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Abstract

We define the elliptic Hecke algebras for arbitrary marked elliptic root systems in
terms of the corresponding elliptic Dynkin diagrams and make a ‘dictionary’ between
the elliptic Hecke algebras and the double affine Hecke algebras.

§1. Introduction

1.1. Over the last fifteen years or so, there were remarkable developments
in the study of multi-variable orthogonal polynomials, attached to root systems.
One of these developments was due to Cherednik. In [C1], he defined an dif-
ference analogue of Knizhnik-Zamolodikov equations, so-called affine quantum
difference Knizhnik-Zamolodikov equations and established their equivalence
with the corresponding eigenvalue problem of Macdonald type. To prove the
above equivalence, he introduced a new class of algebras, so-called the double
affine Hecke algebras. Moreover, he proved Macdonald’s inner product conjec-
ture in [C2]. In a process of solving it, the double affine Hecke algebras also
played an important role.

Cherednik’s construction is generalized to an important class of non-
reduced root systems, (C∨

n , Cn) by Noumi [N] and Sahi [Sa]. When n = 1
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(rank 1 case), the corresponding orthogonal polynomials are the Askey-Wilson
polynomial [AW] which include as special and limiting cases all the classical
families of orthogonal polynomials in one variable. In [M5], Macdonald formu-
lated all the above results uniformly.

1.2. In the middle of 1980’s, K. Saito [S] defined a notion of the marked
elliptic root systems which is a generalization of finite or affine root systems,
motivated by the study of simple elliptic singularities. Attaching each marked
elliptic root system, he introduced a diagram, so-called the elliptic Dynkin
diagram which describes the structure of a marked elliptic root system. In
addition, he gave a complete classification of marked elliptic root systems under
some suitable assumptions. In the original motivation, vertices in an elliptic
Dynkin diagram correspond to vanishing cycles and edges describe intersection
numbers of them.

After K. Saito’s work, he and Takebayashi studied the structure of the Weyl
groups associated to marked elliptic root systems, so-called the elliptic Weyl
groups [ST]. In particular, they found a new presentation of elliptic Weyl groups
in terms of the corresponding elliptic Dynkin diagrams. The explicit meaning
is as follows. In the finite and affine cases, it is well-known that the structure
of the Weyl groups can be described by the corresponding Coxeter-Dynkin
diagrams. Namely, the set of generators and relations of the Weyl group can
be read from the corresponding Coxeter-Dynkin diagram. As a generalization,
they gave a generating system of the elliptic Weyl group attached to vertices
of the elliptic Dynkin diagram and the defining relation which are described by
the ‘shape’ of it. These relations are called the elliptic Coxeter relations.

Since the Weyl groups of finite and affine root systems are Coxeter groups,
one can consider the corresponding Hecke algebras. In the elliptic case, as an
application of the K. Saito-Takebayashi’s presentation, Yamada [Y] defined a
q-analogue of elliptic Weyl groups called the elliptic Hecke algebras for “one-
codimensional” marked elliptic root systems which have only one dotted line
in their elliptic Dynkin diagrams. After that Takebayashi [T1], [T2] defined
them for arbitrary marked elliptic root systems except for the group (D) (c.f.
4.2). Yamada and Takebayashi also pointed out that elliptic Hecke algebras are
much like double affine Hecke algebras. More precisely, for some cases, they
stated that the elliptic Hecke algebras are embedded into the double affine
Hecke algebras.

1.3. The aim of this article to establish an explicit connection between
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the elliptic Hecke algebras and the double affine Hecke algebras. For that
purpose, we reformulate the uniform construction of the double affine Hecke
algebras due to Macdonald [M5]. In Section 2, we give a quick review of the
theory of the affine Hecke algebras. All statements in this section are well-
known. In Section 3, we introduce a notion of triplets. This is a basic datum
to define the double affine Hecke algebras and a key of our construction. For a
giving triplet, we define the double affine Hecke algebras and give some basic
properties of them. After recalling the theory of elliptic root systems in Section
4 following K. Saito [S], we give the definition of the elliptic Hecke algebras in
Section 5. They are defined by some generators and relations attached to the
elliptic Dynkin diagrams of the corresponding (marked) elliptic root system. In
addition, we give another presentation of them. (Proofs of the statements are
given in Section 7.) Section 6 is the main part of this article. For a giving
marked elliptic root system (R, G), we introduce the corresponding triplet and
the double affine Hecke algebra attached to it as in Section 3. On the other hand
we have another algebra (the corresponding elliptic Hecke algebra) attached to
(R, G) as in Section 5. After that, we make a comparison between them. This
is a main result of this article (Theorems 6.2.3, 6.3.2).

1.4. Finally, we must refer the results of Takebayashi. As we already
mentioned above, he introduced a notion of the elliptic Hecke algebras. More
precisely, in [T1], he defined them for elliptic root systems of type (1, 1) and
compare them and the double affine Hecke algebras by case-by-case checking.
After that, in [T2], he defined them for arbitrary marked elliptic root systems
except for the group (D) (c.f. 4.2), but he did not compare them and the
double affine Hecke algebras for arbitrary cases. In his definition, he use new
diagrams which are called the “completed elliptic Dynkin diagrams”. But, as
we mentioned above, the elliptic Dynkin diagram have a concrete meaning in
a geometrical setting. Therefore, in this article, we try to ‘re-define’ ellip-
tic Hecke algebras by using the original elliptic Dynkin diagrams, in stead of
the completed elliptic Dynkin diagrams and to make an explicit and uniform
‘dictionary’ between the elliptic Hecke algebras and the double affine Hecke
algebras for arbitrary cases.

The announcement of the results of this article already appeared as [SS].

§2. Affine Hecke Algebras

2.1. Affine root systems and affine Weyl groups. Let V be an n-
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dimensional real vector space with a positive definite symmetric bilinear form
〈·, ·〉, R0 ⊂ V an irreducible finite root system and fix a1, · · · , an simple roots
in R0. For a ∈ R0 set a∨ := 2a/〈a, a〉. Denote by Q(R0) = ⊕Zai the root
lattice, (Q(R0))+ = ⊕Z≥0ai, P (R0) = {λ ∈ V | 〈λ, a∨

i 〉 ∈ Z} the weight lat-
tice, (P (R0))+ the set of all dominant weights, (P (R0))− = −(P (R0))+ and
W (R0) the corresponding Weyl group. Set R∨

0 = {a∨ | a ∈ R0}. It is also an
irreducible finite root system.

Let F := V ⊕Rc and we will interpret an element of F as a function on V by
(u+ rc)(v) = 〈u, v〉+ r. We extend 〈·, ·〉 to a positive semidefinite bilinear form
on F by 〈u1+r1c, u2+r2c〉 := 〈u1, u2〉. Let S(R0) be the set of all vectors of the
form a+rc where a ∈ R0 and r is any integer if 1

2a �∈ R0 (resp. any odd integer
if 1

2a ∈ R0). Set a0 := −θ + c , where θ is the highest root of R0. Then S(R0)
is an irreducible reduced affine root system with simple roots a0, a1, · · · , an.
We remark that c can be written in the following form: c =

∑n
i=0 niai, where

ni ∈ Z>0 and n0 = 1. The dual root system S(R0)∨ := {a∨ | a ∈ S(R0)} is
also an irreducible reduced affine root system with a basis a∨

0 , · · · , a∨
n .

For later use, we introduce the following notation: set

bi :=

{
ai, if S = S(R0),
a∨

i , if S = S(R0)∨.

For S = S(R0) or S(R0)∨, we denote by Q(S) := ⊕n
i=0Zbi its root lattice.

If R0 of type X where X is one of the symbols An, Bn, Cn, BCn, Dn, E6,
E7, E8, F4, G2, we say that S(R0) (resp. S(R0)∨) is of type X (resp. X∨). It is
known that any irreducible reduced affine root system S is isomorphic to either
S(R0) or S(R0)∨. In Appendix, we will present a complete list of irreducible
reduced affine root systems.

Firstly assume that S is an irreducible reduced affine root system. Namely
S = S(R0) or S(R0)∨. Let W (S) be the affine Weyl group of S. It is generated
by reflections wf (f ∈ S) where wf (g) = g−〈g, f∨〉f for g ∈ F. Since (f∨)∨ =
f , we have wf∨ = wf and W (S(R0)) = W (S(R0)∨). Define the action of v ∈ V

in F by t(v) : f �→ f − 〈f, v〉c. The following fact is well-known.

Theorem 2.1.1. (1) W (S) = W (R0) � t(Q(R∨
0 )). (2) W (S) is gener-

ated by wi := wbi
(i = 0, · · · , n) and a Coxeter group which corresponds to the

affine Dynkin diagram of S.

Let W̃ (S) := W0 � t(P (R∨
0 )) be the extended affine Weyl group. It is

easy to see that W (S) is a normal subgroup of W̃ (S) and W̃ (S)/W (S) ∼=
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P (R∨
0 )/Q(R∨

0 ). Let S+ be the set of positive roots and S− := −S+. For w ∈
W̃ (S), define l(w) := |S+∩w−1S−|. If w ∈ W (S), its length with respect to the
generators w0, · · · , wn is just equal to l(w). Define Ω := {w ∈ W̃ (S) | l(w) = 0}.
It is a subgroup and W̃ (S) = Ω � W (S). Therefore Ω ∼= P (R∨

0 )/Q(R∨
0 ). Since

Ω is a subgroup of W̃ (S), it acts on S. Moreover, it is known that, Ω preserves
the set of all simple roots. Therefore, for u ∈ Ω such that u(bi) = bj , we have
uwiu

−1 = wj .
For later use, we will explain an explicit structure of Ω. Let vi be the

shortest element of W (R0) such that viωi ∈ P (R∨
0 )−, where {ωi}n

i=1 is the
set of all fundamental weights of P (R∨

0 ). Let ui = t(ωi)v−1
i (1 ≤ i ≤ n) and

u0 = 1.

Lemma 2.1.2. Set J = {j | 0 ≤ j ≤ n, nj = 1}. We have Ω =
{uj | j ∈ J}.

Remark . We have already defined W (S) and W̃ (S) for any irreducible
reduced affine root system (not only for S = S(R0)). As we mentioned above,
W (S(R0)) = W (S(R0)∨). Moreover, by the construction, we have W̃ (S(R0)) =
W̃ (S(R0)∨).

Secondly assume S is an irreducible, non-reduced affine root system. In
this case, the following fact is known:

Fact 1. Let S1 := {a ∈ S | a/2 �∈ S} and S2 := {a ∈ S | 2a �∈ S}. We
have S = S1 ∪ S2 and both S1 and S2 are reduced affine root systems with the
same affine Weyl group.

We say that S is of type (X1, X2) where Xi is the type of Si (i = 1, 2). In this
case, the basis of S is that of S1 and its affine Weyl group W (S) is equal to
W (S1) = W (S2).

2.2. Affine Hecke algebras. In this subsection, we assume S is reduced.

Definition 2.2.1. (1) Let B̃ the group with generators T (w) (w∈W̃ (S))
and relations:

T (v)T (w) = T (vw), if l(v) + l(w) = l(vw).

(2) Let B be the subgroup of B̃ generated by Ti := T (wi) (i = 0, · · · , n).

We write Uj = T (uj) for j ∈ J . It is known that B̃ is generated by Ti, Uj .



850 Yoshihisa Saito and Midori Shiota

Consider a Laurent polynomial ring Z[τ±1
0 , · · · , τ±1

n ]. Let Ĩ (resp. I) be
the ideal generated by the elements τi − τj where wi and wj are conjugate in
W̃ (S) (resp. W (S)). Set

Ãa = Z[τ±1
0 , · · · , τ±1

n ]/Ĩ and Aa = Z[τ±1
0 , · · · , τ±1

n ]/I.

Obviously both Ãa and Aa are isomorphic to some Laurent polynomial rings
in several variables. More precisely, if R0 is simply laced, Ãa is a Laurent
polynomial ring in one variable. If not, Ãa have two variables; one corresponds
to short roots and the other to long roots. If R0 is not of type A1 or Cn, Ĩ = I.
Therefore we have Ãa = Aa. In the case of type A1, Aa has two variables.
These are τ0, τ1 which correspond to simple roots a0 and a1. In the case of
type Cn, Aa has three variables. These are τ0, τn and τ1 = · · · = τn−1. Here
a0 and an are long simple roots and the others are short simple roots.

Definition 2.2.2. (1) The extended affine Hecke algebra H(W̃ (S)) is
the quotient of the group algebra Ãa[B] by the ideal generated by the following
relations:

(A1) (Ti − τi)(Ti + τ−1
i ) = 0, for i = 0, · · · , n.

(2) The affine Hecke algebra H(W (S)) is the quotient of the group algebra
Aa[B] by the ideal generated by the same relations as (A1).

We regard Ãa as an Aa-algebra via a natural projection Aa → Ãa. The Ãa-
algebra Ãa⊗Aa

H(W (S)) is naturally isomorphic to the subalgebra of H(W̃ (S))
which is generated by Ti (i = 0, · · · , n).

Theorem 2.2.3. Under the convention which we mentioned above, we
have H(W̃ (S)) = Ω � (Ãa ⊗Aa

H(W (S))), where the action of Ω on Ti is the
same as Weyl group case.

There is another presentation of H(W̃ (S)) which is very useful to study
affine Hecke algebras. For μ′ ∈ P (R∨

0 ) define Y μ′ ∈ H(W̃ (S)) as follows: (i) If
μ′ ∈ P (R∨

0 )+, then Y μ′
:= T (t(μ′)); (ii) If μ′ = λ′ − ν′ with λ′, ν′ ∈ P (R∨

0 )+,
then Y μ′

:= T (t(λ′))T (t(ν′))−1.
For H(W (S)), we also define Y μ′ ∈ H(W (S)) in the similar way by re-

placing P (R∨
0 ) with Q(R∨

0 ).

We introduce the following notation: let

b(z1, z2; x) =
z1 − z−1

1 + (z2 − z−1
2 )x

1 − x2
,
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where z1, z2 and x are indeterminates. When z1 = z2, b(z1, z2; x) has the
simpler form

b(z1, z1; x) =
z1 − z−1

1

1 − x
.

In the case of H(W̃ (S)) such that R0 is of type A1 or of type Cn, for 1 ≤ i ≤ n,
we set

τ ′
i =

{
τi, i �= n,

τ0, i = n.

For the other case, we set τ ′
i = τi for any i = 1, · · · , n.

Theorem 2.2.4. (1) Y μ′
is well-defined for all μ′ and

(A2) Y μ′
Y ν′

= Y μ′+ν′
.

(2) In the algebra H(W̃ (S)) (resp. H(W (S))), the following relations hold
(called Lusztig’s relations) :

(A3) Y μ′
Ti − TiY

wi(μ
′) = b(τi, τ

′
i ; Y

−a∨
i )(Y μ′ − Y wi(μ

′)),

for i = 1, · · · , n and μ′ ∈ P (R∨
0 ) (resp. Q(R∨

0 )).
(3) Let us consider the algebra generated by Ti (i = 1, · · · , n) and Y μ′

(μ′ ∈
P (R∨

0 )) and relations (A1) for i = 1, · · · , n, (A2) and (A3). Then it is isomor-
phic to H(W̃ (S)). Further, by replacing P (R∨

0 ) with Q(R∨
0 ), the corresponding

algebra is isomorphic to H(W (S)).

§3. Double Affine Hecke Algebras

In this section, we give the definition of the double affine Hecke algebras
in terms of triplets. We remark that our definition is not new. It is only a
reformulation of the uniform construction of the double affine Hecke algebras
due to Macdonald [M5].

3.1. Triplets. Let us consider the following three types of datum Ξ = (R0; S,

Λs) which we call a triplet :

(type I) R0 is a finite irreducible reduced root system,

S = S(R0) or S(R0)∨, Λs = Q(S′) where S′ = S(R0).

(type II)
R0 and S are as the same in type I, Λs = Q(S′) where S′ = S(R0)∨.
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(type III) R0 is of type Cn (n ≥ 1) (Here we denote C1 = A1.);

S is of type (C∨
n , Cn), Λs = Q(S(R0)∨).

(In Appendix, we present the detailed structure of the affine root system of
type (C∨

n , Cn).)

Set

L =

⎧⎪⎨⎪⎩
P (R0), (type I),
P (R∨

0 ), (type II),
Q(R∨

0 ), (type III),
L′ =

⎧⎪⎨⎪⎩
P (R∨

0 ), (type I),
P (R∨

0 ), (type II),
Q(R∨

0 ), (type III).

