ba′ ∈ Aλ
for any a, a′ ∈ Aαλ(−λ − ε,−ε) and any b ∈ Aλ. Since D is α-invariant, D
contains an approximate identity inDα(−λ, λ) ⊂ D∩Aλ; the latter intersection
is a hereditary C∗-subalgebra of Aλ, which is the hereditary C∗-subalgebra of
Aλ obtained as the closed linear span of elements of the form a∗ba′ described
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above or as the hereditary C∗-subalgebra of Aλ generated by y∗y with y ∈
Aλ(−λ − ε,−ε). (The fact that D has an approximate identity in D ∩ Aλ,
which is what we will use just below, also follows from how D has been defined
in the first place. The above fact on D ∩Aλ will be occasionally used.)

Since x is in the closed left ideal generated by D, if (en) is an approximate
identity for D then ‖x− xen‖→0. By choosing (en) from D ∩Aλ we conclude
that x ∈ Aλ. If δ ≤ ε, then this completes the proof.

If δ > ε, then set ε′ = min(δ−ε, ε). We repeat this process: If x ∈ Aα(−λ−
ε−ε′,−ε) and a ∈ Aλ with Spα(a) ⊂ (−λ−ε,−ε), then Spα(xa∗) ⊂ (−λ−ε, λ),
which implies that xa∗ ∈ Aλ by the first step. Then by the reasoning as above,
we conclude that x ∈ Aλ. If δ − ε ≤ ε, then this completes the proof.

In general there is an n ∈ N such that nε < δ ≤ (n+ 1)ε. We repeat this
process n times with ε′ = ε and once more with ε′ = δ − nε, to conclude that
Aα(−λ− δ,−ε) ⊂ Aλ.

Lemma 2.4. Let 0 < ε < λ. The following two hereditary C∗-subalgebras
of Aλ are equal : The one D1 generated by y∗y, y ∈ Aαλ(−∞,−ε) and the other
one D generated by y∗y, y ∈ Aαλ(−λ− ε,−ε).

Proof. Obviously D1 ⊃ D.
Let L be the left ideal of Aλ generated by Aαλ(−λ − ε,−ε). It suffices to

show that Aαλ(−∞,−ε) ⊂ L.
Let x ∈ Aαλ(−μ,−ε) for some μ > ε. Then x can be approximated by

a linear combination of elements of the form x1x2 · · ·xn, where S(xi) is well-
defined as in the proof of 2.2, i.e., Spα(xi) is contained in (−λ, 0), (−λ/2, λ/2),
or (0, λ) depending on whether S(xi) = −1, 0, or 1. Then as before we express
x1 · · ·xn as the sum of y1 · · · ym with m ≤ n and S(y1) = · · · = S(ym) = ±1
and an element z with S(z) = 0. By adding those y1 · · · yn with S(y1) = · · · =
S(yn) = 1 to z, we conclude that x can be approximated by a sum of elements of
the form y1 · · · yn with S(yi) = −1 and an element z with Spα(z) ⊂ (−λ/2,∞).
We will denote this sum by x′.

We will express x′ as the sum d + z, where d ∈ L and z ∈ Aλ with
Spα(z) ⊂ (−λ− ε,∞), as follows.

We express each term y1 · · · yn with S(yi) = −1 as the sum d+ z′, where
d ∈ L and z′ ∈ Aλ with Sp(z′) ⊂ (−λ−ε, 0). If n = 1, there is nothing to prove.
Suppose n > 1. We express yn as the sum z1+z2, where Spα(z1) ⊂ (−λ,−ε) and
Spα(z2) ⊂ (−ε− ε′, 0). Here ε′ > 0 is chosen so that Sp(yn−1z2) ⊂ (−λ− ε, 0).
Note that y1 · · · yn−1z1 ∈ L. If n = 2 we are finished by setting z′ = y1z2.

If n > 2, we express yn−1z2 as the sum z′1+z′2, where Spα(z′1) ⊂ (−λ−ε,−ε)
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and Spα(z′2) ⊂ (−ε − ε′, 0). Here ε′ > 0 is chosen so that Spα(yn−2z
′
2) ⊂

(−λ − ε, 0). Note that y1 · · · yn−2z
′
1 ∈ L. If n = 3 then we are finished,

otherwise we apply the same procedure to yn−2z
′
2 in y1 · · · yn−3yn−2z

′
2. This

way we can conclude that y1 · · · yn is the sum d+ z′, where d ∈ L and z′ ∈ Aλ
with Sp(z′) ⊂ (−λ− ε, 0).

By adding all those z′ to z and by all those d′ ∈ L into d, we express x′ as
d+ z, where d ∈ L and z ∈ Aλ with Spα(z) ⊂ (−λ− ε,∞).

Note that we have shown that ‖x− d− z‖ ≈ 0. Since Spα(x) ⊂ (−μ,−ε),
there is f ∈ K1(R) such that αf (x) = x and supp(f̂) ⊂ (−μ,−ε). We may
suppose that ‖f‖1‖x− d− z‖ is still sufficiently small. Then x can be approx-
imated by the sum αf (d) + αf (z), where αf (d) ∈ L (because αf maps L into
L) and αf (z) ∈ L (because Spα(αf (z)) ⊂ suppf̂ ∩ Spα(z)). This concludes the
proof that Aαλ(−∞,−ε) ⊂ L.

Lemma 2.5. Suppose that Aλ � A for λ > 0. Let ε ∈ (0, λ/5) and let
φ be a pure state of Aλ such that φ(x∗x) = 0 for all x ∈ Aαλ(−∞,−ε). Then
φ uniquely extends to a pure state of A which has α-spectrum in [−ε, ε] (and is
α-covariant).

