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§0. Introduction

In this paper, we study the following problem, which is called the “cuspi-
dalization problem” (cf. [7], Introduction):

Problem 0.1. Let r be a positive integer. Then can one reconstruct the
fundamental group

π1(UX(r))

of the r-th configuration space UX(r) of a hyperbolic curve X over a field K

(i.e., the open subscheme of the r-th product of X over K whose complement
consists of the diagonals “{(x1, · · · , xr) | xi = xj}” [where i �= j]) from the
fundamental group π1(X) of X?

Let r be a positive integer, X a proper hyperbolic curve over a finite
field K, and l a prime number that is invertible in K. We shall denote
by ΠX(r) (respectively, ΠX(r)) the geometrically pro-l fundamental group of
the r-th configuration space UX(r) of X (respectively, of the fiber product

X(r)
def=

r︷ ︸︸ ︷
X ×K · · · ×K X of r copies of X over K), i.e., the quotient of π1(UX(r))

(respectively, π1(X(r))) by the closed normal subgroup obtained as the kernel
of the natural projection from π1(UX(r)⊗K K) (respectively, π1(X(r)⊗K K)) to
its maximal pro-l quotient, and by pUX(r−1):i

: UX(r) → UX(r−1) the projection
obtained by forgetting the i-th factor (where i = 1, · · · , r). Let Y be a proper
hyperbolic curve over a finite field L in which l is invertible; moreover, we shall
use similar notations for Y . Then the main result of this paper is as follows
(cf. Theorem 4.1):

Theorem 0.1. Let

α(1) : ΠX
def= ΠX(1)

∼−→ ΠY
def= ΠY(1)

be a Frobenius-preserving isomorphism (cf. Definition 2.5). Then, for any
positive integer r, there exists a unique isomorphism

α(r) : ΠX(r)

∼−→ ΠY(r) ,

well-defined up to composition with a cuspidally inner automorphism (i.e., a
Ker (ΠY(r) � ΠY(r))-inner automorphism), which is compatible with the natu-
ral respective actions of the symmetric group on r letters such that, for i =
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1, · · · , r + 1, the following diagram commutes up to composition with a cuspi-
dally inner automorphism (i.e., a Ker (ΠY(r) � ΠY(r))-inner automorphism):

ΠX(r+1)

α(r+1)−−−−→ ΠY(r+1)

via pUX(r)
:i

⏐⏐� ⏐⏐�via pUY(r)
:i

ΠX(r) −−−−→α(r)
ΠY(r) .

Note that Theorem 0.1 is a generalization of [16], Theorem 3.1. (In [16],
Theorem 3.1, the case where r = 2 is proven.) [16], Theorem 3.1 is used in the
proof of Theorem 0.1. Thus, the case where r ≥ 3 may be regarded as the main
new contribution of the present paper.

By Theorem 0.1, we obtain the following result (cf. Corollary 4.1, (i)):

Theorem 0.2. Let
α : ΠX

∼−→ ΠY

be a Frobenius-preserving isomorphism, r a positive integer, and {x1, · · · , xr}
a set of distinct K-rational points of X of cardinality r with an ordering. Then
there exist a set {y1, · · · , yr} of distinct L-rational points of Y of cardinality r

with an ordering, and an isomorphism

αnew : ΠX\{x1,··· ,xr}
∼−→ ΠY \{y1,··· ,yr}

of the geometrically pro-l fundamental group of X \ {x1, · · · , xr} with the geo-
metrically pro-l fundamental group of Y \{y1, · · · , yr} which is compatible with
α. Moreover, such an isomorphism αnew is uniquely determined up to compo-
sition with a cuspidally inner automorphism (i.e., a Ker(ΠY \{y1,··· ,yr} � ΠY )-
inner automorphism).

An essential part of the proof of the main theorem is to show that the
profinite group ΠX(r+1) can be reconstructed from ΠX(r) “group-theoretically”.
This group-theoretic reconstruction of the profinite group ΠX(r+1) from the
given profinite group ΠX(r) is performed as follows: Let X log

(r) be the r-th log

configuration space of X (cf. [7], Definition 1). Then the interior of X log
(r) is natu-

rally isomorphic to the r-th configuration space UX(r) of X; moreover, it follows
from the log purity theorem that the natural open immersion UX(r) ↪→ X log

(r)

induces an isomorphism of the geometrically pro-l fundamental group ΠX(r) of
UX(r) with the geometrically pro-l log fundamental group of X log

(r) . Therefore,
to reconstruct ΠX(r+1) , it is enough to reconstruct the geometrically pro-l log
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fundamental group of X log
(r+1). Now it follows from a similar argument to the

argument used in the proof of [7], Theorem 4.1, that the images in ΠX(r+1) of
the geometrically pro-l log fundamental groups of certain irreducible compo-
nents (equipped with the log structures induced by the log structure of X log

(r+1))

of the divisor at infinity of the log scheme X log
(r+1) topologically generate the

desired profinite group ΠX(r+1) . On the other hand, there exists a topologi-
cal group ΠLie

X(r+1)
which arises from the pro-graded Lie algebra obtained by

considering the weight filtration of the pro-l fundamental group ΔX(r+1) of
UX(r+1)⊗K K such that the desired profinite group ΠX(r+1) is naturally embed-
ded in ΠLie

X(r+1)
; moreover, this topological group ΠLie

X(r+1)
can be reconstructed

group-theoretically from the given profinite group ΠX(r) by considering the Ga-
lois invariant splitting of the subquotients of ΔX(r+1) with respect to the weight
filtration. Note that the fundamental construction of the topological group
ΠLie

X(r+1)
has been initiated, and the fact that the topological group ΠLie

X(r+1)
can

be reconstructed group-theoretically by considering the Galois invariant split-
ting was first observed by Mochizuki in [16]. Therefore, if one can reconstruct
group-theoretically the natural images in ΠLie

X(r+1)
of the geometrically pro-l log

fundamental groups of certain irreducible components (equipped with the log
structures) of the divisor at infinity of the log scheme X log

(r+1), then one can
construct a subgroup which is isomorphic to the desired profinite group ΠX(r+1)

as the subgroup which is topologically generated by the images reconstructed.
This group-theoretic reconstruction of the images of the log fundamental groups
of certain irreducible components is performed in Section 4.

Notations and Terminologies:

Numbers:

We shall denote by Prime the set of all prime numbers, by N the monoid
of rational integers n ≥ 0, by Z the ring of rational integers, by Q the field
of rational numbers, by Ẑ (respectively, Zl) the profinite completion of Z (re-
spectively, pro-l completion of Z for a prime number l), and by Ql the field of
fractions of Zl.

Let Σ be a set of prime numbers, and n an integer. Then we shall say that
n is a Σ-integer if the prime divisors of n are in Σ.
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Groups:

Let G be a group, and H a subgroup of G. Then we shall write

ZG(H) def= {g ∈ G | g · h = h · g for any h ∈ H}

for the center of H in G,

NG(H) def= {g ∈ G | g ·H · g−1 = H}

for the normalizer of H in G, and

CG(H) def= {g ∈ G | g ·H · g−1 ∩H has finite index in g ·H · g−1 and H.}

for the commensurator of H in G.
Let G be a profinite group and Σ a (non-empty) set of prime numbers.

Then we shall refer to the quotient

lim←−G/H

of G (where the projective limit is over all open normal subgroups H ⊆ G such
that the index [G : H] of H is a Σ-integer) as the maximal pro-Σ quotient of
G. We shall denote by G(Σ) the maximal pro-Σ quotient of G.

Let G be a topological group. Then we shall denote by Gab the abelianiza-
tion of G, i.e., the quotient of G by the closed normal subgroup [G, G] generated
by the commutators of G.

Let G be a Hausdorff topological group. Then we shall denote by Aut(G)
the group of continuous automorphisms, and by Out(G) the quotient of Aut(G)
by the subgroup Inn(G) of inner automorphisms of G. Note that if G is topo-
logically finitely generated, then by considering a basis of the topology of G

consisting of characteristic open subgroups of G, we may regard Aut(G) as
being equipped with a topology. This topology on Aut(G) induces a topology
on Out(G).

Let G be a Hausdorff topological group which is center-free and topologi-
cally finitely generated, and H a topological group. Then there exists a natural
exact sequence of topological groups:

1 −→ G −→ Aut(G) −→ Out(G) −→ 1

(where G → Aut(G) is defined by letting G act on G by conjugation). For a
continuous homomorphism H → Out(G), we shall denote by

G
out
� H



666 Yuichiro Hoshi

the topological group obtained by pulling back the above exact sequence via
the homomorphism H → Out(G), i.e.,

G
out
� H

def= Aut(G)×Out(G) H .

Note that it is immediate that G
out
� H fits into the following natural exact

sequence:

1 −→ G −→ G
out
� H −→ H −→ 1 .

Let G be a profinite group. Then we shall say that G is slim if any open
subgroup of G is center-free. Note that it is easily verified that for an exact
sequence of profinite groups

1 −→ G1 −→ G2 −→ G3 −→ 1 ,

if G1, G3 are slim, then G2 is slim.

Log schemes:

A basic reference for the notion of log schemes is [9].
In this paper, log structures are always considered on the étale sites of

schemes.
Let P be a property of schemes [for example, “quasi-compact”, “con-

nected”, “normal”, “regular”] (respectively, morphisms of schemes [for example,
“proper”, “finite”, “étale”, “smooth”]). Then we shall say that a log scheme
(respectively, a morphism of log schemes) satisfies P if the underlying scheme
(respectively, the underlying morphism of schemes) satisfies P.

For a log scheme X log, we shall denote by X (respectively,MX) the under-
lying scheme (respectively, the sheaf of monoids defining the log structure) of
X log. For a morphism f log of log schemes, we shall denote by f the underlying
morphism of schemes.

We shall say that a log scheme X log is fs if X log is integral (i.e., the sheaf
MX is a sheaf of integral monoids), and locally for the étale topology, X log

admits a chart modeled on a finitely generated and saturated monoid.
For fs log schemes X log, Y log, and Z log, we shall denote by X log×Y log Z log

the fiber product of X log and Z log over Y log in the category of fs log schemes. In
general, the underlying scheme of X log×Y log Z log is not naturally isomorphic to
X×Y Z. However, since strictness (note that a morphism f log : X log → Y log of
log schemes is called strict if the induced morphism on the sheaves of monoids
defining the log structures is an isomorphism) is stable under base-change in the
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category of arbitrary log schemes, if X log → Y log is strict, then the underlying
scheme of X log ×Y log Z log is naturally isomorphic to X ×Y Z.

If there exist both schemes and log schemes in a commutative diagram,
then we regard each scheme in the diagram as the log scheme obtained by
equipping the scheme with the trivial log structure.

We shall refer to the largest open subset (possibly empty) of the underlying
scheme of a log scheme on which the log structure is trivial as the interior of
the log scheme.

Let X log and Y log be log schemes, and f log : X log → Y log a morphism
of log schemes. Then we shall refer to the quotient of MX by the image of
the morphism f∗MY → MX induced by f log as the relative characteristic
sheaf of f log. Moreover, we shall refer to the relative characteristic sheaf of
the morphism X log → X induced by the natural inclusion O∗X ↪→MX as the
characteristic sheaf of X log.

Curves:

Let f : X → S be a morphism of schemes. Then we shall say that f is
a family of curves if f is a smooth, geometrically connected morphism whose
geometric fibers are one-dimensional. Let g, r be natural numbers. Then we
shall say that f is a family of curves of type (g, r) if there exist a family of
proper curves fcpt : Xcpt → S (i.e., a family of curves which is a proper
morphism) whose geometric fibers are of genus g, and a relative divisor D ⊆
Xcpt which is finite étale over S of relative degree r such that X and Xcpt \D

are isomorphic over S. Moreover, we shall say that f is a family of hyperbolic
curves (respectively, tripods) if f is a family of curves of type (g, r) such that
(g, r) satisfies 2g − 2 + r > 0 (respectively, (g, r) = (0, 3)). On the other hand,
we shall refer to a family of curves (respectively, hyperbolic curves; respectively,
tripods) over the spectrum of a field as a curve (respectively, hyperbolic curve;
respectively, tripod).

We shall denote by Mg,r the moduli stack of r-pointed stable curves of
genus g whose r sections are equipped with an ordering (cf. [10]), and by
Mlog

g,r the log stack obtained by equipping Mg,r with the log structure associ-
ated to the divisor with normal crossings which parametrizes singular curves.
Moreover, we shall writeMg

def= Mg,0 and Mlog

g
def= Mlog

g,0.

Fundamental groups:

For a connected scheme X (respectively, log scheme X log) equipped with
a geometric point x → X (respectively, log geometric point x̃log → X log), we
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shall denote by π1(X, x) (respectively, π1(X log, x̃log)) the fundamental group
of X (respectively, log fundamental group of X log). Since one knows that the
fundamental group is determined up to inner automorphisms independently
of the choice of basepoint, we shall often omit the basepoint, i.e., we shall
often denote by π1(X) (respectively, π1(X log)) the fundamental group of X

(respectively, log fundamental group of X log).
For a set Σ of prime numbers and a connected scheme X (respectively, log

scheme X log), we shall refer to the maximal pro-Σ quotient of π1(X) (respec-
tively, π1(X log)) as the pro-Σ fundamental group of X (respectively, pro-Σ log
fundamental group of X log). Moreover, for a scheme X (respectively, log scheme
X log) which is geometrically connected and of finite type over a field K, we shall
refer to the quotient of π1(X) (respectively, π1(X log)) by the closed normal
subgroup obtained as the kernel of the natural projection from π1(X ⊗K Ksep)
(respectively, π1(X log⊗K Ksep)) (where Ksep is a separable closure of K) to its
maximal pro-Σ quotient π1(X⊗K Ksep)(Σ) (respectively, π1(X log⊗K Ksep)(Σ))
as the geometrically pro-Σ fundamental group of X (respectively, geometrically
pro-Σ log fundamental group of X log). Thus, the geometrically pro-Σ funda-
mental group π1(X)(Σ) of X (respectively, geometrically pro-Σ log fundamental
group π1(X log)(Σ) of X log) fits into the following exact sequence:

1 −→ π1(X ⊗K Ksep)(Σ) −→ π1(X)(Σ) −→ Gal(Ksep/K) −→ 1

(respectively,

1 −→ π1(X log ⊗K Ksep)(Σ) −→ π1(X log)(Σ) −→ Gal(Ksep/K) −→ 1).

§1. Exactness Properties of the Graded Lie Algebras Arising
from Families of Curves

In this Section, we consider some exactness properties of graded Lie alge-
bras arising from families of curves.

Definition 1.1 (cf. [16], Definition 3.1). Let l be a prime number, G,
H, and A topologically finitely generated pro-l groups, and φ : H � A a
(continuous) surjective homomorphism. Suppose further that A is abelian, and
that G is an l-adic Lie group.

(i) We shall refer to the central filtration

{H(n)} (n ≥ 1)
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of H defined as
H(1) def= H ;

H(2) def= Ker(φ) ;

H(m) def= 〈[H(m1), H(m2)] | m1 + m2 = m〉 for m ≥ 3

(where 〈Ni | i ∈ I〉 is the group topologically generated by the Ni’s [where
i ∈ I]) as the central filtration with respect to the surjection φ.

Let a, b, n ∈ Z such that 1 ≤ a ≤ b, n ≥ 1. Then we shall write

H(a/b) def= H(a)/H(b) ;

Gr(H)(n) def=
⊕
m≥n

H(m/m + 1) ;

Gr(H) def= Gr(H)(1) ;

Gr(H)(a/b) def= Gr(H)(a)/Gr(H)(b) ;

GrQl
(H)(n) def= Gr(H)(n)⊗Zl

Ql ;

GrQl
(H) def= Gr(H)⊗Zl

Ql ;

GrQl
(H)(a/b) def= Gr(H)(a/b)⊗Zl

Ql ;

H(a/∞) def= lim←−H(a/b)

(where the projective limit is over all integers b ≥ a + 1).

(ii) We shall denote by Lie(G) the Lie algebra over Ql determined by the l-
adic Lie group G. We shall say that G is nilpotent if there exists a positive
integer m such that if we denote by {G(n)} the central filtration with
respect to the natural surjection G � Gab (cf. (i)), then G(m) = {1}.
If G is nilpotent, then Lie(G) is a nilpotent Lie algebra over Ql, hence
determines a connected, unipotent linear algebraic group Lin(G), which we
shall refer to as the linear algebraic group associated to G. In this situation,
there is a natural (continuous) homomorphism (with open image)

G −→ Lin(G)(Ql)

which is determined by the condition that it induces the identity morphism
on the associated Lie algebras (cf. [16], Remark 33). In the situation of
(i), if 1 ≤ a ∈ Z, then we shall write

Lie(H(a/∞)) def= lim←− Lie(H(a/b)) ; Lin(H(a/∞)) def= lim←− Lin(H(a/b))
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(where the projective limit is over all integers b ≥ a + 1). (Note that each
H(a/b) is an l-adic Lie group.)

Let K be a separably closed field, l a prime number that is invertible in K,
S a connected locally noetherian normal scheme over K, g ≥ 2 and r natural
numbers, and f : X → S a family of hyperbolic curves of type (g, r) (where we
refer to the discussion entitled “Curves” in Introduction concerning the term
“family of hyperbolic curves of type (g, r)”). We shall denote by

π1(X)(l)

the geometrically pro-l fundamental group of X (where we refer to the dis-
cussion entitled “Fundamental groups” in Introduction concerning the term
“geometrically pro-l fundamental group”).

Lemma 1.1. Let s→ S be a geometric point of S. Then the homomor-
phism π1(X)(l) → π1(S) induced by f fits into an exact sequence:

1 −→ π1(X ×S s)(l)
via π1(pr1)−→ π1(X)(l)

via π1(f)−→ π1(S) −→ 1 .

Proof. Let fcpt : Xcpt → S be a (unique, up to canonical isomorphism
[cf. the discussion entitled “Curves” in [13], Section 0]) compactification of
f : X → S. If the finite étale covering D = Xcpt \ X → S is empty or
trivial (i.e., D is a disjoint union of copies of S, and the covering D → S is
induced by the identity morphism of S), then this follows from [23], Proposition
2.3. In general, if S′ → S is a connected finite étale covering of S such that
D ×S S′ → S′ is trivial, then we obtain a commutative diagram

1 −−−−→ π1(X ×S s)(l) −−−−→ π1(X ×S S′)(l)
via π1(pr2)−−−−−−−→ π1(S′) −−−−→1∥∥∥ ⏐⏐� ⏐⏐�

π1(X ×S s)(l)−−−−−−−→
via π1(pr1)

π1(X)(l) −−−−−−→
via π1(f)

π1(S) −−−−→ 1 ,

where the horizontal sequences are exact (note that the exactness of the bottom
sequence follows from [3], Exposé XIII, Proposition 4.1; Exemples 4.4), and

the vertical arrows are injective. Thus, π1(X ×S s)(l)
via π1(pr1)→ π1(X)(l) is

injective.

We shall denote by
ΔX/S
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the kernel of the homomorphism π1(X)(l) → π1(S) induced by f . Then by
Lemma 1.1, this pro-l group ΔX/S is isomorphic to the pro-l fundamental
group of a hyperbolic curve of type (g, r) (over a separably closed field). We
shall write

Δcpt
X/S

def= ΔXcpt/S ,

i.e., the pro-l fundamental group of a geometric fiber of the compactification
fcpt : Xcpt → S of f : X → S. Then we have a natural surjection

ΔX/S � Δcpt
X/S

which fits into a commutative diagram

1 −−−−→ ΔX/S −−−−→ π1(X)(l)
via f−−−−→ π1(S) −−−−→ 1⏐⏐� ⏐⏐� ∥∥∥

1 −−−−→ Δcpt
X/S −−−−→ π1(Xcpt)(l) −−−−−→

via fcpt
π1(S) −−−−→ 1 ,

where the horizontal sequences are exact (cf. Lemma 1.1).
We shall denote by

{ΔX/S(n)}
the central filtration of ΔX/S with respect to the composite of the natural
surjections (cf. Definition 1.1, (i)):

ΔX/S � Δcpt
X/S � (Δcpt

X/S)ab .

Remark 1. As is well-known, the graded Lie algebra Gr(ΔX/S) (where
“Gr” is taken with respect to the central filtration defined above) is center-free
(cf. e.g., [2], Theorem 1, (ii), together with [2], Proposition 5).

Now by Lemma 1.1, we obtain an outer representation:

ρX/S : π1(S) −→ Out(ΔX/S) .

We shall denote by
Out∗(ΔX/S) ⊆ Out(ΔX/S)

the subgroup of Out(ΔX/S) whose elements preserve the central filtration
{ΔX/S(n)} of ΔX/S .

Remark 2. If r ≥ 2, then by the definition of Out∗(ΔX/S), we obtain

Out∗(ΔX/S) �= Out(ΔX/S) .
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Indeed, this follows immediately from the definition of {ΔX/S(n)}, together
with the fact that the assumption that r �= 0 implies that the profinite group
ΔX/S is a free pro-l group.

Proposition 1.1. The outer representation ρX/S factors through
Out∗(ΔX/S).

Proof. This follows from the fact that the exact sequence obtained in
Lemma 1.1 fits into the commutative diagram in the discussion following
Lemma 1.1.

Definition 1.2. We shall say that f is of pro-l-exact type if the se-
quence

1 −→ ΔX/S −→ ΔX
via f−→ ΔS −→ 1

naturally induced by the exact sequence obtained in Lemma 1.1 is exact, where
ΔX (respectively, ΔS) is the pro-l fundamental group of X (respectively, S).

Proposition 1.2. The image of the composite

π1(S)
ρX/S−→ Out∗(ΔX/S) −→ Aut((Δcpt

X/S)ab)

is a pro-l group (e.g., the action of π1(S) on (Δcpt
X/S)ab is trivial) if and only if

f is of pro-l-exact type.

Proof. It is immediate that if f is of pro-l-exact type, then ρX/S factors
through ΔS . Thus, we prove that if the composite in the statement of Proposi-
tion 1.2 factors through ΔS , then f is of pro-l-exact type. It follows from [12],
Lemma 3.1, (i), that the kernel of the natural morphism

Out∗(ΔX/S) −→ Aut((Δcpt
X/S)ab)

is a pro-l group. Therefore, the assumption implies that the homomorphism
ρX/S factors through ΔS . Now let us write

Γ def= ΔX/S

out
� ΔS

(cf. the discussion entitled “Groups” in Introduction). Then we have a natural
morphism π1(X)(l) → Γ that fits into a commutative diagram

1 −−−−→ ΔX/S −−−−→ π1(X)(l)
via f−−−−→ π1(S) −−−−→ 1∥∥∥ ⏐⏐� ⏐⏐�

1 −−−−→ ΔX/S −−−−→ Γ −−−−→
pr2

ΔS −−−−→ 1 ,
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where the horizontal sequences are exact. Note that since π1(S) → ΔS is
surjective, π1(X)(l) → Γ is also surjective, and that since ΔX/S and ΔS are
pro-l, Γ is also pro-l. Now we shall denote by N1 (respectively, N2) the kernel
of the natural surjection π1(X)(l) → ΔX (respectively, π1(X)(l) → Γ). Then
the following

(i) N1 ⊆ N2. (This follows from the fact that Γ is pro-l.)

(ii) ΔX/S ∩N2 = {1}. (This follows from the above diagram.)

(iii) ΔX/S ∩N1 = {1}. (This follows from (i) and (ii).)

By (ii) and (iii), the following natural sequence is exact

1 −→ ΔX/S −→ ΔX −→ π1(S)/N3 −→ 1 ,

where N3 is the image of N1 via the surjection π1(X)(l) � π1(S). Moreover,
by (i), this exact sequence fits into a commutative diagram

1 −−−−→ ΔX/S −−−−→ π1(X)(l) −−−−→ π1(S) −−−−→ 1∥∥∥ ⏐⏐� ⏐⏐�
1 −−−−→ ΔX/S −−−−→ ΔX −−−−→ π1(S)/N3 −−−−→ 1∥∥∥ ⏐⏐� ⏐⏐�
1 −−−−→ ΔX/S −−−−→ Γ −−−−→ ΔS −−−−→ 1 ,

where the horizontal sequences are exact, and all vertical arrows are surjective.
Since ΔX is pro-l, the group π1(S)/N3 is also pro-l. Thus, the right-hand lower
vertical arrow π1(S)/N3 → ΔS , hence also, ΔX → Γ is an isomorphism. This
completes the proof of Proposition 1.2.

Definition 1.3. Let AX and AS be profinite abelian groups, and ΔX �
AX and ΔS � AS (continuous) surjections. Then we shall say that (f , ΔX →
AX , ΔS → AS) is of Lie-exact type if the following conditions are satisfied:

(i) f is of pro-l-exact type.

