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Unit Vectors, Morita Equivalence
and Endomorphisms

By

Michael Skeide∗

Abstract

We solve two problems in the theory of correspondences that have important
implications in the theory of product systems. The first problem is the question
whether every correspondence is the correspondence associated (by the representation
theory) with a unital endomorphism of the algebra of all adjointable operators on a
Hilbert module. The second problem is the question whether every correspondence
allows for a nondegenerate faithful representation on a Hilbert space. We also solve
an extension problem for representations of correspondences and we provide new
efficient proofs of several well-known statements in the theory of representations of
W ∗–algebras.

§1. Introduction

Let B be a C∗–algebra. With every unital strict endomorphism of the
C∗–algebra Ba(F ) of all adjointable operators on a Hilbert B–module F there
is associated a correspondence Fϑ over B (that is, a Hilbert B–bimodule) such
that

F = F � Fϑ ϑ(a) = a� idFϑ
.(1.1)

In other words, ϑ is amplification of Ba(F ) with the multiplicity correspon-
dence Fϑ. (This is just the representation theory of Ba(F ).) The same is
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true for a W ∗–module (where ϑ is normal and the tensor product is that of
W ∗–correspondences).

Problem 1. Given a correspondence E over a C∗– (or W ∗–)algebra B,
construct a unital strict (or normal) endomorphism ϑ of some Ba(F ) such that
E is the multiplicity correspondence Fϑ associated with ϑ.

An intimately related problem (in the W ∗–case, in fact, an equivalent
problem) is the following.

Problem 2. Find a nondegenerate faithful (normal) representation of the
(W ∗–)correspondence E over B on some Hilbert space.

In these notes we solve Problem 1 for strongly full W ∗–correspondences
and for full correspondences over a unital C∗–algebra. We solve Problem 2 for
correspondences and W ∗–correspondences that are faithful in the sense that
the left action of the correspondence is faithful. (Recall that, by definition, all
correspondences have nondegenerate left action.) The conditions, fullness for
Problem 1 and faithfulness for Problem 2, are also necessary. So, except for
Problem 1 in the case of a nonunital C∗–algebra we present a complete solution
of the two problems. We explain that in the W ∗–case the two problems are dual
to each other in the sense of the commutant of von Neumann correspondences.
Throughout, en passant we furnish a couple of new, simple proofs for known
statements that illustrate how useful our methods are.

The study of representations of correspondences goes back, at least, to
Pimsner [Pim97] and, in particular, to Muhly and Solel [MS98] and their forth-
coming papers. Hirshberg [Hir05] solved Problem 2 for C∗–correspondences
that are faithful and full. We add here (by furnishing a completely different
proof) that the hypothesis of fullness is not necessary and that in the W ∗–case
the representation can be chosen normal.

Problem 1 is the “reverse” of the representation theory of Ba(F ); Skeide
[Ske02, Ske03, Ske05a] and Muhly, Skeide and Solel [MSS06].

Our interest in the solution of the Problems 1 and 2 has its common root
in the theory of E0–semigroups (that is, semigroups of unital endomorphisms)
of Ba(F ) and their relation with product systems of correspondences. Arveson
[Arv89a] associated with every normal E0–semigroup on B(H) (H a Hilbert
space) a product system of Hilbert spaces (Arveson system , for short) that
comes along with a natural faithful representation. Finding a faithful represen-
tation of a given Arveson system is equivalent to that this Arveson system is
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the one associated as in [Arv89a] with an E0–semigroup. In the three articles
[Arv90a, Arv89b, Arv90b] Arveson showed that every Arveson system admits
a faithful representation, that is, it is the Arveson system associated with an
E0–semigroup as in [Arv89a].

Bhat [Bha96] constructed from a normal E0–semigroup on B(H) a second
Arveson system (the Bhat system of the E0–semigroup) that turns out to be
anti-isomorphic to the one constructed by Arveson [Arv89a]. The Bhat system
is related to the endomorphisms of the E0–semigroup via Equation (1.1).

It is Bhat’s point of view that generalizes directly to E0–semigroups of
Ba(F ), while Arveson’s point of view works only when F is a von Neumann
module. (In fact, the two product systems are no longer just anti-isomorphic,
but as explained in Skeide [Ske03] they turn out to be commutants of each
other; see Section 9.)

In Skeide [Ske06a] we presented a short and elementary proof of Arveson’s
result that every Arveson system is the one associated with an E0–semigroup.
This proof uses essentially the fact that it is easy to solve the problem for
discrete time t ∈ N0 or, what is the same, for a single Hilbert space H (that
generates a discrete product system

(
H⊗n)

n∈N0
). If we want to apply the idea

of the proof in [Ske06a] also to Hilbert and von Neumann modules, then we
must first solve the problem for a single correspondence E (that generates a
discrete product system

(
E�n)

n∈N0
). This is precisely what we do in these

notes: Solving Problem 1 means that
(
E�n)

n∈N0
is the product system of the

discrete E0–semigroup
(
ϑn

)
n∈N0

. Solving Problem 2 means finding a faithful
representation of the whole discrete product system

(
E�n)

n∈N0
. In fact, in

the meantime we did already use the results of these notes (or ideas leading to
them) to solve the continuous time case for Hilbert modules [Ske07a, Ske06c]
and for von Neumann modules [Ske08a] (in preparation).

In the solution of Problems 1 and 2 the concepts of unit vectors in Hilbert
or W ∗–modules and of Morita equivalence for (W ∗–)correspondences and mod-
ules play a crucial role. In fact, if a correspondence E has unit vector ξ (that
is, 〈ξ, ξ〉 = 1 ∈ B so that, in particular, E is full and B is unital), then it is
easy to construct a unital endomorphism ϑ on some Ba(F ) that has E as asso-
ciated multiplicity correspondence Fϑ; see Section 2. Morita equivalence helps
to reduce Problem 1 for (strongly) full (W ∗–)correspondences to the case when
E has a unit vector. In fact, even if a (strongly) full E does not have a unit
vector, then cum grano salis (that is, up to suitable completion) the space of
E–valued matrices Mn(E) of sufficiently big dimension will have a unit vector.
The correspondences Mn(E) and E are Morita equivalent in a suitable sense,
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and in Theorem 5.12 we show that solving Problem 1 for Mn(E) is equivalent
to solving Problem 1 for E itself. Last but not least, we mention that Morita
equivalence is at the heart of the representation theory of Ba(F ) which we use
to determine the correspondence of an endomorphism; see Example 5.2.

The solution of Problem 2, instead, in the W ∗–case (Theorem 8.2) is a sim-
ple consequence of the well-known fact that two faithful normal nondegenerate
representations of a W ∗–algebra have unitarily equivalent amplifications. In or-
der to illustrate how simply this result can be derived making appropriate use of
unit vectors and quasi orthonormal bases in von Neumann modules, we include
a proof (Corollary 4.3). The C∗–case (Theorem 8.3) is a slightly tedious reduc-
tion to the W ∗–case. In Theorem 9.5 we show that the W ∗–versions of Problem
1 and Problem 2 are, actually, equivalent. However, while the C∗–version of
Problem 2 can be reduced to the W ∗–version, a similar procedure is not pos-
sible for Problem 1. (Given a full correspondence over a possibly nonunital
C∗–algebra B, we can solve Problem 1 for the enveloping W ∗–correspondence
over B∗∗. But, we do not know a solution to the problem how to find a (strongly
dense) B–submodule F of the resulting B∗∗–module F ∗∗ such that the endo-
morphism ϑ of Ba(F ∗∗) restricts suitably to an endomorphism of Ba(F ).)

These notes are organized as follows. In Section 2 we explain the relation
between E0–semigroups on Ba(E) and product systems. We discuss a case in
which it is easy to construct for a product system an E0–semigroup with which
the product system is associated. In Observation 2.1 we explain how this leads
to a simple solution of Problem 1 in the case when the correspondence has a
unit vector.

In Section 3 we show that a finite multiple of a full Hilbert module over a
unital C∗–algebra has a unit vector (Lemma 3.2). Apart from a simple conse-
quence about finitely generated Hilbert modules (Corollary 3.4), this lemma is
crucial for the solution of the C∗–version of Problem 1 in Section 7. In Section
4 we prove the W ∗–analogue of Lemma 3.2, Lemma 4.2: A suitable multiple
of a strongly full W ∗–module has a unit vector. The proof is considerably
different from that of Lemma 3.2. It makes use of quasi orthonormal bases.
We use the occasion to illustrate how easily some basic facts about representa-
tions of von Neumann algebras, like the amplification-induction theorem, may
be derived. Utilizing in an essential way Lemma 4.2, we give a simple proof
of the well-known fact that faithful normal representations of a W ∗–algebra
have unitarily equivalent amplifications (Corollary 4.3). A proof of that result
is also included to underline how simple a self-contained proof of the solution
to Problem 2 (Theorems 8.2 and 8.3) actually is.
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Section 5 introduces the necessary notions of Morita equivalence. Apart
from (strong) Morita equivalence for C∗– and W ∗–algebras, we discuss Morita
equivalence for correspondences (Muhly and Solel [MS00]) and Morita equiv-
alence for Hilbert and W ∗–modules (new in these notes). We state the obvi-
ous generalization of Morita equivalence for correspondences to product sys-
tems. Two full Hilbert modules have strictly isomorphic operator algebras,
if and only if they are Morita equivalent. In that case, two endomorphisms
(E0–semigroups) on the isomorphic operator algebras are (cocycle) conjugate,
if and only if they have Morita equivalent correspondences (product systems);
see Proposition 5.8 and Corollary 5.11. The central result is Theorem 5.12,
which asserts that in the W ∗–case solvability of Problem 1 does not change
under Morita equivalence.

In Sections 6 and 7 we solve Problem 1 for W ∗–correspondences (Theorem
6.3) and correspondences over unital C∗–algebras (Theorem 7.6), respectively.
While the W ∗–case runs smoothly after the preparation in Sections 4 and 5,
in the C∗–case we have to work considerably. In both sections we spend some
time to explain where the difficulties in the C∗–case actually lie.

Section 8 contains the complete solution to Problem 2. Taking into ac-
count Corollary 4.3, the treatment is a self-contained. A simple consequence of
Sections 2 and 8 are Theorem 8.6 and its corollary, which assert that a faithful
endomorphism is a restriction to a subalgebra of some inner endomorphism
on B(H). In Theorem 8.8 we solve the apparently open problem to find a
nondegenerate extension to a normal faithful representation (in the language
of Muhly and Solel [MS98], a fully coisometric extension of a σ–continuous
faithful isometric covariant representation) of a W ∗–correspondence.

In Section 9 we show that the W ∗–versions of Problem 1 and Problem 2 are
equivalent under the commutant of von Neumann correspondences (Theorems
9.5 and 9.9). The fact that, to that goal, we have to discuss the basics about
von Neumann modules and von Neumann correspondences has the advantage
that we provide also simple proofs for many statements about W ∗–modules,
used earlier in these notes. As some more consequences of Corollary 4.3 and
the language used in Section 9, we furnish new proofs for the well-known re-
sults Corollary 9.3 (a sort of Kasparov absorption theorem for W ∗–modules)
and Corollary 9.4 (a couple of criteria for when two W ∗–algebras are Morita
equivalent). Corollary 9.3 is also the deeper reason for that the solutions to
our Problems 1 and 2 in the W ∗–case may be chosen of a particularly simple
form; see Observations 6.4 and 8.5.

In Section 10 we discuss our results in two examples.
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A note on the first version. These notes are a very far reaching revision of
the version of the preprint published as [Ske04]. The main results (Theorems
6.3, 7.6, and 8.2) and essential tools (Lemmata 3.2 and 4.2, Theorems 5.12 and
9.5) have been present already in [Ske04]. But while Theorem 8.2 in [Ske04]
has been proved by reducing it to Theorem 6.3 via the commutant, the new
simple proof we give here is now independent of Section 9 and Theorem 6.3.
New in this revision are the proof of Hirshberg’s result [Hir05] that works also
in the nonfull case (Theorem 8.3), and the extension result Theorem 8.8. A
couple of very simple proofs of well-known results has been included. Finally,
the discussion of the examples in Section 10 has been shortened drastically. For
some details in these examples we find it convenient to refer the reader to the
old version [Ske04].

Notations, conventions and some basic properties.

1.1. By Ba(E) we denote the algebra of adjointable operators on a
Hilbert B–module E. A linear map ϑ : Ba(E) → Ba(F ) is strict , if it is
continuous on bounded subsets for the strict topologies of Ba(E) and Ba(F ).
Recall that a unital endomorphism ϑ of Ba(E) is strict, if and only if the action
of the compact operators K (E) is already nondegenerate: span K (E)E = E.
The C∗–algebra of compact operators is the completion K (E) := F (E) of
the finite-rank operators, and the pre-C∗–algebra of finite-rank operators

is the linear span F (E) := span
{
xy∗ : x, y ∈ E

}
of the rank-one operators

xy∗ : z �→ x〈y, z〉.
1.2. The range ideal of a Hilbert B–module is the closed ideal BE :=

span〈E,E〉 in B. A Hilbert B–module E is full , if BE = B. A unit vector in a
Hilbert B–module E is an element ξ ∈ E fulfilling 〈ξ, ξ〉 = 1 ∈ B. This means,
in particular, that B is unital and that E is full.

