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The Essential Spectrum of the Laplacian on
Manifolds with Ends

By

Toshiaki HATTORI*

Abstract

Let V be a noncompact complete Riemannian manifold. We find a geometric
condition which assures that the essential spectrum of the Laplacian on V' contains
a half-line, by means of fiber bundle structures and the asymptotic behavior of mean
curvatures on the ends of V, and give lower bounds of the essential spectrum. Our
criteria can be applied to locally symmetric spaces of finite volume and manifolds of
infinite volume canonically obtained from manifolds with corners.

Introduction

Let V be an n-dimensional complete Riemannian manifold. When V is
noncompact, it is possible that the essential spectrum of the Laplacian on V
is nonempty. For example, it is well-known that in the case of n-dimensional
complete hyperbolic manifolds of finite volume, the essential spectrum is the
half-line [(n—1)?/4, 00). In the case of locally symmetric spaces of finite volume,
the essential spectrum is known to be a half-line. In this paper we find a
geometric condition which assures that the essential spectrum contains a half-
line, by means of fiber bundle structures and the asymptotic behavior of mean
curvatures on the ends of V| and give lower bounds of the essential spectrum
under some additional condition. It is also our hope to understand the case of
locally symmetric spaces of finite volume from a different point of view from
Langlands’ theory of Eisenstein series ([20], [25]), and investigate manifolds of
infinite volume canonically obtained from manifolds with corners.
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For studying the essential spectrum of V', there is a known method, referred
to as the decomposition principle ([10], [15]): The essential spectrum is stable
under compact perturbations. Thus this spectrum does not change when one
modifies the manifold in a compact region. Hence, we are motivated by the
following question: What kind of geometric or metric structure of the ends
produces a half-line in the essential spectrum 7

First we consider a simple example. Let M be a compact manifold with
a connected boundary M. Then we can attach a half-cylinder OM X [0, 00)
to the boundary to produce a complete Riemannian manifold V. If the half-
cylinder is equipped with the product metric g+ dt2, where g is a metric on OM
and dt? is the standard metric on [0, 00), the essential spectrum equals [0, o0).
When OM is the flat torus and the half-cylinder is equipped with a warped
product metric e %' g+ dt?, the essential spectrum equals [(n —1)?/4, 00). This
corresponds to the case of n-dimensional hyperbolic manifolds of finite volume.
Therefore we next consider metrics which are not necessarily warped products.

Let Yi,...,Y, be closed manifolds. Let ¢; : Y; x [0,00) — V be an
embedding and &; = ¢;(Y; x (0,00)) for each j = 1,...,s. Suppose that
V- U;Zl &; is a compact submanifold with boundary. In particular, V is a
manifold with s ends. We suppose that the induced metric on Y; x [0, c0)
through ¢; is of the form g;, + dt?, where gj.¢ is a metric on Y; depending on
t > 0. Let \/g;¢(y) be the square root of the determinant of the metric tensor
of g;+ at y € Y;. We also suppose that

the ratio o (t) :== \/9;.¢(v)/\/95.0(y) does not depend on y (%)

on each Yj x [0,00). In this paper, we call such a manifold V' a Riemannian
manifold with boundaries Y; at infinity. This class of manifolds contains R-
rank 1 or Q-rank 1 locally symmetric spaces of finite volume. However, we
do not necessarily assume that V' is nonpositively curved or of finite volume.
If Y; has a structure of some special fiber bundle, it might give rise to some
additional structure on the essential spectrum. Because of this and the fact
that the end of any higher Q-rank locally symmetric space of finite volume is
more complicated, we also consider the following situation.

Let B be a manifold (without boundary) and gp a complete Riemannian
metric on B. Let m : Y — B be a fiber bundle with compact fibers. We
suppose that the dimension of ¥ is n —d with d > 1. Let C € R? be an
open (infinite) cone, that is, a region enclosed by d hyperplanes, and let dt? be
the standard metric of R?. We suppose that there exists an open embedding
¢:Y x C — V and that the induced metric on Y x C is of the form g + dt>.
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Here {g¢}ycc is a family of complete Riemannian metrics on Y of the form

g (y) =g () + (7*98) (), (%)

where gi-(y) is a metric on the tangent space E, of the fiber 7= (7 (y)) at y
depending on t, and (7*gp)(y) is the metric on the orthogonal complement
of E, in the tangent space T,(Y) of Y at y. In particular, this means that
7 : (Y,gt) — (B,gp) is a Riemannian submersion. Let [ : [0,00) — R? be
a ray contained in the interior of C. In the case d > 2 we suppose that [ is
not parallel to any of the boundary hyperplanes of C. We denote by C; the
hyperplane in C through I(¢) orthogonal to . Let (¢,to,...,ts) be a Cartesian
coordinate system of R? such that the origin 0 is [(0) and that the positive part
of the t-axis corresponds to the ray I.

Let \/g¢(y) be the square root of the determinant of the metric tensor of
gt at y € Y. We consider the following two conditions.

The ratio /g¢(y)/+/90(y) depends only on t. (%)
The projection 7 is harmonic with respect to the metric gy. ()

These two conditions (x), (xx) are satisfied in the case of locally symmetric
spaces of finite volume. We explain the higher Q-rank case in later sections. In
this paper we suppose that the condition (x) is always satisfied unless otherwise
mentioned, and denote the ratio by «(t):

a(t) = v/9¢(y)/v/90(y)-

We do not necessarily assume the condition (xx).

Let
1

8(t) = logalt)

As we show in Section 1, the mean curvature of Y x C; in Y x C depends not
on y € Y but on ¢, and is equal to

1 () 2

n—1a(t) T - l'Bl(t)'

We denote this by K(¢). Let A be the unique self-adjoint extension ([8], [13]) of
the Laplacian A on V to the Hilbert space L?(V) of square integrable (complex-
valued) functions on V', and Ap the similar extension of the Laplacian Ag on
B.
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Theorem 1.  Suppose that

2
n—1

lim {IC(L‘)2 -

Jim IC’(t)} = K2
exists.

(1) If B is compact, then for any v > 0, there exists a family {u, .}, of
compactly supported smooth functions on € := ¢(Y xC) satisfying the following
two conditions.

(0.1) For any compact subset of &, if we take ¢ sufficiently small, then the
support of u, . lies outside this compact set.
(0.2) For some positive constant Cy independent of €, we have

o (=2

where || || is the L?-norm on L*(V).

In particular, every point of [(n — 1)?k%/4,00) belongs to the spectrum of
A.

(2) Suppose that the condition (x) is satisfied. If Ap has a sequence

S Cl*":”ur,a )

o<l < <Gy < -0

of eigenvalues, then the following holds.

For each m and any r > 0, there exists a family {um <} o, of compactly
supported smooth functions on € = &Y x C) satisfying the following three
conditions.

(0.3) For any compact subset of £, if we take ¢ sufficiently small, then the
support of Uy, . lies outside this compact set.

(0.4) For some positive constant Cy independent of €, we have

—1
H ( ( n 4) + ¢ + 7'2)> Um,r,e

(0.5) If m £ m/, then

< 018||um77-75||.

61141)11 (um,r,a; um’,'r'/,e’) =0,
e’ —0
where (, ) is the L?-inner product on L*(V).
In particular, every point of [(n—1)?k2/4+ ¢y, 00) belongs to the spectrum
of A.
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Remark. In the case (2), if a non-negative number ¢ belongs to the essen-
tial spectrum of Ap, then we can construct for any r > 0 a family {UT>€}E>0 of
compactly supported smooth functions on £ such that the same condition as
(0.3) and the inequality

H( < 41)2&2 +C+T2>>UT,E

are satisfied (cf. Proposition 1.2).

< ClsHur,s”

Remark. Although we followed the decomposition principle to obtain the
statement of Theorem 1, we do not need to use it directly in the proof.

In order to give lower bounds of the essential spectrum, we can use the
following known result on Rayleigh quotients. Since there seem to be no suitable
references, we also include its proof in Section 2 for convenience.

Lemma 1. Let N be an open subset of a complete Riemannian mani-
fold. Let Z be a C'-vector field on N such that
(0.6) its norm |Z| is bounded from above by some positive constant C: |Z| < C,
and that
(0.7) the divergence of Z is bounded away from zero: that is, div Z > & > 0 for
some €.

Then we have

p v led i e 92,y
Sy lul? dpn 2C

where py is the canonical measure on N induced from the Riemannian metric

and u Tuns through all the compactly supported smooth functions on N.

We first restrict ourselves to the case of Riemannian manifolds with bound-
aries Y; at infinity. We denote by KC;(t) the mean curvature of Y; x {t} in
Y; x (0,00). Applying Lemma 1 to the vector field % or —gt on each end, we

obtain the following immediately from the decomposition principle.

Proposition 1.  Let V be a Riemannian manifold with boundaries Y; at
infinity. Suppose thatlimy_.o K;(t) = k; exists for each j. Let k* = min;(k;)?.

Then the essential spectrum of A is contained in the interval [(n—1)%k2 /4, 00).

We show the following theorem of different type.

Theorem 2. Let V be a Riemannian manifold with boundaries Y; at
infinity. Suppose that there exists a positive number a such that
2
K;(t)? — Ki(t) > a® on (0,00) (0.8)
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for each j. We also suppose that for each j, there exist Ca(j), Cs(j) such that
0 < Ca(j) < Cs(j), (0.9)

Kj(t) >0 on [C2(j), C3(4)). (0.10)

The numbers Co(j), Cs(j) may depend on j. Then, on the interval [0, (n —
1)2a%/4) the spectrum of A consists of at most a finite number of eigenvalues
of finite multiplicity. If (n — 1)%a®/4 is an eigenvalue, then its multiplicity is
finite.

