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A Fixed Point Theorem and Equivariant Points
for Set-valued Mappings
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Yoshimi Shitanda∗

Abstract

We give a proof of a coincidence theorem for a Vietoris mapping and a compact
mapping and prove the Lefschetz fixed point theorem for the class of admissible
mappings which contains upper semi-continuous acyclic mappings. When a source
space is a paracompact Hausdorff space with a free involution and a target space is a
closed topological manifold with an involution, the existence of equivariant points is
proved for the class of admissible mappings under some conditions. When a source
space is a Poincaré space with a finite covering dimension, the covering dimension of
the set of equivariant points is determined.

§1. Introduction

S. Eilenberg and D. Montgomery [1] gave the Lefschetz fixed point formula
for acyclic mappings which is a generalization of the classical Lefschetz fixed
point theorem. L. Górniewicz [7] studied set-valued mappings, a coincidence
theorem for ANR spaces and the Lefschetz fixed point theorem for admissi-
ble mappings. M. Nakaoka studied the Lefschetz fixed point theorem by the
cohomological method in [12] and equivariant point theorems [14, 16] and the
Borsuk-Ulam theorem between manifolds in [13, 16]. In this paper, the au-
thor shall give a proof of a coincidence theorem for a Vietoris mapping and
a compact mapping (cf. Definition 3.2) and prove the Lefschetz fixed point
theorem for the class of admissible mappings (cf. Definition 3.5). We shall
generalize many results of M. Nakaoka [16] to set-valued mappings between a
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paracompact Hausdorff space with a free involution and a closed manifold with
an involution.

In general, when a non-empty closed set ϕ(x) in a topological space Y is
assigned for every point x in a topological space X, we say that the correspon-
dence is a set-valued mapping and write ϕ : X → Y by the Greek alphabet.
For single-valued mapping, we write f : X → Y etc. by the Roman alphabet.
A set-valued mapping is studied particularly in Chapter 2 in [7]. In this paper
we assume that any set-valued mapping is upper semi-continuous.

In the section 2, we shall discuss various cohomology theories and state
some results for our applications. We shall mainly use the Alexander-Spanier
cohomology theory H̄∗(−;F) with coefficient in a field F instead of the singular
cohomology theory H∗(−;F).

In the section 3, we shall prove a fixed point theorem for set-valued map-
pings. For the purpose, we shall prove the following theorem (cf. Theorem 3.9)
which is our main theorem whose proof is different from L. Górniewicz [6, 7].

Main Theorem 1. Let X be an ANR space and Y a paracompact Haus-
dorff space. Let p : Y → X be a Vietoris mapping and q : Y → X a compact
mapping. Then (p∗)−1q∗ is a Leray endomorphism. If the Lefschetz num-
ber L((p∗)−1q∗) is not zero, there exists a coincidence point z ∈ Y , that is,
p(z) = q(z).

For an admissible mapping ϕ : X → Y , we define ϕ∗ : H̄∗(Y ;F) →
H̄∗(X;F) by the set {(p∗)−1q∗} where (p, q) is a selected pair of ϕ. From
the above theorem, we obtain the following Lefschetz fixed point theorem (cf.
Theorem 3.10).

Main Theorem 2. Let X be an ANR space and ϕ : X → X a compact
admissible mapping. If L(ϕ∗) contains a non-trivial element, there exists a
fixed point x0 ∈ X, that is, x0 ∈ ϕ(x0).

In the section 4, we shall prove the Steenrod isomorphism (cf. Theorem
4.1) for compact ANR spaces of finite type and the Alexander-Spanier coho-
mology theory. We also define cohomology operations Pi(−) and P (−,−) for
general spaces and deduce the naturalities with respect to mappings. We dis-
cuss the Gysin-Smith sequence for the Alexander-Spanier cohomology theory
and its properties. We shall prove a result on Poincaré spaces for our purposes
(cf. Lemma 4.4). Poincaré space is a connected metric space satisfying the
Poincaré duality.

We define the equivariant fundamental cohomology class ÛM ∈ H̄m(S∞×π
(M2, M2 − ΔM);F2) for a closed manifold M with an involution which is a
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connected compact manifold without boundary. For a paracompact Hausdorff
space N with a free involution T and a continuous mapping f : N → M , we
obtain a result on the set A(f) = {x ∈ N | f(T (x)) = T ′(f(x))} of equivariant
points (cf. Theorem 4.5) and evaluate the dimension of A(f) for a Poincaré
space N with a finite covering dimension (cf. Theorem 4.6).

M. Nakaoka proved some equivariant point theorems (cf. Theorem 5.3 in
[14], Theorem 7.1 etc. in [16]) between the same dimensional closed manifolds.
In the section 5, we shall generalize his results for set-valued mappings between
a Poincaré space with a finite covering dimension and a closed manifold.

The generalized Lefschetz number L(ϕ : [Nπ,α]) is defined for an admissible
mapping ϕ : N →M (cf. Definition 5.2). In general L(ϕ : [Nπ,α]) is a set. Our
main theorem is stated as follows (cf. Theorem 5.5).

Main Theorem 3. Let N be a paracompact Hausdorff space with a free
involution T and M an m-dimensional closed topological manifold with an
involution T ′ satisfying the condition (5.1). For an admissible mapping ϕ :
N → M , if L(ϕ : [Nπ,α]) contains a non-trivial element, then there exists a
point x0 ∈ N such that T ′ϕ(x0) ∩ ϕ(T (x0)) �= ∅. Moreover if N is an n-
dimensional Poincaré space and the covering dimension of N is finite, it holds
dim A(ϕ) � n−m where A(ϕ) = {x ∈ N | T ′(ϕ(x)) ∩ ϕ(T (x)) �= ∅}.

When a source space is the sphere and a target space is the Euclidean space,
the Borsuk-Ulam theorem is proved in §37, §43 of [7] and Theorem 2.6 in [4] for
admissible mappings. In the section 6, we shall generalize their Borsuk-Ulam
theorem to the case of general spaces (cf. Theorem 6.3). For a paracompact
Hausdorff space X with a free involution T , let Xπ be the orbit space of X by
the group π generated by T . The first Stiefel-Whitney class c = c(X, T ) of X

is defined by c = f∗(ω) where f : Xπ → RP∞ is the classifying mapping of the
projection p : X → Xπ and ω is the generator of H1(RP∞;F2).

Main Theorem 4. Let N be a paracompact Hausdorff space with a free
involution T and M an m-dimensional closed topological manifold. Assume
that the first Stiefel-Whitney class c(N, T ) satisfies c(N, T )m �= 0. If a set-
valued mapping ϕ : N →M is admissible and ϕ∗ contains the trivial element,
then there exists a point x0 ∈ N such that ϕ(x0) ∩ ϕ(T (x0)) �= ∅. Moreover
if N is an n-dimensional Poincaré space and the covering dimension of N is
finite, it holds dim A(ϕ) � n−m where A(ϕ) = {x ∈ N | ϕ(x)∩ϕ(T (x)) �= ∅}.

From our theorem, we can obtain the detailed results of the Borsuk-Ulam
theorem for admissible mappings in the case that a source space or a target
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space has the homology groups of the sphere (cf. Corollarys 6.4, 6.5). Moreover
we shall determine the index of A(ϕ) of an admissible mapping ϕ : N →
M in the case that N satisfies c(N, T )n �= 0 (cf. Corollary 6.6). These are
generalizations of Theorem 43.11 in L. Górniewicz [7], Theorem 3.4 in K. Gȩba
and L. Górniewicz [4].

§2. Various Cohomology Theories

To begin with, we give some remarks about several cohomology theories.
The Alexander-Spanier cohomology theory H̄∗(−; G) is isomorphic to the sin-
gular cohomology theory H∗(−; G) (cf. Theorem 6.9.1 in [17]), that is,

(2.1) μ : H̄∗(X; G) ∼= H∗(X; G)

if the singular cohomology theory satisfies the continuity:

lim−−→{U}
H∗(U ; G) = H∗(x; G)

where {U} is a system of neighborhoods of x. The remarkable feature of the
Alexander-Spanier cohomology theory is that it satisfies the continuity property
(cf. Theorem 6.6.2 in [17]).

For a paracompact Hausdorff space X, it also holds the isomorphism be-
tween the Čech cohomology theory Ȟ∗(−; G) with coefficient in a constant
sheaf and the Alexander-Spanier cohomology theory H̄∗(−; G) (cf. Theorem
6.8.8 in [17]), that is,

(2.2) Ȟ∗(X; G) ∼= H̄∗(X; G).

If a normal space X satisfies the property of neighborhood retract for any
normal space Z which contains X as a closed subset, it is called an ANR space.
An ANR metric space is an r-image of some open set of a normed space (cf.
Proposition 1.8 in [7]). For an ANR metric space X, these three cohomology
groups are isomorphic to each other by Theorem 6.1.10 of [17]. In this paper,
we assume that ANR space is a metric space. Hereafter we assume that any
(co)homology theory is a (co)homology theory with coefficient in a field F.

For a covering U of X, the simplicial complex K(U) is defined in §1 of
Chapter 3 in [17] and is called the nerve of U . The simplicial complex X(U) is
defined in §5 of Chapter 6 in [17] and is called the Vietoris simplicial complex
of U . They are chain equivalent each other (cf. Exercises D of Chapter 6 in
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[17]). Clearly by the definition of the Alexander-Spanier cohomology theory,
we have the isomorphism:

(2.3) lim−−→{U}
H∗(C∗(X(U);F)) ∼= H̄∗(X;F).

We have the cross products τ̄ : H̄∗(X, A;F)⊗ H̄∗(Y, B;F)→ H̄∗((X, A)×
(Y, B);F) and τ : H∗(X, A;F)⊗H∗(Y, B;F)→ H∗((X, A)×(Y, B);F) and the
natural transformation μ : H̄(−;F) → H∗(−;F). They satisfy the following
commutativity:

(2.4)

H̄∗(X, A;F)⊗ H̄∗(Y, B;F) τ̄−−−−→ H̄∗((X, A;F)× (Y, B);F)⏐⏐�μ⊗μ ⏐⏐�μ
H∗(X, A;F)⊗H∗(Y, B;F) τ−−−−→ H∗((X, A)× (Y, B);F).

For the detail see §5, §9 and Exercise E of Chapter 6 in [17]. If X and Y are
ANR spaces and H∗(X, A;F) or H∗(Y, B;F) is finite type, we can easily obtain
the Künneth theorem for the Alexander-Spanier cohomology theory. Under the
same condition, we can find a cofinal covering system {U×V} of X×Y such that
H̄∗(X × Y ;F) ∼= lim→ H̄∗(X(U)×Y (V);F) where U and V are open coverings
of X and Y respectively. This is easily proved by the above consideration.

