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A Simpson Correspondence in
Positive Characteristic

by

Michel Gros, Bernard Le Stum and Adolfo Quirós

Abstract

Let p be a prime number, k a perfect field of characteristic p > 0, X a smooth k-scheme
and D(m)

X the algebra of (arithmetic) differential operators of level m ≥ 0. We study the
Azumaya nature of this algebra and show how to construct, using an additional data, a
splitting of a completion (along some ideal contained in its center) of it.
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Introduction

The first two authors had the opportunity to participate in a working group in
Rennes dedicated to the work of Arthur Ogus and Vadim Vologodsky on non-
abelian Hodge theory, which is now published in [11]. This is an analog in positive
characteristic p of Simpson’s correspondence over the complex numbers between
local systems and a certain type of holomorphic vector bundles that he called
Higgs bundles ([12]). Actually, Pierre Berthelot had previous results related to
these questions and he used this opportunity to explain them to us. What we
want to do here is to extend these results to differential operators of higher level.
In the future, we wish to lift the theory modulo some power of p and compare to
Faltings–Simpson p-adic correspondence ([5]).

We would also like to mention some other papers related to our investigation.
First, there is an article [7] by Masaharu Kaneda where he proves the (semi-linear)
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Azumaya nature of the ring of differential operators of higher level, generalizing
the result of [4]. Also, Marius van der Put in [13] studies the (linear) Azumaya
nature of differential operators in the context of differential fields.

We will first recall, in Sections 1 and 2, in an informal way the notion of
divided powers of higher level and how this leads, using some duality, to arithmetic
differential operators. Then, in Section 3, we will define the notion of pm-curvature
and show that Kaneda’s isomorphism still holds over an arbitrary basis. Next, in
Section 4, we assume that there exists a strong lifting of Frobenius mod p2 and
use it to lift the divided Frobenius and derive a Frobenius map on the ring of
differential operators of level m. Actually, we can do better and prove in Theorem
4.13 that this data determines a splitting of a central completion of this ring. It is
then rather formal, in Section 5, to obtain a Simpson correspondence and we can
even give some explicit formulas. We finish the article, in Section 6, with a series
of complements concerning compatibility with other theories.

Conventions

We let p be a prime and m ∈ N. Actually, we are interested in the m-th power
of p. When m = 0, we have pm = 1 which is therefore independent of p. We may
also consider the case m = ∞ in which case we will write pm = 0. Again, this is
independent of p.

Unless m = 0 or m =∞, all schemes are assumed to be Z(p)-schemes.
We use standard multiindex notations, hoping that everything will be clear

from the context.

§1. Usual divided powers

It seems useful to briefly recall here some basic results on usual divided powers
that we will need afterwards. There is nothing new but we hope that it makes the
next sections easier to read without referring to older articles. The main point of
this section is to clarify the duality between divided powers and regular powers.

Let R be a commutative ring (in a topos).

Definition 1.1. A divided power structure on an ideal I in a commutative R-
algebra A is a family of maps

I → A, f 7→ f [k],

that behave like f 7→ fk/k!. We then say that I is a divided power ideal or that
A is a divided power R-algebra.



Simpson Correspondence in Positive Char. 3

We will not list all the required properties. Note however that we always have

f [k]f [l] =
(
k + l

k

)
f [k+l].

Theorem 1.2. The functor A 7→ I from divided power R-algebras to R-modules
has a left adjoint M 7→ Γ•M.

Proof. See, for example, Theorem 3.9 of [3].

Actually Γ•M is a graded algebra with divided power ideal Γ>0M. Not also
that Γ•M is generated as R-algebra by all the s[k] for s ∈M . For example, ifM is
free on {sλ : λ ∈ Λ}, then ΓkM is free on the s[k] :=

∏
s

[kλ]
λ with |k| :=

∑
kλ = k.

Moreover, multiplication is given by the general formula for divided powers recalled
above.

Definition 1.3. If M is an R-module, the ring Γ•M is called the divided power
algebra on M.

If M is an R-module, we will denote by S•M the symmetric algebra on M
and by M̌ the dual of M. Also, we will denote by Ŝ•M the completion of S•M
along S>0M.

Proposition 1.4. If M is an R-module, there exists a canonical pairing

S•M̌ × Γ•M→R, (ϕ1 · · ·ϕn, s[n]) 7→ ϕ1(s) · · ·ϕn(s),

giving rise to perfect duality at each step when M is locally free of finite type.

Proof. See, for example, Proposition A.10 of [3].

The general formula for this pairing is quite involved but if {sλ : λ ∈ Λ} is a
finite basis forM, and {šλ : λ ∈ Λ} denotes the dual basis, then the dual basis to
{šk} is nothing but {s[k]}.

Corollary 1.5. If M is a locally free R-module of finite type, we have a perfect
pairing

Ŝ•M̌ × Γ•M→R.

Of course, there exists also a natural map S•M→ Γ•M but it is not injective
in general: if pN+1 = 0 on X, then fp

n 7→ pnf [pn] = 0 for n > N .

Proposition 1.6. If M is an R-module, multiplication on S•M̌ is dual to the
diagonal map

Γ•M
δ−→ Γ•(M⊕M) '−→ Γ•M⊗ Γ•M, s[k] 7→

∑
i+j=k

s[i] ⊗ s[j].
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Proof. The point is to show that (ϕ1 · · ·ϕi⊗ψ1 · · ·ψj)◦δ acts like ϕ1 · · ·ϕiψ1 · · ·ψj
on s[k] when k = i+ j. And this is clear.

§2. Higher divided powers

We quickly recall the definition of Berthelot’s divided powers of level m and how
one derives the notion of differential operators of higher level from them (see [1]
for a detailed exposition). We stick to a geometric situation.

Definition 2.1. Let X ↪→ Y be an immersion of schemes defined by an ideal I.
A divided power structure of level m on I is a divided power ideal J ⊂ OY such
that

I(pm) + pI ⊂ J ⊂ I.

Here, I(pm) denotes the ideal generated by the pm-th powers of elements of I.
It is then possible to define partial divided powers on I: they are maps

I → A, f 7→ f{k},

that behave like f 7→ fk/q! where q is the integral part of k/pm. Actually, if
k = qpm + r and f ∈ IX , one sets

f{k} := fr(fp
m

)[q].

We have, as above, a multiplication formula (writing qk instead of q in order to
take into account the dependence on k):

f{k}f{l} =
{
k + l

k

}
f{k+l} where

{
k + l

k

}
=
qk+l!
qk!ql!

.

When m = 0, we must have J = I and f{k} = f [k] is the above divided
power. When m = ∞, the condition reduces to pI ⊂ J ⊂ I and we may always
choose J = I since pI has divided powers. Also, in this case, f{k} = fk is just
the usual power.

We fix a (formal) scheme S with a divided power structure of level m on some
ideal of OS and we assume that all constructions below are made over S and are
“compatible” with the divided powers on S in a sense that we do not want to make
precise here (see [1] for details). Actually, in the case of a regular immersion, the
divided power envelope defined below does not depend on S and this applies in
particular to the diagonal embedding of a smooth S-scheme.

Proposition 2.2. If an immersion X ↪→ Y has divided powers of level m, there
is a finest (decreasing) ring filtration I{n} such that I{1} = I and such that
f{h} ∈ I{nh} whenever f ∈ I{n}.
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Proof. See Proposition 1.3.7 of [1].

Proposition 2.3. The functor that forgets the divided power structure on an im-
mersion X ↪→ Y has a left adjoint X ↪→ PX,m(Y ).

Proof. See Proposition 1.4.1 of [1].

Definition 2.4. If X ↪→ Y is an immersion of schemes, then PX,m(Y ) is called
the divided power envelope of level m of X in Y .

We will denote by PX,m(Y ) the structural sheaf of PX,m(Y ) and by IX,m(Y )
the divided power ideal of level m. We will also need to consider the usual divided
power ideal JX,m(Y ) (in [1], these ideals are denoted by I and Ĩ if I denotes the
ideal that defines the immersion). For each n, we will denote by PnX,m(Y ) the

subscheme defined by I{n+1}
X,m (Y ) and consider its structural sheaf

PnX,m(Y ) = PX,m(Y )/I{n+1}
X,m (Y ).

We will mainly be concerned with diagonal immersions X ↪→ X ×S X, and
we will then write PX,m, PX,m, IX,m, JX,m, PnX,m and PnX,m respectively.