These results give alternative proofs of some of the known results on rank
1 locally symmetric spaces. Let G be a connected semisimple Lie group having
finite center and no compact factors. Let K be a maximal compact subgroup of
G and X = G/K the associated symmetric space of noncompact type with the
canonical left invariant metric. Let I' be a torsion-free irreducible non-uniform
lattice of G and V = I'\X. Let us call V an R-rank k locally symmetric
space of finite volume if X is a rank k£ symmetric space. We call V' a Q-rank
k locally symmetric space of finite volume if G has trivial center and is the
identity component of the group of real points of some connected semisimple
linear algebraic group G defined over Q of Q-rank k and if I" is an arithmetic
subgroup of G. Let gp (resp. p) be the half sum of the positive roots (resp.
Q-roots). Then any R-rank 1 (resp. Q-rank 1) locally symmetric space of
finite volume is a Riemannian manifold with boundaries Y; at infinity with
K;(t) = 2lrpl/(n = 1) (resp. 2|p|/(n —1)) ([14], [12], [4], [26], [5], see also [9],
[23]). Hence we have

Theorem 3 (cf. [9], [23], [6]). LetV be an R-rank 1 (resp. a Q-rank 1)
locally symmetric space of finite volume. Then the essential spectrum of A is
the half-line [|rp|®, 00) (resp. [|p|*,00)). If [rp|* (resp. |p|?) is an eigenvalue,
then its multiplicity is finite.

Remark. Let V be a Q-rank 1, R-rank > 2 locally symmetric space of
finite volume. Then each boundary Y; at infinity admits a fiber bundle structure
7j : Y; — B satistying the conditions (%), (s*) (see Remark before Theorem
4 in Section 3). Let ZBj be the unique self-adjoint extension of the Laplacian on
the base space B; of Y;. Then it follows from Theorem 1 that for each eigenvalue
c of ZBJ,, there exists a family of compactly supported smooth functions on
V which assures that the half-line [|p|? + ¢, 00) is contained in the essential
spectrum of A.
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In the case where V is a higher Q-rank locally symmetric spaces of finite
volume, there is a compactification V of V' ([7]) such that V is a manifold with
corners and its boundary OV is connected. Each stratum Y; of AV admits a
fiber bundle structure w; : V; — B, satisfying the conditions (xx), (s*). The
continuous spectrum of V is controlled by the eigenvalues of the base spaces
B;: For each eigenspace of B; with eigenvalue c, there exists a certain subspace
of L?(V) corresponding to the continuous spectrum. The space L?(V) is the
closure of the union of such subspaces and the eigenspaces corresponding to
the point spectrum of V. This follows from Langlands’ spectral resolution of
the regular representation of G on L?(I'\G) (]20], [25]). Although the situation
is slightly different from the one in Theorem 1, the argument in the proof of
Theorem 1 can be also applied to this case and we obtain a similar result (The-
orem 4) to Theorem 3 by constructing a vector field as in Lemma 1. Thus we
can give alternative proofs of some of the above facts without using Langlands’
theory of Eisenstein series. We postpone describing Theorem 4 until Section 3,
since we need more notations.

Theorem 1 can be applied to complete manifolds canonically obtained from
manifolds with corners as in Figure 7 (see Section 5 for the precise definition).

Corollary 1. Let W be a manifold with compact corners and V the
complete manifold obtained from W by gluing cylinders successively to boundary
components. Then the essential spectrum of V' is the half-line [0, c0).

Our calculations in the proof of Theorems 1 and 2 are based on higher
dimensional generalizations of Lax-Phillips’ ones ([21, §4]). In order to con-
struct the sequences {Um,r,a}€>0 in Theorem 1, under the identification of &
with Y x C, we first consider the function fy(y,t) = a(t) on £ and multiply fy
by an oscillation to obtain f.. We take a product of f,. with an eigenfunction
o of B with eigenvalue ¢, and control the support of this function by using a
suitable cut-off function h (see Figure 1). In particular, in the case of locally
symmetric spaces of finite volume the function fjy is induced from the expo-
nential of a constant multiple of the Busemann function on X with respect to
some geodesic v : [0,00) — X which is projected on .

This paper is organized as follows. In Section 1 we first show the explicit
relation between the functions a(t), 5(t), and the mean curvature /C(t). Then
we prove Theorem 1. In Section 2 we prove Theorems 2. In Sections 3 and
4 we explain the case of higher Q-rank locally symmetric spaces. In the last
section we discuss some consequences of our theorems including Corollary 1.

As usual we denote by C, R, Q, N the set of the complex numbers, the
real numbers, the rational numbers, the natural numbers, respectively.
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81. The Existence of a Half-Line in the Essential Spectrum

In this section we prove Theorem 1. We identify £ with Y x C by the
diffeomorphism ¢. First we show that the mean curvature of Y x C; in Y x C
depends only on t.

Let t = (t,t3,...,t4) be a Cartesian coordinate system of R? such that
the positive part of the t-axis corresponds to the ray I. We define a unit vector
field £ on' Y xC by € = %, which is orthogonal to Y x C; for each ¢t > 0. We
denote by Tp(Y x C;) the tangent space of Y x C; at P € Y X Cs.

Definition 1.1.  For each point P of Y x C;, let A¢ : Tp(Y x C;) —
Tp(Y x Ct) be the shape operator with respect to £ defined by

Ae(X)=—-Vx¢ for each X € Tp(Y x Cy),

where V is the covariant derivative on V. We define the mean curvature /C(P)
of Y x C; at P (with respect to &) by

K(P) = ! 1tmce (Ag).

Proposition 1.1. We have

K(P) = n i 1 2/((;)) - _n3 lﬁ/(t)

forall PeY xC;.

Proof. Let P = (y*, (t*,t2*,...,t4*)) € Y x Cy~. Take an arbitrary coor-
dinate neighborhood (U, (y1,...,yn—a)) of ¥* in Y. We put yn_q4; = ;41 for
j=1,...,d -1, and y, = t to obtain a local coordinate system (yi,...,¥yn)
around P in Y x C;. Let g;i be the components of the metric tensor with re-
spect to this local coordinate system, (¢7%) = (g;1) "', and I'j; the Christoffel
symbols. We have

n—1 ]_n—l n ag ag, ag,
n—DKP)=-S"I) =—_ gjm< wm | O9jm m)
( D Jz:; ’ 2 ; mzz:l 9y, Oyn Ym

1n—1 n—1 ) ag

= —_Z Zg]m( ]m>
2]:1 m=1 ot

Let A = (gjk)1<jk<n—1. Then we have

24)_ Lt

1
2 detA = 2

(n—-1)K(P)= —% trace (A_ T

%(log(det A)).
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Figure 1.

Since the determinant of A depends only on t and is equal to (,/go)%a(t)?, we
obtain

(n = DE(P) = —(loga)' (t*) = =26'(t"). O

The mean curvature C(P) is constant on each Y x Ct, which we denote by
K(t).
Let C3°(Y x C) be the set of compactly supported smooth functions on
Y x C. We define a map T : C§°(Y x C) — C§°(Y x C) by

(TN, t) = fy,8)/ v elt)
for f € C§°(Y x C). Then we have

2

2 (n—1)2 2 <9
—1 _ = o\ 2 / _ -
T™loAoT = —— o+ {K(t) n—1’C(t)} ;:2 at?+A(y,gt) (1.1)

on C°(Y x C), where A(y,,) is the Laplacian on (Y, g¢). Let (7¢), be the
trace of the second fundamental form of the submanifold 7= (7 (y)) of (Y, g)
at y € Y, and C§°(B) the set of compactly supported smooth functions on B.
From the formula on Riemannian submersion in Theorem 4.4 of [19, XIV, §4],
we have

Aygn(pom)(y) = (Ape)(m(y)) + (1t)y - (pom) forall ¢ € CF(B). (1.2)

Let fp be the function on Y x C defined by

— B —
fO(y7t) =€ - O[(t)
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Figure 2.

For each r > 0, we define a function f, by

foly,t) = e~ BO+V=Trt
For ¢ € C§°(B), we put

Fouw(y,t) = e POHV=IT (1)),

Let D and D’ be open balls in R? with the same center on the ray ! such that
D’ C D C C and that 0 € D, where 0 is the origin of R?. We choose D such that
every ray emanating from the origin which is tangent to the sphere bounding
D is entirely contained in C. We also suppose that

U ¢|np=9¢

0<t<Cy

for a positive number Cy (see Figure 2). Let h : RY — [0,1] be a smooth
function such that A > 0 on D, h = 0 outside D, and h = 1 on the closure of
D'.
For any positive number § < 1, we define a smooth function f, ;5 on Y xC
by
Fers(y,t) = h(t)e POV o (n(y)). (1.3)

Let L?(B) be the Hilbert space of square integrable functions on B with L2-
norm | || 5.

Proposition 1.2.  Suppose that (1¢), - (pom) =0 foranyy €Y, t =
(t,ta,...,tq) € C with t > 0, and that limy_. {K(t)* = 2K'(t)/(n — 1)} = k2.
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Then for any € > 0, there exists a positive number 0(¢) such that the following
holds.
Let § be a positive number smaller than 6(¢), ¢ > 0, and ¢ € C§°(B) with

I(As = )ells <ellel s

Then we have

[(a- (=22 s en)) 1

where C5 is a constant depending only on h, r, and .

