
Publ. RIMS Kyoto Univ. 46 (2010), 171–182
DOI 10.2977/PRIMS/4

Denseness of Norm-Attaining Mappings on
Banach Spaces

by

Yun Sung Choi, Han Ju Lee and Hyun Gwi Song

Abstract

Let X and Y be Banach spaces. Let P (nX : Y ) be the space of all Y -valued continuous
n-homogeneous polynomials on X. We show that the set of all norm-attaining elements
is dense in P (nX : Y ) when a set of u.s.e. points of the unit ball BX is dense in the
unit sphere SX . Applying strong peak points instead of u.s.e. points, we generalize
this result to a closed subspace of Cb(M, Y ), where M is a complete metric space. For
complex Banach spaces X and Y , let Ab(BX : Y ) be the Banach space of all bounded
continuous Y -valued mappings f on BX whose restrictions f |B◦

X
to the open unit ball are

holomorphic. It follows that the set of all norm-attaining elements is dense in Ab(BX : Y )
if the set of all strong peak points in Ab(BX) is a norming subset for Ab(BX).

2010 Mathematics Subject Classification: 46B04, 46G20, 46G25, 46B22.
Keywords: homogeneous polynomial, norm-attaining element, uniformly strongly ex-
posed point, strong peak point.

§1. Introduction

LetX,Y be Banach spaces over a scalar field F, where F is the real or complex field.
The celebrated Bishop–Phelps theorem [6] says that the set of all norm-attaining
continuous linear functionals is dense in the dual space X∗. Motivated by the
Bishop–Phelps theorem, Lindenstrauss [20] studied the denseness of the norm-
attaining operators in the space L(X,Y ) of all continuous linear operators. Recall
that an operator T ∈ L(X,Y ) is said to attain its norm if ‖T‖ = ‖T (x0)‖ for some
x0 ∈ BX , where BX is the unit ball of X. In [20, Proposition 1] he showed that if
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BX is the closed convex hull of a set of uniformly strongly exposed (u.s.e.) points,
thenX has property A, that is, for every Banach space Y , the set of norm-attaining
elements is dense in L(X,Y ). Payá and Saleh [22] extended this result to n-linear
forms on X, and showed that if BX is the closed absolutely convex hull of a set of
u.s.e. points, then the set of all norm-attaining elements is dense in L(nX), the Ba-
nach space of all bounded n-linear forms on X. Notice that if BX is the closed ab-
solutely convex hull of a set E of u.s.e. points, then E is a norming set for L(X,Y ).

We shall study a similar question for the space P (nX : Y ) of all continuous
n-homogeneous polynomials from X into Y . In particular, if a set of u.s.e. points
on SX is a norming set for P (nX : Y ), then the set of norm-attaining elements
is dense in P (nX : Y ). Applying strong peak points instead of u.s.e. points,
we shall generalize this result to a closed subspace of Cb(M,Y ), where M is a
complete metric space and Cb(M,Y ) is the Banach space of all bounded continuous
mappings from X to Y with the norm ‖f‖ = sup{‖f(t)‖ : t ∈M}.

On the other hand, Lindenstrauss [20, Theorem 1] proved that the set of all
bounded linear operators of X into Y whose second adjoints attain their norms is
dense in L(X,Y ). In 1996 Acosta [2] extended this result to continuous bilinear
forms, and in 2002 Aron, Garcia and Maestre [5] showed that this is also true for
scalar-valued continuous 2-homogeneous polynomials. Recently, Acosta, Garcia
and Maestre [4] extended it to n-linear mappings. We shall extend the result of
[5] to the vector-valued case by modifying their proof, which is originally based
on that of Lindenstrauss. Finally, we give a necessary condition for a complex
Banach space to have property A.