(ii) The surjections ΔX � AX and ΔS � AS fit into a commutative diagram

1 −−−−→ ΔX/S −−−−→ ΔX
via f−−−−→ ΔS −−−−→ 1⏐⏐� ⏐⏐� ⏐⏐�

1 −−−−→ (Δcpt
X/S)ab −−−−→ AX −−−−→ AS −−−−→ 1 ,

where the bottom sequence is exact.
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(iii) The sequence of graded Lie algebras

1 −→ Gr(ΔX/S) −→ Gr(ΔX)
via f−→ Gr(ΔS) −→ 1

naturally induced by the exact sequence in Definition 1.2 is exact, where
“Gr” of Gr(ΔX) (respectively, Gr(ΔS)) is taken with respect to the central
filtrations

{ΔX(n)} (respectively, {ΔS(n)})
with respect to the surjection ΔX � AX (respectively, ΔS � AS) [thus,
AX  ΔX(1/2) (respectively, AS  ΔS(1/2))].

Proposition 1.3. Let AX and AS be profinite abelian groups, and
ΔX � AX and ΔS � AS surjections. Assume that (f , ΔX → AX , ΔS → AS)
satisfies conditions (i) and (ii) in Definition 1.3. Then the following conditions
are equivalent :

(i) (f , ΔX → AX , ΔS → AS) is of Lie-exact type.

(ii) The action of ΔX on ΔX/S(n/n+1) and the action of ΔX(2) on ΔX/S(n/n+
2) (induced via conjugation) are trivial for any n ≥ 1.

(ii′) The action of ΔS on ΔX/S(n/n+1) and the action of ΔS(2) on ΔX/S(n/n+
2) (induced via ρX/S) are trivial for any n ≥ 1.

(iii) The action of ΔX(m) on ΔX/S(n/n+m) (induced via conjugation) is trivial
for any n, m ≥ 1.

Proof. First, we prove that (i) implies (ii). If (ii) does not hold, then
there exists x ∈ ΔX/S(n) and σ ∈ ΔX(m) (where m = 1 or 2) such that
σ · x · σ−1 · x−1 /∈ ΔX/S(n + m). On the other hand, by the definition of the
filtration {ΔX(n)}, we have that σ · x · σ−1 · x−1 ∈ ΔX(n + m) ∩ΔX/S . Thus,
ΔX/S(n + m) �= ΔX(n + m) ∩ΔX/S . This implies that the natural morphism
Gr(ΔX/S)→ Gr(ΔX) is not injective. Thus, (i) does not hold.

Next, we prove that (ii) implies (iii). This proof will be by induction on
m. The assertion for m = 1 and 2 follows from (ii). Assume that m ≥ 3. Then
it follows from the induction hypothesis and a well-known identity due to P.
Hall (i.e.,

[A, [B, C]] ⊆ [B, [C, A]] · [C, [A, B]]

for closed normal subgroups A, B, and C of an ambient group [cf. e.g., [11],
Theorem 5.2]) that

[ΔX/S(n), [ΔX(m1), ΔX(m2)]] ⊆ ΔX/S(n + m)
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for positive integers m1 and m2 such that m1 + m2 = m. Thus, since, in
general, for a finite set I,

〈[G, Hi] | i ∈ I〉 = [G, 〈Hi | i ∈ I〉]

for closed normal subgroups Hi (i ∈ I) of an ambient group G, we thus obtain
an inclusion

[ΔX/S(n), ΔX(m)] ⊆ ΔX/S(n + m)

by the definition of the filtration {ΔX(n)}. Therefore, we conclude that (iii)
holds.

The assertion that (iii) implies (i) follows from a similar argument to the
argument used in the proof of [12], Proposition 3.2 (cf. also Remark 1 and [12],
Lemma 3.2).

The equivalence of (ii) and (ii′) follows immediately from the exactness of
the following sequences:

1 −→ ΔX/S −→ ΔX −→ ΔS −→ 1 ;

1 −→ ΔX/S(2) −→ ΔX(2) −→ ΔS(2) −→ 1 .

Lemma 1.2. Let Icpt be the kernel of the surjection

ΔX/S � Δcpt
X/S .

Let s→ S be a geometric point of S. We shall write

Ds
def= D ×S s ,

where D ⊆ Xcpt is the reduced relative divisor over S obtained as the comple-
ment of X in Xcpt. Then the following hold :

(i) The submodule

(Δcpt
X/S)ab = ΔX/S(1/2) ⊆ Gr(ΔX/S)

and the submodule

Icpt/(ΔX/S(3) ∩ Icpt) ⊆ ΔX/S(2/3) ⊆ Gr(ΔX/S)

generate the graded Lie algebra Gr(ΔX/S) (as a Lie algebra). In particular,
if f is of pro-l-exact type, then the following conditions are equivalent :
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(1) The action of ΔX on ΔX/S(n/n + 1) (induced via conjugation) is
trivial for any n ≥ 1.

(1′) The action of ΔS on ΔX/S(n/n + 1) (induced via ρX/S) is trivial for
any n ≥ 1.

(2) The action of ΔX on (Δcpt
X/S)ab and Icpt/(ΔX/S(3) ∩ Icpt) (induced

via conjugation) is trivial.

(2′) The action of ΔS on (Δcpt
X/S)ab and Icpt/(ΔX/S(3) ∩ Icpt) (induced

via ρX/S) is trivial.

(ii) The submodule

Icpt/(ΔX/S(3) ∩ Icpt) ⊆ ΔX/S(2/3)

is a free Zl-module in the formal generators ζ, where ζ ranges over the
elements of the underlying set of Ds. Moreover, the action of ΔS on the
generators ζ of Icpt/(ΔX/S(3)∩Icpt) (induced via ρX/S) is compatible with
the natural action of ΔS on Ds.

Proof. This follows immediately from [8], Proposition 1.

Corollary 1.1. Let AX be a profinite abelian group, and ΔX � AX

a surjection. If (f , ΔX → AX , ΔS → Δab
S ) satisfies condition (ii) in Defi-

nition 1.3, and the action of π1(S) on (Δcpt
X/S)ab and on Icpt/ΔX/S(3) ∩ Icpt

(induced via ρX/S) are trivial, then (f , ΔX → AX , ΔS → Δab
S ) is of Lie-exact

type.

Proof. This follows immediately from Propositions 1.2; 1.3; Lemma 1.2,
together with the well-known identity due to P. Hall applied in the proof of
Proposition 1.3.

Definition 1.4. Let m be a natural number.

(i) We shall say that a sequence of morphisms of schemes

Xm
fm−1−→ Xm−1

fm−2−→ · · · f1−→ X1
f0−→ X0 = SpecK

over the separably closed field K is a successive extension of hyperbolic
curves of product type if there exist proper hyperbolic curves Ci (where i =
0, · · · , m− 1) over K which satisfy the following condition: The morphism
fi : Xi+1 → Xi factors as the composite

Xi+1 ↪→ Ci ×K Xi
pr2−→ Xi ,
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where the first arrow is an open immersion Xi+1 ↪→ Ci ×K Xi onto the
complement (Ci ×K Xi) \ Di of a relative divisor Di which is finite étale
over Xi.

Note that it is immediate that Xi is a regular scheme of dimension i, that fi

is a family of hyperbolic curves, and that the fi’s induce an open immersion
Xi ↪→ C0 ×K · · · ×K Ci−1.

(ii) Let

Xm
fm−1−→ Xm−1

fm−2−→ · · · f1−→ X1
f0−→ X0 = Spec K

be a successive extension of hyperbolic curves of product type. Then we
shall denote by

{ΔXi
(n)}

the central filtration of the pro-l fundamental group ΔXi
of Xi with respect

to the composite of the natural surjections

ΔXi
� ΔC0×K ···×KCi−1 � Δab

C0×K ···×KCi−1
( Δab

C0
× · · · ×Δab

Ci−1
) ,

where the first arrow is the morphism induced by the open immersion
Xi ↪→ C0 ×K · · · ×K Ci−1 (cf. (i)).

Note that it is immediate that the following sequence is exact:

1 −→ ΔXi+1/Xi
(1/2) −→ ΔXi+1(1/2)

via fi−→ ΔXi
(1/2) −→ 1 .

Proposition 1.4. Let

Xm
fm−1−→ Xm−1

fm−2−→ · · · f1−→ X1
f0−→ X0 = SpecK

be a successive extension of hyperbolic curves of product type, and 0 ≤ i ≤ m−1
an integer. Then the following hold :

(i) The morphism fi is of pro-l-exact type.

(ii) The following conditions are equivalent :

(1) The relative divisor Di (which appears in Definition 1.4, (i)) is empty
or the finite étale covering Di → Xi is trivial (i.e., Di is a disjoint
union of copies of Xi, and the covering Di → Xi is induced by the
identity morphism of Xi).

(2) (fi, ΔXi+1 → ΔXi+1(1/2), ΔXi
→ ΔXi

(1/2)) is of Lie-exact type.
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Proof. First, we prove assertion (i). Since the diagram

1 −−−−→ ΔXi+1/Xi
−−−−→ π1(Xi+1)(l)

via fi−−−−→ π1(Xi) −−−−→ 1⏐⏐� ⏐⏐� ∥∥∥
1 −−−−→ Δcpt

Xi+1/Xi
−−−−→ π1(Ci ×K Xi)(l)

via pr2−−−−→ π1(Xi) −−−−→ 1∥∥∥ ∥∥∥ ∥∥∥
1 −−−−→ ΔCi

−−−−→ ΔCi
× π1(Xi)

pr2−−−−→ π1(Xi) −−−−→ 1

commutes, the action of π1(Xi) on Δcpt
Xi+1/Xi

is trivial; thus, assertion (i) follows
from Proposition 1.2.

Next, we prove assertion (ii). Assume that condition (1) holds. Then, by
Lemma 1.2, (ii), the action of ΔXi

on Icpt/(ΔXi+1/Xi
(3)∩Icpt) is trivial. Thus,

in light of the triviality of the action of π1(Xi) on Δcpt
Xi+1/Xi

(observed in the
proof of assertion (i)), we conclude that the action of ΔXi

on ΔXi+1/Xi
(n/n +

1) is trivial for any n ≥ 1 (cf. Lemma 1.2, (i)). Thus, it follows from the
equivalence of (i) and (ii′) in Proposition 1.3 that it is enough to show that
the action of ΔXi

(2) on ΔXi+1/Xi
(n/n + 2) is trivial for any n ≥ 1. Moreover,

by the triviality of the action of π1(Xi) on Δcpt
Xi+1/Xi

(observed in the proof of
(i)), together with the well-known identity due to P. Hall applied in the proof
of Proposition 1.3, the action of [ΔXi

, ΔXi
] on ΔXi+1/Xi

(n/n + 2) is trivial for
any n ≥ 1. Since ΔXi

(2) is generated by [ΔXi
, ΔXi

] and the kernel I of the
natural surjection ΔXi

� ΔC0×K ···×KCi−1( ΔC0 × · · · ×ΔCi−1), it is enough
to show that the action of I on ΔXi+1/Xi

(n/n + 2) is trivial for any n ≥ 1.
Therefore, if the natural inclusion Xi ↪→ C0×K · · ·×K Ci−1 is an isomorphism,
then the assertion follows.

Assume that Xi ↪→ C0×K · · · ×K Ci−1 is not an isomorphism. Then since
I is topologically normally generated by the inertia subgroups (well-defined, up
to conjugation) of ΔXi

determined by the irreducible components of the divisor
with normal crossings (C0 ×K · · · ×K Ci−1) \Xi ⊆ C0 ×K · · · ×K Ci−1 (by the
purity theorem [cf. [4], Exposé X, Theorem 3.4], together with the regularity
of C0 ×K · · · ×K Ci−1), it is enough to show the following assertion:

(†): The action of these inertia subgroups on ΔXi+1/Xi
(n/n + 2) is

trivial for any n ≥ 1.

For any positive integer N , we shall denote by Ci (N) (respectively, UCi (N))
the fiber product of N copies of Ci over Spec K (respectively, the N -th config-
uration space of Ci, i.e., the scheme which represents the open subfunctor

S �→ {(s1, · · · , sN ) ∈ Ci (N)(S) = Ci(S)×N | sn �= sm if n �= m}
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of the functor represented by Ci (N)). By (1), if we denote by r the degree
of the (trivial) covering Di → Xi, then there exist “classifying morphisms”
Xi

gi→ UCi (r) and Xi+1
gi+1→ UCi (r+1) that fit into the following cartesian diagram

Xi+1
gi+1−−−−→ UCi (r+1)

fi

⏐⏐� ⏐⏐�
Xi −−−−→

gi

UCi (r) ,

where the right-hand vertical arrow is the morphism induced by the morphism
Ci (r+1) → Ci (r) obtained by forgetting the (r + 1)-st factor. (In fact, one can
regard UCi (r) as a moduli scheme of curves obtained as the complement in Ci of
distinct r points; moreover, one can regard the right-hand vertical arrow in the
above diagram as a universal object.) Thus, we obtain a commutative diagram

1 −−−−→ ΔXi+1/Xi
−−−−→ ΔXi+1

via fi−−−−→ ΔXi
−−−−→ 1

�
⏐⏐� via gi+1

⏐⏐� ⏐⏐�via gi (∗)
1 −−−−→ ΔUCi (r+1)/UCi (r)

−−−−→ ΔUCi (r+1)
−−−−→ ΔUCi (r)

−−−−→ 1 ,

where the horizontal sequences are exact, and the left-hand vertical arrow is
an isomorphism. Note that the sequence

UCi (r) −→ UCi (r−1) −→ · · · −→ UCi (2) −→ Ci −→ Spec K

(where the morphism UCi (N+1) −→ UCi (N) [where 1 ≤ N ≤ r − 1] is the mor-
phism induced by the morphism Ci (N+1) → Ci (N) obtained by forgetting the
(N +1)-st factor) is a successive extension of hyperbolic curves of product type;
thus, the filtration {ΔUCi (r)

(n)} is defined (cf. Definition 1.4, (ii)). Moreover,
since the sequence

1 −→ Gr(ΔUCi (r+1)/UCi (r)
) −→ Gr(ΔUCi (r+1)

) −→ Gr(ΔUCi (r)
) −→ 1 (∗∗)

(naturally induced by the bottom sequence in the commutative diagram (∗))
is exact (cf. [12], Proposition 3.2, (i)), by the equivalence in Proposition 1.3,
(i) and (ii′), the action of ΔUCi (r)

(2) on ΔUCi (r+1)
/UCi (r)

(n/n + 2) is trivial for
any n ≥ 1. Thus, by the commutativity of the above diagram (∗) and the fact
that the left-hand vertical arrow in the above diagram (∗) is an isomorphism,
to prove the assertion that condition (1) implies condition (2), it is enough to
show that the composite Xi

gi→ UCi (r) ↪→ Ci (r) extends to the generic points of
the irreducible components of the divisor with normal crossings (C0×K · · · ×K
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Ci−1) \ Xi ⊆ C0 ×K · · · ×K Ci−1. On the other hand, this follows from the
properness of Ci (r). This completes the proof of the assertion that condition
(1) implies condition (2).

Next, assume that (fi, ΔXi+1 → ΔXi+1(1/2), ΔXi
→ ΔXi

(1/2)) is of Lie-
exact type. Then the equivalence of (i) and (ii′) in Proposition 1.3 and the
equivalence of (1′) and (2′) in Lemma 1.2, (i), imply that the action of ΔXi

on Icpt/(ΔXi+1/Xi
(3) ∩ Icpt), where Icpt is the kernel of the natural surjection

ΔXi+1/Xi
� Δcpt

Xi+1/Xi
, is trivial. Therefore, by Lemma 1.2, (ii), we conclude

that either the relative divisor Di is empty, or the finite étale covering Di → Xi

is trivial.

Remark 3. Note that the exactness of the sequence (∗∗) in the proof
of Proposition 1.4 can also be proven as follows. Note that we showed the
exactness of the sequence (∗∗) in the proof of Proposition 1.4 by means of [12],
Proposition 3.2, (i), which is proven via transcendental techniques; however,
the following proof is purely algebraic:

To prove the exactness of the sequence (∗∗), by a similar argument to the
argument used in the proof of Proposition 1.4, it is enough to show the assertion
(†) in the proof of Proposition 1.4, i.e., the action of the inertia subgroups of
ΔUCi(r)

on ΔUCi(r+1)/UCi(r)
(n/n+2) is trivial for any n ≥ 1. Moreover, since this

problem manifestly depends only on purely group-theoretic data of the sequence

1 −→ ΔUCi (r+1)/UCi (r)
−→ ΔUCi (r+1)

−→ ΔUCi (r)
−→ 1 ,

we may assume without loss of generality that there exists a finite field k

such that the proper hyperbolic curve “Ci” are defined over k. We shall write
Xi+1

def= UCi(r+1) and Xi
def= UCi(r) ; moreover, we shall denote by Gk the ab-

solute Galois group of k, by Frk ∈ Gk the Frobenius element, and by qk the
cardinality of k. Then by the “Riemann hypothesis for abelian varieties over
finite fields” (cf. e.g., [18], p. 206) (respectively, as is well-known), the eigen-
values of the action of Frk on the Gk-module ΔXi+1/Xi

(n/n + 1) (respectively,
the inertia subgroup) are algebraic numbers all of whose complex absolute val-
ues are equal to q

n/2
k (respectively, qk), i.e., the Gk-module ΔXi+1/Xi

(n/n + 1)
(respectively, the inertia subgroup) is “of weight n” (respectively, “of weight
2”). In particular, the Gk-module

HomGk
(ΔXi+1/Xi

(n/n + 1), ΔXi+1/Xi
(n + 1/n + 2))

is “of weight 1”. On the other hand, since the action of the inertia subgroup
on ΔXi+1/Xi

(n/n + 1) and ΔXi+1/Xi
(n + 1/n + 2) is trivial, by the exactness
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of the sequence

1−→ΔXi+1/Xi
(n+1/n+2)−→ΔXi+1/Xi

(n/n+2)−→ΔXi+1/Xi
(n/n+1)−→1 ,

the action of the inertia subgroup on ΔXi+1/Xi
(n/n + 2) determines (and is

determined by!) a Gk-equivariant homomorphism from the inertia subgroup to

HomGk
(ΔXi+1/Xi

(n/n + 1), ΔXi+1/Xi
(n + 1/n + 2)) .

Thus, by considering the “weights” of the domain and codomain of this Gk-
equivariant homomorphism, we conclude that the Gk-equivariant homomor-
phism is trivial; in particular, the action of the inertia subgroup on
ΔXi+1/Xi

(n/n + 2) is trivial.

§2. Fundamental Groups of Configuration Spaces
over Finite Fields

In this Section, we consider the group-theoretic properties of the funda-
mental groups of configuration spaces.

Let K be a field, and l a prime number that is invertible in K. We shall
fix a separable closure Ksep of K. We shall denote by GK the Galois group of
Ksep over K. Moreover, in the following, let X be a proper hyperbolic curve
of genus gX ≥ 2 over K.

Definition 2.1. Let r be a natural number.

(i) We shall denote by X(r) the fiber product of r copies of X over SpecK,
i.e.,

X(r)
def=

r︷ ︸︸ ︷
X ×K · · · ×K X .

For an integer 1 ≤ i ≤ r, we shall denote by pX(r−1):i : X(r) → X(r−1) the
morphism obtained by forgetting the i-th factor.

(ii) We shall denote by UX(r) ⊆ X(r) the r-th configuration space of X, i.e.,
the scheme which represents the open subfunctor

S �→ {(f1, · · · , fr) ∈ X(r)(S) = X(S)×r | fi �= fj if i �= j}

of the functor represented by X(r). For an integer 1 ≤ i ≤ r, we shall
denote by pUX(r−1) :i

: UX(r) → UX(r−1) the morphism induced by pX(r−1):i.
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Let 1 ≤ i < j ≤ r be integers. Then we shall denote by DX(r){i,j} ⊆ X(r)

the closed subscheme of X(r) which represents the closed subfunctor

S �→ {(f1, · · · , fr) ∈ X(r)(S) = X(S)×r | fi = fj}

of the functor represented by X(r). Then it is immediate that

UX(r) = X(r) \
⋃

1≤i<j≤r

DX(r){i,j} .

(iii) We shall denote by ΠX(r) the geometrically pro-l fundamental group of
X(r), and by ΔX(r) the kernel of the natural surjection

ΠX(r) � GK .

Thus, we have an exact sequence

1 −→ ΔX(r) −→ ΠX(r) −→ GK −→ 1 .

Moreover, we shall write

ΠX
def= ΠX(1) ; ΔX

def= ΔX(1) .

(iv) We shall denote by ΠX(r) the geometrically pro-l fundamental group of
UX(r) , by ΔX(r) the kernel of the natural surjection

ΠX(r) � GK ,

and by Δ(i)
X(r)/X(r−1)

the kernel of the surjection

ΔX(r)

via pUX(r−1)
:i

� ΔX(r−1) (i = 1, · · · , r) .

Thus, we have exact sequences

1 −→ ΔX(r) −→ ΠX(r) −→ GK −→ 1 ;

1 −→ Δ(i)
X(r)/X(r−1)

−→ ΔX(r)

via pUX(r−1)
:i

−→ ΔX(r−1) −→ 1 ;

1 −→ Δ(i)
X(r)/X(r−1)

−→ ΠX(r)

via pUX(r−1)
:i

−→ ΠX(r−1) −→ 1 .

Note that since the sequence obtained as the base-change of

UX(r)

pUX(r−1)
:r

−→ UX(r−1)

pUX(r−2)
:r−1

−→ · · ·
pUX(1)

:2

−→ X −→ SpecK
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from K to Ksep is a successive extension of hyperbolic curves of product

type (cf. Definition 1.4, (i)), the family of curves UX(r)⊗KKsep
via pUX(r−1)

:i

→
UX(r−1) ⊗K Ksep is of pro-l exact type (cf. Proposition 1.4, (i)); thus,

the pro-l group Δ(i)
X(r)/X(r−1)

is isomorphic to the pro-l fundamental group

of the geometric fiber of the family of curves UX(r) ⊗K Ksep
via pUX(r−1)

:i

→
UX(r−1) ⊗K Ksep at a geometric point of UX(r−1) ⊗K Ksep.

Proposition 2.1. Let r be a positive integer. Then the profinite groups
ΔX(r) , ΔX(r) , and Δ(i)

X(r)/X(r−1)
are slim (where we refer to the discussion en-

titled “Groups” in Introduction concerning the term “slim”).

Proof. The slimness of Δ(i)
X(r)/X(r−1)

(in particular, the slimness of ΔX)
follows from [1], Propositions 8; 18. The slimness of ΔX(r) follows from the
slimness of ΔX , together with the fact that ΔX(r) is the product of r copies
of ΔX . The slimness of ΔX(r) follows from induction on r, the slimness of

Δ(i)
X(r)/X(r−1)

, and the exactness of the sequence

1 −→ Δ(i)
X(r)/X(r−1)

−→ ΔX(r)

via pUX(r−1)
:i

−→ ΔX(r−1) −→ 1

in Definition 2.1, (iv) (cf. the discussion entitled “Groups” in Introduction).

Next, let us recall the theory of log configuration schemes (cf. [7], Section
2). Let us denote by X log

(r) the r-th log configuration scheme of X, i.e.,

X log
(r)

def= SpecK ×Mlog
g
Mlog

g,r

(where we refer to the discussion entitled “Curves” in Introduction concern-
ing Mlog

g,r), where the (1-)morphism Spec K → Mlog

g is the classifying mor-

phism of the curve X → SpecK, and the (1-)morphism Mlog

g,r → M
log

g is the
(1-)morphism obtained by forgetting the sections; and by plog

X(r−1):i
: X log

(r) →
X log

(r−1) the morphism induced by the (1-)morphism Mlog

g,r →M
log

g,r−1 obtained
by forgetting the i-th section (cf. [7], Definitions 1 and 2). Then the following
holds:

Proposition 2.2.

(i) The interior (where we refer to the discussion entitled “Log schemes” in
Introduction concerning the term “interior”) of the log scheme X log

(r) is nat-
urally isomorphic to the usual r-th configuration space UX(r) of X.
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(ii) The log scheme X log
(r) is connected, regular, and log regular.

(iii) The morphism plog
X(r−1):i

is proper, flat, geometrically connected, geometri-
cally reduced, and log smooth.

Proof. Assertion (i) (respectively, (ii); respectively, (iii)) follows from the
definition of X log

(r) (respectively, [7], Proposition 2.1, (i), (iii), and (iv); respec-

tively, the definition of plog
X(r−1):i

, together with [7], Proposition 2.1, (ii)).