Proof. By Lemmas 2.3 and 2.4 it follows from Aλ � A that the hereditary
C∗-subalgebra of Aλ generated by x∗x, x ∈ Aαλ(−∞,−ε) is not equal to Aλ.
(Otherwise the D defined as in 2.3 would be equal to A in view of 2.4, which
would imply that Aα(−∞,−ε) ⊂ Aλ, contradicting Aλ � A; see the beginning
of the proof of (3)⇒(1) below.) This guarantees there is such a pure state φ as
in the statement.

Since t �→ φαt is norm-continuous, φ is α-covariant, i.e., there is a unitary
flow V on Hφ such that Vtπφ(x)V ∗

t = πφαt(x), x ∈ Aλ. Since φ vanishes on
Aαλ(−∞,−ε), we have that SpV (Ωφ) is contained in a closed interval of length
ε and we may suppose that ε ∈ SpV (Ωφ) ⊂ [0, ε]. Then it follows that

Sp(V ) ⊂ [0,∞).

To show this suppose that there is a negative μ in Sp(V ). Then for any δ >

0 there is a unit vector ξ ∈ Hφ such that SpV (ξ) ⊂ (μ − δ, μ + δ). Since
SpV (Ωφ) � ε, η = E[ε − δ, ε]Ωφ �= 0, where E is the spectral measure for the
generator of V . There is a sequence (en) in Aλ such that πφ(en)→E[ε − δ, ε]
strongly, 0 ≤ en ≤ 1, and Spα(en) ⊂ (−δ, δ). There is a b ∈ Aλ such that
πφ(b)η = ξ. We may suppose that Spα(b) ⊂ (μ − ε − 2δ, μ − ε + 3δ). Since
πφ(ben)Ωφ→ξ and πφ(Aαλ(−∞,−ε))Ωφ = 0, we must have that μ−ε+4δ ≥ −ε,
which is a contradiction for a small δ > 0.
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Let p be the support projection of φ in A∗∗
λ ⊂ A∗∗, which is minimal in

A∗∗
λ . We have to show that p is also minimal in A∗∗.

Since πφ(p) is the projection onto the subspace CΩφ, we have that
〈πφαt(p)ξ, η〉 = 〈ξ, VtΩφ〉〈VtΩφ, η〉 for ξ, η ∈ Hφ, where πφ (resp. αt) denotes
the extension of πφ (resp. αt) to a representation (resp. an automorphism) of
A∗∗
λ . Hence we obtain that t �→ αt(p) is norm-continuous and Spα(p) ⊂ [−ε, ε].

Note that there is a net (pι) in Aλ such that pι converges to p in the weak∗

topology and all Spα(pι)’s are included in a small neighborhood of [−ε, ε].
Let ε′ > 0 be such that 5ε+6ε′ < λ. Let μ ∈ R and let x ∈ A be such that

Spα(x) ⊂ (μ − ε′, μ + ε′). Then x∗px has α-spectrum in (−ε − 2ε′, ε + 2ε′) ⊂
(−λ, λ). Since pAα(−λ, λ)p = Cp, one can conclude that px∗pxp ∈ Cp. Since
the same is true for xpx∗, if pxp �= 0, then pxp is a constant multiple of a
unitary and we fix an x = xμ such that pxμp is a unitary.

Let S be the set of μ ∈ R for which we have a unitary pxμp as above. Let
μ ∈ S and let ν ∈ R. If x ∈ A satisfies that Spα(x) ⊂ (ν − ε′, ν + ε′), then
Spα(x∗μpx) ⊂ (ν−μ−ε−2ε′, ν−μ+ε+2ε′). If |ν−μ| ∈ (ε+ε+2ε′, λ−ε−2ε′),
then px∗μpxp = 0, or ν �∈ S because pAα(ε, λ)p ⊂ pAαλ(ε,∞)p = {0}. If
|ν−μ| ≤ 2ε+2ε′ and ν ∈ S, then the unitary pxνp obtained for ν is a constant
multiple of pxμp.

For μ, ν ∈ S we write μ ∼ ν if pxμp ∈ Cpxνp and |μ − ν| < λ − ε − 2ε′,
which induces an equivalence relation on S. We assert that each equivalence
class is contained in an interval of length at most 2(ε+ε′) and that two different
equivalence classes are separated at least by a length of λ− ε− 2ε′. The latter
follows immediately from the preceding paragraph.

Let E be an equivalence class and let μ, ν ∈ E with μ < ν. Then there is
a finite sequence μ0 = μ, μ1, μ2, . . . , μn = ν such that μi−1 ∼ μi. Then |μi −
μi−1| < λ−ε−2ε′, which implies that |μi−1−μi| ≤ 2(ε+ε′). If |μ−ν| > 2(ε+ε′),
i.e., |μ−ν| ≥ λ−ε−2ε′, there must be i such that |μ−μi| ∈ (2(ε+ε′), λ−ε−2ε′)
because λ−ε−2ε′ > 4(ε+ε′). This contradiction shows that |μ−ν| ≤ 2(ε+ε′).

Let E and F be equivalence classes in S. For μ ∈ E and ν ∈ F there is a
τ ∈ S in I = (μ+ν− ε− ε′, μ+ν+ ε+ ε′) such that pxτp ∈ Cpxμpxνp, which is
obtained by covering Spα(xμpxν) by a finite number of (τ − ε′, τ + ε′), τ ∈ I as
Spα(xμpxν) ⊂ (μ+ ν − ε− 2ε′, μ+ ν + ε+ 2ε′). If there is another τ ′ satisfying
the same condition, then τ ∼ τ ′. Hence we can define a product among the
equivalence classes. Note that 0 ∈ S and px0p is a constant multiple of p.
Since μ ∈ S implies that −μ ∈ S and the product of equivalence classes [μ]
and [−μ] is [0], we can conclude that S/ ∼ is a group. If it is non-zero, it must
be isomorphic to the integers; if μ ∈ S is the smallest positive number among



462 Akitaka Kishimoto

those not equivalent to μ in {ν ∈ S | ν > 0, ν �∼ 0}, then it follows that the
equivalence class [μ] generates S/ ∼ and pAp is generated by pxμp, i.e., pAp is
commutative. Hence pA∗∗p is commutative.