If we are given local coordinates t1, . . . , tr on X/S, the ideal I of the diagonal
immersion is generated by the τi = 1⊗ti−ti⊗1. We always implicitly use the first
projection as structural map and therefore write ti ⊗ 1 = ti and 1 ⊗ ti = ti + τi.
When m = 0, PX,m is nothing but the divided power algebra on the free OX -
module on the generators τ1, . . . , τr. Of course, for m = ∞, this is just the
symmetric algebra.

In general, we obtain

OX〈τ1, . . . , τr〉(m) :=
{∑

finite

fiτ
{i} : fi ∈ OX

}
with multiplication given by the general formula for divided powers of level m
recalled above.

Definition 2.5. If X is an S-scheme, the dual to PnX,m is the sheaf D(m)
X,n of

differential operators of level m and order at most n and D(m)
X =

⋃
nD

(m)
X,n is the

sheaf of differential operators of level m on X/S.

There is a composition law on D(m)
X that comes by duality from the morphism

PX,m
δ−→ PX,m ⊗ PX,m, a⊗ b 7→ (a⊗ 1)⊗ (1⊗ b).

When X/S is smooth, this turns D(m)
X into a non-commutative ring.
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Locally, we see that

D(m)
X =

{∑
finite

fi∂
〈i〉 : fi ∈ OX

}
where ∂〈i〉 is the dual basis to τ{i} and multiplication on differentials is given by

∂〈k〉∂〈l〉 =
〈
k + l

k

〉
∂〈k+l〉 with

〈
k + l

k

〉
=

(
k+l
k

){
k+l
k

} .
We also have

∂〈k〉f =
∑
i≤k

{
k

i

}
∂〈i〉(f)∂〈k−i〉.

In this last formula, we implicitly make D(m)
X act on OX . This is formally obtained

as follows: a differential operator of order n is nothing but a linear map P : PnX,m →
OX and we compose it on the left with the map induced by the second projection
p∗2 : OX → PnX,m.

For example, if we work locally, then th is sent by p∗2 to

(t+ τ)h =
∑
k

(
h

k

)
th−kτk =

∑
k

qk!
(
h

k

)
th−kτ{k}

and therefore,

∂〈k〉(th) = qk!
(
h

k

)
th−k.

Finally, note that D(0)
X is locally generated by ∂1, . . . , ∂r and that D(∞)

X is Grothen-
dieck’s ring of differential operators. In general, when k < pm+1, it is convenient to
define ∂[k] = ∂〈k〉/qk! and note that D(m)

X is locally generated by the ∂[pl]
i = ∂〈p

l〉

for l ≤ m. In particular, we see that the diamond brackets notation should not
appear very often in practice.

§3. The pm-curvature map

We assume from now on that m 6=∞.
If X is a scheme of characteristic p, we will denote by F : X → X the m+1-st

iterate of its Frobenius endomorphism (given by the identity on X and the map
f 7→ fp

m+1
on functions).

Lemma 3.1. Let X ↪→ Y be an immersion defined by an ideal I. Then, the map

I → PX,m(Y ), ϕ 7→ ϕ{p
m+1},
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composed with the projection

PX,m(Y )→ PX,m(Y )/IPX,m(Y ),

is an F ∗-linear map that is zero on I2.

Proof. If ϕ,ψ ∈ I, we have

(ϕ+ ψ){p
m+1} = ϕ{p

m+1} + ψ{p
m+1} +

∑
i+j=pm+1

i,j>0

〈
pm+1

i

〉
ϕ{i}ψ{j}.

When 0 < i, j < pm+1, we have qi, qj < p and qi! and qj ! are therefore invertible.
It follows that the last part in the sum falls into Ipm+1

. In particular, it is zero
modulo IPX,m(Y ) and it follows that the composite map is additive.

Also, clearly, if f ∈ OX and if ϕ ∈ I, then fϕ is sent to

(fϕ){p
m+1} = fp

m+1
ϕ{p

m+1} = F ∗(f)ϕ{p
m+1}.

And we see that the map is F ∗-linear. Finally, if ϕ,ψ ∈ I, then ϕψ is sent to

(ϕψ){p
m+1} = ϕp

m+1
ψ{p

m+1} ∈ IPX,m(Y ).

For the rest of this section, we fix a base scheme S of characteristic p and we
assume that X is an S-scheme. We consider the usual commutative diagram with
cartesian square (recall that here F denotes the m+ 1-st iteration of Frobenius)

X
FX

//

((

F

''
X ′ //

��

X

��
S

F // S

If we apply Lemma 3.1 to the case of the diagonal embedding of X in X×SX,
we obtain, after linearizing and since F ∗XΩ1

X′ = F ∗Ω1
X , an OX -linear map

F ∗XΩ1
X′ → PX,m/IPX,m,

which we will call divided Frobenius.
We may now prove the level m version of Mochizuki’s theorem ([11, Proposi-

tion 1.7]):

Proposition 3.2. If X is a smooth S-scheme, the divided Frobenius extends
uniquely to an isomorphism of OX-modules

F ∗XΩ1
X′/S ' IX,mP

pm+1

X,m /IPp
m+1

X,m .
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Proof. From the discussion above, it is clear that we have such a map. In order to
show that it is an isomorphism, we may assume that there are local coordinates
t1, . . . , tr on X, pull them back as t′1, . . . , t

′
r on X ′ and also set as usual τi :=

1⊗ ti − ti ⊗ 1. Then, our map is simply
r⊕
i=1

OXdt′i
'−→

r⊕
i=1

OXτ{p
m+1}

i , dt′i 7→ τ
{pm+1}
i .

Actually, we can do a little better.

Proposition 3.3. If X is a smooth S-scheme, then I{p
m+1}

X,m ∩ IPX,m is stable
under usual divided powers. Moreover, the divided Frobenius extends uniquely to
an isomorphism of divided power OX-algebras

F ∗XΓ•Ω1
X′/S ' PX,m/IPX,m.

Proof. The first question is local and we assume for the moment that it is solved.
Then, by definition of the divided power algebra on a module, the above map

F ∗XΩ1
X′ → PX,m/IPX,m

extends uniquely to a morphism of divided power algebras

F ∗XΓ•Ω1
X′ = Γ•F ∗XΩ1

X′ → PX,m/IPX,m.

Showing that it is an isomorphism is local again.
Thus, we assume that there are local coordinates t1, . . . , tr on X, we pull them

back as t′1, . . . , t
′
r on X ′ and we also set as usual τi := 1⊗ ti − ti ⊗ 1.

We have

PX,m/IPX,m = OX〈τ1, . . . , τr〉(m)/(τ1, . . . , τr),

which is therefore a free OX -module with basis τ{kp
m+1}. The first assertion easily

follows.
Moreover, our map is

OX〈dt′1, . . . ,dt′r〉(0) → OX〈τ1, . . . , τr〉(m)/(τ1, . . . , τr), dt′i 7→ τ
{pm+1}
i .

And the left hand side is the free OX -module with basis dt′[k]. Our assertion is
therefore a consequence of the first part of Lemma 3.4 below.

Lemma 3.4. In an ideal with partial divided powers of level m, we always have

1. For any k ∈ N,

(f{p
m+1})[k] =

(kp)!
(p!)kk!

f{kp
m+1}

and (kp)!
(p!)kk!

∈ 1 + pZ.
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2. If t = qpm + r with q < p and r < pm, then

f{kp
m+1}f{t} =

(
kp+ q

q

)
f{kp

m+1+t}

and
(
kp+q
q

)
∈ 1 + pZ.

Proof. The first assertion comes from the case m = 0 applied to fp
m

. And we
may consider the formula

(f [p])[k] =
(kp)!

(p!)kk!
f [kp]

as standard. Moreover, there exists a product formula for the factor:

(kp)!
(p!)kk!

=
k−1∏
j=1

(
jp+ p− 1
p− 1

)
and it is therefore sufficient to prove that each factor in this product falls into
1 + pZ. We already know that they belong to Z and we have the product formula
in Z(p): (

jp+ p− 1
p− 1

)
=
p−1∏
i=1

(
1 +

j

i
p

)
.

The second assertion is even easier and comes from

f{u}f{t} =
{
u

t

}
f{u+t} and

{
kpm+1 + t

t

}
=
(
kp+ q

q

)
=

q∏
i=1

(
1 +

k

i
p

)
.