< C55Hf4p,7‘,6||7 (14)

We denote by p, py, pg, it the Riemannian measure of V, (Y, go), (B, g5),
C, respectively, and py ¢ = e2#(®) 1y the Riemannian measure of (Y, g¢).

Proof. Let

(n—1)2k2

e ={ @07+ 5 0) - P st

d

92h 92h Py
+Y = | (6%) pp(m(y))e POV
j=2

oh

and
As(y.t) = (Ap — )p(m(y))h(5t)e PO+HVTrt,

Then, it follows from (1.1), (1.2) that

(A _ (% fet )) Fors(ust) = Ay ) + Aoy ). (15)

We have
n—1)%2k?
il 0] < %—{w’mﬁ"} Ford
+6 2\/_7« (5t )+6 at2 +Z 8t2 ) ple™P®.

Since the support of h is compact, there exists a positive number Cg (which
depends only on h and r) such that

9%h
at§

02h
2= r—(&t )+6 —+Z

ot = Co.
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We also have
\fors] = |hloleP® < |ple PO,

1
Since the support of h(dt) is contained in the closure of the ball SD and

lim % = 00, the following holds.
6—0 5

For any € > 0, there exists a positive number §(¢) smaller than ¢ such that
O <
on the support of h(dt) for each ¢ < §(e).
We have, for such 4,
|41 (y, t)| < (6Cs +¢)|ple "

and
1412 = / A, (3, ) Py = / / A1 (9, ) Py e
Y xC cCJY
§(606+5)2/ /|90‘2€_26(t)d/ﬂ/,td,ut
D/s
= (0Cs +¢) / / lo|Pdpy duy < €*(Cs +1)% - dvol(D)/ lo2dpy .
Y

Since the support of ¢ is compact, we can take positive numbers C7, Cg such
that
C7 S VOl (W_I(Z)) S Cg

for all z in the support of ¢. Consequently, we obtain

1
141 < Cs - 2(Co + 1)* vol(D) || - (1.6)

Similarly, we have
[As(y, )] < |[(Ap — c)ple )
It follows that

| 4s2 < / / (As — o2 O duy dpy

/D p / (A — chpldinydp < Cs - 5zvol(D)[(As — )lh
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Thus we obtain 1
|A2||” < Cg - &% - (Tdvol(D)IISDII%- (1.7)

From (1.5), (1.6) and (1.7), we have

H( ( 1>2"2+c+r2>>f¢,r,5

On the other hand, since
oral?= [ VorsPdi= [ [ 150rsPdurdue
Y x cJy

/ /|fgar5| dpy g dpig

DI /5

— [ [ 1oPeOduvdp = [ [ oPduyd,
D'/5 Y D//(S Y

1
>Cr- 5—dvol(7?’)||¢||%- (1.9)

2
< Cse?(Cg + 2)? —vol( el

5d
(1.8)

we have

From (1.8) and (1.9), we have

(o (2 )

2

Let
Cs =(Cs+2)

Then we obtain the inequality (1.4). O

Proof of Theorem 1.  We first prove (2). Let ¢, be an eigenfunction
belonging to the eigenvalue c¢,,,. From the definition of Ap, there exists a
sequence {; } in C§°(B) such that lim; ., ¢; = . and lim; ., Agp; = App.
in L2(B). Then, by the triangle inequality, we can find for each £ > 0 a function
p € C§°(B) such that

(A5 = cm)ells < ellells-

Since the condition (x) is satisfied, the estimate in Proposition 1.2 is valid for
any positive number § < (). We take one of such § and put

Um,re = ftp,r,é-
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Choose the functions ¢ so that ||p. — ¢||p are sufficiently small. Then the
resultant family {um,r,s}5>0 of compactly supported smooth functions on £
satisfies the conditions (0.3)—(0.5).

To prove (1), we take a constant function ¢ = 1 and consider f, s in
(1.3). Since (7¢)y - (p om) = 0 and App = 0, the estimate in Proposition 1.2
is valid for ¢ = 0. By repeating the same argument as above, the conclusion
follows. g

Remark.  In the case (2), if there is another eigenfunction @, belonging
to the eigenvalue ¢, such that ¢, and P, are mutually orthogonal with respect
to the L2-inner product on L?(B), then we can construct for any » > 0 a
family {Emﬂ“’f}oo of compactly supported smooth functions on £ satisfying
the similar conditions as (0.2)-(0.5) and

lim (um,r,e’ am,r’,a/) =0.
e—0
e'—0

Remark. If B is compact, we can take an eigenfunction of Ag as ¢ in
the above proof of (2).
82. Lower Bounds of the Essential Spectrum
In this section we prove Theorem 2. It suffices to show the following.

There exists a finite dimensional subspace V of L*(V) such that

<<Z—(n?%ﬂ>mu>>OﬂﬂaﬂuevLﬂdmmzy—mL

where V- is the orthogonal complement of V in L?(V) and dom(A) is the
domain of definition of A.
Let

E) = ¢;(Y; x (Ca(j),00)), W = (¥ x {Cs(4)})

foreach j =1,...,s and let

w=v-[]J&.
j=1
The boundary of the compact manifold W decomposes as

aW:O@W

j=1
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Figure 3.

We also put
Bj = ¢;(Y; x (C2(4), C3(4)])-

Then B; is a collar neighborhood of 0;W (see Figure 3). We relate the inte-
gral in (2.1) on the noncompact manifold V' to some integrals on the compact
manifold W.

For any vector field Z on V we denote by |Z|(x) the norm of Z, with
respect to the Riemannian metric of V' at the point = € V. Let L?(W) be the
space of all square integrable functions on W. For any wy,ws € L?(W), let

(w1, w2),, =/ wy - Wad
w

be the L%-inner product. We denote by || ||, the L?-norm on L?(W):

lwly = 4f / ol2d
w

Let C12(W) be the space of smooth functions w on W such that |grad w| €
L?(W), where grad w is the gradient vector field of w. We denote by | grad wl||
the L%mnorm of |grad w|. Let LL2(W) be the completion of C1?(V) with
respect to the L'2-norm,

el a = /lwl2, + llgrad w2,

For u € dom(A), we only write ||ul1 2 to denote the L*2-norm of the restriction
ulw of u to W: ||lu

l12 = [Julwl1,2-



616 TOSHIAKI HATTORI

We show the following.

There exist positive constants Cg, Cg such that

- -1 2.2 o
Crollull?, + ((A — %) u, u) > Collul|}, for all u € dom(A).

(2.2)
Then the assertion (2.1) follows from (2.2): Let H be the image of the restriction
map dom(A) > u — uly € L*(W). It follows from Rellich-Kondrachov
lemma (cf. [1, Théoréme 10]) that for any positive number £ < /Cy/(2C10)
there exists a finite dimensional subspace £ of H such that e||w||1,2 > ||w||w for
any w # 0 in the orthogonal complement of £ in H with respect to the inner
product (, )w on L2(W). It suffices to take the image of the natural inclusion
L— L*(W) as V.

In order to prove (2.2) it suffices to show the inequality for compactly
supported smooth functions v on V. We remark that

<<A _ W) ", u> _ /V <|grad ul? - WW) du
= [l = =) g (23)
+ Zl/m (Igrad ul? — WW) dp

for such u. Hence, we estimate the integrals in the last term of (2.3) as follows.

Lemma 2.1.  For any compactly supported smooth function u on V, we
have

> 3i(C3(5)) <m — 4ﬂ;(03(j))) /Bj lu|?dp — %/Bj lgrad u|*dp.

Proof. From now on to (2.13), we drop the index j for simplicity. We
write just E7, Y, OW, B, B(t), Ca, C3, ¢, K(t) instead of £, Y;, O;W, Bj,
Bi(t), C2(4). Cs(j), &5, K;(t), ete.

On & we use the same local coordinate system (y1,...,Yn_1,t) as in the
proof of Proposition 1.1. In this case d = 1 and we can write v = u(y,t). We
can decompose the gradient vector field of u as

Ou 0 0

du=z+2¢% 7,2
grad u =2+ 5 5 ot
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Then we have

oul?

jgrad uf? = |2 + | 5

(2.4)

We remark that

oul?

% (uemt)) r _|%u

—20(t)
€ ot

+ (B'()?|ul* + 28/ (t)Re (u%) , (2.5)

where Re( ) means the real part. Since u has a compact support, there exists
a positive number C1; = Cy1(j) such that the support of w is contained in
V — (Y x [C11,00)). Then we have

_ t _
/ 203 (t)Re ( 5‘u> dp = lim {/ 2/’ (t)Re <u8u> eQ’G(t)duy} dt
en 0 t—oo Jo, Y ot
Ci _
:/ {/ 23 (t)Re <u@> ezﬂ(t)duy} dt,
Cs Y ot

where py is the canonical measure of Y. Since

g [ 0P 0] {2 me (w57 )+ 5O + 25 O} 7,
we have

ou
/ 26" ()R, <U8;L> du
Ci1
/ / {5t ‘u|2 Qﬁ(t)} |u| B'e 20(t —2(8 ) |u|2 283(t }duydt
/ B'(C: |u‘2 Qﬂ(Ca)qu /A |u|2(5”+2(ﬂ/)2)du

- / B luf*dv — / (8" + 2(8)?)du,
oW EN
(2.6)

where v is the canonical measure on OW induced from the Riemannian metric
of V. From (2.5) and (2.6), we have

0

=2p6(t) | =2

/EA ¢ ot

_/ oul?
5/\

2
dp

(ue?)