Now we have a natural commutative diagram

UX(r) −−−−→ X log
(r) −−−−→ X(r)

pUX(r−1)
:i

⏐⏐� ⏐⏐�plog
X(r−1):i

⏐⏐�pX(r−1):i

UX(r−1) −−−−→ X log
(r−1) −−−−→ X(r−1) ,

where the right-hand horizontal arrows are the morphisms obtained as the
composites of the morphisms “X log

(−) → X(−)” obtained by forgetting the log
structures and the natural morphisms “X(−) → X(−)”. This diagram induces
a sequence

ΠX(r) −→ π1(X
log
(r) )

(l) −→ ΠX(r) ,

where π1(X
log
(r) )

(l) is the geometrically pro-l log fundamental group of X log
(r) . Now

by [7], Lemma 4.2, (i) (i.e., Proposition 2.2, (i), (ii), together with the log purity
theorem), the first morphism ΠX(r) → π1(X

log
(r) )

(l) (in the above sequence) is

an isomorphism. In the following, we identify ΠX(r) with π1(X
log
(r) )

(l) by means
of this isomorphism.

Let I be a subset of {1, 2, · · · , r} of cardinality I# ≥ 2. We denote by
Dlog

X(r)I
the log scheme defined in [7], Definition 3, i.e., the log scheme obtained

as follows: By applying the clutching (1-)morphism (cf. [10], Definition 3.8)

βg,0,{1,2,··· ,r}\I,I :Mg,r−I#+1 ×K M0,I#+1 →Mg,r

(where I and {1, 2, · · · , r} \ I are equipped with the natural ordering) to the
(r − I# + 1)-pointed stable curve of genus g

X(r−I#+2) ×K M0,I#+1 −→ X(r−I#+1) ×K M0,I#+1

obtained by base-changing X(r−I#+2)

p
X

(r−I#+1)
r−I#+2

→ X(r−I#+1) and the (I#+
1)-pointed stable curve of genus 0

X(r−I#+1) ×K M0,I#+2 −→ X(r−I#+1) ×K M0,I#+1
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obtained by base-changing the universal curve M0,I#+2 → M0,I#+1 over
M0,I#+1, we obtain an r-pointed stable curve of genus g. Then it is im-
mediate that the classifying (1-)morphism X(r−I#+1) ×K M0,I#+1 →Mg,r of
this r-pointed stable curve of genus g factors through X(r), and this morphism
X(r−I#+1) ×K M0,I#+1 → X(r) is a closed immersion. We shall denote by
δX(r)I this closed immersion, by DX(r)I the scheme-theoretic image of δX(r)I ,
by Dlog

X(r)I
the log scheme obtained by equipping DX(r)I with the log structure

induced by the log structure of X log
(r) , and by δlog

X(r)I
: Dlog

X(r)I
→ X log

(r) the strict
closed immersion whose underlying morphism is δX(r)I . Then the following
holds:

Proposition 2.3.

(i) The underlying scheme of the log scheme Dlog
X(r)I

is isomorphic to X(r−I#+1)

×KM0,I#+1.

(ii) The log structure of the log scheme X log
(r) is the log structure defined by the

divisor with normal crossings
∑

I#≥2 DX(r)I ⊆ X(r).

Proof. Assertion (i) (respectively, (ii)) follows from the definition of Dlog
X(r)I

(respectively, [7], Proposition 3.1, (ii)).

Now if 1 ≤ i < j ≤ r are integers, then it follows from [7], Proposition 3.2,
(i), together with definitions, that plog

X(r):i
◦ δlog

X(r+1){i,j} = plog
X(r):j

◦ δlog
X(r+1){i,j} is

a morphism of type N, i.e., the underlying morphism of schemes is an isomor-
phism, and the relative characteristic sheaf (where we refer to the discussion
entitled “Log schemes” in Introduction concerning the term “relative charac-
teristic sheaf”) is locally constant with stalk isomorphic to N (cf. [6], Definition
6). Let x → X log

(r) be a geometric point whose image lies in the interior UX(r)

of X log
(r) . Then we obtain the following commutative diagram:

Dlog
X(r+1){i,j} ×Xlog

(r)
x

pr1−−−−→ Dlog
X(r+1){i,j}

plog
X(r):i

◦δlog
X(r+1){i,j}−−−−−−−−−−−−−→ X log

(r)⏐⏐� ⏐⏐�δlog
X(r+1){i,j}

∥∥∥
X log

(r+1) ×Xlog
(r)

x −−−−→
pr1

X log
(r+1) −−−−→

plog
X(r):i

X log
(r) .
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This diagram induces a commutative diagram

1 −−−−−−−→ π1(D
log
X(r+1){i,j} ×

X
log
(r)

x)(l) via pr1−−−−−−−→ π1(D
log
X(r+1){i,j})(l)

?
?
y

?
?
yvia δ

log
X(r+1){i,j}

1 −−−−−−−→ Δ(i)
X(r+1)/X(r)

−−−−−−−→ ΠX(r+1)

via p
log
X(r):i

◦δ
log
X(r+1){i,j}

−−−−−−−−−−−−−−−−−−−−−−→ ΠX(r)
−−−−−−−→ 1

‚
‚
‚

−−−−−−−−−−→
via p

log
X(r):i

ΠX(r)
−−−−−−−→ 1 ,

where the horizontal sequences are exact (cf. [6], Proposition 4; Remark 15; [7],
Lemma 4.2, (iii)), and we have π1(D

log
X(r+1){i,j}×Xlog

(r)
x)(l) ∼→ Zl(1) (where “(1)”

denotes a Tate twist); moreover, by the definition of Dlog
X(r+1){i,j}, it follows that

the left-hand vertical arrow π1(D
log
X(r+1){i,j} ×Xlog

(r)
x)(l) → Δ(i)

X(r+1)/X(r)
is injec-

tive, and this image is the inertia subgroup (well-defined, up to conjugation)
associated to the cusp (of the geometric fiber of pUX(r) :i

: UX(r+1) → UX(r) at
a geometric point of UX(r)) determined by the divisor DX(r+1){i,j} ⊆ X(r+1).

In particular, the vertical arrow π1(D
log
X(r+1){i,j})

(l) → ΠX(r+1) in the above
diagram is also injective.

Definition 2.2. Let r ≥ 2 be an integer, and I a subset of {1, 2, · · · , r}
of cardinality I# ≥ 2. Then we shall denote by DX(r)I the image of the
morphism π1(D

log
X(r)I

)(l) → ΠX(r) induced by δlog
X(r)I

, where π1(D
log
X(r)I

)(l) is the

geometrically pro-l log fundamental group of Dlog
X(r)I

. We shall denote by DΔ
X(r)I

the intersection of DX(r)I and ΔX(r) . Note that these subgroups are well-
defined, up to conjugation.

Moreover, if I# ≥ 3, then by [7], Proposition 3.1, (v), the composite

Dlog
X(r)I

δlog
X(r)I

↪→ X log
(r)

plog
X(r−1):i−→ X log

(r−1)

factors through δlog
X(r−1)I[i] : Dlog

X(r−1)I[i] ↪→ X log
(r−1), where I [i] is the unique subset

of {1, 2, · · · , r − 1} such that for 1 ≤ j ≤ r − 1, j ∈ I [i] if and only if{
j ∈ I if j < i

j + 1 ∈ I if j ≥ i .

On the other hand, by [7], Proposition 3.2, there exists a morphism

Dlog
X(r)I

−→ X log
(r−I#+1)

×K Mlog

0,I#+1
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which is of type N; moreover, these morphisms fit into a commutative diagram

Dlog
X(r)I

−−−−→ X log
(r−I#+1)

×K Mlog

0,I#+1⏐⏐� ⏐⏐�
Dlog

X(r)I[i] −−−−→ X log
(r−(I[i])#+1)

×K Mlog

0,(I[i])#+1 ,

where the left-hand vertical arrow is the morphism induced by the compos-
ite plog

X(r−1):i
◦ δlog

X(r)I
, and if i /∈ I (respectively, i ∈ I), then the right-hand

vertical arrow is the morphism obtained as the base-change of the morphism
plog

X(r−I#):i
′ : X log

(r−I#+1)
→ X log

(r−(I[i])#+1)
= X log

(r−I#)
(respectively, Mlog

0,I#+1 →
Mlog

0,(I[i])#+1 =Mlog

0,I# obtained by forgetting the i′-th section), where i′ is the
integer such that {1, 2, · · · , r} \ I = {i1, i2, · · · , ir−I#}; i1 < i2 < · · · < ir−I# ;
i = ii′ (respectively, I = {i1, i2, · · · , iI#}; i1 < i2 < · · · < iI# ; i = ii′). Now
it follows from [6], Proposition 4; Remark 15; [7], Lemma 4.2, (iii), that the
above diagram induces a commutative diagram

1 −−−−→ Zl(1) −−−−→ π1(D
log
X(r)I

)(l)⏐⏐� ⏐⏐�
1 −−−−→ Zl(1) −−−−→ π1(D

log
X(r)I[i])

(l)

−−−−→ ΠX(r−I#+1)
×GK

π1(Mlog

0,I#+1)
(l) −−−−→ 1⏐⏐�

−−−−→ ΠX
(r−(I[i])#+1)

×GK
π1(Mlog

0,(I[i])#+1)
(l) −−−−→ 1 ,

where “π1(Mlog

0,(−))
(l)” is the geometrically pro-l log fundamental group of

“Mlog

0,(−)”, and the horizontal sequences are exact; moreover, by considering
the restriction of Dlog

X(r)I
→ Dlog

X(r)I[i] to the generic point of Dlog
X(r)I

, the left-
hand vertical arrow is an isomorphism. Thus, if i /∈ I (respectively, i ∈ I),
then the kernel of the morphism π1(D

log
X(r)I

)(l) → π1(D
log
X(r)I[i])

(l) (in the above

diagram) is isomorphic to the kernel of the morphism ΠX(r−I#+1)

via plog
X

(r−I#)
:i′

→
ΠX(r−I#)

(respectively, π1(Mlog

0,I#+1)
(l) → π1(Mlog

0,I#)(l) induced by the mor-

phism Mlog

0,I#+1 → M
log

0,I# obtained by forgetting the i′-th section). Now the

fiber of the morphism Mlog

0,I#+1 → M
log

0,I# (obtained by forgetting the i′-th

section) at a geometric point of Spec Ksep → Mlog

0,I# whose image lies in the
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interior ofMlog

0,I# is isomorphic to the log scheme obtained by equipping P1
Ksep

with the log structure associated to the reduced divisor consisting of distinct
I# elements of P1

Ksep(Ksep); thus, if i ∈ I, then the kernel of the morphism
π1(D

log
X(r)I

)(l) → π1(D
log
X(r)I[i])

(l) (induced by the composite plog
X(r−1):i

◦ δlog
X(r)I

) is

the free profinite group of rank I#−1. More precisely, if we denote by ΔP\I# the
pro-l fundamental group of the log scheme obtained by equipping P1

Ksep with
the log structure associated to the reduced divisor consisting of distinct I#

elements of P1
Ksep(Ksep), then the kernel of π1(D

log
X(r)I

)(l) → π1(D
log
X(r)I[i])

(l) is
naturally isomorphic to ΔP\I# ; moreover, by base-changing the exact sequence

1 −→ Zl(1) −→ π1(D
log
X(r)I

)(l) −→ ΠX(r−I#+1)
×GK

π1(Mlog

0,I#)(l) −→ 1

via the natural inclusion

ΔP\I#
∼→ {1} ×{1} ΔP\I# ↪→ ΠX(r−I#+1)

×GK
π1(Mlog

0,I#+1)
(l),

we obtain an exact sequence

1 −→ Zl(1) −→ PX(r)I −→ ΔP\I# −→ 1 ,

where

PX(r)I
def= π1(D

log
X(r)I

)(l) ×
(ΠX

(r−I#+1)
×GK

π1(Mlog
0,I# )(l))

ΔP\I# .

Now by considering the kernel of the morphism π1(D
log
X(r)I

)(l) → π1(D
log
X(r)I[i])

(l)

(induced by the composite plog
X(r−1):i

◦ δlog
X(r)I

), we obtain a section

ΔP\I# −→ PX(r)I

of the above exact sequence. We shall refer to this section ΔP\I# → PX(r)I of
the above exact sequence as the section of PX(r)I → ΔP\I# induced by plog

X(r−1):i
.

Definition 2.3. Let r ≥ 2 be an integer, and I a subset of {1, 2, · · · , r}
of cardinality I# ≥ 2. Then we shall denote by IX(r)I the kernel of the surjec-
tion

DX(r)I � ΠX(r−I#+1)
×GK

π1(Mlog

0,I#+1)
(l)

obtained in the above argument. (Note that this subgroup is well-defined, up
to conjugation.) By the above argument, IX(r+1){i,j} is the inertia subgroup
(well-defined, up to conjugation) associated to the cusp (of the geometric fiber
of pUX(r) :i

: UX(r+1) → UX(r) at a geometric point of UX(r)) determined by the
divisor DX(r+1){i,j} ⊆ X(r+1).
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Lemma 2.1. In the above situation, the images via the section of PX(r)I

→ ΔP\I# induced by plog
X(r−1):i

of the (I#− 1) inertia subgroups of ΔP\I# (well-
defined, up to conjugation in ΔP\I#) corresponding to inertia subgroups asso-

ciated to the cusps (of a geometric fiber Mlog

0,I#+1 → M
log

0,I# obtained by for-
getting the i′-th section) determined by the first (I# − 1) marked points of
Mlog

0,I#+1 →M
log

0,I# are conjugates of IX(r+1){i,j} in ΔX(r) , where j ∈ I.

Proof. Let xlog → Dlog
X(r−1)I[i] be a strict geometric point of Dlog

X(r−1)I[i]

(i.e., a strict morphism whose underlying morphism is a geometric point [cf. [6],
Definition 1, (i)]) whose image of the underlying morphism of schemes is the
generic point. First, we consider the log structure of Dlog

X(r)I
×Dlog

X(r−1)I[i]
xlog

(where the morphism Dlog
X(r)I

→ Dlog
X(r−1)I[i] is the morphism induced by

plog
X(r−1):i

◦ δlog
X(r)I

) and xlog. It is immediate that the log structure of xlog has
the chart:

N−→ k(x)
n �→ 0n .

By the definitions, the underlying scheme of Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog is the pro-

jective line P1
x over x, and the log structure of Dlog

X(r)I
×Dlog

X(r−1)I[i]
xlog has the

following chart:

Let y → P1
x be a geometric point of the underlying scheme DX(r)I

×D
X(r−1)I[i] x ( P1

x) of Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog. Then the following

hold:

(1) If the image of y → P1
x does not lie on the Dlog

X(r){i,j}’s (where

j ∈ I), then the log structure of Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog at y → P1

x

is induced by
N−→ k(y)[[t]]
n �→ 0n .

Moreover, the projection Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog → xlog has the

chart:
k(x)−→ k(y)[[t]]
↑ ↑
N

idN−→ N .
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(2) If the image of y → P1
x lies in Dlog

X(r){i,j} (where j ∈ I), then the

log structure of Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog at y → P1

x is induced by

N⊕2 −→ k(y)[[t]]
(n, m) �→ 0n · tm .

Moreover, the projection Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog → xlog has the

chart:
k(x)−→ k(y)[[t]]
↑ ↑
N −→ N⊕2

n �→ (n, 0) .

(3) If the image of y → P1
x lies in Dlog

X(r)J
(where J is the subset of

{1, 2, · · · , r} which is uniquely determined by the condition that
J � I and J [i] = I [i]), then the log structure of Dlog

X(r)I
×Dlog

X(r−1)I[i]

xlog at y → P1
x is induced by

N⊕2 −→ k(y)[[t]]
(n, m) �→ 0n · tm .

Moreover, the projection Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog → xlog has the

chart:
k(x)−→ k(y)[[t]]
↑ ↑
N −→ N⊕2

n �→ (n, n) .

Therefore, it follows that there exists a morphism Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog → P

log
x

which is of type N (where P
log
x is the log scheme obtained by equipping P1

x

with the log structure associated to the divisor determined by the divisors
“Dlog

X(r)I
∩ Dlog

X(r){i,j}” [where j ∈ I] and “Dlog
X(r)I

∩ Dlog
X(r)J

” [where J is as in
(3)]) which fits into a natural commutative diagram:

Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog −−−−→ P

log
x

pr2

⏐⏐� ⏐⏐�
xlog −−−−→ x .
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(Note that by (3), this diagram is not cartesian.) This diagram induces a
commutative diagram

1 −−−−−→ Zl(1) −−−−−→ π1(Dlog
X(r)I ×

D
log

X(r−1)I[i]
xlog)(l) −−−−−→ π1(P

log
x )(l) −−−−−→ 1

?
?
y via pr2

?
?
y

?
?
y

1 −−−−−→ Zl(1) −−−−−→ π1(xlog)(l) −−−−−→ 1 −−−−−→ 1,

where the horizontal sequences are exact (cf. [6], Proposition 4; Remark 15; [7],
Lemma 4.2, (iii)). By (1), the left-hand vertical arrow is an isomorphism, i.e.,
the right-hand square is cartesian. Thus, since the kernel of the middle vertical

arrow π1(D
log
X(r)I

×Dlog

X(r−1)I[i]
xlog)(l)

via pr2→ π1(xlog)(l) is naturally isomorphic to

the kernel of π1(D
log
X(r)I

)(l) → π1(D
log
X(r)I[i])

(l), we conclude that the kernel of

π1(D
log
X(r)I

)(l) → π1(D
log
X(r)I[i])

(l) is naturally isomorphic to π1(P
log
x )(l); moreover,

it follows from the definitions that this isomorphism determines the section of
PX(r)I → ΔP\I#( π1(P

log
x )(l)) induced by plog

X(r−1):i
. Thus, Lemma 2.1 follows

immediately from observations (2) and (3).

Proposition 2.4 (cf. [7], Theorem 4.1). Let r ≥ 2 be an integer. Then
conjugates in ΔX(r+1) of the subgroups

DΔ
X(r+1){1,2} ; DΔ

X(r+1){2,3} ⊆ ΔX(r+1)

topologically generate ΔX(r+1) .

Proof. Since the composite

DΔ
X(r+1){1,2} ↪→ ΔX(r+1)

via pUX(r)
:1

−→ ΔX(r)

is surjective, it is enough to show that the subgroup topologically generated by
the subgroups in question includes the kernel of the morphism ΔX(r+1) → ΔX(r)

induced by pUX(r) :1
, i.e., Δ(1)

X(r+1)/X(r)
. On the other hand, if xlog → X log

(r) is a

strict geometric point whose image is the generic point of the divisor Dlog
X(r){1,2}

of X log
(r) , then by [7], Proposition 2.2, the image of

lim←− π1(X
log
(r+1) ×Xlog

(r)
xlog

λ )(l)
via pr1−→ ΔX(r+1)

(where the projective limit is over all reduced covering points xlog
λ → xlog of xlog

[cf. [6], Definition 1, (ii)]) is Δ(1)
X(r+1)/X(r)

. Moreover, since the irreducible com-

ponents of the underlying scheme of X log
(r+1)×Xlog

(r)
xlog

λ (= X log
(r+1)×Dlog

X(r){1,2}
xlog

λ )
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are the underlying schemes of Dlog
X(r+1){2,3} ×Dlog

X(r){1,2}
xlog

λ and Dlog
X(r+1){1,2,3}

×Dlog
X(r){1,2}

xlog
λ (cf. [7], Proposition 3.1, (v)), by the evident logarithmic version

of [22], Corollary 2.3.3 (cf. the proof of [22], Lemma 6.2.7), the group

lim←− π1(X
log
(r+1) ×Xlog

(r)
xlog

λ )(l)

is topologically generated by the images of the natural morphisms from

lim←− π1(D
log
X(r+1){2,3} ×Dlog

X(r){1,2}
xlog

λ )(l)

and

lim←− π1(D
log
X(r+1){1,2,3} ×Dlog

X(r){1,2}
xlog

λ )(l) .

Thus, it is enough to show that the subgroup topologically generated by the
subgroups in question includes the image of the natural morphisms from

lim←− π1(D
log
X(r+1){2,3} ×Dlog

X(r){1,2}
xlog

λ )(l) (∗1)

and

lim←− π1(D
log
X(r+1){1,2,3} ×Dlog

X(r){1,2}
xlog

λ )(l) (∗2) .

Now since it is immediate that the natural strict morphism Dlog
X(r+1){2,3}

×Dlog
X(r){1,2}

xlog → X log
(r+1) factors through Dlog

X(r+1){2,3}, it thus follows that the

image of the first group (∗1) is included in a conjugate of DΔ
X(r+1){2,3}. On the

other hand, it follows immediately from Lemma 2.1 (together with observation
(3) in the proof of Lemma 2.1) that the image of the second group (∗2) is
included in the subgroup topologically generated by conjugates of the kernel of
the composite

DΔ
X(r+1){2,3} ↪→ ΔX(r+1)

via plog
X(r):1

� ΔX(r)

and IX(r+1){1,2}. This completes the proof of Proposition 2.4 .

Lemma 2.2. Let r ≥ 2 and 1 ≤ i < j ≤ r be integers. Then the
subgroup DX(r){i,j} (respectively, DΔ

X(r){i,j}) of ΠX(r) (respectively, ΔX(r)) is the
normalizer (where we refer to the discussion entitled “Groups” in Introduction
concerning the term “normalizer”) of IX(r){i,j} in ΠX(r) (respectively, ΔX(r)).
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Proof. Since IX(r){i,j} is normal in DX(r){i,j} (respectively, DΔ
X(r){i,j}),

the normalizer of IX(r){i,j} includes DX(r){i,j} (respectively, DΔ
X(r){i,j}). More-

over, we have a commutative diagram:

1 −−−−→ IX(r){i,j} −−−−→ DX(r){i,j} −−−−→ ΠX(r−1) −−−−→ 1⏐⏐� ⏐⏐� ∥∥∥
1 −−−−→ Δ(i)

X(r)/X(r−1)
−−−−→ ΠX(r) −−−−−−−−→

via plog
X(r−1):i

ΠX(r−1) −−−−→ 1

(respectively,

1 −−−−→ IX(r){i,j} −−−−→ DΔ
X(r){i,j} −−−−→ ΔX(r−1) −−−−→ 1⏐⏐� ⏐⏐� ∥∥∥

1 −−−−→ Δ(i)
X(r)/X(r−1)

−−−−→ ΔX(r) −−−−−−−−→
via plog

X(r−1):i

ΔX(r−1) −−−−→ 1)

(cf. the second diagram in the discussion following Proposition 2.3, also Defi-
nition 2.3). Therefore, it is enough to show that the normalizer of IX(r){i,j} in

Δ(i)
X(r)/X(r−1)

is IX(r){i,j}. On the other hand, this is well-known (cf. e.g., [19],
(2.3.1)).

Remark 4. By a similar argument to the argument used in the proof of
Lemma 2.2 (by replacing [19], (2.3.1) by [13], Lemma 1.3.12), we conclude that:

Let r ≥ 2 and 1 ≤ i < j ≤ r be integers. Then the subgroup DX(r){i,j}
(respectively, DΔ

X(r){i,j}) of ΠX(r) (respectively, ΔX(r)) is the commen-
surator (where we refer to the discussion entitled “Groups” in Intro-
duction concerning the term “commensurator”) of IX(r){i,j} in ΠX(r)

(respectively, ΔX(r)).

Definition 2.4. Let r ≥ 2 and 1 ≤ i < j ≤ r be integers.

(i) We shall denote by UX(r){i,j} the fiber product of

UX(r−1)⏐⏐�pUX(r−2)
:j−1

UX(r−1) −−−−−−−→pUX(r−2)
:i

UX(r−2) .

Moreover, we shall denote by p
U

{i,j}
X(r−1)

:i
and p

U
{i,j}
X(r−1)

:j
the projections

UX(r){i,j}→UX(r−1) such that pUX(r−2) :j−1◦p
U

{i,j}
X(r−1)

:i
=pUX(r−2) :i

◦p
U

{i,j}
X(r−1)

:j
.
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(ii) By the definition of UX(r){i,j}, the commutative diagram

UX(r)

pUX(r−1)
:i

−−−−−−−→ UX(r−1)

pUX(r−1)
:j

⏐⏐� ⏐⏐�pUX(r−2)
:j−1

UX(r−1) −−−−−−−→pUX(r−2)
:i

UX(r−2)

induces a morphism UX(r) → UX(r){i,j}. We shall denote this morphism by
ιUX(r){i,j}. By the definition of ιUX(r){i,j}, it is immediate that ιUX(r){i,j} :
UX(r) → UX(r){i,j} is an open immersion, which is a “partial compactifi-
cation”, i.e., the natural open immersion UX(r) ↪→ X(r) factors through
ιUX(r)

{i,j}; moreover,

UX(r){i,j} = X(r) \
⋃

{i′,j′}�={i,j}
DX(r){i′,j′} .