The Čech homology theory Ȟ∗(−;F) (cf. [2]) and the Alexander-Spanier
homology theory H̄∗(X;F) are defined by

(2.5) lim←−−{U}
H∗(C∗(K(U);F)), lim←−−{U}

H∗(C∗(X(U);F))

respectively. They are isomorphic to each other (cf. Exercise D in Chapter 6
in [17]). The following theorem is well-known (cf. Theorem 1 in [10]).

Theorem 2.1. Let X be a ANR space. Then it holds the isomorphism:

(2.6) Ȟ∗(X;F) ∼= H∗(X;F).

Since the Alexander-Spanier homology theory coincides with the singular
homology theory for ANR space, it holds the following isomorphism:

(2.7) H̄∗(X;F) = Hom(H̄∗(X;F),F)

by the universal coefficient theorem of the singular homology theory.
We can obtain the universal coefficient theorem for the Alexander-Spanier

(co)homology theory.
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Lemma 2.2. Let X be a compact Hausdorff space. Then it holds the
isomorphism:

H̄∗(X;F) ∼= Hom(H̄∗(X;F),F).

Proof. Since there exists a cofinal family {U} of finitely many open sets
for a compact set X, we have the universal coefficient theorem:

H̄∗(X;F)∼= lim←−U
H∗(C∗(K(U);F))

∼= lim←−U
Hom(H∗(C∗(K(U);F),F))

∼= Hom(lim−→U
H∗(C∗(K(U);F),F))

∼= Hom(H̄∗(X;F),F).

Here the second isomorphism is obtained by the universal coefficient the-
orem for chain complexes of finite type. The third isomorphism is given by
the isomorphism: lim←−α Hom(Fα,F) ∼= Hom(lim−→α Fα,F) for F-vector spaces
Fα.

For open coverings Uβ, Uα of X, the notation Uβ < Uα means that Uβ is
finer than Uα.

Lemma 2.3. Let X be a compact ANR space of finite type H̄∗(X;F).
Then there exist finitely many open coverings Uα and Uβ of X such that Uβ <

Uα and it holds :

H̄∗(X;F) ∼= image of {H∗(K(Uβ);F)→ H∗(K(Uα);F)}.

Proof. Set V = H̄∗(X;F) and Vα = H∗(K(Uα);F). Define V ′α and K ′α by
the image of V → Vα and the kernel of V → Vα respectively. Set Lα = Vα/V ′α.
There exist exact sequences:

0→ {K ′α} → {V } → {V ′α} → 0, 0→ {V ′α} → {Vα} → {Lα} → 0.

And we obtain the following exact sequences:

0→ lim← K ′α → V → lim← V ′α → · · · , 0→ lim← V ′α → lim← Vα → lim← Lα → · · · .

Since it holds V = lim← Vα by the definition of the Alexander-Spanier
homology theory, we have V = lim← V ′α and lim←K ′α = 0. From this, there
exists Uβ for each Uα such that K ′β = 0 and Uβ < Uα. Therefore we may
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consider the cofinal system {V → Vα} of mono-morphisms. Here note that
H̄∗(X;F) is finite type. By making use of Lebesgue’s covering theorem, we may
assume that {Vα} is a countable linear ordered system. From the exact sequence
0 → {V } → {Vα} → {Mα} → 0 and V = lim← Vα, we have lim←Mα = 0.
Therefore we easily see that there exists a refinement Uβ for each Uα such that
V is isomorphic to the image of iαβ : Vβ → Vα.

§3. A Coincidence Theorem

We shall give a proof of a coincidence theorem in this section. Our proof
is different from the one of L. Górniewicz [6, 7] and depends on the line of M.
Nakaoka [12]. In this paper, we work in the category of paracompact Hausdorff
spaces and continuous mappings.

Let U be an open set in the n-dimensional Euclidean space Rn and K a
compact subset of U . We have the following diagram:

(3.1)

(U, U −K)
jz−−−−→ (U, U −K)×K⏐⏐�i ⏐⏐�i

(Rn,Rn − z)
jz−−−−→ (Rn ×Rn,Rn ×Rn −Δn)⏐⏐�t ⏐⏐�φ

(Rn,Rn − 0) d0←−−−− (Rn,Rn − 0)×Rn

where jz(x) = (x, z), z ∈ K, t(x) = x − z, φ(x, y) = (x − y, y), d0(x, y) = x

and Δn the diagonal set of Rn ×Rn.
Let wx be the generator of H̄n(Rn,Rn − x;F) corresponding to 1 ∈ F.

Then there exists the generator wUK of H̄n(U, U−K;F) such that (jUK)∗(wUK) =
wx for any x ∈ K and the inclusion jUK : (U, U−K)→ (Rn,Rn−x). Note that
H̄n(U, U −K;F) ∼= Hn(U, U −K;F) for a compact set K. We shall use only
the case of finite complex K for our application. The class γx is defined by the
generator of H̄n(Rn,Rn−x;F) which is the dual element of wx. Naturally, we
denote w0 and γ0 for x = 0.

Definition 3.1. Define the class γUK ∈ H̄n((U, U −K)×K;F) by γUK =
i∗φ∗d∗0(γ0) where d0φi : (U, U −K)×K → (Rn,Rn − 0).

The following definition is essentially important for our purpose.
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Definition 3.2. Let X and Y be paracompact Hausdorff spaces. A
mapping f : X → Y is called a Vietoris mapping, if it satisfies the following
conditions:

1. f is proper and onto continuous mapping.

2. f−1(y) is an acyclic space for any y ∈ Y , that is, H̄∗(f−1(y);F) = 0 for
positive dimension.

When f is closed and onto continuous mapping and satisfies the condition (2),
we call it a weak Vietoris mapping.

If f−1(K) is compact set for any compact subset K ⊂ Y , f is called
a proper mapping. Note that a proper mapping is closed. Our definition
is broader than L. Górniewicz’s, because he works in the category of metric
spaces. The following Vietoris theorem holds only for the Alexander-Spanier
cohomology theory (cf. Theorem 6.9.15 in [17]).

Theorem 3.1. Let f : X → Y be a weak Vietoris mapping between
paracompact Hausdorff spaces X and Y . Then,

(3.2) f∗ : H̄m(Y ;F)→ H̄m(X;F)

is an isomorphism for all m � 0.

In this paper, we redefine expediently the Alexander-Spanier homology
theory by the following equation:

(3.3) H̄∗(X;F) = Hom(H̄∗(X;F),F)

instead of the equation (2.5). From the properties of H̄∗(−;F), the new homol-
ogy theory H̄∗(−;F) satisfies the axioms of generalized homology theory. These
two definitions for the Alexander-Spanier homology theory coincide each other
for ANR spaces of finite type or compact Hausdorff spaces. Let K be a com-
pact set {xm}m�1 ∪ {z} in Rn where the sequence {xm}m�1 convergences to
z. Rn−K gives an example that these two homology theories do not coincide.
We shall use the new definition (3.3) for the consistency.

We must remark a fundamental fact:

(3.4) f∗ : H̄m(X;F)→ H̄m(Y ;F)

is an isomorphism for all m � 0 for a Vietoris mapping f . A mapping f : X →
Y is called a compact mapping, if f(X) is contained in a compact set of Y , or
equivalently its closure f(Y ) is compact.
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We can take a finite complex L for a compact space K in U ⊂ Rn such
that K ⊂ L ⊂ U . Because we subdivide Rn into small boxes whose faces are
parallel to axes and construct the complex L by collecting small boxes which
intersect with K. For a finite complex K, we have the isomorphism between the
Čech homology theory Ȟ∗(K;F) and the singular homology theory H∗(K;F).
We use this case for our application in this section.

Definition 3.3. Let U be an open set of the n-dimensional Euclidean
space Rn and Y a paracompact Hausdorff space. For a weak Vietoris mapping
p : Y → U and a compact mapping q : Y → U , the coincidence index I(p, q) of
p and q is defined by

(3.5) I(p, q)w0 = q̄∗(p̄)−1
∗ (wUK)

where K is a compact set satisfying q(Y ) ⊂ K ⊂ U . p̄ : (Y, Y − p−1(K)) →
(U, U −K) and q̄ : (Y, Y − p−1(K))→ (Rn,Rn− 0) are defined by p̄(y) = p(y)
and q̄(y) = p(y)− q(y) respectively.

If we use the cohomology theory instead of the homology theory in Defi-
nition 3.3, we shall be able to prove the corresponding result in the following
argument. We use the homology theory because of the comparison with [12]
and [6]. From this definition, we easily obtain the next formula.

Lemma 3.2. It holds the formula:

(3.6) d∗(1× q∗(p∗)−1)Δ∗(wUK) = I(p, q)w0

where Δ(x) = (x, x), f(y) = (p(y), y), d(x, y) = x− y.

Proof. We easily obtain the result from the following commutative dia-
gram:

(U, U −K)
p̄←−−−− (Y, Y − p−1(K))

q̄−−−−→ (Rn,Rn − 0)⏐⏐�Δ

⏐⏐�f �⏐⏐d
(U, U −K)× U

1×p←−−−− (U, U −K)× Y
1×q−−−−→ (U, U −K)×K.

Lemma 3.3.

(3.7) I(p, q) =< Δ∗(1× (p∗)−1q∗)γUK , wUK >
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Proof. We obtain the result from the following calculation:

I(p, q) = < γ0, I(p, q)w0 >

= < γ0, d∗(1× q∗(p∗)−1)Δ∗(wUK) >

= < Δ∗(1× (p∗)−1q∗)d∗(γ0), wUK >

= < Δ∗(1× (p∗)−1q∗)γUK , wUK > .

Theorem 3.4. Let U be an open set of the n-dimensional Euclidean
space Rn and Y a paracompact Hausdorff space. For p : Y → U a weak
Vietoris mapping and q : Y → U a compact mapping, if the index I(p, q) is not
zero, there exists a coincidence point z ∈ Y , that is, p(z) = q(z).

Proof. Let K be a finite complex of Rn such that q(Y ) ⊂ K ⊂ U . Set

χp,q = {x ∈ U | x ∈ qp−1(x)}, χ′p,q = {y ∈ Y | p(y) = q(y)}.
Since p is closed, χp,q is a closed set by p(χ′p,q) = χp,q. Since χ′p,q is a closed
set and q is a compact mapping, χp,q = q(χ′p,q) is a compact set contained in
K. In the following diagram,

(U, U −K)
p̄←−−−− (Y, Y − p−1(K))

q̄−−−−→ (Rn,Rn − 0)⏐⏐�i ⏐⏐�i ⏐⏐�=

(U, U − χp,q)
p̄←−−−− (Y, Y − p−1(χp,q))

q̄−−−−→ (Rn,Rn − 0)

if χp,q is an empty set, we obtain H̄n(U, U − χp,q) = 0 and I(p, q) = 0 which is
the contradiction. Therefore we have the result.