Definition 3.5. If X is a smooth S-scheme, the pm-curvature map is the mor-
phism

F ∗XS
•TX′ → D(m)

X

obtained by duality from the composite

PX,m → PX,m/IPX,m ' F ∗XΓ•Ω1
X′ .

We have to be a little careful here: first of all, we consider the induced mor-
phisms

P [k]
X,m → F ∗XΓ≤kΩ1

X′

(with usual divided powers on PX,m), and then we dualize to get

F ∗XS
≤kTX′ → D(m)

X,k,

and take the direct limit on both sides.
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Alternatively, we may also define the pm-curvature to be the adjoint map

S•TX′ → FX∗D(m)
X .

We will denote by Z(m)
X the center of D(m)

X and by ZO(m)
X the centralizer of

OX in D(m)
X .

Proposition 3.6. If X is a smooth scheme over S, then the pm-curvature map
induces an isomorphism of OX-algebras F ∗XS

•TX′ ' ZO(m)
X and an isomorphism

of OX′-algebras S•TX′ ' FX∗Z(m)
X .

Note that it will formally follow from the definition of the multiplication in
D(m)
X and Proposition 1.6 that the pm-curvature map is a morphism of algebras.

More precisely, this map is obtained by duality from a morphism of coalgebras.
However, we need a local description in order to prove the rest of the proposition.

Proof. Both questions are local and we may therefore use local coordinates
t1, . . . , tr, pull them back to t′1, . . . , t

′
r on X ′ and denote by ξ′1, . . . , ξ

′
r the cor-

responding basis of TX′ . By construction, the pm-curvature map is then given
by

ξ′ki 7→ ∂
〈kpm+1〉
i .

It follows from Lemma 3.4 (and duality) that

∂
〈kpm+1〉
i = (∂〈p

m+1〉
i )k

and this shows that we do have a morphism of rings, which is clearly injective
because we have free modules on both sides. The image is the OX′ -subalgebra
generated by the ∂〈p

m+1〉
i and this is exactly the center as Berthelot showed in

Proposition 2.2.6 of [1].

The following theorem is due to Masaharu Kaneda ([7, Section 2.3], see also [4]
in the case m = 0) when S is the spectrum of an algebraically closed field.

Theorem 3.7. Let X be a smooth scheme over a scheme S of positive character-
istic p and FX : X → X ′ the m + 1-st iterate of the relative Frobenius. Let D(m)

X

be the ring of differential operators of level m on X/S and ZO(m)
X the centralizer

of OX . Then, there is an isomorphism of ZO(m)
X -algebras

F ∗XFX∗D
(m)
X → EndZO(m)

X

(D(m)
X ), f ⊗Q 7→ (P 7→ fPQ).

Proof. The question is local and one easily sees that D(m)
X/S is free as ZO(m)

X -

module on the generators ∂〈k〉 with k < pm+1. More precisely, this follows again
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from Lemma 3.4 that gives us, by duality,

∂
〈kpm+1+t〉
i = (∂〈p

m+1〉
i )k∂〈t〉i

when t < pm+1. It is then sufficient to compare bases on both sides (see Kaneda’s
proof for the details).

For example, when m = 0, in the simplest case of an affine curve X = SpecA
with coordinate t and corresponding derivation ∂, the first powers 1, ∂, . . . , ∂p−1

form a basis of the ring of differential operators D and the map of the theorem
sends ∂k to [

0 ∂pIk
Ip−k 0

]
∈Mp×p(A[∂p])

for k = 0, . . . , p− 1, and ∂p to ∂pIp.
This theorem is usually stated as proving the Azumaya nature of FX∗D(m)

X .
More precisely, we can see FX∗D(m)

X as a sheaf of algebras on

ŤX′ = SpecS•TX′ ' SpecFX∗Z(m)
X

and the above theorem provides a trivialization of FX∗D(m)
X along the “Frobenius”

FX : X ⊗X′ ŤX′ → ŤX′ .

Proposition 3.8. Let X be a smooth S-scheme. If we denote by K(m)
X the two-

sided ideal of D(m)
X generated by the image of TX′ under the pm-curvature map,

there is an exact sequence

0→ K(m)
X → D(m)

X → EndOX′ (OX)→ 0.

Proof. This follows from [1, Proposition 2.2.7].

We will denote by D̂(m)
X the completion of D(m)

X along the two-sided ideal
K(m)
X . We will also denote by Ẑ(m)

X the completion of Z(m)
X along Z(m)

X ∩ K(m)
X

and by ẐO(m)
X the completion of ZO(m)

X along ZO(m)
X ∩ K(m)

X . Note that the
pm-curvature map gives isomorphisms

F ∗X Ŝ
•TX′ ' ẐO(m)

X and Ŝ•TX′ ' FX∗Ẑ(m)
X .

Proposition 3.9. If X is a smooth S-scheme, we have natural isomorphisms

Ẑ(m)
X ⊗Z(m)

X

D(m)
X ' D̂(m)

X ' HomOX (PX,m,OX).

Proof. The existence of the first map is clear and it formally follows from the
definitions that it is an isomorphism.
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Now, note that the canonical projections PX,m → PnX,m induce a compatible
family of maps

D(m)
X,n = HomOX (PnX,m,OX)→ HomOX (PX,m,OX)

from which we derive a morphism D(m)
X → HomOX (PX,m,OX). On the other

hand, using the isomorphism of Proposition 3.3 and the pm-curvature, the projec-
tion PX,m → PX,m/IPX,m dualizes to

Ẑ(m)
X ↪→ HomOX (PX,m,OX).

And by construction, these two maps are compatible on Z(m)
X and induce a map

Ẑ(m)
X ⊗Z(m)

X

D(m)
X → HomOX (PX,m,OX).

It is now a local question to check that this is an isomorphism.

§4. Lifting the pm-curvature

We will prove here the Azumaya nature of the ring of differential operators of
higher level. In order to make it easier to read, we will not always mention direct
images under Frobenius. This is not very serious because Frobenius maps are
homeomorphisms and playing with direct image only affects the linearity of the
maps (and this should be clear from the context).

Definition 4.1. If X is a scheme of characteristic p, a lifting X̃ of X modulo p2

is a flat Z/p2Z-scheme X̃ such that X = X̃ ×Z/p2Z Fp. A lifting of a morphism
f : Y → X of schemes of characteristic p is a morphism f̃ : X̃ → Ỹ between
liftings such that f = f̃ ×Z/p2Z Fp.

We will use the well known elementary result:

Lemma 4.2. If M is a Z/p2Z-module, multiplication by p! induces a surjective
map

p! : M/pM → pM,

which is bijective if M is flat.

Proof. Exercise.

Note that p! = −p mod p2 and this explains why minus signs will appear in
the formulas below. Actually, we will need more fancy estimates:
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Lemma 4.3. We have, for any m > 0,

(
pm+1

i

)
=


1 if i = 0 or i = pm+1

(−1)kp! if i = kpm

0 otherwise
mod p2.

Proof. Standard results on valuations of factorials show that

vp

((
pm+1

i

))
=


0 if i = 0 or i = pm+1,

1 if i = kpm with 0 < k < p,

> 1 otherwise,

and we are therefore reduced to showing that(
pm+1

kpm

)
= (−1)kp! mod p2,

or, what is slightly easier, that(
pm+1 − 1
kpm − 1

)
= (−1)k+1 mod p.

First of all, we can use Lucas congruences that give(
pm+1 − 1
kpm − 1

)
=
(
p− 1
k − 1

)
mod p,

and then the binomial property(
p− 1
k − 1

)
+
(
p− 1
k − 2

)
=
(

p

k − 2

)
= 0 mod p

in order to reduce to the case k = 1.

Up to the end of the section, we let S be a scheme of characteristic p and
denote by S̃ a lifting of S (modulo p2 as defined above).

Definition 4.4. If X is an S-scheme, a strong lifting F̃ : X̃ → X̃ ′ of the m+ 1-st
iteration of Frobenius of X is a morphism that satisfies

f ′ = 1⊗ f mod p ⇒ F̃ ∗(f ′) = fp
m+1

+ pgp
m

with g ∈ O eX .
Whenm = 0, this is nothing but a usual lifting, but the condition is stronger in

general. For example, the map t 7→ t4+2t is not a strong lifting of the Frobenius on
the affine line when m = 1 and p = 2. However, the condition is usually satisfied in
practice, especially when the lifting comes from a lifting of the absolute Frobenius
as the next lemma shows.
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Lemma 4.5. If F̃ : X̃ → X̃ is a lifting of the true absolute Frobenius of X, then
for f ∈ O eX , we have

F̃m+1∗(f) = fp
m+1

+ pgp
m

with g ∈ O eX .