Let c(p) be the central support of p in A∗∗. Since t �→ αt(p) is (infinitely
often) differentiable, we can define h ∈ (Aλ)∗∗ by ih = δα(p)p− pδα(p), where
δα is the generator of α on the norm-continuous part of A∗∗. Since h is in the
domain of δα, one can define an α-cocycle u by dut/dt = −utiαt(h). Then
Adutαt(p) = p and hence αt(c(p)) = Adutαt(c(p)) = c(p).

Since pA∗∗p is commutative, we obtain Z(A∗∗)c(p) ∼= pA∗∗p, which implies
that there is a unitary U ∈ Z(A∗∗)c(p) such that pU = pxμp. Since pαt(U) =
Adutαt(pU) = pAdutαt(xμ)p, it follows that t �→ αt(U) is norm-continuous.
Let C be the α-invariant C∗-algebra generated by U . Then Cp ⊃ pAp.

If Q ∈ C satisfies that Spα(Q) ⊂ (−λ, λ) then Qp ∈ Cp from the reasoning
as above (i.e., pAα(−λ, λ)p = Cp), which implies that α|C is ergodic and
Sp(α|C) = νZ for some ν ≥ λ. We find a unitary V in C such that αt(V ) =
eiνtV, t ∈ R.

Let φ̂ be a pure state extension of φ. We may suppose that φ̂(V ) = 1,
i.e., φ̂(xV ) = φ̂(x) for any x ∈ A∗∗. Let x ∈ A be such that Spα(x) ⊂
(kν − λ, kν − ε). Then xV −k is in the weak∗ closure of Aα(−λ,−ε). Hence
we have that φ̂(V −kx∗xV k) = 0, which implies that φ̂(x∗x) = 0. Let Ω =
{e2πit/ν | t ∈ (−λ,−ε)} and let β = α2π/ν . Then φ̂ vanishes on Aβ(Ω)∗Aβ(Ω).
This implies that the hereditary C∗-subalgebra generated by x∗x, x ∈ Aβ(Ω)
does not equal A, which in turn implies that T̃(β) �= T. Since this contradicts
the assumption that A is β-simple and T(β) = T, p must be minimal in A∗∗,
i.e., φ has a unique pure state extension.

If x ∈ A has α-spectrum in (λ − ε,∞), then pxp has α-spectrum in
(λ − 3ε,∞) ⊂ (ε,∞) and hence pxp = 0 (because pxp ∈ Cp). Hence, since
Spα(φ|Aλ) ⊂ [−ε, ε], we can conclude that Spα(φ) ⊂ [−ε, ε].

Lemma 2.6. Let ε > 0 and δ > 0 and let D denote the hereditary C∗-
subalgebra of A generated by y∗y, y ∈ Aαλ(−λ − ε,−ε). Suppose that there is
an x ∈ A such that Spα(x) ⊂ (−μ,−μ + ε) for some μ > λ and x∗x �∈ D.
Then for any ε′ > 0 there is an x ∈ Aα(−μ,−μ + ε) such that ‖x‖ = 1 and
inf{‖x∗x− d‖ | d ∈ D} > 1 − ε′.

Proof. If L is the left ideal of A generated by D, we have that d0 =
inf{‖x − z‖ | z ∈ L} > 0. Let (en) be an approximate identity for D such
that Spα(en) ↓ {0}; more precisely we assume Sp(xen) ⊂ (−μ,−μ + ε). Since
‖x(1 − en)‖ ≥ d0 and ‖x − z‖ ≥ ‖x(1 − en) − z(1 − en)‖ ≥ limn ‖x(1 − en)‖
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for z ∈ L, it follows that d0 = lim ‖x(1 − en)‖. We choose an n so that
d0/‖x(1 − en)‖ > (1 − ε′)1/2 and set y = x(1 − en)/‖x(1 − en)‖, which is a
norm-one element with α-spectrum in (−μ,−μ+ ε).

Since d1 = inf{‖y∗y−d‖ | d ∈ D} satisfies that d1 ≥ limm ‖y∗y(1−em)‖ ≥
limm ‖y(1 − em)‖2, we conclude that d1 ≥ (d0/‖x(1 − en)‖)2 > 1 − ε′.

Lemma 2.7. Let D be a hereditary C∗-subalgebra of A and z ∈ A such
that z ≥ 0, ‖z‖ = 1, and inf{‖z − d‖ | d ∈ D} > 1 − ε′ for some ε′ > 0. Then
there is a pure state φ of A such that φ|D = 0 and φ(z) > 1 − ε′ − 2

√
ε′.

Proof. By the Hahn-Banach theorem there is an f ∈ A∗ such that ‖f‖ =
1, f∗ = f , and f |D = 0, and f(z) > 1− ε′. Let f = f+ − f− be the orthogonal
decomposition: f± ≥ 0, ‖f+‖ + ‖f−‖ = 1. Since f(z) = f+(z) − f−(z), we
get that f+(z) > 1 − ε′, which implies that ‖f+‖ > 1 − ε′ and ‖f−‖ < ε′. If
E is the open projection for D, then we have that f+(E) = f−(E) < ε′. Let
φ′ = f+((1 − E) · (1 − E)). Then φ′ ≥ 0, φ′|D = 0, and φ′(z) > 1 − ε′ − 2

√
ε′.

Thus if S denotes the closed convex set of positive functionals φ of A such
that φ|D = 0 and ‖φ‖ ≤ 1, then sup{φ(z) | φ ∈ S} is greater than 1− ε−2

√
ε′.

An extreme point of S is either 0 or a pure state. Hence we may find a required
pure state as an extreme point of S.