Let V be a vector space and f : V → V a linear mapping. Let fk

be the k time iterated composition of f . Set N(f) = ∪k�0 ker fk ⊂ V and
Ṽ = V/N(f). Then f induces the linear mapping f̃ : Ṽ → Ṽ which is a
monomorphism. When dim Ṽ < ∞, we define Tr(f) by Tr(f̃). In the case of
dimV <∞, it coincides with the classical trace Tr(f).

Definition 3.4. Let {Vk}k be a graded vector space and f = {fk :
Vk → Vk}k a graded linear mapping. Define the generalized Lefschetz number
for the case of

∑
k�0 dim Ṽk <∞:

L(f) =
∑
k�0

(−1)kTr(fk).
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In this case, f = {fk}k is called a Leray endomorphism.

The following elementary result is needed to generalize to a class of general
spaces (cf. §11 in [7]).

Lemma 3.5. In the following commutative diagram of graded vector
spaces :

Vk
φk ��

fk

��

Wk

ψk

����������
gk

��
Vk

φk

�� Wk

If one of f = {fk}k and g = {gk}k is a Leray endomorphism, the other is
also a Leray endomorphism, and L(f) = L(g) holds.

The following theorem is a new proof of a coincidence theorem which is
based on M. Nakaoka [12].

Theorem 3.6. Let U be an open set in the n-dimensional Euclidean
space Rn and Y a paracompact Hausdorff space. Let p : Y → U be a weak
Vietoris mapping and q : Y → U a compact mapping. Then (p∗)−1q∗ :
H∗(U ;F) → H∗(U ;F) is a Leray endomorphism and we have the following
formula:

(3.8) L((p∗)−1q∗) = I(p, q).

Especially, if the Lefschetz number L((p∗)−1q∗) is not zero, there exists a coin-
cidence point z ∈ Y such that p(z) = q(z).

Proof. To begin with, we remark that there exists a finite complex K in
U such that q(Y ) ⊂ K ⊂ U . Consider the following diagram:

H̄∗(U ;F) i∗ ��

q∗

��

H̄∗(K;F)
q′′∗

��������������
q′∗

��
H̄∗(Y ;F)

j∗ ��

(p∗)−1

��

H̄∗(p−1(K);F)

(p′∗)−1

��
H̄∗(U ;F) i∗ �� H̄∗(K;F)

where p′ and q′ are the restricted mappings of p and q to the subspace p−1(K)
respectively. q′′ : Y → K is defined by q′ = q′′j and q = iq′′ where i : K →
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U and j : p−1(K) → Y are the inclusions. Since (p′∗)−1q′∗ : H̄∗(K;F) →
H̄∗(K;F) is a Leray endomorphism, (p∗)−1q∗ : H̄∗(U ;F)→ H̄∗(U ;F) is also a
Leray endomorphism by Lemma 3.5. Then, we have

L((p′∗)−1q′∗) = L((p∗)−1q∗).

Consider the following diagram:

H̄∗(K;F) =−−−−→ H̄∗(K;F)⏐⏐�(p∗)−1q′′∗
⏐⏐�(p′∗)−1q′∗

H̄∗(U ;F) i∗−−−−→ H̄∗(K;F)⏐⏐�(−)∩wU
K

�⏐⏐(−1)qγU
K/(−)

H∗(U, U −K;F) =−−−−→ H∗(U, U −K;F)

Clearly the upper square is commutative for the Alexander-Spanier cohomology
theory. The commutativity of the lower square for the singular (co)homology
theory is proved by Lemma 3 in [12], that is,

i∗(x) = (−1)qγUK/(x ∩ wUK)

for x ∈ Hq(U ;F). Note that we use the sign (−1)q instead of (−1)nq in [12]
under some changes of sign (cf. Theorem 12.1 in [11]). Now we shall show
the commutativity of the lower square for the Alexander-Spanier cohomology
theory. The morphism i∗ : H̄∗(U ;F) → H̄∗(K;F) of the Alexander-Spanier
cohomology theory coincides with the one of the singular cohomology theory
for a finite complex K. So we can determine i∗ : H̄∗(U ;F) → H̄∗(K;F).
Note that the Alexander-Spanier cohomology groups H̄∗(U ;F), H̄∗(U, U −
K;F), H̄∗((U, U − K) × K;F) and H̄∗(K;F) are coincide with ones of the
singular cohomology theory.

In the following discussion, we must carefully use the Alexander-Spanier
cohomology theory and the singular cohomology theory. Let {αλ}, {βμ}, {γν}
be basis of H̄∗(U ;F), H̄∗(U, U −K;F), H̄∗(K;F) respectively. We represent
γUK ∈ H̄∗((U, U −K)×K;F) as follows:

γUK =
∑
μ,ν

cμνβμ × γν .

Since p∗ is isomorphic, we set

(p∗)−1q′′∗(γξ) =
∑
λ

mλξαλ.
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We calculate the Lefschetz number L((p′∗)−1q′∗):

(−1)q(p′∗)−1q′∗(γξ) = (−1)qi∗(p∗)−1q′′∗(γξ)

= γUK/((p∗)−1q′′∗(γξ) ∩ wUK)

=
∑
μ,ν

cμν(βμ × γν)/((p∗)−1q′′∗(γξ) ∩ wUK)

=
∑
μ,ν

cμν < βμ, (p∗)−1q′′∗(γξ) ∩ wUK > γν

=
∑
μ,ν

cμν < βμ, (
∑
λ

mλξαλ) ∩ wUK > γν

=
∑
λ,μ,ν

cμνmλξ < βμ ∪ αλ, w
U
K > γν .

Therefore we obtain a formula:

L((p′∗)−1q′∗) =
∑
λ,μ,ξ

cμξmλξ < βμ ∪ αλ, w
U
K > .

Next we calculate the coincidence index I(p, q):

I(p, q) = < Δ∗(1× (p∗)−1q′′∗)(γUK), wUK >

=
∑
μ,ν

cμν < Δ∗(βμ × (p∗)−1q′′∗(γν)), wUK >

=
∑
μ,ν

cμν < Δ∗(βμ × (
∑
λ

mλναλ)), wUK >

=
∑
λ,μ,ν

cμνmλν < βμ ∪ αλ, w
U
K > .

From these formulas, we have L((p′∗)−1q′∗) = I(p, q). Since L((p′∗)−1q′∗) is
equal to L((p∗)−1q∗), we obtain the result L((p∗)−1q∗) = I(p, q). Therefore we
obtain the second statement by the above result and Theorem 3.4.

We can generalize the above result to the case of ANR spaces through the
line of L. Górniewicz [6, 7]. The following Schauder approximation theorem is
useful to generalize for general spaces (cf. Theorem 12.9 in [7], Theorem 2.3 of
§6 in [8]).

Theorem 3.7. Let U be an open set of a normed space E and f :
X → U a continuous compact mapping. Then, for any ε > 0, there exists a
continuous compact mapping fε : X → U satisfying the following condition:
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1. fε(X) ⊂ En(ε) for a finite dimensional subspace En(ε) of E

2. ‖fε(x)− f(x)‖ < ε for any x ∈ X

3. fε(x), f(x) : X → U are homotopic, noted by fε � f .

Theorem 3.8. Let U be an open set in a normed space E and Y a
paracompact Hausdorff space. Let p : Y → U be a weak Vietoris mapping and
q : Y → U a compact mapping. Then (p∗)−1q∗ is a Leray endomorphism. We
assume that the graph of qp−1 is closed. If the Lefschetz number L((p∗)−1q∗)
is not zero, there exists a coincidence point z ∈ Y , that is, p(z) = q(z).

Proof. Let qn : Y → U be a Schauder approximation of q for ε = 1
n , that

is, qn(Y ) ⊂ Eεn ∩U = Un. Then qn is a compact mapping. pn : p−1(Un)→ Un
is a weak Vietoris mapping where pn is the restriction of p to p−1(Un). Here
jn : p−1(Un) → Y and in : Un → U satisfy pjn = inpn. Let q′′n : Y → Un
be defined by inq

′′
n = qn and q′n : p−1(Un) → Un be the restriction of q′′n to

p−1(Un) i.e. q′′njn = q′n.
Since (p∗n)

−1q′∗n is a Leray endomorphism by Theorem 3.6, (p∗)−1q∗n is also
a Leray endomorphism from the following diagram:

H̄∗(U ;F)
i∗n ��

q∗n
��

H̄∗(Un;F)
q′′∗n

��������������
q′∗n
��

H̄∗(Y ;F)
j∗n ��

(p∗)−1

��

H̄∗(p−1(Un);F)

(p∗n)−1

��
H̄∗(U ;F)

i∗n �� H̄∗(Un;F).

Therefore (p∗)−1q∗ is also a Leray endomorphism by qn � q. And it holds

L((p∗)−1q∗) = L((p∗)−1q∗n) = L((p∗n)
−1(q′n)

∗).

By L((p∗n)−1(q′n)∗) �= 0, pn and q′n have a coincidence point pn(zn) =
q′n(zn) for zn ∈ p−1(Un) ⊂ Y by Theorem 3.6. Since q is a compact map,
we can set x0 = limn→∞ q(zn). By ‖q(zn) − qn(zn)‖ < 1

n , we have x0 =
limn→∞ qn(zn) = limn→∞ q′n(zn) and x0 = limn→∞ pn(zn). Since it holds
(p(zn), q(zn)) ∈ Γqp−1 and Γqp−1 is closed, we have (x0, x0) ∈ Γqp−1 . Therefore
we see that p and q have a coincidence point x0, i.e. p(y0) = q(y0) = x0 for
y0 ∈ Y .
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If p is proper in the above theorem, we need not the assumption that the
graph of qp−1 is closed. An ANR space is a deformation retract of an open set
of normed space by Proposition 1.8 in [7], that is, i : X → U, r : U → X such
that ri = idX .

Theorem 3.9. Let X be an ANR space and Y a paracompact Hausdorff
space. Let p : Y → X be a Vietoris mapping and q : Y → X a compact
mapping. Then (p∗)−1q∗ is a Leray endomorphism. If the Lefschetz number
L((p∗)−1q∗) is not zero, there exists a coincidence point z ∈ Y , that is, p(z) =
q(z).