Proof. By definition, we can write

F̃ ∗(f) = fp + pg

with g ∈ O eX and we prove by induction on m that

F̃m+1∗(f) = fp
m+1

+ pgp
m

.

If we apply the ring homomorphism F̃ ∗ on both sides of this equality, we get

F̃m+2∗(f) = F̃ ∗(f)p
m+1

+ pF̃ ∗(g)p
m

= (fp + pg)p
m+1

+ p(gp + ph)p
m

= fp
m+2

+ pgp
m+1

.

Now, we fix a smooth S-scheme X and let F̃ : X̃ → X̃ ′ be a strong lifting of
the m + 1-st iteration of the relative Frobenius of X. We will denote by X̃ × X̃
(resp. X̃ ′ × X̃ ′) the fibered product over S̃ and by Ĩ (resp. Ĩ ′) the ideal of X̃ in
X̃ × X̃ (resp. X̃ ′ in X̃ ′ × X̃ ′).

Lemma 4.6. Assume that F̃ ∗(f ′) = fp
m+1

+ pgp
m

with g ∈ O eX . Let ϕ = 1⊗ f −
f ⊗ 1, ϕ′ = 1⊗ f ′ − f ′ ⊗ 1 and ψ = 1⊗ g − g ⊗ 1. Then, the composite map

F̃ ∗ : Ĩ ′ ↪→ O eX′× eX′ eF∗× eF∗−→ O eX× eX → P eX,m
sends ϕ′ to

p!
(
ϕ{p

m+1} +
p−1∑
k=1

(−1)kf (p−k)pmϕkp
m

− ψp
m
)
.

Proof. We have

F̃ ∗(ϕ′) = 1⊗ fp
m+1
− fp

m+1
⊗ 1 + 1⊗ pgp

m

− pgp
m

⊗ 1

(recall that p2 = 0 on S̃)

= ϕp
m+1

+
pm+1−1∑
i=1

(
pm+1

i

)
fp

m+1−iϕi + pψp
m

.

We finish with Lemma 4.3.
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Proposition 4.7. There is a well defined map

1
p!
F̃ ∗ : Ĩ ′ → pP eX,m ' P eX,m/pP eX,m ' PX,m

that factors through Ω1
X′ and takes values in JX,m. Moreover, the induced mor-

phism
1
p!
F̃ ∗ : Ω1

X′ → PX,m

is a lifting of divided Frobenius

Ω1
X′ → PX,m/IPX,m.

Proof. It follows from Lemma 4.6 that the map is well defined: more precisely,
we need to check that F̃ ∗ sends Ĩ ′ inside pP eX,m. By linearity, it is sufficient to
consider the action on sections ϕ′ as in the lemma.

Now, since F̃ ∗ is a morphism of rings that sends Ĩ ′ to zero modulo p, it is
clear that 1

p! F̃
∗ will send Ĩ ′2 to 0. Thus, it factors through Ω1eX′ . Actually, since

the target is killed by p, it even factors through Ω1
X′ . And it falls inside JX,m

thanks to the first part.
Finally, the last assertion follows again from the explicit description of the

map.

Warning: The quotient map PX,m → PX,m/IPX,m is not compatible with the

divided power structures: τp
m

i is sent to 0 but (τp
m

i )[p] = τ
{pm+1}
i is not.

Proposition 4.8. The divided Frobenius 1
p! F̃
∗ extends canonically to a morphism

F ∗XΓ•Ω1
X′ → PX,m.

By duality, we get a morphism of OX-modules

ΦX : D̂(m)
X → ẐO(m)

X ↪→ D̂(m)
X .

Proof. We saw in Proposition 4.7 that the morphism 1
p! F̃
∗ takes values in JX,m

and therefore extends to a morphism of divided power algebras

Γ•Ω1
X′ → PX,m

that we can linearize. Moreover, we saw in Proposition 3.9 that

D̂(m)
X ' HomOX (PX,m,OX)

and we also have

ẐO(m)
X ' F ∗X Ŝ•TX′ ' F ∗XHomOX′ (Γ•Ω

1
X′ ,OX′) ' HomOX (F ∗XΓ•Ω1

X′ ,OX).
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Definition 4.9. The morphism ΦX is called the Frobenius of D̂(m)
X .

We will simply write Φ when X is understood from the context but we might
also use Φ(m)

X to indicate the level. Note that Φ actually depends on the choice of
the strong lifting F̃ of FX .

Proposition 4.10. If we are given local coordinates t1, . . . , tr, then

Φ(∂〈n〉) =


1 if |n| = 0,
0 if 0 < |n| < pm,

1
p!

r∑
j=1

∂
[pm]
i (F̃ ∗(t̃′j))∂

〈pm+1〉
j if n = pm1i.

Actually, if F̃ ∗(t̃′j) = t̃j
pm+1

+ pg̃j
pm , the third expression can be rewritten

−t(p−1)pm

i ∂
〈pm+1〉
i −

r∑
j=1

∂i(gj)p
m

∂
〈pm+1〉
j .

Proof. The point consists in writing Φ(∂〈n〉) in the topological OX -basis ∂〈kp
m+1〉

of ẐO(m)
X when |n| ≤ pm. By duality, the coefficient of ∂〈kp

m+1〉 in Φ(∂〈n〉) is
identical to the coefficient of τ{n} in the image of 1⊗ (dt)[k] under the morphism

OX ⊗OX′ Γ•Ω1
X′ → PX,m.

Recall that this is exactly (
F̃ ∗

p!
(τ̃ ′)

)[k]

.

Since we consider only the case |n| ≤ pm we may work modulo I{pm+1} on the

right. If we write F̃ ∗(t̃′j) = t̃j
pm+1

+ pg̃j
pm , we obtain

1
p!
F̃ ∗(τ̃ ′j) =

1
p!

∑
s6=0

∂〈s〉(F̃ ∗(t̃′j))τ
{s}

= −t(p−1)pm

j τp
m

j −
r∑
i=1

∂i(gj)p
m

τp
m

i mod I{p
m+1}.

Thus, we see that the only contributions will come from the case |k| ≤ 1 and that,
when k 6= 0, the coefficient of τ{n} is zero unless n = pm1i. Then, there are two
cases: first i 6= j, in which case only

1
p!
∂

[pm]
i (F̃ ∗(t̃′j)) = −∂i(gj)p

m
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is left, and the case i = j where we obtain

1
p!
∂

[pm]
i (F̃ ∗(t̃′i)) = −t(p−1)pm

i − ∂i(gi)p
m

.

For example, when m = 0, in the case of the affine line with parameter t
and derivation ∂, if we choose the usual lifting of Frobenius t 7→ tp, we obtain the
simple formula Φ(∂) = −tp−1∂p.

Formulas are a lot more complicated in general but they become surprisingly
nice when we stick to the usual generators of the center.

Proposition 4.11. For all i = 1, . . . , r, we have

Φ(∂〈p
m+1〉

i ) = ∂
〈pm+1〉
i + Φ(∂〈p

m〉
i )p.

Proof. As above, the coefficient of ∂〈kp
m+1〉 in Φ(∂〈p

m+1〉
i ) is identical to the coef-

ficient of τ{p
m+1}

i in

F̃ ∗

p!
(τ̃ ′)[k] =

r∏
j=1

(
τ
{pm+1}
j +

p−1∑
l=1

(−1)lt(p−l)p
m

j τ lp
m

j −
r∑
l=1

∂l(gj)p
m

τp
m

l

)[kj ]

if we write F̃ ∗(t̃′j) = t̃j
pm+1

+ pg̃j
pm .

Thus, we see that the only contributions will come from the cases k = 1i that
gives τ{p

m+1}
i and k = p1j that will give

(−∂i(gj)p
m

τp
m

i )[p] = (−∂i(gj)p
m

)pτ{p
m+1}

i

for all j plus the special contribution

(−t(p−1)pm

i τp
m

i )[p] = (−t(p−1)pm

i )pτ{p
m+1}

i

of the case j = i. In other words, we obtain

Φ(∂〈p
m+1〉

i ) = ∂
〈pm+1〉
i + (−t(p−1)pm

i )p∂〈p
m+2〉

i +
r∑
j=1

(−∂i(gj)p
m

)p∂〈p
m+2〉

j .