(iii) We shall denote by ΠX(r){i,j} the geometrically pro-l fundamental group of
UX(r){i,j}, and by ΔX(r){i,j} the kernel of the natural surjection

ΠX(r){i,j} � GK .

Thus, we have an exact sequence

1 −→ ΔX(r){i,j} −→ ΠX(r){i,j} −→ GK −→ 1 .

Lemma 2.3. Let r ≥ 2 and 1 ≤ i < j ≤ r be integers. Then the follow-
ing diagram induced by the cartesian diagram which appears in the definition
of UX(r){i,j} is cartesian:

ΠX(r){i,j}

via p
U

{i,j}
X(r−1)

:i

−−−−−−−−−→ ΠX(r−1)

via p
U

{i,j}
X(r−1)

:j

⏐⏐� ⏐⏐�via pUX(r−2)
:j−1

ΠX(r−1) −−−−−−−−−→
via pUX(r−2)

:i
ΠX(r−2) .

In particular, the kernel of the surjection ΠX(r){i,j}

via p
U

{i,j}
X(r−1)

:i

� ΠX(r−1) is

naturally isomorphic to Δ(i)
X(r−1)/X(r−2)

.
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Proof. This follows immediately from the fact that the sequence obtained
as the base-change of

UX(r){i,j}

p
U

{i,j}
X(r−1)

:i

−→ UX(r−1)

pUX(r−2)
:r−1

−→ UX(r−2)

pUX(r−3)
:r−2

−→ · · ·
pUX(1)

:2

−→ X −→ Spec K

from K to K is a successive extension of hyperbolic curves of product type (cf.
Definition 1.4, (i)), together with Proposition 1.4, (i).

In the following, assume that

the field K is a finite field.

Let us denote by pK (respectively, qK) the characteristic (respectively, cardi-
nality) of K. We shall fix an algebraic closure K of K. We shall denote by
GK the Galois group of K over K, and by FrK ∈ GK the Frobenius element
of GK . Moreover, let L be a finite field whose characteristic (respectively, car-
dinality) we denote by pL (respectively, qL) such that l is invertible in L (i.e.,
l �= pL), L an algebraic closure of L, GL

def= Gal(L/L), Y a proper hyper-
bolic curve over L, and α(r) : ΠX(r)

∼→ ΠY(r) an isomorphism. Then it follows
from the “Riemann hypothesis for abelian varieties over finite fields” (cf. e.g.,
[18], p. 206) and the fact that Zl(1) (where “(1)” denotes a Tate twist) is
“of weight 2” (since the eigenvalues of the action of “Fr(−)” are “q(−)”) that
the quotient ΠX(r) � GK (respectively, ΠY(r) � GL) arising from the structure
morphism UX(r) → Spec K (respectively, UY(r) → Spec L) may be characterized
as the (unique) maximal (Ẑ-)free abelian quotient of ΠX(r) (respectively, ΠY(r)).
Therefore, the isomorphism α(r) induces an isomorphism α(0) : GK → GL.

Remark 5. As was pointed out to the author by the referee, the above
group-theoretic reconstruction of GK from ΠX(r) (strictly speaking, the fact
that the image of the composite ΔX(r) ↪→ ΠX(r) � Πab

X(r)
is torsion) can also

be deduced from geometric class field theory.

Definition 2.5 (cf. [16], Definition 1.5, (iii)). We shall say that an iso-
morphism α(r) : ΠX(r)

∼→ ΠY(r) is Frobenius-preserving if the isomorphism
α(0) : GK → GL obtained as above maps the Frobenius element of GK to the
Frobenius element of GL. Note that in general, an isomorphism of geometri-
cally pro-l fundamental groups is not Frobenius-preserving (cf. Remark 10, (ii)
below).

Proposition 2.5. Let α(r) : ΠX(r)

∼→ ΠY(r) be an isomorphism. Then
the following hold :
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(i) There exists an element σ of the symmetric group on r letters such that for
any integer 1 ≤ i ≤ r, the isomorphism α(r) maps the kernel Δ(i)

X(r)/X(r−1)

of the surjection ΠX(r) � ΠX(r−1) induced by plog
X(r−1):i

bijectively onto the

kernel Δ(σ(i))
Y(r)/Y(r−1)

of the surjection ΠY(r) � ΠY(r−1) induced by plog
Y(r−1):σ(i).

(ii) Assume, moreover, that α(r) : ΠX(r)

∼→ ΠY(r) is a Frobenius-preserving
isomorphism (cf. Definition 2.5). Then, for a section GK → ΠX(r) of
the natural morphism ΠX(r) → GK , this section arises from a K-rational
point of UX(r) if and only if the section of the natural morphism ΠY(r) →
GL corresponding to the section GK → ΠX(r) under the isomorphism α(r)

arises from an L-rational point of UY(r) .

(iii) Assume, moreover, that r ≥ 2. Then, for any integers 1 ≤ i < j ≤ r, the
isomorphism α(r) maps IX(r){i,j} (respectively, DX(r){i,j}) bijectively onto
a conjugate of IY(r){σ(i),σ(j)} (respectively, DY(r){σ(i),σ(j)}) by an element
of the kernel ΔY(r) of the natural surjection ΠY(r) → GL, where σ is the
element of the symmetric group on r letters defined in (i).

(iv) Under the assumption in the statement of (iii), for any integers 1 ≤ i <

j ≤ r, let us denote by

τX(r−1){i,j} : ΠX(r)/Δ(i)
X(r)/X(r−1)

∼−→ ΠX(r)/Δ(j)
X(r)/X(r−1)

(respectively,

τY(r−1){i,j} : ΠY(r)/Δ(i)
Y(r)/Y(r−1)

∼−→ ΠY(r)/Δ(j)
Y(r)/Y(r−1)

)

the isomorphism obtained as the composite

ΠX(r)/Δ(i)
X(r)/X(r−1)

∼−→ ΠX(r−1)

∼←− ΠX(r)/Δ(j)
X(r)/X(r−1)

(respectively,

ΠY(r)/Δ(i)
Y(r)/Y(r−1)

∼−→ ΠY(r−1)

∼←− ΠY(r)/Δ(j)
Y(r)/Y(r−1)

) .

Then the following diagram commutes :

ΠX(r)/Δ(i)
X(r)/X(r−1)

τX(r−1){i,j}−−−−−−−−→ ΠX(r)/Δ(j)
X(r)/X(r−1)

via α(r)

⏐⏐� ⏐⏐�via α(r)

ΠY(r)/Δ(σ(i))
Y(r)/Y(r−1)

−−−−−−−−−−−→
τY(r−1){σ(i),σ(j)}

ΠY(r)/Δ(σ(j))
Y(r)/Y(r−1)

.

Here, the vertical arrows are the isomorphisms induced by α(r) (cf. (i)).
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Proof. Assertion (i) follows from the fact that an isomorphism of ΠX(r)

with ΠY(r) induces an isomorphism of ΔX(r) with ΔY(r) , together with [17],
Corollary 6.7.

Next, we prove assertion (ii). If r = 1, then this follows from [16], Remark
10, (iii). (Note that this essentially follows from [24], Corollary 2.10; Proposi-
tion 3.8.) Thus, assume that r ≥ 2. Then it is immediate that for a section
s : GK → ΠX(r) of the natural morphism ΠX(r) → GK , the section arises from
a K-rational point of UX(r) if and only if the composite of the section s and the
morphism ΠX(r) → ΠX(r−1) induced by plog

X(r−1):r
arises from a K-rational point

of UX(r−1) , and the section GK → ΠX(r) ×ΠX(r−1)
GK (where the morphism

ΠX(r) → ΠX(r−1) is the morphism induced by plog
X(r−1):r

, and GK → ΠX(r−1) is
the composite) induced by the given section s arises from a K-rational point
of the hyperbolic curve obtained as the fiber. Therefore, assertion (ii) follows
from [16], Remark 10, (iii), together with induction on r.

Next, we prove assertion (iii). It is immediate that there exists an open
subgroup GK′ ⊆ GK and a section GK′ → ΠX(r)×GK

GK′ such that this section
arises from a K ′-rational point of UX(r) . Thus, it follows from assertion (ii),
the fact that IX(r){i,j} is an inertia subgroup of ΠX(r) ×ΠX(r−1)

GK′ (where the

morphism ΠX(r) → ΠX(r−1) is the morphism induced by plog
X(r−1):r

, and GK′ →
ΠX(r−1) is the composite of the section and the morphism induced by plog

X(r−1):r
)

associated to a cusp of the hyperbolic curve obtained as the fiber, together
with a similar argument to the argument used in the proof of [13], Lemma
1.3.9, that α(r) maps IX(r){i,j} bijectively onto a conjugate (in Δ(σ(i))

Y(r)/Y(r−1)
)

of IY(r){σ(i),σ(j)}. On the other hand, the assertion that α(r) maps DX(r){i,j}
bijectively onto a conjugate (in Δ(σ(i))

Y(r)/Y(r−1)
) of DY(r){σ(i),σ(j)} follows from the

fact that α(r) maps IX(r){i,j} bijectively onto a conjugate (in Δ(σ(i))
Y(r)/Y(r−1)

) of
IY(r){σ(i),σ(j)}, together with Lemma 2.2. This completes the proof of assertion
(iii).

Finally, we prove assertion (iv). By the discussion preceding Definition 2.2,
we have commutative diagrams

1 −−−−→ IX(r){i,j} −−−−→ DX(r){i,j} −−−−→ ΠX(r−1) −−−−→ 1⏐⏐� ⏐⏐� ∥∥∥
1 −−−−→ Δ(i)

X(r)/X(r−1)
−−−−→ ΠX(r) −−−−−−−−→

via plog
X(r−1):i

ΠX(r−1) −−−−→ 1
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and

1 −−−−→ IX(r){i,j} −−−−→ DX(r){i,j} −−−−→ ΠX(r−1) −−−−→ 1⏐⏐� ⏐⏐� ∥∥∥
1 −−−−→ Δ(j)

X(r)/X(r−1)
−−−−→ ΠX(r) −−−−−−−−→

via plog
X(r−1):j

ΠX(r−1) −−−−→ 1 ,

where the horizontal sequences are exact. In particular, the natural inclusion
DX(r){i,j} ↪→ ΠX(r) induces isomorphisms

DX(r){i,j}/IX(r){i,j}
∼−→ ΠX(r)/Δ(i)

X(r)/X(r−1)

and
DX(r){i,j}/IX(r){i,j}

∼−→ ΠX(r)/Δ(j)
X(r)/X(r−1)

.

Thus, the isomorphism τX(r−1){i,j} coincides with the composite

ΠX(r)/Δ(i)
X(r)/X(r−1)

∼←− DX(r){i,j}/IX(r){i,j}
∼−→ ΠX(r)/Δ(i)

X(r)/X(r−1)
.

Therefore, to verify the commutativity of the diagram in the statement of
Proposition 2.5, (iv), it is enough to show that the isomorphism α(r) maps
DX(r){i,j} (respectively, IX(r){i,j}) bijectively onto a conjugate of DY(r){σ(i),σ(j)}
(respectively, IY(r){σ(i),σ(j)}). On the other hand, this follows from (iii).

Definition 2.6. Let α(r) : ΠX(r)

∼→ ΠY(r) be an isomorphism.

(i) We shall denote by σα(r) the element of the symmetric group on r letters
defined in Proposition 2.5, (i).

(ii) We shall say that α(r) is order-preserving if σα(r) (defined in (i)) is the
identity morphism. Note that by reordering the coordinates of UY(r) , one
can always assume that α(r) is order-preserving.

Let α(r) : ΠX(r)

∼→ ΠY(r) be a Frobenius-preserving and order-preserving
isomorphism. Now by means of the isomorphism τX(r−1){i,j} (respectively,
τY(r−1){i,j}) defined in Proposition 2.5, (iv), we identify the quotients

ΠX(r)/Δ(i)
X(r)/X(r−1)

(respectively, ΠY(r)/Δ(i)
Y(r)/Y(r−1)

), where i = 1, · · · , r,
of ΠX(r) (respectively, ΠY(r)); moreover, we also identify ΠX(r−1)

(respectively, ΠY(r−1)) with these quotients ΠX(r)/Δ(i)
X(r)/X(r−1)

(respectively,

ΠY(r)/Δ(i)
Y(r)/Y(r−1)

). We denote by α(r−1) the isomorphism of ΠX(r−1) with
ΠY(r−1) induced by α(r) (cf. Proposition 2.5, (i)). Note that this isomorphism
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α(r−1) is independent of i. Moreover, by a similar argument to this argu-
ment, for any positive integer r′ ≤ r, we obtain a quotient ΠX(r′) (respectively,
ΠY(r′)) of ΠX(r) (respectively, ΠY(r)) and an isomorphism α(r′) : ΠX(r′)

∼→ ΠY(r′) .
Note that it follows immediately from the definition of the term “Frobenius-
preserving” that the isomorphism α(r′) : ΠX(r′)

∼→ ΠY(r′) (where r′ ≤ r) is also
Frobenius-preserving.

§3. Isomorphisms That Preserve the Fundamental Groups
of Tripods

In this Section, we define the notion of a tripod-preserving isomorphism
(where we refer to the discussion entitled “Curves” in Introduction concerning
the term “tripod”).

In the following, let K (respectively, L) be a finite field whose cardinality
we denote by qK (respectively, qL), K (respectively, L) an algebraic closure of K

(respectively, L), X (respectively, Y ) a proper hyperbolic curve of genus gX ≥ 2
(respectively, gY ≥ 2) over K (respectively, L), and l a prime number which is
invertible in K and L. Let us write GK

def= Gal(K/K) and GL
def= Gal(L/L).

Moreover, let us denote by ΠPK
(respectively, ΠPL

) the geometrically pro-l
log fundamental group of the log scheme P

log
K (respectively, P

log
L ) obtained by

equipping P1
K (respectively, P1

L) with the log structure associated to the divisor
{0, 1,∞}, and by ΔPK

(respectively, ΔPL
) the kernel of the natural surjection

ΠPK
� GK (respectively, ΠPL

� GL).
Write E = {e1, e2, e3} def= P1

K(K) \ UP(K) (where UP ⊆ P1
K is the interior

of P
log
K , i.e., UP = P1

K \ {0, 1,∞}), and Iei
⊆ ΔPK

(where i = 1, 2, 3) for an
inertia subgroup associated to ei ∈ E (well-defined, up to conjugation in ΔPK

).
Then it follows from the well-known structure of the pro-l fundamental group
of the projective line minus three points over an algebraically closed field of
characteristic �= l that the composites

Iei
↪→ ΔPK

� (ΔPK
)ab

induce an isomorphism

Ie1 ⊕ Ie2

∼−→ (ΔPK
)ab ,

where e1 �= e2. Moreover, there exists a generator ζei
∈ Iei

(i = 1, 2, 3) such
that the image of ζe3 via the composite

Ie3 ↪→ ΔPK
� (ΔPK

)ab ∼←− Ie1 ⊕ Ie2
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is (−ζe1 ,−ζe2) ∈ Ie1 ⊕ Ie2 , i.e., the image of the above composite is generated
by (ζe1 , ζe2) ∈ Ie1 ⊕ Ie2 . Thus, if an automorphism φ of (ΔPK

)ab maps the
image of Iei

in (ΔPK
)ab (i = 1, 2, 3) bijectively onto the image of Iσ(ei) in

(ΔPK
)ab (where σ is an element of the group Aut(E) of automorphisms of E),

then there exists a unique element dφ ∈ Z∗l such that

φ(ζei
) = dφ · ζσ(ei) (i = 1, 2, 3) .

Let φ : ΠPK

∼→ ΠPK
be a Frobenius-preserving automorphism (cf. Defi-

nition 2.5). Then the automorphism φ preserves the inertia subgroups up to
conjugation. (Indeed, this follows from a similar argument to the argument
used in the proof of [13], Lemma 1.3.9.) Therefore, by the above observation,
we obtain an element dφ ∈ Z∗l , where φ is the automorphism of (ΔPK

)ab induced
by φ.

Next, let φ : ΠPK

∼→ ΠPL
be a Frobenius-preserving isomorphism. Then it

follows from the existence of such an isomorphism that qK = qL (by considering
the action of the respective Frobenius elements on (ΔPK

)ab and (ΔPL
)ab). In

particular, the fields K and L are isomorphic. By means of some isomorphism
of fields K

∼→ L, we obtain an isomorphism ΠPK

∼→ ΠPL
.

In summary, we obtain a composite map

IsomFrob(ΠPK
, ΠPL

)/Inn(ΔPL
) ∼−→ AutFrob(ΠPK

)/Inn(ΔPK
)

−→AutIner((ΔPK
)ab)−→ Z∗l

φ �→ dφ ,

where IsomFrob(ΠPK
, ΠPL

) (respectively, AutFrob(ΠPK
)) is the set of Frobenius-

preserving isomorphisms (respectively, automorphisms) of ΠPK
with ΠPL

(re-
spectively, of ΠPK

), AutIner((ΔPK
)ab) is the set of automorphisms of (ΔPK

)ab

which preserve the images of the three inertia subgroups in (ΔPK
)ab, and the

first arrow is the bijection induced by some isomorphism of fields K
∼→ L. Note

that this composite depends on the choice of an isomorphism of K with L; how-
ever, the image of this composite is independent of the choice of an isomorphism
of K with L.

Definition 3.1. We shall refer to the image Im(degP) ⊆ Z∗l of this
composite

degP : IsomFrob(ΠPK
, ΠPL

)/Inn(ΔPL
) ∼−→ AutFrob(ΠPK

)/Inn(ΔPK
)

−→AutIner((ΔPK
)ab)−→ Z∗l

φ �→ dφ ,
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as the set of tripod-degrees (over K). We shall refer to an element of the set of
tripod-degrees (over K) as a tripod-degree (over K).

Remark 6.

(i) The set of tripod-degrees (over K) only depends on K ( L) and l.

(ii) Since the image of the composite

Isom(Plog
K , Plog

L ) −→ IsomFrob(ΠPK
, ΠPL

)/Inn(ΔPL
)

deg
P−→ Z∗l

(where Isom(Plog
K , Plog

L ) is the set of isomorphisms of P
log
K with P

log
L [as log

schemes], the first arrow is the morphism induced by the functoriality of
the functor of taking the log fundamental group) is the subgroup 〈qK〉
generated by qK ∈ Z∗l , the set of tripod-degrees (over K) includes 〈qK〉 ⊆
Z∗l .

(iii) By an unpublished result of Akio Tamagawa, in general, the set of tripod-
degrees (over K) is a proper subset of Z∗l .

(iv) The morphism degP : IsomFrob(ΠPK
, ΠPL

)/Inn(ΔPL
) → Z∗l is “essentially”

injective, i.e., if we denote by

Isom{0,1,∞}
Frob (ΠPK

, ΠPL
)

the subset of IsomFrob(ΠPK
, ΠPL

) consisting of isomorphisms which map
the decomposition subgroup De ⊆ ΠPK

associated to e ∈ {0, 1,∞} (well-
defined, up to conjugation) to a ΔPL

-conjugate of the decomposition sub-
group De ⊆ ΠPL

associated to e (well-defined, up to conjugation), then the
composite

Isom{0,1,∞}
Frob (ΠPK

, ΠPL
)/Inn(ΔPL

) ↪→IsomFrob(ΠPK
, ΠPL

)/Inn(ΔPL
)

deg
P−→ Z∗l

is injective. Indeed, by a similar argument to the argument used in the proof
of the uniqueness of “α∞” in [16], Theorem 3.1, to prove this injectivity, it
is enough to show the following assertion:

For any Frobenius-preserving automorphism α of ΠPK
which pre-

serves a fixed decomposition subgroup D0 ⊆ ΠPK
associated to

0 ∈ P1
K(K) and induces the identity morphism on I0, there exists

a section of the natural surjection D0 � GK which is preserved
by α.
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This assertion is verified as follows (cf. the theory of [14], Section 4):

Let Sec(D0 � GK) (respectively, Sec(D0 ×GK
D0

pr2� D0)) be the set of

sections of the natural surjection D0 � GK (respectively, D0 ×GK
D0

pr2�
D0). Then by considering the difference between an arbitrary element

of Sec(D0 ×GK
D0

pr2� D0) and the element determined by the diagonal

morphism, we obtain a bijection of Sec(D0×GK
D0

pr2� D0) with H1(D0, I0).
Moreover, it is easily verified that under this bijection, the subset Sec(D0 �
GK) ⊆ Sec(D0 ×GK

D0

pr2� D0) (where the inclusion is obtained by taking
the pull-back) corresponds to HI0

def= {λ ∈ H1(D0, I0) | λ|I0 = idI0}
(where λ|I0 is the image of λ in H1(I0, I0)  Hom(I0, I0)), i.e., we obtain
a natural bijection

Sec(D0 � GK)  HI0 .

Thus, to prove the assertion, it is enough to show that there exists an ele-
ment of HI0 which is preserved by the automorphism of HI0 induced by α.
Now we fix an isomorphism I0

∼→ Zl(1). Then if u is the canonical coordi-
nate of P1

K (i.e., UP = Spec K[u, u−1, (u−1)−1]), and κ(u) ∈ H1(ΠPK
, I0) is

the Kummer class of u (i.e., the image of u ∈ H0(UP, Gm) in H1(ΠPK
, I0)

via the morphism obtained by considering the Kummer exact sequence,
together with the fixed isomorphism I0

∼→ Zl(1)), then it is easily verified
that κ(u) satisfies the following condition:

The image of κ(u) in H1(I0, I0)  Hom(I0, I0) (respectively,
H1(I1, I0)  Hom(I1, I0)) is the identity morphism of I0, i.e.,
κ(u) ∈ HI0 (respectively, zero, and the element in (K∗)(l) [
H1(K, Zl(1)) ∼← H1(K, I0)] obtained by considering the exact
sequence

0 −→ (K∗)(l) −→ H1(D1, I0) −→ H1(I1, I0)

is 1 ∈ (K∗)(l)).

Moreover, (since it is easily verified that the natural morphism H1(ΠPK
, I0)

→ H1(I0, I0) ⊕ H1(D1, I0) is an isomorphism) κ(u) ∈ H1(ΠPK
, I0) is

uniquely determined by this condition; in particular, the automorphism of
H1(ΠPK

, I0) induced by α preserves κ(u). Therefore, the assertion follows
from the fact that the section of D0 � GK determined by the image of
κ(u) in H1(D0, I0) is preserved by α.

Note that another proof of the fact that the composite

Isom{0,1,∞}
Frob (ΠPK

, ΠPL
)/Inn(ΔPL

) ↪→IsomFrob(ΠPK
, ΠPL

)/Inn(ΔPL
)−→Z∗l
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is injective can be found in the latter half of the proof of [20], Lemma
(2.2.4).

Next, let α : ΠX
∼→ ΠY be a Frobenius-preserving isomorphism. Then

it follows from the existence of the isomorphism α that qK = qL (by con-
sidering the actions of the respective Frobenius elements on H2(ΔX , Zl) and
H2(ΔY , Zl)). In particular, the fields K and L are isomorphic. By means of
some isomorphism of fields K

∼→ L, we obtain an isomorphism β : P
log
K
∼→ P

log
L .

Now by considering the composite of the morphism mX(r+1){1,2} : MX
def=

HomZl
(H2(ΔX , Zl), Zl))

∼→ IX(r+1){1,2} (respectively, mY(r+1){1,2} : MY
def=

HomZl
(H2(ΔY , Zl), Zl))

∼→ IY(r+1){1,2}) (cf. Definition 4.2, (i), (ii) below)
and the isomorphism of IX(r+1){1,2} (respectively, IY(r+1){1,2}) with an iner-
tia subgroup of ΔPK

(respectively, ΔPL
) obtained in Lemma 2.1, we obtain

a natural isomorphism of MX (respectively, MY ) with an inertia subgroup of
ΔPK

(respectively, ΔPL
). Thus, by means of the isomorphism β : P

log
K
∼→ P

log
L ,

we obtain an isomorphism MX
∼→ MY (cf. Remark 7 below). Therefore, we

obtain a composite map

IsomFrob(ΠX , ΠY )/Inn(ΔY ) −→ Isom(MX , MY ) ∼−→ Aut(MX) ∼−→ Z∗l ,

where IsomFrob(ΠX , ΠY ) is the set of Frobenius-preserving isomorphisms of
ΠX with ΠY , the second arrow is the bijection induced by some isomorphism
of fields K

∼→ L. Note that this composite depends on the choice of an isomor-
phism of K with L; however, the image of this composite is independent of the
choice of an isomorphism of K with L.