Lemma 2.8. Let λ > 0 and ε > 0. Let x ∈ A be such that ‖x‖ = 1,
Spα(x) ⊂ (−∞,−λ) and let h = h∗ ∈ A with ‖h‖ < ελ/2. Let φ be a ground
state of A for α(h). Then it follows that φ(x∗x) < ε.

Proof. In the GNS representation associated with φ, let U be the canon-
ical unitary flow defined by Utπφ(x)Ωφ = πφα

(h)
t (x)Ωφ, x ∈ A. Let H be

the generator of U : Ut = eitH . By the assumption we have that H ≥ 0 and
HΩφ = 0. Let H1 = H − πφ(h) − E1, where E1 = inf Sp(H − πφ(h)). Note
that |E1| ≤ ‖h‖. Let F be the spectral measure for H1. Then

λ〈F [λ,∞)Ωφ,Ωφ〉 ≤ 〈H1Ωφ,Ωφ〉 = −〈(πφ(h) + E1)Ωφ,Ωφ〉 ≤ 2‖h‖.

Since Spα(x) ⊂ (−∞,−λ) and Ad eitH1 implements α, it follows that

πφ(x)F [0, λ]Ωφ = 0,

which implies that
πφ(x)Ωφ = πφ(x)F (λ,∞)Ωφ.

Hence it follows that ‖πφ(x)Ωφ‖2 ≤ ‖F (λ,∞)Ωφ‖2 < ε. This completes the
proof.
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Proof of (3)⇒(1).
Suppose that (1) does not hold, i.e., Bλ �= B for some B ∈ Hα(A) and

λ > 0. We denote B by A below.
Let ε ∈ (0, λ/10) and let ε′ be a sufficiently small positive number. Let D

be the hereditary C∗-subalgebra of A generated by y∗y, y ∈ Aαλ(−λ − ε,−ε).
Since A �= Aλ, there is a δ > 0 and x ∈ A such that Spα(x) ⊂ (−λ − δ,−ε)
and x∗x �∈ D (by 2.3). We may suppose that Spα(x) ⊂ (−μ,−μ + ε) for
some μ > λ and by 2.6 that dist(x∗x,D) > 1 − ε′. Note that x∗x ∈ Aλ since
Spα(x∗x) ⊂ (−ε, ε). By 2.7 there is a pure state φ of Aλ such that φ|D∩Aλ = 0
and φ(x∗x) > 1 − ε′ − 2

√
ε′. We now assume that φ(x∗x) > 1 − ε′ by making

the starting ε′ even smaller. We also denote by φ the unique extension of φ to
a state of A (see 2.5). Note that Spα(φ) ⊂ [−ε, ε].

Let V be a unitary flow on the GNS representation on Hφ such that
Vtπφ(x)V ∗

t = πφ(αt(x)) for x ∈ A and ε ∈ SpV (Ωφ) ⊂ [0, ε]. Since VtΩφ ∈
[πφ(Aλ)Ωφ] (as SpV (VtΩφ) ⊂ [0, ε]), V leaves [πφ(Aλ)Ωφ] invariant. Since
πφ(Aαλ(−λ − ε,−ε))Ωφ = 0, it follows by 2.4 that πφ(Aαλ(−∞,−ε))Ωφ = 0.
Then it follows as in the proof of Lemma 2.5 that

Sp(V |[πφ(Aλ)Ωφ]) ⊂ [0,∞).

Since φ(a∗a) = 0 for a ∈ Aα(−λ,−ε) ⊂ Aαλ(−λ−ε,−ε), it also follows that
Sp(V ) ∩ (−λ+ ε, 0) = ∅. Let H be the generator of V and let

H1 = H − 2επφ(x∗x) − E1

where E1 is the infimum of the spectrum of H−2επφ(x∗x) on [πφ(Aλ)Ωφ]. Here
we should note that H−2επφ(x∗x) leaves [πφ(Aλ)Ωφ] invariant since x∗x ∈ Aλ.
Since 〈(H − 2επφ(x∗x))Ωφ,Ωφ〉 ≤ ε− 2εφ(x∗x) and H − 2επφ(x∗x) ≥ H − 2ε,
we have that −2ε ≤ E1 ≤ −ε(1 − 2ε′). If (ξn) is a sequence in the domain
D(H1/2) in [πφ(Aλ)Ωφ] such that ‖H1/2

1 ξn‖ → 0, then it follows that

〈πφ(x∗x)ξn, ξn〉 > φ(x∗x) − 1/2

for all large n since

−2ε〈πφ(x∗x)ξn, ξn〉 ≤ 〈(H − 2επφ(x∗x))ξn, ξn〉
≤ 〈(H − 2επφ(x∗x))Ωφ,Ωφ〉 < ε− 2εφ(x∗x).

Thus a weak∗ limit point ϕ of the sequence of states a �→ 〈πφ(a)ξn, ξn〉 satisfies
that ϕ(x∗x) > 1/2 − ε′. We replace ϕ by ϕ/‖ϕ‖ to make ϕ a state, which still
satisfies that ϕ(x∗x) > 1/2 − ε′.



C∗-Crossed Products by R, II 465

Let H− be the spectral subspace of H corresponding to (−∞, 0) (or equiv-
alently (−∞,−λ + ε]). The supremum of the spectrum of H1 on H− is less
than or equal to −λ + ε − E1 ≤ −λ + 3ε. Hence Sp(H1) ∩ (−λ + 3ε, 0) = ∅.
Let β be the flow generated by δα − 2ε ad ix∗x. Since eitH1 implements β and
‖eitH1ξn − ξn‖→0, we have that ϕ is β-invariant. Moreover if y ∈ A satisfies
that Spβ(y) ⊂ (−λ + 3ε, 0), it follows that ‖πφ(y)ξn‖→0, which implies that
ϕ(y∗y) = 0.