Proof. We construct the following diagram where the right square is a
pull-back:

U
iqr̄←−−−− U ×X Y

p̄−−−−→ U⏐⏐�r ⏐⏐�r̄ ⏐⏐�r
X

q←−−−− Y
p−−−−→ X

Since U is a paracompact Hausdorff space and p and also p̄ are proper,
U ×X Y is also a paracompact Hausdorff space. This is proved by Theorem
4 in [9]. Since p is a Vietoris mapping, p̄ is also a Vietoris mapping. q̄ = iqr̄

is a compact mapping. We see that (p̄∗)−1(q̄)∗ is a Leray endomorphism by
Theorem 3.8. Therefore we see that (p∗)−1q∗ is a Leray endomorphism by
the above diagram. By L((p∗)−1q∗) = L((p̄∗)−1(q̄)∗) �= 0, p̄ and q̄ have a
coincidence point from the Theorem 3.8, that is, p̄(u0, y0) = q̄(u0, y0). From
this, we easily see that p and q have a coincidence point y0 ∈ Y , i.e. p(y0) =
q(y0).

A set-valued mapping ϕ : X → Y is called upper semi-continuous, if for
every x ∈ X and any neighborhood V of ϕ(x), there exists a neighborhood
U of x ∈ X such that ϕ(U) ⊂ V . If ϕ is upper semi-continuous, the graph
Γϕ = {(x, y) ∈ X × Y | y ∈ ϕ(x) } is a closed set in X × Y . But the converse
is not true. If Y is a compact set, the upper semi-continuity of ϕ is equivalent
to that the graph Γϕ is closed.

Definition 3.5. A set-valued mapping ϕ : X → Y is called admissible,
if it is upper semi-continuous and there exists a paracompact Hausdorff space
Γ satisfying the following conditions:

1. there exist a Vietoris mapping p : Γ → X and a continuous mapping
q : Γ→ Y .
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2. ϕ(x) ⊃ q(p−1(x)) for each x ∈ X.

ϕ : X → Y is called weak admissible, if it satisfies the condition (2) and p is a
weak Vietoris mapping. A pair (p, q) of mappings p, q is called a selected pair
of ϕ.

An upper semi-continuous set-valued mapping is called acyclic, if ϕ(x) is
a closed acyclic space in Y for x ∈ X, that is, H̄∗(ϕ(x);F) = 0 for positive
dimension. Let Γϕ be the graph of ϕ. ϕ(x) is considered as qϕ(p−1

ϕ (x)) where
pϕ : Γϕ → X and qϕ : Γϕ → Y are defined by pϕ(x, y) = x and qϕ(x, y) = y

respectively. If ϕ : X → Y is compact acyclic mapping, pϕ : Γϕ → X is a
Vietoris mapping. An acyclic mapping ϕ : X → Y is admissible. An admissible
mapping is not necessarily acyclic mapping. In this case we define uniquely
ϕ∗ : H̄∗(Y ;F)→ H̄∗(X;F) by (p∗ϕ)−1q∗ϕ.

Generally ϕ∗ : H̄∗(Y ;F) → H̄∗(X;F) is defined by the set {(p∗)−1q∗}
where (p, q) is a selected pair of a weak admissible mapping ϕ : X → Y . ϕ∗
is similarly defined. A mapping ϕ : Sn → Sn defined by ϕ(z) = Sn for any
z ∈ Sn is admissible and ϕ∗ is an infinite set. ϕ∗ � 0 means that (p∗)−1q∗ = 0
for some selected pair (p, q) of ϕ and ϕ∗ �� 0 means that (p∗)−1q∗ �= 0 for any
selected pair (p, q) of ϕ.

Theorem 3.10. Let X be an ANR space and ϕ : X → X a compact
admissible mapping. If L(ϕ∗) contains a non-trivial element, there exists a
fixed point x0 ∈ X, that is, x0 ∈ ϕ(x0).

Proof. We can choose a selected pair (p, q) where a Vietoris mapping p :
Γ→ X and a compact mapping q : Γ→ X. We may assume L((p∗)−1q∗) �= 0.
By Theorem 3.9, there exists a coincidence point z ∈ Γ such that p(z) = q(z).
Since it holds x ∈ qp−1(x) ⊂ ϕ(x) where x = p(z), we obtain the result.

From Theorem 3.8, we easily obtain a fixed point theorem for a compact
weak admissible mappings ϕ : U → U where U is an open set of a normed
space. Note that our result is broader than L. Górniewicz’s result, because we
works in the category of paracompact Hausdorff spaces.

§4. Equivariant Fundamental Cohomology Class

To begin with, we review some results of M. Nakaoka [13, 14, 15, 16]
for notation and later applications. We must study his papers carefully, be-
cause he discuss his theory in the category of manifolds and use the singular
(co)homology theory.
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Let X be a Hausdorff space with an involution T . X2 = X × X has
the involution T of the switching mapping T (x, y) = (y, x). We use the
notation G2 = G ⊗ G for an abelian group G. Let π be the group of or-
der 2. A π-space means a topological space with an involution T . Let A

be a subspace of a π-space X invariant under the action. For such a pair
(X, A), the equivariant cohomology group H̄∗π(X, A;F2) and the equivariant
homology group H̄π

∗ (X, A;F2) are defined by H̄∗(S∞×π X, S∞×π A;F2) and
H̄∗(S∞ ×π X, S∞ ×π A;F2) respectively. Hereafter we shall use (co)homology
theory with coefficient in the prime field F2 of order 2. We sometimes ab-
breviate the coefficient F2 in the (co)homology theory, when the expression is
complicated.

M. Nakaoka proved the Steenrod isomorphism of finite type (cf. §3 in
[13]) for the singular (co)homology theory. We can prove the Steenrod iso-
morphism for the Alexander-Spanier (co)homology theory. W is the chain
complex with generators ei, T ei (i = 0, 1, . . .) and boundaries ∂i+1(ei+1) =
ei + (−1)i+1Tei (i = 0, 1, . . .).

Theorem 4.1. Let X be a compact ANR space X of finite type.

H̄∗(S∞ ×π X2;F2)∼= H∗(W ⊗π H̄∗(X;F2)2;F2)(4.1)

H̄∗(S∞ ×π X2;F2)∼= H∗(Homπ(W, H̄∗(X;F2)2);F2)(4.2)

Proof. Let U = {Uλ, TUλ|λ ∈ Λ} be an open covering of S∞ such that
Uλ∩TUλ = ∅. If a covering V of X with a free involution T satisfies V ∩TV = ∅
for V ∈ V , V is called a proper covering of X. Let V andW be open coverings of
X and Y respectively. V×W = {V ×W |V ∈ V , W ∈ W} is an open covering of
X×Y . Set V2 = V×V . Note that p(U×V2) = {p(Uλ×V ×V ′) |Uλ ∈ U , V, V ′ ∈
V} is a family of evenly covered open sets of the projection p : E×X2 → E×πX2

(cf. Chapter 2 in [17]).
We can prove the following chain equivalence corresponding to Theorem 1

in [13]:

ρ : C∗((S∞ ×X2)(U × V2))→W ⊗ C∗(X(V))2

where U is a proper open covering of S∞ and V is an open covering of X. The
proof proceeds exactly same as the case of S∗(S∞ × X2). Hereafter we often
use the corresponding notation of [13]. There exists a chain equivalence (cf.
Theorem 2 in [13]):

Π : C∗((S∞ ×X2)(U × V2))/π → C∗((S∞ ×π X2)(p(U × V2))).
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By using ρ and Π, we obtain

χ : H∗(W ⊗π C∗(X(V))2) ∼= H∗((S∞ ×π X2)(p(U × V2))).

By making use of the isomorphism ξ∗(η∗)−1 : H∗(W⊗πH∗(X(V))2) ∼= H∗(W⊗π
C∗(X(V))2) (cf. §2 in [13]), we obtain

χξ∗(η∗)−1 : H∗(W ⊗π H∗(X(V))2) ∼= H∗((S∞ ×π X2)(p(U × V2))).

Therefore we obtain the result corresponding to [13] for a compact ANR space
of finite type by taking the inverse limits. Here we used Lemma 2.3 for each
dimension.

By making use of the isomorphism ξ∗(η∗)−1:H∗(Homπ(W,H∗(C∗(X(V)))2)
→ H∗(Homπ(W, C∗(X(V))2)) and the isomorphism χ∗νμ∗:

H∗(Homπ(W, C∗(X(V))2))
μ∗−−−−→ H∗(Homπ(W, Hom(C∗(X(V))2,F2))⏐⏐�χ∗νμ∗

⏐⏐�ν
H∗((S∞ ×π X2)(p(U × V2))) χ∗

←−−−− H∗(Homπ(W ⊗ C∗(X(V))2,F2)).

we have the isomorphism between H∗(Homπ(W, H∗(C∗(X(V)))2) and
H∗((S∞ ×π X2)(p(U × V2))). Therefore we obtain the second isomorphism
by taking the direct limits.

If you wish to avoid the calculation of inverse limits, you may apply the re-
sult of the singular (co)homology theory for ANR spaces of finite type H∗(X;F)
(cf. Theorem 6.9.1 of [17]). When X is a compact ANR space, we obtain the
following theorem (cf. Theorem 4 in M. Nakaoka [13]). Though it is proved for
more general space, it is sufficient for our purpose.

Theorem 4.2. Let X be a compact ANR space of finite type. If {aj | j∈
J} is an ordered basis of H̄∗(X;F2), then {Pi(aj), P (aj , ak)|i � 0, j, k ∈
J, j < k} is a basis of H̄∗(S∞ ×π X2;F2). If {αj | j ∈ J} is an ordered basis
of H̄∗(X;F2), then {Pi(αj), P (αj , αk) | i � 0, j, k ∈ J, j < k} is a basis
of H̄∗(S∞ ×π X2;F2). If {aj | j ∈ J} and {αj | j ∈ J} are dual basis, then
{Pi(aj), P (aj , ak)} and {Pi(αj), P (αj , αk)} are also dual.

We can define cohomology operations Pi(α) and P (α, β) of the Alexander-
Spanier cohomology theory by using Theorem 4.1 as M. Nakaoka [13]. Though
the naturality of Pi(−) with respect to a mapping is clear for compact ANR
spaces of finite type, it is not so clear for general spaces. Because the Steenrod
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isomorphisms do not hold for general spaces. Therefore we must exactly in-
spect the cohomology operations Pi(α) and P (α, β) of the Alexander-Spanier
cohomology theory for a paracompact Hausdorff space X. The cohomology
operation

Pi : H∗(X(V);F2)→ H∗(Homπ(W, H∗(C∗(X(V));F2)2)

is defined by Pi(α) = ui(α), ui(α)(ei) = α⊗ α, uj(α)(ei) = 0 (i �= j).
By making use of Pi(α) and the morphism χ∗νμ∗ξ∗(η∗)−1 (cf. [13]) and

taking the limits we can define the cohomology operation

(4.3) Pi : H̄∗(X;F2)→ H̄∗(S∞ ×π X2;F2).