In each case, let Λ := L ⊕ Zc0. Here c0 = e−1c and e is the exponent of
Ω ∼= P (R∨

0 )/Q(R∨
0 ),

Next we fix a normalization of 〈·, ·〉. Recall a basis {ai}n
i=0 of S(R0). For

type I and II, we normalize 〈·, ·〉 as 〈θ, θ〉 = 2. Therefore we have a∨
0 = −θ+c =

a0. For type III, S = S1 ∪ S2 where S1 = S(R0)∨ and S2 = S(R0). Here R0

is of type Cn (n ≥ 1). In this case e = 2 and we normalize 〈·, ·〉 as 〈θ, θ〉 = 4.
Therefore we have 〈a0, a0〉 = 〈an, an〉 = 4 and 〈ai, ai〉 = 2 (i = 1, · · · , n − 1).
Moreover a basis {a∨

i } of S1 and a basis {ai} of S2 are related by the following
way:

a∨
0 =

1
2
a0 = −θ

2
+

c

2
, a∨

n =
1
2
an, a∨

i = ai (i = 1, · · · , n − 1).

Under the above convention, we immediately have the following lemma.

Lemma 3.1.1. For any case, Λs is a sublattice of Λ.

Let us introduce the following notations:

a�
i :=

{
ai, (type I),
a∨

i , (type II or III).

We remark that {a�
i}n

i=0 is a basis of Λs.
In each case, let

W (Ξ) := W (R0) � t(L′), and W (Ξ)s := W (R0) � t(Q(R∨
0 )).

If Ξ is of type I or II, the first one is the extended affine Weyl group of S and
the second is non-extended one. On the other hand, for type III, both are the
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affine Weyl group of S.

The first statement of the following lemma is due to Macdonald [M5] and
the second is trivial by the definition.

Lemma 3.1.2. (1) Λ is stable under the action of W (Ξ).
(2) Λs is stable under the action of W (Ξ)s.

3.2. Definition of double affine Hecke algebras. Let A be a commutative
ring defined by the following way:

A =

{
Ãa, (type I or II),
Aa[(τ �

0)±1, (τ �
n)±1], (type III),

where τ �
0 and τ �

n are new indeterminates.

Definition 3.2.1. Let Ξ = (R0; S, Λs) be a triplet given in the previous
subsection. For i = 0, · · · , n, let bi(x) = b(τi, τ

�
i ; x). Here we set τ �

i = τi for all
i when Ξ is of type I or II and for i �= 0, n when Ξ is of type III.

The double affine Hecke algebra H(Ξ) is an associative A-algebra defined
by the following way.

If Ξ is of type I or II, it is generated by Ti (i = 0, · · · , n), Uj (j ∈ J),
Xλ (λ ∈ Λ) subject to the following relations:

(D1) Ti and Uj satisfy the same relations in H(W (S)),

(D2) XλXμ = XμXλ = Xλ+μ,

(D3) TiX
λ − Xwi(λ)Ti = bi(Xa�

i )(Xλ − Xwi(λ)),

(D4) UjX
λU−1

j = Xuj(λ).

If Ξ is of type III, it is generated by Ti (i = 0, · · · , n), Xλ (λ ∈ Λ) subject
to the similar relations as (D1), (D2), (D3).

Following [M5], we say H(Ξ) is the double affine Hecke algebra of type
(S, S′) for a triplet Ξ of type I or II. For a triplet of type III, we say H(Ξ) is
the double affine Hecke algebra of type (C∨

n , Cn).

The following theorem is essentially due to Macdonald [M5].
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Theorem 3.2.2. (1) Xc0 is a central element. (2) Each of the following
sets

{XλT (w)Y μ′ | λ ∈ Λ, w ∈ W (R0), μ′ ∈ L′},
{Y μ′

T (w)Xλ | λ ∈ Λ, w ∈ W (R0), μ′ ∈ L′},
{XλT (w) | λ ∈ Λ, w ∈ W (Ξ)}, {T (w)Xλ | λ ∈ Λ, w ∈ W (Ξ)}

forms a free A-basis of H(Ξ).

Remark . In the original article [M5], the definition of H(Ξ) is slightly
different: e is the positive integer such that 〈L, L′〉 = e−1Z, except in type III
in which case e = 2. The central element q0 := Xc0 is considered as a real
number such that 0 < q0 < 1. τi and τ �

i are also considered as positive real
numbers. Assume q0, τi and τ �

i are algebraically free over Z and H(Ξ) is defined
as an algebra over K with same generators and relations, where K is a subfield
of R containing q0, all τi and τ �

i . The original theorem is the following: each
of the four sets which is given by replacing Λ with L in the above theorem is
a K-basis of H(Ξ). But, in our situation, we can prove our statements by the
similar argument. So we omit the proof.

Definition 3.2.3. The small double affine Hecke algebra H(Ξ)s is the
subalgebra of H(Ξ) which is generated by T (w) (w ∈ W (Ξ)s) and Xλ (λ ∈ Λs).

We remark that H(Ξ)s is just equal to H(Ξ) for Ξ of type III.

Assume Ξ of type I or II. By Lemma 3.1.1 (2), Definition 3.2.1 and Theorem
3.2.2, we immediately have the following statement.

Corollary 3.2.4. (1) The similar relations as (D1), (D2) and (D3) in
Definition 3.2.1 hold in H(Ξ)s. (2) Each of the following sets

{XλT (w)Y μ′ | λ ∈ Λs, w ∈ W (R0), μ′ ∈ Q(R0)∨},

{Y μ′
T (w)Xλ | λ ∈ Λs, w ∈ W (R0), μ′ ∈ Q(R0)∨},

{XλT (w) | λ ∈ Λs, w ∈ W (Ξ)s}, {T (w)Xλ | λ ∈ Λs, w ∈ W (Ξ)s}
forms a free A-basis of H(Ξ)s.

Therefore we have the following.

Corollary 3.2.5. As a set H(Ξ)/H(Ξ)s
∼= (Λ/Λs) × Ω. Especially

H(Ξ)s is a subalgebra of H(Ξ) with a finite index.
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§4. Summary of Elliptic Root Systems

4.1. Marked Elliptic root systems. Let F be an (n + 2) dimensional real
vector space with a positive semi-definite symmetric bilinear form I : F×F → R

with the two-dimensional radical which is denoted by rad(I). If α ∈ F satisfies
I(α, α) �= 0, we say α is a non isotropic vector. For a non isotropic vector α ∈ F ,
put α∨ := 2α/I(α, α) and define a reflection sα by sα(u) := u − I(u, α∨)α for
u ∈ F .

Definition 4.1.1. A set R of non isotropic vectors in F is called an
elliptic root system of rank n if the following conditions are satisfied: (i)
Q(R) ⊗Z R ∼= F . (Here Q(R) is the additive subgroup of F generated by
R.) (ii) sα(R) = R for any α ∈ R. (iii) I(α, β∨) ∈ Z for any α, β ∈ R. (iv) R is
irreducible. That is, there exists no partition of R into two non-empty subsets
R1 and R2 such that I(α, β) = 0 for all α ∈ R1 and β ∈ R2.

Let W (R) be the group generated by all reflections sα (α ∈ R). We call
W (R) the elliptic Weyl group.

A subspace G of rad(I) of rank 1 defined over Q is called a marking and
the pair (R, G) is called a marked elliptic root system.

We fix a generator δ1 of the rank 1 lattice G∩Q(R): G∩Q(R) = Zδ1. For
α ∈ R, set kα := inf {k ∈ Z>0 | α + kδ1 ∈ R} and α∗ := α + kαδ1.

Let πa : F → F/G (resp. πf : F → F/rad(I)) be the natural projection
and set Ra := πa(R) (resp. πf (R) := Rf ). Ra (resp. R0) is an affine (resp.
finite) root system. In the present paper we assume that Rf is reduced, which
implies that Ra is also reduced.

We fix a subset Γa = {α0, · · · , αn} of R such that πa(Γa) forms a basis of
the affine root system Ra. Let δa be the primitive imaginary root of Ra. Then
δa can be written in the following form: δa =

∑n
i=0 niπa(αi), (ni ∈ Z>0). It

is well-known that there always exists an element α ∈ Γa, say α0, such that
nα0 = 1. Set δ2 :=

∑n
i=0 niαi ∈ R and θ :=

∑n
i=1 niαi.

By the construction it is easy to see that Q(R) has a following expression:

Q(R) =
( n⊕
i=0

Zαi

) ⊕ Zδ1 =
( n⊕
i=1

Zαi

) ⊕ Zδ1 ⊕ Zδ2.

For 0 ≤ i ≤ n, set mi := IR(αi, αi)ni/2kαi
, where IR is a constant multiple

of I normalized such that inf {IR(α, α) | α ∈ R} is equal to 2. Consider the
subset Γmax := {αi ∈ Γa | mi = mmax} of Γa, where mmax := max {mi | 0 ≤
i ≤ n}. Put Γ∗

max := {α∗
i | αi ∈ Γmax}.
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Let (R, G) be a marked elliptic root system belonging to I. Then R∨ :=
{α∨ ∈ F | α ∈ R} is also an elliptic root system belonging to I. Moreover it
is known that the same space G defines a marking for R∨. We call the pair
(R∨, G) the dual marked elliptic root system of (R, G).

4.2. Elliptic Dynkin diagrams. An elliptic Dynkin diagram Γ(R, G) for a
marked elliptic root system (R, G) is a finite graph given by the following data:

(1) the vertex set of Γ(R, G) is Γ := Γa ∪ Γ∗
max.

(2) two vertices α, β ∈ Γ are connected according to the following conditions:

�α �β if I(α, β) = I(β, α) = 0,

�α �β if I(α, β∨) = I(β, α∨) = −1,

�α �β�t
if I(α, β∨) = −μ and I(β, α∨) = −1 for μ = 2, 3,

�α �β
∞

if I(α, β∨) = I(β, α∨) = −2,

�α �β If I(α, β∨) = I(β, α∨) = 2.

Afterwards we use the following conventions:

� � = � ��μ
= � ��μ for μ = 1,

� ��μ
= � ��μ

−1

for μ = ±2,±3.

The following theorem is due to K. Saito [S].

Theorem 4.2.1. The isomorphism classes of marked elliptic root sys-
tems are completely classified by their elliptic Dynkin diagrams.

In Appendix, we will present a complete list of marked elliptic root systems
(R, G) under the assumption that Rf is reduced.

By the above classification theorem we have the following lemma.

Lemma 4.2.2. The component Γ(R, G) \ (Γmax ∪ Γ∗
max) = Γa \ Γmax

is a disjoint union of A-type diagrams, say Γ(Al1), · · · , Γ(Alr).

For αi ∈ Γa, we set α†
i := kαi

α∨
i . It is known that the set Q((R, G)a) :=

⊕n
i=0Zα†

i forms a root lattice of an irreducible reduced affine root system
(R, G)a with a basis {α†

i}n
i=0. In order to describe the explicit type of (R, G)a,

we introduce a grouping of isomorphism classes of marked elliptic root systems
due to K. Saito [S]:
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(A) A
(1,1)
n (n ≥ 1), D

(1,1)
n (n ≥ 4), E

(1,1)
n (n = 6, 7, 8),

(B) B
(1,2)
n (n ≥ 3), B

(2,2)
n (n ≥ 2), C

(1,2)
n (n ≥ 2), C

(2,2)
n (n ≥ 3), F

(1,2)
4 , F

(2,2)
4 ,

G
(1,3)
2 , G

(3,3)
2 ,

(C) B
(1,1)
n (n ≥ 3), B

(2,1)
n (n ≥ 2), C

(1,1)
n (n ≥ 2), C

(2,1)
n (n ≥ 3), F

(1,1)
4 , F

(2,1)
4 ,

G
(1,1)
2 , G

(3,1)
2 ,

(D) A
(1,1)∗
1 , B

(2,2)∗
n (n ≥ 2), C

(1,1)∗
n (n ≥ 2).

Theorem 4.2.3. If (R, G) belongs to the group A, B or C, we have

Q((R, G)a) ∼=

⎧⎪⎨⎪⎩
Q(Ra) = Q(R∨

a ), if (R, G) belongs to the group A,

Q(Ra), if (R, G) belongs to the group B,

Q(R∨
a ), if (R, G) belongs to the group C.

If (R, G) belongs to the group D, we have

Q((A(1,1)∗
1 )a) ∼= Q(S(A1)), Q((B(2,2)∗

n )a) ∼= Q((C(1,1)∗
n )a) ∼= Q(S(BCn)).

If (R, G) belongs to the group A, B or C, there exists the irreducible reduced
finite root system R

(0)
f such that Q(R, G)a is isomorphic to Q(S(R(0)

f )) or

Q(S(R(0)
f )∨). But in general, R

(0)
f is not isomorphic to Rf .

4.3. Boundary side. Let us introduce the notion of the boundary side due to
K. Saito and Takebayashi [ST]. For each pair αi, αj ∈ Γa which are connected
as �αi

� αj
�μ for μ = 2±1, 3±1, it is known that k(αi, αj) := kαi

/kαj
is equal

to either 1 or μ.

Definition 4.3.1. In the above setting, αi is called the boundary side
(or b-side for short) for the bond �αi

� αj
�μ with μ = 2±1, 3±1, if k(αi, αj) =

inf{1, μ}.

Remark . For the bond �αi
� αj

�μ for μ = 2±1, 3±1, either αi or αj is
a b-side.

4.4. Hyperbolic extension of elliptic Weyl groups. Let (R, G) be a
marked elliptic root system. Consider the pair (F̃ , Ĩ) of a vector space F̃ over
R and a symmetric bilinear form Ĩ on F̃ such that F is a 1-codimensional
subspace of F̃ , Ĩ|F = I and rad(Ĩ) = G. Such (F̃ , Ĩ) exists uniquely up
to isomorphisms. By the definition, we can regard R is a subset of F̃ . Let
s̃α ∈ O(F̃ , Ĩ) be the reflection with respect to α ∈ R and W̃ (R, G) the group
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generated by all reflections s̃α (α ∈ R) which is called the hyperbolic extension
of W (R).

K. Saito and Takebayashi [ST] gave a presentation of W̃ (R, G) by genera-
tors attached to the vertices of the elliptic Dynkin diagram Γ(R, G) and finitely
many relations. In their presentation, in addition to the ordinary Coxeter rela-
tions, new relations (so-called elliptic Coxeter relations) appeared. After [ST],
Yamada [Y] gave a modification of K. Saito and Takebayashi’s presentation for
one-codimensional cases. In this article, we generalize Yamada’s presentation
of W̃ (R, G) for arbitrary marked elliptic root systems.

The following is K. Saito and Takebayashi’s presentation of W̃ (R, G).

Theorem 4.4.1 ([ST]). W̃ (R, G) is isomorphic to the group with gen-
erators rα (α ∈ R) subject to the relations explained below.

For any subdiagrams of Γ(R, G) isomorphic to the following list, we give
relations attach to the diagrams in the following table.

(W0) r2
α = 1,�α

(W1-1) (rαrβ)2 = 1,�α �β

(W1-2) (rαrβ)3 = 1,�α �β

(W1-3) (rαrβ)4 = 1,�α �β�2±1

(W1-4) (rαrβ)6 = 1,�α �β�3±1

(W2-1) (rαrβrα∗rβ)3 = 1,

�α∗

�α

�β

����

����

(W2-2)

(rβrαrα∗)2 = (rαrα∗rβ)2,

(rβrαrα∗)2 commutes with rα, rα∗ ,

and rβ,

�α∗

�α

�β

����

����

∞
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(W2-3) rαrβ∗rα = rα∗rβrα∗ ,

⇔ rβrα∗rβ = rβ∗rαrβ∗ under (W0) and (W1-2),

�α∗ �β∗

�α �β

�
�

�
�

�
�

�
�

(W2-4) rαrα∗rβrβ∗ = rα∗rβrβ∗rα

= rβrβ∗rαrα∗ = rβ∗rαrα∗rβ,

�α∗ �β∗

�α �β

�
�

�
�

�
�

�
�

∞

(W3-1)

(rαrβrα∗rβ)2 = 1,

�α∗

�α

�β

����

����

����

���	

2±

(W3-2) (rαrβrα∗rβ)3 = 1,

(rαrβrα∗rβrαrβ)2 = 1,

�α∗

�α

�β

����

����

����

���	

3±

In the next diagram, we assume that α is b-side for the bond �α � β�μ
for

μ = 2±1, 3±1.

(W3-3)

rαrβ∗rα = rα∗rβrα.

�α∗ �β∗

�α �β

�

�

�
�

�
�

�
�

�
�

�
��


�
���

2±1

In the next diagram, we assume μ = 1, 2±1, 3±3.

(W4)
(rαrβrαrβ∗rγrβ∗)2 = 1,

(rαrβ∗rαrβrγrβ∗)2 = 1.
�α

�
β∗

�

β

�γ����

����

����

����

����

���	

μ

However there are exceptions. In the diagram (W2-4), there are four subdia-
grams of type (W2-2). But, we do not assume the relations (W2-2) for these four
subdiagrams. We only assume the relations (W2-4).