Let Aλ−3ε,β be the C∗-subalgebra generated by Aβ(−λ+3ε, λ−3ε). Then
ϕ|Aλ−3ε,β is a ground state for β. We claim that ϕ is not a ground state on A
for β. If it were a ground state on A, then by the previous lemma, we would
get that

ϕ(x∗x) < 4ε/(λ− ε)

because α = β(2εx∗x) and Spα(x) ⊂ (−μ,−μ + ε) with μ > λ. This is a
contradiction for ε′ < 1/18 because ϕ(x∗x) > 1/2− ε′. This implies that (3) of
the theorem is not satisfied for this perturbation β. This concludes the proof
of the last implication (3)⇒(1).

§3. UHF Flows

When (μn) is a sequence in R, we define a flow α on a UHF algebra A of
2∞ type by

αt =
∞⊗
n=1

Ad

(
eiμnt 0

0 1

)

This is what we call a (special type of) UHF flow [9]. (More generally β is a
UHF flow if it is defined as βt =

⊗∞
i=1 β

(i)
t where β(i) is a flow onM2ni with (ni)

is a sequence of integers greater than 0.) If limn μn = 0 and
∑
n μ

2
n = ∞, then

the corresponding α is a universal UHF flow in the sense that if β is another
UHF flow on A then α⊗ β on A⊗A is cocycle conjugate to α [9].

We can show that a universal UHF flow satisfies the no energy gap condi-
tion.

We shall prove the following more general result:

Proposition 3.1. Let (A,α) be a universal UHF flow as above and let
β be a flow on a C∗-algebra B. Then the tensor product system (A⊗B,α⊗ β)
satisfies the no energy gap condition.

Proof. Let λ > 0 and μ ≥ λ. Let n ∈ N and ν ∈ [0, λ/2) be such that
μ = nλ/2 + ν. We set ε = λ/4(n+ 1).
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Let D ∈ Hα⊗β(A ⊗ B) and let x ∈ Dα(μ − λ/2, μ + λ/2). There is a
central sequence (uk) in Aα(λ/2− ε, λ/2+ ε) such that u∗kuk +uku

∗
k→1. There

is another central sequence (vk) in Aα(ν − ε, ν + ε) such that v∗kvk + vkv
∗
k→1

(because α is universal in the above sense). Let (ek) be an approximate identity
for D in Dβ(−ε/2, ε/2).

Let x ∈ Dα⊗β(μ− λ/2, μ+ λ/2). Then it follows from the computation of
α⊗ β-spectrum that

y ≡ x(ek1u
∗
m1
ek1) · · · (ekn

u∗mn
ekn

)(ekn+1v
∗
mn+1

ekn+1) ∈ Dλ,

where u∗mi
denotes u∗mi

⊗1 etc. Then by taking the limit of y(ekn+1vmn+1ekn+1)
∈ Dλ and (ekn+1vmn+1ekn+1)y ∈ Dλ asmn+1→∞ and then kn+1→∞, we obtain
that

x(ek1u
∗
m1
ek1) · · · (ekn

u∗mn
ekn

) ∈ Dλ.

We repeat this process to conclude that x ∈ Dλ. Thus we obtain that Dα(μ−
λ/2, μ+ λ/2) ⊂ Dλ, which implies that D = Dλ.

Corollary 3.2. Let (A,α) be a universal UHF flow as above and let β
be a flow on a unital simple C∗-algebra B. Then (A⊗B) ×α⊗β R is simple if
and only if (B, β) has no ground states nor ceiling states.

Proof. Since (A,α) has a ground state (or a ceiling state), if (B, β) has
one, then so does (A⊗B,α⊗ β), which gives a non-trivial ideal of the crossed
product. This proves the ‘only if’ part.

Suppose that (B, β) has no ground states nor ceiling states. Then (A ⊗
B,α ⊗ β) has no ground states nor ceiling states. Since α ⊗ β satisfies the
no energy gap condition by the above proposition, all the primitive ideals of
(A ⊗ B) ×α⊗β R are monotone under the dual flow by Theorem 2.1. Since
A ⊗ B is simple and unital, such a non-trivial primitive ideal should give a
ground state or a ceiling state for (A ⊗ B,α ⊗ β). Thus one concludes that
(A⊗B) ×α⊗β R has no non-trivial primitive ideals, i.e., is simple.

Probably we would have a similar result for (μn) satisfying a weaker con-
dition.

Proposition 3.3. Let (μn) be a (strictly) decreasing sequence of posi-
tive numbers such that limn μn = 0 and define a flow α on the UHF algebra A
as above. Then the following conditions are equivalent :

1. α satisfies the no energy gap condition.
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2.
∑∞

n=1 μn = ∞.

Proof. Suppose that (2) does not hold. Then we can define h = h∗ ∈ A

by
h =

∑
n

μne
(n)
1,1 ,

where e(n)
i,j is a matrix unit for the n’th factor. The spectrum of h contains 0

and μ =
∑

n μn > 0 and is the closure of the set of all finite sums of (μn). Let
f be a continuous function on R such that f = 0 on [μ/3, 2μ/3] and f = 1 at
0 and μ and 0 ≤ f ≤ 1. Since αt = Ad eith, the closure B of f(h)Af(h) is
an α-invariant hereditary C∗-subalgebra of A. It follows that Bμ/3 �= B. This
shows that (1)⇒(2).

Suppose that (2) holds. The dual system (A×αR, α̂) is isomorphic to the
inductive limit of (Dn, γ), where Dn = M2n ⊗C0(R) ∼= M2n ×αR ⊂ A×αR, γ
is induced by the translation on R, and the map φn : Dn−1→Dn = M2⊗Dn−1

is given by
f �→ f(· + μn) ⊕ f.

Note that the center of Dn is generated by the flow Ut exp{−it∑n
i=1 μie

(i)
1,1}.