For completeness we recall some terminology. A continuous n-homogeneous
polynomial P fromX to Y is a mapping P : X → Y defined by P (x) = L(x, . . . , x),

where L is a continuous n-linear mapping from X

n︷ ︸︸ ︷
× · · ·×X → Y . The space of all

continuous n-homogeneous polynomials from X to Y is denoted by P (nX : Y ) and
it is a Banach space when equipped with the norm ‖P‖ = sup{‖P (x)‖ : x ∈ BX}.
An n-homogeneous polynomial P is said to attain its norm if ‖P‖ = ‖P (x0)‖ for
some x0 ∈ BX . It is clear that P (nX : Y ) is a closed subspace of Cb(BX : Y ). For
the scalar-valued case we denote the former spaces simply by P (nX) or Cb(M).
When A is a subspace of Cb(M : Y ), a subset Γ of M is said to be a norming set
for A if ‖f‖ = sup{‖f(t)‖ : t ∈ Γ} for each f ∈ A. It is easy to see that if E ⊂ BX
is a norming set for P (nX), then it is also a norming set for P (nX : Y ) for every
Banach space Y .

An element x ∈ BX is said to be a strongly exposed point for BX if there is
a linear functional f ∈ BX∗ such that f(x) = 1 and whenever there is a sequence
{xn}∞n=1 in BX satisfying limn Re f(xn) = 1, we get limn ‖xn − x‖ = 0. A set
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{xα}α of points on SX is called uniformly strongly exposed (u.s.e.) if there are a
function δ(ε) with δ(ε) > 0 for every ε > 0, and a set {fα}α of elements of norm 1
in X∗ such that for every α, fα(xα) = 1, and for any x,

‖x‖ ≤ 1 and Re fα(x) ≥ 1− δ(ε) imply ‖x− xα‖ ≤ ε.

In this case we say that {fα} uniformly strongly exposes {xα}.
A nonzero function f ∈ Cb(M : Y ) is said to be a strong peak function at

t if whenever there is a sequence {tn}n in M with limn ‖f(tn)‖ = ‖f‖, we get
limn tn = t. Such a point t is said to be a strong peak point of f . When A is a
subspace of Cb(M : Y ), we set ρA = {t : t is a strong peak point of some f ∈ A}.

§2. Main results

Theorem 2.1. Let X and Y be Banach spaces and n ∈ N. Suppose that a set E
of u.s.e. points on SX is a norming subset of P (nX). Then the set of all norm-
attaining elements is dense in P (nX : Y ).

Proof. Suppose that a set E of u.s.e. points on SX is a norming subset of P (nX).
Let P ∈ P (nX : Y ), ‖P‖ = 1, and 0 < ε < 1/3 be given. We first choose a
decreasing sequence {εk} of positive numbers so that

(2.1) 4
∞∑
i=1

εi < ε <
1
3
, 4

∞∑
i=k+1

εi < ε2k, εk <
1

10k
, k = 1, 2, . . . .

Using induction, we next choose sequences {Pk}∞k=1 in P(nX : Y ), {xk}∞k=1

in E and {x∗k}∞k=1 in SX∗ so that

P1 = P,(2.2)

‖Pk(xk)‖ ≥ ‖Pk‖ − ε2k and ‖xk‖ = 1, x∗k(xk) = 1,(2.3)

where {x∗k} uniformly strongly exposes {xk},

(2.4) Pk+1(x) = Pk(x) + εk(x∗k(x))nPk(xk) (x ∈ X).

Having chosen these sequences, we see that the following hold:

‖Pj − Pk‖ ≤
4
3

k−1∑
i=j

εi, ‖Pk‖ ≤
4
3
, j < k,(2.5)

‖Pk+1‖ ≥ ‖Pk‖+ εk‖Pk‖ − ε2k − ε3k,(2.6)

‖Pk+1‖ ≤ ‖Pk‖+ εk|x∗k(xl)|n‖Pk‖+ ε2k + 2 · 4
3

l−1∑
i=k+1

εi, k + 1 < l.(2.7)
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The assertion (2.5) can be easily proved by induction and (2.6) follows directly
from (2.3) and (2.4). To see (2.7), for k + 1 < l we have

‖Pk+1‖ ≤ ‖Pl‖+ ‖Pk+1 − Pl‖ ≤ ‖Pl(xl)‖+ ε2l +
4
3

l−1∑
i=k+1

εi

≤ ‖Pk(xl)‖+ εk|x∗k(xl)|n‖Pk‖+ ε2k + 2 · 4
3

l−1∑
i=k+1

εi

≤ ‖Pk‖+ εk|x∗k(xl)|n‖Pk‖+ ε2k + 2 · 4
3

l−1∑
i=k+1

εi.