The relations (W2-1)∼(W4) are called elliptic Coxeter relations.
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The following theorem is a generalization of Yamada’s presentation [Y].

Theorem 4.4.2. W̃ (R, G) has another presentation with generators rα

(α ∈ R) subject to the relations explained below.
For any subdiagrams of Γ(R, G) isomorphic to the following list, we give

relations attach to the diagrams in the following table.

(E0) r2
α = 1, (as same as (W0)),�α

(E1-1) rαrβ = rβrα,�α �β

(E1-2) rαrβrα = rβrαrβ ,�α �β

(E1-3) rαrβrαrβ = rβrαrβrα,�α �β�2±1

(E1-4) rαrβrαrβrαrβ = rβrαrβrαrβrα,�α �β�3±1

In the following diagrams, we always assume that α, β, γ ∈ Γa. For α ∈ Γmax, set
xα† = rαrα∗ .

(E2-1) rβxα†rβxα† = xα†rβxα†rβ,

�α∗

�α

�β

����

����

(E2-2)

rβxα†rβxα† = xα†rβxα†rβ,

rβxα†rβxα† commutes with rα, rα∗ ,

and rβ,

�α∗

�α

�β

����

����

∞

(E2-3) xβ†xα† = rβxα†rβ,

⇔ xα†xβ† = rαxβ†rα under (E0) and (E1-2),

�α∗ �β∗

�α �β

�
�

�
�

�
�

�
�
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(E2-4) xβ†xα† = xα†xβ† ,

xα†xβ† commutes with rα, rα∗ , rβ† and rβ∗ .

�α∗ �β∗

�α �β

�
�

�
�

�
�

�
�

∞

In the next three diagrams, we assume that α is b-side for the bond �α � β�μ

for μ = 2±1, 3±1.

(E3-1)
rαrβxα†rβ = rβxα†rβrα,

�α∗

�α

�β

����

����

����

���	

2±

(E3-2) rβxα†rβxα† = xα†rβxα†rβ

= rαrβxα†rβrα,

�α∗

�α

�β

����

����

����

���	

3±

(E3-3)

xβ†xα† = rβxα†rβ.

�α∗ �β∗

�α �β

�

�

�
�

�
�

�
�

�
�

�
��


�
���

2±1

In the next diagram, we assume γ does not belong to Γmax ∪ Γ∗
max and μ =

1, 2±1, 3±1.

(E4) xβ†rαrγxβ†rγ = rγxβ†rγrαxβ† .�α

�
β∗

�

β

�γ����

����

����

����

����

���	

μ

However there are similar exceptions as Theorem 4.4.1. In the diagram (E2-4),
there are two subdiagrams of type (E2-2). But, we do not assume the relations (E2-2)
for these two subdiagrams. We only assume the relations (E2-4).

It is well-known that the relations (W0), (W1-1), (W1-2), (W1-3), (W1-4)
are equivalent to the relations (E0), (E1-1), (E1-2), (E1-3),(E1-4).

The following lemma is due to Yamada [Y].
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Lemma 4.4.3. Assume the relations (W0), (W1-1), (W1-2), (W1-3),
(W1-4) (equivalently, (E0), (E1-1), (E1-2), (E1-3), (E1-4)) hold.
(1) For a subdiagram of the form as (W2-1), we have

(rαrβrα∗rβ)3 = 1 ⇔ rβxα†rβxα† = xα†rβxα†rβ.

(2) For a subdiagram of the form as (W3-1), we have

(rαrβrα∗rβ)2 = 1 ⇔ rαrβxα†rβ = rβxα†rβrα.

(3) For a subdiagram of the form as (W3-2), we have

(rαrβrα∗rβ)3 = 1 and (rαrβrα∗rβrαrβ)2 = 1

⇔ rβxα†rβxα† = xα†rβxα†rβ = rαrβxα†rβrα.

(4) For a subdiagram of the form as (W4), we have

(rαrβrαrβ∗rγrβ∗)2 = 1 ⇔ xβ†rαrγxβ†rγ = rγxβ†rγrαxβ† ,

(rαrβ∗rαrβrγrβ∗)2 = 1 ⇔ xβ†rγrαxβ†rα = rαxβ†rαrγxβ† ,

The following lemma is easily obtained from the definition of xα† and the
relation (W0).

Lemma 4.4.4. Under the same assumption as the previous lemma, we
have the following :
(1) For a subdiagram of the form as (W2-3),

rαrβ∗rα = rα∗rβrα∗ ⇔ xβ†xα† = rβxαrβ.

(2) For a subdiagram of the form as (W3-3),

rαrβ∗rα = rα∗rβrα∗ ⇔ xβ†xα† = rβxαrβ.

(3) For a subdiagram of the form as (W2-4), the following conditions are equiv-
alent.
(i) rαrα∗rβrβ∗ = rα∗rβrβ∗rα = rβrβ∗rαrα∗ = rβ∗rαrα∗rβ.

(ii) xβ†xα† = xα†xβ† and xα†xβ† commutes with rα, rα∗ , rβ† and rβ∗ .

Now we can state the difference of two presentations. In the first presen-
tation, we assume (W2-1) and (W3-1) for all subdiagram of that forms. On
the other hand, in the second presentation, we only assume (E2-1) and (E3-
1) for subdiagrams such that β belongs to Γa and α is b-side for the bond
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�α � β�μ for μ = 2±1. Similarly, in the first presentation, we assume (W4)
for all subdiagram of that forms. On the other hand, in the second presentation,
we only assume (E4) for subdiagrams such that γ is not belong to Γmax ∪Γ∗

max

and μ = 1, 2±1, 3±1. These are the difference of two presentations.

We remark that there is no difference between (W3-2) (resp. (W2-2)) and
(E3-2) (resp. (E2-2)). By the classification theorem of marked elliptic root
systems, in the subdiagram of the following form:

�α∗

�α

�β

����

����

����

���	

3±

β is automatically an element of Γa and α is automatically b-side for the bond
�α � β�3±1

. Similarly, for the subdiagram of the form as (W2-2) or (E2-2), β

is automatically an element of Γa.

For a proof of Theorem 4.4.2, the remaining problems are the followings:
Assume that rα (α ∈ R) satisfy the relation (E0)∼(E4) (not (W0)∼(W4)).
Then, the problems are;
(a) for all subdiagrams of the form as (W2-1), to prove

rβxα†rβxα† = xα†rβxα†rβ ,

(b) for all subdiagrams of the form as (W3-1), to prove

rαrβxα†rβ = rβxα†rβrα,

(c) for all subdiagrams of the form as (W4), to prove

xβ†rαrγxβ†rγ = rγxβ†rγrαxβ† and xβ†rγrαxβ†rα = rαxβ†rαrγxβ† .

Firstly, let us prove (a). If β belongs to Γa, the formula is nothing but
(E2-1). Therefore it is enough to show the following lemma.

Lemma 4.4.5. For the diagram

�α∗

�α

�β∗

����

����
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we have rβ∗xα†rβ∗xα† = xα†rβ∗xα†rβ∗ .

Proof. Such diagram is a subdiagram of

�α∗ �β∗

�α �β.

�
�

�
�

�
�

�
�

By (E2-3) and xβ† = rβrβ∗ , we have

rβ∗ = xα†rβx−1
α† .

Therefore we have

rβ∗xα†rβ∗xα† = xα†rβxα†rβ

= xα†(rβxα†rβxα†)x−1
α†

= x2
α†rβxα†rβx−1

α† (by (E2-1))

= (xα† · xα†rβx−1
α† )2

= xα†rβ∗xα†rβ∗ .

Secondly, let us prove (b). Assume α is b-side for the bond �α � β�2±1

in the diagram of the form as (W3-1). If β ∈ Γa, the formula is nothing but
(E3-1). For the case of β �∈ Γa, we can prove the formula in the similar way as
Lemma 4.4.5. Therefore it is enough to show the following lemma.

Lemma 4.4.6. In the diagram

�α∗

�α

�β

����

����

����

���	

2±

assume that β is b-side for the bond �α � β�2±1

. Then we have rαrβxα†rβ =
rβxα†rβrα.

Proof. By the classification of marked elliptic root systems, the above
diagram only appeared as a subdiagram of
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�α∗ �γ∗

�α �γ

�

�

�
�

�
�

�
�

�
�

�
��


�
���

2±1

where γ is b-side for the bond �α � γ�2±1

. We remark that there are two
choices of embeddings of diagrams. Namely β = γ or β = γ∗. We give the
proof only for the first case. For the second case we prove the formula by the
similar way.

By using (E3-3), we have

(4.4.1) rα∗ = rβrβ∗rαrβ∗rβ.

Therefore we have

rαrβxα†rβ = rαrβrαrα∗rβ

= rαrβrαrβrβ∗rαrβ∗r2
β (by (4.4.1))

= rβrαrβrαrβ∗rαrβ∗ (by (E0) and (E1-3))

= rβrαrβrβ∗rαrβ∗rα (by (E1-3))

= rβrαrβrβ∗rαrβ∗r2
βrα (by (E0))

= rβrαrα∗rβrα (by (4.4.1))

= rβxα†rβrα.

We need the next lemma for the proof of (c).

Lemma 4.4.7. In the diagram

�α∗

�α

�β

����

����

����

���	

2±

assume that α is b-side for the bond �α � β�2±1

. Then we have rβxα†rβxα† =
xα†rβxα†rβ.

Proof. It is enough to show that

(4.4.2) rβrαrα∗rβrαrα∗ = rαrα∗rβrαrα∗rβ.
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We have

(4.4.2) ⇔ rα∗rβrαrα∗ = rαrβrαrα∗rβrαrα∗rβ

= rβrαrα∗rβrα∗rβ (by (E3-1))

= rβrαrβrα∗rβrα∗ (by (E1-3))

⇔ rαrα∗rβrα = rαrβrαrβrα∗rβ

= rβrαrβrαrα∗rβ (by (E1-3))

⇔ rβrαrα∗rβrα = rαrβrαrα∗rβ.

This is nothing but the formula (E3-1).

Finally, let us prove (c). Consider the diagram of the form as (W4):

�α

�
β∗

�

β

�γ����

����

����

����

����

���	

μ

where μ = 1, 2±1, 3±1. It is enough to show the formula for the case that
γ ∈ Γmax ∪ Γ∗

max. In such case, μ = 1, 2±1 by the classification theorem of
elliptic Dynkin diagrams.

Lemma 4.4.8. In the above diagram, we assume that γ belongs to Γmax

∪Γ∗
max. Then we have xβ†rαrγxβ†rγ = rγxβ†rγrαxβ† and xβ†rγrαxβ†rα =

rαxβ†rαrγxβ† .

Proof. In the following, we assume γ ∈ Γmax. For the case that γ ∈ Γ∗
max

we can prove the formula by the similar method.
Since γ ∈ Γmax, the above diagram is a subdiagram of the following one:

�α

�
β∗

�

β

�
γ∗

�

γ

����

����

�

�

�
�

�
�

�
�


�
�

�
�

�
��

μ

In the following we assume μ = 2±1. For the case that μ = 1, we can prove
the lemma by the similar methods.
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Let us prove the first formula. By the classification theorem of marked
elliptic root systems, γ is a b-side for the bond �β � γ�2±1

.
Let us prove the following formulas:

(4.4.3) xβ†xγ† = xγ†xβ† ,

(4.4.4) rγxβ†rγ = xβ†x2
γ† .

Since (E3-3) and Lemma 4.4.7, we have (4.4.3). Indeed,

xβ†xγ† = rβxγ†rβ = xγ†rβxγ†rβx−1
γ† = xγ†xβ† .

On the other hand,

(4.4.4) ⇔ rγxβ† = xβ†x2
γ†rγ

= xγ†(xβ†xγ†)rγ (by (4.4.3))

= xγ†rβxγ†rβrγ (by (E3-3))

= xγ†rγrβxγ†rβ. (by (E3-1))

Since xγ† = rγrγ∗ , we have

rγxβ† = xγ†rγrβxγ†rβ ⇔ xβ† = rγ∗rγrβxγ†rβ

= x−1
γ† rβxγ†rβ

⇔ xβ†xγ† = rβxγ†rβ.

This is nothing but (E3-3). Therefore we have (4.4.4).

For the proof of the first formula, it is enough to show the following:

rαrγxβ†rγx−1
β† = x−1

β† rγxβ†rγrαxβ† .

By (E1-1), (4.4.3) and (4.4.4) we have

(The left hand side) = rαx2
γ†

= x2
γ†rα

= (The right hand side).
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Let us prove the second formula. We have

rγrαxβ†rαx−1
β† = rαrγxβ†rαx−1

β† (by (E1-1))

= rαxβ†x2
γ†rγrαx−1

β† (by (4.4.4))

= rαxβ†rαx2
γ†rγx−1

β† (by (E1-1))

= rαxβ†rαx2
γ†x

−2
γ† x−1

β† rγ (by (4.4.4))

= rαxβ†rαx−1
β† rγ

= x−1
β† rαxβ†rαrγ .

This is nothing but the second formula. We remark that the last equality
follows from (E2-1) if α ∈ Γa or Lemma 4.4.5 if α �∈ Γa (⇔ α ∈ Γ∗

max).

So the proof of Theorem 4.4.2 is completed.

§5. Elliptic Hecke Algebras

5.1. Definition of Elliptic Hecke algebras. Let (R, G) be a marked elliptic
root system. Consider a Laurent polynomial ring Z[t±1

α ]α∈Γ and let J be the
ideal generated by the elements tα − tβ where α and β are in a same W (R)-
orbit. Set A = Z[t±1

α ]α∈Γ/J .

We define the elliptic Hecke algebra H = H(R, G) associated with (R, G)
as a deformation of the group algebra Z[W̃ (R, G)].

Definition 5.1.1. The elliptic Hecke algebra H = H(R, G) is an asso-
ciative A algebra with generators gα (α ∈ Γ) subject to the relations

(H0) (gα − tα)(gα + t−1
α ) = 0�α

and (H1-1) ∼ (H4) which are obtained from (E1-1) ∼ (E4) by replacing rα with
gα. Here we set xα† := gαgα∗ for α ∈ Γmax.

Remark . (1) In our previous announcement [SS], we assume the other
relations

gβxα†gβxα† = gβxα†gβxα†

for the subdiagrams of the form as (H3-1) (or (E3-1)). But these relations
follows from (H1-3) and (H3-1) by the similar computation as the proof of
Lemma 4.4.7. So we omit the above relations form the definition.
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(2) As we already mentioned in the introduction, Takebayashi [T2] defined the
elliptic Hecke algebras for marked elliptic root systems except for the group
(D) by using the “completed elliptic Dynkin Diagrams”. For a given marked
elliptic root system except for the group (D), one can show that our algebra
is isomorphic to Takebayashi’s one. Therefore our definition gives another
presentation of Takebayashi’s algebra attached by the original elliptic Dynkin
diagrams. In this article we omit the proof of the equivalence between our
presentation and Takebayashi’s one.
(3) Let (R∨, G) be the dual marked elliptic root system of (R, G). By the
definition, it is easy to see that H(R∨, G) is isomorphic to H(R, G).

5.2. Lusztig’s relations. Recall that, for αi ∈ Γmax, we already defined

(5.2.1) xα†
i

= gαi
gα∗

i
.

We remark that it is invertible by the definition.

Let us define xα†
i

for αi ∈ Γa \ Γmax by the following way.

Definition 5.2.1. Assume αi ∈ Γa \ Γmax, then αi belongs to a com-
ponent Γ(Alk) = {β1, · · · , βlk} (cf. Lemma 4.2.2.). Let us consider of the
following diagram :

�β∗
0

�β0

�
β1

����
����

����
���	

�
β2

� �
βlk

μ

μ = 1, 2±, 3±,

where β0 is a vertex in Γmax which is connected to Γ(Alk). By using this
diagram we define

xβ†
j+1

:= gβj+1xβ†
j
gβj+1x

−1

β†
j

(0 ≤ j ≤ lk − 1)

inductively. We remark that xβ†
0

is already defined by (5.2.1). We also remark
that the above β0 is uniquely determined by the classification theorem of elliptic
Dynkin diagrams (Theorem 4.2.1). We say β0 is the terminal vertex of αi which
is denoted by αtrem

i .

The following two propositions are key steps in this article.

Proposition 5.2.2. xα†
i

(αi ∈ Γa) are pairwise commutative. In other

wards, let N(R, G) be the subalgebra of H generated by {x±
α†

i

|αi ∈ Γa}. Then

N(R, G) is a commutative subalgebra of H.
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For ξ = ξ0α
†
0 + · · · + ξnα†

n ∈ Q((R, G)a), set

xξ := (xα†
0
)ξ0 · · · (xα†

n
)ξn .

By the aid of Proposition 5.2.2, it is well-defined.