Since φn is injective, we regard A×α R as the closure of the union
⋃
nDn (see

[2] for more general results).
Let J be an ideal of A×αR. Let Jn = J∩Dn. Then Jn is determined by an

open subset Vn of R by Jn ∼= M2n ⊗ C0(Vn) ⊂ Dn. Note that J is determined
by the sequence (Jn). We show that they satisfy that Vn ⊃ Vn−1 ∪ (Vn−1 −μn)
and Vn ∩ (Vn + μn) ⊂ Vn−1.

For any t ∈ Vn−1 there is an f ∈ Jn−1 such that f(t) �= 0. Then, since
φn(f)(t) �= 0, it follows that t ∈ Vn. For any t ∈ Vn−1−μn there is an f ∈ Jn−1

such that f(t + μn) �= 0. Then φn(f)(t) �= 0, which implies that t ∈ Vn. Thus
one can conclude that Vn ⊃ Vn−1 ∪ (Vn−1 − μn).

Let t ∈ Vn ∩ (Vn + μn). Then there is a f ∈ C0(R) such that f(t) �= 0 and
suppf ⊂ Vn ∩ (Vn + μn). Since suppf and suppf(· + μn) are contained in Vn,
we have that φn(f) ∈ Jn which means that f ∈ Jn−1. Since f(t) �= 0 it follows
that t ∈ Vn−1. One can conclude that Vn ∩ (Vn + μn) ⊂ Vn−1.

Let I1, I2 be two open intervals in V0. More specifically let Ii = (ai, bi) with
a1 < b1 < a2 < b2. We choose n ∈ N such that μn < δ ≡ min(b1 − a1, b2 − a2)
and m > n such that

∑m
k=n μk > max(δ, μ1, a2− b1). Since Vm ⊃ Ii−

∑�
k=n μk

for any n ≤ � ≤ m, we have that Vm ⊃ (a1 −
∑m
k=n μk, b2). Then by using the

same condition for μk, k < n, we conclude that Vm ⊃ (a1−
∑m
k=1 μk, b2). It then

follows from V� ∩ (V� + μ�) ⊂ V�−1 for � ≤ m that V0 ⊃ (a1, b2). Hence we can
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conclude that V0 is connected. In this way we conclude all Vn’s are connected.
If V0 = (a,∞) or (−∞, b), then it follows that J is monotone under α̂. Let
V0 = (a, b). Then we denote by P1 the ideal corresponding to the constant
sequence (−∞, b) of open intervals of R and by P2 the ideal corresponding
(a −∑n

i=1 μn,∞)∞n=0. Both P1, P2 are monotone under α̂ and we can show
that J = P1 ∩ P2 or J is not primitive. Thus we can conclude that all the
primitive ideals are monotone under α̂.

Remark 3.4. From the proof of the above proposition we see that there
are primitive ideals P+, P− of A×αR such that α̂t(P+) ⊃ P+ and α̂t(P−) ⊂ P−
for all t > 0 and all other primitive ideals are in the orbits of these two ideals
under α̂. It follows that the primitive ideal space of A×α R is identified with
R�R�{0}; α̂ acts as translations on R and the closure of a point t is (−∞, t]
in the first copy of R and [t,∞) in the second copy. Thus if

∑
n μn = ∞, the

primitive ideal space is no use to distinguish A×α R.

Remark 3.5. There is a unital simple C∗-algebra A with a flow α such
that the primitive ideal space of A×αR is identified with R�{0}. For example
we take a closed subset F of the interval [0, 1] such that F � 0 and F �� 1 and
construct a unital simple C∗-algebra B and a flow γ with period 1 as in 3.2
of [3]. Note that (B, γ) has a unique ground state but not a ceiling state (the
exact property of (B, γ) we require will be given below). We take (A,α) as
in Proposition 3.1 and its tensor product with (B, γ). Then β = α ⊗ γ has
a unique ground state but not a ceiling state and furthermore satisfies the no
energy gap condition. Thus we can conclude that all non-zero primitive ideals
of A⊗B ×β R is monotonly increasing under β̂ and on just one orbit.

To prove the assertion of no energy gap in the above remark note that
B ×γ R is identified with the mapping torus M of γ̂1, where we regard γ

as a faithful homomorphism from T into the automorphism group of B and
the mapping torus M is the C∗-algebra of bounded continuous functions x of
Cb(R, B×γT) with x(t+1) = γ̂1(x(t)) for t ∈ R [1]. Note thatB×γT has a non-
zero primitive ideal I such that n ∈ Z �→ In = γ̂n(I) is increasing and exhausts
all proper non-zero ideals. Set I−∞ = {0} and I∞ = B×γT. Then (A⊗B)×βR
is isomorphic to the inductive limit of Dn = M2n ⊗M = M2 ⊗ Dn−1, where
the map φn : Dn−1→Dn is given by φn(x)(t) = x(t+ μn) ⊕ x(t).

Let J be a proper non-zero ideal of (A ⊗ B) ×β R and set Jn = J ∩
Dn. Let Jn(t) denote the ideal {x(t) | x ∈ Jn} of M2n ⊗ B ×γ T and define
ψn : R→Z ∪ {−∞,∞} by M2n ⊗ Iψn(t) = Jn(t). Note that t �→ ψn(t) is
lower semi-continuous and ψn(t + 1) = ψn(t) + 1. We assert that ψn(t) ≥
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max{ψn−1(t), ψn−1(t+ μn)} and ψn−1(t) ≥ min{ψn(t), ψn(t− μn)}.
Fix t ∈ R. If m = ψn−1(t), then there is an x ∈ Jn−1 such that x(t) ∈

M2n−1 ⊗ Im \M2n−1 ⊗ Im−1. Then φn(x) ∈ Jn and φn(x)(t) = x(t+μn)⊕x(t),
which implies that ψn(t) ≥ m. If m = ψn−1(t+ μn), then there is an x ∈ Jn−1

such that x(t + μn) ∈ M2n−1 ⊗ Im \ M2n−1 ⊗ Im−1. Then φn(x) ∈ Jn and
φn(x)(t) = x(t+μn)⊕x(t), which implies that ψn(t) ≥ m. This proves the first
inequality. Letm = min{ψn(t), ψn(t−μn)}. Let x ∈ Dn−1 be such that supp(x)
is concentrated around t and x(t) ∈ M2n−1 ⊗ Im \M2n−1 ⊗ Im−1. Then φn(x)
is concentrated around t−μn and t and satisfies that φn(x)(t), φn(x)(t−μn) ∈
M2n ⊗ Im \M2n ⊗ Im−1. For a suitable choice of x (with small support) we get
that φn(x) ∈ Jn and hence x ∈ Jn−1. Since x(t) ∈M2n−1 ⊗ Im \M2n−1 ⊗ Im−1,
we conclude that ψn−1(t) ≥ m. This proves the second inequality.