By (2.5), the sequence {Pk} converges in the norm topology to Q ∈ P (nX : Y )
satisfying ‖P −Q‖ < ε.

By (2.6) and (2.7) we have, for every l > k + 1,

εk‖Pk‖ − ε2k − ε3k ≤ εk|x∗k(xl)|n‖Pk‖+ 2ε2k,

and hence 1− 4εk < |x∗k(xl)|n since ‖Pk‖ ≥ 1 for each k ≥ 1.
Since E is uniformly strongly exposed, {xk} has a norm convergent subse-

quence to some x0 ∈ SX by Lemma 6 in [1]. Then we can see that ‖Q(x0)‖ =
‖Q‖.

Now we are going to generalize this result to a closed subspace of Cb(M,Y )
with strong peak points instead of u.s.e. points.

Theorem 2.2. Let (M,d) be a complete metric space, Y a Banach space and
A a closed subspace of Cb(M : Y ). Assume that there exist a norming subset
{xα}α ⊂M for A and a family {ϕα}α of functions in Cb(M) such that each ϕα is
a strong peak function at xα. Assume also that A contains ϕnα ⊗ y for each y ∈ Y
and n ≥ 1. Then the set of norm-attaining elements is dense in A.

Proof. We may assume that ϕα(xα) = 1 for each α. Let f ∈ A with ‖f‖ = 1 and
ε with 0 < ε < 1/3 be given. We choose a decreasing sequence {εk} of positive
numbers so that

(2.8) 2
∞∑
i=1

εi < ε, 2
∞∑

i=k+1

εi < ε2k, εk <
1

10k
, k = 1, 2, . . . .
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We next choose inductively sequences {fk}∞k=1, {xαk
}∞k=1 satisfying

f1 = f,(2.9)

‖fk(xαk
)‖ ≥ ‖fk‖ − ε2k,(2.10)

fk+1(x) = fk(x) + εkϕ̃αk
(x) · fk(xαk

) (x ∈M),(2.11)

|ϕ̃αk
(x)| > 1− 1/k implies d(x, xαk

) < 1/k,(2.12)

where ϕ̃αj
is ϕnj

αj for some positive integer nj . Having chosen these sequences, we
verify the following:

‖fj − fk‖ ≤ 2
k−1∑
i=j

εi, ‖fk‖ ≤ 4/3, j < k, k = 2, 3, . . . ,(2.13)

‖fk+1‖ ≥ ‖fk‖+ εk‖fk‖ − 2ε2k, k = 1, 2, . . . ,(2.14)

‖fk‖ ≥ ‖fj‖ ≥ 1, j < k, k = 2, 3, . . . ,(2.15)

|ϕ̃αj
(xαk

)| > 1− 1/j, j < k, k = 2, 3, . . . .(2.16)

Assertion (2.13) is easy by using induction on k. By (2.10) and (2.11),

‖fk+1‖ ≥ ‖fk+1(xαk
)‖ = ‖fk(xαk

)(1 + εkϕ̃αk
(xαk

))‖
= ‖fk(xαk

)‖(1 + εk) ≥ (‖fk‖ − ε2k)(1 + εk) ≥ ‖fk‖+ εk‖fk‖ − 2ε2k,

so (2.14) is proved. Therefore (2.15) is an immediate consequence of (2.9) and
(2.14). For j < k, by the triangle inequality, (2.8), (2.10), (2.13) and (2.15), we
have

‖fj+1(xαk
)‖ ≥ ‖fk(xαk

)‖ − ‖fk − fj+1‖

≥ ‖fk‖ − ε2k − 2
k−1∑
i=j+1

εi ≥ ‖fj+1‖ − 2ε2j .

