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Adams Operations on
Higher Arithmetic K-theory
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Abstract

We construct Adams operations on the rational higher arithmetic K-groups of a proper
arithmetic variety. The definition applies to the higher arithmetic K-groups given by
Takeda as well as to the groups suggested by Deligne and Soulé, by means of the homo-
topy groups of the homotopy fiber of the regulator map. They are compatible with the
Adams operations on algebraic K-theory. The definition relies on the chain morphism
representing Adams operations in higher algebraic K-theory given previously by the au-
thor. It is shown that this chain morphism commutes strictly with the representative of
the Beilinson regulator given by Burgos and Wang.
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Introduction

This paper contributes to the development of a higher arithmetic intersection the-
ory following the steps of the higher algebraic intersection theory but suitable for
arithmetic varieties. In [3], the author, together with Burgos, defined the higher
arithmetic Chow ring for any arithmetic variety over a field, extending the con-
struction given by Goncharov in [14] which was valid only for proper arithmetic
varieties. The question arises whether these groups are related to the higher arith-
metic K-groups as given by Takeda or as suggested by Deligne and Soulé (see
below). To answer this, and inspired by the algebraic analogue, in this paper we
endow the higher arithmetic K-groups of an arithmetic variety (tensored by Q)
with a (pre)-A-ring structure.
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Let X be an arithmetic variety over the ring of integers Z. In order to define
the arithmetic Chern character on hermitian vector bundles, Gillet and Soulé have
introduced in [I2] the arithmetic Kp-group, denoted by IA(O(X ). They endowed
Ko (X) with a pre-A-ring structure, which was shown to be a A-ring structure by
Rossler in [19]. This group fits in an exact sequence

(%) (X)L @ D* (X, p)/imdp — Ko(X) — Ko(X) — 0,
p=>0

with p the Beilinson regulator (up to a constant factor) and D*(X,p) the Deligne
complex of differential forms with p-twist computing Deligne—Beilinson cohomol-
ogy with R coefficients and twisted by p, H5(X,R(p)).

Two different definitions for higher arithmetic K-theory have been proposed.
Initially, it was suggested by Deligne and Soulé (see [20)], §I11.2.3.4] and [7, Remark
5.4]) that these groups should fit in a long exact sequence

C = K (X) & HY X R(p) = Ka(X) = Ka(X) = -

extending the exact sequence , with p the Beilinson regulator. This can be
achieved by defining I?H(X ) to be the homotopy groups of the homotopy fiber of
a representative of the Beilinson regulator (for instance, the representative “ch”
defined by Burgos and Wang in [0]).

If X is proper, Takeda has given in [2]] an alternative definition of the higher
arithmetic K-groups of X, by means of homotopy groups modified by the represen-
tative of the Beilinson regulator ch. We denote these higher arithmetic K-groups
by f{,{ (X). In this case, these groups fit in exact sequences

Ko (X) 2 @D " (X, p) fimdp — KI(X) — K,(X) — 0,

p>0

analogous to . The two definitions do not agree, but, as proved by Takeda, they
are related by a natural isomorphism:

Kn(X) 2 ker(ch: KX (X) — D*™(X,p)), n>0.

In this paper we give a pre-A-ring structure on the higher arithmetic K-groups
K (X)g and I?;{ (X)g. It is compatible with the A-ring structure on the algebraic
K-groups, K,(X), defined by Gillet and Soulé in [13]. Moreover, for n = 0 we
recover the A-ring structure of I/(\'O(X ).

More concretely, we construct Adams operations

UK (X)®Q— Ky(X)®Q, k>0,
v KI(X) Q- KN(X)2Q, k>0,
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which, since we have tensored by Q, induce A-operations on IA(n(X ) ® Q and
KT(X)® Q.

To this end, it is apparently necessary to have a representative of the Adams
operations in algebraic K-theory, in terms of a chain morphism, which commutes,
at least up to a given homotopy, with the representative of the Beilinson regulator
ch. In [I0], the author constructed a chain morphism representing the Adams op-
erations in algebraic K-theory tensored by Q. In this paper, we show that a slight
modification of the construction of [10] commutes strictly with ch, and we deduce
a pre-A-ring structure for both K,(X) ® Q and KT(X) ® Q. The modification
needs to be introduced in order to deal with the fact that the Koszul complex,
when endowed with its natural hermitian metrics, does not have zero Bott—Chern
form. A discussion on the Bott—Chern form of the Koszul complex is found in

In order to work with IA(E(X) ®Q, we introduce the modified homology groups,
which are the homological analogue of the modified homotopy groups given by
Takeda, and the dual notion of the truncated relative cohomology groups defined by
Burgos in [2]. We show that the homology groups modified by ch give a homological
description of K7 (X) ® Q.

The paper is organized as follows. In the first section we review the construc-
tion of the Beilinson regulator ch given by Burgos and Wang in [6]. Next, we
recall the definition of the arithmetic K-group of an arithmetic variety, I/(\'O(X ),
and proceed to the description of the higher arithmetic K-groups, in both the
Deligne—Soulé version and the Takeda one. In the third section we introduce the
modified homology groups and show that the Takeda higher arithmetic K-groups
admit a homological description after being tensored by Q. Finally, the last section
is devoted to the construction of Adams operations in higher arithmetic K-theory.

Notation. If A is an abelian group, we denote Ag := A® Q.

We follow the conventions and definitions on (co)chain complexes and iterated
(co)chain complexes as given in [B, §2]. All (co)chain complexes consist of abelian
groups.

If (As, d4) is a chain complex, we denote by Z A,, the group of cycles of degree
n, that is, of z € A, such that d4(z) = 0. If f : A, — B, is a chain morphism, we
denote by s(f). the simple complex associated to f. This is the same as the cone
twisted by —1.

Given a chain complex Bi, let 0, B, be its béte truncation, that is, the
complex with

B,., r>n,
osnB, =
>nr {0’ r S n,

and differential induced by the differential of B,.
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81. Higher Bott—Chern forms

The Burgos—Wang construction of the Beilinson regulator, given in [0], plays a key
role in the definition of the higher arithmetic K-groups. Using the chain complex
of cubes, the transgression of vector bundles, and the Chern character form of
a vector bundle, they obtained a chain morphism whose induced morphism in
homology is the Beilinson regulator. The construction is based on the definition
of higher Bott—Chern forms. These forms are the extension to hermitian n-cubes
of the Chern character form of a hermitian vector bundle.

In this section we review this construction. For further details see [6] or [4
§3.2].

We focus on the case of smooth proper complex varieties, since this will be the
case in our applications. Nevertheless, most of the constructions can be adapted
to the non-proper case by using hermitian metrics smooth at infinity. See [6] for
details.

§1.1. Higher algebraic K-theory

Let P be a small exact category and let K, (P) denote the n-th algebraic K-group
of P in the sense of Quillen [I8]. Let S.(P) be the Waldhausen simplicial set,
defined in [22], which computes the higher algebraic K-groups of P, that is, we
have

K, (P) = mip1(]S.(P)],{0}).

Denote by 0;,s; the face and degeneracy maps, respectively, of S.(P) and let
Z.5.(P) be the Moore complex associated to the simplicial set .S.(P).

Let (0,1,2) be the category associated to the ordered set {0,1,2} and let
(0,1,2)™ be its n-th cartesian power. Given a functor

0,1,2» £ P,

the image of an n-tuple § = (j1,...,4,) is denoted by E7. For such a functor one
defines its faces by
(akE)J — Fiiedimvkisein—1
K3

foralli € {1,...,n}, k€ {0,1,2}, j € {0,1,2}"1.

Definition 1.1. An n-cube E over P is a functor (0, 1, 2)™ £, P such that for all
j€{0,1,2}" L and i = 1,...,n the sequence

(L.1) (07E) — (91 E)! — (97 E)!

is a short exact sequence of P.
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A functor (0,1,2)™ — P is usually called a cube, and a functor as in Defini-
tion 1.1 an exact cube. Since we will only consider exact cubes, the word “exact”
is dropped from the terminology.

For every n > 0, let C),(P) denote the set of n-cubes over P. We have defined
face maps

oF . C,(P) = Cp_1(P), i=1,...,n, k=0,1,2.

There are as well degeneracy maps (see for instance [0, §3])
s Ch1(P) = Co(P), i=1,...,n, k=0,1.

If we write ZC),(P) for the free abelian group on the n-cubes, the alternate
sum of the face maps, d =Y (—1)%(0? — 8} + 8?), endows ZC.(P) with a chain
complex structure with differential d.

Let

n

LDy (P) = Y [${(ZC0-1(P)) + 5/ (ZCu-1(P))] C ZCw(P)

i=1

be the subgroup generated by the degenerate cubes (i.e., those that lie in the
image of some degeneracy map). The differential of ZC,(P) induces a differential
on ZD,(P) making the inclusion arrow ZD,(P) — ZC.(P) a chain morphism.
The quotient complex

ZC.(P) = ZC.(P)/ZD.(P)

is called the chain complex of cubes in P.

The Cub morphism. As shown in Wang’s thesis [23] and in [I7], to every element
E € S,(P) one can associate an (n — 1)-cube Cub(FE) satisfying the following
property. For ¢ =1,...,n — 1, we have

HCubE=5" 5 sCubdiyy---0,F,
(1.2) 9} Cub E = Cub 9;F,

0?CubE=s5s;_,---51Cubdy---0; 1E.

It follows from these equalities that Cub gives a chain morphism

7S, (P)[-1] =2 ZC, (P).
The composition of the Hurewicz morphism with the morphism induced by Cub
in homology gives a morphism

Cub

Cub : K (P) = a1 (S.(P)) 22N, f (28, (P)[~1]) <2 H,(ZC.(P)).
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Moreover, McCarthy showed in [I7] that this morphism is an isomorphism over
the field of rational numbers, that is, for all n > 0, the morphism
Cub o
(1.3) K,(P)g — H,(ZC.(P),Q)
is an isomorphism.

Normalized complexes. Consider now the normalized chain complexr NC\(P)
introduced in [I0, §1.5], whose n-th graded piece is given by

n n
N,C(P) := (kerd) N [\ ker &} C ZC,(P),
i=1 i=1
and its differential is the one induced by the differential of ZC,(P). In [10] it is
shown that the composition

N,C(P) < ZC,(P) — ZC.(P)

is an isomorphism of chain complexes.
Let NS,(P) be the normalized complex associated to the simplicial abelian
group ZS.(P) given by

NS, (P)=()kerd;, n=>0,
=1

and whose differential is dy. It follows from the relations in (|1.2]) that the morphism
Cub induces a chain morphism

NS.(P)[-1] 22 NC.(P).

§1.2. Chern character form

In this subsection, all schemes are over C. As defined in [2], for every p > 0,
let D*(X,p) denote the Deligne complex of differential forms on X comput-
ing the Deligne—Beilinson cohomology groups with real coefficients twisted by p,
H%(X,R(p)). We will write D**~*(X, p) for the chain complex associated to the
cochain complex D*(X, p)[2p].

Let X be a smooth proper complex variety. A hermitian vector bundle E =
(E, h) is an algebraic vector bundle E over X together with a smooth hermitian
metric on E. The reader is referred to [24] for details.

For every hermitian vector bundle E, by the Chern-Weil formulae one defines
a closed differential form

¢h(E) € P D™ (X, p),

p=0
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representing the Chern character class ch(E) = [ch(E)] € H;z(X). Although the
class of ch(E) is independent of the hermitian metric, the form depends on the
particular choice of hermitian metric.

The following properties are satisfied:

> If E = F is an isometry of hermitian vector bundles, then ch(E) = ch(F).
> Let E; and E5 be two hermitian vector bundles. If E; @ Es and E; ® E5 have
the hermitian metrics induced by those on E; and E,, then

Ch(El D Eg) = Ch(El) + Ch(Eg) and Ch(El ® EZ) = Ch(El) AN Ch(Eg)

81.3. Hermitian cubes

Let X be a smooth proper complex variety. Let P(X) be the category of vector
bundles over X. Let P(X) be the category whose objects are the hermitian vector
bundles over X, and whose morphisms are given by

Homﬁ(X)((E7 h),(E',h")) = Hompx)(E, E.