Hence it follows that for any m > n, ψm(t) ≥ maxK{ψn−1(t+
∑
k∈K μk)}

and ψn−1(t) ≥ minK{ψm(t−∑k∈K μk)}, where K runs over all the subsets of
{n, . . . ,m}. If ψn−1(ti) ≥ N for i = 1, 2 with t1 < t2, then the same is true
on a small neighborhood of ti. Hence it follows that for a sufficiently large m,
ψm(s) ≥ N on the interval [t1 −∑m

k=n μk, t2] and then ψn−1(s) ≥ N on the
interval [t1, t2]. Thus we can conclude that t �→ ψn(t) is non-decreasing (taking
values in Z) and {t | ψ(t) = N} is given as (aN , aN + 1] for all N ∈ N. Since
the ideal J is determined by the sequence (Jn) (which is described by (ψn)),
we have reached the conclusion.

Remark 3.6. In general the primitive ideal space of A ×α R would be
complicated. We will give some description of it which may be useful when the
C∗-algebra is unital.

Let α be a flow on a unital A satisfying the no energy gap condition as in
Theorem 2.1. Then A has a ground state for α if and only if A ×α R has a
primitive ideal which increases up to the whole algebra under α̂.

For μ ∈ R we denote by Aμ+ the hereditary C∗-subalgebra of A generated
by xx∗, x ∈ Aα(μ,∞) and set Aμ =

⋂
ν<μA

ν+. Note that Aμ is an α-
invariant hereditary C∗-subalgebra of A and Aμ = A for μ ≤ 0. We assume
that A0+ �= A, which is to say A has a ground state for α. Define a subset F
of A×α R by

F = {U(f)a | a ∈ A, f ∈ K1(R), suppf̂ ⊂ (−∞, 0)}.

Then the ideal I generated by F equals the closed linear span of

I0 =
⋃
μ∈R

{U(f)xa | f ∈ K1(R), suppf̂ ⊂ (−∞, μ), x ∈ Aμ, a ∈ A }.
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(If there is only one orbit under α̂ as in the previous remark, I should be
primitive.) If (π, V ) is a representation of (A,α) such that π is irreducible
and Sp(V ) = [0,∞), where we used the property Sp(V ) is connected, then we
obtain that I ⊂ kerπ × V . The kernel of π × V is described as follows: Let E
be the spectral measure for V and let

Dμ
π = {x ∈ A | π(x) = E[μ,∞)π(x)E[μ,∞)},

where we should note the fact V depends only on π. Then Dμ
π is a hereditary

C∗-subalgebra of A containing Aμ and that kerπ×V is the closed linear span of
I0 with x ∈ Aμ replaced by x ∈ Dμ

π . It also follows that Aμ =
⋂
πD

μ
π and that

the ideal I is the intersection of all those primitive ideals obtained as kerπ×V ,
whose orbits under α̂ exhausts all primitive ideals which monotonely increase
under α̂.

To prove that the closed linear span I of I0 is an ideal, we should note that
I0A ⊂ I0, I0Ut ⊂ I0, and UtI0 ⊂ I0. We shall show the remaining property
that AI0 is contained in I. First note that

S =
⋃
μ∈R

{U(f)xa | f ∈ K1(R), suppf̂ ⊂ (−∞, μ), x, a ∈ A, Spα(x) ⊂ (μ,∞)}

is dense in I0. Let y ∈ A be an element with compact α-spectrum. Let
U(f)xa be an element as in the above set. Then there is a δ > 0 such that
suppf̂ ⊂ (−∞, μ − δ) and Spα(x) ⊂ (μ + δ,∞). We express y as a finite
sum

∑
i yi with Spα(yi) ⊂ (μi − δ, μi + δ) for some μi ∈ R. Since K =

Spα(yi) + suppf̂ ⊂ (−∞, μ+ μi), there is a g ∈ K1(R) such that ĝ = 1 on the
compact set K and supp ĝ ⊂ (−∞, μ + μi). Then yiU(f)xa = U(g)yiU(f)xa
equals ∫

U(g)Utα−t(yi)xaf(t)dt,

where the integrand is norm-continuous. Since Spα(α−t(yi)x) ⊂ (μ + μi,∞),
we can conclude that each yiU(f)xa is in the closed linear span I of I0, which
shows that yU(f)xa ∈ I. This concludes the proof that I is an ideal.

To prove that I is generated by F we shall show that I0 is contained in the
closed linear span of AF . Let U(f)xa be as in S with suppf̂ ⊂ (−∞, μ) and
Spα(x) ⊂ (μ,∞). Then there is a g ∈ K1(R) such that ĝ = 1 on −Spα(x) +
suppf̂ and supp ĝ ⊂ (−∞, 0). Since U(f)xa = U(f)xU(g)a equals∫

αt(x)UtU(g)af(t)dt
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and UtU(g)a ∈ F , we can conclude that U(f)xa is in the closed linear span of
AF .