Hence by (2.11) and (2.14),

εj |ϕ̃αj
(xαk

)| · ‖fj‖+ ‖fj‖ ≥ ‖fj+1(xαk
)‖ ≥ ‖fj+1‖ − 2ε2j

≥ ‖fj‖+ εj‖fj‖ − 4ε2j ,

so that
|ϕ̃αj

(xαk
)| ≥ 1− 4εj > 1− 1/j,

and this proves (2.16). Let f̂ ∈ A be the limit of {fk} in the norm topology. By
(2.8) and (2.13), ‖f̂ − f‖ = limn ‖fn − f1‖ ≤ 2

∑∞
i=1 εi ≤ ε. The relations (2.12)

and (2.16) mean that the sequence {xαk
} converges to some x̃, and by (2.10), we

have ‖f̂‖ = limn ‖fn‖ = limn ‖fn(xαn
)‖ = ‖f̂(x̃)‖. Hence f̂ attains its norm.
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For complex Banach spaces X and Y , consider the following closed subspaces
of Cb(BX : Y ):

Ab(BX : Y ) = {f ∈ Cb(BX : Y ) : f |B◦X is holomorphic},
Au(BX : Y ) = {f ∈ Ab(BX : Y ) : f is uniformly continuous on BX}.

We denote by A(BX : Y ) either Ab(BX : Y ) or Au(BX : Y ) and write A(BX) in
the scalar valued case.

Recall that a Banach space is said to be locally uniformly convex if for each
x ∈ BX and for each sequence {xn}n in BX with limn ‖x + xn‖ = 2, we have
limn ‖xn − x‖ = 0. Let A be the closed linear span of the constant 1 and X∗ as
a subspace of Cb(BX). Notice that if X is locally uniformly convex, then every
element of SX is a strong peak point for A, and clearly the set ρA(BX : Y ) of all
strong peak points of A(BX : Y ) is also SX , hence a norming subset for A(BX : Y )
for every complex Banach space Y . Indeed, if x ∈ SX , choose x∗ ∈ SX∗ so that
x∗(x) = 1. Set f(y) = (x∗(y) + 1)/2 for y ∈ BX . Then f ∈ A and f(x) = 1.
If limn |f(xn)| = 1 for some sequence {xn} in BX , then limn x

∗(xn) = 1. Since
|x∗(xn) + x∗(x)| ≤ ‖xn + x‖ ≤ 2 for every n, ‖xn + x‖ → 2 and ‖xn − x‖ → 0 as
n→∞. It is also clear that every strongly exposed point for BX is a strong peak
point for A.

Following [13, 15], a point x ∈ SX is said to be a complex extreme point of
BX if for any nonzero y ∈ X,

∫ 2π

0
‖x+ eiθy‖2 dθ

2π > 1. A point x ∈ SX is called a
strong complex extreme point of BX if for each ε > 0, there is δ > 0 such that

inf
{∫ 2π

0

‖x+ eiθy‖2 dθ
2π

: y ∈ X, ‖y‖ ≥ ε
}
≥ 1 + δ.

The set of all complex extreme points of BX is denoted by extC(BX), and a
complex Banach space X is said to be strictly complex convex if extC(BX) = SX .
When every point of SX is a strong complex extreme point of BX , the Banach
space X is called locally uniformly c-convex.

It was shown in [7] that if a Banach sequence space X is locally uniformly
c-convex and order continuous, then ρA(BX) is dense in SX . Therefore, ρA(BX)
is a norming subset for A(BX : Y ) for every complex Banach space Y . For the
definition of a Banach sequence space and order continuity, see [7, 16, 21]. We
also notice that if E ⊂ BX is a norming set for A(BX), then it is also a norming
set for A(BX : Y ) for every Banach space Y . By the remarks above, we get the
following.