Remark 7.

(i) Note that the isomorphism MX
∼→MY (obtained as above) is independent

of α (by construction); moreover, this isomorphism is “geometric”, i.e., it
arises from an isomorphism P

log
K
∼→ P

log
L .

(ii) The morphism
Isom(MX , MY ) ∼−→ Aut(MX)

(appearing in the above composite map) may be interpreted as a certain
“automorphization” of isomorphisms of MX with MY by means of the
“geometric” isomorphism of (i), that is independent of α.

Definition 3.2. Let α : ΠX
∼→ ΠY be a Frobenius-preserving isomor-

phism.
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(i) We shall denote by deg(α) ∈ Z∗l the image of α via the composite

IsomFrob(ΠX , ΠY )/Inn(ΔY ) −→ Isom(MX , MY ) ∼−→ Aut(MX) ∼−→ Z∗l .

Note that deg(α) depends on the choice of an isomorphism of K with L.

(ii) We shall say that α : ΠX
∼→ ΠY is tripod-preserving if deg(α) is a tripod-

degree over K (cf. Definition 3.1). Note that this condition is independent
of the choice of an isomorphism of K with L.

Next, let α(r) : ΠX(r)

∼→ ΠY(r) be a Frobenius-preserving isomorphism.

Definition 3.3. We shall say that α(r) is tripod-preserving if the iso-
morphism α : ΠX

∼→ ΠY induced by α(r) (cf. the discussion following Defini-
tion 2.6) is tripod-preserving (cf. Definition 3.2, (ii)). Note that in fact, any
Frobenius-preserving isomorphisms are tripod-preserving (cf. Lemma 4.17).

Lemma 3.1. If r ≥ 3, then α(r) is tripod-preserving.

Proof. To prove Lemma 3.1, by replacing K by a finite extension field
of K, we may assume without loss of generality that UX(r−2)(K) �= ∅. Let
GK → ΠX(r−2) be a section which arises from a K-rational point of UX(r−2) .
By base-chaging this section via the composite

DX(r−1){1,2} ↪→ ΠX(r−1)

via plog
X(r−2):1−→ ΠX(r−2) ,

we obtain a morphism

s : GK ×ΠX(r−2)
DX(r−1){1,2}

pr2−→ DX(r−1){1,2} ↪→ ΠX(r−1) .

It is immediate that this morphism arises from a “strict log K-rational point”
of X log

(r−1) (i.e., a K-rational point of X(r−1) equipped with the log structure

induced by the log structure of X log
(r−1)) for which the image of the underly-

ing morphism of schemes lies in the open subscheme of DX(r−1){1,2} on which
the stalk of the characteristic sheaf (where we refer to the discussion entitled
“Log schemes” in Introduction concerning the term “characteristic sheaf”) of
Dlog

X(r−1){1,2} is isomorphic to N. Thus, the fiber product

(GK ×ΠX(r−2)
DX(r−1){1,2})×ΠX(r−1)

ΠX(r)

(where the morphism GK ×ΠX(r−2)
DX(r−1){1,2} → ΠX(r−1) is s, and ΠX(r) →

ΠX(r−1) is the morphism induced by plog
X(r−1):1

) is isomorphic to the geometrically
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pro-l log fundamental group of the log scheme obtained as the fiber of plog
X(r−1):1

at the “strict log K-rational point” of X log
(r−1) corresponding to s, and the

morphism

(GK ×ΠX(r−2)
DX(r−1){1,2})×ΠX(r−1)

ΠX(r)

pr1−→ GK ×ΠX(r−2)
DX(r−1){1,2}

coincides with the morphism induced by the structure morphism of the log
scheme (obtained as the fiber of plog

X(r−1):1
at the “strict log K-rational point”

of X log
(r−1)). Now it is immediate that the underlying scheme of the log scheme

obtained as such a fiber has exactly two irreducible components of genera 0
and gX ; moreover, if we denote by H the closed subgroup of

(GK ×ΠX(r−2)
DX(r−1){1,2})×ΠX(r−1)

ΠX(r)

(well-defined, up to conjugation) obtained as the image of the morphism in-
duced on geometrically pro-l log fundamental groups by the strict closed im-
mersion from the irreducible component of genus 0, then the kernel HΔ of the
composite

H ↪→ (GK ×ΠX(r−2)
DX(r−1){1,2})×ΠX(r−1)

ΠX(r)

pr1−→ GK ×ΠX(r−2)
DX(r−1){1,2}

is naturally isomorphic to ΔPK
. On the other hand, it follows that the outer

representation
GK ×ΠX(r−2)

DX(r−1){1,2}
ρH−→ Out(HΔ)

determined by the exact sequence

1 −→ HΔ −→ H −→ GK ×ΠX(r−2)
DX(r−1){1,2} −→ 1

factors through GK ×ΠX(r−2)
DX(r−1){1,2}

pr1→ GK , and the profinte group

HΔ
out
� GK

(where GK → Out(HΔ) is the morphism induced by ρH) is isomorphic to
the geometrically pro-l fundamental group ΠPK

of P1
K \ {0, 1,∞}. Therefore,

Lemma 3.1 follows from Proposition 2.5, (ii), (iii); [15], Corollary 2.8.
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§4. The Reconstruction of the Fundamental Group of the
Configuration Space

In this Section, we reconstruct the geometrically pro-l fundamental group
of the higher dimensional configuration space.

Let K be a finite field whose characteristic (respectively, cardinality) we
denote by pK (respectively, qK), and l a prime number that is invertible in K.
We shall fix an algebraic closure K of K. We shall denote by GK the Galois
group of K over K, and by FrK ∈ GK the Frobenius element of GK . Moreover,
in the following, let X be a proper hyperbolic curve of genus gX ≥ 2 over K.

Definition 4.1. Let r be a natural number.

(i) We shall denote by
{ΔX(r)(n)}

the central filtration of ΔX(r) defined in Definition 1.4, (ii), associated to
the successive extension of hyperbolic curves of product type obtained as
the base-change of

UX(r)

pUX(r−1)
:r

−→ UX(r−1)

pUX(r−2)
:r−1

−→ · · ·
pUX(1)

:2

−→ X −→ SpecK

from K to K i.e., the central filtration with respect to the natural surjection

ΔX(r) � Δab
X(r)

,

and by
{Δ(i)

X(r)/X(r−1)
(n)}

the central filtration of Δ(i)
X(r)/X(r−1)

defined in the discussion following
Lemma 1.1 associated to the family of curves

UX(r) ⊗K K
via pUX(r−1)

:i

−→ UX(r−1) ⊗K K ,

i.e., the central filtration with respect to the natural surjection

Δ(i)
X(r)/X(r−1)

� Δab
X .

(ii) The sequence obtained as the base-change of

UX(r){i,j}

p
U

{i,j}
X(r−1)

:i

−→ UX(r−1)

pUX(r−2)
:r−1

−→ UX(r−2)

pUX(r−3)
:r−2

−→ · · ·
pUX(1)

:2

−→ X −→ Spec K
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(cf. Definition 2.4, (i)) from K to K is a successive extension of hyperbolic
curves of product type. We shall denote by

{ΔX(r){i,j}(n)}

the central filtration of ΔX(r){i,j} defined in Definition 1.4, (ii), associated
to this successive extension of hyperbolic curves of product type, i.e., the
central filtration with respect to the natural surjection

ΔX(r){i,j} � Δab
X(r)

.

Proposition 4.1 (cf. [16], Proposition 3.1, (i)). Let r be a natural num-
ber.

(i) The sequence of graded Lie algebras

1 −→ Gr(Δ(i)
X(r)/X(r−1)

) −→ Gr(ΔX(r+1))
via pUX(r)

:i

−→ Gr(ΔX(r)) −→ 1

induced by the exact sequence obtained in Definition 2.1, (iv), is exact. In
particular, the graded Lie algebra Gr(ΔX(r)) is center-free.

(ii) There exist 2gX elements

α
(i)
X,1; · · · ; α(i)

X,gX
; β(i)

X,1; · · · ; β(i)
X,gX

∈ Δ(i)
X(r+1)/X(r)

\Δ(i)
X(r+1)/X(r)

(2)

and r elements

ζ
(i)
X,1; · · · ; ζ(i)

X,i−1; ζ
(i)
X,i+1; · · · ; ζ(i)

X,r+1 ∈ Δ(i)
X(r+1)/X(r)

(2) \Δ(i)
X(r+1)/X(r)

(3)

such that the graded Lie algebra Gr(Δ(i)
X(r+1)/X(r)

) is generated by the images

of these elements, and, moreover, ζ
(i)
X,k (where i �= k) topologically generates

the inertia subgroup of Δ(i)
X(r+1)/X(r)

(well-defined, up to conjugation) asso-
ciated to the cusp (of the geometric fiber of pUX(r) :i

: UX(r+1) → UX(r) at a
geometric point of UX(r)) determined by the divisor DX(r+1){i,k} ⊆ X(r+1).

Moreover, the graded Lie algebra Gr(Δ(i)
X(r+1)/X(r)

) is isomorphic to the
graded Lie algebra generated by these elements subject to the following re-
lation, where “(−)” is the image of “(−)”:

gX∑
j=1

[α(i)
X,j , β

(i)

X,j ] +
∑
k �=i

ζ
(i)

X,k = 0 .
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(iii) The graded Lie algebra Gr(ΔX(r+1)) is isomorphic to the graded Lie algebra
generated by the images of

α
(i)
X,1; · · · ; α(i)

X,gX
; β(i)

X,1; · · · ; β(i)
X,gX

∈ Δ(i)
X(r+1)/X(r)

⊆ΔX(r+1) (1 ≤ i ≤ r+1) ,

together with

ζ
(i)
X,1; · · · ; ζ(i)

X,i−1; ζ
(i)
X,i+1; · · · ; ζ(i)

X,r+1∈Δ(i)
X(r+1)/X(r)

⊆ΔX(r+1) (1 ≤ i ≤ r+1)

in (ii) subject to the following relations, where “(−)” is the image of “(−)”:

(R1)
∑gX

j=1[α
(i)
X,j , β

(i)

X,j ] +
∑

k �=i ζ
(i)

X,k = 0 (1 ≤ i ≤ r + 1) ;

(R2) ζ
(i)

X,k = ζ
(k)

X,i ;

(R3) [ζ
(i)

X,k, ζ
(i′)
X,k′ ] = 0 (if {i, k} ∩ {i′, k′} = ∅) ;

(R4) [ζ
(i)

X,k, α
(i′)
X,j ] = [ζ

(i)

X,k, β
(i′)
X,j ] = 0 (if i �= i′ and k �= i′) ;

(R5) [α(i)
X,j , α

(i′)
X,j′ ] = [β

(i)

X,j , β
(i′)
X,j′ ] = 0 (if i �= i′) ;

(R6) [α(i)
X,j , β

(i′)
X,j′ ] =

{
ζ
(i′)
X,i (if j = j′ and i �= i′)

0 (if j �= j′ and i �= i′)

Proof. Assertion (i) follows from [12], Proposition 3.2, (i). Assertion (ii)
follows from [8], Proposition 1. Assertion (iii) follows from [21], (2.8.2).

Lemma 4.1. Let 1 ≤ i < j ≤ r be integers.

(i) The following diagram induced by the cartesian diagram defining U(r){i,j}
(cf. Definition 2.4, (i)) is cartesian:

Gr(ΔX(r){i,j})

via p
U

{i,j}
X(r−1)

:i

−−−−−−−−−→ Gr(ΔX(r−1))
via p

U
{i,j}
X(r−1)

:j

⏐⏐� ⏐⏐�via pUX(r−2)
:j−1

Gr(ΔX(r−1)) −−−−−−−−−→
via pUX(r−1)

:i
Gr(ΔX(r−2)) .

(ii) The kernel of the morphism Gr(ΔX(r))
via ιUX(r)

{i,j}
→ Gr(ΔX(r){i,j}) is the

ideal generated by ζ
(j)

X,i = ζ
(i)

X,j (cf. the statement of Proposition 4.1, (iii)).
In particular, the set

{ζ(j)

X,i}
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is a base (over Ql) of the kernel of

Gr(ΔX(r))(2/3)
via ιUX(r)

{i,j}
−→ Gr(ΔX(r){i,j})(2/3) .

Proof. Assertion (i) follows from Lemma 2.3, together with Proposi-
tion 1.4, (ii). Assertion (ii) follows from the fact that the kernel of morphism
Gr(Δ(i)

X(r)/X(r−1)
)→ Gr(Δ(i)

X(r−1)/X(r−2)
) induced by the left-hand vertical arrow

in the commutative diagram

1 −−−−→ Δ(i)
X(r)/X(r−1)

−−−−→ ΔX(r)

via pUX(r−1)
:i

−−−−−−−−−→ ΔX(r−1) −−−−→ 1⏐⏐� ⏐⏐� ∥∥∥
1 −−−−→ Δ(i)

X(r−1)/X(r−2)
−−−−→ ΔX(r){i,j} −−−−−−−−−→via p

U
{i,j}
X(r−1)

:i

ΔX(r−1) −−−−→ 1

is the ideal generated by ζ
(j)

X,i = ζ
(i)

X,j . (This follows easily from an obser-

vation concerning the generators of the graded Lie algebras Δ(i)
X(r)/X(r−1)

and

Δ(i)
X(r−1)/X(r−2)

given in [8], Proposition 1.)

Let 1 ≤ i < j ≤ r + 1 be integers. Next, let us fix choices of the inertia
subgroups

IX(r+1){i,j} ⊆ ΠX(r+1)

(among the various conjugates of IX(r+1){i,j}) for 1 ≤ i < j ≤ r + 1. (Note
that, by Lemma 2.2, these choices induce choices of the subgroups

DX(r+1){i,j} ⊆ ΠX(r+1) ;

moreover, by considering the images of these subgroups via the surjection in-
duced by plog

X(r):k
[where 1 ≤ k ≤ r + 1], these choices induce r + 1 respective

choices of the subgroups
IX(r){i,j} ⊆ ΠX(r)

and
DX(r){i,j} ⊆ ΠX(r) .)

Lemma 4.2 (cf. [7], Lemma 4.3). Let 1 ≤ i < j ≤ r + 1 be integers.
Let

I{i,j} =

⎧⎪⎨⎪⎩
{i− 1, j − 1} (if i �= 1)
{1, j − 1} (if i = 1 and j �= 2)
{1, 2} (if i = 1 and j = 2)

k{i,j} =

⎧⎪⎨⎪⎩
1 (if i �= 1)
2 (if i = 1 and j �= 2)
3 (if i = 1 and j = 2)
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l{i,j} =

{
1 (if i �= 1)
2 (if i = 1)

m{i,j} =

{
i− 1 (if i �= 1)
1 (if i = 1) .

Then the commutative diagram

Dlog
X(r+1){i,j}

δlog
X(r+1){i,j}−−−−−−−−→ X log

(r+1)

plog
X(r):i−−−−→ X log

(r)

via plog
X(r):k{i,j}

⏐⏐� plog
X(r):k{i,j}

⏐⏐� ⏐⏐�plog
X(r−1):l{i,j}

Dlog
X(r)I{i,j} −−−−−−−→

δlog
X(r)I{i,j}

X log
(r) −−−−−−−−−→

plog
X(r−1):m{i,j}

X log
(r−1)

(cf. the discussion following Definition 2.2) induces the following cartesian
diagram:

DX(r+1){i,j}
via plog

X(r):i
◦δlog

X(r+1){i,j}−−−−−−−−−−−−−−−→ ΠX(r)

via plog
X(r):k{i,j}

⏐⏐� ⏐⏐�via plog
X(r−1):l{i,j}

DX(r)I{i,j} −−−−−−−−−−−−−−−−−−−→
via plog

X(r−1):m{i,j}
◦δlog

X(r)I{i,j}

ΠX(r−1) .

Proof. By the definitions, the commutative diagram

Dlog
X(r+1){i,j}

δlog
X(r+1){i,j}−−−−−−−−→ X log

(r+1)

plog
X(r):i−−−−→ X log

(r)⏐⏐� plog
X(r):k{i,j}

⏐⏐� ⏐⏐�plog
X(r−1):l{i,j}

Dlog
X(r)I{i,j} −−−−−−−→

δlog
X(r)I{i,j}

X log
(r) −−−−−−−−−→

plog
X(r−1):m{i,j}

X log
(r−1)

induces a commutative diagram

1−−−−−−−→ IX(r+1){i,j}−−−−−−−→DX(r+1){i,j}
via p

log
X(r):i

◦δ
log
X(r+1){i,j}

−−−−−−−−−−−−−−−−−−−−−−→ ΠX(r)
−−−−−−−→ 1

?
?
y via p

log
X(r):k{i,j}

?
?
y via p

log
X(r−1):l{i,j}

?
?
y

1−−−−−−−→ IX(r)I{i,j} −−−−−−−→ DX(r)I{i,j}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
via p

log
X(r−1):m{i,j}

◦δX(r)I{i,j}
log

ΠX(r−1)
−−−−−−−→ 1 ,

where the horizontal sequences are exact. Now since the restriction of the
morphism Dlog

X(r+1){i,j} → Dlog
X(r)I{i,j} induced by plog

X(r):k{i,j} to the generic point

of Dlog
X(r+1){i,j} is strict, we conclude that the left-hand vertical arrow is an

isomorphism. This completes the proof of Lemma 4.2.
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Moreover, let us fix a section s′0 : GK → ΠX(r) of the morphism ΠX(r) →
GK induced by the structure morphism of UX(r) and a lifting s0 of s′0 to GK →
DX(r+1){1,2}, i.e., a morphism GK → DX(r+1){1,2} such that the composite of

this morphism and DX(r+1){1,2} ↪→ ΠX(r+1)

via plog
X(r):1→ ΠX(r) coincides with s′0.

Note that since GK is free, such a section and lifting always exist. Then the
section s0 of the natural morphism ΠX(r+1) → GK determines natural actions
of GK (by conjugation) on ΔX(r+1) , and on ΔX(r+1){i,j}, hence also on

LinX(r+1)(a/b) def= Lin(ΔX(r+1)(a/b))(Ql) ;

LinX(r+1){i,j}(a/b) def= Lin(ΔX(r+1){i,j}(a/b))(Ql) ;

LieX(r+1)(a/b)def=Lie(ΔX(r+1)(a/b)); LieX(r+1){i,j}(a/b)def=Lie(ΔX(r+1){i,j}(a/b));

GrQl
(ΔX(r+1))(a/b) ; GrQl

(ΔX(r+1){i,j})(a/b)

for a, b ∈ Z such that 1 ≤ a ≤ b (cf. Definition 1.1, (i)).

Proposition 4.2 (cf. [16], Proposition 3.2, (i), (ii)). Let 1 ≤ i < j ≤
r + 1 be integers, and a, b ∈ Z such that 1 ≤ a ≤ b.

(i) The eigenvalues of the action of FrK on LieX(r+1)(a/a + 1) (respectively,
LieX(r+1){i,j}(a/a+1)) are algebraic numbers all of whose complex absolute

values are equal to q
a/2
K .

(ii) There is a unique GK-equivariant isomorphism of Lie algebras

LieX(r+1)(a/b) ∼−→ GrQl
(ΔX(r+1))(a/b)

(respectively, LieX(r+1){i,j}(a/b) ∼−→ GrQl
(ΔX(r+1){i,j})(a/b) )

which induces the identity isomorphism

LieX(r+1)(c/c + 1) ∼−→ GrQl
(ΔX(r+1))(c/c + 1)

(respectively, LieX(r+1){i,j}(c/c + 1) ∼−→ GrQl
(ΔX(r+1){i,j})(c/c + 1) )

for all c ∈ Z such that a ≤ c ≤ b− 1.

Proof. Assertion (i) follows immediately from the “Riemann hypothesis
for abelian varieties over finite fields” (cf. e.g., [18], p. 206). Assertion (ii)
follows formally from assertion (i) by considering the eigenspaces with respect
to the action of FrK .
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Definition 4.2.

(i) We shall write

MX
def= HomZl

(H2(ΔX , Zl), Zl)

(cf. the discussion preceding [16], Remark 1). Note that MX is (non-
canonically) isomorphic to Zl(1) as a GK-module, where “(1)” denotes a
Tate twist.

(ii) Let 1 ≤ i < j ≤ r +1 be integers. Then there exists a natural isomorphism
MX

∼→ IX(r+1){i,j} (cf. [16], Proposition 1.5, (ii), (iii), also the statement
of [16], Proposition 2.1). We shall denote this isomorphism by mX(r+1){i,j}.

(iii) The cup product on the group cohomology of ΔX

2∧
H1(ΔX , MX) −→ H2(ΔX , MX ⊗Zl

MX)

determines an isomorphism

Hom(Δab
X , MX) ∼−→ Δab

X ,

hence a natural GK-equivariant injection

MX ↪→
2∧

Δab
X

(cf. the discussion preceding [16], Definition 3.2). We shall denote this
GK-equivariant injection by icup

X .

(iv) The isomorphism
Hom(Δab

X , MX) ∼−→ Δab
X ,

in (iii) determines a homomorphism

2∧
Δab

X −→MX .

We shall denote by a ∪X a′ the image of a ∧ a′ via this homomorphism,
where a, a′ ∈ Δab

X .

Proposition 4.3 (cf. [16], Proposition 3.2, (iii)). Let us write

VUX(r+1)

def=
⊕
i<j

(IX(r+1){i,j} ⊗Zl
Ql)

⊕
LieX(r+1)(1/2) .
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(Note that by applying the natural isomorphisms mX(r+1){i,j} :MX
∼→IX(r+1){i,j}

and the identity morphism LieX(r+1)(1/2) ∼→(
⊕r+1

k=1(Δ
ab
X )k)⊗Zl

Ql [where (Δab
X )k

is the copy of Δab
X indexed by k], one obtains a natural isomorphism of VUX(r+1)

with the Ql-vector space obtained by tensoring the free Zl-module

⊕
i<j

MX ⊕
r+1⊕
k=1

(Δab
X )k

with Ql.) Then the first isomorphism in Proposition 4.2, (ii), together with the
natural inclusions IX(r+1){i,j} ↪→ ΔX(r+1) , determine a GK-equivariant mor-
phism

VUX(r+1)
−→ LieX(r+1)(1/∞)

which exhibits, in a GK-equivariant fashion, LieX(r+1)(1/∞) as the quotient
of the completion with respect to the filtration topology of the free Lie algebra
Lie(VUX(r+1)

) generated by VUX(r+1)
equipped with a natural grading, hence also

a filtration, by taking the IX(r+1){i,j}⊗Zl
Ql to be of weight 2, LieX(r+1)(1/2) to

be of weight 1, by the relations determined by the images of the morphisms

(R′1) MX ⊗Zl
Ql

L
j mX(r+1){i,j}⊕icup

X−→ (
⊕

j=1,··· ,r+1; j �=i

IX(r+1){i,j}
⊕∧2(Δab

X )i)⊗Zl
Ql

incl.⊕[ , ]−→ Lie(VUX(r+1)
)(2/3) (1 ≤ i ≤ r + 1) ;

(R′3) (IX(r+1){i,k} ⊗Zl
IX(r+1){i′,k′})⊗Zl

Ql
[ , ]−→ Lie(VUX(r+1)

)(4/5)

({i, k} ∩ {i′, k′} = ∅) ;

(R′4) (IX(r+1){i,k} ⊗Zl
(Δab

X )i′)⊗Zl
Ql

[ , ]−→ Lie(VUX(r+1)
)(3/4)

(i �= i′ , k �= i′) ;

(R′5 and 6)
(
⊗2

Zl
Δab

X )⊗Zl
Ql −→ ((Δab

X )i ⊗Zl
(Δab

X )i′ ⊕ IX(r+1){i′,i})⊗Zl
Ql

a⊗ a′ �→ (a⊗ a′, −mX(r+1){i′,i}(a ∪X a′))

[ , ]⊕incl.−→ Lie(VUX(r+1)
)(2/3) (i �= i′)

(cf. the relations in the statement of Proposition 4.1, (iii)), where “incl” is the
natural inclusion, and “[ , ]” is the Lie bracket.

Proof. This follows from Propositions 4.1, (iii); 4.2, (ii).
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Definition 4.3 (cf. [16], Definition 3.3, (i)). Let 1 ≤ i < j ≤ r be inte-
gers, and a, b ∈ Z such that 1 ≤ a ≤ b.