From the definition, we can easily verify the naturality of the operation Pi(α)
with respect mappings i.e. P (f∗(α)) = (1×π f2)∗(P (α)) where f : X → Y and
α ∈ H̄∗(Y ;F2).

P (α, β) is similarly defined. Since P (α, β) is the same as φ∗(α× β) where
φ∗ is the transfer mapping, φ∗(α× β) is defined for general spaces. We obtain
the naturality of P (α, β) with respect to mappings, i.e. φ∗(1×f2)∗(1×α×β) =
(1×π f2)∗φ∗(1× α× β) where f : X → Y and α, β ∈ H̄∗(Y ;F2).

Now we remark the transfer mapping for the Alexander-Spanier cohomol-
ogy theory. In the case of the singular cohomology theory, the Gysin-Smith
exact sequence of a double covering space p : X̃ → X is defined by the follow-
ing sequence:

0→ S∗(X)
p∗→ S∗(X̃)

φ∗
→ S∗(X)→ 0

where φ∗ is the transfer mapping and p∗ is defined by the projection p. By using
the Vietoris complex, we can obtain the similar result for the Alexander-Spanier
cohomology theory.

Since the transfer homomorphism φ∗ is also defined by using Thom iso-
morphism of a fiber bundle, we may use the Thom-Gysin sequence instead
of the Gysin-Smith sequence. Now we explain the Thom isomorphism for the
Alexander-Spanier cohomology theory. Let E be the mapping cylinder of a dou-
ble covering p : X̃ → X and p̃ : E → X the associated projection. According
to Theorem 6.9.14 in [17] and the notation there, we have the isomorphism:

(4.4) Ψ : H̄q(X;F2) ∼= H̄q+1(E, X̃;F2).

We can define the transfer homomorphism φ∗ : H̄i(X̃;F2) → H̄i(X;F2) by
Ψ−1δ where δ is the coboundary homomorphism of the cohomology exact se-
quence of the pair (E, X̃).



830 Yoshimi Shitanda

From the cohomology exact sequence of a pair (E, X̃) and Thom isomor-
phism, we obtain the following exact sequence:

(4.5) H̄i−1(X̃;F2)
φ∗
→ H̄i−1(X;F2)

ν→ H̄i(X;F2)
p∗→ H̄i(X̃;F2)

φ∗
→ H̄i(X;F2)

where ν : H̄i−1(X;F2) → H̄i(X;F2) is defined by (p̃∗)−1j∗Ψ. Thom-Gysin
sequence is natural for mappings between double covering spaces. We prepare
a lemma for later application.

Lemma 4.3. Let pi : X̃i → Xi (i = 1, 2) be double covering spaces over
paracompact Hausdorff spaces and f̃ : X̃1 → X̃2 and f : X1 → X2 be continuous
mappings such that p2f̃ = fp1. f̃ induces a (co)homology isomorphism if and
only if f induces a (co)homology isomorphism.

Proof. From the Gysin-Smith sequence (4.5), we have the following com-
mutative diagram:

→ H̄i−1(X̃1)
φ∗

1−−−−→ H̄i−1(X1)
ν−−−−→ H̄i(X1)

p∗1−−−−→ H̄i(X̃1)→�⏐⏐f̃∗
�⏐⏐f∗

�⏐⏐f∗
�⏐⏐f̃∗

→ H̄i−1(X̃2)
φ∗

2−−−−→ H̄i−1(X2)
ν−−−−→ H̄i(X2)

p∗2−−−−→ H̄i(X̃2)→

Assume that f̃∗ is an isomorphism. Firstly we can prove the injectivity of f∗

by the induction on i in the above diagram and secondly the surjectivity of f∗

by the induction on i. Since the verification is easy, we omit the detail. The
converse is true by the five lemma.

A connected metric space X is said to be an n-dimensional Poincaré space,
if there exist a class μ ∈ H̄n(X;F2) and an isomorphism:

(4.6) (−) ∩ μ : H̄q(X;F2)→ H̄n−q(X;F2).

Especially we easily see H̄n(X;F2) = F2, H̄n(X;F2) = F2 and H̄q(X;F2) =
0, H̄q(X;F2) = 0 for q > n. If there exists a continuous mapping f : X → Y

where Y is a closed manifold and f induces a homology isomorphism f∗ :
H̄∗(X;F2) → H̄∗(Y ;F2), then X is a Poincaré space by f∗(f∗(α) ∩ μ) = α ∩
f∗(μ). Similarly if there exists a continuous mapping g : Y → X where Y is
a closed manifold and g induces a homology isomorphism g∗ : H̄∗(Y ;F2) →
H̄∗(X;F2), then X is a Poincaré space. Note that the orbit space Xπ of a
metric space X is also a metric space by Smirnov metrization theorem (cf.
Theorem 4.4.19 in [3]).
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Though Sn × S∞ is a Poincaré space with the free involution T (x, y) =
(x,−y), the orbit space Sn × RP∞ is not a Poincaré space. If the covering
dimension of a paracompact Hausdorff space X with a free involution is a
finite, {p | H̄p(Xπ;F2) �= 0} is bounded. Let U be an open covering of Xπ

where any open set of U is evenly covered by p. We take a proper refinement
V of p−1(U) such that the intersection of any n + 2 open sets of V is empty for
n = dim X. The covering p(V) shows the finiteness of the covering dimension
of Xπ. The following lemma is useful for our application.

Lemma 4.4. Let X be a Poincaré space with a free involution. If
{p | H̄p(Xπ;F2) �= 0} is bounded, then the orbit space Xπ is a Poincaré space.

Proof. Let μ ∈ H̄n(X;F2) be the class which induces the isomorphism
(4.6). There exists the element μ′ ∈ H̄n(Xπ;F2) such that φ∗(μ′) = μ by the
Gysin-Smith homology sequence and the hypothesis on {p | H̄p(X;F2) �= 0}.
Moreover we see H̄n(Xπ;F2) = F2 and H̄i(Xπ;F2) = 0 for i > n by considering
the Gysin-Smith exact sequence. We have the ladder of the Gysin-Smith exact
sequences:

→ H̄i(Xπ)
p∗−−−−→ H̄i(X)

φ∗
−−−−→ H̄i(Xπ)

δ−−−−→ H̄i+1(Xπ)→⏐⏐�(−)∩μ′
⏐⏐�(−)∩μ

⏐⏐�(−)∩μ′
⏐⏐�(−)∩μ′

→ H̄j(Xπ)
φ∗−−−−→ H̄j(X)

p∗−−−−→ H̄j(Xπ)
∂−−−−→ H̄j−1(Xπ)→

where i + j = n. The commutativity is proved by p∗(α) ∩ φ∗(μ′) = φ∗(α ∩ μ′)
etc. where α ∈ H̄∗(Xπ;F2). By the induction from the lower dimension of
cohomology theory, we can prove the injectivity of (−)∩μ′. From this and the
induction, we obtain also the surjectivity of (−) ∩ μ′.

Let M be an m-dimensional closed manifold with an involution T . Let
Δ : M → M2 be defined by Δ(x) = (x, T (x)). When T is trivial, Δ is
the ordinary diagonal. ΔM is the invariant subspace under the action. M.
Nakaoka defined the equivariant fundamental class of ΔM in M2 denoted by
ÛM ∈ H̄m

π (M2, M2−ΔM ;F2) (cf. §2 in [16]). The image of ÛM in H̄m
π (M2;F2)

is denoted by Û ′M , and is called the equivariant diagonal cohomology class of
M .

The involution T on M2 is given by T (x, x′) = (x′, x). Therefore Δ is
an equivariant mapping. Hereafter, we sometimes use the same notation for
involutions, if there is not confusion. Note that the involution T̃ on S∞×π M2

is given by T̃ (x, y, y′) = (Tx, y′, y). For a paracompact Hausdorff space N with
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a free involution T , there exists an equivariant mapping h : N → S∞. We also
define the element:

ÛN,M ∈ H̄m(N ×π (M2, M2 −ΔM);F2)

by ÛN,M = (h×π idM2)∗(ÛM ) where h×π idM2 : N ×π (M2, M2 −Δ(M)) →
S∞ ×π (M2, M2 −Δ(M)). Note that N ×π (M2, M2 −ΔM) is a pair of para-
compact Hausdorff spaces by Theorem 5.1.33 and §5.5.5 in [3]. Set

ΔN = j∗(ÛN,M ) ∈ H̄m(N ×π M2;F2)

where j : N ×π M2 → N ×π (M2, M2−ΔM). In the case of N = S∞, we have
ÛN,M = ÛM and ΔN = Û ′M . Set Δ∞ = Û ′M for N = S∞. Clearly, we have
(h×π 1)∗(Δ∞) = ΔN .

The following theorem is essentially proved in Proposition 1.3 in [14].
Though he states his result for a manifold N , it holds for a paracompact
Hausdorff space N . For f : N → M , define f̂ : N → N ×M2 by f̂(x) =
(x, f(x), f(T (x))) which is π-equivariant. Hence we have f̂π : Nπ → N ×π M2.

Theorem 4.5. Let N be a paracompact Hausdorff space with a free in-
volution T and M a closed manifold with an involution T ′. If a continuous
mapping f : N →M satisfies f̂∗π(ΔN ) �= 0, the set A(f) = {x ∈ N | f(T (x)) =
T ′(f(x))} is not empty.

Proof. Consider the following diagram:

H̄m(N ×π (M2, M2 −ΔM);F2)
j∗−−−−→ H̄m(N ×π M2;F2)⏐⏐�f̂∗

π

⏐⏐�f̂∗
π

H̄m(Nπ, Nπ −A(f)π;F2)
j∗1−−−−→ H̄m(Nπ;F2)

where A(f)π is the orbit space of A(f). Since the class ΔN ∈ H̄m(N ×π
M2;F2) is the image of ÛN,M ∈ H̄m(N ×π (M2, M2 − ΔM);F2), we ob-
tain f̂∗π(ÛN,M ) �= 0 from the condition f̂∗π(ΔN ) �= 0. Therefore we have
H̄m(Nπ, Nπ−A(f)π;F2) �= 0. Finally, we obtain A(f)π �= ∅ and A(f) �= ∅.