Corollary 2.1. Suppose that X and Y are complex Banach spaces and ρA(BX)
is a norming subset for A(BX : Y ). Then the set of norm-attaining elements is
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dense in A(BX : Y ). In particular, if X is locally uniformly convex, or if it is a
locally uniformly c-convex, order continuous Banach sequence space, then the set
of norm-attaining elements is dense in A(BX : Y ).

It is shown in [3] that if X has the Radon–Nikodým property, then the set
of norm-attaining elements is dense in A(BX : Y ). However, the complex Banach
space c0 renormed by Day’s norm is locally uniformly convex [11, 12], but it does
not have the Radon-Nikodým property. In addition, it is a locally uniformly c-
convex and order continuous Banach sequence space.

It is also worth remarking that it is shown in [9] that ρA(BX) is a norming
subset for A(BX) if X has the Radon–Nikodým property. Further, very recently,
it has been shown in [18] that the set of all strong peak functions is dense in
A(BX : Y ) if ρA(BX) is a norming subset for A(BX).

Example 1. Let ϕ : R→ [0,∞] be an even, convex continuous function vanishing
only at zero and let w = {w(n)} be a nonincreasing sequence of positive real
numbers satisfying

∑∞
n=1 w(n) = ∞. For a sequence x = {x(n)}∞n=1, x∗ is the

decreasing rearrangement of |x| = {|x(n)|}∞n=1.
An Orlicz–Lorentz sequence space λϕ,w consists of all sequences x = {x(n)}

such that for some λ > 0,

%ϕ(λx) =
∞∑
n=1

ϕ(λx∗(n))w(n) <∞,

and has the norm ‖x‖ = inf{λ > 0 : %ϕ(x/λ) ≤ 1}. Then λϕ,w is a Banach
sequence space. We say that the function ϕ satisfies condition δ2 (ϕ ∈ δ2) if there
exist K > 0 and u0 > 0 such that

ϕ(2u) ≤ Kϕ(u) for u ∈ [0, u0].

If ϕ ∈ δ2, then λϕ,w is locally uniformly c-convex [7] and order continuous [16].
Notice that if ϕ(t) = |t|p for p ≥ 1 and w = 1, then λϕ,w = `p. A characterization of
the local uniform convexity of an Orlicz–Lorentz function space is given in [16, 17]
and a characterization of the local uniform c-convexity of a complex function space
is given in [19].

We now extend the result of [5] to the vector-valued case, that is, show that
the set of all elements whose Aron–Berner extensions attain their norms is dense
in P (2X : Y ).

A continuous n-homogeneous polynomial P ∈ P (nX : Y ) has an extension
P ∈ P (nX∗∗, Y ∗∗) to the bidual X∗∗ of X, which is called the Aron–Berner
extension of P . In fact, P is defined in the following way. Let X1, . . . , Xn be
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an arbitrary collection of Banach spaces and let L(n(X1 × · · · ×Xn)) denote the
space of bounded n-linear forms. Given zi ∈ X∗∗i , 1 ≤ i ≤ n, define zi from
L(n(X1×· · ·×Xi×X∗∗i+1×· · ·×X∗∗n )) to L(n−1(X1×· · ·×Xi−1×X∗∗i+1×· · ·×X∗∗n ))
by

zi(T )(x1, . . . , xi−1, x
∗∗
i+1, . . . , x

∗∗
n ) = 〈zi, T (x1, . . . , xi−1, ·, x∗∗i+1, . . . , x

∗∗
n )〉,

where T (x1, . . . , xi−1, ·, x∗∗i+1, . . . , x
∗∗
n ) is the linear functional on Xi defined by

· 7→ T (x1, . . . , xi−1, ·, x∗∗i+1, . . . , x
∗∗
n ) and 〈z, x∗〉 is the duality between X∗∗i and

X∗i . The map zi is a bounded operator with norm ‖zi‖. Now, given T ∈
L(n(X1×· · ·×Xn)), define the extended n-linear form T ∈ L(n(X∗∗1 ×· · ·×X∗∗n ))
by

T (z1, . . . , zn) := z1 ◦ · · · ◦ zn(T ).