The category ”ﬁ(X ) inherits an exact category structure from that of P(X).

We fix a universe U so that ’ﬁ(X ) is U-small for every smooth proper complex
variety X. Every vector bundle admits a smooth hermitian metric. It follows
that the forgetful functor ﬁ(X ) — P(X) is an equivalence of categories with its
quasi-inverse constructed by choosing a hermitian metric for each vector bundle.
Therefore, the algebraic K-groups of X can be computed in terms of the cate-
gory P(X).

Denote by S. (X) the Waldhausen simplicial set corresponding to the ex-
act category P(X) and let ZC,(X) = ZC,(P(X)), ZC.(X) = ZC,(P(X)) and
NC,(X) = NC.(P(X)). The cubes in the category P(X) are called hermitian

cubes.

Hermitian cubes with canonical kernels. Let E be a hermitian vector bundle
and let F C E be an inclusion of vector bundles. Then F inherits a hermitian
metric from the hermitian metric of E. It follows that there is an induced hermitian
metric on the kernel of a morphism of hermitian vector bundles. This allows one
to extend the definition of cubes with canonical kernels given in [I0] to hermitian
cubes in the following sense.

Definition 1.2. Let E be a hermitian n-cube and let g9 : 9 E — 9} E denote the
morphism in the cube. We say that E has canonical kernels if for every i = 1,...,n
and j € {0,1,2}"~ 1, there is an inclusion (0YE)¥ C (0} E)7 of sets, the morphism

¢ VE — 0'F
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is the canonical inclusion of cubes and the metric on Y E is induced by the metric
of O} E by means of gJ.

The differential of a hermitian cube with canonical kernels is again a hermi-
tian cube with canonical kernels. Let ZKC,(X) denote the complex of hermitian
cubes with canonical kernels. As usual, the quotient of the complex of cubes with
canonical kernels by the degenerate cubes with canonical kernels is denoted by
ZKC,(X).

Remark 1.1. Burgos and Wang [6 Definition 3.5] introduced the notion of emi-
cubes, in order to define the morphism ch. With the notation of the last definition,
the emi-cubes are those for which the metric on F is induced by the metric
of O}E, without the need g to be the set inclusion. In [6] the purpose was
that the Chern form of the transgression bundle associated to a cube defined a
chain morphism, and by the properties of ch stated in §1.2, this more relaxed
condition was sufficient. Our more restrictive notion arises because we require the
transgression map given in [10] to define a morphism, before being composed with
the Chern form (see below).

Lemma 1.1. There is a chain morphism X : ZC,(X) — ZKC,(X).

Proof. The morphism A is defined in [I0] for cubes over the category of vector
bundles (not necessarily hermitian). The fact that the image by A of a hermitian
cube is a hermitian cube with canonical kernels follows from [6, Lemma 3.7]. [

81.4. The transgression bundle and the Chern character

Let P! be the complex projective line. Let z and y be the global sections of the
canonical bundle O(1) given by the projective coordinates (z : y) on PL. Let X
be a complex variety and let py and p; be the projections from X x P! to X and
P! respectively. Then, for every vector bundle E over X, we denote

E(k) :=p,E @ piO(k), Vk.
The following definition is a variation of the original one from [6, §3].
Definition 1.3. Let
10 f!
E:0—E - E'“5E* =0

be a short exact sequence. The first transgression bundle by projective lines of E,
trq (E), is the kernel of the morphism

E'(1)® F*(1) —» E*(2), (a,b)— fHa)@z—-b®y.
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Let E be an n-cube of vector bundles over X. We define the first transgression
of E as the (n — 1)-cube on X x (P!)! given by

try(B)? == try (80> ...00"E)  for all j = (ja,...,jn) € {0,1,2}"71,

i.e. we take the transgression of the exact sequences in the first direction. Since
try is a functorial exact construction, the n-th transgression bundle can be defined
recursively as

trp(E) = try tr,—1 (E) = try .2 try(E).

It is a vector bundle on X x (P1)™.
The Fubini-Study metric on P! induces a metric on the line bundle O(1). We
denote by O(1) the corresponding hermitian line bundle. Then, given a hermi-

tian n-cube E, the transgression bundle tr, (F) has a hermitian metric naturally
induced by the metric of E and by the metric of O(1). If E is an n-cube with
canonical kernels, then

tI‘n (F) IMZO = trn—l (811E), tI‘n (E) ‘yi:o = trn—l (6?@) @L trn—l (83@),

where 22 is an isometry and @ means the orthogonal direct sum.
Consider now the differential form W, from [6, §6]:

1 S i Qi

‘ dZU dZU i dzo 3 dzg
Si= Y (~1)7 log |z (1) 2222 Ao p Do) p Bolirn) |\ Dolm)
o€S, %o (2) 2o (i) Zg(i+1) Zg(n)

Theorem 1.1 (Burgos—Wang, [6]). Let X be a smooth proper complex variety.

(1) The following map is a chain morphism,

ZC(X) = @D D¥ (X, p)

p=>0

B chy (B) = ((2;12); /( o AT AT,

(2) The composition

Ko(X) % H(ZC.(X)) 2 @D HE ™" (X, R(p))
p>0

is the Beilinson regulator. O
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The form ch,,(E) is called the Bott-Chern form of the hermitian n-cube E.

Remark 1.2. Observe that, by means of the isomorphism NC,(X) = ZC,(X),
the Chern character is also represented by the morphism

NC.(X) % @D *(X,p), E e NCu(X) — chy(E).
p=>0

Differential forms and projective lines. For some constructions in what fol-
lows, it is convenient to factor the morphism ch through a complex consisting of
the Deligne complex of differential forms on X x (P!)". This construction was
introduced in [6].

Over any base scheme, the cartesian product of projective lines (P!)" has a
cocubical scheme structure. Specifically, the coface and codegeneracy maps

8 (P — (PY)™,  i=1,...,n, j=0,1,
ot (PH” - (PHY"L,  i=1,...,n,

are defined as

56(x1,...,xn) =(z1,...,2i—1,(0: 1), 24, ..., 2y),
(5{(3:1,...,xn) =(z1,. .y 2i—1,(1:0), 24, ..., 2p),
Ui(xla"wxn) =(T1, e L1, T 1, - Ty

Let X be a smooth proper complex variety and fix P! = PL. The coface and
codegeneracy maps induce, for every i = 1,...,n and [ = 0, 1, morphisms
8 : DY (X x (P')",p) = D*(X x (B')" "1, p),
o D*(X x (P)" ™, p) = D*(X x (P')", p).

Let Dy (X, p) be the 2-iterated cochain complex given by
Dy~ "(X,p) = D"(X x (P")",p)

and differentials (dp,d = Y i, (—1)*(6Y — 6})), and denote by Dj(X,p) the asso-
ciated simple complex.
Let (z : y) be homogeneous coordinates in P! and consider
1 _ —
h=—Llog (z y)(x - y)

2 T + Yy
It defines a function on the open set P!\ {1}, with a logarithmic singularity at 1.
Consider the differential (1,1)-form

w = dph € D*(P',1).
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This is a smooth form all over P! representing the class of the first Chern class of
the canonical bundle of P!, ¢;(Op:1(1)).
For every n, denote by 7 : X x (P))" — X the projection and let p; :
X x (P1)* — P! be the projection onto the i-th projective line. Denote, for
1=1,...,n,
wi =p; (w) € D*(X x (P1)", 1).

Let

(1.4) Dy =Y oi(D"(X x ()", p))

=1

be the complex of degenerate elements and let Wi be the subcomplex of D*(X x
(PH)™, p) given by

(1.5) Wi =Y wiAoi(D"2(X x (P p—1)).

i=1
This complex is meant to kill the cohomology classes coming from the projective
lines. We define the 2-iterated complex

D"(X x (P1)", p)

Dy "(X,p) =D (X x (B)",p) o= — 5500
n n

and denote by 51’5,(X ,p) the associated simple complex.
Proposition 1.1. The natural map

D*(X,p) = Dp"(X.p) = Di(X.p)
18 a quasi-isomorphism.

Proof. The proof is analogous to the proof of [6 Lemma 1.3]. It follows from
a spectral sequence argument together with the fact that, by the Dold—Thom
isomorphism in Deligne—Beilinson cohomology,

H™(D*(X x (PY)",p)) =0 Vn>0. O

In the next proposition, e denotes the product in the Deligne complex as
described in [2), §3].

Proposition 1.2 (Burgos—Wang, [6]). There is a quasi-isomorphism of com-
plexes
Di(X,p) = D*(X,p),
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given by
(2mi)—™ f(Pl)n aeW,, n>0,

aeDT(Xx(IP’l)”7p)>—>7r*(CV°Wn):{a n=0.

This morphism is the quasi-inverse of the quasi-isomorphism i of Proposition[1.1]

O
Proposition 1.3 (Burgos-Wang, [6]). The map
2Cu(X) & @BY(Xp), B ch(ina(A(E)))

p=>0
is a chain morphism. Therefore, the morphism ch of (1.4) factors through the
complex D;p_*(X7 p) in the form

ZCn(X) < @D "(X.p) & P D* (X, p). O
p=>0 p>0

§2. Higher arithmetic K-theory

In this section we focus on the definition of the higher arithmetic K-groups of an
arithmetic variety. We start by discussing the extension of the Chern character
on complex varieties to arithmetic varieties. Then, we recall the definition of the
arithmetic K-group given by Gillet and Soulé in [I2]. Finally, the last two sections
review the two definitions of higher arithmetic K-theory.

Following [I1], by an arithmetic variety we mean a regular quasi-projective
scheme over an arithmetic ring. In this section we restrict ourselves to proper
arithmetic varieties over the arithmetic ring Z. Note, however, that most of the
results are valid under the less restrictive hypothesis of the variety being proper
over C. Moreover, one could extend the definition of higher arithmetic K-groups,
IA(n (X), to quasi-projective varieties, by considering vector bundles with hermi-
tian metrics smooth at infinity and the complex of differential forms 5§(X, D)
introduced in the previous section (and by considering differential forms with log-
arithmic singularities).

§2.1. Chern character for arithmetic varieties

If X is an arithmetic variety over Z, let X(C) denote the associated complex
variety, consisting of the C-valued points on X. Let F,, denote the complex
conjugation on X (C) and Xg = (X(C), F) the associated real variety.

The real Deligne—Beilinson cohomology of X is defined as the cohomology
of Xg, i.e.

HE(X,R(p)) = H(Xgr,R(p)) = Hg(X((C),R(p))KZid.
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It is computed as the cohomology of the real Deligne complex:
D*(X,p) = D"(Xw,p) = D"(X(C),p)"=7",

that is, we have
Definition 2.1. Let X be a proper arithmetic variety over Z. A hermitian vector
bundle E over X is a pair (E, h), where E is a locally free sheaf on X and where h

is an F% -invariant smooth hermitian metric on the associated vector bundle E(C)
over X (C).

Let P(X) denote the category of hermitian vector bundles over X. The
simplicial set S.(X) and the chain complexes ZC,(X), ZC,(X) and NC,(X) are
defined accordingly.

If E is a hermitian vector bundle over X, the Chern character form ch(FE) is
F% -invariant. Therefore

ch(E) € DD (X,p).
p=>0
Tt follows that the chain morphism of (|1.4) gives a chain morphism

25,(X)[-1] Z2 ZC.(X) < @D (X, p).
p=0
82.2. Arithmetic Ky-group

In [12, §6] Gillet and Soulé defined the arithmetic Kyp-group of an arithmetic
variety, denoted by l?o (X). We give here a slightly different presentation using
the Deligne complex of differential forms and the differential operator —290.