Proposition 5.2.3. Lusztig’s relations hold in H(R, G). Namely, we
have

gαi
xξ − xsαi

(ξ)gαi
= b(tαi

, tα∗
i
; x−1

α†
i

)(xξ − xsαi
(ξ)),

for αi ∈ Γa, ξ ∈ Q((R, G)a). Here we set tα∗
i

:= tαi
for αi ∈ Γa \ Γmax.

Proofs of these propositions will be given in Section 7.

5.3. Another presentation of H(R, G).

Definition 5.3.1. Let Ĥ(R, G) be an associative A algebra with gener-
ators ĝαi

(αi ∈ Γa), x̂λ (λ ∈ Q((R, G)a)) subject to the following relations:

(H’0) (ĝαi
− tαi

)(ĝαi
+ t−1

αi
) = 0, (αi ∈ Γa),

(H’1-1) ĝαi
ĝαj

= ĝαj
ĝαi

, �αi �αj

(H’1-2) ĝαi
ĝαj

ĝαi
= ĝαj

ĝαi
ĝαj

, �αi �αj

(H’1-3) ĝαi
ĝαj

ĝαi
ĝαj

= ĝαj
ĝαi

ĝαj
ĝαi

, �αi �αj�2±

(H’1-4) ĝαi
ĝαj

ĝαi
ĝαj

ĝαi
ĝαj

= ĝαj
ĝαi

ĝαj
ĝαi

ĝαj
ĝαi

, �αi �αj�3±

(H’2) x̂λx̂μ = x̂μx̂λ = x̂λ+μ, x̂λx̂−λ = 1, (λ, μ ∈ Q((R, G)a),

(H’3) ĝαi
x̂λ − x̂sαi

(λ)ĝαi
= b(tαi

, tα∗
i
; x̂−1

α†
i

)(x̂λ − x̂sαi
(λ)).

The following proposition will be used in the next section and we will prove
it in Section 7.

Proposition 5.3.2. There is an isomorphism Φ : H(R, G) → Ĥ(R, G)
defined by

gαi
�→ ĝαi

(αi ∈ Γa) and gα∗
i
�→ ĝ−1

αi
x̂α†

i
(α∗

i ∈ Γ∗
max).

In other words, the system of the defining relations of Ĥ(R, G) gives another
presentation of H(R, G).
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This proposition says that H(R, G) has another presentation. Namely,
H(R, G) is an algebra with generators gαi

(αi ∈ Γa) and xλ (λ ∈ Q((R, G)a)),
and relations (H’0) ∼ (H’3) in Definition 5.3.1, by replacing ĝαi

and x̂λ with
gαi

and xλ, respectively.

5.4. PBW-type theorem for Ĥ(R, G). For μ′ ∈ Q(R∨
f ), we have introduced

Y μ′ ∈ H(Ra) in Section 2.2. Let us recall the definition. We write μ′ ∈ Q(R∨
f )

as the following form: μ′ = λ′ − ν′ with λ′, ν′ ∈ Q(R∨
f )+. We define Y μ′

=
T (t(λ′))T (t(ν′))−1. By the construction, T (t(λ′)) and T (t(ν′)) can be written
as

T (t(λ′)) = Ti1 · · ·TiN
and T (t(ν′)) = Tj1 · · ·TjM

,

where wi1 · · ·wiN
and wj1 · · ·wiM

are reduced expressions in W (Ra) of t(λ′)
and t(ν′), respectively.

By the defining relations (H’0) ∼ (H’1-4), we can define a well-defended
element ŷμ′ in Ĥ(R, G) as

ŷμ′ := ĝαi1
· · · ĝαiN

(ĝαj1
· · · ĝαiM

)−1.

By the similar method in [M5], we have PBW-type theorem for Ĥ(R, G).

Theorem 5.4.1. Each of the following sets

{x̂λĝwŷμ′ | λ ∈ Q((R, G)a), w ∈ W (R0), μ′ ∈ Q(Rf )∨},

{ŷμ′ ĝwx̂λ | λ ∈ Q((R, G)a), w ∈ W (R0), μ′ ∈ Q(Rf )∨},
{x̂λĝw | λ ∈ Q((R, G)a), w ∈ W (Ra)}, {ĝwx̂λ | λ ∈ Q((R, G)a), w ∈ W (Ra)}
forms a free A-basis of Ĥ(R, G).

Set
yμ′ := Φ−1(ŷμ′) (μ′ ∈ Q(Rf )∨).

By Proposition 5.3.2 and Theorem 5.4.1 we have the following corollary.

Corollary 5.4.2. Each of the following sets

{xλgwyμ′ | λ ∈ Q((R, G)a), w ∈ W (R0), μ′ ∈ Q(Rf )∨},

{yμ′gwxλ | λ ∈ Q((R, G)a), w ∈ W (R0), μ′ ∈ Q(Rf )∨},
{xλgw | λ ∈ Q((R, G)a), w ∈ W (Ra)}, {gwxλ | λ ∈ Q((R, G)a), w ∈ W (Ra)}
forms a free A-basis of H(R, G).
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§6. Elliptic Hecke Algebras and Double Affine Hecke Algebras

6.1. Triplets associated to elliptic root systems. In this section we assume
(R, G) is a marked elliptic root system which belongs to the group A, B or C.
Recall that the affine root system (R, G)a is isomorphic to Ra or R∨

a . Let us
consider the following triplet

Ξ(R, G) = (R(0)
f ; Ra, Q((R, G)a)).

This is a triplet of type I or II in the sense of Section 3.1. In each case, we
normalize I so that I(θ, θ) = 2.

For (R, G) of type A
(1,1)
1 , B

(2,2)
n or C

(1,1)
n (n ≥ 2), we consider another

triplet
Υ(R, G) = (R(0)

f ; Ra ∪ R∨
a , Q((R, G)a)).

This is a triplet of type III. In each case, we normalize I so that I(θ, θ) = 4.

6.2. Triplets of type I or II. For a triplet Ξ(R, G), let us consider the cor-
responding double affine Hecke algebra H(Ξ(R, G)). Since Ξ(R, G) is a triplet
of type I or II, H(Ξ(R, G)) is an algebra over A = Ãa.

Recall that πa : F → F/G and πa(R) = Ra. By the definition, the
following lemma is easy to verify.

Lemma 6.2.1. Let α, β ∈ R. Then the following statements are equiv-
alent. (a) α and β are in the same W (R)-orbit. (b) πa(α) and πa(β) are in
the same W (Ra)-orbit.

Let Ja be the ideal of A generated by the elements tα−tβ (α, β ∈ Γ) where
πa(α) = πa(β) and set Aa := A/Ja. By the construction, Aa is generated by
tαi

(0 ≤ i ≤ n). From the above lemma, we easily have;

Corollary 6.2.2. The map Aa → Aa defined by tαi
�→ τi (0 ≤ i ≤ n)

is an algebra isomorphism.

From now on, we shall identify these two algebras by the above isomor-
phism. Let A → Aa and Aa → Ãa be the natural projections. By taking a
composition of these maps, we have a homomorphism A → Ãa and we regard
Ãa as an A-algebra via this homomorphism.

Let us consider an Ãa-algebra Ãa⊗AH(R, G). We remark that the number
of unequal parameters of Ãa ⊗A H(R, G) becomes smaller than one of H(R, G)
in general.
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By the definition of double affine Hecke algebras and Proposition 5.3.2, we
have the main theorem of this article.

Theorem 6.2.3. The map Θ : Ãa ⊗A H(R, G) → H(Ξ(R, G)) defined
by

gαi
�→ Ti, xα†

i
�→ Xα†

i (αi ∈ Γa)

is an injective algebra homomorphism and the image just coincides with the
small double affine Hecke algebra H(Ξ(R, G))s. Namely, Ãa ⊗A H(R, G) is
isomorphic to H(Ξ(R, G))s.

Proof. By Proposition 5.3.2, H(R, G) can be regarded as an algebra with
generators gαi

(αi ∈ Γa) and xλ (λ ∈ Q((R, G)a)), and relations (H’0) ∼ (H’3)
in Definition 5.3.1. Therefore Θ is well-defined and the image coincides with
H(Ξ(R, G))s.

By the construction, we immediately have

Θ(xλgwyμ′)=XλT (w)Y μ′
for any λ∈Q((R, G)a), w∈W (Rf ), μ′∈Q(Rf )∨.

Now the injectivity of Θ follows from Corollary 3.2.4 and Corollary 5.4.2.

6.3. Triplet of type III. Assume (R, G) is of type A
(1,1)
1 , B

(2,2)
n or C

(1,1)
n

(n ≥ 2). In this case, the coordinate ring A of the elliptic Hecke algebra H(R, G)
is given as follows;

A =

{
Z[t±1

0 , t±1
0∗ , t±1

1 , t±1
1∗ ], if (R, G) is of type A

(1,1)
1 ,

Z[t±1
0 , t±1

0∗ , t±1, t±1
n , t±1

n∗ ], if (R, G) is of type B
(2,2)
n or C

(1,1)
n

where t = ti = ti∗ (1 ≤ i ≤ n − 1).
On the other hand, since Υ(R, G) is a triplet of type III, the corresponding

double affine Hecke algebra H(Υ(R, G)) is an algebra over A = Aa[(τ �
0)

±1,

(τ �
n)±1]. Here

Aa =

{
Z[τ±1

0 , τ±1
1 ], if (R, G) is of type A

(1,1)
1 ,

Z[τ±1
0 , τ±1, τ±1

n ], if (R, G) is of type B
(2,2)
n or C

(1,1)
n

and τ = τi (1 ≤ i ≤ n − 1).

By the above considerations, it immediately follows that;

Lemma 6.3.1. The map defined by

t �→ τ, tj �→ τj , tj∗ �→ τ �
j (j = 0, n)

gives an isomorphism A
∼→ A.
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By this lemma, we may identify A with A.

Theorem 6.3.2. The map defined by

gαi
�→ Ti, gα∗

i
�→ T−1

i Xα†
i (αi ∈ Γa)

gives an isomorphism H(R, G) ∼→ H(Υ(R, G)).

Here, we remark that Γa = Γmax since (R, G) is of type A
(1,1)
1 , B

(2,2)
n or

C
(1,1)
n (n ≥ 2).

Proof of Theorem 6.3.2. As same as the proof of Proposition 6.2.3,
H(R, G) can be regarded as an algebra with generators gαi

(αi ∈ Γa) and
xλ (λ ∈ Q((R, G)a)), and relations (H’0) ∼ (H’3) in Definition 5.3.1, by Propo-
sition 5.3.2. By replacing gαi

with Ti and xλ with Xλ, these are nothing but
the defining relations of H(Υ(R, G)). �

§7. Proofs of the Propositions in Section 5

7.1. Preliminaries. Let us start from the following lemma which is easily
verified by case-by-case checking.

Lemma 7.1.1. Assume αi, αj ∈Γa such that �αi � αj�μ±1

(μ=1, 2, 3).
Then the following formula holds:

(7.1.1) sαj
(α†

i ) =

{
α†

i + μα†
j , if μ �= 1 and αj is b-side,

α†
i + α†

j , otherwise.

Lemma 7.1.2. Assume a marked elliptic root system (R, G) is neither
of type A

(1,1)
1 nor A

(1,1)∗
1 . Let Γ(Alk) = {β1, · · · , βlk} be a connected component

of Γa \Γmax and β0 ∈ Γmax the unique vertex which is connected to Γ(Alk) (cf.
Definition 5.2.1). Then we have the following formulas :

(7.1.2) xβ†
i
xβ†

j
= xβ†

j
xβ†

i
(0 ≤ i, j ≤ lk),

(7.1.3) gβi
xβ†

j
− xsβi

(β†
j )gβi

= b(tβi
, tβ∗

i
; x−1

β†
i

)(xβ†
j
− xsβi

(β†
j )) (0 ≤ i, j ≤ lk).

Proof. For simplicity we denote gi = gβi
, xi = xβ†

i
(i = 0, · · · , lk) and

bi = b(tβi
, tβ∗

i
; x−1

β†
i

). By the definition we have tβi
= tβ∗

i
for i = 1, · · · , lk.

Moreover by the classification theorem of marked elliptic root systems (Theo-
rem 4.2.1), it is known that tβ0 = tβ∗

0
= tβ1 = · · · = tβlk

. We denote it by t.
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Therefore we have bi = (t−t−1)/(1−x−1
i ). By using Theorem 4.2.1 again, it is

also known that β0 is b-side for the bond �β0 � β1�μ±1

for μ = 2, 3. Therefore,
by Lemma 7.1.1, we have

(7.1.4) sβ0(β
†
1) = μβ†

0 + β†
1 and sβ1(β

†
0) = β†

0 + β†
1 for μ = 1, 2, 3.

Let us prove (7.1.2). By the definition, the formula g1x0g1x0 = x0g1x0g1

holds for any t = 1, 2±1, 3±1. Recall x1 := g1x0g1x
−1
0 . Therefore we have

(7.1.5) x1x0 = g1x0g1 = x0g1x0g1x
−1
0 = x0x1

and
x2x0 = (g2x1g2x

−1
1 )x0 = x0(g2x1g2x

−1
1 ) = x0x2.

Next we show g2x1g2x1 = x1g2x1g2. Indeed, from (H1-1), (H1-2) and (7.1.5),
we have

g2x1g2x1 − x1g2x1g2 = g2g1x0g1x
−1
0 g2x1 − g1x0g1x

−1
0 g2x1g2

= (g2g1x0g1g2x1 − g1x0g1g2x1g2)x−1
0

= (g2g1x0g1g2g1x0g1x
−1
0 − g1x0g1g2g1x0g1x

−1
0 g2)x−1

0

= (g2g1x0g1g2g1x0g1 − g1x0g1g2g1x0g1g2)x−2
0

= (g2g1x0g2g1g2x0g1 − g1x0g2g1g2x0g1g2)x−2
0

= (g2g1g2x0g1x0g2g1 − g1g2x0g1x0g2g1g2)x−2
0

= (g1g2g1x0g1x0g2g1 − g1g2x0g1x0g1g2g1)x−2
0

= g1g2(g1x0g1x0 − x0g1x0g1)g2g1x
−2
0

= 0.

From this formula and the definition of x2 we have

x2x1 = g2x1g2 = x1g2x1g2x
−1
1 = x1x2.

By the similar computation, we have (7.1.2).

Let us prove (7.1.3). Firstly we shall prove it for i = 0 and j = 0. By (H0)
we have

(7.1.6)

g0x0 − x−1
0 g0 = g2

0g0∗ − g−1
0∗

=
{
(t − t−1)g0 + 1

}
g0∗ − {

g0∗ − (t − t−1)
}

= (t − t−1)(x0 + 1)

= b0(x0 − x−1
0 ).
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This is nothing but the formula.
Secondly let us prove (7.1.3) for i = 0 and j = 1. Namely

(7.1.7) g0x1 − xμ
0x1g0 = b0(x1 − xμ

0x1).

Assume μ = 1. By (H1-2) we have g0∗g1g0∗ = g1g0∗g1. Then we have g0x1g0 =
x0x1; since g1x0g1 = x0x1 by (7.1.5), we have

g1g0∗g1 = g0∗g1g0∗ ⇒ g1g0g1g0∗g1g
−1
0∗ = g1g0g0∗g1

⇒ g0g1g0g0∗g1g
−1
0∗ = g1g0g0∗g1

⇒ g0x1g0 = x0x1.

By the above formula and (H0) we have

(7.1.8)

g0x1 − x0x1g0 = g0x1 − x0x1

{
g−1
0 + (t − t−1)

}
= −(t − t−1)x0x1

= b0(x1 − x0x1).

Assume μ = 2. By the definition of x1, we have x1x0 = g1x0g1. Therefore, by
(H3-1) and (7.1.5), we obtain

g0x0x1 = g0g1x0g1 = g1x0g1g0 = x0x1g0.

By the above formula and (7.1.6) we have

(7.1.9)

g0x1 − x2
0x1g0 = (g0 − x0g0x0)x1

=
{
g0 − x0(x−1

0 g0 − b0(x0 − x−1
0 ))

}
x1

= b0(x1 − x2
0x1).

Assume μ = 3. By (H3-2) and the definition of x1, we have

x2
0x1 = g0x0x1g0.

By (7.1.6) and the above formula, we have

(7.1.10)

g0x1 − x3
0x1g0 = (g0 − x2

0g
−1
0 x2

0)x1

=
{−(t − t−1)(x0 + x2

0 + x3
0)

}
x1

= b0(x1 − x3
0x1).

Thus we have proved (7.1.7).
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We shall prove (7.1.3) for i = 0 and j = 2. From (H1-1) and (7.1.7), we
have

(7.1.11)

g0x2 = g0g2x1g2x
−1
1

= g2 {xμ
0x1g0 + b0(x1 − xμ

0x1)} g2x
−1
1

= g2x1g2

{
xμ

0g0x
−1
1 + b0(1 − xμ

0 )x−1
1

}
= g2x1g2

[
xμ

0

{
x−μ

0 x−1
1 g0 + b0(x−1

1 − x−μ
0 x−1

1 )
}

+ b0(1 − xμ
0 )x−1

1

]
= g2x1g2x

−1
1 g0

= x2g0.