For a vector-valued n-linear mapping L ∈ L(n(X1 × · · · ×Xn), Y ), define

L(x∗∗1 , . . . , x
∗∗
n )(y∗) = y∗ ◦ L(x∗∗1 , . . . , x

∗∗
n ),

where x∗∗i ∈ X∗∗i , 1 ≤ i ≤ n, and y∗ ∈ Y ∗. Then L ∈ L(n(X∗∗1 × · · · ×X∗∗n ), Y ∗∗)
has the same norm as L. Let S ∈ Ls(nX : Y ) be the symmetric n-linear
mapping corresponding to P . Then S can be extended to an n-linear mapping
S ∈ L(nX∗∗, Y ∗∗) as described above. The restriction

P (z) = S(z, . . . , z)

is called the Aron–Berner extension of P . Given z ∈ X∗∗ and w ∈ Y ∗, we have

P (z)(w) = w ◦ P (z).

Actually this equality is often used as the definition of the vector-valued Aron–
Berner extension based upon the scalar-valued Aron–Berner extension. Davie and
Gamelin [10, Theorem 8] proved that ‖P‖ = ‖P‖. It is also worth noting that S
is not symmetric in general.

Theorem 2.3. Let X and Y be Banach spaces. The subset of P (2X : Y ) each
of whose elements has the norm-attaining Aron–Berner extension is dense in
P (2X : Y ).

Proof. Let P ∈ P(2X : Y ), ‖P‖ = 1, and let S be the symmetric bilinear mapping
corresponding to P . Let ε with 0 < ε < 1/4 be given. We first choose a decreasing
sequence {εk} of positive numbers which satisfies the following conditions:

(2.17) 8
∞∑
i=1

εi < ε <
1
4
, 8

∞∑
i=k+1

εi < ε2k, εk <
1

10k
, k = 1, 2, . . . .
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Using induction, we next choose sequences {Pk}∞k=1 in P (2X : Y ), {xk}∞k=1 in SX
and {fk}∞k=1 in SY ∗ so that

P1 = P, ‖P‖ = 1,(2.18)

fk(Pk(xk)) = ‖Pk(xk)‖ ≥ ‖Pk‖ − ε2k,(2.19)

Pk+1(x) = Pk(x) + εk(fk(Sk(xk, x)))2Pk(xk) (x ∈ X),(2.20)

where each Sk is the symmetric bilinear mapping corresponding to Pk. Having
chosen these sequences, we see that the following hold:

‖Pj − Pk‖ ≤ 4
(

5
4

)3 k−1∑
i=j

εi, ‖Pk‖ ≤
5
4
, j < k,(2.21)

‖Pk+1‖ ≥ ‖Pk‖+ εk‖Pk‖3 − 4ε2k,(2.22)

‖Pj+1(xk)‖ > ‖Pj+1‖ − 2ε2j , j < k,(2.23)

|fj(Sj(xj , xk))|2 ≥ ‖Pj‖2 − 6εj , j < k.(2.24)

By (2.21) and the polarization formula [14], the sequences {Pk} and {Sk}
converge in the norm topology to Q and T , say, respectively. Clearly T is the
symmetric bilinear mapping corresponding to Q, and ‖P −Q‖ < ε.

Let η > 0 be given. Then there exists j0 ∈ N such that

‖Q− Pj‖ ≤ ‖T − Sj‖ < η for all j ≥ j0,

hence ‖Pj‖ ≥ ‖Q‖ − η for all j ≥ j0.
From

‖T − Sj‖ ≥ |fj(T (xj , xk))− fj(Sj(xj , xk))|
and (2.24), we have

|fj(T (xj , xk))| ≥ |fj(Sj(xj , xk))| − ‖T − Sj‖

≥
√
‖Pj‖2 − 6εj − η ≥

√
(‖Q‖ − η)2 − 6εj − η

for all k > j ≥ j0. Let z ∈ X∗∗ be a weak-∗ limit point of the sequence {xk}.
Then for all j ≥ j0,

‖T (xj , z)‖ ≥
√

(‖Q‖ − η)2 − 6εj − η.