It is obvious thatDμ
π is a hereditary C∗-subalgebra. To show that Aμ ⊂ Dμ

π

let x ∈ Aμ. Then π(x)E[0, ν]Hπ = 0 for any ν < μ because x ∈ Aν+. Thus
we obtain that π(x)E[0, μ) = 0, which implies Aμ ⊂ Dμ

π . We also have that
kerπ × V contains the set defined as I0 with x ∈ Aμ replaced by x ∈ Dμ

π ,
which we will denote by I ′0. We will show the converse: kerπ × V ⊂ I ′0. Let
U(f)x ∈ kerπ × V with f ∈ K1(R) and x ∈ A. Let μ = sup suppf̂ . Since the
primitive ideal kerπ × V satisfies that α̂t(kerπ × V ) ⊃ kerπ × V for t > 0, we
obtain that E(−∞, μ)π(x) = 0. Thus it follows that E[μ,∞)π(x) = π(x) and
so xx∗ ∈ Dμ and U(f)x ∈ I ′0. Since kerπ × V is the closed linear span of such
U(f)x, we get the conclusion.

To show the last statement let Dμ be the intersection of all those Dμ
π . We

claim that Dμ = Aμ for all μ. Suppose that Aμ � Dμ, which implies that there
is a ν < μ such that Dμ �⊂ Aν+. Then there is an x ∈ Dμ such that x ≥ 0 and
x �∈ Aν+. Thus we obtain a pure state φ of A such that φ|Aν+ = 0 and φ(x) > 0.
Then πφ is α-covariant and we can find a unitary flow V implementing α such
that Sp(V ) = [0,∞). Since SpV (Ωφ) ⊂ [0, ν] and πφ(x)Ωφ �= 0, we reach the
contradiction that π(x)Ωφ = π(x)E[μ,∞)E[0, ν]Ωφ = 0. It is obvious that I is
the intersection of all those kerπ × V .

The following proposition shows the crossed products by UHF flows (with
limn μn = 0) are not isomorphic between in the case

∑
n μ

2
n = ∞ and in the

case
∑
n μ

2
n <∞.

Proposition 3.7. Under the same situation as in Proposition 3.3, the
following conditions are equivalent :

1. A×α R has a tracial state.

2.
∑

n μ
2
n <∞.

Proof. Suppose that (2) holds, i.e., σ2 =
∑
i μ

2
i < ∞. Define a random

variable Xn by Prob(Xn = ±μn/2) = 1/2 and suppose that all Xn’s are in-
dependent. Since

∑
n μ

2
n < ∞, the sum X =

∑
nXn converges almost surely

([11], page 248). Let ν be the probability distribution of X.
Let τ be the normalized trace on M2n and let tn = −(1/2)

∑n
i=1 μi. We

define a tracial state τn,t on Dn = M2n ⊗ C0(R) by τn,t(f) = τ (f(t)) and
extend it to a state of A×α R, denoted by the same symbol.

Let φ be a weak∗ limit point of τn,tn . Since the map of Dn−1 into Dn is
given by f �→ f(· + μn) ⊕ f , we have that τn,tn(1 ⊗ f) = Ef(

∑n
i=1Xi), where
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E denotes the expectation of a random variable. Thus φ|D0 satisfies that

φ(f) =
∫
f(t)dν(t).

Thus φ is actually a state. It is obvious that φ is a trace.
Suppose that (1) holds and let φ be a tracial state of A×αR. Let us denote

by Φn the embedding ofDn intoA×αR and let νn be the probability measure on
R such that φ(Φn(1⊗f)) =

∫
f(t)dνn(t). Note that νn−1 = 1/2(νn(·−μn)+νn).

Let Tn be a random variable such that Tn is independent of X1, . . . , Xn and
the probability distribution of Tn is given by νn(·+1/2

∑n
i=1 μi); then ν0 is the

probability distribution ofX1+· · ·+Xn+Tn for any n: Ef(T0) = Ef(X1+T1) =
Ef(X1 +X2 + T2) = · · · . If fn denotes the characteristic function of Xn, then
it follows that Π∞

n=1|fn| �= 0 on the set of positive Lebesgue measure; otherwise
it would imply that

∫
eistdν0(t) = 0 for almost all s, a contradiction. Then

the series
∑∞
n=1Xn is essentially convergent ([11], page 263); thus

∑∞
n=1Xn

converges, or
∑∞
n=1 μ

2
n <∞ ([11], page 248).

The no energy gap condition is not satisfied if α is a non-trivial inner flow
or periodic flow. Moreover we have:

Example 3.8. Let (μn) be a (strictly) decreasing sequence of positive
numbers such that limn μn = μ > 0 and

∑
n(μn − μ) = ∞. We define a flow

α on the UHF algebra A by using (μn) in the same way as in the beginning
of this section. Then α does not satisfy the no energy gap condition and has
R(α) = R. Moreover λ > 0 �→ Aλ increases at infinitely many points.

That R(α) = R follows by constructing, for any λ > 0, a central sequence
(xn) in A such that ‖xn‖ = 1, Spα(xn) = {λn} and λn→λ.

The restriction of α on the tensor product A(n) of the first n factors is
determined by the set Sn of eigenvalues (with multiplicity) given by {en(I) | I ⊂
{1, 2, . . . , n}}, where en(I) =

∑
i∈I,i≤n μi. Let λ > 0. We divide Sn into

clusters such that two points belong to the same cluster if they have a series
of points which are closer than λ and do not otherwise. We assign to each
cluster the matrix subalgebra of A(n) containing all the corresponding eigen-
projections. Then A(n)

λ is given as the direct sum of these matrix algebras and
Aλ is obtained as the inductive limit of A(n)

λ . Suppose that μ1 < 2μ. Then
for any i ∈ N there is an ε > 0 such that the ε-neighborhood of en({i}) does
not contain any other points in Sn for any n. As a matter of fact we may set
ε = min{μi − μi+1, μi−1 − μi} with μ0 = 2μ. Hence if λ < ε then i forms
a cluster by itself in Sn for any n > i. This implies the claim made in the
example.
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