1.3. A correspondence from A to B is a Hilbert B–module E with a
nondegenerate(!) left action of A. (Recall that a left action of A is nondegen-

erate, if the set AE is total in E.) When A = B, we shall also say correspon-
dence over B. We say a correspondence E from A to B is faithful , if the canon-
ical homomorphism A → Ba(E) is faithful. Every C∗–algebra B is a correspon-
dence over itself, the trivial correspondence over B, with inner product
〈b, b′〉 := b∗b′ and the natural bimodule operations. The B–subcorrespondences
of the trivial correspondence B are precisely the closed ideals.

1.4. Every Hilbert B–module is a correspondence from Ba(E) to B
that may be viewed also as a correspondence from K (E) (or any C∗–algebra
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in between K (E) and Ba(E)) to BE (or any C∗–algebra in between BE and
B). The dual correspondence of E is the correspondence E∗ =

{
x∗ : x ∈ E

}
from B to Ba(E). It consists of mappings x∗ : y �→ 〈x, y〉 in Ba(E,B) with
inner product 〈x∗, y∗〉 := xy∗ and bimodule operations bx∗a := (a∗xb∗)∗. We
note that K (E∗) = BE and that the range ideal is Ba(E)E∗ = K (E). The
left action of BE is, indeed, faithful so that E∗ may be viewed as faithful and
full correspondence from BE to K (E).

1.5. The (internal) tensor product of a correspondence E from A to
B and a correspondence F from B to C is that unique correspondence E�F from
A to C that is generated by the range of a left A–linear mapping (x, y) �→ x�y
fulfilling 〈x� y, x′ � y′〉 = 〈y, 〈x, x′〉y′〉.

For every correspondence E from A to B we have the canonical identi-

fications A�E ∼= E via a�x �→ ax (recall that, by our convention in Section
1.3, A acts nondegenerately), and E�B ∼= E via x�b �→ xb. One easily verifies
that x�y∗ �→ xy∗ defines an isomorphism E�E∗ → K (E) of correspondences
over K (E) (or over Ba(E)). Similarly, x∗�y �→ 〈x, y〉 defines an isomorphism
E∗ �E → BE of correspondences over BE (or over B). We will always identify
these correspondences.

1.6. A W ∗–module is a Hilbert module over a W ∗–algebra that is self-
dual. A Hilbert B–module E is self-dual , if every bounded right-linear map
Φ: E → B has the form x∗ of some x ∈ E. Every Hilbert module over a
W ∗–algebra admits a unique minimal self-dual extension; see Remarks 9.1 and
9.2. A W ∗–correspondence E is a C∗–correspondence from a W ∗–algebra
A to a W ∗–algebra B and a W ∗–module, such that all maps 〈x, •x〉 : A → B
(x ∈ E) are normal. The W ∗–tensor product of a W ∗–correspondence E
from A to B and a W ∗–correspondence F from B to C is the self-dual extension
E �̄s F of the tensor product E � F . This extension is a W ∗–correspondence
from A to C.

If E is a W ∗–module over B, then the extended linking algebra„B E∗

E Ba(E)

«
is a W ∗–algebra. By restriction, this equips every corner with a

σ–weak topology and a σ–strong topology . Properties of these topologies
in the linking algebra directly turn over to the corners. Consequently, we say
a map η : E → F is normal , if it is the restriction to the 2–1–corners of a
normal map between the extended linking algebras.

Most of the statements about W ∗–modules and W ∗–correspondences have
considerably simpler proofs in the equivalent categories of von Neumann mod-
ules and von Neumann correspondences; see Section 9. However, since the
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notion of W ∗–modules and W ∗–correspondences are more common, we avoid
using von Neumann modules and von Neumann correspondences until Section
9.

1.7. Suppose E is a Hilbert B–module. Let us choose a (nondegen-
erate) representation π of B on a Hilbert space G. We may construct the
Hilbert space H := E � G, and the induced representation ρπ of Ba(E)
on B(H) by setting ρπ(a) := a � idG. We define the induced representa-

tion ηπ : E → B(G,H) of E from G to H by setting ηπ(x)g = x � g. (That
is, ηπ fulfills ηπ(x)∗ηπ(y) = π(〈x, y〉) and ηπ(xb) = ηπ(x)π(b). Obviously,
ηπ(ax) = ρπ(a)ηπ(x).) The maps π, ηπ, (ηπ)∗ := ∗ ◦ ηπ ◦ ∗, and ρπ give rise to
the (nondegenerate) induced representation Π :=

„
π (ηπ)∗

ηπ ρπ

«
of the extended

linking algebra on G⊕H. So, all mappings are completely contractive.

In the language of von Neumann modules it is not difficult to show that
for a (strongly full) W ∗–module the induced representation of the extended
linking algebra is normal, if (and only if) π is normal.

If E is a correspondence from A to B, then we will also speak of the
induced representation ρπA : A → Ba(E) → B(H) of A on H. If E is
faithful, then simply ρπA = ρπ � A.

1.8. We will often need multiples of an arbitrary cardinality n of Hilbert
spaces or modules. If n is a cardinal number, then we always assume that we
have fixed a set S with cardinality #S = n so that En :=

⊕
s∈S E =×s∈SE

has a well-specified meaning. If T is another set having that cardinality, then,
by definition of cardinality, there exists a bijection between S and T that in-
duces a canonical isomorphism from

⊕
s∈S E to

⊕
t∈T E. So, C

n is the Hilbert
space (up to canonical isomorphism) of dimension n. For every Hilbert space H

we may write H = Cdim H. Of course, En = E ⊗ Cn (or = Cn ⊗E) in the sense
of external tensor products, and we may write E ⊗H = Edim H. Amplifications
a⊗ idH of a map a on E in the tensor product picture, will be written as adim H

in the direct sum picture.

§2. Prerequisites on E0–Semigroups and Product Systems

Let S denote either the additive semigroup of nonnegative integers N0 =
{0, 1, . . .} or the additive semigroup of nonnegative reals R+ = [0,∞). In this
section we explain the relation between a strict E0–semigroup ϑ =

(
ϑt

)
t∈S

and
its product system E� =

(
Et

)
t∈S

. In these notes we are mainly interested
in the discrete case S = N0. However, there is no reason to restrict the
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present discussion to the discrete case. In fact, many results we prove in these
notes hold in the general case. They find their applications in Skeide [Ske07a,
Ske06c, Ske08a], where we discuss several variants of the continuous time

case S = R+, and, in a different context, in Skeide [Ske08b].
Let E be a Hilbert module over a C∗–algebra B and let ϑ =

(
ϑt

)
t∈S

be a
strict E0–semigroup on Ba(E), that is, a semigroup of unital endomorphisms
ϑt of Ba(E) that are strict. Meanwhile, there are several constructions of a
product system from an E0–semigroup on Ba(E); see [Ske02, Ske03, Ske05a,
MSS06]. All these constructions capture, in a sense, the representation theory
of Ba(E). The first construction is due to Skeide [Ske02]. This construction
(inspired by Bhat’s [Bha96] for Hilbert spaces) is based on existence of a unit
vector ξ ∈ E. The most general construction that works for arbitrary E is
based on the general representation theory of Ba(E) in Muhly, Skeide and
Solel [MSS06].

Let us discuss the construction based on [MSS06]. We turn E into a
correspondence ϑt

E from Ba(E) to B, by defining the left action a.x := ϑt(a)x.
Since, by strictness of ϑt, the action of the compacts on ϑt

E is nondegenerate,
we may view ϑt

E as a correspondence from K (E) to B. For every t > 0
we define Et := E∗ � ϑt

E. Note that Et is a correspondence over B that,
likewise, may be viewed as correspondence over BE . (The left action of BE is
nondegenerate; see Section 1.4). Then

(2.1) E�Et = E� (E∗� ϑt
E) = (E�E∗)� ϑt

E = K (E)� ϑt
E = ϑt

E

suggests that E � Et and ϑt
E are isomorphic as correspondences from K (E)

to B but also as correspondences from Ba(E) to B. That is, a � idt should
coincide with ϑt(a). In fact, interpreting all the identifications in the canonical
way (see Sections 1.4 and 1.5), we obtain an isomorphism E � Et → E by
setting

(2.2) x� (y∗ �t z) �−→ ϑ(xy∗)z,

where we write x∗ �t y in order to indicate that an elementary tensor x∗ � y

is to be understood in E∗ � ϑt
E. We extend the definition to t = 0 by putting

E0 = B and choosing the canonical identification E � E0 = E. (If E is full,
then this is automatic. Otherwise, we would find E∗ � ϑ0E = E∗ � E = BE .)
The Et form a product system E� =

(
Et

)
t∈S

, that is

Es � Et = Es+t (Er � Es) � Et = Er � (Es � Et),
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via

Es � Et = (E∗ � ϑs
E) � (E∗ � ϑt

E)

= E∗ � ϑs
(E � (E∗ � ϑt

E)) = E∗ � ϑs
(ϑt
E) = E∗ � ϑs+t

E = Es+t.

We leave it as an instructive exercise to check on elementary tensors that the
suggested identification

(x∗ �s y) � (x′∗ �t y′) �−→ x∗ �s+t (ϑt(yx′∗)y′)

is, indeed, associative.
We say the product system E� constructed before is the product system

associated with the E0–semigroup ϑ. There are other ways to construct a
product system of correspondences over B from ϑ, but they all lead to the same
product system up to suitable isomorphism. (In the case of a von Neumann
algebra B there is the possibility to construct a product system of correspon-
dences over the commutant B′; see Skeide [Ske03]. This product system is the
commutant of all the others; see Section 9.) Our definition here is for the sake
of generality (it works for all strict E0–semigroups without conditions on E)
and for the sake of uniqueness (it does not depend on certain choices like the
choice of a unit vector in [Ske02]).

Recall that for all t > 0 the Et enjoy the property that they may also be
viewed as correspondences over BE . The uniqueness result [MSS06, Theorem
1.8 ] asserts that the Et are the only correspondences over BE that allow for
an identification E � Et = E giving back ϑt(a) as a � idt. It is not difficult
to show this statement remains true for the whole product system structure.
We see also that the range ideal of Et cannot be smaller than BE . Therefore,
passing from B to BE as C∗–algebra, we may assume that E� is a full product
system, that is, that all Et (t ∈ S) are full.

Now suppose we start with a full product system E�. In order to estab-
lish that E� is (up isomorphism) the product system associated with a strict
E0–semigroup, it is sufficient to find a full Hilbert module E and identifications
E � Et = E such that we have associativity

(2.3) (E � Es) � Et = E � (Es � Et).

In that case, ϑt(a) := a � idt defines an E0–semigroup (Condition (2.3) gives
the semigroup property) and the product system of this semigroup is

E∗ � ϑt
E = E∗ � (E � Et) = (E∗ � E) � Et = B � Et = Et.
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Suppose E� is a product system with a unital unit ξ�. By a unit for a product
system E� we mean a family ξ� =

(
ξt

)
t∈S

of elements ξt ∈ Et with ξ0 = 1 that
fulfills ξs�ξt = ξs+t. This implies, in particular, that B is unital. For nonunital
B we leave the term unit undefined! The unit is unital , if all ξt are unit vectors.
(In particular, if E� has a unital unit, then E� is full.) It is well known that
in this situation it is easy to construct an E0–semigroup. We merely sketch the
construction and refer the reader to Bhat and Skeide [BS00, Ske02] for details.
For every s, t ∈ S the map ξs� idt : xt �→ ξs�xt defines an isometric embedding
(as right module) of Et into Es+t. The family of embeddings forms an inductive
system, so that we may define the inductive limit E∞ = limt→∞Et. For every
t ∈ S the factorization Es � Et = Es+t survives the inductive limit over s
and gives rise to a factorization E∞ � Et = E“∞ + t” = E∞. Clearly, these
factorizations fulfill (2.3). Moreover, E contains a unit vector, namely, the
image ξ of the vectors ξt (which all coincide under the inductive limit). In
particular, E is full so that the product system of the E0–semigroup defined
by setting ϑt(a) := a� idt is, indeed, E�.

2.1. Observation. For Problem 1, which occupies the first half of these
notes, this means the following: Suppose E is a correspondence over B with a
unit vector ξ. Then E� =

(
En

)
n∈N0

with En := E�n is a (discrete) product
system and ξ� =

(
ξn

)
n∈N0

with ξn := ξ�n is a unital unit. The inductive
limit E∞ over that unit carries a strict E0–semigroup ϑ =

(
ϑn

)
n∈N0

with
ϑn(a) = a � idEn

whose product system is E�. In particular, E = E1 occurs
as the correspondence of the unital strict endomorphism ϑ1 of Ba(E∞).

We discuss briefly what the preceding construction does in the case of the
trivial product system (En = B with product as left action and as product
system operation) with a nontrivial unit vector (a proper isometry).