This is nothing but (7.1.3) for i = 0 and j = 2.

By the definition and the formulas we already proved above, we immedi-
ately have g0xj = xjg0 (j ≥ 3). Therefore we have (7.1.3) for i = 0.

Let us prove (7.1.3) for i = 1. Since g1x0g1 = x0x1, we have the formula
for j = 0 by the similar argument of the proof of (7.1.8).

By (H0) we have

(7.1.12)

g1x1 − x−1
1 g1 = g2

1x0g1x
−1
0 − x0g

−1
1 x−1

0

=
{
(t − t−1)g1 + 1

}
x0g1x

−1
0 − x0

{
g1 − (t − t−1)

}
x−1

0

= (t − t−1)(x1 + 1)

= b1(x1 − x−1
1 ).

Therefore we have the formula for j = 1.
Next, we shall prove it for j = 2. By the similar argument of the proof of

(7.1.8), it enough to show that

(7.1.13) g1x2g1 = x1x2.

By (H1-1) and (H1-2) we have

g1x2g1 = g1{g2(g1x0g1x
−1
0 )g2(x0g

−1
1 x−1

0 g−1
1 )}g1

= g2g1g2x0g
−1
2 g1g2x

−1
0

= g2x1g2

= x1x2.

By the similar argument of the proof of (7.1.11), we have g1x3 = x3g1.
Moreover, by the definition and the formulas we already proved above, we im-
mediately have g1xj = xjg1 (j ≥ 4). Therefore we have (7.1.3) for i = 1.
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By the similar computation, we have (7.1.3) for all i and j.

Lemma 7.1.3. Let Γ is of type A
(1,1)∗
1 . Then the formulas (7.1.2) and

(7.1.3) hold.

Proof. We have g0x1g0x1 = x1g0x1g0 and x0 = g0x1g0x
−1
1 by the defi-

nitions. Therefore we have (7.1.2) by the similar way as (7.1.5). Let us prove
(7.1.3). In this case, (7.1.3) can be written as

gixi − x−1
i gi = bi(xi − x−1

i ) (i = 0, 1),

g0x1 − x0x1g0 = b0(x1 − x0x1), g1x0 − x0x
4
1g1 = b1(x0 − x0x

4
1)

where b0 = (t0−t−1
0 )/(1−x−1

0 ) and b1 =
{
(t1 − t−1

1 ) + (t1∗ − t1∗−1)x−1
1

}
/(1−

x−2
1 ). Since the first and second formulas are proved by the same computations

as (7.1.6) and (7.1.8), the remaining problem is the proof of the third formula.
By (H2-2), g0x1g0x1 = x0x

2
1 is a central element. Therefore we have

g1x0 − x0x
4
1g1 = (g1 − x2

1g1x
2
1)x0.

By the first formula for i = 1, we have

x2
1g1x

2
1 = x2

1(x
−1
1 g1 + b1(x1 − x−1

1 ))x1

= x1g1x1 + b1(x4
1 − x2

1)

= x1(x−1
1 g1 + b1(x1 − x−1

1 )) + b1(x4
1 − x2

1)

= g1 + b1(x4
1 − 1).

Thus we have the formula.

7.2. Proof of Proposition 5.2.2. The goal of this subsection is to prove the
following formula:

xα†
i
xα†

j
= xα†

j
xα†

i
for αi, αj ∈ Γa.

It is enough to prove it in the following three cases: (a) αi, αj ∈ Γmax, (b)
αi ∈ Γmax and αj ∈ Γa \ Γmax, (c) αi, αj ∈ Γa \ Γmax.

Case (a); If αi and αj are not connected, the statement is trivial by the
definition. Therefore it is enough to show the formula for i and j such that

�αi � αj�μ
(μ = 1, 2±,∞). If μ = ∞, the statement is automatically satisfied

by the defining relation (H2-4). For the case μ = 1, 2±1, we have the formula
by the similar computation as (7.1.5).
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Case (b); if αi = αterm
j , the formula is nothing but (7.1.2). Assume αi �=

αterm
j and αj ∈ Γ(Alk). Let us denote αk = αterm

j . We remark that the formula
xixk = xkxi is already proved in case (a). Since there is no vertex in Γ(Alk)
which is connected to αi, the statement is trivial by the definition.

Case (c); if αi and αj belong to the same connected component of Γa\Γmax,
the formula is nothing but (7.1.2). Otherwise, it is trivial by the definition.

So the proof of Proposition 5.2.2 is completed.

7.3. Proof of Proposition 5.2.3.
To prove Proposition 5.2.3, it is enough to show the following formula:

(7.3.1) gαi
xα†

j
− xsαi

(α†
j)gαi

= b(tαi
, tα∗

i
; x−1

α†
i

)(xα†
j
− xsαi

(α†
j)) (0 ≤ i, j ≤ n).

For simplicity we denote gi = gαi
, xi = xα†

i
and bi = b(tαi

, tα∗
i
; x−1

α†
i

).

By using the method of the proof of (7.1.6), we have the formula for i = j

and αi ∈ Γmax.

Assume i �= j. As same as the proof of Proposition 5.2.2, let us consider
the following three cases: (a) αi, αj ∈ Γmax, (b) αi ∈ Γmax and αj ∈ Γa \Γmax,
(c) αi, αj ∈ Γa \ Γmax.

Case (a); If αi is not connected to αj in the elliptic Dynkin diagram,
the statement is clear by (H1-1). Assume αi is connected to αj . By the
classification theorem of elliptic Dynkin diagrams, there are the following three
cases;

(i)

�α∗
i �α∗

j

�αi �αj

�
�

�
�

�
�

�
�

(ii)

�α∗
i �α∗

j

�αi �αj

�

�

�
�

�
�

�
�

�
�

�
��


�
���

2±1

(iii)

�α∗
i �α∗

j

�αi �αj

�
�

�
�

�
�

�
�

∞

For the case (i), (7.3.1) can be written as

gixj − xixjgi = bi(xj − xixj), gjxi − xixjgj = bj(xi − xixj).

Since gixjgi = gjxigj = xixj , we have the statement by the similar computation
of the proof of (7.1.8).

For the case (ii), we may assume αi is b-side. In such case, (7.3.1) can be
written as

gixj − x2
i xjgi = bi(xj − x2

i xj), gjxi − xixjgj = bj(xi − xixj).
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Since gjxigj = xixj , we have the second formula by the same way as the case
(i).

Let us prove the first formula. We remark that there is the following
subdiagram.

�α∗
i

�αi �αj�

�
�

�
�

�
��


2±1

Then the first formula is proved by the similar method as the proof of
(7.1.9).

For the case (iii), (7.3.1) can be written as

gixj − x2
i xjgi = bi(xj − x2

i xj), gjxi − xix
2
jgj = bj(xi − xix

2
j).

Since xixj is a central element, we have gixixj = xixjgi and gjxixj = xixjgj .
Therefore we have the statement as same as the proof of (7.1.9).

Case (b); If αi = αterm
j we already proved the formula in Lemma 7.1.2

and Lemma 7.1.3. Assume αi �= αterm
j . Then αi and αj live in the following

positions:

�

α∗
i

�

αi

�

α∗
k = (αterm

j )∗

�

αk = αterm
j

����

����

����

���	

�

αl

� �
αj

μ

μ = 1, 2±.

Since αi and αj are not connected, (7.3.1) can be written as

(7.3.2) gixj = xjgi and gjxi = xigj .

The second formula is clear by the definition. If αi is not connected to αk =
αterm

j , the first formula is also trivial. From now on we assume αi is connected
to αk and, in the following, we will give the proof of the first one for the case
that αj = αl. In the other cases, it is proved by the similar computation.

We remark that, in such case, both αi and αk belong to Γmax and are con-
nected by a bond such that μ = 1. Therefore we already proved the following
formula in the case (a): gixk − xixkgi = bi(xk − xixk). Then we have the first
formula of (7.3.2) by the similar method of the proof of (7.1.11).
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Case (c); If both αi and αj are in the same connected component of Γa \
Γmax, (7.3.1) is already proved in Lemma 7.1.2. Otherwise, αi is not connected
to αj . Therefore (7.3.1) can be written as gixj = xjgi and gjxi = xigj . Firstly
assume αterm

i = αterm
j . Then αi and αj live in the following positions:

μ, μ′ = 1, 2±1, 3±1.�αi

�
α∗

k

�

αk

�αj
����

����

���	

����

����

����

����

���	

μ′μ

Here we denote αk = αterm
i = αterm

j . By (H2-1), (H3-1) and (H3-2), we have
gixkgixk = xkgixkgi for any μ and μ′. On the other hand we have

xkgjgixkgi = gixkgigjxk ⇔ gjgixkgix
−1
k = x−1

k gixkgigj .

by (H4). Therefore we have

gjxi = gjgixkgix
−1
k = x−1

k gixkgigj = gixkgix
−1
k gj = xigj .

The formula gixj = xjgi is also proved by the similar method.
Secondly assume αterm

i �= αterm
j . In such case, by (H1-1), gj commutes

with x(αterm
i )† . Moreover αj is not connected to the connected component of

Γa \ Γmax which contains αi. Therefore we have gjxi = xigj . The formula
gixj = xjgi can be proved by the similar way.

So the proof of Proposition 5.2.3 is completed.

7.4. Proof of Proposition 5.3.2 I (Hecke relations and Coxeter relations).

In this and next subsection we will show the well-definedness of the map Φ. For
this purpose, in this subsection, we will show that Hecke relations and usual
Coxeter relations hold in Ĥ(R, G).

For simplicity we denote ti = tαi
, ĝi = ĝαi

, x̂i = x̂α†
i

for αi ∈ Γa and
tj∗ = tα∗

j
, ĝj∗ = ĝ−1

αj
x̂α†

j
for α∗

j ∈ Γ∗
max.

Lemma 7.4.1. For any α∗
j ∈ Γ∗

max, we have (ĝj∗ − tj∗)(ĝj∗ − t−1
j∗ ) = 0.

Proof. By (H’3) we have

ĝj x̂j − x̂−1
j ĝj = b̂j(x̂j − x̂−1

j ).

Here we denote b̂j = b(tj , tj∗ ; x̂−1
j ) = {(tj − t−1

j ) + (tj∗ − t−1
j∗ )x̂−1

j }/(1− x̂−2
j ).

Therefore the right hand side is equal to (tj − t−1
j )x̂j + (tj∗ − t−1

j∗ ). By (H’0)
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and the above equality we have

ĝ−1
j x̂j = {ĝj − (tj − t−1

j )}x̂j

= x̂−1
j ĝj + (tj∗ − t−1

j∗ ).

Therefore we have

(ĝ−1
j x̂j)2 = {x̂−1

j ĝj + (tj∗ − t−1
j∗ )}ĝ−1

j x̂j

= 1 + (tj∗ − t−1
j∗ )ĝ−1

j x̂j .

Hence we have the statement. �

The following statement is trivial by the definition.

Lemma 7.4.2. Assume αj∗ is not connected to αi (resp. αi∗) in Γ(R,

G), then ĝj∗ ĝi = ĝiĝj∗ (resp. ĝj∗ ĝi∗ = ĝi∗ ĝj∗).

From now on we assume αi ∈ Γa, αj ∈ Γmax such that �αi � αj�μ±1

for μ =
1, 2, 3. Moreover we assume αj is the b-side for μ = 2, 3. By the classification
theorem of elliptic Dynkin diagram and the definition of the coordinate ring A

we have the following:
(a) If μ = 1 then tj = tj∗ in A.
(b) Assume μ = 2. If the vertex αi∗ appears in Γ then ti = ti∗ and tj �= tj∗ in
A. On the other hand, if αi∗ does not appear in Γ then tj = tj∗ .
(c) If μ = 3 then αi∗ does not appear in Γ and tj = tj∗ .

Lemma 7.4.3. Let us denote  = i or j. Under the above assumption
we have the following. (1) If sα�

(aα†
i +bα†

j) = aα†
i +bα†

j, then ĝ�x̂
a
i x̂b

j = x̂a
i x̂b

j ĝ�.
(2) If t� = t�∗ in A and sα�

(aα†
i +bα†

j) = aα†
i +bα†

j+α†
� , then ĝ�x̂

a
i x̂b

j ĝ� = x̂a
i x̂b

j x̂�.

Proof. The first statement is trivial by the definition. Let us show the
second one. By (H’3) we have

ĝ�x̂
a
i x̂b

j − x̂a
i x̂b

j x̂�ĝ� = b̂�(x̂a
i x̂b

j − x̂a
i x̂b

jx̂�).

Since t� = t�∗ , we have b̂� = (t� − t−1
� )/(1 − x̂−1

� ). Therefore the right hand
side is equal to −(t� − t−1

� )x̂a
i x̂b

j x̂�. By the Hecke relation for ĝ�, we have the
statement.

Lemma 7.4.4. Let αi ∈ Γa, αj ∈ Γmax be as same as in Lemma 7.4.3.
Moreover assume tj = tj∗ in A. Then the corresponding Coxeter relation for
ĝi and ĝj∗ holds.
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Proof. Firstly we assume μ = 1. In this case, the corresponding Coxeter
relation is

(7.4.1) ĝiĝj∗ ĝi = ĝj∗ ĝiĝj∗

and we claim that the condition tj = tj∗ is automatically satisfied. By the
definition of ĝj∗ and the Coxeter relation for ĝi and ĝj , one can easily see that
(7.4.1) is equivalent to the following formula (as same as in the proof of (7.1.7)):

(7.4.2) ĝj x̂iĝj = x̂ix̂j .

But this formula holds from Lemma 7.4.3 (2) because sαj
(α†

i ) = α†
i + α†

j .
Secondly assume μ = 2. Then the corresponding Coxeter relation is

(7.4.3) ĝiĝj∗ ĝiĝj∗ = ĝj∗ ĝiĝj∗ ĝi.

By Lemma 7.4.3 we have

(7.4.4) ĝix̂j ĝi = x̂ix̂j , ĝj x̂ix̂j = x̂ix̂j ĝj .

By using the above formulas and the Coxeter relation for ĝi and ĝj , it is easy
to see that (7.4.3) is equivalent to the following formula:

(7.4.5) ĝix̂ix̂
2
j = x̂ix̂

2
j ĝi.

Indeed, since ĝj∗ = ĝ−1
j x̂j ,

(7.4.3)⇔ ĝiĝ
−1
j x̂j ĝiĝ

−1
j x̂j = ĝ−1

j x̂j ĝiĝ
−1
j x̂j ĝi

⇔ ĝiĝ
−1
j ĝ−1

i (ĝix̂j ĝi)ĝ−1
j x̂j = ĝ−1

j ĝ−1
i (ĝix̂j ĝi)ĝ−1

j x̂j ĝi

⇔ ĝj ĝiĝ
−1
j ĝ−1

i x̂ix̂j ĝ
−1
j x̂j = ĝ−1

i x̂ix̂j ĝ
−1
j x̂j ĝi

⇔ ĝ−1
i ĝ−1

j ĝiĝj x̂ix̂j ĝ
−1
j x̂j = ĝ−1

i x̂ix̂j ĝ
−1
j x̂j ĝi

⇔ ĝ−1
j ĝix̂ix̂

2
j = ĝ−1

j x̂ix̂
2
j ĝi

⇔ ĝix̂ix̂
2
j = x̂ix̂

2
j ĝi.

This is nothing but (7.4.5). Since sαi
(α†

i + 2α†
j) = α†

i + 2α†
j , (7.4.5) holds by

Lemma 7.4.3 (1).
Finally assume μ = 3. Then the corresponding Coxeter relation is

(7.4.6) ĝiĝj∗ ĝiĝj∗ ĝiĝj∗ = ĝj∗ ĝiĝiĝj∗ ĝj∗ ĝi

and the condition tj = tj∗ is automatically satisfied. By Lemma 7.4.3 we have

ĝix̂j ĝi = x̂ix̂j , ĝix̂ix̂
2
j = x̂ix̂

2
j ĝi, ĝj x̂ix̂j = x̂ix̂

2
j ĝ

−1
j .
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Therefore we have

ĝiĝj∗ ĝiĝj∗ ĝiĝj∗ = ĝiĝ
−1
j x̂j ĝiĝ

−1
j x̂j ĝiĝ

−1
j x̂j

= ĝiĝ
−1
j ĝ−1

i x̂ix̂j ĝ
−1
j x̂j ĝiĝ

−1
j x̂j

= ĝiĝ
−1
j ĝ−1

i x̂−1
j ĝj x̂ix̂

2
j ĝiĝ

−1
j x̂j

= ĝiĝ
−1
j x̂−1

i x̂−1
j ĝiĝj ĝix̂ix̂

2
j ĝ

−1
j x̂j

= ĝix̂
−1
i x̂−2

j ĝj ĝiĝj ĝiĝj x̂ix̂
2
j

= x̂−1
i x̂−2

j ĝiĝj ĝiĝj ĝiĝj x̂ix̂
2
j .