Our assertion therefore follows from the formulas in Proposition 4.10 because,
thanks to Lemma 3.4, we have

(∂〈p
m+1〉

j )p = ∂
〈pm+2〉
j .

This calculation shows in particular that Φ is not a morphism of rings. How-
ever, we will see later on that the map induced by Φ on the center is a morphism
of rings so that the above formula fully describes this map.
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We recall now the following general result on Frobenius and divided powers:

Lemma 4.12. The canonical map PX,m → X × X factors through X ×X′ X if
X is seen as an X ′-scheme via FX . Actually, if we are given local coordinates
t1, . . . , tr and we set τi := 1⊗ ti− ti⊗ 1, the corresponding map on sections is the
canonical injection

OX [τ ]/(τp
m+1

) ↪→ OX〈τ〉(m).

Proof. In order to prove the first assertion, the point is to check that if f ∈ OX ,
then 1⊗ fpm+1 − fpm+1 ⊗ 1 is sent to zero in PX,m. But we have

1⊗ fp
m+1
− fp

m+1
⊗ 1 = p!(1⊗ f − f ⊗ 1){p

m+1} = 0.

Concerning the second assertion, we just have to verify that

OX [τ ]/(τp
m+1

) ' OX×X′X .

Since Frobenius is cartesian on étale maps ([6, XIV, 1, Proposition 2]), we may
assume that X = Ar

S , in which case this is clear.

Our main theorem comes now:

Theorem 4.13. Let X be a smooth scheme over a scheme S of positive charac-
teristic p and F̃ a strong lifting of the m + 1-st iterate of the relative Frobenius
of X. The divided Frobenius extends canonically to an isomorphism

OX×X′X ⊗OX′ Γ•Ω1
X′ ' PX,m.

By duality, we obtain an isomorphism of OX-algebras

D̂(m)
X ' End bZ(m)

X

(ẐO(m)
X ).

Proof. Thanks to Lemma 4.12, we may extend by linearity the morphism of di-
vided power algebras

Γ•Ω1
X′ → PX,m

and obtain
OX×X′X ⊗OX′ Γ•Ω1

X′ → PX,m.

We now show that it is an isomorphism. This is a local question and we may
therefore fix some coordinates t1, . . . , tr, call t′1, . . . , t

′
r the corresponding coordi-

nates on X ′, and as usual set τi := 1⊗ ti − ti ⊗ 1. It follows from Proposition 4.7
that dt′i is sent to τ{p

m+1}
i + φi with

φi ∈ (τ (pm))OX [τ ]/(τp
m+1

).
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And we have to check that the divided power morphism of OX [τ ]/(τp
m+1

)-algebras

OX [τ ]/(τp
m+1

)〈dt′〉(0) → OX〈τ〉(m), dt′i 7→ τ
{pm+1}
i + φi,

is bijective. This is easy because we have free modules with explicit bases on both
sides.

Now, we obtain our assertion by duality. Using the fact that X is finite flat
over X ′, so that OX is locally free over OX′ , we have the following sequence of
isomorphisms:

HomOX (OX×X′X ⊗OX′ Γ•Ω1
X′ ,OX)

' HomOX′ (Γ•Ω
1
X′ ,HomOX (OX×X′X ,OX))

' HomOX′ (Γ•Ω
1
X′ , EndOX′ (OX))

' HomOX′ (Γ•Ω
1
X′ ,OX′)⊗OX′ EndOX′ (OX)

' Ŝ•TX′ ⊗OX′ EndOX′ (OX) ' End
Ŝ•TX′

(OX ⊗OX′ Ŝ•TX′).

and we know that S•TX′ ' FX∗Z(m)
X .

It remains to show that this is a morphism of rings and we do that by proving
that it comes by duality from a morphism of coalgebras. Actually, both morphisms

OX×X′X → PX,m and Γ•Ω1
X′ → PX,m

are compatible with the coalgebra structures. We can be more precise: for the
first one, this is because the comultiplication is induced on both sides by the same
formula

f ⊗ g 7→ f ⊗ 1⊗ g,

and for the second one, it is an immediate consequence of the universal property
of divided powers.

Warning: The isomorphism of the theorem is not a morphism of Ẑ(m)
X -algebras.

However, we have the following:

Corollary 4.14. The morphism Φ induces an automorphism of the ring Ẑ(m)
X

(that depends on the lifting of Frobenius).

Proof. The isomorphism of rings

D̂(m)
X ' End bZ(m)

X

(ẐO(m)
X )

induces an isomorphism on the centers which is nothing but the map induced
by Φ.
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Corollary 4.15. The sheaf ẐO(m)
X is a (left) D̂(m)

X -module for the action

P • fQ = Φ(Pf)Q, P ∈ D̂(m)
X , f ∈ OX , Q ∈ Ẑ(m)

X

(that again depends on the lifting of Frobenius).

Proof. Using the fact that the action is ẐO(m)
X -linear by definition, we may assume

that Q = 1. And since the isomorphism

D̂(m)
X ' End bZ(m)

X

(ẐO(m)
X )

is OX -linear on both sides, we may assume that f = 1. We are therefore reduced
to checking that P • 1 = Φ(P ), which follows from the definition of the map.

For example, when m = 0, in the case of the affine line with parameter t and
derivation ∂ and if we choose the usual lifting of Frobenius t 7→ tp, we have, for
k > 0,

∂ • tk = ktk−1 − tktp−1∂p = (k − tp∂p)tk−1.

Thus, if we use (1, t, . . . , tp−1) as a basis of k[t][[∂p]] over k[tp][[∂p]], we see
that ∂ acts as 

0 −tp∂p + 1 0 · · · 0
... 0

. . . . . .
...

...
...

. . . . . . 0
0 0 · · · 0 −tp∂p + p− 1
−∂p 0 · · · · · · 0


.

Warning: Scalar restriction to Ẑ(m)
X of the action of D̂(m)

X on ẐO(m)
X is different

from the natural action of Ẑ(m)
X .

The last result shows that the action of D̂(m)
X on ẐO(m)

X and the Frobenius of
D̂(m)
X completely determine each other. For computations, since the action is Ẑ(m)

X -
linear and D̂(m)

X is generated by the operators of order at most pm, the following
result might be useful.

Proposition 4.16. If P ∈ D̂(m)
X has order at most pm, and f ∈ OX , then

P • f = P (f) + fΦ(P ).

Proof. This is a local question and we may therefore assume that we have local
coordinates t1, . . . , tr. By linearity, it is sufficient to show that for |n| ≤ pm, we
have

∂〈n〉 • f = ∂〈n〉(f) + fΦ(∂〈n〉).
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We proceed as in the proof of 4.10. By definition, the image of (1 ⊗ f) ⊗ (dt)[k]

under the morphism
OX×X′X ⊗OX′ Γ•Ω1

X′ → PX,m.

is exactly

ε(f)
(

1
p!
F̃ ∗(τ̃ ′)

)[k]

where ε denotes the Taylor series.
The coefficient of τ{n} in this series is the same as the coefficient of ∂{kp

m+1}

in ∂〈n〉 • f . We may work modulo I{pm+1} on the right and we know that, then,
all coefficients in eF∗

p! (τ̃ ′) are zero unless n = pm1i. Thus, we are left with the

case k = 0, which gives ∂〈n〉(f), and the cases k = 1i, which give the different
summands of fΦ(∂〈n〉).

Note that the formula is more complicated in higher order: for example if X
is the affine line over F2, m = 0 and F̃ is the usual lifting of Frobenius, we have

∂3 • f = ∂(f)Φ(∂2) + fΦ(∂3).

§5. Higgs modules

If u : X → Y is a morphism of schemes, E is an OX -module and

θ : E → E ⊗OX u∗Ω1
Y

is an OX -linear map, we will write

θ(1) : E ⊗OX u∗Ω1
Y

θ⊗Id−−−→ E ⊗OX u∗Ω1
Y ⊗OX u∗Ω1

Y
Id⊗∧−−−→ E ⊗OX u∗Ω2

Y .

Definition 5.1. Let u : X → Y be a morphism of schemes. Then, a Higgs
u-module on X is an OX -module E endowed with an OX -linear map

θ : E → E ⊗OX u∗Ω1
Y

such that θ(1) ◦ θ = 0. When u = IdX , we speak of a Higgs module on X. When
u = FX is a (relative iterated) Frobenius morphism, we speak of a Higgs F -module
on X.