2.2. Example. Let B denote a unital C∗–algebra with a proper isome-
try v ∈ B. Then the inductive limit over the trivial product system

(B�n)
n∈N0

with respect to the unit
(
v�n

)
n∈N0

has the form

(2.4) F := B ⊕
∞⊕
k=1

B0

where B0 := (1− vv∗)B, and the induced endomorphism ϑ of Ba(F ) is ϑ(a) =
uau∗ where u is the unitary defined by

u = v∗0 ⊕ id : B⊕
∞⊕
k=1

B0 −→ (B⊕B0)⊕
∞⊕
k=1

B0 = B⊕
∞⊕
k=0

B0 = B⊕
∞⊕
k=1

B0,
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(in the last step we simply shift). It is an intriguing exercise to show that,
indeed, the product system of ϑ is the trivial one (by general abstract nonsense
this is true for every inner automorphism, but we mean to follow the con-
struction from the beginning of this section), and to see how the embeddings
B = B�n → v�m � B�n = vmB ⊂ B�(m+n) = B really work and sit in F ; see
the old version [Ske04].

In the case when B = B(G) for some Hilbert space, we obtain just the
Sz.-Nagy-Foias dilation of an isometry to a unitary.

In Sections 3 – 7 it will be our job to reduce the cases we treat in these
notes, full C∗–modules over unital C∗–algebras and strongly full W ∗–modules,
to the case with a unit vector. We just mention that all results in the present
section have analogues for W ∗–modules replacing strict mappings with normal
(or σ–weak) mappings, replacing the tensor product of C∗–correspondences
with that of W ∗–correspondences, and replacing the word ‘full’ by ‘strongly
full’.

§3. Unit Vectors in Hilbert Modules

In this section we discuss when full Hilbert modules over unital C∗–algebras
have unit vectors. In particular, we show that even if there is no unit vector,
then a finite direct sum will admit a unit vector. This result will play its role
in the solution of our Problem 1 in Theorem 7.6 for full correspondences over
unital C∗–algebras. As an application, not related to what follows, we give a
simple proof of a statement about finitely generated Hilbert modules.

Of course, a Hilbert module E over a unital C∗–algebra B that is not full
cannot have unit vectors. But also if E is full this does not necessarily imply
existence of unit vectors.

3.1. Example. Let B = C ⊕ M2 =
„

C 0
0 M2

« ⊂ M3 = B(C3). The
M2–C–module C2 = M21 may be viewed as a correspondence over B (with
operations inherited from M3 ⊃ „

0 0
C
2 0

«
). Also its dual, the C–M2–module

C2∗ = M12 =: C2, may be viewed as a correspondence over B. It is easy
to check that M = C

2 ⊕ C2 =
„

0 C2
C
2 0

«
is a Morita equivalence (see Section 5)

from B to B (in particular, M is full) without a unit vector.
Note that M �M = B has a unit vector. Example 10.2 tells us that there

are serious examples in the discrete case where not one of the tensor powers
E�n (n > 0) has a unit vector.

Observe that all modules and correspondences in Example 3.1 are
W ∗–modules, so missing unit vectors are not caused by insufficient closure.
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The reason why M does not contain a unit vector is because the full Hilbert
M2–module C2 has “not enough space” to allow for sufficiently many orthogo-
nal vectors. (Not two nonzero vectors of this module are orthogonal.) Another
way to argue is to observe that every nonzero inner product 〈x∗, y∗〉 is a rank-
one operator in M2 = B(C2) while the identity has rank two. As soon as we
create “enough space”, for instance, by taking the direct sum of sufficiently
many (in our case two) copies of C2 the problem disappears.

In the following lemma we show that for every full Hilbert module a finite
number of copies will be “enough space”. The basic idea is that, if 〈x, y〉 =
1, then by Cauchy-Schwartz inequality 1 = 〈x, y〉〈y, x〉 ≤ 〈x, x〉 ‖y‖2 so that
〈x, x〉 is invertible and x

√〈x, x〉−1 is a unit vector. Technically, the condition
〈x, y〉 = 1 is realized only approximately and by elements in En rather than in
E.

3.2. Lemma. Let E be a full Hilbert module over a unital C∗–algebra.
Then there exists n ∈ N such that En has a unit vector.

Proof. E is full, so there exist xni , y
n
i ∈ E (n ∈ N; i = 1, . . . , n) such that

lim
n→∞

n∑
i=1

〈xni , yni 〉 = 1.

The subset of invertible elements in B is open. Therefore, for n sufficiently
big

∑n
i=1〈xni , yni 〉 is invertible. Defining the elements Xn = (xn1 , . . . , x

n
n) and

Yn = (yn1 , . . . , y
n
n) in En we have, thus, that

〈Xn, Yn〉 =
n∑
i=1

〈xni , yni 〉

is invertible. So, also 〈Xn, Yn〉〈Yn, Xn〉 is invertible and, therefore, bounded
below by a strictly positive constant. Of course, ‖Yn‖ �= 0. By Cauchy-Schwartz
inequality also

〈Xn, Xn〉 ≥ 〈Xn, Yn〉〈Yn, Xn〉
‖Yn‖2

is bounded below by a strictly positive constant and, therefore, 〈Xn, Xn〉 is
invertible. It follows that Xn

√〈Xn, Xn〉−1 is a unit vector in En.

3.3. Corollary. If E (as before) contains an arbitrary number of mu-
tually orthogonal copies of a full Hilbert submodule (for instance, if E is iso-
morphic to En for some n ≥ 2), then E has a unit vector.
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Lemma 3.2 implies that, if K (E) is unital, then K (E) = F (E). (Just
apply the lemma to the full Hilbert K (E)–module E∗.)

3.4. Corollary. If K (E) is unital, then E is algebraically finitely gen-
erated.

This is some sort of inverse to the well-known fact that an (algebraically)
finitely generated Hilbert B–module is isomorphic to a (complemented) sub-
module of Bn for some n.

§4. Unit Vectors in W ∗–Modules

In this section we proof the analogue of Lemma 3.2 for W ∗–modules. Of
course, a W ∗–module is a Hilbert module. If it is full then Lemma 3.2 applies.
But the good notion of fullness for a W ∗–module is that it is strongly full ,
that is, the inner product of the W ∗–module generates B as a W ∗–algebra.
(Strong fullness is the more useful notion for W ∗–modules, because it can
always be achieved by restricting B to the W ∗–subalgebra generated by the
inner product. Example 4.1 tells us that the same is not true for fullness in
the case of W ∗–modules.) It is the assumption of strong fullness for which we
want to solve Problem 1 for W ∗–modules, and not the stronger assumption of
fullness (that might be not achievable). We thank B. Solel for pointing out to
us this gap in the first version of these notes.

We see immediately that for strongly full W ∗–modules the cardinality of
the direct sum in Lemma 3.2 can no longer be kept finite.

4.1. Example. Let H be an infinite-dimensional Hilbert space. Then
H∗ is a W ∗–module over B(H), that is strongly full but not full as a Hilbert
B(H)–module. (Indeed, the range ideal of H∗ in B(H) is B(H)H∗ = K (H) �=
B(H).) For every finite direct sum H∗n the inner product 〈Xn, Xn〉 (Xn ∈
H∗n) has rank not higher than n. Therefore, H∗n does not admit a unit vector.
Only if we considerH∗ns, the self-dual extension ofH∗n, where n = dimH, then
the vector in H∗ns with the components e∗i (

(
ei

)
some orthonormal basis of H)

is a unit vector. But this vector is not in H∗n if n is infinite.
Observe that, for arbitrary cardinality n, we have H∗n = K (H,Cn), while

H∗ns = B(H,Cn). In fact, when dimH = n we have H∗ns = B(H).

The example is in some sense typical. In fact, we constructed a multiple of
H∗ that contains a unit vector by choosing an orthonormal basis for its dual H.
This will also be our strategy for general W ∗–modules. A suitable substitute
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for orthonormal bases are quasi orthonormal bases. A quasi orthonormal

basis in a W ∗–module E over B is a family
(
ei, pi

)
i∈S where S is some index

set (of cardinality n, say), pi are projections in B and ei are elements in E such
that

〈ei, ej〉 = δi,jpj and
∑
i∈S

eie
∗
i = idE

(monotone limit in the W ∗–algebra Ba(E) over the finite subsets of S in the
case S is not finite). Existence of a quasi orthonormal basis follows from self-
duality of E and monotone completeness of Ba(E) by an application of Zorn’s
lemma; see Paschke [Pas73].

4.2. Lemma. Let E be a strongly full W ∗–module. Then there exists
a cardinal number n such that Ens has a unit vector.

Proof. Let us choose a quasi orthonormal basis
(
e∗i , eie

∗
i

)
i∈S for the dual

Ba(E)–module E∗. (Observe that E∗ is a W ∗–module; see Remark 9.2.) Then∑
i∈S

e∗i ei =
∑
i∈S

〈ei, ei〉 = idE .

The second sum is, actually, over the elements 〈ei, ei〉 when considered as op-
erators acting from the left on E∗. But, as E is strongly full, the action of B
on E∗ is faithful. In particular, the only element in B having the action idE is,
really, 1 ∈ B. Now, if we put n = #S, then the vector in Ens with components
ei is a unit vector.

In Gohm and Skeide [GS05] we pointed out that existence of a quasi or-
thonormal basis for a W ∗–module may be used to give a simple proof of the
amplification-induction theorem, that is, the theory of normal representations
of a von Neumann algebra B. Indeed, let B ⊂ B(G) be a von Neumann
algebra acting nondegenerately on a Hilbert space G. If ρ is a nondegen-
erate representation of B on another Hilbert space H. Then E′ :=

{
x′ ∈

B(G,H) : ρ(b)x′ = x′b (b ∈ B)
}

is a W ∗–module over B′ ⊂ B(G) with inner
product 〈x′, y′〉 := y′∗x′ ∈ B′. Moreover, spanE′G = H; see Section 9, in
particular, Remark 9.2. Let

(
e′i, p

′
i

)
i∈S be a quasi orthonormal basis of E′. It

follows that H =
⊕

i∈S p
′
iG ⊂ G#S = G⊗ C#S (see Section 1.8 for notation).

The representation ρ is, then, the compression of the amplification idB ⊗ idC#S

to the invariant subspace H.
We may use Lemma 4.2 to furnish a new proof of the structure theorem

for algebraic isomorphisms of von Neumann algebras. Indeed, let ρ be faithful
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so that (see Section 9) E′ is strongly full. By Lemma 4.2 a suitable multiple
E′ns of E′ contains a unit vector ξ′. We may choose a quasi orthonormal basis{
(ξ′,1)

} ∪ (
e′i, p

′
i

)
i∈S of E′ns (disjoint union). Let l be the smallest infinite

cardinal number not smaller than #S. Then the multiple E′n·ls of E′ns is
isomorphic to

⊕ s

i∈S(E′
i)

l where E′
i := B′ ⊕ p′iB′ = (1− p′i)B′ ⊕ p′iB′ ⊕ p′iB′. It

follows that E′l
i

s ∼= (1− p′i)B′ls ⊕ p′iB′ls = B′ls. In other words, E′n·ls ∼= B′ls.

4.3. Corollary. If ρ is a faithful normal nondegenerate representation
of a von Neumann algebra B ⊂ B(G) on H, then there exists a Hilbert space
H such that the representations b �→ ρ(b) ⊗ idH and b �→ b ⊗ idH are unitarily
equivalent.

§5. Morita Equivalence for Product Systems

In this section we review the notions of (strong) Morita equivalence (Ri-
effel [Rie74]), Morita equivalence for Hilbert modules (new in these notes) and
Morita equivalence for correspondences (Muhly and Solel [MS00]). We put
some emphasis on the difference between the C∗–case and the W ∗–case. That
difference is in part responsible for the fact that we can solve Problem 1 in
full generality only for W ∗–modules. The C∗–case can be done only for unital
C∗–algebras and, even under this assumption, it is much less elegant. Then
we show that a product system of W ∗–correspondences can be derived from
an E0–semigroup, if and only if it is Morita equivalent to a product system
that has a unital unit. In the discrete case this means a W ∗–correspondence
stems form a unital endomorphism of some Ba(E), if and only if it is Morita
equivalent to a W ∗–correspondence that has a unit vector.

A correspondence M from A to B is called a Morita equivalence from
A to B, if it is full and if the canonical mapping from A into Ba(M) corestricts
to an isomorphism A → K (M). Clearly, the two conditions can be written
also as

M∗ �M = B M �M∗ = A.
From these equations one concludes easily a couple of facts. Firstly, if M is a
Morita equivalence from A to B, then M∗ is a Morita equivalence from B to A.
Secondly, the tensor product of Morita equivalences is a Morita equivalence.
Thirdly, M and M∗ are inverses under tensor product. Two C∗–algebras are
called strongly Morita equivalent , if they admit a Morita equivalence from
one to the other. Usually, we say just Morita equivalent also when we intend
strongly Morita equivalent.
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5.1. Example. All Mn are Morita equivalent to C via the Morita
equivalence Cn.