On the other hand, by a similar computation, we have

ĝj∗ ĝiĝj∗ ĝiĝj∗ ĝi = x̂−1
i x̂−2

j ĝj ĝiĝj ĝiĝj ĝix̂ix̂
2
j .

By the Coxeter relation for ĝi and ĝj we have the statement.

Lemma 7.4.5. Let αi, αj ∈ Γmax be as same as in Lemma 7.4.3 with
μ = 1. Then we have ĝi∗ ĝj∗ ĝi∗ = ĝj∗ ĝi∗ ĝj∗ .

Proof. By Lemma 7.4.3 we have

ĝi∗ ĝj∗ ĝi∗ = ĝ−1
i x̂iĝ

−1
j x̂j ĝ

−1
i x̂i

= ĝ−1
i x̂−1

j ĝj x̂ix̂j ĝ
−1
i x̂i

= x̂−1
i x̂−1

j ĝiĝj ĝix̂ix̂j .

By a similar computation we have

ĝj∗ ĝi∗ ĝj∗ = x̂−1
i x̂−1

j ĝj ĝiĝj x̂ix̂j .

Therefore we have the statement by the Coxeter relation for ĝi and ĝj . �

Assume αi, αj ∈ Γmax such that �αi � αj�2±1

and αj is the b-side.
Namely we consider the following situation:

�α∗
i �α∗

j

�αi �αj�

�

�
�

�
��

�
�

��
���

�
��


2±1

In this case we recall that ti = ti∗ and ti �= ti∗ in A.
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The remaining problems are: (i) The Coxeter relation for ĝi and ĝj∗ , (ii)
That for ĝi∗ and ĝj , (iii) That for ĝi∗ and ĝj∗ .

We have (i) by the same computation as the proof of (7.4.3).
Let us prove (ii). By Lemma 7.4.3 we have

ĝix̂j ĝi = x̂ix̂j , and ĝj x̂ix̂j = x̂ix̂j ĝj .

Therefore we have

ĝj ĝi∗ ĝj ĝi∗ = ĝj ĝ
−1
i x̂iĝj ĝ

−1
i x̂i

= ĝj ĝ
−1
i x̂−1

j ĝj x̂ix̂j ĝ
−1
i x̂i

= ĝj x̂
−1
i x̂−1

j ĝiĝj ĝix̂ix̂j

= x̂−1
i x̂−1

j ĝj ĝiĝj ĝix̂ix̂j .

On the other hand we have

ĝi∗ ĝj ĝi∗ ĝj = x̂−1
i x̂−1

j ĝiĝj ĝiĝj x̂ix̂j

by the similar way. Therefore we have ĝj ĝi∗ ĝj ĝi∗ = ĝi∗ ĝj ĝi∗ ĝj by the Coxeter
relation for ĝi and ĝj .

Finally, we shall prove ĝj∗ ĝi∗ ĝj∗ ĝi∗ = ĝi∗ ĝj∗ ĝi∗ ĝj∗ . By the similar compu-
tation as the proof of (ii), we have

ĝj∗ ĝi∗ ĝj∗ ĝi∗ = x̂−1
i x̂−1

j ĝ−1
j ĝ−1

i ĝ−1
j ĝix̂

2
i x̂

3
j and

ĝi∗ ĝj∗ ĝi∗ ĝj∗ = x̂−1
i x̂−1

j ĝiĝ
−1
j ĝ−1

i ĝ−1
j x̂2

i x̂
3
j .

By the Coxeter relation for ĝi and ĝj we have the statement.

Thus, we have proved all Hecke and Coxeter relations.

7.5. Proof of Proposition 5.3.2 II (elliptic Coxeter relations). Firstly
let us prove elliptic Coxeter relations (H2-1) ∼ (H4) except for (H2-2) and
(H2-4).

(H2-1) Since sβ(β†) = α† + β† and tβ = tβ∗ , we have ĝβ x̂α† ĝβ = x̂α† x̂β† by
Lemma 7.4.3. Therefore the formula comes from (H’2).

(H2-3) The formulas are already proved in Lemma 7.4.3 (2).

(H3-1) The formula comes from Lemma 7.4.3 (1). Indeed, it is equivalent to
ĝαx̂α† x̂β† = x̂α† x̂β† ĝα. Since α is b-side, sα(α† + β†) = (−α†) + 2α† +
β† = α† + β†. Therefore we have the formula.
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(H3-2) The first equality is proved by the same argument as (H2-1). The second
one is equivalent to x̂2

α† x̂β† = ĝαx̂α† x̂β† ĝα. As we already mentioned
in the last subsection, tα = tα∗ . Moreover sα(α† + β†) = 2α† + β†.
Therefore we have the second equality by Lemma 7.4.3 (2).

(H3-3) Since α is b-side, tβ = tβ∗ and sβ(α†) = α† + β†. Thus we have the
formula form Lemma 7.4.3 (2).

(H4) Since α is not belong to Γmax, for the bond �α � β�μ±1

, μ = 1, or μ =
2, 3 and β is b-side. Therefore we have ĝαx̂β† ĝα = x̂α† x̂β† . Therefore
the formula is reduced to x̂β† ĝγ x̂α† x̂β† = x̂β† x̂α† ĝγ x̂β† . Since α and γ

are not connected, ĝγ x̂α† = x̂α† ĝγ . Thus we have a statement.

Let us prove (H2-2). This diagram only appears in of type A
(1,1)∗
1 . (α = α1

and β = α0.) In this case, s0(α
†
1) = α†

0 + α†
1 and t0 = t0∗ . Then we have the

first formula by the similar argument as (H2-1).
We remark that ĝ0x̂1ĝ0x̂1 = x̂0x̂

2
1. Since s�(α

†
0+2α†

1) = α†
0+2α†

1 ( = 0, 1),
we have ĝ�x̂0x̂

2
1 = x̂0x̂

2
1ĝ� by the similar computations as Lemma 7.4.3 (1). Since

ĝ1∗ = ĝ−1
1 x̂1, ĝ1∗ also commutes with x̂0x̂

2
1.

Finally we shall prove (H2-4). This diagram only appears in of type A
(1,1)
1 .

(α = α0 and β = α1.) The first equality is nothing but one of the defining re-
lations. Since s�(α

†
0 + α†

1) = α†
0 + α†

1 ( = 0, 1), we can show that x̂0x̂1 is a
central element by the similar argument as the proof of (H2-2).

So we have all elliptic Coxeter relations.

7.6. Proof of Proposition 5.3.2 III. Let us prove Proposition 5.3.2. From
7.3 and 7.4, we already know the map Φ : H(R, G) → Ĥ(R, G) defined by

gαi
�→ ĝαi

(αi ∈ Γa) and gα∗
i
�→ ĝ−1

αi
x̂α†

i
(α∗

i ∈ Γ∗
max)

is a well-defined algebra homomorphism.

Let us consider Ψ : Ĥ(R, G) → H(R, G) defined by

ĝαi
�→ gαi

and x̂α†
i
�→ xα†

i
,

for αi ∈ Γa. By Proposition 5.2.2 and 5.2.3, the map Ψ is also a well-defined
algebra homomorphism. Since

Ψ ◦ Φ(gαi
) = Ψ(ĝαi

) = gαi
(αi ∈ Γa),
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Ψ ◦ Φ(gα∗
i
) = Ψ(ĝ−1

αi
x̂α†

i
) = gα∗

i
(α∗

i ∈ Γ∗
max),

Ψ ◦ Φ is the identity map of H(R, G).

Let us prove Φ ◦Ψ is the identity map of Ĥ(R, G). The following formulas
are obvious:

Φ ◦ Ψ(ĝαi
) = ĝαi

(αi ∈ Γa),

Φ ◦ Ψ(x̂α†
j
) = x̂α†

j
(αj ∈ Γmax).

For αj ∈ Γa \ Γmax, recall that β0 := αterm
j ∈ Γmax and βl := αj live in the

following positions in the elliptic Dynkin diagram:

�

β∗
0 = (αterm

j )∗

�

β0 = αterm
j

����

����

����

���	

�

β1
� �

βl = αj

μ

μ = 1, 2±, 3±.

Since all Hecke, Coxeter and elliptic Coxeter relations hold in Ĥ(R, G), we have

x̂β†
m+1

= ĝβm+1 x̂β†
m

ĝβm+1 x̂
−1

β†
m

(0 ≤ m ≤ l − 1).

Since β0 = αterm
j ∈ Γmax, we have Φ ◦ Ψ(x̂β†

0
) = x̂β†

0
. By induction on m, we

have

Φ ◦ Ψ(x̂β†
m+1

) = Φ ◦ Ψ(ĝβm+1 x̂β†
m

ĝβm+1 x̂
−1

β†
m

)

= ĝβm+1 x̂β†
m

ĝβm+1 x̂
−1

β†
m

= x̂β†
m+1

.

Therefore Φ ◦Ψ(x̂α†
j
) = x̂α†

j
for all αj ∈ Γa. Namely, Φ ◦Ψ is the identity map

of Ĥ(R, G) and the proof of Proposition 5.3.2 is completed.

Appendix A. A List of Reduced Affine Root Systems

We will present a complete list of reduced affine root systems. In this arti-
cle, we use Macdonald’s notations for the types of reduced affine root systems.
(See [M5].) In this list, ε1, ε2, · · · is a sequence of orthonormal vectors in a real
vector space.

For each root system, we shall exhibit the Dynkin diagram and
(a) the name of that type, in Kac’s notation;
(b) roots of that type;
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(c) a basis.

S(An)
�

a1

� � �

an

�

a0

������

������
(n ≥ 2) �

a0

�

a1
∞ (n = 1)

(a) A
(1)
n .

(b) ±(εi − εj) + rc (1 ≤ i < j ≤ n + 1, r ∈ Z).
(c) a0 = −ε1 + εn + c, ai = εi − εi+1 (1 ≤ i ≤ n).

S(Bn)

�

�

�

α1

α0

� �

α2 αn−1

�

αn

���

���
�2

(n ≥ 3)

(a) B
(1)
n .

(b) ±εi + rc (1 ≤ i ≤ n, r ∈ Z); ±εi ± εj + rc (1 ≤ i < j ≤ n, r ∈ Z).
(c) a0 = −ε1 − ε2 + c, ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = εn.

S(Bn)∨
�

�

�

α1

α0

� �

α2 αn−1

�

αn

���

���
�2 (n ≥ 2)

(a) A
(2)
2n−1.

(b) ±2εi + 2rc (1 ≤ i ≤ n, r ∈ Z); ±εi ± εj + rc (1 ≤ i < j ≤ n, r ∈ Z).
(c) a0 = −ε1 − ε2 + c, ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = 2εn.

S(Cn) � �

α0

� �

α1 αn−1

�

αn

� �2 2
(n ≥ 2)

(a) C
(1)
n .

(b) ±2εi + rc (1 ≤ i ≤ n, r ∈ Z); ±εi ± εj + rc (1 ≤ i < j ≤ n, r ∈ Z).
(c) a0 = −2ε1 + c, ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = 2εn.
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S(Cn)∨ � �

α0

� �

α1 αn−1

�

αn

� �2 2
(n ≥ 2)

(a) D
(2)
n+1.

(b) ±εi + 1
2rc (1 ≤ i ≤ n, r ∈ Z); ±εi ± εj + rc (1 ≤ i < j ≤ n, r ∈ Z).

(c) a0 = −ε1 + 1
2c, ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = εn.

S(BCn) � �

α0

� �

α1 αn−1

�

αn

� �2 2
(n ≥ 2) � �

α0 α1

�4
(n = 1)

(a) A
(2)
2n .

(b) ±εi + rc (1 ≤ i ≤ n, r ∈ Z); ±2εi + (2r + 1)c (1 ≤ i ≤ n, r ∈ Z);
±εi ± εj + rc (1 ≤ i < j ≤ n, r ∈ Z).

(c) a0 = −2ε1 + c, ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = εn.

S(Dn)

�

�

�

α1

α0

� �

α2 αn−2

�

�

αn−1

αn

���

���

���

���
(n ≥ 4)

(a) D
(1)
n .

(b) ±εi ± εj + rc (1 ≤ i < j ≤ n, r ∈ Z).
(c) a0 = −ε1 − ε2 + c, ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = εn−1 + εn.

In the following three cases, let

ωi = εi − 1
9
(ε1 + · · · + ε9) (1 ≤ i ≤ 9).

S(E6) � �

α1

�

�

�

�

�α2 α3

α4 α5

α6 α0

���

���

(a) E
(1)
6 .
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(b) ±(ωi − ωj) + rc (1 ≤ i < j ≤ 6, r ∈ Z);
±(ωi + ωj + ωk) + rc (1 ≤ i < j < k ≤ 6, r ∈ Z) ;
±(ωi + ω2 + · · · + ω6) + rc (r ∈ Z).

(c) a0 = −(ω1+· · ·+ω6)+c, ai = ωi−ωi+1 (1 ≤ i ≤ 5), a6 = ω4+ω5+ω6.

S(E7)

� �

α1
� �

�

� � �

α2 α3 α4 α5 α6 α0

α7

(a) E
(1)
7 .

(b) ±(ωi − ωj) + rc (1 ≤ i < j ≤ 7, r ∈ Z);
±(ωi + ωj + ωk) + rc (1 ≤ i < j < k ≤ 7, r ∈ Z) ;
±(ω1 + · · · + ω̂i + · · · + ω6) + rc (1 ≤ i ≤ 7, r ∈ Z).

(c) a0 = −(ω1+· · ·+ω7)+c, ai = ωi−ωi+1 (1 ≤ i ≤ 6), a7 = ω5+ω6+ω7.

S(E8)

� � � �

�

� � � �

α0 α1 α2 α3 α4 α5 α6

α8

α7

(a) E
(1)
8 .

(b) ±(ωi − ωj) + rc (1 ≤ i < j ≤ 9, r ∈ Z);
±(ωi + ωj + ωk) + rc (1 ≤ i < j < k ≤ 9, r ∈ Z) ;

(c) a0 = (ω1 − ω2) + c, ai = ωi+1 − ωi+2 (1 ≤ i ≤ 7), a8 = ω7 + ω8 + ω9.

S(F4) � �

α0

� � �

α1 α2 α3 α4

�2

(a) F
(1)
4 .

(b) ±εi + rc (1 ≤ i ≤ 4, r ∈ Z); ±εi ± εj + rc (1 ≤ i < j ≤ 4, r ∈ Z);
1
2 (±ε1 + ±ε2 + ±ε3 + ±ε4) + rc (r ∈ Z).

(c) a0 = −ε1 − ε2 + c, a1 = ε2 − ε3, a2 = ε3 − ε4, a3 = ε4,
a4 = 1

2 (ε1 − ε2 − ε3 − ε4).
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S(F4)∨ � �

α0

� � �

α1 α2 α3 α4

�2

(a) E
(2)
6 .

(b) ±2εi + 2rc (1 ≤ i ≤ 4, r ∈ Z); ±εi ± εj + rc (1 ≤ i < j ≤ 4, r ∈ Z);
±ε1 + ±ε2 + ±ε3 + ±ε4 + 2rc (r ∈ Z).

(c) a0 = −ε1 − ε2 + c, a1 = ε2 − ε3, a2 = ε3 − ε4, a3 = 2ε4,
a4 = ε1 − ε2 − ε3 − ε4.

S(G2) � �

α0

�

α1 α2

�3

(a) G
(1)
2 .

(b) ±(εi − 1
3 (ε1 + ε2 + ε3)) + rc (1 ≤ i ≤ 3, r ∈ Z);

±(εi − εj) + rc (1 ≤ i < j ≤ 3, r ∈ Z).
(c) a0 = ε1 − ε2 + c, a1 = ε2 − ε3, a2 = ε3 − 1

3 (ε1 + ε2 + ε3).

S(G2)∨ � �

α0

�

α1 α2

�3

(a) D
(3)
4 .

(b) ±(3εi − (ε1 + ε2 + ε3)) + 3rc (1 ≤ i ≤ 3, r ∈ Z);
±(εi − εj) + rc (1 ≤ i < j ≤ 3, r ∈ Z).

(c) a0 = ε1 − ε2 + c, a1 = ε2 − ε3, a2 = 3ε3 − (ε1 + ε2 + ε3).