The Higgs u-modules form a category with compatible OX -linear maps as
morphisms. Exactly as modules with integrable connections may be seen as D-
modules, we can interpret the category of Higgs u-modules as a category of modules
over a suitable ring.
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Proposition 5.2. Let u : X → Y be a morphism of schemes with Y smooth, and
E an OX-module endowed with an OX-linear map

θ : E → E ⊗OX u∗Ω1
Y .

Then, E is a Higgs u-module if and only if the dual action

u∗TY × E → E , (ξ, s)→ ξs,

extends to a structure of u∗S•TY -module. This is an equivalence of categories.

Proof. Note first that a structure of u∗S•TY -module is given by a homomorphism

S•u∗TY = u∗S•TY → EndOX (E)

of OX -algebras. The universal property of the symmetric algebra tells us that this
is equivalent to a linear map

ρ : u∗TY → EndOX (E)

satisfying ρ(ξ) ◦ ρ(ξ′) = ρ(ξ′) ◦ ρ(ξ) whenever ξ, ξ′ ∈ TY . Alternatively, it corre-
sponds to a bilinear map

u∗TY × E → E , (ξ, s) 7→ ξs,

satisfying ξξ′s = ξ′ξs for ξ, ξ′ ∈ TY and s ∈ E . And the corresponding map

θ : E → E ⊗OX u∗Ω1
Y

is given in local coordinates by θ(s) =
∑
ξis⊗ dxi. Now, we compute

θ(1)(θ(s)) =
∑
i<j

(ξiξjs− ξjξis)⊗ dxi ∧ dxj .

And we see that this is zero if and only if we always have ξiξjs = ξjξis. This is
exactly the condition we were looking for.

Note that, given a morphism u : X → Y , there is an obvious pull-back
morphism u∗ from Higgs modules on Y to Higgs u-modules on X. There is also a
restriction map from Higgs u-modules on X to Higgs modules on X that has no
interest for us.

Definition 5.3. Let X be a smooth scheme over a fixed scheme S of characteristic
p and FX the relative m + 1-st iterated Frobenius on X. If E is a D(m)

X -module,
its underlying Higgs F -module is the one obtained by restriction along the pm-
curvature map

F ∗XS
•TX′ → D(m)

X .
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Its pm-curvature is the corresponding OX -linear morphism

θ : E → E ⊗OX F ∗XΩ1
X′ .

Note that this definition of pm-curvature is consistent with Definition 3.1.1 of
[10]. More precisely, having pm-curvature equal to zero has the same meaning as
in [10].

Note that, locally, by definition, we have

θ(s) =
∑
i

∂
{pm+1}
i (s)⊗ dt′i.

Definition 5.4. 1. Let A be a ring (in a topos) and I a left ideal in A. An
A-module E is quasi-nilpotent if given any section s ∈ E , there exists locally
N ∈ N such that INs = 0.

2. Let u : X → Y be a morphism of schemes over some other scheme S. Then, a
Higgs u-module E is quasi-nilpotent if it is so as a u∗S•TY -module (with respect
to its augmentation ideal).

3. Let X is a smooth scheme over a scheme S of characteristic p and E a D(m)
X -

module. Then E has quasi-nilpotent pm-curvature if the underlying Higgs FX -
module is quasi-nilpotent.

Proposition 5.5. Let X be a smooth scheme over S of characteristic p and E a
D(m)
X -module. Then, the following are equivalent:

1. E is quasi-nilpotent (with respect to the ideal K(m)
X ),

2. E is quasi-nilpotent (in the sense of [1, Section 2.3]),

3. E has quasi-nilpotent pm-curvature.

Proof. All the definitions are local in nature and we may therefore assume that
we have local coordinates t1, . . . , tr on X. Then the first and the third conditions
both mean that, locally, we have

(∂〈p
m+1〉)N (s) = 0 for |N | � 0.

Also, the second condition says that, locally again, we have ∂〈N〉i (s) = 0 for N � 0.
This is equivalent to the first one because we always have, for t < pm+1,

∂
〈kpm+1+t〉
i = ∂ti (∂

〈pm+1〉
i )k.

Note also that the categories of quasi-nilpotent modules on a ring A and on
its completion Â are identical. In particular, we can always consider the category
of quasi-nilpotent D(m)

X -modules as a full subcategory of the category of D̂(m)
X -

module.
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In order to go further, we will need the following standard result:

Lemma 5.6. Let R be a commutative ring, M be a locally free R module of finite
rank, and A := EndR(M). Then, the functors

E 7→ HomA(M, E)

from A-modules to R-modules and

F 7→M⊗R F

are quasi-inverse to each other.

Proof. This follows from the fact that the canonical maps

M⊗R HomA(M, E)→ E and F → HomA(M,M⊗R F)

are both bijective.

We denote by X a smooth scheme over a fixed scheme S of characteristic p
and let FX be the relative m+ 1-st iterated Frobenius on X. We also fix a lifting
S̃ of S modulo p2 as well as a strong lifting F̃ : X̃ → X̃ ′ of FX over S̃. Associated
to F̃ , we may consider the Frobenius Φ of D̂(m)

X introduced in the previous section.
Then, we have the following.

Proposition 5.7. There is an equivalence of categories between D̂(m)
X -modules

and Ŝ•TX′-modules given by

E 7→ (FX∗E)1−Φ and F 7→ F ∗XF .

In order to understand this statement, it is necessary to make precise the
definition of Frobenius invariants:

(FX∗E)1−Φ := {s ∈ E : ∀P ∈ D̂(m)
X , Φ(P )(s) = P (s)}.

Proof. Using Lemma 5.6, it follows from Theorem 4.13 that there is an equivalence
of categories between D̂(m)

X -modules and FX∗Ẑ(m)
X -modules given by

E 7→ FX∗Hom bD(m)
X

(ẐO(m)
X , E) and F 7→ ẐO(m)

X ⊗ bZ(m)
X

F .

We want to identify the right hand sides with the expressions in the proposition.
For the second one, this is easy because

F ∗XF ' F ∗XFX∗Ẑ
(m)
X ⊗ bZ(m)

X

F ' ẐO(m)
X ⊗ bZ(m)

X

F .

In order to do the first one, we first check that the canonical map

Hom bD(m)
X

(ẐO(m)
X , E)→ E , ϕ 7→ ϕ(1),
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is injective. If ϕ(1) = 0, then ϕ(f) = 0 for any f ∈ OX by linearity. Moreover, we
have the inclusion

Hom bD(m)
X

(ẐO(m)
X , E) ⊂ Hom bZ(m)

X

(ẐO(m)
X , E) ' HomOX′ (OX , E)

and it follows that ϕ = 0.
Now, if s ∈ E , we see that the corresponding map

ϕ : ẐO(m)
X → E , fQ 7→ fQ(s),

is D̂(m)
X -linear if and only if (Φ(Pf)Q)(s) = P ((fQ)(s)) for all P ∈ D̂(m)

X , f ∈ OX
and Q ∈ Ẑ(m). We may assume that Q = 1 and f = 1 and this shows that

(FX∗E)1−Φ = FX∗Hom bD(m)
X

(ẐO(m)
X , E).

Warning: The induced action of Ẑ(m)
X on ẐO(m)

X is not the natural one: we need
to compose with the automorphism induced by Φ on Ẑ(m)

X .

We may now state the main theorem of this section (see [11, Theorem 2.8]):

Theorem 5.8. Let X be a smooth scheme over S of positive characteristic p.
If there exists a strong lifting of the m + 1-st iterate of the relative Frobenius of
X modulo p2, then there is an equivalence of categories between quasi-nilpotent
D(m)
X -modules and quasi-nilpotent Higgs modules on X ′ given by

E 7→ (FX∗E)1−Φ and F 7→ F ∗XF .

Proof. The functor FX∗ induces an equivalence of categories between Z(m)
X -mod-

ules and Higgs modules on X ′. The theorem therefore follows from Proposition
5.7 since quasi-nilpotency is clearly preserved under the equivalence.

Warning: Under this equivalence, the pm-curvature of E is not obtained as the
simple pull-back of the Higgs structure of F along Frobenius: we also have to
compose with the automorphism induced by Φ on the center.