5.2. Example. Also the representation theory of Ba(E) is just a mat-
ter of Morita equivalence. In fact, taking into account that E is a Morita
equivalence from K (E) to BE and E∗ is its inverse (see Section 1.4), the iden-
tity of the K (E)–B–correspondences in (2.1) becomes crystal when read from
the right to left; see [MSS06].

In the category of W ∗–algebras with W ∗–correspondences, a
W ∗–correspondence from A to B is a Morita W ∗–equivalence, if M is
strongly full and if the canonical mapping A → Ba(M) is an isomorphism.

5.3. Remark. Clearly, in the W ∗–case we have M �̄s M∗ = Ba(M).
The fact that Morita equivalence for W ∗–algebra relates A to Ba(M) while
strong Morita equivalence of C∗–algebras relates A only to K (M) is one of the
reasons why our solution of Problem 1 works only in the W ∗–case, respectively,
runs considerably less smoothly in the particular C∗–case we discuss in Section
7.

5.4. Example. The Mn are W ∗–algebras, the Cn and their duals are
W ∗–correspondences and all tensor products are tensor products in the
W ∗–sense. So, Example 5.1 is also an example for Morita equivalence of
W ∗–algebras.

5.5. Remark. Versions of Examples 5.1 and 5.4 for infinite-dimensional
matrices and C replaced with B are crucial to solve Problem 1. Essentially, we
are going to use Bn as Morita equivalence from Mn(B) to B. Of course, for
infinite-dimensional matrices either we have to pass to strong closures (Section
6) or to a weaker notion of Morita equivalence (Section 7).

5.6. Definition (Muhly and Solel [MS00]). A correspondence E

over B and a correspondence F over C are Morita equivalent , if there is
a Morita equivalence M from B to C such that E � M = M � F (or E =
M � F �M∗).

We add here:

5.7. Definition. A Hilbert B–module E and a Hilbert C–module F are
Morita equivalent , if there is a Morita equivalence M from B to C such that
E �M = F (or E = F �M∗).
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Of course, the definitions for the W ∗–case are analogue.
Morita equivalence of Hilbert modules and Morita equivalence of corre-

spondences are related by the following crucial proposition. Suppose α : Ba(E)
→ Ba(F ) is a (bi-)strict isomorphism. By [MSS06] this is the case, if and only
if E and F are Morita equivalent where the Morita equivalence M induces α
as α(a) = a� idM .

Now suppose there are two strict unital endomorphisms ϑ and θ on Ba(E)
and Ba(F ), respectively. We may ask whether they are conjugate, that is,
whether there exists a (bi-)strict isomorphism α : Ba(E) → Ba(F ) such that
θ = α ◦ ϑ ◦ α−1.

5.8. Proposition. ϑ and θ are conjugate, if and only if there is a
Morita equivalence inducing an isomorphism F = E �M such that Eϑ �M =
M � Fθ, that is, if and only if E and F as well as Eϑ and Fθ are Morita
equivalent by the same Morita equivalence.

The proof consists very much of computations like the second half of the
proof Theorem 5.12 below. We leave it as an exercise.

5.9. Remark. Note that in the scalar case B = C = C, where C is
the only Morita equivalence over C, we recover the well-known facts that every
normal isomorphism α : B(G) → B(H) is induced by a unitary G → H and
that the multiplicity spaces of two endomorphisms conjugate by α must be
equal.

Clearly, if E� =
(
Et

)
t∈S

is a product system of correspondences over B and
M is a Morita equivalence from B to C, then M∗ � E� �M := F� =

(
Ft

)
t∈S

with Ft := M∗ � Et �M and isomorphisms

Fs � Ft = M∗ � Es �M �M∗ � Et �M = M∗ � Es � Et �M

= M∗ � Es+t �M = Fs+t

is a product system of correspondences over C.

5.10. Definition. We say E� and F� are Morita equivalent , if there
exists a Morita equivalenceM and an isomorphism u� =

(
ut

)
t∈S

: M∗�E��
M → F� (that is, the ut are bilinear unitaries M∗ � Et �M → Ft such that
us � ut = us+t and u0 = idC).

The version for W ∗–correspondences is analogue.
The following corollary is proved very much like Proposition 5.8 taking also

into account (see [Ske02]) that two strict E0–semigroups on the same Ba(E)
are cocycle conjugate, if and only if their product systems are isomorphic.
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5.11. Corollary. Suppose ϑ and θ are strict E0–semigroups on Ba(E)
and on Ba(F ), respectively. Then ϑ and θ are cocycle conjugate via a
(bi-)strict isomorphism α : Ba(E) → Ba(F ) (in the sense that θ and α ◦ ϑ ◦
α−1 :=

(
α ◦ ϑt ◦ α−1

)
t∈S

are cocycle equivalent), if and only if the product
systems E� of ϑ and F� of θ are Morita equivalent via the Morita equivalence
M that induces α as α(a) = a� idM .

Of course, also here there is a version for W ∗–modules.

5.12. Theorem. Let E �̄s

=
(
Et

)
t∈S

be a product system of strongly
full W ∗–correspondences Et over a W ∗–algebra B. Then E �̄s

is the product
system of a normal E0–semigroup ϑ =

(
ϑt

)
t∈S

on Ba(E) for some W ∗–module
E over B, if and only if E �̄s

is Morita equivalent to a product system F �̄s

of
W ∗–correspondences over a W ∗–algebra C that contains a unital unit ζ�.

Proof. “=⇒”. Suppose E �̄s

is the product system of the normal
E0–semigroup ϑ on the W ∗–algebra C := Ba(E). Put Ft := E �̄sEt �̄sE∗. As
E �̄sEt = E and ϑt(a) = a� idEt

, we find Ft = ϑt
Ba(E) and as�at = ϑt(as)at

is the isomorphism Fs �̄s Ft = Fs+t. Clearly, ζt = idE ∈ Ba(E) = Ft defines
a unital unit ζ� for F �̄s

. (One easily verifies that also the inductive limit
F∞ = Ba(E) = E �̄s E∗ constructed from that unit is that obtained from E

via the Morita equivalence M := E∗ as F∞ = E �̄s E∗.)
“⇐=”. Suppose M is a Morita W ∗–equivalence from B to C such that

F �̄s

:= M∗ �̄sE �̄s �̄sM has a unital unit ζ�. Construct the inductive limit
F∞ with the normal E0–semigroup θt(a) = a � idFt

(a ∈ Ba(F∞)) and put
E := F∞ �̄sM∗. Then

ϑt(a) := θt(a� idM ) � idM∗ = a� idM � idFt
� idM∗ = a� idEt

(a ∈ Ba(E)) where

E = E �̄sM �̄sM∗ (= F∞ �̄sM∗ = F∞ �̄s Ft �̄sM∗)

= E �̄sM �̄s Ft �̄sM∗ = E �̄s Et
is the induced semigroup on Ba(E). As F∞ is full (it contains a unit vector)
also E = F∞ �̄s M∗ is full (CF∞

s
= C acts nondegenerately on M∗ so that

BEs = BM∗
s

= B). Therefore, by uniqueness the product systems associated
with ϑ gives us back Et.

5.13. Corollary. Two product systems of W ∗–correspondences in the
same Morita equivalence class are either both or are both not the product sys-
tems of a normal E0–semigroups.
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§6. Endomorphisms: W ∗–Case

The results of Sections 4 and 5 allow in a very plain way to solve Problem
1 for W ∗–correspondences. But, we explain first the idea in the C∗–case under
the assumptions of Lemma 3.2 — and in doing so we illustrate why it does not
work in the C∗–case. This helps to appreciate better the W ∗–case.

Let E be a full correspondence over a unital C∗–algebra B. By Lemma
3.2 we know that for some n ∈ N the correspondence En has a unit vector.
We observe that En = Bn � E, where Bn is a Morita equivalence from Mn(B)
to B. If we could show existence of a unit vector in Mn(E) = Bn � E � Bn
where Bn := (Bn)∗ is the dual of Bn, then E was Morita equivalent to a
correspondence with a unit vector. In this case the “⇐=” direction of the
proof of Theorem 5.12 works even without strong closure. (One main reason
for strong closure is that rarely Ba(E) = K (E) so E is a rarely a Morita
equivalence from Ba(E) to BE as needed in the proof of Theorem 5.12. But,
here with B also Mn(B) = Ba(Bn) = K (Bn) is unital.)

Unfortunately, Mn(E) need not have a unit vector. Suppose n ≥ 2 is
the minimal cardinality such that En has a unit vector. To produce a 1 in a
place in the diagonal we need n orthogonal vectors, and to produce 1 in each
of the n places in the diagonal we need n2 orthogonal vectors. However, the
Mn(B)–correspondence Mn(E) still has “space” only for n orthogonal vectors
with suitable inner products. We invite the reader to check that for the cor-
respondence E from Example 3.1, where n = 2, the correspondence M2(E)
does admit unit vectors. The problem remains, when we use Mm(E) (m > n)
instead. It disappears if m = ∞, because then we can “slice” m = ∞ into n
slices still of size m = ∞. The problem is now that the sums when calculat-
ing inner products of elements in M∞(E) (or also in products of elements in
M∞(B)) converge only strongly. (For instance, 1∞ ∈ M∞(B) is approximated
by 1m ∈Mm(B) ⊂M∞(B).) This is a second reason why we have to switch to
the W ∗–case.

In the context ofW ∗–modules, Lemma 4.2 allows for arbitrary cardinalities
n. We start by giving a precise meaning to Mn(B) and Mn(E). So let E be
a W ∗–correspondences over a W ∗–algebra B. Let S be a set with cardinality
#S = n and denote by

(
ek

)
k∈S the natural orthonormal basis of C

n. We set
Mn(B) := B(Cn) ⊗̄s B (tensor product of W ∗–algebras) and we identify an
element B ∈Mn(B) with the matrix

(
bij

)
i,j∈S where

bij = (e∗i ⊗ idB)B(ej ⊗ idB) ∈ B.

We put Mn(E) := B(Cn) ⊗̄s E, that is, the exterior tensor product of
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W ∗–modules; see [Ske01, Section 4.3]. We identify an element X ∈ Mn(E)
with the matrix

(
xij

)
i,j∈S where

xij = (e∗i ⊗ idE)X(ej ⊗ idE) ∈ E.

The operations in this correspondence over Mn(B) are

〈X,Y 〉ij =
∑
k

〈xki, ykj〉 (XB)ij =
∑
k

xikbkj (BX)ij =
∑
k

bikxkj ,

(6.1)

where all sums are σ–strong limits. A matrix X =
(
xij

)
is an element of

Mn(E), if and only if all
∑

k〈xki, xkj〉 exist σ–strongly and define the matrix
elements of an element in Mn(B).

Clearly, M := Cn ⊗̄s B = Bns is a Morita W ∗–equivalence from Mn(B) to
B and

M �̄s E �̄sM∗ = Mn(E).

6.1. Corollary. E and Mn(E) are Morita equivalent W ∗–correspon-
dences.

6.2. Proposition. Suppose E is strongly full and let n be an infinite

cardinal number not smaller than that granted by Lemma 4.2. Then Mn(E)
has a unit vector.

Proof. Denote by l the cardinal number from Lemma 4.2 and fix n as
stated. Choose sets S, T with #S = l,#T = n. Let x� (� ∈ S) denote the
components of a unit vector in El

s
. As n is infinite (by assumption!) and l ≤ n

so that ln = n, we may fix a bijection ϕ : T → S×T . Denote by ϕ1 and ϕ2 the
first and the second component, respectively, of ϕ. Define a matrix X ∈Mn(E)
by setting

xij = xϕ1(i)δϕ2(i),j .

Then

〈X,X〉ij =
∑
k∈T

〈xki, xkj〉 =
∑
k∈T

δϕ2(k),iδϕ2(k),j〈xϕ1(k), xϕ1(k)〉

=
∑

(�,k)∈S×T
δk,iδk,j〈x�, x�〉 =

(∑
k∈T

δk,iδk,j

)(∑
�∈S

〈x�, x�〉
)

= δi,j1.

Putting together Corollary 6.1 and Proposition 6.2 with Theorem 5.12 solves
Problem 1 in the W ∗–case.
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6.3. Theorem. Let E be a strongly full W ∗–correspondence. Then
there is a W ∗–module F (necessarily strongly full) and a unital normal en-
domorphism of ϑ of Ba(F ) such that Fϑ = E.

6.4. Observation. Note that, by construction of Mn(E) and the proof
of Theorem 5.12, the module F =

(
lim indn→∞Mn(E �̄s n)

) �̄s Bns ⊃
Mn(E) �̄s Bns = Ens contains a unit vector. But we can show even more.
In Corollary 9.3 we will see that, for a suitable cardinality n, we may even
achieve that F is isomorphic to a free module Bns. This observation (and its
C∗–version, Observation 7.7, below) are in duality with Observation 8.5 in the
sense of commutant (Section 9).