Appendix B. Non-Reduced Affine Root System of Type (C∨
n , Cn)

The non-reduced affine root system of type (C∨
n , Cn) (n ≥ 1) is realized as

follows:

roots: ±εi + 1
2rc, ±2εi + rc (1 ≤ i ≤ n, r ∈ Z),

±εi ± εj + rc (1 ≤ i < j ≤ n, r ∈ Z).
basis: a0 = −ε1 + 1

2c, ai = εi − εi+1 (1 ≤ i ≤ n − 1), an = εn.
Dynkin diagram:
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� �

α0

∗
� �

α1 αn−1

�

αn

∗� �2 2
(n ≥ 2) � �

α0 α1

∗ ∗∞
(n = 1)

Appendix C. A List of Marked Eliptic Root Systems

In this paragraph, we will present a complete list of marked elliptic root
systems (R, G) with the following assumption,

both Ra = R/G and Rf = R/radI are reduced.

As we mentioned before, they are classified by their elliptic Dynkin diagrams.
In the following list, the names of marked elliptic root systems X(t1,t2) are
taken form . For each type, we shall exhibit the elliptic Dynkin diagram and
(a) {kαi

}i=0,··· ,n; {mi}i=0,··· ,n,
(b) all roots,
(c) the explicit form of α0, · · · , αn,
(d) Rf , Ra, (R, G)a,
(e) the dual marked elliptic root system (R∨, G) of (R, G).

A
(1,1)
1

�

�

α0

α∗
0

�

�

α1

α∗
1

�
��
�

��

∞

(a) kαi
= 1; mi = 1 (i = 0, 1).

(b) ±(2ε1) + rδ1 + sδ2 (r, s ∈ Z).
(c) α0 = −2ε1 + δ2, α1 = 2ε1.
(d) Rf

∼= A1, Ra
∼= S(A1), (R, G)a

∼= S(A1).
(e) (A(1,1)

1 )∨ = A
(1,1)
1 (self-dual).

A
(1,1)
n

�

�

α1

α∗
1

�

�

�

�

�

�

αn

α∗
n

�

�

α0

α∗
0

�
��
�

��
�

��
�

��
��





��

�
�

�
�

��������
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�� ������
�

�
�

�
��

�
�

�
�

�
��

(n ≥ 2)

(a) kαi
= 1; mi = 1 (0 ≤ i ≤ n).

(b) ±(εi − εj) + rδ1 + sδ2 (1 ≤ i < j ≤ n + 1, r, s ∈ Z).
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(c) α0 = −ε1 + εn + δ2, αi = εi − εi+1 (1 ≤ i ≤ n).
(d) Rf = An, Ra = S(An), (R, G)a = S(An).
(e) (A(1,1)

n )∨ = A
(1,1)
n (self-dual).

A
(1,1)∗
1

�

α0 �

�

α1

α∗
1

���

���

∞

(a) kα0 = 2, kα1 = 1; m0 = 1/2, m1 = 1.
(b) ±ε1 + rδ1 + sδ2 (r, s ∈ Z such that rs ≡ 0 mod 2).
(c) α0 = −ε1 + δ2, α1 = ε1.
(d) Rf = A1, Ra = S(A1), (R, G)a = S(A1).
(e) (A(1,1)∗

1 )∨ = A
(1,1)∗
1 (self-dual).

B
(1,1)
n

�

�

α1

α0

�

�

α2

α∗
2

�

�

�

�

αn−1

α∗
n−1

�

αn�
��
�

��
�

��
�

��
��





��

�����	

���
���

2

(n ≥ 3)

(a) kαi
= 1 (0 ≤ i ≤ n); m0 = 2, m1 = 2, mi = 4 (2 ≤ i ≤ n − 1),

mn = 2.
(b) ±εi + rδ1 + sδ2 (1 ≤ i ≤ n + 1, r, s ∈ Z),

±εi ± εj + rδ1 + sδ2 (1 ≤ i < j ≤ n + 1, r, s ∈ Z).
(c) α0 = −ε1 − ε2 + δ2, αi = εi − εi+1 (1 ≤ i ≤ n − 1), αn = εn.
(d) Rf = Bn, Ra = S(Bn), (R, G)a = S(Bn)∨.
(e) (B(1,1)

n )∨ = C
(2,2)
n .

B
(1,2)
n

�

�

α1

α0

�

�

α2

α∗
2

�

�

�

�

αn−1

α∗
n−1

�

�

αn

α∗
n

�
��
�

��
�

��
�

��
��





��

�

�

�
��

�
��
�

����


2

(n ≥ 3)

(a) kαi
= 2 (0 ≤ i ≤ n − 1), kαn

= 1; m0 = 1, m1 = 1, mi = 2 (2 ≤ i ≤ n).
(b) ±εi + rδ1 + sδ2 (1 ≤ i ≤ n + 1, r, s ∈ Z),
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±εi ± εj + 2rδ1 + sδ2 (1 ≤ i < j ≤ n + 1, r, s ∈ Z).
(c) α0 = −ε1 − ε2 + δ2, αi = εi − εi+1 (1 ≤ i ≤ n − 1), αn = εn.
(d) Rf = Bn, Ra = S(Bn), (R, G)a = S(Bn).
(e) (B(1,2)

n )∨ = C
(2,1)
n .

B
(2,1)
n

�

α0 �

�

α1

α∗
1

�

�

�

�

αn−1

α∗
n−1

�

αn��� ���

���
���

�
��
�

��
��





��

�����	

���
���

2 2

(n ≥ 2)

(a) kαi
= 1 (0 ≤ i ≤ n); m0 = 1, mi = 2 (1 ≤ i ≤ n − 1), mn = 1.

(b) ±εi + rδ1 + sδ2 (1 ≤ i ≤ n + 1, r, s ∈ Z),
±εi ± εj + rδ1 + 2sδ2 (1 ≤ i < j ≤ n + 1, r, s ∈ Z).

(c) α0 = −ε1 + δ2, αi = εi − εi+1 (1 ≤ i ≤ n − 1), αn = εn.
(d) Rf = Bn, Ra = S(Cn)∨, (R, G)a = S(Cn).
(e) (B(2,1)

n )∨ = C
(1,2)
n .

B
(2,2)
n

�

�

α0

α∗
0

�

�

α1

α∗
1

�

�

�

�

αn−1

α∗
n−1

�

�

αn

α∗
n

�

�

�
��
�

��
�

�� �
�� �

��
�

��
��





��

�

�

�
��

�
��
�

����


2 2

(n ≥ 2)

(a) kα0 = 1, kαi
= 2 (1 ≤ i ≤ n − 1), kαn

= 1; mi = 1 (0 ≤ i ≤ n).
(b) ±εi + rδ1 + sδ2 (1 ≤ i ≤ n + 1, r, s ∈ Z),

±εi ± εj + 2rδ1 + 2sδ2 (1 ≤ i < j ≤ n + 1, r, s ∈ Z).
(c) α0 = −ε1 + δ2, αi = εi − εi+1 (1 ≤ i ≤ n − 1), αn = εn.
(d) Rf = Bn, Ra = S(Cn)∨, (R, G)a = S(Cn)∨.
(e) (B(2,2)

n )∨ = C
(1,1)
n .

C
(1,1)
n

�

�

α0

α∗
0

�

�

α1

α∗
1

�

�

�

�

αn−1

α∗
n−1

�

�

αn

α∗
n

�

�

�
��

�
��
�

����
 �
��
�

��
��





��

�

�

�
��
�

��
�

�� �
��

2 2

(n ≥ 2)

(a) kαi
= 1 (0 ≤ i ≤ n); mi = 2 (0 ≤ i ≤ n).
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(b) ±2εi + rδ1 + sδ2 (1 ≤ i ≤ n + 1, r, s ∈ Z),
±εi ± εj + rδ1 + sδ2 (1 ≤ i < j ≤ n + 1, r, s ∈ Z).

(c) α0 = −2ε1 + δ2, αi = εi − εi+1 (1 ≤ i ≤ n − 1), αn = 2εn.
(d) Rf = Cn, Ra = S(Cn), (R, G)a = S(Cn)∨.
(e) (C(1,1)

n )∨ = B
(2,2)
n .

C
(1,2)
n

�

α0 �

�

α1

α∗
1

�

�

�

�

αn−1

α∗
n−1

�

αn������

�����	

�
��
�

��
��





��

������

������

2 2

(n ≥ 2)

(a) kα0 = 2, kαi
= 1 (1 ≤ i ≤ n − 1), kαn

= 2;
m0 = 1, mi = 2 (1 ≤ i ≤ n − 1), mn = 1.

(b) ±2εi + 2rδ1 + sδ2 (1 ≤ i ≤ n + 1, r, s ∈ Z),
±εi ± εj + rδ1 + sδ2 (1 ≤ i < j ≤ n + 1, r, s ∈ Z).

(c) α0 = −2ε1 + δ2, αi = εi − εi+1 (1 ≤ i ≤ n − 1), αn = 2εn.
(d) Rf = Cn, Ra = S(Cn), (R, G)a = S(Cn).
(e) (C(1,2)

n )∨ = B
(2,1)
n .

C
(2,1)
n

�

�

α1

α0

�

�

α2

α∗
2

�

�

�

�

αn−1

α∗
n−1

�

�

αn

α∗
n

�
��
�

��
�

��
�

��
��





��

�

�

�
��
�

��
�

�� �
��

2

(n ≥ 3)

(a) kαi
= 1 (0 ≤ i ≤ n); m0 = 1, m1 = 1, mi = 2 (2 ≤ i ≤ n).

(b) ±2εi + rδ1 + 2sδ2 (1 ≤ i ≤ n + 1, r, s ∈ Z),
±εi ± εj + rδ1 + sδ2 (1 ≤ i < j ≤ n + 1, r, s ∈ Z).

(c) α0 = −2ε1 + δ2, αi = εi − εi+1 (1 ≤ i ≤ n − 1), αn = 2εn.
(d) Rf = Cn, Ra = S(Bn)∨, (R, G)a = S(Bn).
(e) (C(2,1)

n )∨ = B
(1,2)
n .

C
(2,2)
n

�

�

α1

α0

�

�

α2

α∗
2

�

�

�

�

αn−1

α∗
n−1

�

αn�
��
�

��
�

��
�

��
��





��

������

������

2

(n ≥ 3)
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(a) kαi
= 1 (0 ≤ i ≤ n − 1), kαn

= 2;
m0 = 1, m1 = 1, mi = 2 (2 ≤ i ≤ n − 1), mn = 1.

(b) ±2εi + 2rδ1 + 2sδ2 (1 ≤ i ≤ n + 1, r, s ∈ Z),
±εi ± εj + rδ1 + sδ2 (1 ≤ i < j ≤ n + 1, r, s ∈ Z).

(c) α0 = −2ε1 + δ2, αi = εi − εi+1 (1 ≤ i ≤ n − 1), αn = 2εn.
(d) Rf = Cn, Ra = S(Bn)∨, (R, G)a = S(Bn)∨.
(e) (C(2,2)

n )∨ = B
(1,1)
n .

B
(2,2)∗
n

�

α0 �

�

α1

α∗
1

�

�

�

�

αn−1

α∗
n−1

�

�

αn

α∗
n

��� ���

���
���

�
��
�

��
��





��

�

�

�
��

�
��
�

����

2

2

(n ≥ 2)

(a) kαi
= 2 (0 ≤ i ≤ n − 1), kαn

= 1; m0 = 1/2, mi = 1 (1 ≤ i ≤ n).
(b) ±εi + rδ1 + sδ2 (1 ≤ i ≤ n + 1, r, s ∈ Z such that rs ≡ 0 mod 2),

±εi ± εj + 2rδ1 + 2sδ2 (1 ≤ i < j ≤ n + 1, r, s ∈ Z).
(c) α0 = −ε1 + δ2, αi = εi − εi+1 (1 ≤ i ≤ n − 1), αn = εn.
(d) Rf = Bn, Ra = S(Cn)∨, (R, G)a = S(BCn).
(e) (B(2,2)∗

n )∨ = C
(1,1)∗
n .

C
(1,1)∗
n

�

α0 �

�

α1

α∗
1

�

�

�

�

αn−1

α∗
n−1

�

�

αn

α∗
n

���
���
�����	

�
��
�

��
��





��

�

�

�
��
�

��
�

�� �
��

2
2

(n ≥ 2)

(a) kα0 = 2, kαi
= 1 (1 ≤ i ≤ n); m0 = 1, mi = 2 (1 ≤ i ≤ n).

(b) ±2εi + rδ1 + sδ2 (1 ≤ i ≤ n + 1, r, s ∈ Z such that rs ≡ 0 mod 2),
±εi ± εj + rδ1 + sδ2 (1 ≤ i < j ≤ n + 1, r, s ∈ Z).

(c) α0 = −2ε1 + δ2, αi = εi − εi+1 (1 ≤ i ≤ n − 1), αn = 2εn.
(d) Rf = Cn, Ra = S(Cn), (R, G)a = S(BCn).
(e) (C(1,1)∗

n )∨ = B
(2,2)∗
n .
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D
(1,1)
n

�

�

α1

α0

�

�

α2

α∗
2

�

�

�

�

αn−1

α∗
n−1

�

�

αn

α∗
n

�
��
�

��
�

��
�

��
��





��

�
��
�

�� (n ≥ 4)

(a) kαi
= 1 (0 ≤ i ≤ n);

m0 = 1, m1 = 1, mi = 2 (2 ≤ i ≤ n − 1), mn−1 = 1, mn = 1.
(b) ±εi ± εj + rδ1 + sδ2 (1 ≤ i < j ≤ n + 1, r, s ∈ Z).
(c) α0 = −ε1 − ε2 + δ2, αi = εi − εi+1 (1 ≤ i ≤ n − 1), αn = εn−1 + εn.
(d) Rf = Dn, Ra = S(Dn), (R, G)a = S(Dn).
(e) (D(1,1)

n )∨ = D
(1,1)
n (self-dual).

E
(1,1)
6

�

α0

�

α6 �

�

α3

α∗
3

�

�

α4

α2

�

�

α5

α1

���

���

�
��
�

��

(a) kαi
= 1 (0 ≤ i ≤ 6);

m0 = 1, m1 = 1, m2 = 2, m3 = 3, m4 = 2, m5 = 1, m6 = 2.
(b) ±(ωi − ωj) + rδ1 + sδ2 (1 ≤ i < j ≤ 6, r, s ∈ Z),

±(ωi + ωj + ωk) + rδ1 + sδ2 (1 ≤ i < j < k ≤ 6, r, s ∈ Z),
±(ω1 + ω2 + · · · + ω6) + rδ1 + sδ2 (r, s ∈ Z),

(c) α0 = −(ω1+· · ·+ω6)+δ2, αi = ωi−ωi+1 (1 ≤ i ≤ 5), α6 = ω4+ω5+ω6.
(d) Rf = E6, Ra = S(E6), (R, G)a = S(E6).
(e) (E(1,1)

6 )∨ = E
(1,1)
6 (self-dual).

E
(1,1)
7

�

α7 �

�

α4

α∗
4

�

�

α3

α5

�

�

α2

α6

�

�

α1

α0

���

���

�
��
�

��

(a) kαi
= 1 (0 ≤ i ≤ 7);

m0 = 1, m1 = 1, m2 = 2, m3 = 3, m4 = 4, m5 = 3, m6 = 2, m7 = 2.
(b) ±(ωi − ωj) + rδ1 + sδ2 (1 ≤ i < j ≤ 7, r, s ∈ Z),

±(ωi + ωj + ωk) + rδ1 + sδ2 (1 ≤ i < j < k ≤ 7, r, s ∈ Z),
±(ω1 + · · · + ω̂i + · · · + ω7) + rδ1 + sδ2 (1 ≤ i < j ≤ 7, r, s ∈ Z),
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(c) α0 = −(ω1+· · ·+ω6)+δ2, αi = ωi−ωi+1 (1 ≤ i ≤ 6), α7 = ω5+ω6+ω7.
(d) Rf = E7, Ra = S(E7), (R, G)a = S(E7).
(e) (E(1,1)

7 )∨ = E
(1,1)
7 (self-dual).

E
(1,1)
8

�

α8 �

�

α5

α∗
5

�

�

α6

α4

�

�

α7

α3
� � �

α2 α1 α0

���

���

�
��
�

��

(a) kαi
= 1 (0 ≤ i ≤ 8);

m0 = 1, m1 = 2, m2 = 3, m3 = 4, m4 = 5, m5 = 6, m6 = 4, m7 = 2,
m8 = 3.

(b) ±(ωi − ωj) + rδ1 + sδ2 (1 ≤ i < j ≤ 9, r, s ∈ Z),
±(ωi + ωj + ωk) + rδ1 + sδ2 (1 ≤ i < j < k ≤ 9, r, s ∈ Z),

(c) α0 = ω1 − ω2 + δ2, αi = ωi+1 − ωi+2 (1 ≤ i ≤ 7), α8 = ω7 + ω8 + ω9.
(d) Rf = E8, Ra = S(E8), (R, G)a = S(E8).
(e) (E(1,1)

8 )∨ = E
(1,1)
8 (self-dual).