Let X be an arithmetic variety and let D*(X,p) = D*(X,p)/imdp. Con-
sider pairs (F,«), where F is a hermitian vector bundle over X and where a €

D,>0 D2r~1(X,p) is a differential form. Then I/(\'O(X) is the quotient of the free
abelian group generated by these pairs by the subgroup generated by the sums

(B, a0) + (E*,03) — (E', a9 + a3 — ch(E)),
for every exact sequence of hermitian vector bundles over X,
E:O—>Eo—>El—>E2—>O,
and every ag, a2 € B> 2521’_1()(, D).
Among other properties, this group fits in an exact sequence

Ki(X) & @D (X,p) & Bo(X) S Ko(X) — 0
p=>0

(see [12] for details).
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Gillet and Soulé [12], together with Réssler [19], showed that there is a A-ring
structure on Ko(X).

§2.3. Deligne—Soulé higher arithmetic K-theory

Although there is no reference in which the theory is developed, it has been sug-
gested by Deligne and Soulé (see [20, §I11.2.3.4] and [7, Remark 5.4]) that the
higher arithmetic K-theory should be obtained as the homotopy groups of the
homotopy fiber of a representative of the Beilinson regulator. We sketch here the
construction, in order to show that Adams operations can be defined.

Consider the béte truncation at n > 0 of the complex D?*~*(X,p), denoted
by 0-0D*~*(X,p). Let

ch : ZCo(X) — @D o50D* (X, p),

p>0

be the composition of ch : Z@n(X) — @D,>0 D?P~"(X, p) with the natural map

P> (X,p) = @ =D (X, p).

p>0 p>0

Let K(-) be the Dold-Puppe functor from the category of chain complexes of
abelian groups to the category of simplicial abelian groups (see [8]). Consider the
morphism

K(ch) : 8.(X) — K.(28.(X)) < K(ZE. (X)) 2>/c(QBa>oz>2p—*(x7p)),

p>0

and denote by |IC(cAh)\ the morphism induced on the realization of the simplicial
sets.

Definition 2.2. For every n > 0, the (Deligne-Soulé) higher arithmetic K-group
of X is defined as

K (X) = 741 (homotopy fiber of |IC((§1)|)

Proposition 2.1. Let X be a proper arithmetic variety.

(i) The group I?O(X) as defined in Deﬁnition agrees with the arithmetic K-
group defined by Gillet and Soulé in [12].

(ii) Let s(cAh) denote the simple complex associated to the chain morphism ch. If
n > 0, there is an isomorphism K,,(X)g = H,(s(ch),Q).

(iii) There is a long exact sequence

o K (X) D HE TN XLR () S R (X) S K (X) = -
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with end
o K (X) I DX p) S Ro(X) S Ko(X) — 0.

Proof. The first and third statements follow by definition. The second statement
follows from the isomorphism of (1.3]) together with the following well-known fact
(see [9] for a proof):

Lemma 2.1. Let (A.,da), (B«,dp) be two chain complezes. Let f : A, — By be
a chain morphism and let K(f) : K.(A) — K.(B) be the induced morphism. Let
HoFib(f) denote the homotopy fiber of the topological realization of K(f). Then,
for every n > 1, there is an isomorphism

0 (HOFib(f)) — Hy (s+(f))

such that the following diagram is commutative:
T2 (. (B)) —> 7 (HOFib(f)) —> ma (K. (4))
Hn+1(B*) Hn(s(f)) Hn(A

In we will endow @, - I?n(X) with a product structure, induced by the
product structure defined by Takeda on his higher arithmetic K-groups.

+) -

§2.4. Takeda higher arithmetic K-theory

In this section we recall the definition of higher arithmetic K-groups given by
Takeda in [21I]. He first develops a theory of homotopy groups modified by a
suitable chain morphism p. As a particular case, the higher arithmetic K-groups
are given by the homotopy groups of S.(X) modified by the Chern character
morphism ch.

Let T be a pointed CW-complex and let C,(T) be its cellular complex (see,
for instance, [16]). Let (W.,d) be a chain complex and denote W, = W, /imd.
Suppose that we are given a chain morphism p : C(T) — W,. Consider pairs
(f,w) where

> f:S8™ — T is a pointed cellular map,
> weE Wn+1.

Let I be the closed unit interval [0, 1] with the usual CW-complex structure.
Two pairs (f,w) and (f’,w’) are homotopy equivalent if there exists a pointed
cellular map

h:S"xI/{x}xI—T
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such that the following conditions hold:
(1) h is a topological homotopy between f and f’, i.e.

h(xz,0) = f(z) and h(z,1) = f'(z).
(2) Let [S™ x I] € Cp41(S™ x I) denote the fundamental chain of S™ x I. Then
W —w=(=1)"p(h([S" x 1])).

Being homotopy equivalent is an equivalence relation, which we denote by ~.
Then, for every n, the modified homotopy group 7, (T, p) is defined to be the set
of all homotopy classes of pairs as above. Takeda proves that these are in fact
abelian groups.

The higher arithmetic K-groups of a proper arithmetic variety X, as defined
by Takeda, are given as the modified homotopy groups of the Waldhausen simpli-
cial set ’ﬁ(X ) modified by the representative of the Beilinson regulator ch given in
the previous section.

Let X be a proper arithmetic variety over Z. Let |§ (X)| denote the geometric
realization of the simplicial set S.(X). It follows that |S.(X)| is a CW-complex.

Let ﬁi (X) C Zg* (X) be the complex generated by the degenerate simplices
of S (X). Since the cellular complex C*(|§ (X)]) is naturally isomorphic to the
complex Zg*(X )/ ﬁi(X ), we will identify these two complexes by this isomor-
phism.

As shown in [21] Theorem 4.4], the map ch o Cub maps the degenerate sim-
plices of §(X ) to zero. It follows that there is a well-defined chain morphism

ch : C.(IS.(X)))[-1] = @ D* (X, p).
p=0
Definition 2.3 (Takeda). Let X be a proper arithmetic variety over Z. For every
n >0, the higher arithmetic K-group of X, KX (X), is defined by
K7 (X) = Fay1(15.(X)] ch)
{75 S 18X, w) |w e PDF X D)}~

p=>0

Takeda proves the following results:

(i) For every n >0, I?E(X) is a group.
(ii) For every n > 0, there is a short exact sequence

K1 (X) & @D 1(X,p) & KT (X) & Ko (X) — 0.

p=>0

The morphisms a, ¢ are defined by a(a) = [(0, «)] and {([(f, &)]) = [f]-
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(iii) There is a characteristic class

KL (X) = D7 " (X.p),
p=0
given by
ch([(f, @)]) = ch(f(5")) + dpa.
(iv) IA((%F (X) is isomorphic to the arithmetic K-group defined by Gillet and Soulé
in [12.
(v) There is a graded product on K7 (X), commutative up to 2-torsion. There-
fore, KT (X)g is endowed with a graded commutative product.
(vi) There exist pull-back for arbitrary morphisms and push-forward for smooth
and projective morphisms. A projection formula is also proved.

Lemma 2.2 ([21] Cor. 4.9]). Let X be a proper arithmetic variety over Z. Then,
for every n > 0, there is a canonical isomorphism

B(X) 2 ker (ch . KT(X) - P D> (X, p)). O

p=>0

83. Rational higher arithmetic K-groups

By parallelism with the algebraic situation, it is natural to expect that the higher
arithmetic K-groups tensored by Q can be described in homological terms. In
Proposition [2.1] we saw that the Deligne-Soulé higher arithmetic K-groups are
isomorphic to the homology groups of the simple complex associated to the Beilin-
son regulator ch, after tensoring by Q. In this section we show that the higher
arithmetic K-groups given by Takeda also admit, after tensoring by Q, a homolog-
ical description. We prove that l??; (X)g can be obtained by considering a variant
of the complex of cubes, together with what we call modified homology groups.

83.1. Modified homology groups

We briefly describe here the analogue, in a homological context, of the modified
homotopy groups given by Takeda in [2I]. The modified homology groups are the
dual notion of the truncated relative cohomology groups defined by Burgos in [2],
as one can observe by comparing both definitions and the relevant properties.
These groups appear naturally in other contexts. For instance, one can express
the description of hermitian-holomorphic Deligne cohomology given by Aldrovandi
in [T, §2.2] in terms of modified homology groups.

Let (A.,da) and (B.,dg) be two chain complexes and let A, 2, B, be a
chain morphism. If B, = B. /imdp, consider pairs

(a,b) € Ap ® Bpy1 with dga=0.
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We define an equivalence relation as follows. We say that (a,b) ~ (a’,b") if, and
only if, there exists h € A, 41 such that

dah=a—a and p(h)=b-1b".

Definition 3.1. Let (A.,da),(Bs,dp) be two chain complexes and let p :
A, — B, be a chain morphism. For every n, the n-th modified homology group of
A, with respect to p is defined as

Hy(As, p) = {(a,b) € ZAy, @ Byya}/~.

Observe that the group ﬁn(A*, p) can be rewritten as

{(a,b) € ZA, & By}
{(O’ de)7 (dAavp(a)) | a € An-‘rl’ be Bn-‘rQ} .

The class of a pair (a,b) in H,(A,, p) is denoted by [(a,b)].
These modified homology groups can be seen as the homology groups of the

ﬁn(A*,p) =

simple complex of p truncated appropriately. Let ps, be the composition of p :
A, — B, with the canonical morphism B, — o0~,B,. Then it follows from the
definition that
Hy(s(p)), r>n,
H,(s(p>n)) = ﬁn(A*,p), r=mn,
H.(A,), r<n.

Observe that, for every n, there are well-defined morphisms

R §n+1 < fIn(A*7 P); b— [(0’ _b)]’
Hy(Auip) = Ho(A, [(@,b)] - [a),
Hu(Avp) & 2B, [(a,D)] = pla) — i (b).

The following proposition is the homological analogue of Theorem 3.3 together
with Proposition 3.9 of [2I] and the dual of Propositions 4.3 and 4.4 of [2].

Proposition 3.1. (i) Let p: A, — By be a chain morphism. Then, for every n,
there are exact sequences

(2) 0— Hy(s.(p)) = Ho(As, p) B ZB, — Hy_1(5.(p)).
(b) Hos1(A) 2 Buyt % Ho(As,p) & Ha(AL) — 0.

(ii) Assume that there is a commutative square of chain complexes

A, —2> B,

s
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Then, for every n, there is an induced morphism

~

Ho(Awp) L Bo(Cop) [(,0)] = [(fi(a), F2(0))].

(iii) If f1 is a quasi-isomorphism and fa is an isomorphism, then f is an isomor-
phism.

Proof. The exact sequences follow from the long exact sequences associated to the
following short exact sequences:

0 BefonBl-1] — 5.(p) — 52(psn) — 0,
0 — o5nBi[~1] = su(p>n) — A — 0.

The second and third statements are left to the reader. O
Corollary 3.1. For every n, there is a canonical isomorphism
Hy(5:(p)) Zean ker(Hp(As, p) 2 By). m

§3.2. Takeda arithmetic K-theory with rational coefficients

We want to give a homological description of the rational Takeda arithmetic K-
groups. Since these groups fit in the exact sequences

Kni1(X)g < @D (X, p) & KT (X)g < Ka(X)g — 0,
p=>0
comparing them to those in Proposition [3.1[i)(b), it is natural to expect that the
modified homology groups associated to the Beilinson regulator ch give the desired
description.
Therefore, consider the modified homology groups H,(ZC,(X), ch) associated
to the chain map

ZC.(X) = DD (X.p)
p=>0
given in (1.4). We want to see that there is an isomorphism

(3.1) KT'(X)g & H,(ZC,(X),ch)qg.

In order to prove this fact, considering the long exact sequences associated to
KT (X)g and to H,(ZC.(X),ch)g and the five lemma, it would be desirable to
have a factorization of the morphism ch through Cub in the form

ZC,(X) = D,>0 P *(X,p)

Cub :
: ch

C.(|S.(X))[=1] = 5.(X)/Dx(X)[-1]
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Let P be a small exact category. If , € G,, is the permutation that inter-
changes ¢ with ¢ + 1, then for every E € S,,(P) one has

Cub(soE) = s] Cub(E),
(3.2) Cub(s, F) = s2 Cub(E),
Cub(s;E)=7;Cub(s;E), i=1,...,n— 1.