6.5. Remark. If E is not necessarily strongly full, then, as explained
in Section 2 (W ∗–version, of course), for that E = Fϑ for some ϑ acting on
some Ba(F ), it is necessary that BEs acts nondegenerately on E. But this
is also sufficient, for in this case, we apply Theorem 6.3 to the strongly full
correspondence E over BEs and obtain a ϑ acting on Ba(F ) for some F that
is strongly full over BEs.

§7. Endomorphisms: C∗–Case

In this section we solve Problem 1 for full C∗–correspondences over a unital
C∗–algebra. The proof is less streamlined than that of the W ∗–case, so we do
not develop a complete analogue of the treatment of the W ∗–version — also
because, partly, this is not possible.

One problem was to have a notion of Morita equivalence that understands
a full Hilbert B–module E as a Morita equivalence from Ba(E) to B and not
just from K (E) to B. In the previous sections the strongly closed versions for
W ∗–objects did the job. In this section we elaborate a version for strict closure
(or what is the same for strict or ∗–strong completion). And we elaborate this
strict Morita equivalence only for the case, where one of the algebras is Ba(B).
This will allow for the necessary matrix constructions, and Lemma 3.2 will
guarantee existence of a unit vector in the matrix modules. The fact that, for
nonunital C∗–algebras, we have available neither Lemma 3.2 nor Lemma 4.2 is
responsible for that we cannot prove the result in that case. Lemma 3.2 works
only for full Hilbert modules over unital C∗–algebras, and the strict completion
will be only “strictly full” over the multiplier algebra of B. The proof of Lemma
4.2 is based on quasi orthonormal bases that, in strict completions, are not
available.
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7.1. Example. Let B = C0(−2, 2) and I = C0(−1, 1) ⊂ B an ideal and
define the full Hilbert B–module E = B ⊕ I. Then the strict completion of E,
Ba(B, E), is the direct sum Cb(−2, 2)⊕C0(−1, 1). The only nonzero projection
in Ba(B) = Cb(−2, 2) is 1. Every element ξ in Ba(B, E) that has unit length
leaves a nonzero complement (1− ξξ∗)E and all inner products of elements in
that complement are in I. So Ba(B, E) has no quasi orthonormal basis.

Nevertheless, we remark that E, equipped with its natural left action, is
the correspondence of a strict unital endomorphism on Ba(F ) for some full
Hilbert B–module F . Indeed, choose two Hilbert spaces H1 and H2 and put
F = C0((−1, 1), H1) ⊕ C0((−2, 2), H2). Then F � E = C0((−1, 1), H1 ⊕H1 ⊕
H2) ⊕ C0((−2, 2), H2). Therefore, whenever H1 is infinite-dimensional, there
exists an isomorphism H1⊕H1⊕H2 → H1 so that F�E and F are isomorphic.
We do not know a counter example for nonunital B.

Let us start with some generalities, however, without discussing (as would
be natural) how the definitions fit into the frame of multiplier algebras, double
centralizers and strict topology. If E is a Hilbert B–module, then by the strict

completion of E we understand the space Ba(B, E). If B is unital, then
Ba(B, E) is just E where we consider x ∈ E as the map b �→ xb. In general,
Ba(B, E) is a Hilbert module over Ba(B) with inner product 〈X,X ′〉 = X∗X ′.
Further, Ba(B, E) has the same operators as E, that is, Ba(Ba(B, E)) =
Ba(E). (An element a ∈ Ba(E) acts on X ∈ Ba(B, E) simply by composition
aX, while an operator a on Ba(B, E) determines the operator Xb �→ (aX)b on
E.)

Now we wish to define an appropriate tensor product among such spaces.

7.2. Proposition. Let E be a Hilbert B–module and let F be a corre-
spondence from B to C. Then:

1. The left action of B on F extends to a (unique and strict) action of Ba(B).
Therefore, also Ba(C, F ) has a left action of Ba(B).

2. For every X ∈ Ba(B, E) by setting η(X) = X � idF we define a map in
Ba(B � F,E � F ) = Ba(F,E � F ) with adjoint η(X)∗ = X∗ � idF .

3. The map X � Y �→ η(X)Y defines an isometry from the tensor prod-
uct of Ba(B, E) and Ba(C, F ) over Ba(B) onto a strictly dense subset of
Ba(C, E � F ).

Proof. For Part 1 see, for instance, [MSS06, Corollary 1.20]. Part 2 is
general theory of tensor products.
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For Part 3 let us choose a bounded approximate unit
(
uλ

)
λ∈Λ

for B. Then

η(X)Y c = lim
λ
η(X)uλY c = lim

λ
(Xuλ) � (Y c),

where we made use of uλy → y in norm for all y ∈ F . (This follows from Part
1, but may also easily be verified by three epsilons.) It follows that

〈η(X)Y c, η(X ′)Y ′c′〉 = lim
λ
〈(Xuλ) � (Y c), (X ′uλ) � (Y ′c′)〉

= lim
λ
〈Y c, u∗λ〈X,X ′〉uλY ′c′〉 = lim

λ
〈uλY c, 〈X,X ′〉uλY ′c′〉

= 〈Y c, 〈X,X ′〉Y ′c′〉 = c∗〈Y, 〈X,X ′〉Y ′〉c′.

Clearly, when restricted to the subset E�F of Ba(B, E)�Ba(C, F ), we obtain
all maps of the form c �→ cz for z ∈ E � F , which form a strictly dense subset
of Ba(C, E � F ).

7.3. Definition. By the strict tensor product Ba(B, E) �̄Ba(C, F )
we understand the space Ba(C, E � F ).

The following corollary can be proved as Part 3.

7.4. Corollary. For every correspondence G from C to D (that may be
viewed also as a correspondence G from Ba(C) to D in a unique way) we have(

Ba(B, E) �̄ Ba(C, F )
) �G = Ba(C, E � F ) �G = E � F �G.

Clearly, if E is a correspondence from A to B, then Ba(C, E � F ) is a
correspondence from Ba(A) to Ba(C). In particular, if E� is a product system
of correspondences over B, then the family of all Ba(B, Et) form a strict tensor
product system of correspondences over Ba(B). If this product system has a
unital unit Ξ�, then we may proceed as in Section 2. So Ξs � idEt

defines an
inductive system of isometric embeddings Ba(B, Et) → Ba(B, Es+t). From
the inductive limit of this system we may extract a Hilbert B–module

E∞ =
(
lim ind
t→∞ Ba(B, Et)

) � B

so that lim indt→∞ Ba(B, Et) embeds as a strictly dense subset into Ba(B, E∞).
(Note that B is a self-inverse Morita equivalence over B and that the left ac-
tion of B extends to a strict left action of Ba(B) on B in the canonical way.)
Ba(B, E∞) fulfills

(7.1) Ba(B, E∞) �̄ Ba(B, Et) = Ba(B, E∞)
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and the usual associativity condition like (2.3), so that ϑt(a) = a� idEt
defines

an E0–semigroup on Ba(Ba(B, E∞)). But, we know that Ba(Ba(B, E∞)) is
just Ba(E∞). It is easy to show that this E0–semigroup is strict and that its
product system is nothing but E�. The following proposition is slightly more
general and implies what we just asserted in the special case M = B.

7.5. Proposition. Let M denote a Morita equivalence from B to C (so
that M carries a unique and strict extension of its left action to Ba(B)). Put
F∞ := E∞ �M . Then

F∞ = F∞ � (M∗ � Et �M)

(via (7.1) and Corollary 7.4) and θt(a) := a � idM∗�Et�M defines a strict
E0–semigroup on Ba(F∞) whose product system is F� := M∗ � E� �M .

Proof. The isomorphism F∞ = F∞ � Ft is

F∞ = E∞ �M = Ba(B, E∞) �M =
(
Ba(B, E∞) �̄ Ba(B, Et)

) �M

= E∞ � Et �M = E∞ �M �M∗ � Et �M = F∞ � Ft.

The remaining statements follow as in the second half of the proof of Theorem
5.12 just the roles of E� and F� have now switched.

7.6. Theorem. Let E be a full correspondence over a unital C∗–algebra
B. Then there is a (necessarily full) Hilbert B–module F and a unital endo-
morphism of ϑ of Ba(F ) such that Fϑ = E.

Proof. Denote by E� =
(
E�n)

n∈N0
the product system generated by E.

We define M∞(B) and M∞(Et) as the completions of the spaces of matrices
with finitely many nonzero entries in the respective norm topologies and op-
erations like in (6.1). To come to the setting of the preceding proposition we
make up a dictionary.

Propositions 7.5 here
B M∞(B)
C B
M B∞

E� M∞(E�) :=
(
M∞(En)

)
n∈N0

F� E�

F∞ F

θ ϑ
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In order to apply Proposition 7.5 (providing us with the F and the ϑ we seek
according to the dictionary) it remains to show that Ba(M∞(B),M∞(E)) has
a unit vector Ξ (determining a unital unit Ξ� for the whole product system
M∞(E�) as ingredient). But this can be done as in Proposition 6.2 using,
however, the ingredients from Lemma 3.2 (that is, l finite so that n = #N is
sufficient) instead of those from Lemma 4.2.

7.7. Observation. Also here the first part of Observation 6.4 remains
true: F ⊃ E∞ contains a unit vector. The second half, F can be chosen B∞,
remains true at least if E is countably generated. (This follows from the main
result of Brown, Green and Rieffel [BGR77]. We do not give any detail.)

7.8. Remark. Also here a correspondence E over B that should come
from an endomorphism, necessarily must be also a correspondence over BE .
However, under the present assumptions we cannot simply replace B with BE
as in Remark 6.5, because BE , in general, will be nonunital.

It is not difficult to write down endomorphisms or even continuous time
E0–semigroups of Ba(F ) for a full Hilbert module F over a nonunital
C∗–algebra. (Put B := C0(0,∞) and F := C0((0,∞), H) for some nonzero
Hilbert spaceH. Then F is a Hilbert B–module with inner product 〈h, h′〉(r) :=
〈h(r), h′(r)〉. Define Et = B as right Hilbert module, but with left action
b.x(r) = b(r + t)x(r). Then F � Et = F via [h � x](r) = h(r + t)x(r) defines
an E0–semigroup ϑt(a) = a � idt on Ba(F ) with product system Et.) Nev-
ertheless, without going into detail, we would like to emphasize that in many
respects our motivation to study E0–semigroups on Ba(F ) via product systems
(dilation theory!) lets appear as not very natural the case where F is not full
over a unital C∗–algebra. Continuous product systems of correspondences over
a unital C∗–algebra always have unit vectors; see [Ske07a, Lemma 3.2].

§8. Representations

In this section we solve Problem 2. We show that every faithful
C∗–correspondence admits a faithful nondegenerate representation (Theorem
8.3). This generalizes Hirshberg’s result [Hir05] where the correspondence is
required full. And we show that for a faithful W ∗–correspondence the repre-
sentation may be chosen normal (Theorem 8.2). Actually, we show first the
result for the W ∗–case and, then, boil down the C∗–case to the W ∗–case. The
heart of the proof is the well-known statement that faithful representations of
W ∗–algebras become unitarily equivalent when amplified suitably (Corollary
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4.3). The main reason why we reproved that fact in Section 4 is to underline
how simple a self-contained proof of Theorem 8.2 actually is. The reduction of
Theorem 8.3 to Theorem 8.2 remains somewhat tedious.

Let G be a Hilbert space. A representation on G of a correspondence
E over B is a pair (π, η) of maps π : B → B(G) and η : E → B(G) where π is a
representation of B and η is a bimodule map (that is, η(bxb′) = π(b)η(x)π(b′))
such that η(x)∗η(y) = π(〈x, y〉). We always assume that π is nondegenerate.
The representation (π, η) is nondegenerate (or essential), if also η is non-
degenerate, that is, if span η(E)G = G.

8.1. Remark. The nomenclature here differs, for instance, from Muhly
and Solel [MS98], who call covariant representation a pair (π, η) of completely
contractive mappings fulfilling all conditions but η(x)∗η(y) = π(〈x, y〉). They
call a covariant representation isometric if also η(x)∗η(y) = π(〈x, y〉) holds,
and they call an isometric covariant representation (that is, a representation in
our sense) fully coisometric if span η(E)G = G.

We are done with Problem 2, if we can choose a faithful representation
π such that the induced representation ρπB of B on H := E � G is unitarily
equivalent to π, so that there exists a unitary u ∈ B(G,H) such that uπ(b) =
ρπ(b)u for all b ∈ B. In that case, by setting η(x) = u∗ηπ(x) ∈ B(G) the pair
(π, η) is a faithful nondegenerate representation of E on G. If, in the W ∗–case,
π is normal, then so is η (see Section 1.7).

8.2. Theorem. Every faithful W ∗–correspondence over a W ∗–algebra
admits a normal faithful nondegenerate representation on a Hilbert space.