(i) Now we have natural GK-equivariant surjections:

LinX(r+1)(a/b)�LinX(r+1){1,2}(a/b) ; LieX(r+1)(a/b) � LieX(r+1){1,2}(a/b)

(cf. the discussion preceding Proposition 4.2). We shall denote by

Lininer
X(r+1)

(a/b) ; Lieiner
X(r+1)

(a/b)

the respective kernels of these surjections.

(ii) Now we have a natural GK-equivariant morphism:

ΔX(r+1){1,2} −→ LinX(r+1){1,2}(1/∞)

(cf. Definition 1.1, (ii)). We shall write

ΔLie
X(r+1)

def= ΔX(r+1){1,2} ×LinX(r+1){1,2}(1/∞) LinX(r+1)(1/∞) .

(We regard LinX(r+1){1,2}(1/∞) and LinX(r+1)(1/∞) as being equipped
with the topology determined by the respective natural l-adic topologies
of LinX(r+1){1,2}(1/b) and LinX(r+1)(1/b) [where b is a positive integer];
moreover, we regard ΔLie

X(r+1)
as being equipped with the topology de-

termined by the profinite topology of ΔX(r+1){1,2} and the topologies of
LinX(r+1){1,2}(1/∞) and LinX(r+1)(1/∞).) Moreover, we shall denote by

IntΔX(r+1)
: ΔX(r+1) −→ ΔLie

X(r+1)

the GK-equivariant morphism induced by the morphism

ΔX(r+1) −→ ΔX(r+1){1,2}

induced by ιUX(r+1)
{1,2} (cf. Definition 2.4, (ii)) and the natural GK-

equivariant morphism

ΔX(r+1) −→ LinX(r+1)(1/∞) .

(iii) Now we have a natural GK-equivariant injection

Lininer
X(r+1)

(b + 1/∞) ∼−→ {1} ×{1} Lininer
X(r+1)

(b + 1/∞)

−→ ΔX(r+1){1,2} ×LinX(r+1){1,2}(1/∞) LinX(r+1)(1/∞) ∼−→ ΔLie
X(r+1)
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whose image forms a closed normal subgroup of ΔLie
X(r+1)

. We shall denote
by

ΔLie≤b
X(r+1)

the quotient of ΔLie
X(r+1)

by this normal subgroup.

(iv) We shall write

ΠLie
X(r+1)

def= ΔLie
X(r+1)

� GK ; ΠLie≤b
X(r+1)

def= ΔLie≤b
X(r+1)

� GK ,

where the action of GK on ΔLie
X(r+1)

and ΔLie≤b
X(r+1)

is the action induced by
the section s0 (cf. the discussion preceding Proposition 4.2). Moreover, we
shall denote by

IntΠX(r+1)
: ΠX(r+1) −→ ΠLie

X(r+1)

the morphism induced by IntΔX(r+1)
.

(v) Now we have a natural morphism:

ΠX(r+1)

IntΠX(r+1)−→ ΠLie
X(r+1)

� ΠLie≤b
X(r+1)

(respectively, DX(r+1){i,j} ↪→ ΠX(r+1)

IntΠX(r+1)−→ ΠLie
X(r+1)

� ΠLie≤b
X(r+1)

;

respectively, IX(r+1){i,j} ↪→ ΠX(r+1)

IntΠX(r+1)−→ ΠLie
X(r+1)

� ΠLie≤b
X(r+1)

).

We shall denote the image of this composite by

Π≤b
X(r+1)

(respectively, D≤b
X(r+1){i,j} ; respectively, I≤b

X(r+1){i,j});

moreover, we shall write

Δ≤b
X(r+1)

def= Π≤b
X(r+1)

∩ΔLie≤b
X(r+1)

;

DΔ≤b
X(r+1){i,j}

def= D≤b
X(r+1){i,j} ∩ΔLie≤b

X(r+1)
.

Proposition 4.4 (cf. [16], Proposition 3.2, (iv)). For each element α∈
LinX(r+1)(1/∞), there exists a unique element β ∈ LinX(r+1)(1/∞) such that

FrK ◦ Inn(α) = Inn(β) ◦ FrK ◦ Inn(β−1)

(where “Inn(−)” denotes the inner automorphism of LinX(r+1)(1/∞) defined
by conjugation by the element “(−)”). Moreover, when α lies in the subgroup
obtained by tensoring the image of IX(r+1){1,2} via IntΠX(r+1)

with Ql, β also lies
in the subgroup obtained by tensoring the image of IX(r+1){1,2} via IntΠX(r+1)

with Ql.
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Proof. The second assertion of Proposition 4.4 follows immediately from
the assumption on the section s0 : GK → ΠX(r+1) fixed in the discussion pre-
ceding Proposition 4.2 (note that the subgroup obtained by tensoring the image
of IX(r+1){1,2} via IntΠX(r+1)

with Ql is stable under the action of GK); thus,
we prove the first assertion of Proposition 4.4. For a positive integer b, we
shall denote by αb the image of α ∈ LinX(r+1)(1/∞) via the natural surjec-
tion LinX(r+1)(1/∞) � LinX(r+1)(1/b). Then it is easily verified that to prove
the first assertion of Proposition 4.4, it is enough to show that for any b > 2,
there exists β ∈ LinX(r+1)(1/b) such that α−1

b ·FrK(β) · β−1 ∈ LinX(r)(b− 1/b).
To verify this, we apply induction on b. The case where b = 2 is immediate.
Thus, assume that b ≥ 3 and that there exists β ∈ LinX(r+1)(1/b− 1) such that
α−1

b−1 ·FrK(β) ·β−1 ∈ LinX(r+1)(b−2/b−1). Then there exist β̃ ∈ LinX(r+1)(1/b)
and γ ∈ LinX(r+1)(b− 2/b) such that αb = FrK(β̃) · γ · β̃−1. On the other hand,
since it follows from Proposition 4.2, (i), that the morphism of Ql-vector spaces

LinX(r+1)(b− 2/b− 1)−→ LinX(r+1)(b− 2/b− 1)
δ �→ FrK(δ) · δ−1

is an isomorphism, there exists δ ∈ LinX(r+1)(b − 2/b − 1) such that γb−1 =
FrK(δ) · δ−1, where γb−1 is the image of γ in LinX(r+1)(b− 2/b− 1). Therefore,
there exists δ̃ ∈ LinX(r+1)(b− 2/b) such that

α−1
b · FrK(β̃ · δ̃) · (β̃ · δ̃)−1 ∈ LinX(r+1)(b− 1/b) .

This completes the proof of the first assertion of Proposition 4.4.

Remark 8 (cf. [16], Remark 35). Observe that changing the choice of a
lifting

s0 : GK −→ DX(r+1){1,2}

of s′0 affects the image of the element FrK ∈ GK via the composite of the in-
clusion GK ↪→ ΠX(r+1) with the morphism IntΠX(r+1)

: ΠX(r+1) → ΠLie
X(r+1)

by
conjugation by an element of the subgroup obtained by tensoring the image of
IX(r+1){1,2} via IntΠX(r+1)

with Ql (cf. Proposition 4.4). In particular, it follows
that changing the choice of a lifting GK → DX(r+1){1,2} of s′0 affects the Galois
invariant splitting of Proposition 4.2, (ii), by conjugation by an element of the
subgroup obtained by tensoring the image of IX(r+1){1,2} via IntΠX(r+1)

with Ql.
Put another way, if we identify the “LinX(r+1)(1/∞)”, “LinX(r+1){1,2}(1/∞)”
portion of ΔLie

X(r+1)
(cf. Definition 4.3, (ii)) with the topological groups formed

by the Ql-valued points of the pro-algebraic groups corresponding to the (com-
pletion of the) corresponding graded objects “Gr(−)(1/∞)” via the Galois in-
variant splitting of Proposition 4.2, (ii), then the following holds:
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Changing the choice of a lifting s0 : GK → DX(r+1){1,2} of s′0 affects
the images of the morphism

IntΠX(r+1)
: ΠX(r+1) −→ ΠLie

X(r+1)

by conjugation by an element of the subgroup obtained by tensoring the
image of IX(r+1){1,2} via IntΠX(r+1)

with Ql.

Lemma 4.3. IntΔX(r+1)
is an injection.

Proof. This follows from induction on r, Proposition 1.4, (ii), together
with the fact that the central filtration

{ΔX/S(n)}
defined in the discussion following Lemma 1.1 satisfies that⋂

n≥1

ΔX/S(n) = 1 .

Lemma 4.4. Let r ≥ 2 be an integer. Then conjugates (in Δ≤b
X(r+1)

)

of the subgroups DΔ≤b
X(r+1){1,2} and DΔ≤b

X(r+1){2,3} of ΠLie≤b
X(r+1)

topologically generate

the subgroup Δ≤b
X(r+1)

⊆ ΠLie≤b
X(r+1)

.

Proof. This follows immediately from Proposition 2.4 and Lemma 4.3.

Lemma 4.5. Let 1 ≤ i < j ≤ r be integers, and a, b ∈ Z such that
1 ≤ a ≤ b. Then the following hold :

(i) ΔLie≤1
X(r+1)

is naturally isomorphic to ΔX(r+1){1,2}.

(ii) The kernel of the natural projection ΠLie≤b+1
X(r+1)

� ΠLie≤b
X(r+1)

is isomorphic to

Lininer
X(r+1)

(b + 1/b + 2) .

In particular, the kernel of the natural projection D≤b+1
X(r+1){i,j}�D≤b

X(r+1){i,j}
is isomorphic to{

1 (if b �= 1 or {i, j} �= {1, 2})
IX(r+1){i,j} (if b = 1 and {i, j} = {1, 2}) .

Therefore, for 2 ≤ b, the natural projection D≤b+1
X(r+1){i,j} � D≤b

X(r+1){i,j} is
an isomorphism.
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Proof. This follows immediately from Lemma 4.2; Definition 4.3.

In the following, let us consider some assumptions on the section s0 :
GK → ΠX(r+1) fixed in the discussion preceding Proposition 4.2:

Definition 4.4. Let r ≥ 2 be an integer. Then we shall say that the
section s0 : GK → ΠX(r+1) (fixed in the discussion preceding Proposition 4.2)
satisfies the condition (†P) (respectively, (†S) for a set S = {x1, · · · , xr} of
distinct K-rational points of X of cardinality r with an ordering) if the following
holds:

The image of the section s0 : GK → ΠX(r+1) is included in

DX(r+1){1,2} ∩DX(r+1){1,2,3} ⊆ ΠX(r+1)

(respectively, the section of the natural morphism ΠX(r) → GK ob-

tained as the composite of s0 and ΠX(r+1)

via plog
X(r):1→ ΠX(r) [i.e., the

section s′0 : GK → ΠX(r) in the discussion preceding Proposition 4.2]
arises from the K-rational point of UX(r) corresponding to (x1, · · · , xr)
[thus, the image of the section s0 : GK → ΠX(r+1) is included in the
decomposition subgroup of ΠX\{x1,··· ,xr}  ΠX(r+1) ×ΠX(r)

GK associ-
ated to the cusp x1 determined by the fixed decomposition subgroups
DX(r+1){1,2} ⊆ ΠX(r+1) ]).

Note that since GK is free, and DX(r+1){1,2} ∩ DX(r+1){1,2,3} is non-empty, a
section which satisfies the condition (†P) always exists.

By the discussion following Definition 2.2, we have an exact sequence

1 −→ IX(r+1){1,2,3} −→ PX(r+1){1,2,3} −→ ΔPK
−→ 1 ;

moreover, we also have a section of this sequence which is refered to the section
of PX(r+1){1,2,3} � ΔPK

induced by plog
X(r+1):i

(i = 1, 2, 3). Let us denote by

ΔPK
{i} the image of the section of PX(r+1){1,2,3} � ΔPK

induced by plog
X(r+1):i

.
Note that the subgroup ΔPK

{i} ⊆ DX(r+1){1,2,3} of DX(r+1){1,2,3} is normal by
the definition of the section of PX(r+1){1,2,3} � ΔPK

induced by plog
X(r+1):i

.

Definition 4.5. Since the subgroup

ΔPK
{i} ⊆ DX(r+1){1,2,3}



Absolute Anabelian Cuspidalizations 719

of DX(r+1){1,2,3} is normal, if the section s0 satisfies the condition (†P) (cf.
Definition 4.4), then the action of GK on DX(r+1){1,2,3} induced via conjugation
induces an action of GK on ΔPK

{i}. Therefore, we obtain a subgroup

ΔPK
{i}� GK ⊆ DX(r+1){1,2,3} .

We shall write ΠPK
{i} def= ΔPK

{i}� GK .

Lemma 4.6. The group ΠPK
{i} is isomorphic to ΠPK

.

Proof. This follows immediately from the fact that the subgroup
IX(r+1){1,2,3} ⊆ DΔ

X(r+1){1,2,3} of DΔ
X(r+1){1,2,3} is included in the center of

DΔ
X(r+1){1,2,3}, together with the fact that any element of the subgroup

ΔX(r−1)× {1} ⊆ ΔX(r−1) ×ΔPK
 DΔ

X(r+1){1,2,3}/IX(r+1){1,2,3}

of DΔ
X(r+1){1,2,3}/IX(r+1){1,2,3} commutes with any element of the subgroup

{1} × ΔPK
⊆ ΔX(r−1) × ΔPK

 DΔ
X(r+1){1,2,3}/IX(r+1){1,2,3} of DΔ

X(r+1){1,2,3}/
IX(r+1){1,2,3}.

Definition 4.6 (cf. [16], Definitions 3.2; 3.3, (i)).

(i) We shall denote by
{ΔPK

{2}(n)}
the central filtration of ΔPK

{2} with respect to the surjection

ΔPK
{2}� 1

(cf. Definition 1.1, (i)). Then it follows immediately from Lemma 2.1 that
Lin(ΔPK

{2}(2/3))(Ql) is naturally isomorphic to

(IX(r+1){1,2} ⊕ IX(r+1){2,3})⊗Zl
Ql .

Now we shall write

ΔLie
PK
{2} def= Lin(ΔPK

{2}(1/∞))(Ql)×(IX(r+1){2,3}⊗Zl
Ql) IX(r+1){2,3} ,

where the morphism Lin(ΔPK
{2}(1/∞))(Ql)→ IX(r+1){2,3}⊗Zl

Ql (respec-
tively, IX(r+1){2,3} → IX(r+1){2,3} ⊗Zl

Ql) is the composite

Lin(ΔPK
{2}(1/∞))(Ql) � Lin(ΔPK

{2}(2/3))(Ql)
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∼−→ (IX(r+1){1,2} ⊕ IX(r+1){2,3})⊗Zl
Ql

pr2� IX(r+1){2,3} ⊗Zl
Ql

(respectively, the natural inclusion). Then by the definition of ΔLie
X(r+1)

,
the natural morphism Lin(ΔPK

{2}(1/∞))(Ql)→ LinX(r+1)(1/∞) (induced
by ΔPK

{2} ↪→ ΔX(r+1)) and the the natural inclusion IX(r+1){2,3} ↪→
ΔX(r+1){1,2} induce a natural morphism

ΔLie
PK
{2} −→ ΔLie

X(r+1)
.

Now let us assume that the section s0 fixed in the discussion preceding
Proposition 4.2 satisfies the condition (†P) (cf. Definition 4.4). Then we
shall write

ΠLie
PK
{2} def= ΔLie

PK
{2}� GK ,

where the action of GK on ΔLie
PK
{2} is the action obtained via conjugation.

Now it follows that the above morphism ΔLie
PK
{2} → ΔLie

X(r+1)
induces a

morphism
ΠLie

PK
{2} −→ ΠLie

X(r+1)
;

moreover, the following diagram commutes

ΠPK
{2} −−−−→ ΠX(r+1)

IntΠ
PK

⏐⏐� ⏐⏐�IntΠX(r+1)

ΠLie
PK
{2} −−−−→ ΠLie

X(r+1)
,

where the left-hand vertical arrow IntΠPK
is the morphism obtained by a

similar way to the way to define IntΠX(r+1)
.

(ii) Let S = {x1, · · · , xr} ⊆ X(K) be a set of distinct K-rational points of
X of cardinality r with an ordering. Then we shall denote by US ⊆ X

(respectively, US ⊆ X) the open subscheme obtained as the complement of

S (respectively, S
def= S \ {x1}) in X, and by

{ΔUS
(n)} (respectively, {ΔUS

(n)})

the central filtration of the pro-l fundamental group ΔUS
(respectively,

ΔUS
) of US (respectively, US) with respect to the natural surjection

ΔUS
� Δab

X (respectively, ΔUS
� Δab

X ) .

Now we shall write

ΔLie
US

def= Lin(ΔUS
(1/∞))(Ql)×Lin(ΔUS

(1/∞))(Ql) ΔUS
,
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where the morphism implicit in the fiber product ΔUS
→Lin(ΔUS

(1/∞))(Ql)
is the morphism considered in Definition 1.1, (ii). Let us denote by Dx1

the decomposition subgroup associated to x1 of the geometrically pro-l
fundamental group ΠUS

of US (well-defined, up to conjugate). Then Dx1

fits into an exact sequence

1 −→ Ix1 −→ Dx1 −→ GK −→ 1 ,

where Ix1 is the inertia subgroup associated to x1 of ΠUS
(well-defined, up

to conjugate). Let us fix a section sS
0 : GK → Dx1 of this exact sequence.

Then we obtain actions of GK on ΠUS
, and on the geometrically pro-l

fundamental group ΠUS
of US (via conjugation), hence also on

Lin(ΔUS
(a/b))(Ql) ; Lin(ΔUS

(a/b))(Ql) ;

Lie(ΔUS
(a/b)) ; Lie(ΔUS

(a/b)) ;

GrQl
(ΔUS

(a/b)) ; GrQl
(ΔUS

(a/b)) ; ΔLie
US

for a, b ∈ Z such that 1 ≤ a ≤ b. Then we shall write

ΠLie
US

def= ΔLie
US

� GK .

Proposition 4.5 (cf. [16], Proposition 3.2, (iii)).

(i) If the section s0 satisfies the condition (†P), then there exsits a unique
GK-equivariant isomorphism of Lie algebras

Lie(ΔPK
{2}(a/b)) ∼−→ GrQl

(ΔPK
{2})(a/b)

(where a ≤ b are integers) which induces the identity morphism

Lie(ΔPK
{2}(c/c + 1)) ∼−→ GrQl

(ΔPK
{2})(c/c + 1)

for all c ∈ Z such that a ≤ c ≤ b− 1. Now let us write

VPK
{2} def= (IX(r+1){1,2} ⊕ IX(r+1){2,3})⊗Zl

Ql .

(Note that, by applying the natural isomorphisms mX(r+1){i,j} : MX
∼→

IX(r+1){i,j} [cf. Definition 4.2, (ii)], one obtains a natural isomorphism of
VPK
{2} with the Ql-vector space obtained by tensoring the free Zl-module

MX ⊕MX
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with Ql.) Then the natural inclusions IX(r+1){i,j} ↪→ΔPK
{2} (where {i, j}=

{1, 2}, {2, 3}), together with the above GK-equivariant isomorphism of Lie
algebras

Lie(ΔPK
{2}(a/b)) ∼−→ GrQl

(ΔPK
{2})(a/b)

determine a GK-equivariant morphism

VPK
{2} −→ Lie(ΔPK

{2}(1/∞))

which exhibits, in a GK-equivariant fashion, Lie(ΔPK
{2}(1/∞)) as the

completion with respect to the filtration topology of the free Lie algebra
Lie(VPK

{2}) generated by VPK
{2} equipped with a natural grading, hence

also a filtration, by taking the IX(r+1){i,j}⊗Zl
Ql to be of weight 2. Moreover,

the morphism of Lie algebras Lie(ΔPK
{2}(1/∞))→ LieX(r+1)(1/∞) corre-

sponding to the morphism Lin(ΔPK
{2}(1/∞))(Ql) → LinX(r+1)(1/∞)(Ql)

discussed in Definition 4.6, (i), coincides with the morphism induced by the
natural inclusion

VPK
{2} ↪→ VUX(r+1)

(cf. Proposition 4.3).

(ii) Let S = {x1, · · · , xr} ⊆ X(K) be a set of distinct K-rational points of
X of cardinality r equipped with an ordering. Then there exists a unique
GK-equivariant isomorphism of Lie algebras

Lie(ΔUS
(a/b)) ∼−→ GrQl

(ΔUS
)(a/b)

(respectively, Lie(ΔUS
(a/b)) ∼−→ GrQl

(ΔUS
)(a/b))

(where a ≤ b are integers) which induces the identity morphism

Lie(ΔUS
(c/c + 1)) ∼−→ GrQl

(ΔUS
)(c/c + 1)

(respectively, Lie(ΔUS
(c/c + 1)) ∼−→ GrQl

(ΔUS
)(c/c + 1))

for all c ∈ Z such that a ≤ c ≤ b− 1. Now let us write

VUS

def=
⊕

1≤i≤r

(MX ⊗Zl
Ql)

⊕
Lie(ΔUS

)(1/2)

(respectively, VUS

def=
⊕

2≤i≤r

(MX ⊗Zl
Ql)

⊕
Lie(ΔUS

)(1/2)) .
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[Note that, by applying the identity morphism Lie(ΔUS
)(1/2) ∼→ Δab

X ⊗Zl
Ql

(respectively, Lie(ΔUS
)(1/2) ∼→ Δab

X ⊗Zl
Ql), one obtains a natural iso-

morphism of VUS
(respectively, VUS

) with the Ql-vector space obtained by
tensoring the free Zl-module⊕

1≤i≤r

MX

⊕
Δab

X (respectively,
⊕

2≤i≤r

MX

⊕
Δab

X )

with Ql.] Then the above GK-equivariant isomorphism

Lie(ΔUS
(a/b)) ∼−→ GrQl

(ΔUS
)(a/b)

(respectively, Lie(ΔUS
(a/b)) ∼−→ GrQl

(ΔUS
)(a/b)) ,

together with the composite of the natural isomorphism MX
∼→ Ixi

[US ]
(respectively, MX

∼→ Ixi
[US ]) (cf. Definition 4.2, (ii)) and the natural

inclusions Ixi
[US ] ↪→ ΔUS

(respectively, Ixi
[US ] ↪→ ΔUS

) [where Ixi
[US ]

(respectively, Ixi
[US ]) is the inertia subgroup of ΔUS

(respectively, ΔUS
)

associated to xi ∈ S (respectively, xi ∈ S)], determine a GK-equivariant
morphism

VUS
−→ Lie(ΔUS

(1/∞))

(respectively, VUS
−→ Lie(ΔUS

(1/∞)))

which exhibits, in a GK-equivariant fashion, Lie(ΔUS
(1/∞)) (respectively,

Lie(ΔUS
(1/∞))) as the quotient of the completion with respect to the fil-

tration topology of the free Lie algebra Lie(VUS
) (respectively, Lie(VUS

))
generated by VUS

(respectively, VUS
) equipped with a natural grading, hence

also a filtration, by taking the MX ⊗Zl
Ql to be of weight 2, Lie(ΔUS

(1/2))
(respectively, Lie(ΔUS

(1/2))) to be of weight 1, by the relations determined
by the image of the morphism:

MX ⊗Zl
Ql

L
idMX

⊕icup
X→ (

r⊕
i=1

MX

⊕ 2∧
Δab

X )⊗Zl
Ql

incl.⊕[ , ]→ Lie(VUS
)(2/3)

(respectively, MX ⊗Zl
Ql

L
idMX

⊕icup
X→ (

r⊕
i=2

MX

⊕ 2∧
Δab

X )⊗Zl
Ql

incl.⊕[ , ]→ Lie(VUS
)(2/3)),

where “incl” is the natural inclusion, and “[ , ]” is the Lie bracket.
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Proof. This follows from [16], Propositions 3.3; 3.4.

In the following, let L be a finite field whose characteristic (respectively,
cardinality) we denote by pL (respectively, qL) such that l is invertible in L

(i.e., l �= pL), L an algebraic closure of L, GL
def= Gal(L/L), and Y a proper

hyperbolic curve over L. Moreover, let α(r) : ΠX(r)

∼→ ΠY(r) be a Frobenius-
preserving (cf. Definition 2.5) and order-preserving (cf. Definition 2.6, (ii))
isomorphism, and t′0 : GL → ΠY(r) the section of the natural morphism ΠY(r) →
GL corresponding to s′0 under the isomorphism α(r).