(See [2I, Lemma 4.1].) It follows that the dotted Cub arrow of the last diagram

Cul| 8.0 [-1] = Z8.(X)/D2(X)[-1] = ZC.(X)
does not exist, since the image under Cub of a degenerate simplex in S,,(P) is not
necessarily a degenerate cube.
Therefore, in order to prove , we should find a new complex, Za‘f (X),
quasi-isomorphic to the complex of hermitian cubes, admitting a factorization of
ch of the form

Z§* (X) —Cuwb Z@* (X) b @pzo sz_*(Xap)

| LT

C.(8. (X)) [=1]- = 283 (xX)

In this way, we divide the proof in two steps: we prove an isomorphism
H,(ZC.(X),ch) & H,(ZC:(X),ch), and then H,(ZC:(X),ch)g =& KI'(X)g.
This will be shown in Theorem once this factorization of Cub is obtained.

Factorization of Cub. Takeda factors the morphism ch through a quotient of
the complex of cubes as follows. Consider the complex of cubes fn(X ) C zC, (X),
generated by the n-cubes E such that 7,E = E for some index i. In the proof of
Theorem 4.4 in [21], Takeda shows that if E € T,,(X), then ch(E) = 0. Hence ch
is zero on the degenerate simplices in ZS’;(X ). It follows that ch factorizes as

C.(18.(X))[~1] = Z5.(X)/D3(X)[~1] = ZC.(X)/Tu(X)
=N P> (X, p).

p=0

However, the complex ZC,(X)/T.(X) is not quasi-isomorphic to ZC,(X).
Nevertheless, since the complex ZS,(X)/D?(X) is quasi-isomorphic to ZS, (X)
(due to the fact that the complex of degenerate simplices of a simplicial set is
acyclic), it seems reasonable to think that there exists a complex which is quasi-
isomorphic to ZC, (X) and which factors the morphism ch as above. This is indeed
proved below.
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Let P be a small exact category. The smallest complex to consider is the
following. For every n, let

Cdeg(P) .= {Cub(s;E) | E € S,(P), i€ {1,...,n—1}}.
Let ZCd°8(P) be the free abelian group on C38(P) and let

= ez . LCIE(P) + Z.D,,(P)
ZO%E(P) = ZD,(P) .

Lemma 3.1. Let E € S,(P).

(i) dCub(s;E) € ZCYE (P) + ZDy_1(P) for alli=1,...,n—1.
(ii) Fori=1,...,n—1, the following equality holds in ZC % (P):

n—1
1—1 n
dCub(s;E) = » (—=1)*! Cub(s; 19, E) + »_ (—1)? Cub(s;0;E).
7=0 j=i+1

Proof. By definition,
n 2
dCub(s;E) = Y > (~1)/"9} Cub(s; E).
j=11=0
Since d!7; = 9., for all 1 = 0,1,2, by (3.2) we have
9} Cub(s;E) = 0!, Cub(s;E).

Hence these two terms cancel each other in the previous sum. So, assume that

j#i,i+ 1. If [ =1, then, by (1.2)),

Cub(si_lajE), 7 <t

01 Cub(s;E) = Cub(9;s,F) =
;i Cub(s; E) = Cub(9;s;F) {Cub(Siaj_lE), P>l

Ifl=0and j #n,orl=2and j# 1, then 8; Cub(s; F) is a degenerate cube and
hence it is zero in the group ZC%°8(P). Finally, we have
d° Cub(s;E) = Cub(s;0,E), 07 Cub(s;E) = Cub(s;_100F).

The statements of the lemma follow from these calculations and the relations

(8-2). 0

It follows from the last lemma that ZCI°8(P) is a chain complex with the
differential induced by the differential of ZC\ (P).

Proposition 3.2. The complex ZCfeg(P) 18 quasi-isomorphic to zero.
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Proof. We prove this by constructing a chain of chain complexes

(33) 0= CS C Ci Cc.---C C:ffz C C:zfl — ZCSEg(P)
such that all the quotients C%/Ci~! are homotopically trivial, that is, there exists
a homotopy
hn G /O = Gl /O
such that

dhy + hyp_1d = id.

This means in particular that for every i, the complex C%/Ci~1 is quasi-isomorphic
to zero. Then, since C? = 0, it follows inductively that C? is quasi-isomorphic to
zero for all ¢ and the proposition is proved.

Forevery i =1,...,n—1, let

2038 (P) = {Cub(s;E) | E € S,(P), j € {1,...,i}},

and let

203 (P) + ZD,,(P)
Z.D,,(P) '
By Lemma ii), C? are chain complexes with the differential induced by the
differential of iC*(P). Moreover, for every i there is an inclusion of complexes
CiC o
Fix £ € S,(P) and an index i. Consider an element Cub(s;E) € C:/Ci™!
and define

i
Cn_

hy(Cub(s; E)) = (—=1)""! Cub(s;s; F).
Then, by Lemma in the complex C?/Ci™1

n+1
dCub(s;E) = Y (—1)’ Cub(s;0,E)
j=i+1
and
n+1
dhy, (Cub(s; E)) = Y (=1)"*" Cub(s;0;s;E)
j=i+1
n+1
=Cub(s;E) + Y (=1)"7™ Cub(s;5;0; 1 E)
J=i+2

= Cub($;E) + hp—1(d Cub(s; E)).

Therefore, we have proved that C%/Ci~1 is homotopically trivial. O
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Let 7C.(P)
Z.C;(P) = * T
ZD.(P) + 2C¥%(P)

Corollary 3.2. The natural chain morphism ZC,(P) — ZC:(P) is a quasi-
isomorphism. [

If P = P(X), we simply write ZC%(X) := ZC$(P(X)) and ZCI¥(X) :=
ZCX°8(P(X)). Since ch is zero on ZD,(X) + ZC2¥(X), we have obtained the
following corollary.

Corollary 3.3. Let X be a proper arithmetic variety over Z.
(i) The map ch admits a factorization as
CL|S.(X)N[-1] =% ZC:(X) = @D (X.p).
p=>0
(ii) The natural morphism ZC,(X) = ZC%(X) is a quasi-isomorphism. O
At this point, we have all the ingredients to prove that there is an isomorphism

between KT (X)g and H, (ZC.(X),ch)g.
For the proof of the next theorem recall that the Hurewicz morphism

T (|S.(X)]) = Ha(1S.(X)])
maps the class of a pointed map S™ ER 15.(X)| to f..([S™]).

Theorem 3.1. Let X be a proper arithmetic variety over Z. Then, for every
n > 0, there is an isomorphism

K7 (X)q = Ha(ZC.(X), ch)g.
Moreover, there are commutative diagrams

~ ¢ = ch —x
(X)g —— Kn(X)g KI(X)g ——>= @,z D* " (X.p)

T T

H,(ZC.(X),ch)g > Hy(ZC.(X),Q) Ha(ZC.(X),ch)g == @Bz D (X,p)

S

1R
R

Proof. Consider the chain complex ZC3(X) = #ggicg(m, defined before

Corollary Let H,(ZC$(X),ch) denote the modified homology groups with
respect to the morphism

ZC:(X) 2 P D> (X, ).

p=0
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Consider the following commutative diagram:

20, (X) === @20 D* (X, p)
Ni l_
ZCs (X) s D,>o D*~*(X,p)
By Lemma there is an induced isomorphism
H,(ZC,(X),ch) & H,(ZC?(X),ch),
which commutes with . It remains to prove that there is an isomorphism
KI'(X)q 2 H,(ZC:(X), ch)q,

commuting with (.
Consider the chain morphism

C.(1S.(X))[~1] &2 ZCs(X).

Recall from that the isomorphism

Ko(X)g 22 1,(ZC.(X),Q)

is given by the composition

Kn(X) = mp1 (15 (X) g 222, 1, (CL(15.(X))[-1])g <2 H,(ZC.(X), Q)

which sends the class of a cellular map [f : S"*1 — |5.(X)]|] to Cub £, ([S"1]).
If f, f: 8"t — |S.(X)| are homotopic with cellular homotopy h, then

dh.[S"T > 1) = (=1)"TH(fI[S" ] = fulS™T)

in C. (5.0 )[-1].
Let

RT(X)g &% H,(Z03 (X), ch)g,

[(f : 5™ = |S.(X)[,w)] = [(Cub fu([S"]), ~w)].

This morphism is well defined. Indeed, let h be a cellular homotopy between ( f,w)
and (f’,w’). Then, if we denote o = (—1)""! Cub h.([S"™! x I]), we have

d(a) = Cub fL([S™']) — Cub f.([S"™']) and ch(a)=w -’
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Finally, consider the diagram

K1 (X)g —2= D2=n-1(X, p) — = KT(X)g Kn(X)g —0

gi -i cubsl gl

Hy 1 (203 (X))o & D=1 (X, p) > H,(Z63(X), ch)g ~= H, (Z6(X))g — 0

Since the rows are exact sequences, the statement of the proposition follows from
the five lemma. O

Corollary 3.4. Let X be a proper arithmetic variety over Z. Then, for every

n > 0, there is an isomorphism
K} (X)q = Hy(NC.(X), ch)g. O

Product structure on rational arithmetic K-theory. Takeda [2I] defines
a product structure for K (X) compatible with the Loday product of algebraic
K-theory, and for which the morphism
i KT (X) — D (X.p)
p=20

is a ring morphism (loc. cit., Proposition 6.8). Since there is a natural isomorphism

K (X) = ker(ch :KT(X) — @sz*”(X,p)),
p=0
there is an induced Loday product on K, (X).

In algebraic K-theory, the Adams operations are derived from the lambda
operations by a polynomial relation. In order to do that, the product structure
for @@,,~ K (X) is the one for which @, -, K,(X) is a square zero ideal.

Therefore, we consider the product structure on €9, -, I?n(X ) for which
D,.~, IA(n(X ) is a square zero ideal and which agrees with the Loday product
otherwise.

After tensoring with Q, and using the description of I?n(X )o via the isomor-
phism R

[?n(X)Q = H,(s(ch),Q),
the product is defined as follows.
Lemma 3.2. Let (E, ) € Ko(X)g and (F, ) € Kn(X)g with n > 0. Then, for

the product structure on K, (X)g induced by the product structure on IA(Z(X)Q,
we have

(E,a)® (F.8) = (E@F,aech(F) +ch(E) o - aedp(f)) € Kn(X)g. O
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Remark 3.1. With the notation of the previous lemma, if n > 0 then F is an
n-cube such that dF = 0 and § € @,-,D* " (X, p) is a differential form such
that ch(F) = dp(3). Hence,

aech(F) = aedp(B),

and therefore

84. Adams operations on higher arithmetic K-theory

In this section we construct the Adams operations on the higher arithmetic K-
groups tensored by the rational numbers. The construction works for both defini-
tions of higher arithmetic K-groups.

Let X be a proper arithmetic variety over Z. In [10], we defined a chain
morphism inducing Adams operations on higher algebraic K-theory (with rational
coefficients), using the chain complex of cubes. The results stated in [10] for the
category of locally free sheaves of finite rank over X, P(X), translate to the
category 73(X ), provided we consider appropriate metrics. As will be overviewed
next, the definition of the algebraic Adams operations involves the Koszul complex
of a locally free sheaf and the isomorphism . Therefore, the metrics on the
Koszul complex are imposed by the need for the equivalent isometry to hold.

In order to define Adams operations on higher arithmetic K-groups tensored
by @, it would be desirable to have the Chern character morphism commute with
the Adams operations on the complex of cubes (diagram ([£.12)). To this end,
the Bott—Chern form of the Koszul complex should be zero. However, with the
hermitian metric on the Koszul complex imposed by , its Bott—Chern form
does not vanish. This problem can be solved by slightly modifying the definition
of Adams operations of [I0] (see Remark [4.]).

We start this section with an overview of the Adams operations defined in [10],
together with the required modification. In the next subsection we discuss the
Bott—Chern form of the Koszul complex. We finish by showing the commutativity
of diagram and by deducing the Adams operations on higher arithmetic
K-theory tensored by Q.