(2.7)

ot

= [ul*(8" + (5’)2)> du—/ B |uf*dv.
oW
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From (2.4), (2.7), we have

L Cmad wf® = (37 + (32

2
= / {|z|2 —Wg }du+ / B fuf*dv
t ow
/ ' uldv.

(ueﬂ(t))

Let us estimate the integral [, #'|ul*dv from below. Put (t) =

C3)/(C5 — C3). Then we have

C
50
o o) 1) = ) [ 2 o)l e

Cs 2
_ 28(Cs) [l svre [0 Z%\ | g
‘ /02 {CS —-Cs +2YRe uf)t )

We remark that 3(Cs) < S(t) on [Ca, Cs]. It follows that

Cs 2 ,203(t) Cs 77
lu(y, C3)|? €29(C) </ Mdt—i—Z/ w2 28 gy
Ca U3 —Cs Ca
Since
W2 280 _ 2y 00 < | 2B L s,
ot ot | 2,/—3'(C3)
we have, from the arithmetic geometric mean inequality,
Cs
2 / u— 260 gt
<2 4)3'(C3)|u|2e2P® dt @ 2 e2f(t)dt
—45’(03)
< —45'(03)/ lu|2e20® gt — ! / @ et
- Cs 40'(Cs) Jo, | Ot

We obtain
— B'(Cy)[u(y, Cs)[?e*?()

C3
—ﬁ’(03)< ! —4@’(@)) / |u[?e2 )t
Cs

Cs —Cy

1 [
+ —/ lgrad u|2e2%® dt.
4 /e,

(2.8)

(t -

(2.9)

(2.10)



THE LAPLACIAN ON MANIFOLDS WITH ENDS

Hence
oW Y
1 Cs
< —f'(C3) ( - 45/(03)) / / |U|2€2ﬂ(t)dtd,uy
C3 = O y JC,
1 s
+ —/ / |grad u|2625(t)dtd,uy
4 Jy Je,
= —3'(Cs) < ! - 4ﬂ/(03)) / u|?dp + 1/ lgrad ul?dp
CS - CQ B 4 B ’
and
' ul*dv
oW

1 1
> 310 (gt ~49'C0) [P =g [ svad uPa

Combining (2.8) with (2.11), we obtain

[ o wf? = (3" + ()

1 1
> 310 (g g, ~9(@) [ oy [ Jerad uP

From Proposition 1.1 and the assumption, we have

(n—1)2 2 (n —1)%a?

g+ 2= e - e =

The desired inequality now follows from (2.12) and (2.13).

619

(2.11)

(2.12)

(2.13)

Since (3;(C3(j)) < 0 and Jj_, B; C W, we have, from (2.3) and Lemma



620 TOSHIAKI HATTORI

2.1,
(5 @00 ) [ (a2
> gﬁ;wg(j)) (oo - w@w) [ s
- i;/g lgrad uf?dy
> {;5§(Cs(j)) (o 45;-(%)))} |
- i/w lgrad ul*dp.
Therefore,
(6-)-
{2 (0 (- ) )

></ lu|®du > %/ {|ul® + |grad u|*} dp.
w w

Let Cy = 3/4 and

~ (n—=1)%* 3 , ) 1 y )
Cho = 4 tat 19525 B;(Cs(5)) C3(j) — Ca(j) G0 g
This proves the inequality (2.2), and Theorem 2 now follows. a

Proof of Lemma 1. For simplicity, we omit the symbol duy. Let v be a
non-negative compactly supported smooth function on N. Since

div vZ = (grad v, Z) + v - div Z,

we have

:/ divaz/(gradv,Z>+/U~diVZ2/(gradv,Z>+€/ v.
N N N N N

Hence
5/ vS—/(gradv,Z)ﬁ/ lgrad v| - |Z
N N N
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/vgg/|gradv|.
N € JN

For any compactly supported smooth function v on N, let v = u?. Since

and

grad u? = 2u - grad u, we have

2
/uQSQ/ |gradu2|§—c/ lu| - |grad u]
N € JnN € JN

9 1/2 1/2
<2 ([ ur) " ([ s ap)
€ N N
1/2 1/2
2
( / uF) s—0< [ e u|2) .
N € N

Therefore, we obtain

and

(i)Z _ [ lgrad u\2'
20) =TT 0

83. The Ends of Higher Q-Rank Locally Symmetric Spaces

In this section we explain the case of higher Q-rank locally symmetric
spaces of finite volume and state a similar result to Theorem 3. The situation
is slightly different from the one in Theorem 1. There are fiber bundles 7 :
Y — B, cones C, and Riemannian metrics on Y x C satisfying the conditions
(*x), (%), and (*x). However, Y x C is not entirely contained in V' when B is not
compact. Instead, there exist an exhaustion Wy C Wo C --- CW; C --- of B
by relatively compact open subsets, a corresponding nested sequence C; O Cy D
<+ D C; D -+ of cones in C, and an embedding J;2; (7 7*(W;) x C;) — V.
In the sequel, for any algebraic group H defined over Q, we denote by H(R),
H(Q), H(Z) the group of real, rational, integral points of H, respectively.

Let G be a connected semisimple Lie group having finite center and no
compact factors. Let K be a maximal compact subgroup of G and X = G/K
the associated symmetric space of noncompact type with the canonical left in-
variant metric g. Let I" be an irreducible non-uniform lattice of X. Suppose
that the rank of X is at least 2 and G has trivial center. Then, by the arith-
meticity theorem of G.A. Margulis (see [30]), there exist a semisimple linear
algebraic group G defined over Q and an isomorphism (of Lie groups) from
G to the identity component of G(R) such that the image of I" is contained
in G(Q) and is commensurable with G(Z). We suppose that I is torsion-free
and that the Q-rank ro(G) of G is at least 2. Then there is a compactification
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V of the quotient manifold V = I'\X constructed by A. Borel and J.-P. Serre
such that V' is a manifold with corners and its boundary 9V is connected ([7,
Corollary 8.6.2]). Hence V has only one end. Let z¢ be the coset in X of the
identity element, II : X — V the natural projection, and g the metric on V'
such that II*g = g.

We first recall some facts about parabolic subgroups of G (see [3], [29] for
more details). Let S be a maximal Q-split torus of G and ®(G,S) the system
of rational roots of G with respect to S. Let rg, g, and € be the Lie algebras
of G, G, and K, respectively. We denote by exp the exponential mapping
from gg to G. Let gg = £ + p be the Cartan decomposition, where p is the
orthogonal complement of £ in gg with respect to the Killing form of gg. We
denote by (, ) the inner product on p induced from the Riemannian metric on
the tangent space T,,(X) of X at xp. Then (, ) coincides with the restriction
of the inner product ((,)) on grg obtained from the Killing form of rg and
the Cartan involution of rg. Let A be the identity component of S(R) and a
its Lie algebra. By considering the restriction to a of the differential of each
rational root S — C*, we can regard ®(G,S) as the system X of roots of
the pair (grg, a). For each root § € X, let Hy be the unique element of a such
that 0(H) = (Hy, H) for all H € a. We introduce a lexicographic order into
®(G,S), and denote by &1 (G, S) the set of positive rational roots with respect
to this order. We introduce the corresponding order into X, and denote by X+
the set of positive roots corresponding to ®* (G, S). We put

at ={H eca|f(H)>0foralld c X"}

and

PZ% Z Hy,

oex+

where in the sum every root occurs a number of times equal to its multiplicity.
Let

g=g0+ J[ o«
X€P(G,S)

be the root space decomposition of g. Let u be the subalgebra of g defined by

u= H 9x

XEPT(G,S)

and U the analytic subgroup with Lie algebra u. Let T C X be the set of
positive simple roots of (grg,a) and T(G) C ®+(G,S) the corresponding set of
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positive simple roots. For any subset I C Y, we take the corresponding subset
I(G) C T(G) and define a subgroup Sy of S by

SI:< ﬂ kera)o,

acl(G)

where ( )° means the identity component with respect to the Zariski topology.
The group P; = Z(S;)U, where Z(Sy) is the centralizer of S; in G, is a
rational parabolic subgroup of G containing S. These are called the standard
rational parabolic subgroups of G. The unipotent radical of P, that is, the
greatest connected unipotent normal subgroup of Py, is the analytic subgroup
U; with Lie algebra
!/
uy = H Iy

where the sum is over all the positive rational roots which are not linear combi-
nations of elements of I. If I and J are two subsets of T such that I C J, then
P; C P;. The rational parabolic subgroup P = Py = Z(S)U is a minimal one
containing S, and Py = G. Each proper rational parabolic subgroup Q of G is
conjugate by some element of G(Q) to one and only one of the P; with I # T;
Q is also expressed as kP;k~! for some k € K. For each I, the I'-conjugacy
classes of P; are known to be finite ([4]).
Each group P; decomposes further. We put

M; = m ker(xz),

x€X(Z(81))

where X(Z(Sy)) is the group of rational characters of Z(Sy). Then Z(S;)(R) is
the direct product M;(R) x S;(R). Let A; be the identity component of S;(R)
and let My = M;(R), Uy = U;(R). Then we have the Langlands decomposition

P;(R) = U A; M. (3.1)

The boundary dV of the Borel-Serre compactification V is a disjoint union
of faces €/(Q) corresponding to the I'-conjugacy classes of proper rational
parabolic subgroups of G. Suppose that the I'-conjugacy classes of Py (I # )
are represented by Py ; = k:I)jPIk;jl-, j e {l,...,s(I)}, where k;; € K for
each j and k;; = e. In particular, P;; = P;. We briefly describe the faces
e (Pr,;) (see [7], [31] for more details).