We can obtain the detailed result of the above theorem under the restric-
tion of a source space.

Theorem 4.6. Under the condition of Theorem 4.5, if N is an n-
dimensional Poincaré space and the covering dimension of N is finite, it holds
dim A(f) � n−m.
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Proof. In the diagram of Theorem 4.5, the class f∗π(ΔN ) ∈ H̄m(Nπ;F2) is
not zero. Since Nπ is a Poincaré space, there exists a class α ∈ H̄n−m(Nπ;F2)
such that f∗π(ΔN ) ∪ α �= 0. If i∗(α) = 0 where i : A(f)π → Nπ, we see
i∗V (α) = 0 by the continuity of the Alexander-Spanier cohomology theory where
V is an open neighborhood of A(f)π in Nπ and iV : V → Nπ is the inclusion.
Therefore there is a class β ∈ H̄n−m(Nπ, V ;F2) such that j∗2 (β) = α where
j∗2 : H̄n−m(Nπ, V ;F2)→ H̄n−m(Nπ;F2).

Since f̂∗π(ΔN ) is the image of f̂∗π(ÛN,M ) under j∗1 , it holds

j∗(f̂∗π(ÛN,M ) ∪ β) = j∗1 (f̂∗π(ÛN,M )) ∪ j∗2 (β) = f̂∗π(ΔN ) ∪ α.

The left hand side is zero by f̂∗π(ÛN,M )∪β = 0 in H̄∗(Nπ, V ∪(Nπ−A(f)π);F2)
= 0. Here we used that V ∪ (Nπ − A(f)π) = Nπ. The right hand side is
not zero by our hypothesis. From the contradiction, we see i∗(α) �= 0 ∈
H̄n−m(A(f)π;F2).

If it holds H̄k(A(f);F2) = 0 for all k � n−m, we see H̄k(A(f)π;F2) �= 0
for all k � n −m by making use of the Gysin-Smith sequence of p : A(f) →
A(f)π. This contradict that the covering dimension of N is finite. Therefore
we see H̄k(A(f);F2) �= 0 for some k � n−m.

§5. The Equivariant Lefschetz Class

M. Nakaoka determined Δ∞ and ΔN in Proposition 3.2 in [14]. Though
he describe some statements under the assumption that N is a manifold in his
papers, we can easily generalize to the case that N is a paracompact Hausdorff
space. The following theorem is given in Theorem 2.3 in [16].

Theorem 5.1. Let M be an m-dimensional closed manifold with an
involution T . Assume that

(5.1) i∗ = 0 : H̄q(M ;F2)→ H̄q(Mπ;F2) (q � m

2
)

where Mπ is the fixed point set of the involution T . Then, for a basis {α1, . . . ,

αs} of H̄∗(M ;F2), we have

(5.2) Δ∞ =
∑
i<j

cijφ
∗(1× αi × αj)

where φ∗ : H̄∗(S∞×M2;F2)→ H̄∗(S∞×πM2;F2) is the transfer mapping and
C = (cij) is the inverse of the matrix Y = (yij) with yij =< αi ∪ T ∗αj , [M ] >.
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For a closed manifold M with an involution T , we define a bilinear form
◦ : H̄∗(M ;F2)⊗ H̄∗(M ;F2)→ F2 by

α ◦ β =< α ∪ T ∗β, [M ] > .

The bilinear form ◦ is called a symplectic form, if it satisfies α ◦ α = 0 for any
α ∈ H̄∗(M ;F2).

Under the condition

(5.3) i∗ = 0 : H̄
m
2 (M ;F2)→ H̄

m
2 (Mπ;F2) (m: even)

the bilinear form ◦ is symplectic form by Proposition 5.5 in [16]. According to
linear algebra, we can find a basis {μ1, . . . , μs, μ

′
1, . . . , μ

′
s} of H̄∗(M ;F2) called

a symplectic basis such that

(5.4) μi ◦ μj = 0, μ′i ◦ μ′j = 0, μi ◦ μ′j = δij .

The following theorem is easily deduced from Theorem 5.1 (cf. Theorem
3.4 in [14]).

Theorem 5.2. Under the condition and the notation of Theorem 5.1,
let {μ1, . . . , μs, μ

′
1, . . . , μ

′
s} be a symplectic basis of H̄∗(M ;F2). Then we have

(5.5) Δ∞ =
s∑
i=1

φ∗(1× μi × μ′i)

where φ∗ is the transfer mapping. A similar formula holds for ΔN ∈ H̄∗(N ×π
M2;F2) for a paracompact Hausdorff space N .

Definition 5.1. Let N be a paracompact Hausdorff space with a free
involution T and M a closed manifold with an involution T ′. For a continuous
mapping f : N →M , we define the equivariant Lefschetz class of f by

(5.6) f̂∗π(ΔN ) ∈ H̄m(Nπ;F2).

The following formula is calculated in the proof of Proposition 6.4 in [16]
(cf. Theorem 5.2 in [14]).

Theorem 5.3. Let N be a paracompact Hausdorff space with a free in-
volution T and M a closed manifold with an involution T ′ satisfying the con-
dition (5.1) and {μ1, . . . , μs, μ

′
1, . . . , μ

′
s} a symplectic basis of H̄∗(M ;F2). For

a continuous mapping f : N →M , we have

(5.7) f̂∗π(ΔN ) =
s∑
i=1

φ∗(f∗(μi) ∪ T ∗f∗(μ′i))

where φ∗ : H̄∗(N ;F2)→ H̄∗(Nπ;F2) is the transfer mapping.
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Definition 5.2. Let N be a paracompact Hausdorff space with a free
involution T and M an m-dimensional closed topological manifolds with an
involution T ′ and {μ1, . . . , μs, μ

′
1, . . . , μ

′
s} a symplectic basis of H̄∗(M ;F2). The

Lefschetz class ΔN,ϕ of an admissible mapping ϕ : N → M is defined by the
following set:

(5.8) ΔN,ϕ =

{
s∑
i=1

φ∗((p∗)−1q∗(μi) ∪ T ∗(p∗)−1q∗(μ′i))

}

where (p, q) is any selected pair of ϕ. For [Nπ,α] ∈ H̄m(Nπ;F2), the equivariant
Lefschetz number L(ϕ : [Nπ,α]) is defined by the following set:

(5.9) L(ϕ : [Nπ,α]) =

{
s∑
i=1

< φ∗((p∗)−1q∗(μi) ∪ T ∗(p∗)−1q∗(μ′i)), [Nπ,α] >

}

where (p, q) is any selected pair of ϕ. For single valued mapping f , we use
L(f : [Nπ,α]) instead of L(ϕ : [Nπ,α]).

When N and M are m-dimensional closed manifolds, M. Nakaoka defined
the equivariant point index IΠ(f) by < f̂∗π(Δ∞), [N/Π] > and the Lefschetz
number λΠ(f) by

∑r
i=1 < f∗(μi) ∪ T ∗f∗(μ′i), [N ] > (cf. §1 and §5 in [14],

[16]). For the case of single-valued mapping and Nπ,α = Nπ, these two num-
bers coincide each other (cf. Theorem 7.1 in [16]). And it holds also for an
m-dimensional Poincaré space N with a free involution and a finite covering
dimension. Therefore our definition of the equivariant Lefschetz number is a
natural generalization.

Let N be a paracompact Hausdorff space with a free involution T . Consider
the following diagram:

(5.10)

Γ̂ Δ̂−−−−→ Γ× Γ⏐⏐�p̂ ⏐⏐�p×p
N

Δ−−−−→ N ×N

where Δ is given by Δ(x) = (x, T (x)). Γ̂ is defined by {(y, y′) ∈ Γ×Γ | p(y) =
T (p(y′))}. p̂ is defined by p̂(y, y′) = p(y) and Δ̂ is the natural inclusion.
Clearly the above square is a pull-back square. Involutions on N2, Γ2 are
given by switching mappings T (x, x′) = (x′, x). All mappings are π-equivariant
with respect to their involutions. Note that Γ̂ has the free involution T̂ . The
following lemma is a key to our purposes. The notation in the next lemma is
the same in the diagram (5.10).
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Lemma 5.4. Let N be a paracompact Hausdorff space with a free in-
volution T and p : Γ → N be a Vietoris mapping. Then p̂ : Γ̂ → N is
a π-equivariant Vietoris mapping and Γ̂ is a paracompact Hausdorff space.
p̂π : Γ̂π → Nπ is a Vietoris mapping and Γ̂π is a paracompact Hausdorff
space. Moreover if N is a metric space and A is a π-invariant closed subspace
of N , then H̄∗(Γ̂ − p̂−1(A);F2) and H̄∗(Γ̂π − p̂−1

π (Aπ);F2) are isomorphic to
H̄∗(N −A;F2) and H̄∗(Nπ −Aπ;F2) respectively.

Proof. Since p is proper, we easily see that p× p is also proper. Because
we find compact sets K1, K2 in N for a compact set K of N × N such that
K ⊂ K1×K2. We easily see that (p×p)−1(K) is compact. Similarly p̂ : Γ̂→ N

is proper. Since N is a paracompact Hausdorff space and p̂ is proper, Γ̂ is also a
paracompact Hausdorff space by Theorem 4 in [9] or Theorem 5.1.35 in [3]. We
can easily prove the acyclicity of (p×p)−1(x, x′) by using Exercise E of Chapter
6 in [17]. Therefore p̂ : Γ̂→ N is a π-equivariant Vietoris mapping. Therefore
H̄∗(Γ̂) is isomorphic to H̄∗(N). Nπ and Γ̂π are paracompact Hausdorff spaces
by Theorem 5.1.33 in [3]. Since a fiber p̂−1(x) of p̂ : Γ̂ → N is homeomorphic
to a fiber p̂−1

π ([x]) of p̂π : Γ̂π → Nπ, p̂π is a Vietoris mapping. Therefore we
obtain the first statement.

For the last statement, since N−A is an open set, p̂ : Γ̂−p̂−1(A)→ N−A is
also onto proper mapping. Since N is a metric space, N −A is a paracompact
Hausdorff space and Γ̂ − p̂−1(A) is also a paracompact Hausdorff space by
Theorem 4 in [9]. By Vietoris’s Theorem 3.1, p̂∗ is an isomorphism. Similarly
we obtain the result for p̂π : Γ̂π − p̂−1

π (Aπ)→ Nπ −Aπ by Lemma 4.3.

In the second statement of the above theorem, we have to assume that N

is a metric space, because a subset of a paracompact Hausdorff space is not
necessarily a paracompact space.