84.1. Adams operations on higher algebraic K-theory

We recall briefly the key points of the definition of Adams operations of [10], with
a slight modification. In the following definitions, = denotes an isometry.
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The Koszul complex. For every locally free sheaf E of finite rank on any
variety, the k-th Koszul complex of E is the exact sequence

THE) 10— WF(E) 2% .. 2L gR(E)E S0
with
UHEP=E. .». EQEA P NE=S’E@ \""E.
The arrows ¢, are defined as follows. Consider the inclusions
SPE . TPE and AP E 25 TPE

defined locally by

Lp(l‘il L l‘ip) = Z Lo(iy) Q- ®$g(ip)7
€S,
(4.1)
dp@i A Awi) = 0 (D) )y @ @,
TEG,

Consider the natural projections

TPE ™2 SPE and TPE P2 NP E
xi1®-~~®xip = Tqy 0 .. 'l’ip $i1®"‘®l’ip = ZL’il/\"'/\.’EZ'p.

For every p, the morphisms
wp: SPE® /\k_pE — SPHE® /\k_p_1 E

in the Koszul complex are given as

p— 1 .
= oiE = p = D)1t @ Phep) © (1 @ i)
(see (4.9) for the explicit computation of ¢,).
The key properties of the Koszul complex that make it suitable for the defi-

(4.2) Pp

nition of Adams operations on higher algebraic K-theory are the following:
» If £ and F are two locally free sheaves of finite rank, there is a canonical
isomorphism of complexes

k
(4.3) vH(Ee F) = U (E) @ P (F)".
p=0

» The secondary Euler characteristic class of the Koszul complex
(4.4) VHE) =) (=D (k- p) (B
p=>0

agrees with the k-th Adams operation of E in Ky(X).
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If E is a hermitian vector bundle, there is a naturally induced metric on the
tensor product T*E = E® .*. ® E. Endow /\k E with the wedge product metric,
that is, the metric induced by the natural inclusion of A* E into T*E given by
ﬁ jr. Analogously, we endow S¥E with the hermitian metric induced by the
natural inclusion of S¥F into T*FE given by ﬁl,k.

In this way, if eq,...,e, is an orthonormal local frame in F, then the set
{ei, ® - ® ey, }il,.i.,ike{l,..i,n} forms an orthonormal basis of T*E and the set
{ei, Ao Neiti<.<ipeql,...,ny forms an orthonormal basis of /\k E. The set
{ei, - - € biy<..<ipef1,...n) forms an orthogonal basis of S*E with the norm of
each element depending on the number of repetitions among the subindices. In
particular, if 4y < - < i, then the norm of e;, - ... -¢;, is one.

Denote these metrics by hg, 5, hipr 5, hyog. The locally free sheaves Uk (E)P
are endowed with the tensor product metric. With these hermitian metrics, if
E and F are hermitian vector bundles, the algebraic canonical isomorphism of
complexes is an isometry of hermitian complexes

k
(4.5) VHEaF) =@V (E) @ v rF)"
p=0

Indeed, the natural inclusions
SEINTESFoN P 'Fo st EaR)o N (EaF)

are compatible with the hermitian metrics defined.

Hermitian split cubes

Definition 4.1 (cf. [I0]). Let X be a proper arithmetic variety. Let {Ej}je{()_rg}n
be a collection of hermitian vector bundles over X, indexed by {0,2}". Let

7] je{o0,23» be the hermitian n-cube defined as follows.

> Let j € {0,1,2}™ and let u; < --+ < us be the indices with j,, = 1. We define
(V1,...,Un) = Omy,...,m, (J) to be the multi-index with

gk if k #£ wy for all [,
Vg = .
my if k= .

Then the j-component of [EJ]jG{O’Q}n is

€ —

@ T (.7').

(m1,...,ms)€{0,2}¢
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> The morphisms are compositions of the following canonical morphisms:
Aot B> A, Ae'BZ BaelA,
A—AetB, Ae'(BelC)S (AetB)alC.
A hermitian n-cube of this form is called a direct sum hermitian n-cube.
Definition 4.2 (cf. [I0]). Let X be a proper arithmetic variety.

» Let E be a hermitian n-cube. The direct sum hermitian n-cube associated to
E, Sp(E), is the hermitian n-cube

SP(E) = [Ej]je{o,z}" .

» A hermitian split n-cube is a couple (E, f), where E is a hermitian n-cube
and f : Sp(E) — E is an isometry of hermitian n-cubes such that f7 = id if
j €{0,2}". The morphism f is called the splitting of (E, f).

Roughly speaking, these are the cubes which are orthogonal direct sums in
all directions. Let

Zéf)n(X) := Z{split hermitian n-cubes in X}
and let Zéf)*(X) =, Zéf)n(X). As shown in [I0], there is a differential map
d: ZSp,(X) — ZSp, 1 (X)
making (Zég*(X ),d) a chain complex such that the morphism that forgets the

splitting Zé;)* (X)— 7.C, (X) is a chain morphism.

Some intermediate chain morphisms. The construction of Adams opera-
tions factors through an intermediate complex. We recall here its construction
due to the fact that a slight modification needs to be introduced.

Let k> 1. Foreveryn >0and i =1,...,k — 1, we define

@’f (X)), := {acyclic cochain complexes of length k of hermitian n-cubes},
@gk(X)n := {2-iterated acyclic cochain complexes of lengths (k — i, 1)
of hermitian n-cubes}.

The differential of ZC, (X) induces a differential on the graded abelian groups

ZGHH(X). =P zGEH(X), and ZGY(X). = P ZGI(X),.
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For every n, the simple complex associated to a 2-iterated cochain complex induces
a morphism

D ZGEH (X)), — ZGR(X),.

A new chain complex is defined by setting
ZG*(X @ZGZ F(X)po1 @ ZGH(X),.

If B; € ég’k(X)n,l fori=1,...,k—1,and A € @’f(X)n7 the differential is given
by

k—1
ds(B1,...,By_1,A) := (-dEl,...,—dFk_l,Z( 1)'®i(B )—i—dA)

i=1

Definition 4.3. For any acyclic cochain complex of hermitian n-cubes
—_ — 0 j—1 s j k—1 __
A.0-A0 L L @Ay,

we define:

> $1(A) to be the secondary Euler characteristic class, i.e.

P1(A) =Y (—)F Pk - p)A” € ZCu(X).
20
> u(A) =35 0(=1)7 1/ (A) where p (A) is the hermitian (n + 1)-cube defined
by
(! (A)) =ker f/, 0}(ui (A)) = &', 3(p? (A)) = ker f7+1.

> Ax(A) is the acyclic cochain complex of hermitian n-cubes

. Lfo ij—l . ij ifk—l .
0—>A0 VEL Lk A Ak_>0.

If B; € @;k( X)n, then B; is a 2-iterated acyclic cochain complex where B] 12
is a hermitian n-cube for every j1, jo. We attach to it a sum of exact sequences of

hermitian n-cubes as follows:

Ba(Bi) = Y (~ D)k — i = )wi(B ) + (i - HN(BI))

720
+Z(_1)k—5(k_s)z(—s 353 @Bs 3’3 _)@Es j7])
s>1 j>0 J'>g J'>3

Roughly speaking, the first summand corresponds to the secondary Euler charac-
teristic of the rows and the columns. The second summand is a correction factor
due to the fact that direct sums are not sums in ZC),(X).
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Lemma 4.1. The morphism given for every n by
ZG*(X), L 2Ch(X),

(4.6) e B e i)+ S B
(Bl,...7Bk-71, le A +Z 7I+ Bl))v
i=1

18 a chain morphism.

Proof. See [10]. This follows essentially from the three equalities
dg1(A) = @1(512)

— (P2 (dB;) ZZ 1'0] u@y(By), Vi,
=2 5=0
P1(9'(By)) = Y (=1)"0{p@s(By), Vi O
r>0
Remark 4.1. The above definition of @5 is a slight modification of the definition
given in the original paper [I0]. The change consists in the twist by 1/v/k of g,
and has been introduced in order to have a representative of the Adams operations
on higher algebraic K-theory that commutes strictly with the Chern character
(the reason will become apparent in the next section; cf. Proposition . This
modification does not alter the fact that the final morphism represents the Adams
operations on higher rational algebraic K-theory, since the morphism at n = 0
remains unchanged.

Adams operations. In [I0], Adams operations are constructed for every split
(hermitian) n-cube, using the secondary Euler characteristic class of the Koszul
complex. The following proposition follows from the construction of the Adams
operations in [I0].

Proposition 4.1 (cf. [10]). Let X be a proper arithmetic variety. For every
k > 0, there is a chain complex

F. 78p,(X) — ZC,(X).

For every E € Zgl\)n(X), Uk (E) consists of a sum of hermitian n-cubes of the
following form:

(i) If E is a hermitian vector bundle (i.e. n = 0), then W¥(E) is the secondary
Euler characteristic class of the Koszul complez.

(ii) If n > 2, the image of W* consists of hermitian n-cubes which are split in at
least one direction.
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(iii) For n = 1, there are two types of summands. Some of the terms of W*(E)
are hermitian split 1-cubes. The rest are hermitian 1-cubes of the form u(A)
with A = \(VY(F)*) @G or A= F @ X\ (Y (G)*) for some hermitian bundles
F.,G in the entries ofE and 0 <1< k. These terms arise as the image under
o @y of 2-iterated acyclic cochain complexes of lengths (k —i,4) of the form
UF=H(G)* @ UH(F)*. O

Remark 4.2. Item (ii) of the last proposition follows from the construction of the

Adams operations in [I0], using the isometry . These hermitian cubes appear

when taking the image under ¢ of some elements Ac C?’f (X)n, E € @é"k(X)n_l,

which consist of (2-iterated) acyclic cochain complexes of hermitian n-cubes or

(n — 1)-cubes which are hermitian split in all directions. Note that the statement

is true with the modification of A, introduced here since multiplication by the

constants is not performed in the hermitian split directions.

The transgression morphism. Once the Adams operations are defined for all
split hermitian cubes, the final construction makes use of the transgression bundles
introduced above. This allows us to assign to every hermitian n-cube a collection
of hermitian split cubes in X x (P!)*.

Let X be a proper arithmetic variety. Let X x (P})" denote X xz (P!)". For
i=1,...,nand j = 0,1, consider the chain morphisms induced on the complex
of hermitian cubes

8 = (1d x 61)* : ZC, (X x (BY)") — ZC(X x (P1)"71),
o; = (Id x o) : ZC, (X x (P1)" 1) — ZC.(X x (PY)™).

As before, let py,...,p, be the projections onto the i-th coordinate of (P)".
Let ZCE*(X ) be the 2-iterated chain complex given by

ZCE (X)) == ZC\(X x (PY)™),
with differentials (d,¢), with d the differential of the complex of cubes and § =

Z(—l)”jd{. Denote by (ZCA'E’(X), ds) the associated simple complex.
Let .
ZCT o (X)aeg = )_[0i(ZC7 1 (X)) +p;O(1) © 03(ZC7 1 (X)),
i=1
207 (X o = ZC7 (X )aeg /2D (X % (P1)")acs,
and let - . R
ZCy (X) = ZC}. ,(X)/ZC}. ,(X ) deg-
Denote by (Z@f (X),ds) the simple complex associated to this 2-iterated chain
complex.
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Proposition 4.2 ([I0, Proposition 3.2]). If X is a reqular noetherian scheme, the
natural morphism of complexes

ZO.(X) = ZCE o(X) — ZCE(X)
induces an isomorphism on homology with coefficients in Q. O
In [10, §3], a morphism
(4.7) NC.(X) L 78 (X)

is constructed. This morphism extends the map that assigns to every hermitian
n-cube E its transgression tr,(F). Indeed, the component of T(E) in Zé’gn(X )
is tr,,(A(E)). Each of the components of T(E) in ZCA'ELM-(X), for i > 0, consists
of a linear combination of split hermitian cubes, and hence the construction W*
outlined above can be applied to each of these terms. The morphism T maps every
hermitian cube E to a collection of hermitian cubes with canonical kernels A(F)
and then applies the transgression construction.
In this way, one obtains for every k > 0 a chain morphism

UkoT = AP

vk NC,(X) 225 ZCT (X).