Let

Urj = k],jU]kI_j, AIJ‘ = k‘LjA[k‘I_’Jl», and My ; = k[,ijk;;.
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Figure 4.

Let
6(P]’j) = U]’jMLj - To = ]C]JU[M[ * X0, X]’j = M]’j X = ]f[’jM] - ZQ-

Then X7 ; is a product of a symmetric space of noncompact type with a possible
Euclidean space, and e(Py ;) is diffeomorphic to Ur; x X ;. In particular, we
have a fiber bundle

Ur; — e(Pr;) 25 Xp 5, 71 (ki jum-ao) = kyjm-zo for u € Uy, m € M;.
Let
F[)j:FﬂP[)j, FMI,J' :(F[)jU],j)mM],j, and FUI,J' :FQUIJ'.

Then I7; is the semi-direct product I, , % Iy, ; and acts on e(Pr ;). Let
Vij = FM,J\XIJ and II; ; : X7 ; — Vi ; the natural projection. The face
¢/(Py,;) is defined by

6/(P1,j) = FLj\e(PIJ).
Let 77 be the unique map from €'(P; ;) to Vi ; such that the diagram in
Figure 4 is commutative. In the diagram, wy;; : e(P;;) — €'(P;) is the
natural projection. Then €'(P; ;) is a fiber bundle over V7 ;:

Frj =Ty, \Up; — ¢ ®Pr;) 22 Vi, (3.2)

The fiber F7; of the fiber bundle (3.2) is a compact nilmanifold and the base
space V7 ; is a locally symmetric space of finite volume, which is compact if
and only if I = 0.

In the compactification V each face ¢/(P; ;) is located on the ideal bound-
ary OV. For t > 0, we put

Ar(t) ={a € Ar|x(a) > tforall x € T(G) - I(G)}, Ar;(t) = kIVjAI(t)k:I_’;.

We just write A(t) instead of Ag(t).
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Proposition 3.1 ([7, 10.3], [31, (1.5)]).  Let W be a relatively compact
open subset of Vi ;. Then there exists t* = t*(W) > 0 such that for any t > t*
the set Erjw. = U ;Ar;(t) - HI_;(W) is I'r j-invariant and

g€l gErjwiNErjws # 0} =171

The equivalence relation defined on Ey jw .+ by I' is the same as the one defined
by I,

Let W be a relatively compact subset of V7 ;. We choose a positive number
t** such that t** > t*(W) and put

Erjw = Erjw,e = Ur A () T ;W), - Erjw = T(Erjw).

Let
Yriiw = W;;(W) C el(P],j).

Then the open submanifold &7 ;v of V is diffeomorphic to the product Y7 ;X
(A]’j (t**) . .’Iio). Let

a;={Hea|l0(H)=0 forall§el}

be the Lie algebra of A;. We denote by p; the orthogonal projection of p on
af = a; Na* and put p;; = Ad(k;;)pr. We define a geodesic ray 7r,; :
[0,00) — X by

71,5 (t) = exp (tp1,;/|p1 ;1) - To.

Then, for sufficiently large t*** > 0, the restriction of the geodesic Il o s ; to

the interval [t***,

00) is contained in &7 ;. If we regard Ay ;(t**) - zo as an
open cone C in R? with

d=#T —#1=rg(G) — #1,

the parabolic Q-rank of Py ;, and regard 7y j|[;«++, o) as a ray [ in C, we obtain
an embedding ¢ ;w : Y7 jw X C — V as in the introduction. In the case
where V7 ; is not compact, let Wi C Wy C --- C W; C --- be an exhaustion
of Vi ; by relatively compact subsets. Then, from the above construction, we

obtain an embedding J;=; & j,w, — V.

Lemma 3.1.  The metric on Y7 j X C induced by ¢r ;w is of the form
gt + dt? and the conditions (%), (x), (¥*) in the introduction are satisfied. In
particular,

alt) = \/ge/ /g0 = e 2711 (3.3)
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Proof. We only prove the case 7 = 1, since other cases are similar. In
this case, Ur1 = Ur, Ar1 = Ay, and My = M;. We write ¢ instead of ¢r 1 w.
Let (t,t,...,tq) be a Cartesian coordinate system of R? such that the origin
0 is 1(0) = y71(t**) and that the positive part of the ¢-axis corresponds to
the ray [. For each t = (t,t2,...,tq) € RY, let a(t) = a(t,ta,...,tq) be the
unique element of A; such that t = a(t) - xg and let H(t) = H(¢,to,...,tq) be
the unique element of a; such that exp(H(t)) = a(t). We identify e(P; 1) with
Ur x X1 and define a diffeomorphism @ from e(Py ;) x RY = Uy x Xy x R?
to V by

D(um - zo, t) = ua(t)m -z for u e Up,m e Mj. (3.4)

Let
W= H;%(W) C X1, 371,1,1/\/ =Ur-WcCe(Prq).

Then 17}71,\,\; is diffeomorphic to U; x W and the map 5 : }71,1,)/\/ xC— X
obtained by restricting @ on ?171,}/\} x C is an embedding. If we write w instead
of wr1, we have ¢po (w x ide) =1l o 5 Thus, in order to study the metric ¢*g
it suffices to study 5*5.

Let T7(G) be the set of maps obtained by restricting elements of T(G) —

I(G) to Sy. For each a € T1(G), let
Uy ={X € rg|(Ad )X = a(a)X forallae As}.

Then we also have

ur = H Uqy-

aET](G)

The spaces u, (a € T7(G)) are mutually orthogonal with respect to the inner
product ((,)). For each o € T;(G), let h, be the left invariant tensor field
of type (0,2) on Uy which is zero on ug for 8 # a, and equal to ((, )) on u,.
Then

du’ =Y hg (3.5)

@€Y (G)

is a left invariant metric on U;. For m € My, we denote by Int m the inner
automorphism of U given by

(Int m)(u) = mum™" for u € Uy.

Let §X1,1 be the metric on X7 ; induced from X by the natural inclusion. Since
the tangent space of Y71y % C at (um - xg, t) is isomorphic to the direct sum
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of T,(Ur), Trm-ze(Xr11), and Tt(]Rd), under this identification, it follows from
the calculation in Proposition 4.3 of [5] that

((Z*E) (um-zg,t)

= % Z X(a(t))*2 ((Int m*l)*hx)u + (ng,l)m<x0 + (dtz)t.
XEY1(G)

(3.6)

From this, we can conclude that ¢*g¢ is of the form gy + dt?. Let g = II*gs.
Then, from (3.6) we have

() um-zo = % Z X(a(t)>_2 ((Int m_l)*hx)u + (9x11 ) mezo- (3.7)
XEY1(G)

This shows that the projection
7 (Yraw, 0t) — OV, Gx.a ) (3.8)

is a Riemannian submersion. Let gx; be the metric on V;; = FMM\XM
corresponding to gx 1. Since It = Iy, x Iy, the bundle projection

e (YI,LW7gt) — (WagXI,l‘W) (39)

is also a Riemannian submersion and the condition (xx) is satisfied.

As is shown in Corollary 4.4 of [5], two left invariant metrics (Int m~=")*du?
and du? have the same volume element. Consequently, it follows from (3.5),
(3.7) that

Vae/vaie =TI )= /o T xla(0)) = e

XET(G) XE€Y1(G)

Since

II  x(a®) 4™ = exp (=2(p, H(t))) = e 21+ - (3.10)
XET(G)

we obtain (3.3), which is the condition ().

We show that the Riemannian submersion (3.9) is harmonic. For this, it
suffices to prove that the Riemannian submersion (3.8) is harmonic. Note that
the Lie group U; acts isometrically on }717171/\; preserving the fibers. There-
fore, we can apply H.-S. Wu’s theorem on metrically homogeneously fibered
submersions to this Riemannian submersion. For precise definitions and de-
tailed information about related concepts we refer to [19, Chapter XV, §6-§8].
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Let ¢ = dim U;. A ¢-form on }71,171/\; is called fiber null if its restriction to
each fiber of (3.8) is 0. For a horizontal vector field v on }N/},LW, we say that
a g-form V¥ is v-constant over the fibers if the Lie derivative £,V is fiber null.
Consider the pull-back of the left invariant volume form on U; determined by
du? by the projection Uj x W x {t} — U;. Then, under the identification
?I,LW = Ur x W x {t}, we obtain a left Uj-invariant g-form ¥ on 17}71,\,\;.
This form ¥ is the Haar form on }717171/\; in the sense of [19, p. 142], and hence
v-constant over the fibers for any horizontal vector field v, due to [19, Theorem
8.3]. Let Q be the vertical metric volume form of (3.8) defined as follows. Let
{&1, ..., &4} be an orthonormal frame of vertical vector fields on ?I,I,Wa suitably
oriented, and let {7, ..., &7 be the 1-forms on ?171,}/\} such that £ (&) = g¢(&,€)
for any vector field £ on ?I,I,W' Put Q=& A--- A&y, Then 2 does not depend

on the choice of {&1,...,&,}. If Qp, |+ Sy are the volume forms on ?I,l,Wv
17\7, respectively, we have Q?I = QA7 Q5. The Riemannian Haar density

([19, p. 442]) @ is by definition the function on w given by
Qum~w0 = a}(m : xO)lI/um-wg-
From (3.7) and (3.10) we have
S(m - xg) = e 2+ Dlerl /1 /2q for any m € M.