Proof. Let E be a W ∗–correspondence over a W ∗–algebra B. Choose a
faithful normal nondegenerate representation π : B → B(G) of B on a Hilbert
space G. Then the induced representation ρπB on H := E�G is nondegenerate
and normal. It is faithful because the left action of B on E is faithful. By
Corollary 4.3 there exists a Hilbert space H such that the amplification π⊗ idH

of π on G ⊗ H and the amplification ρπB ⊗ idH of ρπB on H ⊗ H are unitarily
equivalent. Obviously, E�(G⊗H) = H⊗H so that ρπB⊗idH is the representation
ρπ⊗idH

B of B induced by π ⊗ idH. By the discussion preceding the theorem we
find a faithful normal nondegenerate representation (π ⊗ idH, η) of E.

8.3. Theorem. Every faithful C∗–correspondence over a C∗–algebra
admits a faithful nondegenerate representation on a Hilbert space.
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Proof. Suppose E is a correspondence over B with a faithful left ac-
tion. We are done, if we can choose a faithful (nondegenerate) representation
π : B → B(G) in such a way that the induced representation ρπB on H := E�G
extends to a normal and faithful representation of B′′ := π(B)′′ ⊂ B(G). This
representation turns, then, E′′ := ηπ(E)

s
, the strong closure of the subset

ηπ(E) in B(G,H), into a von Neumann correspondence over B′′ with faithful
left action. (See Section 9 for details.) We apply Theorem 8.2 to E′′ and obtain
a (normal) faithful nondegenerate representation η′′ of E′′ on a Hilbert space.
As E is strongly dense in E′′ (via ηπ) and η′′ is normal, also the restriction of
η := η′′ � E to E is nondegenerate.

Let B∗
1
+ :=

{
ϕ ∈ B∗ : ϕ ≥ 0, ‖ϕ‖ ≤ 1

}
and E1 :=

{
x ∈ E : ‖x‖ ≤ 1

}
.

Suppose we can find a subset S of B∗
1
+ that fulfills:

1. For all b �= 0, there is a ϕ ∈ S such that ϕ(b∗b) �= 0.

2. For all ϕ ∈ S and x ∈ E1, also ϕ ◦ 〈x, •x〉 ∈ S.

3. For every ϕ ∈ S, there exist ψ ∈ S and x ∈ E1 such that ϕ = ψ ◦ 〈x, •x〉.
We represent B by π =

⊕
ϕ∈S πϕ on G =

⊕
ϕ∈S Gϕ as the direct sum of

all GNS-representations (πϕ, Gϕ � γϕ) to all elements ϕ in S. Then, by (1)
this representation of B is faithful. By (2) the induced representation of B on
H := E�G =

⊕
ϕ∈S E�Gϕ extends to a normal representation of B′′ ⊂ B(G).

(Indeed, for ϕ ∈ S, x ∈ E1 and ψ = ϕ◦〈x, •x〉 ∈ S we observe that the subspace
Hϕ,x := spanBx � γϕ with the natural left action of B is unitarily equivalent
to the GNS-representation πψ on Gψ by vϕ,x : bx� γϕ �→ bγψ. For b′′ ∈ B′′ we
simply define the action on an element h ∈ Hϕ,x as v∗ϕ,xb′′vϕ,xh. It is easy to
see that this extends as a well-defined representation of B′′ on all of H that is
strongly continuous on bounded subsets and, therefore, normal.) And by (3)
this representation of B′′ is faithful.

For sequences
(
ϕn

)
n∈N

in B∗
1
+ and

(
xn

)
n∈N

in E1 we denote

ϕn := ϕn ◦ 〈x1 � . . .� xn, •x1 � . . .� xn〉.

Recall that a subnet of a net
(
aλ

)
λ∈Λ

is a net of the form
(
ag(μ)

)
μ∈M for some

cofinal function g : M → Λ (that is, for every λ ∈ Λ there is a μλ ∈ M such
that μ ≥ μλ ⇒ g(μ) ≥ λ). We define a suitable set S by

S :=
{
ϕ ∈ B∗

1
+

∣∣ ∃ (
ϕn

)
n∈N

⊂ B∗
1
+,

(
xn

)
n∈N

⊂ E1 such that

ϕ is the weak∗ limit of a subnet of
(
ϕn

)
n∈N

}
.
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To show (1), let b ∈ B with ‖b‖ = 1. Then choose x1, x2, . . . ∈ E1 such
that

‖bx1 � . . .� xn‖2 ≥ n+ 1
2n

for all n ∈ N, and choose states ϕn such that

ϕn
(〈bx1 � . . .� xn, bx1 � . . .� xn〉

)
= ‖bx1 � . . .� xn‖2

.

B∗
1
+ is weak∗ compact so that the sequence

(
ϕn

)
n∈N

has a weak∗ convergent
subnet. Its limit ϕ is an element of S that fulfills ϕ(b∗b) ≥ 1

2 .
For (2) and (3) let us fix an arbitrary element of ϕ ∈ S represented as

weak∗ limit ϕ = limλ ϕ
f(λ) for some sequences

(
ϕn

)
n∈N

in B∗
1
+ and

(
xn

)
n∈N

in E1, a directed set Λ and a cofinal function f : Λ → N.
To show (2), choose x ∈ E1. Then for ψn = ϕn−1, yn = xn−1 (n ≥ 2)

and ψ1 = 0, y1 = x and the cofinal function g(λ) = f(λ) + 1 we find that
ψg(λ)(b) = ψg(λ)

(〈y1 � . . .� yg(λ), by1 � . . .� yg(λ)〉
)

= ϕf(λ)(〈x, bx〉) converges
to ϕ(〈x, bx〉) for all b ∈ B. So, ϕ ◦ 〈x, •x〉 = limλ ψ

g(λ) ∈ S.
To show (3), a candidate for x is x1. We put yn = xn+1, ψn = ϕn+1

(n ∈ N) and g(λ) = max(f(λ) − 1, 1). By weak∗ compactness, from the net(
ψg(λ)

)
λ∈Λ

we may choose a subnet
(
ψg◦h(μ)

)
μ∈M converging weakly to a ψ.

Clearly, the function g ◦ h : M → N is cofinal, so that ψ ∈ S. And ψ fulfills
ψ◦〈x1, •x1〉 = ϕ, because the net

(
ψg◦h(μ)◦〈x1, •x1〉

)
μ∈M has the same limit as

the subnet
(
ϕf◦h(μ)

)
μ∈M of

(
ϕn

)
n∈N

, namely, ϕ. (These two nets are identical
for all μ except for those μ ∈M where f(h(μ)) = 1.)

8.4. Remark. If E is a (W ∗–)correspondence that admits a faithful
(normal) nondegenerate representation (π, η), then necessarily E is faithful.
(The induced representation ρπB is unitarily equivalent to the faithful represen-
tation π.) If E is (strongly) full, then for π being faithful it is sufficient (and
necessary) that η alone is faithful.

What happens, if we require only that η is faithful in the case when E

is not necessarily (strongly) full? In this case, at least the restriction of π to
BE (respectively, BEs) must be faithful and the left action of BE (respectively,
BEs) must be nondegenerate and faithful. It follows that E must be faith-
ful as (W ∗–)correspondence over BE (respectively, BEs). But in this case we
can apply Theorem 8.3 (8.2) and obtain a faithful representation (η, π) of the
correspondence over the smaller algebra. The part π of that representation
may be extended to a (of course, in general not faithful) representation of B
and the extended π together with η gives rise to a (normal) nondegenerate not
necessarily faithful representation where η is faithful.
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8.5. Observation. The proof of Theorem 8.2 shows that, if B ⊂ B(G)
is a von Neumann algebra, then the representation of a W ∗–correspondence
E over B may be chosen to live on a multiple of the representation space G
with B acting in the natural way as amplification. Also, in the C∗–case the
representation of E will live on a suitable multiple of the representation space
of the representation π constructed on the proof of Theorem 8.3.

The following consequence of Theorems 8.3, 8.2, and Section 2 is a discrete
time version of a result by Arveson and Kishimoto [AK92] for W ∗–algebras. In
Skeide [Ske06c] we prove a continuous time version for C∗–modules. In Skeide
[Ske08a] we will use the same technique to give a completely different proof of
[AK92].

8.6. Theorem. Every faithful strict (normal) unital endomorphism ϑ

of Ba(F ) for some Hilbert module (W ∗–module) over B is the restriction of
an automorphism of some B(H) containing Ba(F ) as (W ∗–)subalgebra.

Proof. We discuss only the (more difficult) C∗–case. By making B smaller,
we assume that F is full. Denote by E = F ∗�ϑF the correspondence of ϑ. Since
ϑ is faithful, so is E. Applying Theorem 8.3, we obtain a faithful nondegenerate
representation (π, η) of E on G. Define H := F �G. Since π is faithful, so is
the embedding a �→ a� idG from Ba(F ) into B(H). Since η is nondegenerate,
the elements η(y∗ �ϑ z)g are total in G. By

x� η(y∗ �ϑ z)g �−→ ϑ(xy∗)z � g

we define a unitary u ∈ B(H). For every a ∈ Ba(F ), we find that

u(a� idG)(x� η(y∗ �ϑ z)g) = u(ax� η(y∗ �ϑ z)g)
= ϑ(axy∗)z�g = (ϑ(a)�idG)(ϑ(xy∗)z�g) = (ϑ(a)�idG)u(x�η(y∗�ϑz)g).

In other words, u(a� idG)u∗ = ϑ(a) � idG, so that the restriction of the inner
automorphism u • u∗ of B(H) to the subalgebra Ba(F ) � idG ∼= Ba(F ) gives
back ϑ.

8.7. Corollary. Every faithful (normal) nondegenerate endomorphism
of a C∗– (W ∗–)algebra B is the restriction of an inner automorphism of some
B(H) ⊃ B to B.

Proof. If B is a von Neumann algebra, apply Theorem 8.6 to Ba(B) = B.
If B is a C∗–algebra, then the nondegenerate(!) homomorphism ϑ : B → B ⊂
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Ba(B) extends uniquely to a strict unital homomorphism of Ba(B). Now we
may apply Theorem 8.6.

As another application we prove that every normal faithful representation
(σ0, σ) on G of a faithful W ∗–correspondence E over B admits a nondegener-

ate extension (τ0, τ ) on H ⊃ G. (In the terminology of [MS98], every normal
isometric covariant representation admits a unitary, that is isometric and fully
coisometric, extension.) By this we mean that (τ0, τ ) is normal nondegenerate
(faithful) representation of E such that τ (x)g = σ(x)g and τ0(b)g = σ0(b)g for
all g ∈ G ⊂ H.

Note that this is a stronger statement than existence of a nondegenerate
dilation of (σ0, σ). Dilation would mean that the compression to G gives back
(σ0, σ). (Existence of a nondegenerate dilation has been shown [MS02]. As
explained in [Ske08b], existence also follows via the commutant (see Section
9) from the inductive limit construction described in Section 2 due to [BS00,
BBLS04].) It is known that the statement may fail for C∗–correspondences,
see Solel [MS98, Example 5.16].

8.8. Theorem. Every normal faithful representation of a (faithful)
W ∗–correspondence admits a nondegenerate extension.

Proof. Let E denote a faithful W ∗–correspondence over a W ∗–algebra B.
Suppose (σ0, σ) is a normal isometric faithful covariant representation of E on
the Hilbert space G.

Then the Hilbert space E � G is canonically isomorphic to the subspace
H := spanσ(E)G of G and the induced representation ρσ0

B : b �→ b � idG on
E �G is unitarily equivalent to σ0 � H.

Since E is faithful, by Theorem 8.2 there exists a normal faithful nonde-
generate representation (η0, η). By Observation 8.5 the representation space
may be chosen G#S :=

⊕
s∈S G for some infinite set S in such a way that

η0 = id
#S
B .

Choose s0 ∈ S and fix a bijection ϕ : S → S\{s0}. For every Hilbert space
K we define a unitary vK : K ⊕K#S → K#S by setting

vK(k,
(
ks

)
s∈S) =

(
k′s

)
s∈S with k′s0 := k, k′ϕ(s) := ks

(cf. Example 2.2). Denote by H⊥ the orthogonal complement of H in G. Of
course, G#S = H#S ⊕H⊥#S in the obvious way. If we understand σ(x) as an
element in B(G,H), then (η0, τ ) with

τ (x) := (vH ⊕ idH⊥#S )(σ(x) ⊕ η#S(x))v∗G
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defines a normal faithful nondegenerate representation of E on G#S that sends
the subspace G ∼= Gs0 to Hs0 ⊂ Gs0 and, on that subspace, gives back σ.

8.9. Remark. The extension does not give an extension of the repre-
sentation (in the sense of Definition 9.8) of the whole product system

(
E�n)

n∈N0

generated by E. A “semigroup” version of this result has to wait for future
investigation.

§9. Commutants: Endomorphisms versus Representations

In this section we show that the W ∗–versions of our results, Theorem
6.3 and Theorem 8.2, are dual to each other in the sense of commutants of
von Neumann correspondences. The commutant is a duality between a von
Neumann correspondence over the von Neumann algebra B ⊂ B(G) and its
commutant, a von Neumann correspondence over the commutant B′ of B. In
Theorem 9.5 we will show that, under commutant, endomorphisms associated
with a von Neumann correspondence E are in correspondence (in a sense one-
to-one) with representations of its commutant, E′. An endomorphism is unital,
if and only if the corresponding representation is nondegenerate.