Proposition 4.3 ([10, Theorem 4.2)). The Adams operations on the higher al-
gebraic K-groups of X, after tensoring by Q (as given by Gillet and Soulé [13] or
Grayson [15]), are represented by the chain morphism

Uk NG, (X) YT 707 (X). O

Remark 4.3. The fact that the image of T consists of split cubes is proved in
[10, Lemma 3.15]. The fact that the image consists indeed of hermitian split cubes
follows from the fact that

(4.8) t1,(E)|y=0 = tr,_1(O)E) & tr,,_1 (07E)

for every hermitian n-cube E with canonical kernels, and with 2 being an isometry.

84.2. The Koszul complex and Bott—Chern forms

In this section we determine hermitian metrics on the Koszul complex that would
make its Bott—Chern form vanish. This is the cause of the modification Ay in-
troduced in the definition of the algebraic Adams operations. We next perform a
direct comparison of the definition of the Adams operations on locally free sheaves
and the secondary Euler characteristic class of the Koszul complex.
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Although it is not required for the development of this paper, we will deduce
the value of the Bott—Chern form of the Koszul complex, with the hermitian
metrics fixed at the beginning of this section. This will be an easy consequence of
all the computations of the first part of this subsection.

The following is a known result.

Lemma 4.2. Let E be a locally free sheaf of finite rank on any variety. For all
k > 1, the k-th Koszul complex of E is split, i.e. for all0 < p < k—1, u?(V*(E)*)
18 a split short exact sequence.

Proof. Recall that the morphisms in the Koszul complex, ¢, were defined as

1 .
,(7Tp+1 ® pr—p-1) © (tp ® Jr—p)-

= pl(k—p—1)!

Let
by SPEQ NPT E - SPEQ NP E

be given as

1 .
Yp ) (Tp ® pr—p) © (tp+1 ® Jr—p—1)-

~kpl(k—p—1)!

If 4, is a section of ¢, over im ¢, then the short exact sequence
0 — kerpp, — SPE@ NVPE - imp, — 0

is split for all p. That is, there is an isomorphism

SPE ® /\k_pE = ker ¢, @ im .

In order to see that v, is a section of ¢, over im¢,, we have to check that
for all e € SPE ® A" E, we have

Sﬁpd}p‘%’p(e) = Sﬁp(e)'

Assume that the rank of E is n and consider a local frame in E, {e1,...,e,}.
Renaming the indices, it is sufficient to check the previous equality for an element
of the form e = e;, -...-e;, ® e1 A -+ A eg_p Where i1,...,i, € {1,...,n}. By
definition,

1
(@)= o o (Vi e iy er) @) Ao Aerey
€S,
TEGk’fp
1
=T 2 VMRl e, er) ® era A Alro):
TEGk,p

Observe that if 7(1) = j, then there is a decomposition 7 = 7/p with 7/, p € G,
p(l,...;k—p) = (4,1,...,7,...,k —p) and 7/(1) = 1. The signature of p is
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(—1)7~1. Hence,
(4.9) wp(e) = Z(—l)j_lei1 e, e @er N Neg_p.

Proceeding as in the computation of ¢,(e), we obtain

k—p

k—p (—1)i-1 —
(4.10) Uppp(e) = 3 e+ ZTQI R
j=1t=1 ®€z‘t/\€1/\"‘€Aj"‘/\€k—p~
Therefore,
k—p 1
OpPppp(e) = T@p(e) + E‘Pp(y)
where
k—p p '
y:ZZ(—l)J_leil et cej@e, Ner N EG s Nep_p.
j=1t=1
Using (4.9)), we have
k—p p _
(pp(y):ZZ(_l)Jfleil core e Qe N € N ey
j=1t=1
k—p p j—1 .
+ ZZ(—l)J_Hleil-...éi\t..ueip-ej-el
j=1t=11=1 De, Ner A& ...6 - New_p
k—p p k—p 4
+ Z (—1)]+lei1-....e/;...-eip~ej-el
J=1t=11=j+1 ®e, Nexr A€ ...¢ - Neg—p
=pep(e)

since the last two summands cancel each other. Hence, we see that

ertngn(e) = L p(e) + Pgyle) = yle). 0

Although the Koszul complex is algebraic split, the short exact sequences
w (U*(E)*) are not orthogonal split, and hence its Bott—Chern form is not zero,
as would be desirable. In order to achieve this, we need to multiply each morphism
¢, of the Koszul complex by 1/Vk.

Proposition 4.4. Let E be a hermitian vector bundle over a smooth proper com-
plex variety and consider the Koszul complex WE(E)*, k > 1. Then the acyclic
cochain complex A\ (VE(E)*) has the property that u?(\p(V*(E)*)) is hermitian
split for all p.
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Proof. Let 1, and j, be the inclusions defined in , ¢p be as defined in
and v, be defined as in the proof of the previous lemma.

Let us compute explicitly the squared norm of an element of im ¢, under the
two hermitian metrics: the one induced by the inclusion into SPTE @ A\* 7' E
and the quotient metric induced by that of SPE® A" P E. To prove the statement,
we need to see that the two norms are related by the factor 1/k.

Denote by [|¢p(€)]; the norm of ¢, (e) in SP“'1E®/\k_p_1 E and by [|¢,(e)]l4
the norm of ¢, (e) given by considering it as a quotient of SPE ® /\k_p E.

Assume that the rank of E is n and consider an orthonormal local frame
€1,...,e, in E. Then {e;, ® -+ ® €y, Yir,oine{1,...,n} forms an orthonormal basis
of TFE. To ease notation, let us write

Ot = € © - ® iy
For an element of the form Y, ; axef with I a subset of {1,...,n}* and a, € C,

the square of its norm is given by »,.; ai.
Notation. If 0 € &, and A = (A1,...,A,) € {1,...,n}P we will write

U()\17~~'7)‘p) = ()\a(l)v"'7>\U(P))'

Renaming the indices, it is sufficient to compute the norms for an element of

the form
pple) with e=e; ..., ®er A= Nep_p
where i1,...,4p € {1,...,n}. Let m; denote the number of times that e; appears
ine; ... e, Then
e:e'lnll ~...-e;f1"®61/\~--/\ek,p,

where /" =¢e; - ™i -¢;. Note that mq +---+m,, = p.
Then, by (4.9)), we have

ep(e) = (=17 ey ey e @er A€ Aegp.

- _(pt1@Jk—p-1) ; kT
The norm ||¢p(e)||; is computed as the norm of (p+1)!(k_p_1)!(<pp(e)) in TFE.

The term (tp41 ® jr—p—1)(pp(e)) is

k—p
ST Ly 1e® )
2 z;( € i) (L)’
]:

€S,
TESK _p_1
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Its squared norm is given by the sum of the squares of the numbers of occurrences
of each different summand. Given two different permutations 7,7’ € Gj_,_1, we
have

€ i mipsd) 71 Tk) 7 Colins iy 1741 )
Moreover, if j # j’, the terms obtained are different as well. The only repeti-
tions will come from the permutations 0,0’ € &,41 satisfying o(i1,...,i,J) =
o'(i1,...,ip,j). For fixed 7 and j, there are % different terms,
each of them appearing m4!...(m; + 1)!...m,! times (and with the same sign).
Therefore,
H(pp( HQ (k pP— 1) Z p"' 1) (ml (m] + 1) n')2

p+DHY(k—p—1)! mq!.. (mj+1).... n!

k—p k—p

Zml' (mj + 1)l omyp! =mql.. . my! Z(ijrl)

Jj=1 Jj=1

k—p
:mll...mn!(k—p+2mj).

j=1
Let us proceed now to the computation of ||¢,(e)|lq. This norm is given by
H\/ﬁ(% ®j’f—1’)(w)”TkE7 where w € (ker )L satisfies ¢, (w) = p,(e). Let

us see that w = Y¥ppp(e). Since we have already seen that ppppp(e) = @p(e), it
is enough to check that 1,p,(€) € (ker ,)*

By (4.10), we have

k—p p
kbpop(e) = (k—ple+ > (1)1 e -y e, ej
j=1

t=1 ®e;, Ner A - A ep—p.
Ifi, € {1,...,k — p} and i; # j, we have e;, Aeg A -+ “Neg—p =0. If 4, =7,
then
ez-l-...Ei\t..ueip-ej®el-t/\61/\~--€j~--/\ek,p:(—1)j_1e.
Hence,

k—p
kppp(e) = (k -p+ ij)e
j=1

k—p
j—1 -m ‘mj+1 ‘my—1 ‘M,
—|—§ g (=1 " myel teoeg g ...67:"

j=1te{k—p+1,...,n} Res Nep N ‘N egp_p.
M40
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Let ® = 1), ® ji—p, A= 1(k—p+ Z;:f m;)®(e) and B = ®(¢ppp(e)) — A.
We have

M40
—D)I"lme® e® ~ .
Z ( ) t o(1m1,.. ™t e n"”n)® T(t,1,...,7,...,k—D)
oce6,
TEGK_p

We want to see that A + B belongs to ®(kerp,)t = ®(im ¢, 1)+ in TF¥E. Let

v=p_1(f), where f =€, -...-e,,_, ®es, A" Neg,_,,, With s1 <+ <55y,
Then
k—p+1
t—1 —
v = Z (—1) €rq t ...~6Tp71 - €g, ®681 /\"'est ."/\esk—p+17
t=1
and so
k—p+1
— _1\t—1 _ 7] ,®
@(U) - Z ( 1) Z ( 1) ea(rl,.4.,1",,,1,st),T(sl,...,sAt,..A,sk,le)'
t=1 cES,
TEGK_p

It is straightforward to see that the scalar product (®(v), A) is 0 unless f =
€ry oo Cpy, @€ A ANep_p Nes with {i1,...,4p} = {r1,...,7p_1,5} and
sef{k—p+1,...,n}. For B, we have two situations where it is not obvious that
(®(v), B) is 0. The first is the same as above. The second is when there exists
j such that {1,...,3,...,k —p} = {s1,...,Sk—p-1}, Sk—p,Sk—p+1 > k —p and
{ri,o o rpm1t = {i1s o, 0p, 5\ {Sk—ps Sk—p+1}-

In the first case (f =ep, - .. €r,_, ®e1 A== Aep_p Aes with {ig,... i} =
{ri,...,rp—1,stand se {k—p+1,...,n}), we have

(@(v),4) =a- Z (*1)|THIT‘<6§@'1 ,,,,, i)y (1., kfp)7€§’(r1 ..... ro_1,8),7 (1,....k—p)

U,UIEGP
T,T’Gkap

TEGL_p 0,0'€EG,
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with o = L(k} p+ Z 1 mj) Note that for every ¢ € &,,, the number of
o’ € 6, such that
1

€2 e ) =
o(i1,.-y0p),7(1,...,k=p)? o' (11, 7p—1,8),7(1,....,k—p)

is the same, namely A = m1!...my!. Thus,

—p k—p
(B(v), A= > ZA:%(k—wzmj)(k—p)!pu

T€G,_p 0EG, j=1
_ k—p
(-1t
=k —p)!p!(k—p—i— ij))\
j=1

We proceed in the same way for B:

k—p k—p+1

_ % 3 3 Z 1 (= 1)+ |y

j=lte{k—p+1,...,n} o,0'€6,
m

t#0 7,7 €GK_yp
’ < ® j+1 7 e 1, >
o(1m1,. Mt e ) r (8,1, k=) o (P Tp—1,0), T (1,1, 8)
12
— k—p+1
=T (1)
k
j=lo,0'eq,
TEkap

{e® — ~ e® - )
(I amet ) (1, G ke8)’ Cot(rrp )7 (Lo o s)

k—p
_ %(—l)k*”“ms(k —p)p! Sl my D)L (g — DY)
j=1
k—p
k—p)p! _
= %(—1)’“ p+1)\<k -p+ Zm]) =—0(v) - A
j=1
Therefore,

(®(v), A+ B) =0

in TFE for all v € im ¢,_1 of the first form.