Finally, we can give local formulas:

Proposition 5.9. If we are given local coordinates t1, . . . , tr, and F is a Higgs
module on X ′ with

θ(s) =
r∑
i=1

ξ′is⊗ dti,
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then the D(m)
X -structure of F ∗XF is given by

∂
[pl]
i (1⊗ s) =


0 if l < m,

1
p!

r∑
j=1

∂
[pm]
i (F̃ ∗(t̃′j))⊗ ξ

′
js if l = m.

Proof. Follows from Proposition 4.10.

Unfortunately, it is much more complicated to recover F from E .

§6. Informal complements

§6.1. Linearizing with respect to the center

As usual, X denotes a smooth scheme over some scheme S of characteristic p and
FX is the relative m + 1-st iterated Frobenius on X. We also fix a lifting S̃ of S
modulo p2 as well as a strong lifting F̃ : X̃ → X̃ ′ of FX over S̃.

First of all, it is important to notice that, in the following commutative dia-
gram, where all maps are OX -linear,

F ∗XΓ•Ω1
X′

//

���
�
�

PX,m

��
F ∗XΓ•Ω1

X′
' // PX,m/IPX,m

the dotted arrow is not the identity although both horizontal arrows are defined
by the same map 1

p! F̃ on Ω1
X′ and are compatible with divided powers. This

is because the left arrow is not compatible with divided powers. However, one
can show that the dashed arrow is bijective (it is dual to the ring automorphism
induced by Φ on ẐO(m)

X —see below).
Recall now that our Frobenius map

Φ : D̂(m)
X → ẐO(m)

X ↪→ D̂(m)
X

induces the identity on OX and a (non-trivial) ring automorphism of Ẑ(m)
X . In

particular, Φ restricts to an automorphism of ẐOX and we will abusively denote
by Φ−1 its inverse. We may then compose Φ−1 on the right with Φ in order to
obtain a modified version of Frobenius

Φ̃ : D̂(m)
X → ẐO(m)

X

Φ−1

' ẐO(m)
X ↪→ D̂(m)

X

that will induce the identity on ẐO(m)
X .
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Using this modified Frobenius gives a twisted version of our fundamental
algebra isomorphism

D̂(m)
X ' End bZ(m)

X

(ẐO(m)
X ),

which is now the identity on the center Ẑ(m)
X . The corresponding D̂(m)

X -module
structure is given by a similar formula

P •̃ fQ = Φ̃(Pf)Q.

This twisted action is given by more complicated formulas but has the advantage
of being a true Azumaya splitting for D̂(m)

X . Of course, one can use this twisted
action in order to obtain an equivalence between quasi-nilpotent D(m)

X -modules
and Higgs modules on X. Actually, Φ induces an autoequivalence of the category
of quasi-nilpotent Higgs modules on X ′ and the twisted equivalence is obtained
by composition with the old one.

§6.2. Van der Put’s construction

Marius van der Put only deals with differential operators of level zero and we will
therefore stick here to this case and drop m from the notations. He actually works
in the theory of differential fields ([13], [14]) but the translation into our language
is straightforward. Also, we will not follow his notations but only try to explain his
clever approach. We let X be a curve over a perfect field, with a fixed coordinate
t, and denote as usual the corresponding derivation by ∂.

It is important to note that van der Put works with the twisted version of the
theory (see Section 6.1). The first point is to remark that the Azumaya nature of
D̂X is completely described by the element

H := Φ̃(∂) ∈ ẐOX .

In what follows, we make D̂X act on ẐOX by extending trivially the action on
OX (via the isomorphism OX ⊗OX′ ẐX ' ẐOX). Now, since the twisted action
is the identity on ẐX , we must have ∂p •̃ 1 = ∂p and this leads to the condition

∂p−1(H) +Hp = ∂p.

Thus, van der Put’s question reduces to finding such an element. He does it by
successive approximations, lifting an action on the quotient OX (see [13, Lemma
1.6]). The point is to notice that such an action corresponds to an element h ∈ OX
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such that ∂p−1(h) + hp = 0. In other words, he lifts the quotient isomorphism:

D̂X
' //

����

End bZX (ẐOX)

����
DX/KX

' // EndOX′ (OX)

We will now check that he obtains exactly the map induced by Φ̃ if we can use
t 7→ tp as lifting of Frobenius modulo p2. First of all, we have

Φ(∂) = −tp−1∂p and Φ(∂p) = ∂p − tp(p−1)∂p
2
.

Since Φ induces a morphism of rings on ẐOX , we also have, for all k ≥ 0,

Φ(∂p
k

) = ∂p
k

− (tp−1)p
k

∂p
k+1

,

from which we derive

Φ−1(∂p) =
∞∑
k=1

(tp−1)
pk−1
p−1 −1∂p

k

=
∞∑
k=1

tp(p
k−1−1)∂p

k

.

Since Φ is OX -linear, we can deduce

H := Φ̃(∂) = −tp−1Φ−1(∂p) = −
∞∑
k=1

t(p
k−1)∂p

k

.

This is exactly the same (with different notations) as Example 1.6.1 of [13]. The
reader can also look at the proof of Theorem 13.5 of [14]). Note also that many
examples are worked out in that book.

§6.3. Working before completion

We keep the same notations as in Section 6.1. It is not difficult to see that the
map Φ exists before completion. One just has to be careful when dualizing. This
is possible because we have explicit local formulas. Thus, there is a well defined
map

Φ : D(m)
X → ZO(m)

X ↪→ D(m)
X .

Using our local formulas again, it is not difficult either to see that Φ sends ZX
into itself. But the induced map need not be bijective (in particular, we cannot
define Φ̃ before completion).

For the same reasons, there exists a morphism of OX -algebras at finite level

D(m)
X → EndZ(m)

X

(ZO(m)
X ).
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But again, this is not an isomorphism. However, this map is semi-linear with
respect to the endomorphism Φ of ZX and linearization provides an isomorphism

ZX↖
Φ

⊗ZX D
(m)
X ' EndZ(m)

X

(ZO(m)
X ).

Note that the fact that this is an isomorphism follows from our previous results
because it is a morphism of locally free ZX -modules, and that it is therefore
sufficient to prove bijectivity after completing.

The endomorphism induced by Φ on ZX ' S•TX′ corresponds to a morphism

α : ŤX′ → ŤX′ .

We did not check it in general, but it is likely that α is surjective étale and
provides an étale Azumaya splitting of D(m)

X (see Proposition 2.5(1) of [11] for the
case m = 0).

Finally, we can pullback Higgs modules along Frobenius to get a D(m)
X -module,

but it becomes an equivalence only when restricting to quasi-nilpotent objects.

§6.4. Glueing

As before, X denotes a smooth scheme over some scheme S of characteristic p and
FX is the relative m + 1-st iterated Frobenius on X. We also fix a lifting S̃ of S
modulo p2 as well as a lifting X̃/S̃ of X/S.

Assume for the moment that we are given two strong liftings F̃1, F̃2 : X̃ → X̃ ′

of FX over S̃ (we may always twist a lifting of X and therefore assume that F̃1

and F̃2 have the same domain). Considering local descriptions again, one sees that
the map

F̃2 − F̃1 : O eX′ → O eX
induces a derivation

1
p!

(F̃2 − F̃1) : OX′ → OX .

and we obtain a natural OX′ -linear map

u12 =
1
p!

(F̃2 − F̃1) : Ω1
X′ → OX .

Moreover, if F̃3 is another strong lifting of FX , we have (with the obvious analogous
notation) u13 = u12 + u23.

The map u12 extends to a morphism of OX′ -algebras S•Ω1
X′ → OX and by

linearity to a map F ∗XS
•Ω1

X′ → OX and we finally embed into F ∗XS
•Ω1

X′ in order
to get an endomorphism of the OX -algebra F ∗XS

•Ω1
X′ that we still call u12. We

may then define φ12 = Id − u12 and remark that φ12φ23 = φ13. It follows that,
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when there are only local liftings of Frobenius, we obtain glueing data and we will
denote by A(m)

X the resulting OX -module which is locally isomorphic to F ∗XS
•Ω1

X′ .
In order to dualize, we introduce the completed divided power envelopes

Ẑ(m)DP
X ,

̂ZO(m)DP
X and D̂(m)DP

X

of

Z(m)
X , ZO(m)

X and D(m)
X

respectively along the augmentation ideal of Z(m)
X . Note that we have

Ẑ(m)DP
X ' Γ̂•TX′ ,

̂ZO(m)DP
X ' Ẑ(m)DP

X ⊗Z(m)
X

ZO(m)
X

and

D̂(m)DP
X ' Ẑ(m)DP

X ⊗Z(m)
X

D(m)
X .