Theorem 5.5. Let N be a paracompact Hausdorff space with a free in-
volution T and M an m-dimensional closed topological manifold with an involu-
tion T ′ satisfying the condition (5.1). For an admissible mapping ϕ : N →M ,
if L(ϕ : [Nπ,α]) contains a non-trivial element, then there exists a point x0 ∈ N

such that T ′ϕ(x0)∩ϕ(T (x0)) �= ∅. Moreover if N is an n-dimensional Poincaré
space and the covering dimension of N is finite, it holds dimA(ϕ) � n − m

where A(ϕ) = {x ∈ N | T ′(ϕ(x)) ∩ ϕ(T (x)) �= ∅}.

Proof. We use the notation in the diagram (5.10). Let (p, q) be a selected
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pair of ϕ. To begin with, consider the following diagram.

(5.11) Γ̂

p̂

��

p′

���
��

��
��

�
R �� M

N Γ
p��

q

		

where p′(y, y′) = y and R(y, y′) = q(y).
Define

A(R) = {(y, y′) ∈ Γ̂ | T ′R(y, y′) = R(T (y, y′))}
= {(y, y′) ∈ Γ̂ | T ′q(y) = q(y′)}.

Clearly we see A(R) ⊂ (p̂)−1(A(ϕ)). The space A(ϕ) is a closed set of N by
the upper semi-continuity of ϕ.

Since the mapping p̂ : Γ̂ → N is π-equivariant, (p̂π)∗ is isomorphic by
Lemma 5.4. We can find [N̂π,α] ∈ H̄∗(Γ̂π;F2) such that (p̂π)∗[N̂π,α] = [Nπ,α].
Since ϕ is admissible, we remark ϕ∗ � (p∗)−1q∗. R̂ : Γ̂→ Γ̂×M2 is defined by
R̂(y, y′) = (y, y′, q(y), q(y′)). In the following, we shall prove (R̂π)∗(ΔΓ̂) �= 0
by showing L(R : [N̂π,α]) =< (R̂π)∗(ΔΓ̂), [N̂π,α] >�= 0 (cf. Theorem 5.3).

Let {μ1, . . . , μs, μ
′
1, . . . , μ

′
s} be a symplectic basis of H̄∗(M ;F2). We have

the formula:

(5.12) (R̂π)∗(ΔΓ̂) ∈ (p̂π)∗ΔN,ϕ

by the following calculation:

(R̂π)∗(ΔΓ̂) =
s∑
i=1

φ∗(R∗(μi) ∪ T̂ ∗R∗(μ′i))

=
s∑
i=1

φ∗(p̂∗(p∗)−1q∗(μi) ∪ T̂ ∗p̂∗(p∗)−1q∗(μ′i))

=
s∑
i=1

φ∗(p̂∗(p∗)−1q∗(μi) ∪ p̂∗T ∗(p∗)−1q∗(μ′i))

= p̂∗π(
s∑
i=1

φ∗((p∗)−1q∗(μi) ∪ T ∗(p∗)−1q∗(μ′i)))

∈ p̂∗π(ΔN,ϕ).

And also we have the formula:
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L(R : [N̂π,α]) = < (R̂π)∗(ΔΓ̂), [N̂π,α] >

∈ < (p̂π)∗ΔN,ϕ, [N̂π,α] >

= < ΔN,ϕ, [Nπ,α] >

=L(ϕ : [Nπ,α]).

From this conclusion and our assumption, we have R̂∗π(ΔΓ̂) �= 0. Therefore we
obtain an equivariant point (y0, y

′
0) ∈ Γ̂ such that

T ′(R(y0, y
′
0)) = R(T̂ (y0, y

′
0))

by Theorem 4.5. This show T ′q(y0) = q(y′0). Therefore we see q(y0) ∈
ϕ(x0), T ′q(y0) ∈ ϕ(T (x0)) where x0 = p(y0), that is, T ′(ϕ(x0))∩ϕ(T (x0)) �= ∅.

For the proof of the second part, consider the following diagram:

H̄∗(Γ̂π, Γ̂π −A(R)π)
j∗3−−−−→ H̄∗(Γ̂π)

i∗3−−−−→ H̄∗(Γ̂π − A(R)π)⏐⏐�k∗
1

⏐⏐�id∗ ⏐⏐�k∗
2

H̄∗(Γ̂π, Γ̂π − p̂−1
π A(ϕ)π)

j∗2−−−−→ H̄∗(Γ̂π)
i∗2−−−−→ H̄∗(Γ̂π − p̂−1

π A(ϕ)π)�⏐⏐(p̂π1)
∗

�⏐⏐p̂∗π �⏐⏐(p̂π2)
∗

H̄∗(Nπ, Nπ −A(ϕ)π)
j∗1−−−−→ H̄∗(Nπ)

i∗1−−−−→ H̄∗(Nπ −A(ϕ)π)

where k1, k2 are induced by natural inclusions and p̂π1, p̂π2 are induced by p̂π.
Spaces Γ̂−A(R), Γ̂− p̂−1A(ϕ) and N −A(ϕ) have natural involutions induced
by T̂ and T respectively.

Since (R̂π)∗(ΔΓ̂) is the image of the class (R̂π)∗(ΔΓ̂,M ) in H∗(Γ̂π, Γ̂π −
A(R)π;F2) under j∗3 by Theorem 4.5, i∗2(R̂π)∗(ΔΓ̂) is zero. By the definition
of ΔN,ϕ and the formula (5.12), we have (R̂π)∗(ΔΓ̂) = p̂∗π(α) for a non zero
element α ∈ ΔN,ϕ. We see p̂∗π2i

∗
1(α) = i∗2p̂

∗
π(α) = 0 in the above diagram. Be-

cause of bijectivity of (p̂π2)∗ by Lemma 5.4, we obtain i∗1(α) = 0. Therefore we
have H̄m(Nπ, Nπ −A(ϕ)π;F2) �= 0. We obtain the last statement by applying
Theorem 4.6 and its proof.

In the above theorem, if we take the fundamental cycle [Nπ], we obtain a
generalization of Theorem 5.3 of M. Nakaoka [14] to an admissible mapping,
where the source space is a Poincaré space with a finite covering dimension (cf.
Theorem 7.1 in [16]). We obtain the following corollary as the special case.
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Corollary 5.6. Let N be an n-dimensional Poincaré space with a free
involution T which has a finite covering dimension and M a closed topological
manifold with a non-trivial involution T ′ which has the homology groups of
the n-dimensional sphere. For an admissible mapping ϕ : N → M , if ϕ∗

contains a non-trivial element, then there exists a point x0 ∈ N such that
T ′ϕ(x0) ∩ ϕ(T (x0)) �= ∅.

Proof. Since T ′ is a non-trivial involution, we easily see H̄n(Mπ;F2) = 0
by Poincaré duality. Hence M satisfies the condition (5.1). A symplectic basis
on M is given by {1, μ} where μ is a dual element of [M ]. By taking a selected
pair (p, q), we have (p∗)−1q∗(μ) = ν where ν is a dual element of [N ]. We see

< φ∗((p∗)−1q∗(1) ∪ T ∗((p∗)−1q∗(μ))), [Nπ] >= 1 ∈ L(ϕ : [Nπ])

by Definition 5.2. Therefore we obtain the result by Theorem 5.5.

We must remark the case that N is an n-dimensional Poincaré space with
a free involution T which has the homology groups of the n-dimensional sphere
and M is an n-dimensional closed topological manifold with an involution T ′

satisfying the condition (5.1). When ϕ∗ contains a non-trivial element, we as-
sert that M is an n-dimensional homology sphere. Let {μ1, . . . , μs, μ

′
1, . . . , μ

′
s}

be a symplectic basis on M where μ1 = 1 and μ′1 is a dual element of [M ]. If
s � 2, it holds μiT

∗μ′i = μ′1 for i � 2 by the definition of a symplectic basis. By
the dimensional reason, we see (p∗)−1q∗(μiT ∗μ′i) = 0 for i � 2 and therefore
(p∗)−1q∗(μ′1) = 0. By the non-triviality of ϕ∗, we have (p∗)−1q∗(μ′1) �= 0. From
the contradiction, we obtain s = 1. This means that M is an n-dimensional
homology sphere. Therefore we can not obtain any new result.

§6. Borsuk-Ulam Theorem for Set-Valued Mappings

Let M be an m-dimensional closed topological manifold with a trivial
involution. The i-th Wu class vi ∈ H̄i(M ;F2) (i = 0, 1, 2, . . .) of a manifold M

is defined by < Sqiα, [M ] >=< α ∪ vi, [M ] >, especially v0 = 1 and vi = 0 for
i > m

2 .
When the involution of M is trivial, M. Nakaoka determined the class Δ∞

by Theorem 3.5 in [15] and Theorem 9.1 in [16]. Note P = P0.

Theorem 6.1. Let M be an m-dimensional closed topological manifold.
Let {α1, . . . , αs} be a basis for H̄∗(M ;F2). Set

(6.1) d∗([M ]) =
∑
j,k

ηjkaj × ak (ηjk ∈ F2)
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where d(x) = (x, x) and ai = αi ∩ [M ]. Then, it holds

(6.2) Δ∞ =
∑
i�0

ωm−2iP (vi) +
∑
j<k

(ηjk + ηjjηkk)φ∗(1× αj × αk)

where ω = c(S∞ ×M2, T ) and vi = vi(M) the i-th Wu class of M and φ∗ :
H̄∗(S∞ ×M2;F2)→ H̄∗(S∞ ×π M2;F2) is the transfer homomorphism.

Though the above theorem is proved by using the singular cohomology
theory, we can easily verify the same statement for the Alexander-Spanier co-
homology theory.

If a space X has a free involution, we have the isomorphism q∗π :H̄k(Xπ;F2)
∼= H̄k(S∞ ×π X;F2) by Lemma 4.3. Define Q : H̄k(X;F2)→ H̄2k(Xπ;F2) by

(6.3) Q(α) = (q∗π)
−1(1×π Δ)∗P0(α)

where Δ(x) = (x, Tx) (cf. §2 in [15]). From the formula (6.1), we obtain the
following theorem (cf. Theorem 3.5 in [15], Proposition 9.2 in [16]).