Now assume there exists j such that {1,...,7,....,k—p} = {s1,...,Sk—p-1},
Sk—ps Sk—p+1 > k —p, and {r1,...,7p—1} = {i1,.. ., ip, 5} \ {Sk—p> Sk—p+1}. Then
(®(v), A) = 0 and we have (with § a constant)
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(e? myt1 = e 5 )
o(Im1,.. ™ T gme=1 nma) (1,0, k—p,t) 0 (T Tp—1,80),T (81,580, Sk—pt1)

= ppl(k —p)lmq! ... (m; +1)!. ..mn!((—l)k_p_1 + (—1)k_p) =0,

where we have used the fact that the scalar product is non-zero only for the pairs
ofindices | =k —p,t =sp_pr1and =k —p+ 1,1 = 5.
We conclude that (®(v), A+ B) =0 in T*E for all v € im ¢, _1 as desired.
We proceed now to compute the norm ||, (e)||, which is given by

Hmmw)

As above, we should group the summands of A and B that are the same. In
order to do this, observe that the terms obtained for different permutations 7,
different j or different ¢ are not equal. Moreover, the summands in A are all
different from the summands in B. Therefore, the only repetitions are obtained
with the permutations o € G,,.

TFE

With these observations we obtain, as in the computation of || - ||;,

I AlIZ 1 < 2
—_— = k—p—l—g m; ) mil...my!
— 2 J
pl(k—p) k ( = )

13115

1 r
plk—p)! ~ K2pl(k — p)! 2 2 2

j=lte{k—p+1,..n} T€SL_,

M0
pl(me)(mal... (mj+ ). (my — 1)L omy!)?
mal.. (my + 1D (my — 1) my!
1
== > mema!. . (my 4+ 1) omy L
j=1te{k—p+1,..,n}

mi+£0

Therefore,

5 myl...my! hp 2 &
lep(@2 = "5 [ (k= pt > omy) +
i=1 j

k—p —p n

:WK;@_]QJFZW)QJF( (mj+1))< > mt)]

j=1 j=1 t=k—p+1
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Note that

n k—p
E my =p— Z mj.
Jj=1

t=k—p+1
Hence, denoting 3 = my!...m,!/k?, we have

k—p ) k— k—p
lep@l2=8[(k=p+> m;) + (k=p+ > ms) (=D m;)]
Jj=1 j= j=1
—ﬁk(k—p—i—imj) _ my! - mn|(k_p+k_pmj>_
j=1 j=1
Therefore,
lep(@)l? _
len(e)llF

It follows that if we define ¢}, = ﬁ%) we have

1 /
lep(@F = 2 llep(li = llen(e)l; = llep (e
k

The last equality follows from the fact that if w € (ker )+ satisfies ¢, (w) = @, (e)
then w € (ker ¢,) and ¢}, (w) = ¢/ (e). O

Remark 4.4. Note that if we had defined from the very beginning the arrows ¢,
of the Koszul complex ¥* to be ﬁcpp, then we would not have the isometry (4.5
of chain complexes.

Corollary 4.1. Let E be a hermitian vector bundle. Then for all0 < p < k —1
we have
dp ch(y? (W (E)")) = 0.

Proof. Consider the commutative diagram of short exact sequences
0———>kerp, ——= SPEQ \*PF 7 ker Opt1 ——0

| |

_ =
00— ker(ﬁcpp) ——= SPE® /\k—pE KA ker(ﬁapp_s_l) — 0

$+

By the last proposition, ch(u? (A W*(E)*)) = 0. Hence
dp ch(p? (VH(E)")) = dp ch(u? (A T*(E)*)) — dp ch(idier )

+ dp ch(idg,ggpr-») — dp ch(ker opia 7, er ©p+1)
=0. O
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Adams operations and the secondary Euler characteristic. Let E be a
locally free sheaf of finite rank and let

YH(E) = Ne(\(E),... , A"(B)),

with Ny being the k-th Newton polynomial. These are the Adams operations
associated to the lambda operations A\* on locally free sheaves of finite rank. Let
Uk (E) be the secondary Euler characteristic class of the Koszul complex of E. As
shown by Grayson in [I5] §3], the secondary Euler characteristic class of the k-th
Koszul complex agrees, in the quotient group Ko(X), with the usual k-th Adams
operation. Therefore, in Ko (X),

VH(B) = UH(E).

This means that there exist short exact sequences sq, ..., s, such that
-
VHE) = WHE) = d(s)).
i=1

In the next proposition, we construct such a set of short exact sequences explicitly.
For that, let U*(E)** denote the Koszul complex obtained by replacing the p-th
component SPE @ \* P E with A\"? E ® SPE via the canonical isomorphism.

Proposition 4.5. Let E be a locally free sheaf of finite rank. Then
VH(E) = UH(E) =Y d(sy),
i=1

where, for each i, either s; is uP (W (E)*) ® A; with A; some locally free sheaves
of finite rank of the form N E or T E and some indices k;,p,7j;, or s; is the
canonical isomorphism /\k_p E® SPE=SPE® /\k_p E.

Proof. Consider the polynomial relating the lambda and Adams operations:
(4.11) PP = pFTIN RN L ()R RAR

For two linear combinations A, B of locally free sheaves of finite rank, write
A ~ B if there exist short exact sequences s1, ..., s;, of the form as in the statement
of the proposition, such that

1
A—=B=> d(s).
i=1
Let Ly, = {(i1,...,4) | 3; € {1,...,k}, i1+ - -+14;, = k} be the set of partitions
of k and let S* denote the symmetric product. We first show, by induction on k,
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that
S W G ) L U
(31yeyi1) €Ly,
For k = 1, this is obvious since S = A! = id. Assume that the result is true up
to k. Considering the (k + 1)-th Koszul complex W*+1(E)"* we have

k+1
Sk+1 ~ Z(_1)1+1)\l ® Sk+1_i.

By induction hypothesis,

k+1
gh+1 o 2(71)141)\2’ ® ( Z (71)l+k+17i/\i1 m)\il)
i=1 (4150-s81)ELky1—4
~ > (—1) D+ NI NI\

(4y1,eyi1)ELp 11

as desired.
Next, observe that by definition W' = ¢'. Hence, if we show that ¥* satisfies

the recursive formula , up to short exact sequences of the desired form, we
are done. By definition,

VHE) =D (D) k- p)SPE) o N E
p>0
~ Y (~1)F P (k- p)APE @ SPE.

p>0

Hence, using the previous relation for S*, we have (omitting F)

WSS e (3D )

p=0 (i15e-i1)ELy
~Y Y U AT L
p>0 (21,...,41)EL),

~ Z ( 1)k+l+1 )\11 )\iz+1

k—1
:(_1)k+lk/\k +Z(_1)s< Z (_1)k+l+173i1)\i1 ‘”)\il>>\s
s= (41,0-y01)€ELK—s

k—1

. (_1)k+1k/\k _ Z(—I)S\I’kis)\s.

s=1

This finishes the proof of the proposition. O



158 E. FELIU

Remark 4.5. Note that last proposition applies to any suitable exact category
where Grayson’s Adams operations are defined, that is, where the correct notion
of symmetric, exterior and tensor product is available (see [19]).

Let X be a proper arithmetic variety over Z. Let
Tk DP*(X, p) — D* (X, p)

be the morphism that maps « to kPa. That is, we endow P, D?P=*(X, p) with
the canonical A-ring structure corresponding to the graduation given by p.

Proposition 4.6. Let X be a proper arithmetic variety and let E be a hermitian
vector bundle over X. Then

H(ch(E)) = ch(WH(E))
in the group @5, D** (X, p).

Proof. In [12, Lemma 7.3.3] Gillet and Soulé proved that A\*ch = ch \¥, from
which it follows that

V¥ (ch(E)) = ch(y*(E)).
Observe that by definition,
U*(ch(E)) = ¢" (ch(E)).

By Proposition there are short exact sequences s; such that for each 1,
cither 5, is 1P (U (E)™)®A; with 4; some locally free sheaves of the form A’ E or
T E and some indices k;, p, j;, or 3; is the canonical isomorphism /\k_p EQSPE =~
SPE @ N*PE, and such that

H(E) - UH(E) =) d(5)).
i=1

The sequences 5; are endowed with the hermitian metric induced by the hermitian
metrics iy« 5, hp.g and hy. ). By Corollary it follows that

ch(¢*(E)) — ch(¥*(E)) = 3 dpch(5;) =0
i=1

and hence
ch(V*(E)) = ch(y*(E)),

and the proposition is proved. O
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The Bott—Chern form of the Koszul complex. For any acyclic cochain

s =X =0 f° F e
complex of hermitian vector bundles, A: 0 - 4 — - — A" — ... ——
- 0, the Bott—Chern form of A is defined by

ch(A) = ch(u(A)) = S (~1) " ch(p/ (A)).

7>0

Proposition 4.7. Let X be a smooth complex variety and let E be a hermi-
tian vector bundle. With the metrics on the Koszul complex W*(E)* induced by
h/\*Eth*E and hS*(EV we have

—1)**1log(k)

ch(U*(E)) = ( 5 U*(ch(E))

in @, D~ (X, p).

Proof. Counsider the commutative diagram of acyclic chain complexes (we omit
the hermitian vector bundle E):

OﬁAkﬁbn@/\kfl“‘;1...95;:@/\#19@...951@71®/\1‘P$Sk%0

VEFId|  VERT'1d VEFTP 14 VEId 1d

w0 1 ep k1
O%/\k%\/ﬁgl(@/\k—lg%Sp®/\k_pg%‘s’k_l®/\lgsk90

with the first row at degree 1 and the second at degree 2.
Let ch(\/Ek_p Idg,mgps-»5) denote ch(0 — SPE® N PE

NPE).
Forp=0,...,k—1, let A, be the diagram

k—p o
VB e

ker o, —— SPE @ /\k—P E P ker POp+1
l\/gk‘—p \L\/Ek_p i\/gk—P—l

ker o, ——= SPE @ /\k—P E 7 ker Pp+1

¥p

(here ¢ = 0). Then we have

k
ch(UF(B)) = ch (M (T (B))) + 3 (—1)PH ch(VE ¥ Tdgugpi o)
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Let us see that dp ch(A,) = 0 for all p. The lower sequence of A, is split exact.
Therefore, A, is isometric to the following diagram, denoted by A7
4 Vkn
ker ¢, ——= ker ¢, @ ker o, 1 —— ker ¢,41
\L\/Ekp \L\/Ekp \L\/Ekpl
ker ¢, — " ker op D ker 11 ——ker pp11

(7 denotes the canonical inclusion and 7 the canonical projection). Since ch behaves
additively for direct sums of cubes, we have ch(A},) = ch(A) + ch(B) with A, B
the following two diagrams:

ker ¢, 14 ker op—>0 0 — ker pp11 i> ker p41
J{\/Ekp \L\/Ekp l\/gkp \L\/Ekpl
ker o, —>kerp, —>0 0 —> ker g1 — o> ket g1

By Lemma [4.3| below, ch(aIds) = —log(a) ch(F) for any hermitian vector bundle
F and a > 0 a real number. Using this lemma, we obtain

dp ch(B) = ch(Vk Idker o, ) — ch(Idier )
k— k—p—
—h(VE " Tdergy) + b (VE T Tdier, )
k— k—p—
= (~log(Vk) +log(VE ") ~log(VE ")) ch(ker g, 1) = 0.