F
(1,1)
4

�

α0

�

α1 �

�

α2

α∗
2

�

α3

�

α4
���

���

���

���

��	

���

2

(a) kαi
= 1 (0 ≤ i ≤ 4); m0 = 2, m1 = 4, m2 = 6, m3 = 4, m4 = 2.

(b) ±εi + rδ1 + sδ2 (1 ≤ i ≤ 4, r, s ∈ Z),
±εi ± εj + rδ1 + sδ2 (1 ≤ i < j ≤ 4, r, s ∈ Z),
1
2 (±ε1 + ±ε2 + ±ε3 + ±ε4) + rδ1 + sδ2 (r, s ∈ Z).

(c) α0 = ε1 − ε2 + δ2, α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4 − σ, α4 = σ,
where σ = 1

2 (ε1 + ε2 + ε3 + ε4).
(d) Rf = F4, Ra = S(F4), (R, G)a = S(F4)∨.
(e) (F (1,1)

4 )∨ = F
(2,2)
4 .
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F
(1,2)
4

�

α0

�

α1

�

α2 �

�

α3

α∗
3

�

α4
���

���

���

�����	
���

2

(a) kα0 = 2, kα1 = 2, kα2 = 2, kα3 = 1, kα4 = 1;
m0 = 1, m1 = 2, m2 = 3, m3 = 4, m4 = 2.

(b) ±εi + rδ1 + sδ2 (1 ≤ i ≤ 4, r, s ∈ Z),
±εi ± εj + 2rδ1 + sδ2 (1 ≤ i < j ≤ 4, r, s ∈ Z),
1
2 (±ε1 + ±ε2 + ±ε3 + ±ε4) + rδ1 + sδ2 (r, s ∈ Z).

(c) α0 = ε1 − ε2 + δ2, α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4 − σ, α4 = σ.
(d) Rf = F4, Ra = S(F4), (R, G)a = S(F4).
(e) (F (1,2)

4 )∨ = F
(2,1)
4 .

F
(2,1)
4

�

α0

�

α1

�

α2 �

�

α3

α∗
3

�

α4
���

���

���

���

���

���

2

(a) kαi
= 1 (0 ≤ i ≤ 4); m0 = 1, m1 = 2, m2 = 3, m3 = 4, m4 = 2.

(b) ±2εi + rδ1 + 2sδ2 (1 ≤ i ≤ 4, r, s ∈ Z),
±εi ± εj + rδ1 + sδ2 (1 ≤ i < j ≤ 4, r, s ∈ Z),
±ε1 + ±ε2 + ±ε3 + ±ε4 + rδ1 + 2sδ2 (r, s ∈ Z).

(c) α0 = ε1 − ε2 + δ2, α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = 2ε4,
α4 = −ε1 − ε2 − ε3 − ε4.

(d) Rf = F4, Ra = S(F4)∨, (R, G)a = S(F4).
(e) (F (2,1)

4 )∨ = F
(1,2)
4 .

F
(2,2)
4

�

α0

�

α1 �

�

α2

α∗
2

�

α3

�

α4
���

��� ���

���

���
���
2

(a) kα0 = 1, kα1 = 1, kα2 = 1, kα3 = 2, kα4 = 2;
m0 = 1, m1 = 2, m2 = 3, m3 = 2, m4 = 1.

(b) ±2εi + 2rδ1 + 2sδ2 (1 ≤ i ≤ 4, r, s ∈ Z),
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±εi ± εj + rδ1 + sδ2 (1 ≤ i < j ≤ 4, r, s ∈ Z),
±ε1 + ±ε2 + ±ε3 + ±ε4 + 2rδ1 + 2sδ2 (r, s ∈ Z).

(c) α0 = ε1 − ε2 + δ2, α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = 2ε4,
α4 = −ε1 − ε2 − ε3 − ε4.

(d) Rf = F4, Ra = S(F4)∨, (R, G)a = S(F4)∨.
(e) (F (2,2)

4 )∨ = F
(1,1)
4 .

G
(1,1)
2

�

α0 �

�

α1

α∗
1

�

α2
���

���

���

���

��	

���

3

(a) kαi
= 1 (0 ≤ i ≤ 2); m0 = 3, m1 = 6, m2 = 3.

(b) ±(εi − 1
3 (ε1 + ε2 + ε3)) + rδ1 + sδ2 (1 ≤ i ≤ 3, r, s ∈ Z),

±(εi − εj) + rδ1 + sδ2 (1 ≤ i < j ≤ 3, r, s ∈ Z).
(c) α0 = −ε1 + ε3 + δ2, α1 = ε1 − ε2, α2 = ε2 − 1

3 (ε1 + ε2 + ε3).
(d) Rf = G2, Ra = S(G2), (R, G)a = S(G2)∨.
(e) (G(1,1)

1 )∨ = G
(3,3)
2 .

G
(1,3)
2

�

α0

�

α1 �

�

α2

α∗
2

���

���

���
��	

3

(a) kα0 = 3, kα1 = 3, kα2 = 1; m0 = 1, m1 = 2, m2 = 3.
(b) ±(εi − 1

3 (ε1 + ε2 + ε3)) + rδ1 + sδ2 (1 ≤ i ≤ 3, r, s ∈ Z),
±(εi − εj) + 3rδ1 + sδ2 (1 ≤ i < j ≤ 3, r, s ∈ Z).

(c) α0 = −ε1 + ε3 + δ2, α1 = ε1 − ε2, α2 = ε2 − 1
3 (ε1 + ε2 + ε3).

(d) Rf = G2, Ra = S(G2), (R, G)a = S(G2).
(e) (G(1,3)

1 )∨ = G
(3,1)
2 .

G
(3,1)
2

�

α0

�

α1 �

�

α2

α∗
2

���

������

���3
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(a) kαi
= 1 (0 ≤ i ≤ 2); m0 = 1, m1 = 2, m2 = 3.

(b) ±(3εi − (ε1 + ε2 + ε3)) + rδ1 + 3sδ2 (1 ≤ i ≤ 3, r, s ∈ Z),
±(εi − εj) + rδ1 + sδ2 (1 ≤ i < j ≤ 3, r, s ∈ Z).

(c) α0 = −ε1 + ε3 + δ2, α1 = ε1 − ε2, α2 = −ε1 + 2ε2 − ε3.
(d) Rf = G2, Ra = S(G2)∨, (R, G)a = S(G2).
(e) (G(3,1)

1 )∨ = G
(1,3)
2 .

G
(3,3)
2

�

α0 �

�

α1

α∗
1

�

α2
���

���

���

������
���
3

(a) kα0 = 1, kα1 = 1, kα2 = 3; m0 = 1, m1 = 2, m2 = 1.
(b) ±(3εi − (ε1 + ε2 + ε3)) + 3rδ1 + 3sδ2 (1 ≤ i ≤ 3, r, s ∈ Z),

±(εi − εj) + rδ1 + sδ2 (1 ≤ i < j ≤ 3, r, s ∈ Z).
(c) α0 = −ε1 + ε3 + δ2, α1 = ε1 − ε2, α2 = −ε1 + 2ε2 − ε3.
(d) Rf = G2, Ra = S(G2)∨, (R, G)a = S(G2)∨.
(e) (G(3,3)

1 )∨ = G
(1,1)
2 .

Appendix D. The Triplet Associated with (R, G) and the
Corresponding Double Affine Hecke Algebra

We will present a list of the triplet associated with a marked elliptic root
system (R, G) and the corresponding double affine Hecke algebra. In the fol-
lowing table, we shall exhibit;
(a) the corresponding triplet and its type;
(b) the type of corresponding double affine Hecke algebra in the sense of [M5].

As we proved in Section 6, for a triplet of type I or II, Ãa ⊗A H(R, G)
is isomorphic to the small double affine Hecke algebra H(Ξ(R, G))s and, for a
triplet of type III, H(R, G) is isomorphic to H(Υ(R, G)). In the following table,
× means that we do not consider the corresponding triplet.
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Type of (R, G) (a) (b)

A
(1,1)
1

Ξ(R, G) = (A1; S(A1), Q(S(A1)))
(type I or II)

(S(A1), S(A1))

Υ(R, G) = (A1; S(A1) ∪ S(A1)∨, Q(S(A1)))
(type III)

(C∨
1 , C1)

A
(1,1)∗
1 × ×

A
(1,1)
n (n ≥ 2)

Ξ(R, G) = (An; S(An), Q(S(An)))
(type I or II)

(S(An), S(An))

B
(1,1)
n (n ≥ 3)

Ξ(R, G) = (Bn; S(Bn), Q(S(Bn)∨))
(type II)

(S(Bn), S(Bn)∨)

B
(1,2)
n (n ≥ 3)

Ξ(R, G) = (Bn; S(Bn), Q(S(Bn)))
(type I)

(S(Bn), S(Bn))

B
(2,1)
n (n ≥ 2)

Ξ(R, G) = (Cn; S(Cn)∨, Q(S(Cn)))
(type I)

(S(Cn)∨, S(Cn))

B
(2,2)
n (n ≥ 2)

Ξ(R, G) = (Cn; S(Cn)∨, Q(S(Cn)∨))
(type II)

(S(Cn)∨, S(Cn)∨)

Υ(R, G) = (Cn; S(Cn)∨ ∪ S(Cn), Q(S(Cn)∨))
(type III)

(C∨
n , Cn)

C
(1,1)
n (n ≥ 2)

Ξ(R, G) = (Cn; S(Cn), Q(S(Cn)∨))
(type II)

(S(Cn), S(Cn)∨)

Υ(R, G) = (Cn; S(Cn) ∪ S(Cn)∨, Q(S(Cn)∨))
(type III)

(C∨
n , Cn)

C
(1,2)
n (n ≥ 2)

Ξ(R, G) = (Cn; S(Cn), Q(S(Cn)))
(type I)

(S(Cn), S(Cn))

C
(2,1)
n (n ≥ 3)

Ξ(R, G) = (Bn; S(Bn)∨, Q(S(Bn)))
(type I)

(S(Bn)∨, S(Bn))

C
(2,2)
n (n ≥ 3)

Ξ(R, G) = (Bn; S(Bn)∨, Q(S(Bn)∨))
(type II)

(S(Bn)∨, S(Bn)∨)

B
(2,2)∗
n (n ≥ 2) × ×

C
(1,1)∗
1 (n ≥ 2) × ×

D
(1,1)
n (n ≥ 4)

Ξ(R, G) = (Dn; S(Dn), Q(S(Dn)))
(type I or II)

(S(Dn), S(Dn))

E
(1,1)
n (n = 6, 7, 8)

Ξ(R, G) = (En; S(En), Q(S(En)))
(type I or II)

(S(En), S(En))

F
(1,1)
4

Ξ(R, G) = (F4; S(F4), Q(S(F4)∨))
(type II)

(S(F4), S(F4)∨)

F
(1,2)
4

Ξ(R, G) = (F4; S(F4), Q(S(F4)))
(type I)

(S(F4), S(F4))

F
(2,1)
4

Ξ(R, G) = (F4; S(F4)∨, Q(S(F4)))
(type II)

(S(F4)∨, S(F4))

F
(2,2)
4

Ξ(R, G) = (F4; S(F4)∨, Q(S(F4)∨))
(type II)

(S(F4)∨, S(F4)∨)

G
(1,1)
2

Ξ(R, G) = (G2; S(G2), Q(S(G2)∨))
(type II)

(S(G2), S(G2)∨)

G
(1,3)
2

Ξ(R, G) = (G2; S(G2), Q(S(G2)))
(type I)

(S(G2), S(G2))

G
(3,1)
2

Ξ(R, G) = (G2; S(G2)∨, Q(S(G2)))
(type I)

(S(G2)∨, S(G2))

G
(3,3)
2

Ξ(R, G) = (G2; S(G2)∨, Q(S(G2)∨))
(type II)

(S(G2)∨, S(G2)∨)
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Remark . For a finite root system R0 of type An, Dn, En, S(R0)∨ =
S(R0). Therefore, for A

(1,1)
n , D

(1,1)
n , E

(1,1)
n , we can regard the triplet Ξ(R, G)

as of type I or II.

Appendix E. A List of Unequal Parameters

We will present a list of unequal parameters for an elliptic Hecke algebra
H(R, G) and the corresponding double affine Hecke algebra H(Ξ(R, G)). We
remark that, for each case, Ξ(R, G) is a triplet of type I or II.

We shall exhibit in the following table:
(a) the number of unequal parameters in H(R, G),
(b) independent variables in A,
(c) the number of unequal parameters in H(Ξ(R, G)),
(d) independent variables in A.

Type of (R, G) (a) (b) (c) (d)

A
(1,1)
1 4 t0, t0∗ , t1, t1∗ 1 τ = τ0 = τ1

A
(1,1)∗
1 3 t0, t1, t1∗ × ×

A
(1,1)
n (n ≥ 2) 1

t = ti = ti∗

(0 ≤ i ≤ n)
1

τ = τi

(0 ≤ i ≤ n)

B
(1,1)
n (n ≥ 3) 2

tn,

t = t0 = t1 = ti = ti∗

(2 ≤ i ≤ n − 1)
2

τn, τ = τi

(0 ≤ i ≤ n − 1)

B
(1,2)
n (n ≥ 3) 3

tn, tn∗ ,

t = t0 = t1 = ti = ti∗

(2 ≤ i ≤ n − 1)
2

τn, τ = τi

(0 ≤ i ≤ n − 1)

B
(2,1)
n (n ≥ 2) 3

t0, tn, t = ti = ti∗

(1 ≤ i ≤ n − 1)
2

τ0 = τn, τ = τi

(1 ≤ i ≤ n − 1)

B
(2,2)
n (n ≥ 2) 5

t0, t0∗ , tn, tn∗ ,

t = ti = ti∗

(1 ≤ i ≤ n − 1)
2

τ0 = τn, τ = τi

(1 ≤ i ≤ n − 1)

C
(1,1)
n (n ≥ 2) 5

t0, t0∗ , tn, tn∗ ,

t = ti = ti∗

(1 ≤ i ≤ n − 1)
2

τ0 = τn, τ = τi

(1 ≤ i ≤ n − 1)

C
(1,2)
n (n ≥ 2) 3

t0, tn, t = ti = ti∗

(1 ≤ i ≤ n − 1)
2

τ0 = τn, τ = τi

(1 ≤ i ≤ n − 1)

C
(2,1)
n (n ≥ 3) 3

tn, tn∗ ,

t = t0 = t1 = ti = ti∗

(2 ≤ i ≤ n − 1)
2

τn, τ = τi

(0 ≤ i ≤ n − 1)
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Type of (R, G) (c) (d) (e) (f)

C
(2,2)
n (n ≥ 3) 2

tn,

t = t0 = t1 = ti = ti∗

(2 ≤ i ≤ n − 1)
2

τn, τ = τi

(0 ≤ i ≤ n − 1)

B
(2,2)∗
n (n ≥ 2) 4

t0, tn, tn∗ , t = ti = ti∗

(1 ≤ i ≤ n − 1)
× ×

C
(1,1)∗
n (n ≥ 2) 4

t0, tn, tn∗ , t = ti = ti∗

(1 ≤ i ≤ n − 1)
× ×

D
(1,1)
n (n ≥ 4) 1

t = tα
(α ∈ Γ)

1
τ = τi

(0 ≤ i ≤ n)

E
(1,1)
n (n = 6 ∼ 8) 1

t = tα
(α ∈ Γ)

1
τ = τi

(0 ≤ i ≤ n)

F
(1,1)
4 2

t0 = t1 = t2 = t2∗ ,

t3 = t4
2

τ0 = τ1 = τ2,

τ3 = τ4

F
(1,2)
4 2

t0 = t1 = t2 = t3
= t3∗ , t4

2
τ0 = τ1 = τ2

= τ3, τ4

F
(2,1)
4 2

t0 = t1 = t2 = t3
= t3∗ , t4

2
τ0 = τ1 = τ2

= τ3, τ4

F
(2,2)
4 2

t0 = t1 = t2 = t2∗ ,

t3 = t4
2

τ0 = τ1 = τ2,

τ3 = τ4

G
(1,1)
2 2 t0 = t1 = t1∗ , t2 2 τ0 = τ1, τ2

G
(1,3)
2 2 t0 = t1, t2 = t2∗ 2 τ0 = τ1, τ2

G
(3,1)
2 2 t0 = t1, t2 = t2∗ 2 τ0 = τ1, τ2

G
(3,3)
2 2 t0 = t1 = t1∗ , t2 2 τ0 = τ1, τ2

Remark . For an elliptic root system of type A
(1,1)
1 , B

(2,2)
n or C

(1,1)
n (n ≥

2), we consider another double affine Hecke algebra H(Υ(R, G)). The explicit
forms of unequal parameters in H(Υ(R, G)) were already given in 6.3.
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