Theorem 6.2. Under the notation of Theorem 6.1, let N be a para-
compact Hausdorff space with a free involution T and f : N →M a continuous
mapping. Then it holds

(6.4) f̂∗π(ΔN ) =
∑
i�0

cm−2iQ(f∗vi) +
∑
j<k

(ηjk + ηjjηkk)φ∗(f∗(αj) ∪ T ∗f∗(αk))

where c = c(N, T ) and φ∗ : H̄∗(N ;F2) → H̄∗(Nπ;F2) is the transfer homo-
morphism

Proof. Though the theorem is proved for the singular cohomology theory
in [15], we can easily verify the same statement for the Alexander-Spanier
cohomology theory. For the purpose, we have verified in §4 the commutativities
P (f∗(α)) = (1×πf2)∗(P (α)) and φ∗(1×f2)∗(1×α×β) = (1×πf2)∗φ∗(1×α×β)
where f : N →M and α, β ∈ H̄∗(M ;F2). Apply (q∗π)−1(1×π f2)∗(1×πΔ)∗ for
the formula of Theorem 6.1. From the above naturalities and the isomorphism
q∗π : H̄∗(S∞ ×π N ;F2)→ H̄∗(Nπ;F2), we easily obtain our formula.

L. Górniewicz studied the Borsuk-Ulam theorem for set-valued mapping in
§37 and §43 of [7]. He proved it for an upper semi-continuous acyclic mapping
ϕ : M → Rn where M is a closed topological manifold with the homology
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groups of the n-dimensional sphere. In this paper, we shall prove a generaliza-
tion of the Borsuk-Ulam theorem for the class of admissible mappings which
contains upper semi-continuous acyclic mappings (cf. [5, 6]). Now we shall
prove our main theorem. The proof proceeds by the same method as the proof
of Theorem 5.5.

Theorem 6.3. Let N be a paracompact Hausdorff space with a free in-
volution T and M an m-dimensional closed topological manifold. Assume that
the first Stiefel-Whitney class c(N, T ) satisfies c(N, T )m �= 0. If a set-valued
mapping ϕ : N → M is admissible and ϕ∗ contains the trivial element, then
there exists a point x0 ∈ N such that ϕ(x0) ∩ ϕ(T (x0)) �= ∅. Moreover if N is
an n-dimensional Poincaré space and the covering dimension of N is finite, it
holds dimA(ϕ) � n−m where A(ϕ) = {x ∈ N | ϕ(x) ∩ ϕ(T (x)) �= ∅}.

Proof. To begin with, we choose a selected pair (p, q) of ϕ where p :
Γ → N, q : Γ → M . By our hypothesis, p and q satisfy (p∗)−1q∗ = 0 for
positive dimensions. Now consider the diagram defined by (5.11). We see
R∗ = 0 for positive dimensions by the condition (p∗)−1q∗ = 0. Since p̂∗π is an
isomorphism by Lemma 5.4, we have p̂∗π(c

m) = ĉm �= 0 in H̄∗(Γ̂π;F2) where
ĉ = c(Γ̂, T̂ ), c = c(N, T ) and ĉ = p̂∗π(c).

Now we calculate (R̂π)∗(ΔΓ̂) by Theorem 6.2. Since we have φ∗(R∗(αj)∪
T ∗R∗(αk)) = 0 and ĉm−2iQ(R∗(vi)) = 0 for i > 0 from our hypothesis, we
obtain

(R̂π)∗(ΔΓ̂) = ĉmQ(R∗(v0)) = ĉm �= 0

from the formula (6.4) in Theorem 6.2. We conclude A(R) �= ∅ by Theorem
4.5 where A(R) = {(y, y′) ∈ Γ̂ |R(y, y′) = R(y′, y)}. Since it holds A(R) ⊂
p̂−1A(ϕ), we obtain the first statement.

For the second statement, since spaces Γ̂−A(R), Γ̂−p̂−1A(ϕ) and N−A(ϕ)
have natural involutions induced by T̂ and T respectively, we have their orbit
spaces Γ̂π − A(R)π, Γ̂π − p̂−1

π A(ϕ)π and Nπ − A(ϕ)π. Now we shall use the
second diagram defined in the proof of Theorem 5.5 and the notation there.
Since A(ϕ) is a π-invariant closed subset of N , we have the isomorphism (p̂π2)∗ :
H̄∗(Nπ − A(ϕ)π;F2) → H̄∗(Γ̂π − p̂−1

π (A(ϕ̂)π);F2) by Lemma 5.4. Note that
(R̂π)∗(ΔΓ̂) = ĉm is the image of cm ∈ H̄∗(Nπ;F2), that is, (p̂π)∗(cm) = ĉm.
Since ĉm is the image of (R̂π)∗(ÛΓ̂,M ) under j∗3 , it holds i∗2(ĉ

m) = 0. From this,
we see (p̂π2)∗(i1)∗(cm) = (i2)∗(p̂π)∗(cm) = (i2)∗(ĉm) = 0 in the diagram and
therefore (i1)∗(cm) = 0 because of the bijectivity of (p̂π2)∗. If H̄m(Nπ, Nπ −
A(ϕ)π;F2) = 0, we obtain cm = 0 which contradicts cm �= 0. Therefore we
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see H̄m(Nπ, Nπ − A(ϕ)π;F2) �= 0. We obtain the last statement by applying
Theorem 4.6 and its proof.

If N is a paracompact Hausdorff space with a free involution T which
has the homology groups of the n-dimensional sphere, the cohomology ring
H̄∗(Nπ;F2) of Nπ is a truncated polynomial ring F2[c]/(cn+1) from the Gysin-
Smith sequence of double covering space, where c = c(N, T ) is the generator of
H̄1(Nπ;F2). If ϕ∗ contains the trivial element, we easily obtain the following
corollary from Theorem 6.3.

Corollary 6.4. Let N be a paracompact Hausdorff space with a free
involution T which has the homology groups of the n-dimensional sphere. Let
M be an m-dimensional closed topological manifold with m � n. If a set-valued
mapping ϕ : N → M is admissible and ϕ∗ contains the trivial element, then
there exists a point x0 ∈ N such that ϕ(x0) ∩ ϕ(T (x0)) �= ∅. Moreover if N

is an n-dimensional Poincaré space with a finite covering dimension, it holds
dim A(ϕ) � n−m.

When M is a closed topological manifold which has the homology groups
of the m-dimensional sphere. The homology groups of M ′ = M −{a} is trivial
for positive dimensions. If it holds ϕ(N) �= M , we see R(Γ̂) �= M and R∗ = 0
for positive dimensions. Therefore we obtain the following result from Theorem
6.3.

Corollary 6.5. Let N be a paracompact Hausdorff space with a free
involution T . Let M be a closed topological manifold which has the homology
groups of the m-dimensional sphere. Assume that the first Stiefel-Whitney class
c(N, T ) satisfies c(N, T )m �= 0 and a set-valued mapping ϕ : N → M satisfies
ϕ(N) �= M . If a set-valued mapping ϕ is admissible, then there exists a point
x0 ∈ N such that ϕ(x0) ∩ ϕ(T (x0)) �= ∅. Moreover if N is an n-dimensional
Poincaré space with a finite covering dimension, it holds dimA(ϕ) � n−m.

Let X be a space with a free involution T and Sk the k-dimensional sphere
with the antipodal involution. Define γ(X) and Ind(X) by

γ(X) = inf {k | f : X → Sk equivariant mapping}
Ind(X) = sup {k | ck �= 0}

respectively, where c ∈ H̄1(Xπ;F2) is the class c = f∗π(ω) for an equivariant
mapping f : X → S∞. If X is a compact space with a free involution, it holds
the following formula (cf. §3 in [4]):

(6.5) Ind(X) � γ(X) � dim X.
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K. Gȩba and L. Górniewicz determined IndA(ϕ) of an admissible mapping
ϕ : Sn+k → Rn in [4]. We shall generalize their result.

Corollary 6.6. Let N be a paracompact Hausdorff space with a free
involution T which satisfies c(N, T )n �= 0. Let M be an m-dimensional closed
topological manifold with m � n. If a set-valued mapping ϕ : N → M is
admissible and ϕ∗ contains the trivial element, it holds IndA(ϕ) � n−m.

Proof. Consider the second diagram in the proof of Theorem 5.5. We can
find a class α ∈ H̄m(Nπ, Nπ − A(ϕ)π;F2) such that j∗1 (α) = cm (c = c(N, T ))
where j∗1 : H̄m(Nπ, Nπ −A(ϕ)π;F2)→ H̄m(Nπ;F2). If i∗(cn−m) is equal to 0
where i : A(ϕ)π → Nπ, there is an open neighborhood V of A(ϕ)π such that
i∗V (cn−m) = 0 and iV : V → Nπ. Then we can find β ∈ H̄m(Nπ, V ;F2) such
that j∗2 (β) = cn−m where j∗2 : H̄m(Nπ, V ;F2) → H̄m(Nπ;F2). It holds the
following equation:

j∗(α ∪ β) = j∗1 (α) ∪ j∗2 (β) = cm ∪ cn−m = cn.

The left hand side is zero by α ∪ β = 0 in H̄∗(Nπ, (Nπ − A(f)π) ∪ V ;F2) = 0.
Note that (Nπ − A(f)π) ∪ V = Nπ. The right hand side is not zero by
our hypothesis cn �= 0. From the contradiction, we see i∗(cn−m) �= 0 ∈
H̄n−m(A(ϕ)π;F2). Therefore we obtain the result by i∗(c)n−m = i∗(cn−m).

A similar result for a single-valued mapping is proved in [18] under some
condition. His method uses the (co)homology theory with compact support and
geometric consideration. Since our method is algebraic, the proof is more simple
and general. When N is a closed topological manifold with a free involution T

which has the homology groups of the n-dimensional sphere, we can prove the
above theorem by considering the following commutative diagram (cf. Chapter
6 §1 in E.H. Spanier [17]):

(6.6)

H̄k(Nπ;F2)
j∗−−−−→ H̄k(Nπ, Nπ −A(ϕ)π;F2)⏐⏐�−\U0

⏐⏐�−\U1

H̄n−k(Nπ;F2)
i∗−−−−→ H̄n−k(A(ϕ)π;F2)

where U0, U1 are the restrictions of the fundamental cocycle U ∈ H̄n(X2, X2−
d(X);F2) respectively.

From Theorem 6.3 and Corollary 6.5, we can easily obtain the follow-
ing corollary. We can also obtain a generalization of Theorem 43.10 in L.
Górniewicz [7] and Theorem 2.7 in [4] by considering Rm as the subspace of
the m-dimensional sphere Sm.
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Corollary 6.7. Let N be a closed topological manifold with a free in-
volution T which has the homology groups of the n-dimensional sphere. Let M

be an m-dimensional closed topological manifold with m � n. Assume that a
set-valued mapping ϕ : N →M satisfies ϕ(N) �= M . If a set-valued mapping ϕ

is admissible, then there exists a point x0 ∈ N such that ϕ(x0)∩ϕ(T (x0)) �= ∅.
Moreover it holds IndA(ϕ) � n−m.
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