Lemma 4.7. Let α(r) : ΠX(r)

∼→ ΠY(r) be a Frobenius-preserving and
order-preserving isomorphism. Then, for any integer 1 ≤ r′ ≤ r + 1, there
exists a unique isomorphism

αLie
(r′) : ΠLie

X(r′)
∼−→ ΠLie

Y(r′)

(respectively, αLie≤b
(r′) : ΠLie≤b

X(r′)
∼−→ ΠLie≤b

Y(r′)
for any b ≥ 1)

which, for any integer 1 ≤ i ≤ r′, fits into commutative diagrams

ΠLie
X(r′)

αLie
(r′)−−−−→ ΠLie

Y(r′)⏐⏐� ⏐⏐�
ΠLie≤b

X(r′)
−−−−→
αLie ≤b

(r′)

ΠLie≤b
Y(r′)

ΠLie
X(r′)

αLie
(r′)−−−−→ ΠLie

Y(r′)

via pUX(r′−1)
:i

⏐⏐� ⏐⏐�via pUY(r′−1)
:i

ΠLie
X(r′−1)

−−−−−→
αLie

(r′−1)

ΠLie
Y(r′−1)

,

and, if r′ ≤ r, then αLie
(r′) fits into a commutative diagram

ΠX(r′)

α(r′)−−−−→ ΠY(r′)

IntΠX(r′)

⏐⏐� ⏐⏐�IntΠY(r′)

ΠLie
X(r′)

−−−−→
αLie

(r′)
ΠLie

Y(r′)
.

Proof. By the discussion following Definition 2.6, α(r) induces a Frobenius-
preserving isomorphism α : ΠX

∼→ ΠY . Thus, it follows from Proposition 4.3
that we obtain an isomorphism LieX(r′)(1/∞) ∼→ LieY(r′)(1/∞); therefore, by
the functoriality of “Lin”, we obtain an isomorphism

αLie
(r′) : ΠLie

X(r′)
∼−→ ΠLie

Y(r′)

(respectively, αLie≤b
(r′) : ΠLie≤b

X(r′)
∼−→ ΠLie≤b

Y(r′)
) .
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By constructions, it follows that the diagrams

ΠLie
X(r′)

αLie
(r′)−−−−→ ΠLie

Y(r′)⏐⏐� ⏐⏐�
ΠLie≤b

X(r′)
−−−−→
αLie ≤b

(r′)

ΠLie≤b
Y(r′)

ΠLie
X(r′)

αLie
(r′)−−−−→ ΠLie

Y(r′)

via pUX(r′−1)
:i

⏐⏐� ⏐⏐�via pUY(r′−1)
:i

ΠLie
X(r′−1)

−−−−−→
αLie

(r′−1)

ΠLie
Y(r′−1)

commute.
Assume that r′ ≤ r. Then the isomorphism α(r′) : ΠX(r′)

∼→ ΠY(r′)
(obtained in the discussion following Definition 2.6) induces an isomorphism
ΠLie

X(r′)
∼→ ΠLie

Y(r′)
which fits into the commutative diagram

ΠX(r′)

α(r′)−−−−→ ΠY(r′)

IntΠX(r′)

⏐⏐� ⏐⏐�IntΠY(r′)

ΠLie
X(r′)

−−−−−→
via α(r′)

ΠLie
Y(r′)

by the definitions of ΠLie
X(r′)

and ΠLie
Y(r′)

. Thus, to prove Lemma 4.7, it is enough

to show that this isomorphism of ΠLie
X(r′)

with ΠLie
Y(r′)

coincides with the iso-
morphism αLie

(r′). On the other hand, this follows from Proposition 4.2, (ii),
by considering the eigenspaces with respect to the action of the Frobenius ele-
ment.

By Lemma 4.7, we obtain an isomorphism

αLie
(r+1) : ΠLie

X(r+1)

∼−→ ΠLie
Y(r+1)

.

Note that by the construction of αLie
(r+1), together with the assumption on the

section s0 which is fixed in the discussion preceding Proposition 4.2, we may
assume that

αLie
(r+1) maps the image of IX(r+1){1,2} via IntΠX(r+1)

bijectively onto the
image of IY(r+1){1,2} via IntΠY(r+1)

.

Lemma 4.8. Let r ≥ 2 be an integer. Then if the section s0 satisfies
the condition (†P), the following conditions are equivalent :

(i) α(r) is tripod-preserving.

(ii) The isomorphism αLie
(r+1) maps the image of ΠPK

{2} via IntΠX(r+1)
bijectively

onto the image of ΠPL
{2} via IntΠY(r+1)

.
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In particular, if α(r) is tripod-preserving, then αLie
(r+1) maps the image (via

IntΠX(r+1)
) of the decomposition subgroup DP

X(r+1){2,3} of ΠPK
{2} such that

DP
X(r+1){2,3} ∩ ΔX(r+1) coincides with IX(r+1){2,3} bijectively onto a ΠY(r+1)-

conjugate of the image (via IntΠY(r+1)
) of the decomposition subgroup DP

Y(r+1){2,3}
of ΠPL

{2} such that DP
Y(r+1){2,3} ∩ΔY(r+1) coincides with IY(r+1){2,3}.

Proof. It follows immediately from the definition of the term “tripod-
preserving” that condition (ii) implies condition (i) (cf. Lemma 4.6). We prove
the assertion that condition (i) implies condition (ii). Since α(r) is tripod-
preserving, there exists an isomorphism αP : ΠPK

{2} ∼→ ΠPL
{2} such that

the composite M⊕2
X

∼→ M⊕2
Y of the natural isomorphism M⊕2

X
∼→ Δab

PK
(cf.

Definition 4.2, (ii)), the isomorphism Δab
PK

∼→ Δab
PL

induced by αP, and the
natural isomorphism Δab

PL

∼→ M⊕2
L coincides with the isomorphism obtained

by the isomorphism MX → MY obtained by α(r); moreover, it follows from
the definitions of ΠLie

PK
{2} and ΠLie

PL
{2} that αP induces an isomorphism αLie

P :
ΠLie

PK
{2} ∼→ ΠLie

PL
{2} which fits into a commutative diagram

ΠPK
{2} αP−−−−→ ΠPL

{2}⏐⏐� ⏐⏐�
ΠLie

PK
{2} −−−−→

αLie
P

ΠLie
PL
{2} .

On the other hand, by Proposition 4.5, (i), the isomorphism MX
∼→ MY in-

duced by α(r) induces an isomorphism ΠLie
PK
{2} ∼→ ΠLie

PL
{2} which fits into a

commutative diagram

ΠLie
PK
{2} via α(r)−−−−−→ ΠLie

PL
{2}⏐⏐� ⏐⏐�

ΠLie
X(r+1)

−−−−→
αLie

(r+1)

ΠLie
Y(r+1)

,

where the vertical arrows are the morphism obtained in Definition 4.6, (i).
Thus, to prove Lemma 4.8, it is enough to show that this isomorphism of
ΠLie

PK
{2} with ΠLie

PL
{2} (induced by α(r)) coincides with the isomorphism αLie

P .
On the other hand, this follows from the fact that Lie(ΔPK

{2}(1/∞)) (respec-
tively, Lie(ΔPL

{2}(1/∞))) is generated by the image of VPK
{2} (respectively,

VPL
{2}), by considering the eigenspaces with respect to the action of the re-

spective Frobenius elements (cf. Proposition 4.5, (i)).
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Lemma 4.9. Let S = {x1, · · · , xr} be a set of distinct K-rational points
of X of cardinality r with an ordering, sS : GK → ΠX(r) the section of the natu-
ral morphism ΠX(r) → GK corresponding to the K-rational point (x1, · · · , xr) ∈
UX(r)(K), and (y1, · · · , yr) ∈ UY(r)(L) an L-rational point of UY(r) to which the

section tT , obtained as the composite GL

α−1
(0)
∼→ GK

sS→ ΠX(r)

α(r)
∼→ ΠY(r), of the

natural morphism ΠY(r) → GL corresponds (cf. Proposition 2.5, (ii)). Let us

write T
def= {y1, · · · , yr}. Let αS,T : ΠUS

∼→ ΠVT
be an isomorphism of the

geometrically pro-l fundamental group ΠUS
of US

def= X \ S with the geometri-
cally pro-l fundamental group ΠVT

of VT
def= Y \ T such that the isomorphism

ΠX
∼→ ΠY induced by αS,T coincides with the isomorphism α(1) : ΠX

∼→ ΠY

induced by α(r). Let us assume that the section s′0 (respectively, t′0) of the nat-
ural morphism ΠX(r) → GK (respectively, ΠY(r) → GL) (fixed in the discussion
preceding Proposition 4.2) coincides with sS (respectively, tT ). [In particular,
the section GK → ΠX(r+1) (respectively, GL → ΠY(r+1)) fixed in the discussion
preceding Proposition 4.2 satisfies the condition (†S) (respectively, (†T )).] Then
there exist morphisms ΠUS

→ ΠLie
X(r+1)

and ΠVT
→ ΠLie

Y(r+1)
which fit into a

commutative diagram
ΠUS

αS,T−−−−→ ΠVT⏐⏐� ⏐⏐�
ΠLie

X(r+1)
−−−−→
αLie

(r+1)

ΠLie
Y(r+1)

and satisfy the following condition: The quotient of ΠUS
(respectively, ΠVT

)
determined by the composite

ΠUS
−→ ΠLie

X(r+1)
� ΠX(r+1){1,2}

(respectively, ΠVT
−→ ΠLie

Y(r+1)
� ΠY(r+1){1,2})

coincides with the natural quotient ΠUS
� ΠUS

(respectively, ΠVT
� ΠVT

),

where S
def= {x2, · · · , xr} (respectively, T

def= {y2, · · · , yr}); moreover, this com-
posite determines an isomorphism ΠUS

∼→ ΠX(r+1){1,2}×ΠX(r)
GK (respectively,

ΠVT

∼→ ΠY(r+1){1,2} ×ΠY(r)
GL), where the morphism ΠX(r+1){1,2} → ΠX(r)

(respectively, ΠY(r+1){1,2} → ΠY(r)) is the morphism induced by UX(r+1){1,2}
p

U
{1,2}
X(r)

:2

→ UX(r) (respectively, UY(r+1){1,2}

p
U

{1,2}
Y(r)

:2

→ UY(r)), and the morphism GK →
ΠX(r) (respectively, GL→ΠY(r)) is sS (respectively, tT ). In particular, if we de-
note by DS

X(r+1){2,3} (respectively, DT
Y(r+1){2,3}) the decomposition subgroup of
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ΠUS
(respectively, ΠVT

) associated to x2 (respectively, y2) such that DS
X(r+1){2,3}

∩ΔX(r+1) (respectively, DT
Y(r+1){2,3} ∩ ΔY(r+1)) coincides wtih IX(r+1){2,3}

(respectively, IY(r+1){2,3}), then the isomorphism αLie
(r+1) maps the image of

DS
X(r+1){2,3} via IntΠX(r+1)

bijectively onto a ΠY(r+1)-conjugate of the image of

DT
Y(r+1){2,3} via IntΠX(r+1)

.

Proof. By the assumption on αS,T , αS,T induces an isomorphism αS,T :
ΠUS

∼→ ΠVT
. On the other hand, by the definitions of ΠX(r+1){1,2} and

ΠY(r+1){1,2}, the isomorphism α(r) : ΠX(r)

∼→ ΠY(r) induces an isomorphism

ΠX(r+1){1,2} ×ΠX(r)
GK

∼→ ΠY(r+1){1,2} ×ΠY(r)
GL, where these fiber products

are as in the statement of Lemma 4.9; moreover, it follows from the assump-
tion on sS (respectively, tT ) that the profinite group ΠX(r+1){1,2} ×ΠX(r)

GK

(respectively, ΠY(r+1){1,2} ×ΠY(r)
GL) is isomorphic to the geometrically pro-l

fundamental group of US (respectively, VT ). Let us fix isomorphisms ΠUS

∼→
ΠX(r+1){1,2} ×ΠX(r)

GK and ΠVT

∼→ ΠY(r+1){1,2} ×ΠY(r)
GL. Then it follows

from Proposition 4.6 below that by composition with a cuspidally inner auto-
morphism of ΠY(r+1){1,2} ×ΠY(r)

GL (relative to ΠY(r+1){1,2} ×ΠY(r)
GL � ΠY )

if necessary, we may assume that the following diagram commutes:

ΠUS

αS,T−−−−→ ΠVT

�
⏐⏐� ⏐⏐��

ΠX(r+1){1,2} ×ΠX(r)
GK −−−−−→

via α(r)

ΠY(r+1){1,2} ×ΠY(r)
GL .

In particular, it follows from Proposition 4.5, (ii), together with the assump-
tion that the isomorphism of ΠX

∼→ ΠY induced by αS,T coincides with the
isomorphism α(1), that we obtain a commutative diagram

ΠLie
US

via α(1)−−−−−→ ΠLie
VT⏐⏐� ⏐⏐�

ΠLie
X(r+1)

−−−−→
αLie

(r+1)

ΠLie
Y(r+1)

.

On the other hand, by the definitions of ΠLie
US

and ΠLie
VT

, αS,T induces an isomor-
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phism αLie
S,T : ΠLie

US

∼→ ΠLie
VT

which fits into the following commutative diagram:

ΠUS

αS,T−−−−→ ΠVT⏐⏐� ⏐⏐�
ΠLie

US
−−−−→

αLie
S,T

ΠLie
VT

.

Therefore, to prove Lemma 4.9, it is enough to show that the isomorphism
ΠLie

US

∼→ ΠLie
VT

induced by α(1) coincides with the isomorphism αLie
S,T : ΠLie

US

∼→
ΠLie

VT
. On the other hand, this follows from a similar argument to the argument

used in the proof of Lemma 4.8, together with Proposition 4.5, (ii).

Proposition 4.6. Let S be a locally noetherian normal scheme which
is geometrically connected over the finite filed K, f : X → S a family of
hyperbolic curves such that f ⊗K K : X ⊗K K → S⊗K K is of pro-l-exact type
(cf. Definition 1.2), s : S → X a section of f , U ⊆ X the open subscheme
of X obtained as the complement of the (scheme-theoretic) image of s, and
fU : U → S the restriction of f to U . Let

α : ΠU
∼−→ ΠU

be an automorphism of the geometrically pro-l fundamental group ΠU of U

which fits into a commutative diagram

ΠU
α−−−−→ ΠU⏐⏐� ⏐⏐�

ΠX ΠX ,

where ΠX is the geometrically pro-l fundamental group of X, and the vertical
arrows are the surjections induced by the natural open immersion U ↪→ X.
Then α is a cuspidally inner automorphism, i.e., there exists an element γ of
the kernel of the natural surjection ΠU � ΠX such that α = Inn(γ).

Proof. If S is isomorphic to the spectrum of a finite extension field of
K, then Proposition 4.6 follows from a similar argument to the argument
used in the proof of the uniqueness of “α∞” in [16], Theorem 3.1. Therefore,
Proposition 4.6 follows from Lemma 4.10 below, together with the slimness
of the kernel of the surjection induced by fU on geometrically pro-l funda-
mental groups. (Note that it follows from Proposition 1.2, together with the
assumption that f ⊗K K : X ⊗K K → S ⊗K K is of pro-l-exact type, that
fU ⊗K K : U ⊗K K → S ⊗K K is also of pro-l-exact type.)
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Lemma 4.10. Let

1 −→ Δ −→ Π −→ G −→ 1

be an exact sequence of profinite groups, and φ an automorphism of Π which
induces the identity morphisms of Δ and G. Assume that Δ is slim (where we
refer to the discussion entitled “Groups” in Introduction concerning the term
“slim”). Then φ is the identity morphism.

Proof. By the slimness of Δ, we have a natural isomorphism

Π ∼−→ Aut(Δ)×Out(Δ) G ,

where the morphism implicit in the fiber product G → Out(Δ) is the mor-
phism induced by the natural morphism Π→ Aut(Δ), together with the exact
sequence in the statement of Lemma 4.10. Now it is easily verified that if φ is
an automorphism of Π which preserves the subgroup Δ ⊆ Π, then the automor-
phism of Aut(Δ)×Out(Δ) G corresponding to φ (under the above isomorphism)
is given by

Aut(Δ)×Out(Δ) G
∼−→ Aut(Δ)×Out(Δ) G

(f, g) �→ (φ |Δ ◦f ◦ φ−1 |Δ, φ(g)) ,

where φ is the automorphism of G induced by φ. Thus, the assertion is imme-
diate.

In the following, we assume that

r ≥ 2 .

Lemma 4.11. The image of the diagonal morphism

ΠX(r) −→ ΠX(r) ×ΠX(r−1)
ΠX(r)

∼←− ΠX(r+1){1,2}

(cf. Lemma 2.3) is a conjugate of D≤1
X(r+1){1,2} in ΠX(r+1){1,2}  ΠLie≤1

X(r+1)
(cf.

Lemma 4.5, (i)).

Proof. This follows from the definitions of D≤1
X(r+1){1,2} and ΠX(r+1){1,2}.
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Lemma 4.12.

(i) The diagrams

D≤2
X(r+1){1,2} −−−−→ D≤1

X(r+1){1,2}⏐⏐� ⏐⏐�
D≤2

X(r){1,2} −−−−→ D≤1
X(r){1,2}

Π≤2
X(r+1)

−−−−→ Π≤1
X(r+1)⏐⏐� ⏐⏐�

Π≤2
X(r)

−−−−→ Π≤1
X(r)

induced by the diagram

ΠLie≤2
X(r+1)

−−−−→ ΠLie≤1
X(r+1)

via plog
X(r):3

⏐⏐� ⏐⏐�via plog
X(r):3

ΠLie≤2
X(r)

−−−−→ ΠLie≤1
X(r)

are cartesian.

(ii) The subgroup of ΠLie≤2
X(r+1)

obtained as the intersection of the inverse image

of D≤1
X(r+1){1,2} (respectively, Π≤1

X(r+1)
) via the natural projection

ΠLie≤2
X(r+1)

� ΠLie≤1
X(r+1)

and the inverse image of D≤2
X(r){1,2} (respectively, Π≤2

X(r)
) via

ΠLie≤2
X(r+1)

via plog
X(r):3

� ΠLie≤2
X(r)

coincides with D≤2
X(r+1){1,2} (respectively, Π≤2

X(r+1)
).

Proof. Assertion (i) follows immediately from Lemma 4.5, (ii). Assertion
(ii) follows from assertion (i), Lemma 4.13 below, together with the fact that
the diagram

ΠLie≤2
X(r+1)

−−−−→ ΠLie≤1
X(r+1)

via plog
X(r):3

⏐⏐� ⏐⏐�via plog
X(r):3

ΠLie≤2
X(r)

−−−−→ ΠLie≤1
X(r)

is cartesian (cf. Lemma 4.1, (ii)).

Lemma 4.13. Let
G1

f2−−−−→ G2

f3

⏐⏐� ⏐⏐�
G3 −−−−→ G4
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be a commutative diagram of groups, and H1 ⊆ G1 a subgroup of G1. Write
H2 (respectively, H3) for the image of H1 via f2 (respectively, f3). Then if the
morphism

H1 −→ H2 ×G4 H3

induced by f2 and f3 is an isomorphism, and the intersection

Ker f2 ∩Ker f3

is trivial (e.g., the above diagram is cartesian), then the natural inclusion mor-
phism

H1 ↪→ f−1
2 (H2) ∩ f−1

3 (H3)

is an isomorphism.

Proof. Observe that the morphisms f2 and f3 induce a morphism

f−1
2 (H2) ∩ f−1

3 (H3) −→ H2 ×G4 H3 .

Since the composite

H1 ↪→ f−1
2 (H2) ∩ f−1

3 (H3) −→ H2 ×G4 H3

of the natural inclusion H1 ↪→ f−1
2 (H2) ∩ f−1

3 (H3) and this morphism is an
isomorphism by our assumption, we conclude that this morphism is surjective.
Moreover, since Ker f2 ∩ Ker f3 is trivial, this morphism is an isomorphism.
Then the assertion is immediate.

Lemma 4.14. The composite

D≤2
X(r+1){2,3} ↪→ Π≤2

X(r+1)

via plog
X(r)

:3

� Π≤2
X(r)

coincides with the composite

D≤2
X(r+1){2,3}

via plog
X(r)

:3

� ΠX(r) � Π≤2
X(r)

.

In particular, the morphism

D≤2
X(r+1){2,3}

∼−→ D≤1
X(r+1){2,3} −→ Π≤1

X(r+1)
×

Π≤1
X(r)

Π≤2
X(r)

∼←− Π≤2
X(r+1)

(cf. Lemmas 4.5, (ii); 4.12, (i)) determined by the natural inclusion D≤1
X(r+1){2,3}

↪→ Π≤1
X(r+1)

and the composite D≤1
X(r+1){2,3}

via plog
X(r)

:3

� ΠX(r) � Π≤2
X(r)

coincides

with the natural inclusion D≤2
X(r+1){2,3} ↪→ Π≤2

X(r+1)
.
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Proof. This follows immediately from Lemma 4.5, (ii).

Lemma 4.15 (cf. [16], Proposition 3.4, (ii)). Let 1 ≤ i < j ≤ r+1 and
b ≥ 2 be integers. Then any two liftings of the natural inclusion D≤b

X(r+1){i,j} ↪→
ΠLie≤b

X(r+1)
to inclusions D≤b

X(r+1){i,j} ↪→ ΠLie≤b+1
X(r+1)

differ by conjugation in ΠLie≤b+1
X(r+1)

by a unique element of the kernel of the surjection ΠLie≤b+1
X(r+1)

� ΠLie≤b
X(r+1)

.

Proof. By Lemma 4.5, (ii), it is enough to show that

Hi(D≤b
X(r+1){i,j}, Lininer

X(r)
(b + 1/b + 2)) = 0

for i = 0, 1. Since the action of DΔ≤b
X(r+1){i,j} on Lininer

X(r)
(b + 1/b + 2) is trivial, it

thus suffices to observe (by considering the Hochschild-Serre spectral sequence
associated to the surjection D≤b

X(r+1){i,j} � GK) that the action of FrK on

Lininer
X(r)

(b + 1/b + 2) is “of weight b + 1 ≥ 3”, while the action of FrK on

(DΔ≤b
X(r+1){i,j})

ab is “of weight ≤ 2” (cf. Proposition 4.2, (i)). This completes
the proof of the assertion.

Lemma 4.16. Let

α(r) : ΠX(r)

∼−→ ΠY(r)

be a Frobenius-preserving and order-preserving isomorphism which is either
tripod-preserving or the following condition (∗) holds :

(∗): There exist

(i) a set S = {x1, · · · , xr} (respectively, T
def= {y1, · · · , yr}) of distinct

K-rational (respectively, L-rational) points of X (respectively, Y )
of cardinality r with an ordering such that if a section sS : GK →
ΠX(r) of the natural morphism ΠX(r) → GK corresponds to the
K-rational point (x1, · · · , xr) ∈ UX(r)(K), then the section tT :
GL → ΠY(r) of the natural morphism ΠY(r) → GL correspond-
ing to sS (under the isomorphism α(r)) coincides with the sec-
tion arising from the L-rational point (y1, · · · , yr) ∈ UY(r)(L) (cf.
Proposition 2.5, (ii)), and

(ii) an isomorphism αS,T : ΠUS

∼→ ΠVT
of the geometrically pro-l

fundamental group ΠUS
of US

def= X\S with the geometrically pro-l
fundamental group ΠVT

of VT
def= Y \T such that the isomorphism

ΠX
∼→ ΠY induced by αS,T coincides with the isomorphism α(1) :

ΠX
∼→ ΠY induced by α(r).
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Then there exists a unique isomorphism

α(r+1) : ΠX(r+1)

∼−→ ΠY(r+1)

well-defined up to composition with a Ker (ΠY(r+1) � ΠY(r+1){1,2})-inner
automorphism such that, for i = 1, · · · , r +1, the following diagram commutes :

ΠX(r+1)

α(r+1)−−−−→ ΠY(r+1)

via pUX(r)
:i

⏐⏐� ⏐⏐�via pUY(r)
:i

ΠX(r) −−−−→α(r)
ΠY(r) .