Von Neumann modules (Skeide [Ske00]) are the concrete operator ana-
logues of W ∗–modules and Neumann correspondences (Skeide [Ske03, Ske06b])
are the concrete operator analogues of W ∗–correspondences. (As categories the
two versions are equivalent.) Unlike the W ∗–version, for von Neumann mod-
ules there is a double commutant theorem and von Neumann correspondences
possess a commutant. (The commutant was introduced in Skeide [Ske03]. In-
dependently, Muhly and Solel [MS04] have considered a W ∗–version, in which
the W ∗–algebra, first, must be represented faithfully. In [MS05] they gener-
alized the construction to A–B–correspondences.) We start by giving a very
brief account on these subjects.

Let B ⊂ B(G) be a von Neumann algebra acting nondegenerately on the
Hilbert space G. Then every (pre-)Hilbert B–module E may be identified as a
concrete operator B–submodule of B(G,H) (nondegenerate in the sense that
spanEG = H) via the representation η := ηidB from G to H induced by the
identity representation idB of B on G; see Section 1.7. Following Skeide [Ske00],
we say E is a von Neumann B–module, if E is strongly closed in B(G,H).

One may show that E is a von Neumann module, if and only if E is self-
dual, that is, if and only if E is a W ∗–module; see [Ske00, Ske05b]. For a fixed
von Neumann algebra B the category of von Neumann B–modules and the cat-
egory of W ∗–modules over B are, therefore, equivalent. (The morphisms are, in
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both cases, the adjointable maps.) Fixing an equivalence between the category
of W ∗–algebras and the category of von Neumann algebras, also the category of
von Neumann modules and the category of W ∗–modules are equivalent. (The
morphisms are the ternary morphisms; see Abbaspour and Skeide [AS07] for
details.)

9.1. Remark. The point about von Neumann modules is that it is
easier to obtain them (from pre-Hilbert modules over a von Neumann algebra)
than W ∗–modules. Simply take strong closure. In the sequel, we will learn
another possibility that is completely algebraic and parallels the operation of
taking the double commutant of an operator ∗–algebra in order to obtain a von
Neumann algebra; see Remark 9.2.

We identify Ba(E) as a subalgebra of B(H) via the induced representation
ρidB . Clearly, if E is a von Neumann module, then Ba(E) is a von Neumann
subalgebra of B(H). When E is also a correspondence over B such that the
canonical representation ρ : B → Ba(E) → B(H) is normal, then we say E is a
von Neumann correspondence. (So E is a von Neumann correspondence,
if and only if it is also a W ∗–correspondence. Once more there are equivalences
of von Neumann categories and W ∗–categories, with and without fixing the
algebra in question.) We refer to ρ as the Stinespring representation of B.

On H there is a second (normal nondegenerate) representation, namely,
the so-called commutant lifting ρ′ of B′ defined as ρ′(b′) = idE �b′. It
is not difficult to show that the intertwiner space CB′(B(G,H)) := {x ∈
B(G,H) : ρ′(b′)x = xb′ (b′ ∈ B′)} is a von Neumann B–module (see [Rie74])
and that E is a von Neumann module, if and only if E = CB′(B(G,H)) (see
[Ske05b]). Less obvious is the converse statement: If ρ′ is a normal nonde-
generate representation of B′ on a Hilbert space H, then the von Neumann
B–module E := CB′(B(G,H)) acts nondegenerately on G (see [MS02, Lemma
2.10]), that is, E �G = H via x � g = xg. Clearly, the commutant lifting for
that E is the ρ′ we started with. The fact that the correspondence between von
W ∗–modules over B and representations of B′ (in standard representation) is
an equivalence of categories, has been observed in Baillet, Denizeau and Havet
[BDH88]. ([BDH88, Theorem 2.2] is, actually, between W ∗–correspondences
and correspondences in the sense of Connes [Con80]. One has to put the al-
gebra acting from the left to C.) A version as a bijective functor (between
concrete von Neumann B–modules and representations of B′) is due to Skeide
[Ske06b].

9.2. Remark. If E is only a pre-Hilbert module over the von Neumann
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algebra B, then E
s

is just CB′(B(G,H)) and provides us with the minimal self-
dual extension of E in the sense of Paschke [Pas73]; see [Rie74, Ske05b]. This
is the double commutant theorem for von Neumann modules.

A von Neumann B–module is strongly full, if and only if the commutant
lifting ρ′ is faithful.

9.3. Corollary. If F is a strongly full von Neumann module, then there
is a cardinal number n such that F ns ∼= Bns. In particular, if ϑ is a uni-
tal normal endomorphism of Ba(F ) with associated von Neumann correspon-
dence E, then the amplification gives a unital normal endomorphism ϑn on
Ba(F ns) = Ba(Bns) = B⊗B(Cn), whose associated von Neumann correspon-
dence is E, too.

Proof. The first statement is a simple consequence of Corollary 4.3 and
the observation that the correspondence between von Neumann modules and
their commutant liftings respects direct sums (of arbitrary cardinality). The
second statement follows from the (easy to proof) fact that E0–semigroups with
the same associated product system may be added.

As a curiosity we reprove a well-known result (see [Rie74, Theorem 8.15]
and its footnote) about when two W ∗–algebras are Morita equivalent.

9.4. Corollary. Let A and B denote two W ∗–algebras. Then the fol-
lowing conditions are equivalent :

1. A and B are Morita equivalent.

2. A and B admit faithful normal nondegenerate representations ρ : A →
B(H) and π : B → B(G) with isomorphic commutants ρ(A)′ ∼= π(B)′.

3. There is a Hilbert space H such that A⊗B(H) and B⊗B(H) are isomorphic.

Proof. 1 ⇒ 2. Suppose E is a Morita equivalence from A to B. Choose
a faithful normal nondegenerate representation π of B on G. Put B′ := π(B)′

and define as usual the commutant lifting ρ′ of B′ on H := E � G. Since E
is a Morita equivalence, ρ′ is faithful and ρπ is an isomorphism onto Ba(E) =
ρ′(B′)′ ⊂ B(H). In other words, ρ(A)′ = ρ′(B′) ∼= B′ = π(B)′.

2 ⇒ 3. Suppose we have two representations π and ρ as stated. Then
Corollary 4.3 provides us with a Hilbert space H such that ρ(A)′ ⊗ idH and
π(B)′ ⊗ idH are unitarily equivalent. Thus, they have isomorphic commutants
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ρ(A) ⊗ B(H) and π(B) ⊗ B(H) so that also A ⊗ B(H) and B ⊗ B(H) are
isomorphic.

3 ⇒ 1. Adim H
s

is a Morita equivalence from A⊗B(H) to A and Bdim H
s

is a Morita equivalence from B ⊗ B(H) to B. If A ⊗ B(H) and B ⊗ B(H)
are isomorphic, then the tensor product Adim H

s∗ �̄s Bdim H
s

over A⊗B(H) ∼=
B ⊗ B(H) makes sense and is a Morita equivalence from A to B.

Summarizing, we have a one-to-one correspondence between von Neumann
B–modules and representations of B′ and a one-to-one correspondence between
von Neumann correspondences E over B and pairs of representations (ρ, ρ′, H)
of B and B′ with mutually commuting range. In the latter picture of correspon-
dences as two representations nobody prevents us from exchanging the roles of
B and B′. In that way, we obtain a further von Neumann correspondence,
namely

E′ := CB(B(G,H)) :=
{
x′ ∈ B(G,H) : ρ(b)x′ = x′b (b ∈ B)

}
,

this time over B′ with left action of B′ via ρ′. This duality between E and
its commutant E′ was mentioned in [Ske03]. See Skeide [Ske06b] for defini-
tions (concrete von Neumann correspondences) where the commutant becomes,
really, a bijective functor.

We are now in a position to formulate the theorem about the relation
between Problem 1 and Problem 2 for von Neumann correspondences. But
first let us recall that a von Neumann correspondence E over B is strongly
full, if and only if the left action of B′ on the commutant E′ defines a faithful
representation of B′ on E′. If (π′, η′) is a faithful nondegenerate representation
of E′, so that the left action of B′ on E′ is faithful, then necessarily E is strongly
full.

9.5. Theorem. Let E be a von Neumann correspondence over a von
Neumann algebra B ⊂ B(G) and E′ its commutant. Then the following condi-
tions are equivalent.

1. E is the correspondence of a normal unital endomorphism ϑ of Ba(F ) for
some strongly full von Neumann B–module F .

2. E′ admits a faithful normal nondegenerate representation (π′, η′) on a
Hilbert space K.

Moreover, if either of the conditions is fulfilled, then E is strongly full or,
equivalently, the left action of B′ on E′ is faithful.
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Proof. Let (ρ, ρ′, H) be the triple that determines E as CB′(B(G,H))
and E′ as CB(B(G,H)).

Suppose that F is a strongly full von Neumann B–module and that ϑ is
a normal unital endomorphism of Ba(F ) such that F = F �̄s E and ϑ(a) =
a � idE . (As F is strongly full, E is uniquely determined by these properties
and necessarily E is itself strongly full.) Put K := F �G. As F = F �̄s E we
have K = F �E �G. (If the last factor in a tensor product is a Hilbert space,
then norm closure is sufficient.) By construction we have E �G = spanEG =
H = spanE′G = E′ �G. (Note that spanEG = H = spanE′G is true equality
of Hilbert spaces. The equalities E �G = spanEG and E′ �G = spanE′G are
by canonical isomorphism.) We find

F �G = K = F � E′ �G.

There are several ways to understand why η′(x′) : y � g �→ y � x′ � g is a well-
defined element of B(K). One is that η′(x′) = idF �x′ where x′ is considered
a B–C–linear operator from G to H = E′ � G. Let π′ denote the (normal!)
commutant lifting of B′ on K = F �G. We leave it as an instructive exercise to
check that (π′, η′) is a representation of E′ on K. Obviously this representation
is nondegenerate. It is normal, because π′ is normal. It is faithful because F
is strongly full.

Suppose now that (π′, η′) is a faithful normal nondegenerate representation
of E′ on K. We put F := CB′(B(G,K)). As π′ is faithful, F is strongly full.
Again

F �G = K = F � E′ �G

now via η′(x′)(y � g) �→ y � x′ � g. (Note that the set η′(E′)F �G is total in
K, because η′ is nondegenerate.) Again we substitute E′ �G = H = E �G so
that F �G = F �E�G. The action of b′ ∈ B′ on these spaces is the same. To
see this we observe, first, that b′(y � x � g) = y � x � b′g = y � ρ′(b′)(x � g).
Then, writing a typical element of H = E �G not as elementary tensor x� g

but as elementary tensor x′ � g and recalling that the action of b′ on x′ � g is
just ρ′(b′), we find

b′(y � x′ � g) = y � ρ′(b′)(x′ � g) = y � b′x′ � g

= η′(b′x′)(y � g) = π′(b′)η′(x′)(y � g).

As the commutant liftings on F�G and on F�E�G coincide, also the modules
F and F �̄s E (being intertwiner spaces for the same commutant lifting) must
coincide and ϑ(a) = a� idE induces a unital normal endomorphism of Ba(E).
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Once again, as F is strongly full, a correspondence E is determined uniquely
by these properties, so that F ∗ �̄s ϑF gives us back E.

9.6. Remark. Muhly and Solel [MS99] have constructed from a non-
degenerate representation (π′, η′) on K an endomorphism of π′(B′)′ ⊂ B(K).
Taking into account that this algebra coincides exactly with our Ba(F ) ⊂
B(K), puts into perspective the second part of the proof of Theorem 9.5 with
the result from [MS99]. In fact, the constructions of the endomorphism are
very much the same, except that we have added the construction of F and the
interpretation of the algebra on which the endomorphism acts as Ba(F ). This
considerably facilitates understanding why everything is well-defined.

9.7. Example. Suppose E = H is a Hilbert space of dimension n =
2, 3, . . . ,∞. Then the commutant H ′ of H is isomorphic to H and we recover
the well-known fact that representations of the Cuntz algebra On correspond to
endomorphisms of index n of B(K), and that nondegenerate representations
correspond to unital endomorphisms. Note that the isomorphism H ∼= H ′

is by no means a trivial issue. One may see this by looking at the discrete
product systems generated by H and H ′, respectively. One is the commutant
of the other, but their product system structures are anti-isomorphic. This is
the same relation as that between the Bhat system and the Arveson system
constructed from an E0–semigroup on B(K); see Skeide [Ske07b].

We give now a version of Theorem 9.5 for a whole product system. The fol-
lowing definition (from [MS04], but in a different terminology; see Remark 8.1)
extends suitably the definition of a representation of a single correspondence
to the definition of a representation of a whole product system.

9.8. Definition. A representation of a product system E� of corre-
spondences over a C∗–algebra B is a pair (π, η) where π is a nondegenerate
representation of B on a Hilbert space K and η =

(
ηt

)
t∈S

is a family such that
each (π, ηt) is a representation of Et on K and such that

(9.1) ηs+t(xs � yt) = ηs(xs)ηt(yt).