Similarly, or using that A is a degenerate cube, we obtain the fact dp ch(A) =0
as well. Therefore, dp ch(A,) = dp ch(A}) = 0.
By Proposition we know that ch(\(U*(E)*)) = 0. Therefore, using
Lemma [£.3] again we get
k
_ k— _ _
ch(WH(E)) = (-1 log(vk ) ch(SPE® \* P E)
p=0
k
=" (-1)7(k — p) log(Vk) cb(SPE ® \* " E)
p=0
k — p—
= (—1)* M og(VE) D _(=1)* P (k —p) ch(S"E @ \* P E)
p=0
(—=1)**!log(k)
2
where the last equality follows from Proposition O

= (=1)**'log(Vk) ch(¥*(E)) = U*(ch(E)),
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Lemma 4.3. Let X be a smooth complex variety, let F be a hermitian vector
bundle over X and let a be a non-zero complex number. Then

ch(0 — F % F) = —log([lal]) ch(F)
Z.n @pZO D2p_1(X7p)'
ald

Proof. Let ch(ald) denote ch(0 — F = F). Let t = x/y be the local coordinates
on P'. By definition,

ch(ald) = % /P eh(try(ald)) A (;logtt>.

Let h denote the hermitian metric of F. Let ¢ be a local frame for F on an open
set U. By [4], the resulting local frame on tri(aId) = p§F' has metric given by the

matrix
ygh() + aallal’h(e) _ yo+aalal?, o 1+l
vy + 17 yy + 2T 1+
. — . _ 1+lla|®tE
using local projective coordinates. Let h, = 1&;

Let po,p1 : X x P! — P! be the projections onto the first and second coor-
dinates respectively. Since the hermitian metric on tri(aId) is expressed as the
product of a hermitian metric on the line bundle O(1) and the hermitian metric
h of F, we have

ch(try(ald)) = ch(ptO(1), ha) A ch(pyF).
Hence,

ch(ald)

1
— 10(1 1 h
QWi(/Pl c1(pyO(1), hy) A ( ogtt) Ac

_ wch(m —log([lal|) ch(F

84.3. Adams operations and the Beilinson regulator

1 E
27”_(/?1 ch(piO(1), ha) A 1ogtt ) A ch(F
F).

We will define the Adams operations on the rational higher arithmetic K-groups
of X from a commutative diagram of the form

N@ (X) b 691720 DQP_*(va)

707 (X) — 2> @, D (X, p)
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We proceed as follows:

(1) We first define the bottom arrow ch : ZCT(X) — @B,>0 D (X, p).

(2) We show that there are isomorphisms
Ho(s(ch), Q) = K, (X)o,  Ha(ZC7(X), ch)g = K7 (X)o.
with ch the composition

25 (X) & P D7 (X, p) — @) o=0D* (X, p).

p>0 p>0
(3) We prove that the diagram (4.12)) is commutative.
Let B € an(X x (P1)™) be a hermitian n-cube on X x (P!)™. We define

hy o (E) = (- htr, (AM(E))) e W, p—n—m(x
chy m(E) = (271'1')”‘”"_/<P1>n+mc (trn(AME))) @ Waim Gpej) (X,p).

Proposition 4.8. There is a chain morphism

ch: ZCF (X - P> (X.p),
p>0

which maps E € Cr,(X x (PY)™) to chym(E). The composition

Kn(X) — Ho(ZCF (X T PHP

p>0

is the Beilinson requlator.

Proof. First of all, observe that the map ch is well defined. Indeed, if F = p;‘m@)
F, then ch(E) € 0;D**~*(X x (P1)" 1 p—1)+w; Aoy, DP~*=2(X x (P1)"~1 p—1)
and hence ch(E) = 0.

In order to prove that ch is a chain morphism, observe that it factors as

ZCE (X)L BB (X, p) L DD XL RD)),
p=>0 p>0

where ¢ is the quasi-isomorphism of Proposition and ch(E) = chy, n(E) is
defined by

My (E) = (—1)"™ ch(tr, (ME))) € @5%(}( x (P1)™+n p)
=0

for any E € an(X x (P1)™). Hence, it is enough to see that ch is a chain morphism.
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Let £ € Z@nml(X ). Since ch is a closed differential form, we have

dy(chnm(E)) = (—1)""4 ch(trn (A(E)))

i(lwm ch(tr, (A5 E — 6VE))

n+m 2

+ D0 D (YT eh (e, (M@, E)))

i=m+1 j=0

- (71)77,&”’7"_1 (5E) + En—l,m,(dﬁ)v

as desired.
Finally, since by definition there is a commutative diagram

il @ 'DQP_*(X,p),

p=>0

—

ZCZ(X)
the morphism ch induces the Beilinson regulator. O

We have therefore constructed the bottom arrow of diagram (4.12). For
the next proposition, let ch : ZCT(X) — @pZO o0-0D*~*(X,p) be the compo-
sition of the morphism defined in Proposition with the natural projection
@pZO DQP_*(va) - @pZO 0'>OD2P_*(X7 ).

Proposition 4.9. There are isomorphisms

H,(ZCP(X),ch)g = KT (X)g,  Hy(s(ch),Q) = K.(X)o,

induced by the isomorphism H,(ZCE(X),Q) = K,,(X)q of Proposition .

Proof. Both isomorphisms are a consequence of Proposition [£.2] and the five
lemma using the exact sequences of Lemma [3.1] and Proposition [2.1 O

At this point, all that remains to see is that the diagram (4.12)) is commutative.
This will be a consequence of the next series of lemmas and propositions.

The next lemma tells us that the morphism ch maps the split exact sequences
to zero in the complex P, D;p_*(X,p).

Lemma 4.4. Let X be a smooth proper complex variety. Consider a split exact
sequence

— —0 =0 —1 I

F:0-F - FE ®F — FE —0
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of hermitian vector bundles over X. Then we have ch(E) = 0 in the complex

®p20 D;p_* (X,p).

Proof. Clearly, the exact sequence E already has canonical kernels. Let us com-
pute ch(tr; (E)). By definition, try(E) is the kernel of the morphism

EMaeEMWaE (1) —E2), (abe)—baz—cy.
For every locally free sheaf B, there is a short exact sequence
0—BLBU)®B1) % B2) -0

where f sends b to (b®y,b® z) and g sends (b, ¢) to b® x — c®y. Moreover, if B
is a hermitian vector bundle, then the monomorphism f preserves the hermitian
metric. It follows that the hermitian vector bundle tri(E) is Eo(l) & F' and
therefore

ch(try(E)) = ch(E' (1) @ ') = ch(E" (1)) + ch(E").

Since ch(O(1)) = 1 +w € D? + W2, the differential form ch(EO(l)) + ch(El) is
zero in the complex @, D (X, p). O

Lemma 4.5. Letn > 0 and let E € ZC,, (X x (P1)™) be a hermitian n-cube which
is split in the last direction, that is, for every j € {0,1,2}"71, the 1-cube

(UEY — (9)EY — (92E)
is hermitian split. Then chy, ,,(E) =0 in @5, D* ™" ™(X,p).
Proof. Recall that if E is a hermitian n-cube then
tr,(E) = try try—1(E) = try (tr,—1 (04 E) — try—1(0pE) — tr,—1(02E)).
Thus, if E is split in the last direction, the 1-cube
tr,_1(0°F) — tr,_1(0LE) — tr,_1(02E)
is orthogonally split. Now the result follows from Lemma [4:4] O

Corollary 4.2. Let n > 0 and let E € ZC,(X x (PY)™) be a hermitian
n-cube which is split in any direction. Then chy ,,(E) = 0 in the group
®D,>0 D2r=n=m(X p). O
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Theorem 4.1. Let X be a proper arithmetic variety over Z. The diagram

NC.(X) —2> @, D (X, p)

~ ~ ch %
70% (X)) —— @pzo D*~*(X,p)
18 commutative.

Proof. Let E be a hermitian n-cube. If n > 2, then by Proposition all the
cubes in the image of U¥ are hermitian split in at least one direction. Therefore, by
Corollary they vanish after applying ch. The same reasoning applies to some of
the summands of the image of ¥* when n = 1. The rest of the terms are hermitian
I-cubes of the form u(A) with A = \(V(F)*) @ G or A = F @ \(V!(G)*) for
some hermitian bundles F, G. By Proposition these terms vanish as well after
applying ch.

Finally, if n = 0, by Proposition and the definition of ¥* on differential
forms, we have

B (E) = (o [ GE) AT,

(2mi)™
_ = F(ehlir (NE — OHh(E
~ (@2ni)n /(Pl)n U¥(ch(trn(A(E)))) A W, = U*(ch(E)). 0

84.4. Adams operations on higher arithmetic K-theory

Let X be a proper arithmetic variety over Z. Proposition [£.9 and Theorem [4.]]
enable us to define, for every k > 0, the Adams operation on higher arithmetic
K-groups:

» Since the simple complex associated to a morphism is a functorial construction,
for every k there is an Adams operation morphism on the Deligne—Soulé higher
arithmetic K-groups:

U K, (X)g — Kn(X)g, n>0.

» By Proposition [3.1] for every k there is an Adams operation morphism on the
Takeda higher arithmetic K-groups:

UF: KT(X)g — KX(X)g, n>0.

We have proved the following theorems.



166 E. FELIU

Theorem 4.2 (Adams operations). Let X be a proper arithmetic variety over Z
and let IA(n(X) be the n-th Deligne-Soulé arithmetic K-group. There are Adams
operations

UF K (X)g — Ka(X)g,
compatible with the Adams operations in K,(X)q and @, HZ™™(X,R(p)), by
means of the morphisms a and (. O

Theorem 4.3 (Adams operations). Let X be a proper arithmetic variety over Z
and let KI'(X) be the n-th arithmetic K -group defined by Takeda in [21]. Then, for
every k > 0 there exists an Adams operation morphism U* : KT'(X)g — KI'(X)g

such that the following diagram is commutative:

K1 (X)g —> @50 D* " 1(X,p) —= KT (X)g e Ku(X)g —0

Kni1(X)g —2m @00 D# "1 (X, p) == KT (X)g ——= Kn(X)o —>0
Moreover, the diagram

RT(X)g —=> @,50 D¥ (X, p)

I?T(X)Q —< p>0 DQP?R(Xap)
is commutative. O

Lambda operations. Let X be a proper arithmetic variety over Z. Consider the
product structure on I?* (X)g defined before Lemma Then, by the relation
between the Adams and A operations in a A-ring (which is a Q-algebra), there are
induced A-operations

M K (X)g — Kn(X)g.

Corollary 4.3 (Pre-A-ring). Let X be a proper arithmetic variety over Z. Then

~

K.(X)q is a pre-A-ring. Moreover, there is a commutative square

EN ¢
Kn(X)Q - K”(X)Q

Akl lkk

I?n(X)Q — Kn(X)Q
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Proof. The diagram is commutative since the Adams and lambda operations
in K.(X) are related under the product structure on K,(X) which is zero in

B, Kn(X). O

Proposition 4.10. Let X be a proper arithmetic variety over Z. The Adams
operations given here for Ko(X)q agree with the ones given by Gillet and Soulé
in [12].

Proof. This follows from the definition. 0

Consider the product structure in €, -, I?E(X)Q having @, -, I?E(X)Q as
a zero square ideal and agreeing with the product defined by Takeda in [2I] oth-
erwise.

Corollary 4.4 (Pre-A\-ring). Let X be a proper arithmetic variety over Z. Then
K*T(X)@ s a pre-A-ring. Moreover, there is a commutative square

RT(X)g —— Ka(X)g
AF lA’“
RI(X)g —= Ka(X)a
Proof. The proof is analogous to the proof of Corollary O

Remark 4.6. One way to prove that the pre-A-ring structure on K, (X)o given
here is actually a A-ring structure, is to find precise exact sequences relating, at
the level of vector bundles, the equalities in Ko (X)

VHE®F) ="E) @ UHF),  UHU(B) = vH(E).
This implies finding formulas for

N(EeF), AN (E),

in terms of tensor and exterior products. The theory of Schur functors gives
a formula for the first term. However, the second formula is an open problem.
Nevertheless, even for the first equality, when we try to apply the formulas to our
concrete situation, the combinatorics becomes really complicated.

It would be desirable and interesting to find a non-direct approach to these
relations. One attempt could be to go through the “Arakelov” representation ring
on the linear group scheme over Z, Ry (GLy, x GL,y,), introduced by Réssler in [19].
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