Let (T¢)um-z, be the trace of the second fundamental form of the fiber 771 (m -
xo) at um - xo. From H.-S. Wu’s theorem ([19, Theorem 6.6]), (7t)um-z, is the

horizontal lift of —(grad (log@))m.z,. Hence (7¢), = 0 for all x € Y71 ). This
shows that (3.8) is harmonic. O

Remark. In the Q-rank 1, R-rank > 2 case, one can show in the same
way that each boundary Y; at infinity admits a fiber bundle structure satisfying
the conditions (#x), (sx).

From (3.3), the mean curvature K(¢t) of Y7 ;w x C; is
K(t) = 2[pr|/(n = 1). (3.11)

Let C§°(Vr,;) be the space of compactly supported C'*°-functions on Vi ;
and L?(V ;) the space of square integrable functions on V; ;. We denote by
Ay, the self-adjoint extension of the Laplacian A;; on Vi, to L2(V; ;). We
can obtain some information on the spectrum of A.

Theorem 4. (1) Suppose that

0=crjo<crji < -<crjm<--



THE LAPLACIAN ON MANIFOLDS WITH ENDS 629

are the eigenvalues of Zlyj. Then the following holds.

For any r > 0, there exists a family {ur jmrq} of compactly supported

q€eN
smooth functions on Er ; satisfying the following four conditions.

(3.12) For any compact subset of V, if we take q sufficiently large, then the
support of ur jm,rq lies outside this compact set.

(3.13) For some positive constant C11 independent of q, we have

_ C
(A = (Ipr? + erjom +12)) s jmargl| < %Hur,y,m,r,ql\~

Therefore, for fized I, j, m, every point of UpI\Q +cr,4,ms oo) belongs to the
spectrum of A.
(3.14) If m #m/, then

A (W jm gy WLjmerg) = 0.

q,‘>00

(3.15) If Py ; NgPp jyg~ " is mot a rational parabolic subgroup of G for any

g€ G(Q), then (urjumrgs W groora) = 0.
(2) The bottom of the essential spectrum of A is

; 2

lcrﬁlrl,llrl;e”p[' '

Remark.  For any face ¢/(P) we denote by ¢/(P) the closure of ¢/(P) in
V. Then the hypothesis in (3.15) is equivalent to e/(P; ;) Ne/ (P ;) = 0 (see
Proposition 9.4 of [7]).

We prove (1) of Theorem 4 in the rest of this section, and (2) in the next
section. We denote by || ||7,; the L2norm on L?(V ;).

Proof of Theorem 4 (1). Let ¢, be an eigenfunction of A; ; belonging to
the eigenvalue c¢; ;. For each ¢, we can find a function ¢ € C§°(Vr ;) such
that

1
(A =erjm)elly; < el

Let W be a relatively compact open subset containing the support of ¢. For
this W, we take t* = t*(W) as in Proposition 3.1, choose ¢t** > t*, and identify
Ar,j(t**)-xzo with an open cone C in R? with d = ro(G)—#1I. Apply Proposition
1.2 to the embedding ¢r ;w : Y7 ;v X C — V. From (3.11), we have

C,
(A= (Ip1]* + crjum +72) forel| < fnf@,r,an
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for the function

f«p,r,&(ya t) = h(ét)eiﬁ(t)Jr\/jl.rt‘p(TrI,j (y))a

and any positive number § < 6(1/¢q). We take one such ¢ and put

Ul jm,rg = fo,r,s-

Choose the functions ¢ so that |¢. — ¢l|1,; are sufficiently small. Then the
resultant family {ws jm,rq},cy of compactly supported C*°-functions on €7,
satisfies the conditions (3.12)—(3.14). In this construction, for fixed ¢, ¢’, we
can choose the functions so that the supports of ur j m rq and up jo m o are
mutually disjoint for pairs (I, ), (I’,;’) such that Py ; N gPp ;797" is not a
rational parabolic subgroup of G for any g € G(Q). Hence the condition (3.15)
is also satisfied. This proves (1) of Theorem 4. O

84. Constructing Vector Fields

In this section we prove (2) of Theorem 4. We construct a vector field on
the end of V' and use Lemma 1. We recall Borel’s construction of fundamental
open sets.

Definition 4.1.  An open subset D of X is called a fundamental open
set for I' if
X=ID (4.1)

and
(4.2) theset {g € I'|gDND # 0} is finite.

Let P = Py be the standard minimal rational parabolic subgroup and P(R) =
UAM the Langlands decomposition of P(R) as in (3.1). Since X = UAM -z,
any point z € X can be represented as x = uam - xg for some u € U, a € A,
m € M. In this representation the A-factor a is uniquely determined by z. We
denote by A(z) the A-factor of z. We also recall that am = ma for any a € A,
m e M.

Definition 4.2.  For any ¢ > 0 and relatively compact open subset 7 of
UM containing the identity element e, the set &y, := nA(t) K (resp. Gy, -xo =
nA(t) - zo) is called a (generalized) Siegel set in G (resp. X).

We remark that X is also regarded as the quotient X = G(R)/K, where
K is the maximal compact subgroup of G(R) containing K. Hence we can
consider the action of G(R) on X. Let z1,...,2\ (21 = €) be a complete
representative system of I'\G(Q)/P(Q). The following is known.
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Theorem 4.1 ([4]).  There exist a positive number to < 1 and a rela-
tively compact open subset n of UM containing the identity element e such that
the set ) = U;‘Zl 2i - Gyon - To 15 a fundamental open set for I'.

From now on we fix such to and 7. The quotient space V = X/I" is
obtained by pasting the translated Siegel sets z;&;,, -0, ? = 1,..., A, together.
In order to describe how these are pasted together, we first decompose A(to)
as in [16], [17], [18], and [22]. Let t; be any positive number greater than 1.
We put

Sr={a€ A(to)| x(a) <t1 forall x € I(G)}

for each nonempty subset I of Y. Then we have

A(to) — A(tr) = U St (4.3)
PAICY

We remark that the right-hand side is not a disjoint union. Let
S =nA(ty) - xo = Suyy - To, Sk« =nA(t1) - zo, and Sy = nSr - 2.
The set Sv is relatively compact. We also put
S; = 28, Sjv = 2;Sy, and ;1 = 2;Sr.

We have a decomposition

Si=8.ul U St (4.4)

DA£ICY

Roughly speaking, if ¢gS; (¢ € I') meets S; at a point sufficiently far from o,
then the intersection gS; N S; is entirely contained in S; ; for some nonempty
proper subset I of T. More precisely,

Lemma 4.1 ([4, 12.6], [27, Lemma 2.1], see also [22, Lemmas 2.4, 2.5]).
If we take a sufficiently large tq, then the following holds:
(1) Suppose that gS;NS; is nonempty and is relatively compact for some g € I".
Then this intersection is contained in gS; v NSjy.
(2) Suppose that gS; N'S; is not empty nor relatively compact for some g € I'.
Let I be the subset of T such that I(G) consists of all x € YT(G) for which
x(A(SN zj_lgziS)) is bounded. Then zj_lgzi e (UM)(Q) C Pr and

gSi N Sj C Sj,], g_lSj nsS; C Si,].
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We also need the following.

Lemma 4.2 ([4, Lemma 12.2]).  The union J,c 44, a~'na is relatively
compact, and hence there exists a positive number Cio such that

dx(uma - zg, a-xg) < Cha for umen,uelU, meM, ac Alty),
where dx 1s the distance on X.

Next we consider Busemann functions associated with the geodesic rays
corresponding to the edges of the cone z;A(to) - zo.

Definition 4.3 (cf. [11], [2]). Let N be a complete, simply connected
Riemannian manifold of nonpositive sectional curvature and let dy be the dis-
tance on N.

(1) Two geodesic rays 71,72 : [0,00) — N are called asymptotic if the function
t — dn(71(t),7v2(t)) is uniformly bounded on [0, 00). Being asymptotic is an
equivalence relation on the set of all geodesic rays in N. The equivalence class
represented by a geodesic ray ~ is denoted by ~y(00).

(2) Let 7y : [0,00) — N be a geodesic ray. The Busemann function h : N —
R associated with ~ is given by

hy(x) = tliglo {dn(z,v(t)) — t} for z € N.

For any real number C, we call the set hJ'((—o0,(C)) (resp. h;'(C)) an open
horoball (resp. a horosphere) centered at v(oo), or associated with .

Remark. If a geodesic ray ; is asymptotic to 2, then the Busemann
function h., differs to h., only by an additive constant.

Let ag be the unique point in A such that
&(ap) =ty for all £ € T(Q).