Thus, dual to A(m)
X we obtain an OX -module B(m)

X , which is in fact a locally free
̂ZO(m)DP
X -module of rank 1. In order to verify this, it is sufficient to check that,

locally, the dual glueing map

φ̂12 : ̂ZO(m)DP
X → ̂ZO(m)DP

X

is ̂ZO(m)DP
X -linear: it is OX -linear by definition; moreover, by construction, φ̂12

acts as the identity on the augmentation ideal of Ẑ(m)DP
X because u12 sends the

augmentation ideal of S•Ω1
X′ into OX .

Note that, locally, F̃2 − F̃1 sends Ĩ into pO eX×fX′ eX and that we obtain a map

Ω1
X′

U12−−→ OX×X′X , ω′ 7→ u12(ω′)⊗ 1− 1⊗ u12(ω′).

A construction analogous to the above provides an automorphism Id − U12 of
OX×X′X ⊗ S

•Ω1
X′ giving rise to a commutative diagram

OX×X′X ⊗ S
•Ω1

X′

1
p!

eF1 ''OOOOOOOOOOO
' // OX×X′X ⊗ S

•Ω1
X′

1
p!

eF2wwooooooooooo

PX,m

Dualizing provides a morphism

D̂(m)
X → End

Ẑ(m)DP
X

(B(m)
X ),
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and extending scalars, a map which is an isomorphism

D̂(m)DP
X ' End

Ẑ(m)DP
X

(B(m)
X ),

as one easily checks.

§6.5. Ogus–Vologodsky’s construction

We keep the same notations as before but we assume that m = 0 and we drop
it from the notations. Also, in what follows, there will be some sign differences
with the article of Ogus and Vologodsky ([11]), due to the fact that they choose
to divide by p instead of p! and that p! = −p mod p2.

They start with a global definition of AX that we do not want to recall
here ([11, Theorem 1.1]). In order to obtain a local description of this object,
they introduce the notion of “splitting of Cartier” ζ : Ω1

X′ → Ω1
X . When F̃ is a

lifting of Frobenius, the standard example of such a splitting is given by Mazur’s
construction and is simply the composite of the map

F̃

p!
: Ω1

X′ → IX

with the canonical projection IX → IX/I [2]
X = Ω1

X . They linearize and dualize in
order to obtain a morphism φ : TX → F ∗XTX′ . Thus, by construction, there is a
commutative diagram

Φ : DX
Φ // DX

TX
?�

OO

φ // F ∗XTX′
?�

OO

where the map on the right is the p-curvature map. From φ, they construct a
morphism h : ŤX′ → ŤX′ that is given on local sections by h∗(∂pi ) = Φ(∂i)p if
we use as usual the p-curvature map to embed TX′ into DX . When m = 0, our
formula in Proposition 4.11 reads Φ(∂pi ) = ∂pi +Φ(∂i)p and it follows that our map
α is the same as the one in Section 2.2 of [11]. In particular, our theory is fully
compatible with theirs even if the approach might sound different.

For example, their formula (2.11.2) reads locally

∇(1⊗ s) =
r∑
i=0

ξ′is⊗ ζ(dt′i).
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and we have, with Cartier–Mazur’s splitting corresponding to a lifting t̃′i 7→ t̃pi +pg̃i,

ζ(dt′i) = −t(p−1)
i dti −

r∑
j=1

∂j(gi)dtj .

It follows that

∂i(1⊗ s) = −t(p−1)
i ⊗ ξ′is−

r∑
j=1

∂i(gj)⊗ ξ′js,

which is exactly what we found in Proposition 5.9.

§6.6. Frobenius descent

When s ∈ N, any divided power structure of level m on an ideal I is a fortiori a
divided power structure of higher level m + s. It follows that if X ↪→ Y is any
embedding, there exists a natural map PX,m(Y ) → PX,m+s(Y ). And from this,
one derives, for a smooth scheme X over our fixed scheme S, a morphism of rings
D(m)
X → D(m+s)

X . It is given on local generators by ∂[pl]
i 7→ ∂

[pl]
i for l ≤ m but this

is not an injective map in general. For example, if S has positive characteristic p
and s > 0, then ∂

{pm+1}
i is sent to zero.

Let us be more specific in this positive characteristic situation. Given any s,
we will denote by X(s) the pull-back of X along the s-th iteration of Frobenius.
For s > 0, the kernel of the map D(m)

X → D(m+s)
X is nothing but the ideal K(m)

X

generated by the image of TX(m+1) under the pm-curvature map. Moreover, it
induces an isomorphism of rings

EndO
X(m+1) (OX) ' D(m+s)

X,pm+1−1

where the right hand side is the subring of differential operators of order less than
pm+1.

We now come to the basic fact on Frobenius descent: the s-th iteration of
Frobenius induces a morphism

F s∗ : PX,m+s → PX(s),m.

It is given locally by τ{k}mi 7→ τ
{kps}m+s
i and we obtain by duality a morphism

D(m+s)
X → F s∗D(m)

X(s)

given locally by ∂
〈k〉
i 7→ 1 ⊗ ∂〈k/p

s〉
i if ps|k and 0 otherwise. Note that F s∗D(m)

X(s)

has no natural ring structure so that this morphism cannot be seen as a morphism
of rings. However, it induces an isomorphism of rings ZO(m+s))

X ' F s∗ZO(m)

X(s)

compatible with the p-curvature maps of level m+ s and m respectively.
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If we choose compatible strong liftings, there is an obvious commutative dia-
gram

PX(s),m

F s∗

��

Ω1
X(m+s+1)

1
p!

eFm+1∗ 66lllllllllllll

1
p!

eFm+s+1∗
((RRRRRRRRRRRRR

PX,m+s

that gives by duality a commutative diagram (we ignore completions)

D(m+s)
X

//

��

Φ
(m+s)
X

%%
ZO(m+s))

X

'
��

� � // D(m+s)
X

��
F s∗D(m)

X(s)
//

F s∗Φ
(m)

X(s)

99
F s∗ZO(m)

X(s)

� � // F s∗D(m)

X(s)

For the same reason, we have a commutative diagram

D(m+s)
X

//

��

EndZ(m+s)
X

(ZO(m+s)
X )

��
F s∗D(m)

X(s)
//
F s∗EndZ(m)

X(s)
(ZO(m)

X(s))

Finally, when restricting to quasi-nilpotent objects everywhere, we have com-
patible equivalences of categories induced by Frobenius pull-backs

{Higgs modules on X(m+s+1)}
'

Fm+s+1∗ **TTTTTTTTTTTTTTTT

Fm+1∗

'

uujjjjjjjjjjjjjjj

{D(m)

X(s) -modules} '
F s∗

// {D(m+s)
X -modules}

In particular, we recover our equivalence of categories as the composition of Frobe-
nius descent and the usual case m = 0 (again, we restrict to quasi-nilpotent ob-
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jects):

{Higgs modules on X(m+1)} '
F∗

// {D(0)

X(m)-modules} '
Fm∗

// {D(m)
X -modules}.

Actually, as the referee pointed out, this last equivalence (which is Theorem
2.3.6 of [2]) may be used to formally recover some of our results from [11], that is,
from the case m = 0. For example, we can obtain the description of the center as
well as the Azumaya nature of D(m)

X or even a construction of an étale splitting.
This is because the theory of Azumaya algebras behaves remarkably well under
Morita equivalence.

Let us be more precise: two rings are said to be Morita equivalent if the
category of right (or equivalently left) modules on these rings are equivalent (see
for example Section 18 of [9]). It then immediately follows that their centers are
isomorphic since they can be identified with the rings of endomorphisms of the
identity functor. And it is also easy to see that if one of them is split Azumaya,
so is the other.

But there is more: being an Azumaya algebra is also invariant under Morita
equivalence. We can explain this a little bit: a ring A with center Z is an Azumaya
algebra if and only if the scalar extension functor M 7→ A⊗ZM is an equivalence
between Z-modules and A-bimodules (see Theorem 5.1.1 of [8] for example). And
it is not difficult to check that if two rings are Morita equivalent, the categories of
bimodules on them are equivalent.
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