A representation is nondegenerate , if every (π, ηt) is nondegenerate. In case
of product systems of W ∗–correspondences we require that π (and, therefore,
every (π, ηt)) is normal.

Suppose η =
(
ηt

)
t∈S

is a family of mappings fulfilling (9.1) and the iso-
metricity condition ηt(xt)∗η(yt) = η0(〈xt, yt〉). It is easy to see that (η0, η) is a
representation.
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Speaking about a whole product system instead of a single correspondence,
Theorem 9.5 remains true (with practically no changes in the proof, except
for a few more indices) for product systems of von Neumann correspondences
indexed by N0 or R+. We phrase it here.

9.9. Theorem. Let E �̄s

be a product system of von Neumann corre-
spondences over a von Neumann algebra B ⊂ B(G). Then also the commutant
E′ �̄s

=
(
E′
t

)
t∈S

possesses a canonical structure of a product system. Suppose
that all Et are strongly full or, equivalently, that all E′

t are faithful. Then there
is a one-to-one correspondence between normal E0–semigroups ϑ associated
with E �̄s

(acting on the operators of a necessarily strongly full von Neumann
B–module) and nondegenerate normal faithful representations (π′, η′) of E′ �̄s

.

Proof. Just do for every couple ϑt and ηt what we did in the proof of
Theorem 9.5 for single mappings, and verify the additional conditions. This
proceeding also reveals automatically how the product system structure of the
commutant of a product system must be defined.

9.10. Remark. The theorem has two extensions. The first is to the
nonfull case. Here, by Remark 6.5, we must require that BEt

s
is stationary

for t > 0 and acts nondegenerately on all Et. (Recall from Section 2 that
E0 := B is defined by hand.) We may phrase an equivalent condition on the
E′
t, following Remark 8.4. Dropping strong fullness, on the commutant side

this leads to possibly non faithful π′ where, however, still every η′t is injective.
All this can be proved very simply, by restricting B to the smaller algebra BEt

s

(acting nondegenerately on the subspace spanBEt
G of G) and its commutant.

Then we are in the strongly full case.
The second extension is to E–semigroups , that is, to semigroups of not

necessarily unital endomorphisms. (The definition of the product system asso-
ciated with an E–semigroup on Ba(E) is the same. The only difference is that
now we do no longer obtain an isomorphism E�Et → E but only an isometry
onto the subspace ϑt(1)E of E.) On the commutant side this leads to possibly
degenerate representations. In this setting we are no longer sure that BEt

s
is

stationary for t > 0, so we possibly leave also the strongly full case. This time
η′t need no longer be injective. Anyway, also in this case we remain with a
one-to-one correspondence of E–semigroups associated with E �̄s

and normal
representations of E′ �̄s

.
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§10. Examples

In this section we discuss for two examples what Theorem 6.3 asserts. The
first example discusses the correspondence in Example 3.1. The reader might
object that this correspondence is a Morita equivalence and that, therefore, the
endomorphism granted by Theorem 6.3 is an automorphism. However, this is
the simplest nontrivial example possible, and the discussion is already quite
involved. The second example is a correspondence of a proper endomorphism.
In the end of each example we discuss (due to space reasons only very briefly)
the meanings of Theorems 8.2 and 9.5.

10.1. Example. As in Example 3.1 we put B =
„

C 0
0 M2

« ⊂ M3 and
E =

„
0 C2

C
2 0

« ⊂ M3. The operations of the correspondence E over B are those
inherited from M3. This remains even true for the tensor product:

x� y = xy ∈ E � E = B.

In particular,

En := E�n =

{
B n even,

E n odd.

Fortunately, the structure of Hilbert B–modules F is not much more compli-
cated than that of Hilbert spaces and we still can say in advance how automor-
phisms of Ba(F ) may look like. In particular, we can say when an automor-
phism is associated with the correspondence E.

Let p1 =
„
1 0
0 0

«
and p2 =

„
0 0
0 1

«
denote the two nontrivial central projections

in B. Every Hilbert B–module F decomposes into the direct sum F = F1 ⊕ F2

with Fi = Fpi. The summand F1 has inner product in
„

C 0
0 0

«
. We may identify

it with a Hilbert space H1. The summand F2 has inner product in
„
0 0
0 M2

«
. Its

structure is therefore that of a Hilbert M2–module. A short computation shows
that

F2 = F2 �M2 = F2 � C
2 � C2 = H2 � C2 = H2 ⊗ C2,

where we defined the Hilbert space H2 := F2 � C2 and where we used in the
last step that there is no difference between the interior tensor product � over
C and the exterior tensor product ⊗.

We note that F is also a W ∗–module. Also most tensor products we write
down in the sequel are strongly closed if they are norm closed.

An operator a on F cannot mix the components in F1 and in F2. (To
see this simply multiply with pi from the right and use right linearity of a.)
Therefore, a decomposes as a = a1 ⊕ a2 where each ai is an operator on Fi
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alone. a1 can be any element in B(H1), while a2 must be an element in B(H2)
that acts on F2 = H2 ⊗ C2 as a2 ⊗ idC2 . (To see the latter statement we
may, for instance, observe that tensoring with C2 is an operation of Morita
equivalence so that F2 and H2, indeed, have the same operators.) We find
Ba(F ) = B(H1) ⊕ B(H2).

It is easy to check that an automorphism of Ba(F ) either sends B(Hi)
onto B(Hi) or sends B(H1) onto B(H2) and vice versa. The first type is
simply implemented by two unitaries ui ∈ B(Hi). It is, therefore, conjugate to
the identity automorphism and the associated correspondence is B. In order to
have the second case necessarily H1 and H2 are isomorphic, to a Hilbert space
H say, and the action of the automorphism is exchange of the two copies of
B(H) plus, possibly, an automorphism of the first type. This second case is,
thus, simply the flip F(a1 ⊕ a2) = a2 ⊕ a1 on B(H)⊕B(H) (up to conjugation
with a unitary in B(H) ⊕ B(H)).

We claim that the correspondence associated with the flip is E. We show
this by giving an isomorphism from F � E to F that implements the flip as
a �→ a � idE and appeal to the uniqueness of the correspondence inducing F .
Indeed, one checks easily that

„
h1

h2 ⊗ v∗
«
�

„
0 v∗2
v1 0

«
�−→

„
h2〈v, v1〉
h1 ⊗ v∗2

«
(h1, h2 ∈ H; v, v1, v2 ∈ C

2)

defines a surjective isometry. Moreover, choosing an arbitrary unit vector e ∈
C2 we see that (a1 ⊕ a2) � idE acting on

„
h1

h2 ⊗ v∗
«

=
„

h2
h1 ⊗ e∗

«
�

„
0 v∗

e 0

«

gives
„

a1h2
a2h1 ⊗ e

∗
«
�

„
0 v

∗

e 0

«
=

„
a2h1

a1h2 ⊗ v
∗

«
= F(a1 ⊕ a2)

„
h1

h2 ⊗ v
∗

«
.

The discussion shows that a Hilbert B–module F with an endomorphism
on Ba(F ) that has E as associated correspondence must have the form F =
H⊕(H⊗C2) and that the endomorphism is the flip F on Ba(F ) = B(H)⊕B(H)
up to unitary equivalence in Ba(F ). That is, the possible endomorphisms
associated with E are simply classified by the dimension of H.

We ask now which of them can be obtained by the steps used in the proof of
Theorem 6.3. The answer is simple: E does not have unit vectors, but E2 has.
As the cardinality that occurs in Lemma 4.2 is l = 2, the minimal cardinality n

in Proposition 6.2 is simply countably infinite, which we denote n = ∞. A unit
vector Ξ ∈Mn(E) gives rise to an isometry Ξ�Ξ ∈Mn(E)�Mn(E) = Mn(B)
that must be proper. Example 2.2 tells us that inductive limit over the even
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half Mn(E)�2n will be an infinite-dimensional space. Therefore, H cannot be
finite-dimensional. It will simply have dim H = n. For n = ∞ it is separable,
otherwise it is nonseparable.

Let us now calculate the commutant of E. To that goal we consider B ⊂
M3 = B(C3) as von Neumann algebra acting on G = C3 =

„
C

C
2

«
. We observe

that E�G =
„

0 C2
C
2 0

«�„
C

C
2

«
=

„
C

C
2

«
= G via

„
0 x∗
y 0

«�„
λ
z

«
=

„〈x, z〉
yλ

«
. The Stinespring

representation is just the identity representation. We find E′ = B′ =
„

C 0
0 C1

«
and

the identity E′ → B(C3) is a normal faithful nondegenerate representation.
The same is true for the identity representation of E itself. So, as far as
representations are concerned neither E nor its commutant E′ yield interesting
results. The only approximately noteworthy fact is that the commutant lifting
for E is the flip

„
λ 0
0 μ1

« �→ „
μ 0
0 λ1

«
.

10.2. Example. We now give an example of a correspondence without
unit vector, that comes from a proper endomorphism. Moreover, no tensor
power of this correspondence admits a unit vector.

We consider the von Neumann algebra B =
⊕

n∈N
Mn

s
acting on G =⊕

n∈N
Cn. Recall that Mnm = Cn⊗Cm is a von Neumann correspondence from

Mn to Mm (actually, a Morita equivalence) that may also be considered as a
correspondence over B. As E we choose the von Neumann B–correspondence
direct sum

E := C ⊕
⊕ s

n∈N

C
n ⊗ Cn+1.

Here B acts on direct summands of E from either side with that direct summand
Mn that fits the correct dimension. That is, M1 acts from the left on the
summands C and C1 ⊗ C2 = C2 but from the right only on C. It is easy to
check that

E �̄s m := C ⊕ C2 ⊕ . . .⊕ Cm ⊕
⊕ s

n∈N

C
n ⊗ Cn+m.

All E �̄s m are strongly full but none of them has a unit vector.
E is not a Morita equivalence, so it must come from a proper endomor-

phism. To understand which endomorphisms could be associated with E, we
analyze the general structure of a von Neumann B–module F and look for which
(strongly full) F we can write down an isomorphism F �̄s E = F . According
to the minimal ideals Mn in B, also F decomposes into a direct sum of von
Neumann Mn–modules Fn. Every Fn must have the form Hn ⊗ Cn for some
Hilbert space Hn. Of course, Ba(F ) =

⊕
n∈N

B(Hn)
s
. (In order that F be

strongly full, we must have Hn �= {0} for all n ∈ N.) A short computation
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yields that

F �̄s E := H1 ⊕
⊕ s

n∈N

Hn ⊗ Cn+1.

Therefore, F �̄sE ∼= F , if and only if Hn = H for all n ∈ N. Another computa-
tion shows that the endomorphism induced by this isomorphism acts on Ba(F )
as ϑ(a1, a2, . . .) = (a1, a1, a2, . . .). It is nothing but the unitalization of the one-
sided shift on Ba(F ). As our construction of the inductive limit runs (even for
each ideal Mn!) through a countable inductive system of proper isometries, an
H coming from our construction must be infinite-dimensional and separable.
(Note that in this case F has a unit vector, while if H is finite-dimensional,
then F fails to have a unit vector.)

Clearly, the commutant of B is B′ =
⊕ s

n∈N
C1n. Denote by S (z1, z2,

z3, . . .) := (z2, z3, . . .) the left shift on B′. We invite the reader to check that
the commutant of E is

E′ = M1 ⊕ SB′

and that the maps of the representation (π′, η′) of E′ on F � G =
⊕

n∈N
H

granted by Theorem 9.5 simply let act (z1, z2, . . .) ∈ B′ and λ ⊕ (z1, z2, . . .) =
(λ, z1, z2, . . .) ∈ E′ component-wise on

⊕
n∈N

H.
E is also a faithful von Neumann correspondence. The steps in the proof

of Theorem 8.2 to be carried out explicitly are very plain. Indeed, E � G =
C ⊕ G (with B acting with its 1–component on the summand C). Clearly,
the components in the multiple (C ⊕ G)∞ can be rearranged easily to give a
unitary equivalence with G∞ (including the respective actions of B on these
spaces). The von Neumann B′–module induced by the representation of B
on G∞ is simply F ′ = (B′∞)′′. The identification F ′ �̄s E′ = F ′ granted
by the theorem simply identifies the infinitely many components C and C1 ⊂
B′ contained F ′ �̄s E′ = (C ⊕ B′)∞

s
with the infinitely many components of

C
1 ⊂ B′ contained in F ′ = (B′∞)′′. The remaining components of B′ remain

untouched. The endomorphism ϑ′ on Ba(F ′) = (B ⊗ idH)′ = B′ ⊗B(H) leaves
the ideal (1 − 11) ⊗ B(H) fixed and simply “doubles” the action of the ideal
11 ⊗ B(H). (By “doubling”, we mean that after choosing a suitable unitary
H → H ⊕ H the operator ϑ′(11 ⊗ a) acts as 11 ⊗ „

a 0
0 a

«
.)
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