Proof. If α(r) is tripod-preserving (respectively, satisfies the condition
(∗)), then we assume that the section s0 satisfies the condition (†P) (respectively,
(†S)). Then since α(r) is Frobenius-preserving, it follows immediately from the
naturality of our construction that α(r) induces, for each positive integer b,
isomorphisms

αLie≤b
(r+1) : ΠLie≤b

X(r+1)

∼−→ ΠLie≤b
Y(r+1)

; αLie≤b
(r) : ΠLie≤b

X(r)

∼−→ ΠLie≤b
Y(r)

that fit into the following commutative diagrams:

ΠLie
X(r+1)

−−−−→ ΠLie≤b+1
X(r+1)

−−−−→ ΠLie≤b
X(r+1)

αLie
(r+1)

⏐⏐� ⏐⏐�α
Lie≤b+1
(r+1)

⏐⏐�α
Lie≤b
(r+1)

ΠLie
Y(r+1)

−−−−→ ΠLie≤b+1
Y(r+1)

−−−−→ ΠLie≤b
Y(r+1)

ΠX(r)

IntΠX(r)−−−−−→ ΠLie
X(r)

−−−−→ ΠLie≤b+1
X(r)

−−−−→ ΠLie≤b
X(r)

α(r)

⏐⏐� αLie
(r)

⏐⏐� ⏐⏐�αLie≤b+1
(r)

⏐⏐�αLie≤b
(r)

ΠY(r) −−−−→
IntΠY(r)

ΠLie
Y(r)

−−−−→ ΠLie≤b+1
Y(r)

−−−−→ ΠLie≤b
Y(r)

ΠLie≤b
X(r+1)

via pUX(r)
:3

−−−−−−−−→ ΠLie≤b
X(r)

αLie≤b
(r+1)

⏐⏐� ⏐⏐�αLie≤b
(r)

ΠLie≤b
Y(r+1)

−−−−−−−→
via pUY(r)

:3
ΠLie≤b

Y(r)

(cf. Lemma 4.7).
Moreover, since αLie≤b

(r+1) is compatible with the Frobenius elements on ei-
ther side, (by the assumption on the section s0 fixed in the discussion preceding
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Proposition 4.2) αLie≤b
(r+1) maps I≤b

X(r+1){1,2} bijectively onto I≤b
Y(r+1){1,2}. In par-

ticular, αLie≤b
(r+1) maps

I≤b
X(r+1){1,2} � GK (⊆ ΠLie≤b

X(r+1)
)

bijectively onto
I≤b

Y(r+1){1,2} � GL (⊆ ΠLie≤b
Y(r+1)

)

[where we note that, by the assumption on the section s0, I≤b
X(r+1){1,2} (re-

spectively, I≤b
Y(r+1){1,2}) is stable under the action of GK (respectively, GL) on

ΠLie≤b
X(r+1)

(respectively, ΠLie≤b
Y(r+1)

)].
On the other hand, if α(r+1) is tripod-preserving (respectively, satisfies

the condition (∗)), then it follows from Lemma 4.8 (respectively, Lemma 4.9),
αLie≤b

(r+1) maps DP≤b
X(r+1){2,3} (respectively, DS≤b

X(r+1){2,3}) bijectively onto a ΠY(r+1)-

conjugate of DP≤b
Y(r+1){2,3} (respectively, DT≤b

Y(r+1){2,3}) [cf. the notation of Lemma
4.8 (respectively, Lemma 4.9)], where for “(−)”= P, S, or T , and “(−′)”= X

or Y , D
(−)≤b
(−′)(r+1){2,3} is the image of the composite

D
(−)
(−′)(r+1){2,3} ↪→ Π(−′)(r+1)

IntΠ(−′)(r+1)−→ ΠLie
(−′)(r+1)

� ΠLie≤b
(−′)(r+1)

.

First, I claim that the isomorphism αLie≤1
(r+1) of ΠX(r+1){1,2} with

ΠY(r+1){1,2} (cf. Lemma 4.5, (i)) induces a bijection between the set of

ΠX(r+1){1,2}-conjugates of D≤1
X(r+1){1,2} (respectively, D≤1

X(r+1){2,3}) and the set of

ΠY(r+1){1,2}-conjugates of D≤1
Y(r+1){1,2} (respectively, D≤1

Y(r+1){2,3}). Indeed, this
follows from Lemma 4.11 (respectively, a similar argument to the argument
used in the proof of Proposition 2.5, (iii)).

Next, I claim that the isomorphism αLie≤2
(r+1) induces a bijection between

the set of Π≤2
X(r+1)

-conjugates of D≤2
X(r+1){1,2} (respectively, D≤2

X(r+1){2,3}) and

the set of Π≤2
Y(r+1)

-conjugates of D≤2
Y(r+1){1,2} (respectively, D≤2

Y(r+1){2,3}). Indeed,
this follows from the claim just verified above, together with Lemma 4.12, (ii)
(respectively, Lemma 4.12, (ii), together with Lemma 4.14).

Next, I claim that the isomorphism αLie≤b
(r+1) induces a bijection between

the set of Π≤b
X(r+1)

-conjugates of D≤b
X(r+1){1,2} (respectively, D≤b

X(r+1){2,3}) and

the set of Π≤b
Y(r+1)

-conjugates of D≤b
Y(r+1){1,2} (respectively, D≤b

Y(r+1){2,3}) for each
positive integer b. To verify this claim, we apply induction on b. The case
where b = 1 or 2 is verified above. Thus, we assume that b ≥ 2, and that
the claim has been verified for “b” that are ≤ the b under consideration. Now
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observe that it follows from Lemma 4.15 that any two liftings of the natu-
ral inclusion D≤b

X(r+1){1,2} ↪→ ΠLie≤b
X(r+1)

(respectively, D≤b
X(r+1){2,3} ↪→ ΠLie≤b

X(r+1)
)

to inclusions D≤b
X(r+1){1,2} ↪→ ΠLie≤b+1

X(r+1)
(respectively, D≤b

X(r+1){2,3} ↪→ ΠLie≤b+1
X(r+1)

)

differ by conjugation in ΠLie≤b+1
X(r+1)

by a unique element of the kernel of the

surjection ΠLie≤b+1
X(r+1)

� ΠLie≤b
X(r+1)

; moreover, it follows from the definition that

the kernel of the surjection ΠLie≤b+1
X(r+1)

� ΠLie≤b
X(r+1)

is included in the center of

ΔLie≤b+1
X(r+1)

. Therefore, the restriction to DΔ≤b
X(r+1){1,2} (respectively, DΔ≤b

X(r+1){2,3})

of any lifting of the natural inclusion D≤b
X(r+1){1,2} ↪→ ΠLie≤b

X(r+1)
(respectively,

D≤b
X(r+1){2,3} ↪→ ΠLie≤b

X(r+1)
) to an inclusion D≤b

X(r+1){1,2} ↪→ ΠLie≤b+1
X(r+1)

(respectively,

D≤b
X(r+1){2,3} ↪→ ΠLie≤b+1

X(r+1)
) coincides with the natural inclusion DΔ≤b+1

X(r+1){1,2} ↪→
ΠLie≤b+1

X(r+1)
(respectively, DΔ≤b+1

X(r+1){2,3} ↪→ ΠLie≤b+1
X(r+1)

). Thus, it follows that the iso-

morphism αLie≤b+1
(r+1) induces a bijection between the set of Δ≤b+1

X(r+1)
-conjugates

of DΔ≤b+1
X(r+1){1,2} (respectively, DΔ≤b+1

X(r+1){2,3}) and the set of Δ≤b+1
Y(r+1)

-conjugates of

DΔ≤b+1
Y(r+1){1,2} (respectively, DΔ≤b+1

Y(r+1){2,3}); in particular, since αLie≤b+1
(r+1) is compat-

ible with the Frobenius elements on either side, it follows from Lemma 4.4 that
the isomorphism αLie≤b+1

(r+1) maps Π≤b+1
X(r+1)

bijectively onto Π≤b+1
Y(r+1)

. Moreover, ob-

serve that the subgroup D≤b+1
X(r+1){1,2} ⊆ ΠLie≤b

X(r+1)
is a subgroup which is uniquely

determined by the following condition that it be a

the image of a lifting of the natural inclusion D≤b
X(r+1){1,2} ↪→ ΠLie≤b

X(r+1)

to an inclusion D≤b
X(r+1){1,2} ↪→ ΠLie≤b+1

X(r+1)
whose image includes

I≤b+1
X(r+1){1,2} � GK .

(Indeed, the assertion that this condition uniquely determines the subgroup
D≤b+1

X(r+1){1,2} ⊆ ΠLie≤b+1
X(r+1)

may be verified follows: First, let us observe that the

isomorphism D≤b+1
X(r+1){1,2}

∼→ D≤b
X(r+1){1,2} induced by the natural projection

ΠLie≤b+1
X(r+1)

� ΠLie≤b
X(r+1)

[cf. Lemma 4.5, (ii)] induces an isomorphism I≤b+1
X(r+1){1,2}�

GK
∼→ I≤b

X(r+1){1,2} � GK . Thus, any two liftings of the natural inclusion

D≤b
X(r){1,2} ↪→ ΠLie≤b

X(r+1)
to inclusions D≤b

X(r){1,2} ↪→ ΠLie≤b+1
X(r+1)

whose images in-
clude

I≤b+1
X(r+1){1,2} � GK ⊆ ΠLie≤b+1

X(r+1)

[since b ≥ 2] in fact coincide on I≤b
X(r+1){1,2} � GK ⊆ ΠLie≤b

X(r+1)
. Therefore, by

Lemma 4.15, it is enough to verify that the submodule of FrK-invariants of



Absolute Anabelian Cuspidalizations 737

Ker (ΠLie≤b+1
X(r+1)

� ΠLie≤b
X(r+1)

) = Lininer
X(r+1)

(b + 1/b + 2)

[cf. Lemma 4.5, (ii)] is zero. However, this follows immediately from Propo-
sition 4.2, (i).) Now by considering a similar condition for D≤b

Y(r+1){1,2} ⊆
ΠLie≤b+1

Y(r+1)
, the claim that the isomorphism αLie≤b+1

(r+1) induces a bijection be-

tween the set of Π≤b+1
X(r+1)

-conjugates of D≤b+1
X(r+1){1,2} and the set of Π≤b+1

Y(r+1)
-

conjugates of D≤b+1
Y(r+1){1,2} follows from the fact that the isomorphism αLie≤b+1

(r+1)

maps I≤b+1
X(r+1){1,2}�GK bijectively onto I≤b+1

Y(r+1){1,2}�GL, together with the fact

that the isomorphism αLie≤b+1
(r+1) maps Π≤b+1

X(r+1)
bijectively onto Π≤b+1

Y(r+1)
. On the

other hand, by replacing {1, 2} by {2, 3}, I≤b+1
X(r+1){1,2} � GK by{

DP≤b+1
X(r+1){2,3} (if α(r) is tripod−preserving)

DS≤b+1
X(r+1){2,3} (if α(r) satisfies (∗)) ,

and I≤b+1
Y(r+1){1,2} � GL by{

DP≤b+1
Y(r+1){2,3} (if α(r) is tripod−preserving)

DT≤b+1
Y(r+1){2,3} (if α(r) satisfies (∗)) ,

it follows from a similar argument to the argument used in the proof of the
assertion that the isomorphism αLie≤b+1

(r+1) induces a bijection between the set of

Π≤b+1
X(r+1)

-conjugates of D≤b+1
X(r+1){1,2} and the set of Π≤b+1

Y(r+1)
-conjugates of

D≤b+1
Y(r+1){1,2} that the isomorphism αLie≤b+1

(r+1) induces a bijection between the

set of Π≤b+1
X(r+1)

-conjugates of D≤b+1
X(r+1){2,3} and the set of Π≤b+1

Y(r+1)
-conjugates of

D≤b+1
Y(r+1){2,3}.

By the various claims verified above, by taking the projective limit, we
thus conclude that the isomorphism αLie

(r+1) induces an isomorphism of ΠX(r+1)

with ΠY(r+1) by Lemma 4.4.
Finally, we note that the indeterminacy, referred to in the statement of

Lemma 4.16, of the isomorphism α(r+1) up to composition with a cuspidally
inner automorphism arises precisely from the indeterminacy of the choice of the
subgroups IX(r+1){i,j} ⊆ ΠX(r+1) , IY(r+1){i′,j′} ⊆ ΠY(r+1) (1 ≤ i < j ≤ r + 1, 1 ≤
i′ < j′ ≤ r + 1) and the sections of the natural morphisms ΠX(r+1) → GK and
ΠY(r+1) → GL (cf. Remark 8) with respect to cuspidally inner automorphisms
of ΠX(r+1) , ΠY(r+1) , respectively.

Lemma 4.17. Any Frobenius-preserving isomorphisms of ΠX with ΠY

are tripod-preserving.
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Proof. Let α be a Frobenius-preserving isomorphism of ΠX with ΠY .
Note that since replacing the base field by a finite extension field of the base
field does not affect the validity of the assertion that α is tripod-preserving, we
may assume that there exists a K-rational point x of X, and a non-trivial finite
étale Galois covering which is geometrically pro-l and completely split above x.

Then it follows from [16], Theorem 3.1, that there exists an isomorphism
α(2) of ΠX(2) with ΠY(2) which fits into a commutative diagram

ΠX(2)

α(2)−−−−→ ΠY(2)⏐⏐� ⏐⏐�
ΠX(2)

α×GK
α−−−−−→ ΠY(2)

via pr1

⏐⏐� ⏐⏐�via pr1

ΠX −−−−→
α

ΠY ,

where the left-hand (respectively, right-hand) top vertical arrow is the mor-
phism induced by the natural open immersion UX(2) ↪→ X ×K X (respec-
tively, UY(2) ↪→ Y ×L Y ). By base-changing the above diagram via the section
GK → ΠX arising from the K-rational point x of X and the section of the
natural morphism ΠY → GL corresponding to the section GK → ΠX (under
the isomorphism α), we obtain a commutative diagram

ΠX\{x}
α◦−−−−→ ΠY \{y}⏐⏐� ⏐⏐�

ΠX
α−−−−→ ΠY⏐⏐� ⏐⏐�

GK −−−−→
α(0)

GL ,

where y is an L-rational point of Y such that the section arising from y coincides
with the section of the natural morphism ΠY → GL corresponding to the
section GK → ΠX arising from the K-rational point x of X (cf. Proposition 2.5,
(ii)). Let X ′ → X be a non-trivial Galois covering of X which is geometrically
pro-l and completely split above x, and Y ′ → Y the Galois covering over Y

corresponding to X ′ → X (under the isomorphism α). Then by base-changing
the above diagram via the natural inclusions ΠX′ ↪→ ΠX and ΠY ′ ↪→ ΠY , we
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obtain a commutative diagram

ΠX′\{x′
1,··· ,x′

d}
α′

◦′−−−−→ ΠY ′\{y′
1,··· ,y′

d}⏐⏐� ⏐⏐�
ΠX′ −−−−→

α′
ΠY ′ ,

where d is the degree of the covering X ′ → X, and {x′1, · · · , x′d} (respec-
tively, {y′1, · · · , y′d}) is the subset of X ′(K) (respectively, Y ′(L)) obtained as
the inverse image of {x} (respectively, {y}) via the morphism X ′(K)→ X(K)
(respectively, Y ′(L)→ Y (L)); in particular, we obtain a commutative diagram:

ΠX′\{x′
1,x′

2}
α′

◦−−−−→ ΠY ′\{y′
1,y′

2}⏐⏐� ⏐⏐�
ΠX′ −−−−→

α′
ΠY ′ .

Now we assume that the decomposition subgroup Dx′
i
⊆ ΠX′\{x′

1,x′
2} associated

to x′i (well-defined, up to conjugate) corresponds to the decomposition subgroup
Dy′

i
⊆ ΠY ′\{y′

1,y′
2} associated to y′i (well-defined, up to conjugate) under the

isomorphism α′◦.
Now I claim that the section of the natural morphism ΠX′

(2)
→ GK arising

from (x′1, x′2) ∈ UX′
(2)

(K) corresponds to the section of the natural morphism
ΠY ′

(2)
→ GL arising from (y′1, y

′
2) ∈ UY ′

(2)
(L) under the isomorphism α′(2) of

ΠX′
(2)

with ΠY ′
(2)

obtained from α′ (cf. [16], Theorem 3.1). Indeed, it follows
from Proposition 4.6 that we may assume that the top horizontal arrow in the
diagram

ΠX′
(2)
×ΠX′ GK −−−−→ ΠY ′

(2)
×ΠY ′ GL⏐⏐� ⏐⏐�

GK −−−−→ GL

obtained by base-changing the diagram

ΠX′
(2)

α′
(2)−−−−→ ΠY ′

(2)

via pU
X′

(1):1

⏐⏐� ⏐⏐�via pU
Y ′
(1):1

ΠX′ −−−−→
α′

ΠY ′

via the morphism GK → ΠX′ induced by the composite Dx′
1

↪→ ΠX′\{x′
1,x′

2} �
ΠX′ and the morphism GL → ΠY ′ induced by the composite Dy′

1
↪→ ΠY ′\{y′

1,y′
2}
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� ΠY ′ coincides with the isomorphism of ΠX′\{x′
1} with ΠY ′\{y′

1} induced
by α′◦. Thus, the claim follows from the fact that the composite Dx′

2
↪→

ΠX′\{x′
1,x′

2} � ΠX′\{x′
1} is compatible with the composite Dy′

2
↪→ ΠY ′\{y′

1,y′
2}�

ΠY ′\{y′
1} under the isomorphism of ΠX′\{x′

1} with ΠY ′\{y′
1} induced by α′◦.

By the above claim just verified, the isomorphism α′(2) satisfies the condi-
tion (∗) in the statement of Lemma 4.16; in particular, it follows from
Lemma 4.16 that α′(2) extends to an isomorphism of ΠX′

(3)
with ΠY ′

(3)
. Thus,

it follows from Lemma 3.1 that α′, hence also α is tripod-preserving (cf. [16],
Remark 1).

The main result of this paper is as follows:

Theorem 4.1. Let X (respectively, Y ) be a proper hyperbolic curve over
a finite field K (respectively, L). Let

α(1) : ΠX
∼−→ ΠY

be a Frobenius-preserving isomorphism. Then, for any positive integer r, there
exists a unique isomorphism

α(r) : ΠX(r)

∼−→ ΠY(r) ,

well-defined up to composition with a cuspidally inner automorphism (i.e., a
Ker (ΠY(r) � ΠY(r))-inner automorphism), which is compatible with the natu-
ral respective actions of the symmetric group on r letters such that, for i =
1, · · · , r + 1, the following diagram commutes up to composition with a cuspi-
dally inner automorphism (i.e., a Ker (ΠY(r) � ΠY(r))-inner automorphism):

ΠX(r+1)

α(r+1)−−−−→ ΠY(r+1)

via pUX(r)
:i

⏐⏐� ⏐⏐�via pUY(r)
:i

ΠX(r) −−−−→α(r)
ΠY(r) .

Proof. The assertion in the case where r = 2 follows from [16], Theorem
3.1; on the other hand, the assertion in the case where r ≥ 3 follows from
induction on r, together with Proposition 4.6; Lemmas 4.16; 4.17.

The following corollary follows immediately from Theorem 4.1, together
with the fact that a hyperbolic curve over a finite field is Prime-separated (cf.
[16], Definition 1.5, (i); Proposition 2.2, (ii)).
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Corollary 4.1. Let X (respectively, Y ) be a proper hyperbolic curve
over a finite field K (respectively, L).

(i) Let
α : ΠX

∼−→ ΠY

be a Frobenius-preserving isomorphism of the geometrically pro-l funda-
mental group of X with the geometrically pro-l fundamental group of Y , r

a positive integer, and {x1, · · · , xr} a set of distinct K-rational points of
X of cardinality r with an ordering. Then there exists a set {y1, · · · , yr}
of distinct L-rational points of Y of cardinality r with an ordering, and an
isomorphism

αnew : ΠX\{x1,··· ,xr}
∼−→ ΠY \{y1,··· ,yr}

of the geometrically pro-l fundamental group of X \ {x1, · · · , xr} with the
geometrically pro-l fundamental group of Y \ {y1, · · · , yr} which is com-
patible with α. Moreover, such an isomorphism αnew is uniquely deter-
mined up to composition with a cuspidally inner automorphism (i.e., a
Ker(ΠY \{y1,··· ,yr} � ΠY )-inner automorphism).

(ii) Let
α : π1(X) ∼−→ π1(Y )

be a Frobenius-preserving isomorphism of the (profinite) fundamental group
of X with the (profinite) fundamental group of Y , r a positive integer,
and {x1, · · · , xr} a set of distinct K-rational points of X of cardinality r.
Then there exists a set {y1, · · · , yr} of distinct L-rational points of Y of
cardinality r, and an isomorphism

αcp(l) : π1(X \ {x1, · · · , xr})cp(l) ∼−→ π1(Y \ {y1, · · · , yr})cp(l)

of the maximal cuspidally pro-l quotient (cf. [16], Definition 1.1, (i)) of
π1(X \ {x1, · · · , xr}) (relative to π1(X \ {x1, · · · , xr}) � π1(X)) with
the maximal cuspidally pro-l quotient of π1(Y \ {y1, · · · , yr}) (relative to
π1(Y \ {y1, · · · , yr}) � π1(Y )) which is compatible with α. Moreover, such
an isomorphism αcp(l) is uniquely determined up to composition with a cus-
pidally inner automorphism (i.e., a Ker(π1(Y \{y1, · · · , yr})cp(l) � π1(Y ))-
inner automorphism).

Remark 9.

(i) Since a hyperbolic curve over a finite field is not l-separated (cf. [16],
Definition 1.5, (i)) in general (cf. Remark 10, (i) below), the “yi’s” (hence
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also “αnew”) in the statement of Corollary 4.1, (i), depend, unlike the case
with Corollary 4.1, (ii), on the ordering of {x1, · · · , xr}.

(ii) In the notation of Corollary 4.1, (ii), since it follows from [16], Theorem
3.2, that there exists a unique isomorphism (of schemes) of φ : X

∼→ Y such
that the isomorphism π1(X) ∼→ π1(Y ) induced on fundamental groups by
φ coincides with α, it follows immediately that there exists an isomorphism
π1(X \ {x1, · · · , xr}) ∼→ π1(Y \ {y1, · · · , yr}) which is compatible with α.
On the other hand, Corollary 4.1, (ii), provides a direct way to construct
such an isomorphism between the cuspidally pro-l fundamental groups, i.e.,
a way to construct such an isomorphism without passing through “the world
of schemes”.

Remark 10.

(i) In general, a hyperbolic curve over a finite field is not l-separated. The
following example of this phenomenon was given by Akio Tamagawa:

Let X be a proper hyperbolic curve over a finite field K of characteristic p,
and K an algebraic closure of K. Let us denote by ΠX the geometrically
pro-l fundamental group of X (where l is a prime number such that l �= p),
by ΔX the pro-l fundamental group of X ⊗K K, and by GK the Galois
group of K over K. Then we have a commutative diagram

1 −−−−→ ΔX −−−−→ ΠX −−−−→ GK −−−−→ 1

�
⏐⏐� ⏐⏐� ⏐⏐�

1 −−−−→ Inn(ΔX) −−−−→ Aut(ΔX) −−−−→ Out(ΔX) −−−−→ 1 ,

where the horizontal sequences are exact, and the left-hand vertical arrow
is an isomorphism; in particular, the right-hand square is cartesian. It
follows from [1], Corollary 7, that Out(ΔX) is almost pro-l, i.e., there
exists an open subgroup of Out(ΔX) which is pro-l (where we refer to the
discussion entitled “Groups” in Introduction concerning the topology of
“Out(−)”). Thus, by replacing GK by an open subgroup of GK , assume
that the right-hand vertical arrow GK → Out(ΔX) in the above diagram
factors through a pro-l quotient of GK . Then since the right-hand square
is cartesian, we conclude that ΠX is isomorphic to

(ΔX

out
� G

(l)
K )×G

( �=l)
K ,

where G
( �=l)
K is the maximal pro-(Prime \ {l}) quotient of GK ; thus, G

( �=l)
K

is isomorphic to the product of Zl′ ’s (where l′ ∈ Prime \ {l}). Let L ⊆ K
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be a finite extension field of K of degree [L : K] prime to l such that
X(K) �= X(L). (In fact, it follows from the “Weil conjecture for curves
over finite fields” [cf. e.g., [5], Chapter V, Exercise 1.10] that such an
extension field exists.) Let x ∈ X(L) \ X(K), x′ ∈ X(L) obtained as
the conjugate of x via a generator of the Galois group of the extension
L/K, and xL ∈ XL(L) (respectively, x′L ∈ XL(L)) the L-rational point

of XL
def= X ⊗K L determined by x (respectively, x′). Then it follows

from the fact x /∈ X(K) that xL �= x′L; on the other hand, it follows from

the fact that ΠX is isomorphic to (ΔX

out
� G

(l)
K ) × G

( �=l)
K that the ΠXL

-
conjugacy class (where ΠXL

is the geometrically pro-l fundamental group
of XL) of the section of ΠXL

→ GL corresponding to xL coincides with
the ΠXL

-conjugacy class of the section of ΠXL
→ GL corresponding to x′L.

Therefore, XL is not l-separated.

(ii) It follows immediately from the existence of the isomorphism ΠX  (ΔX

out
�

G
(l)
K )×G

( �=l)
K in (i) that there exists an automorphisms of the geometrically

pro-l fundamental group ΠX of a proper hyperbolic curve X which is not
Frobenius-preserving.
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