In other words, ag - z¢ is the apex of the cone A(tg) - z¢. For each x € T(G),
let H, be the unit vector in a® such that

d¢(H,) =0 forall¢ € T(G)— {x}
and define a geodesic ray ¢, : [0,00) — X by

ey (t) = agexp(tHy) - zo fort > 0.
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These geodesic rays are the edges of A(tg) - xo. Let ¢y (t) = zjcy (t). For each j
the edges of the cone z;A(to) - xo are cjy, x € T(G). Let hj, be the Busemann
function associated with c;,,. We remark that if £ # x, then the geodesic ray
¢je s not asymptotic to gc;, for any g € I', ¢ € {1,..., A}. This can be seen, for
example, as follows. Let I, J be the subsets of T such that I(G) = T(G)—{x},
J(G) =T(G)—{&}. If x # &, then we have I # J. From Mostow’s lemma (cf.
[18, Lemma 5.7]), the isotropy subgroup of ¢, (00) (resp. cg(00)) is P;(R) (resp.
P;(R)). Suppose that cje is asymptotic to ge;,. Then, Py is conjugate to P
by [30, 3.1.9 Theorem]. On the other hand, P; and P; are standard rational
parabolic subgroups of G with I # J, and hence they are not conjugate to
each other ([3, V. 21.12 Proposition]), which is a contradiction. When ¢;, is
asymptotic to gc;, for some g € I', we have

hjx(gz) = hiy(z) + 845,  forall z € X,

where s;; , is a constant depending on ¢, j, x but not on g (cf. [22, Proposition
3.3]).

For each x € T(G), we renormalize the Busemann functions A1y, ..., hxy
as follows. For each i € {1,...,A}, let ¢ = ¢(¢) € {1,..., A} be the smallest
index such that there exists an element g of I", for which the geodesic ray gcgy,
is asymptotic to ¢;y,. Let N

hix = hix = Sq(iyi,x-

Then we have

Lemma 4.3 ([22, Lemma 3.4]).  Suppose that gc;,, is asymptotic to cjy
forge I'. Then

hjx(gz) = EzX(I) for all x € X.

By adding a constant to all the functions %zx simultaneously if necessary,
we can also assume the following for each j.

() 7 (0) | NzA-mg={zbj 20}, b € A(ta). (4.5)

XET(G)

By using these results, we consider another decomposition of each S;. In
this paragraph we fix one j. Let

rix = X(b;) (> 1)
for each x € T(G). Let

Fj.={a-zo|&(a) >rje forall{ e Y(G)}
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Wi (4, 15}

— Wi {2 As}

Ny

Wi {1}
Figure 5. Fj, in the Q-rank 3 case: Y(G) = {x1, x2, X3}

be the cone in A(t1) - xp with apex b; - xo. For each nonempty subset I of T,
we define a subset W; ; of A -z by

Wj,[ = {a-l‘o

These W; 1 form the boundary of the cone Fj, (see Figure 5). We regard A -z
as the rg(G)-dimensional Euclidean space. For each x € T(G), let N,, be the
outer unit normal vector (in R"e(®)) of the maximal face Wi (xy of Fj.. We

&(a) > rje forall € € T(G) - I(G)

x(a) =rj, forall x € I(G), }

put

b-xg € Wj’[,

F.r=4b- teNe € A(ty) -
T o + Z eiVe (to) - wo te >0 forall &€ I(G)

¢el(G)

for each nonempty subset I of T. Then we have

Ato) - mo=Fp U | | Fur |- (4.6)
O£ICY

Let

Sjx = zinFju,  Sjr=znFj 1.

Then we have a decomposition
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S{t s}
B o s) L
///\\
> E{X}
5,y ’
F.
/ \ X2, X
Fiouway—72 2~ _TTTHITHTL w2 7 s}
ya NN / | X
/ \ |
S{ra} S{xz.xs} Fj ey
The decomposition by (4.3). The decomposition by (4.6).

Figure 6. The section of A(tg) - ¢ by a hyperplane (in A - x() transverse to the
geodesic ray exp(tp/|p|) - zo: Q-rank = 3, T(G) = {x1, X2, X3}

We remark (see Figure 6) that g]* C S« and

Siul U Sir| €S-8
I£T,0

By (4.3), (4.6) we obtained (A + 1) different decompositions of A - xzy.
In this paragraph we fix a nonempty subset I, and compare the locations of
various W; ; when j runs through 1 to A. We consider them in the Euclidean
space A - xo. First of all, let H;; be the (rg(G) — #I)-dimensional plane
containing Wj; . Then these planes H;; are mutually parallel. Let v;; =
bj - xg — by - 9. From the definition of Wj, the set {Ejg }geT(G)fl(G) of
renormalized Busemann functions can be used as a coordinate system on H; ;.
More precisely, if a - zo, a’ - £o € H; ; and

hje(za - o) = hje(za’ - x0) for all ¢ € T(G) — I(G),

then a = a’. Moreover, from the choice of by,...,by in (4.5), if a- 2o € H, 1,
a”-x9 € H;r and
hje(zja - x0) = hie(za" - x0) for all ¢ € T(G) — I(G),

we have a - o = a” - £g + v;;. Let

Ciz3=0Cia + max dx (o, bj - zo).
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Lemma 4.4.  Suppose that
r=ziuma-x9 €S;, ' =zjumad z9€S;, dx(vo, 2') > Cis,

and gx = x’ for some g € I'. Then the following holds:

(1) For some proper subset I of T, x € S; 1 and 2’ € S; 1.

(2) The line in A-xq through the two points a-xo+v;; and a’-xq is perpendicular
to Hj,].

Proof. Since ' ¢ S; v, (1) follows from Lemma 4.1. Moreover we have
zj_lgzi € (UrM;)(Q) C Pr. Then the geodesic ray gc;e is asymptotic to cje
for all £ € T(G) — I(G) ([18, Proposition 5.9]). Let ¢;c (resp. ¢j¢) be the
geodesic ray in A(to) - o which corresponds to W; ¢¢1 (resp. Wj r¢3). Then ?Lig
(resp. hj¢) is the Busemann function with respect to z;e (resp. ;). Note
that the values of the Busemann functions with respect to ¢;¢, ¢j¢ are invariant
under the action of UM. Hence we have

hie (zouma - z0) = hig(zia - o), hje(zju'm'a’ - xo) = hje(zja’ - z0). (4.8)

On the other hand, from Lemma 4.3, we have

hie(zouma - z0) = hje(gziuma - zo) = hje(zu'm’a - xo)

for £ € T(G) — I(G). It follows from (4.8) that

hie(zia - To) = hje(zja’ - xo) (4.9)

for £ € T(G) — I(G). We take the unique point b - xo (resp. b - ) in the
(r@(G) — #I)-dimensional plane H; s (resp. H;r) such that the line through
a-xo (resp. a'-xg) and b-xg (resp. b’ -xp) is perpendicular to this plane. Then
we have

f]’vbzg(zzb . 1‘0) = ﬁig(zia . 330), Ejg(Zjb/ . 330) = Ejg(Zja/ : JZQ) (410)
for all £ € T(G) — I(G). From (4.9), (4.10), we obtain
hae(zib - 20) = hje(z;b' - 2o) for all € € T(G) — I(G).

Therefore, b’ - 29 = b- x9 + v;; and @’ — (a + v;;) is perpendicular to H; ;. O

We can now construct a vector field on V.
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For each j, we regard A - zy as the Euclidean space R"(®) with origin
O = bj-x9. Let (r,01,...,0,,G)-1) be the polar coordinate of R™(G) We
define a vector field Z7 on the (open) cone Fj. with apex O by

0
(ZJ,'/)ano T (a)a.xo for all a -z € Fj..

Let A (to) - o be the region obtained from A(to) - o by deleting a closed ball
of radius R; with center O, where R; is an arbitrary number larger than the
distance from O to the apex ag - 2o of the cone A(tg) - xg. We extend the vector
field ZJ to A(to) - zo N F} 1 for each nonempty subset I of T: We define (7)),
to be the vector obtained by the parallel translation in R"(%) from (Z)b-o
when

r=>b-xy+ Z t{N&EA;»(to)']ZQﬁFjJ, b'l‘oEWj,I.
£el(G)

Further we define (Z]’l’)mna.m0 for uma - xg € nA;(tO) - xo to be the horizontal
vector which is mapped to the vector (Z]’/ )a-z, Dy the Riemannian submersion
nAi(to) - w0 — Al(to) - wo. We have thus obtained a vector field ZJ on
nAj(to) - 7o which is smooth on the complement of (J; 4y nWj.1-

By using the differential of the left translation L., we define a vector field
Z; on §; = zinAj(to) - zo by

( ;) zjuma-xq

= dL; ((Z])uma-zy) ~ for uma - zo € nAj(to) - zo.

From Lemmas 4.1, 4.4, these vector fields Z1, ..., Z} are well patched together
to give a vector field Z’ on the complement of some compact subset of V. By
using a suitable cut-off function, we can extend this Z’ to a vector field Z on
V.

We recall that II : X — V is the natural projection. Let vy = II(xo)
and let Br(vg) be the closed geodesic ball in V' of radius R > 0 around vy.
If we take a sufficiently large R, then Z coincides with Z’ on V — Bgr(vg) due
to Lemma 4.2. Take a submanifold with smooth boundary including Br(v),
and let Vi be its complement. (We can find such a submanifold, for example,
by using the exhaustion function constructed in [27]). We have |Z] = 1 on
the open submanifold Vi of V. Let W be the image under II of the union of
zin0F;, and z;n(0F; 1 — 0(A(tg) - o)), 1 < j < X\; I # 0, Y, where J means the
boundary. Since Uj’:l zjnA(to) - xo is a fundamental open set for I, W N Vg
is the union of a finite number of closed submanifolds of Vi of codimension
1. From the construction of Z, for any v € W, Z(v) is tangent to W. The



638 TOSHIAKI HATTORI

complement Vi —W is a disjoint union of a finite number of open submanifolds,
say V1,..., V5. For any given u € C§°(VR), we have the following: If v € 0V,
then u(v) = 0 or Z(v) is tangent to dV;. Hence, if we find a positive constant
C such that div Z > C on each V;, we can apply the similar argument in the
proof of Lemma 1 to each V; to yield

2
« (/ u|2> §/ |grad u|?.
4
Vi Vi

By taking the sum, we obtain

2
C—(/ |u2)§ JRE
4 Vr Vr

and the essential spectrum of Vg is contained in [C?/4, 00). Therefore, it
suffices to find such a constant.