Hence ‖T (z, z)‖ ≥ ‖Q‖ − 2η. Since η > 0 is arbitrary, we have

‖Q(z)‖ = ‖T (z, z)‖ ≥ ‖Q‖ = ‖Q‖.

We finally investigate a version of Theorem 2 in [20] related to complex con-
vexity.
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Theorem 2.4. Let X be a complex Banach space with property A.

(1) If X is isomorphic to a strictly c-convex space, then BX is the closed convex
hull of its complex extreme points.

(2) If X is isomorphic to a locally uniformly c-convex space, then BX is the closed
convex hull of its strong complex extreme points.

Proof. We prove only (2). Let C be the closed convex hull of the strong complex
extreme points ofBX . Suppose that C 6= BX . Then there are f ∈ X∗ with ‖f‖ = 1
and δ, 0 < δ < 1, such that |f(x)| < 1−δ for x ∈ C. Let |||·||| be a locally uniformly
c-convex norm on X, equivalent to the given norm ‖ · ‖, such that |||x||| ≤ ‖x‖ for
x ∈ X. Let Y be the space X ⊕2 C with the norm ‖(x, c)‖ = (|||x|||2 + |c|2)1/2.
Then Y is locally uniformly c-convex. Indeed, otherwise there exist (x, c) ∈ SX⊕2C,
ε > 0 and a sequence {(xn, cn)} such that for every n ≥ 1, ‖(xn, cn)‖ ≥ ε and

lim
n

∫ 2π

0

‖(x, c) + eiθ(xn, cn)‖2 dθ

2π
= 1.

Since the norm is plurisubharmonic,

1 = |||x|||2 + |c|2 ≤
∫ 2π

0

‖(x, c) + eiθ(xn, cn)‖2 dθ

2π

=
∫ 2π

0

|||x+ eiθxn|||2
dθ

2π
+
∫ 2π

0

|c+ eiθcn|2
dθ

2π
→ 1.

So

lim
n→∞

∫ 2π

0

|||x+ eiθxn|||2
dθ

2π
= |||x|||2 and lim

n→∞

∫ 2π

0

|c+ eiθcn|2
dθ

2π
= |c|2.

Since both (X, ||| · |||) and C are locally uniformly c-convex, we get limn |||xn|||
= lim |cn| = 0, which contradicts infn ‖(xn, cn)‖ ≥ ε.

Let V be the operator from X into Y defined by V x = (x,Mf(x)), where
M > 2/δ. Then V is an (into) isomorphism and the same is true for every operator
sufficiently close to V . We have

‖V ‖ ≥M, ‖V x‖ ≤ (1 + (M − 2)2)1/2 for x ∈ C.

It follows that operators sufficiently close to V cannot attain their norm at a point
belonging to C. To conclude the proof we only have to show that if T is an (into)
isomorphism which attains its norm at a point x and if the range of T is locally
uniformly c-convex, then x is a strong complex extreme point of BX .

We may assume that ‖Tx‖ = ‖T‖ = 1. If x is not a strong complex extreme
point, then there are ε > 0 and a sequence {yn} ⊂ X such that ‖yn‖ ≥ ε for
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every n and

lim
n

∫ 2π

0

‖x+ eiθyn‖2
dθ

2π
= 1.

Then

1 ≤
∫ 2π

0

‖Tx+ eiθTyn‖2
dθ

2π
≤
∫ 2π

0

‖x+ eiθyn‖2
dθ

2π

shows that {Tyn} converges to 0, because the range of T is locally uniformly
c-convex. Therefore, {yn} converges to 0, which is a contradiction.
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