Lemma 4.5.  For any € > 0, there exists a number R(¢) > 0 such that
the following holds. If R > R(e), then we have

din22<g¥|p1|—s> on V — Bg(vg). (4.11)
Proof. Tt suffices to show the following for R > R(e):

iv Z > i - Si1) — . .
div Z > 2 (Iénng | E) on each II(S; 1) — Br(vo) (4.12)

For this, it suffices to estimate div Z7' on n(F; r N A} (to) - zo).

Let d = ro(G) — #I. We regard A -z as the Euclidean space R™(%) with
the origin b; - xo. Let us consider the d-dimensional subspace containing W; ;.
Let (r,01,...,04_1) be its polar coordinate system, where

OST, Ogela"'vod—Z S’]T/Q;Ogod—l 3271—
and the last angle 6;_; is counted from the ray

{exp (tpr/lp1]) bj - xo |t = O}

in Wj . (The ray is represented as (t,7/2,...,7/2,0) in this coordinate sys-
tem.) We take a coordinate system (vq,...,vn—q) of the space UrM; - xg,
which is diffeomorphic to the (n — d)-dimensional Euclidean space. Then
(r,01,...,04-1,V1,...,Vn_gq) is a coordinate system of X. We can assume that
this coordinate system is compatible with the orientation of X. Let

h(vi,.. . Un—q)dvy A+ Advp_g
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be the volume element of Uy M - zy. Then, from [5, Corollary 4.4], the volume
element of X is given by

Vadr NdOL A ANdBg—1 ANdvr A+ A dvp_g,

where

V9= rd_le_%'p"Sinel'“smed*f(tgl, coyBa—1)h(ve, e Un—d)s

d—2
f(el, ey Hd_l) = 672<p1710gbj> H Sind—k—l 0k~
k=1

In this coordinate system, Z7 is represented as

0

70 =—-1.—.
J or

Consequently, we have

1 d—1
div ZJ{I = \/g(,i(ﬁ) = *T + 2|p1|sin01 . ~-Sin9d—1.
Thus we have, for x = umab;-xy € n(FjJﬁA;(to)wo), u€eUp,mée Mj,a € Aj,
d—1 loga d—1
div Z =——+42 ,——— ) > ——— 4+ 2 mi . (4.19
(div Zj') () | log al + <pI loga> ~  |logal + Igl];lr\pﬂ (4.19)

There exists a positive constant C14(I) determined by the angle between p and
Wj 1 such that the following holds: If

R> Ry(e) = logb| + Cuz + Cua() - 2,
then
|loga| > (d—1)/(2¢) for & = umabj - xo € n(Fj 1 N Al(to) - z0),
u € Ur,m € My,a € A with I(z) € Vg.
If we put

R(e) = jmax R;(e),

then (4.12) follows from (4.19), Lemma 4.2, and the triangle inequality. O

Proof of Theorem 4 (2). For any € > 0, take a submanifold Vi with R >
R(e). Then the essential spectrum of Vg is contained in [(minszv |pr| —€)?, co)



640 TOSHIAKI HATTORI

due to Lemma 4.5. Hence, from the decomposition principle, the essential
spectrum of V' is contained in

2
. N — : 2
N [(gglml 8) 700> [g¥|p[|,oo>.
0<exl

On the other hand, we have already seen (in Section 3) that [min;zy |ps|?, o0)
belongs to the essential spectrum of V. Therefore, minyy |pr|? is the bottom
of the essential spectrum of V. O

Remark.  After this paper was written, the author was informed that our
construction in this section might be related to the construction in [28].

85. Manifolds with Corners at Infinity

In this section we discuss some other consequences of Sections 1 and 2.
For any given compact manifold M with boundary OM, we can attach
OM x [0,00) to the boundary to produce a complete Riemannian manifold V'
and control the bottom of the essential spectrum of V. Let Y7,...,Y; be the
connected components of M. We choose a metric on each Y; x [0,00) so that

the condition (x) in the introduction is satisfied. For example, if

aj(t)y=e ", a>0, (5.1)

then, from Lemma 1 or Theorem 2, the essential spectrum of V is empty. If
a;(t) = eV, (5.2)

then, from Theorem 1 (1) and Lemma 1 (or Proposition 1), the essential spec-
trum of V is the half-line [c,00) (¢ > 0). In particular, if a;(t) = e 2V
for some j, V has a shrinking end. When Y} admits a fiber bundle structure
Y; — Bj satisfying the conditions (#x), (**) in the introduction, we can give
an additional structure to the essential spectrum of V: We first deform the met-
ric on Y; to the metric of such a Riemannian submersion in the part ¥; x [0, 1],
and then apply Theorem 1 (2) to ¥; x (1,00). The essential spectrum of V
contains a union of half-lines parametrized by the eigenvalues of B;.

Theorem 1 can be applied to complete manifolds canonically obtained
from manifolds with corners. Following [24], a manifold W with corners is a
topological manifold with boundary equipped with an embedding ¢ : W — 1%
into a closed C*°-manifold for which there exists a finite collection of smooth
functions p; on W, i € I, such that

L(W)z{xEW’ pi(x) ZO,Z’EI}
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Figure 7. A manifold with corners at infinity: the case #I = 2.

and for each subset J C I, the differentials dp;, i € J, are linearly independent
at each point x € W where all p;, ¢ € J vanish. We identify W with the image
t(W). Let

Yi:Wﬁ{xGW‘ pi(x):O}

for each ¢ € I. Then the boundary OW of W is the union of the hypersurfaces
Y;, i € I. For any subset J = {iy,...,ix} C I, we put

Y=Y .0 =Y, N---NY;,.

We say that Y is a corner of codimension k. We assume that W is endowed
with a metric which is a product on a neighborhood of the form (—¢,0]* x Y;
for each corner Y of codimension k.

In this situation, we can enlarge W as follows: We first glue half-cylinders
Y; x [0,00) to the codimension 1 corners Y; to obtain the space Wi. Next
we glue Y;; x [0, )% to each codimension 2 corner Y;; to get the space Ws.
After repeating this procedure, we finally fill Wy;_1 with Y7 x [0,00)#! at the
codimension #I corner Y and obtain a complete manifold V. Let us call this
V' the complete manifold obtained from W by gluing cylinders successively to
boundary components, or briefly the complete manifold canonically obtained
from W.

Proof of Corollary 1. Apply Theorem 1 (1) to the part Y7 x [0, 00)%#!
under the condition that the mean curvature K(t) is identically zero. O
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We consider the case #I = 2 further. Let W be an n-dimensional manifold
with boundary OW = Y7 UY5, where Y; and Y5 are (n—1)-dimensional compact
manifolds such that Y5 = Y; NY5 is the boundary of both Y; and Y;. By
deforming its metric (in a compact region) if necessary, we may assume that
Y15 is orthogonal to both Y7 and Y5, and that the metric of W is a product near
all Y1, Y5 and Yio. We first glue Y7 % [0, 00), Y5 X [0, 00) to Y7, Y3, respectively,
and then we attach Y5 x [0, 00)? to Y15 as in Figure 7 to get a complete manifold
V. Let

Vi = Y1 Uy, (Y12 x [0,00))

be the manifold obtained from Y; by attaching Y15 x [0,00) to Yia, and let
Vs = Y2 Uy, (Y12 % [0,00)).
Then }71, }72 have infinite volume and Y5 = )A/l N }72,
V=W U (¥; x[0,00)) U (Yz x [0,00)).

Suppose that there exist eigenvalues of Y; and Ys. Then we can apply
Theorem 1 (2) to the three parts Y; x [0, 00), Yy x [0,0), and Y72 x [0, 00)2
under the condition that the mean curvature C(¢) is identically zero. Let
cjo < cj1 <---<cjm <--- be the eigenvalues of Yl if j =1, YQ if j =2, Yo
if j = 3. We remark that c3 o = 0. For each m and any r > 0, there exists a
family {u; m rq} 4eN of compactly supported smooth functions on V' such that
the following conditions are satisfied.

(5.3) For any compact subset of V, if we take ¢ sufficiently large, then the
support of w; m rq lies outside this compact set.
(5.4) For some positive constant C15 independent of ¢, we have

1
1A = (cjom + 7))t rll < C1s lim.rall-

Let ¢ be an eigenfunction belonging to the eigenvalue c3,,. Then we
can make a family of compactly supported smooth functions on Y; (resp. ?2)
satisfying the similar conditions as (5.3), (5.4) by applying Theorem 1 (2).
Then, from Proposition 1.2, we can make two families of compactly supported
smooth functions on V satisfying the similar conditions as (5.3), (5.4) out
of these families. On the other hand, we may suppose that {u&m?r,q}qu is
made of p. Consequently, the eigenfunction ¢ seems to produce three different
Weyl sequences on V. However, if we use parallelograms instead of the disks
D, D' in R? in the proof of Theorem 1, these are essentially the same. Such a
phenomenon is already observed in the case of higher Q-rank locally symmetric
spaces.
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