Publ. RIMS Kyoto Univ. 46 (2010), 171[–182](#page-11-0) DOI 10.2977/PRIMS/4

Denseness of Norm-Attaining Mappings on Banach Spaces

by

Yun Sung Choi, Han Ju Lee and Hyun Gwi Song

Abstract

Let X and Y be Banach spaces. Let $P(^{n}X : Y)$ be the space of all Y-valued continuous n -homogeneous polynomials on X. We show that the set of all norm-attaining elements is dense in $P(^{n}X : Y)$ when a set of u.s.e. points of the unit ball B_X is dense in the unit sphere S_X . Applying strong peak points instead of u.s.e. points, we generalize this result to a closed subspace of $C_b(M, Y)$, where M is a complete metric space. For complex Banach spaces X and Y, let $A_b(B_X : Y)$ be the Banach space of all bounded continuous Y-valued mappings f on B_X whose restrictions $f|_{B_Y^{\circ}}$ to the open unit ball are holomorphic. It follows that the set of all norm-attaining elements is dense in $A_b(B_X:Y)$ if the set of all strong peak points in $A_b(B_X)$ is a norming subset for $A_b(B_X)$.

2010 Mathematics Subject Classification: 46B04, 46G20, 46G25, 46B22. Keywords: homogeneous polynomial, norm-attaining element, uniformly strongly exposed point, strong peak point.

§1. Introduction

Let X, Y be Banach spaces over a scalar field \mathbb{F} , where \mathbb{F} is the real or complex field. The celebrated Bishop–Phelps theorem [\[6\]](#page-10-0) says that the set of all norm-attaining continuous linear functionals is dense in the dual space X^* . Motivated by the Bishop–Phelps theorem, Lindenstrauss [\[20\]](#page-11-1) studied the denseness of the normattaining operators in the space $L(X, Y)$ of all continuous linear operators. Recall that an operator $T \in L(X, Y)$ is said to *attain its norm* if $||T|| = ||T(x_0)||$ for some $x_0 \in B_X$, where B_X is the unit ball of X. In [\[20,](#page-11-1) Proposition 1] he showed that if

Y. S. Choi: Department of Mathematics, POSTECH, Republic of Korea;

e-mail: mathchoi@postech.ac.kr

c 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

Communicated by H. Okamoto. Received April 18, 2009. Revised August 10, 2009.

H. J. Lee (corresponding author): Department of Mathematics Education, Dongguk University – Seoul, Republic of Korea;

e-mail: hanjulee@dongguk.edu

H. G. Song: Department of Mathematics, Sogang University, Republic of Korea; e-mail: hyuns@postech.ac.kr

 B_X is the closed convex hull of a set of uniformly strongly exposed (u.s.e.) points, then X has property A , that is, for every Banach space Y , the set of norm-attaining elements is dense in $L(X, Y)$. Payá and Saleh [\[22\]](#page-11-2) extended this result to *n*-linear forms on X , and showed that if B_X is the closed absolutely convex hull of a set of u.s.e. points, then the set of all norm-attaining elements is dense in $L({}^n X)$, the Banach space of all bounded *n*-linear forms on X. Notice that if B_X is the closed absolutely convex hull of a set E of u.s.e. points, then E is a norming set for $L(X, Y)$.

We shall study a similar question for the space $P(^{n}X : Y)$ of all continuous n -homogeneous polynomials from X into Y . In particular, if a set of u.s.e. points on S_X is a norming set for $P(^n X : Y)$, then the set of norm-attaining elements is dense in $P(^{n}X : Y)$. Applying strong peak points instead of u.s.e. points, we shall generalize this result to a closed subspace of $C_b(M, Y)$, where M is a complete metric space and $C_b(M, Y)$ is the Banach space of all bounded continuous mappings from X to Y with the norm $||f|| = \sup{||f(t)|| : t \in M}$.

On the other hand, Lindenstrauss [\[20,](#page-11-1) Theorem 1] proved that the set of all bounded linear operators of X into Y whose second adjoints attain their norms is dense in $L(X, Y)$. In 1996 Acosta [\[2\]](#page-10-1) extended this result to continuous bilinear forms, and in 2002 Aron, Garcia and Maestre [\[5\]](#page-10-2) showed that this is also true for scalar-valued continuous 2-homogeneous polynomials. Recently, Acosta, Garcia and Maestre [\[4\]](#page-10-3) extended it to n-linear mappings. We shall extend the result of [\[5\]](#page-10-2) to the vector-valued case by modifying their proof, which is originally based on that of Lindenstrauss. Finally, we give a necessary condition for a complex Banach space to have property A.

For completeness we recall some terminology. A continuous n-homogeneous polynomial P from X to Y is a mapping $P: X \to Y$ defined by $P(x) = L(x, \ldots, x)$, where L is a continuous *n*-linear mapping from X n $\overbrace{\times \cdots \times} X \rightarrow Y$. The space of all continuous *n*-homogeneous polynomials from X to Y is denoted by $P(^{n}X:Y)$ and it is a Banach space when equipped with the norm $||P|| = \sup{||P(x)|| : x \in B_X}.$ An *n*-homogeneous polynomial P is said to attain its norm if $||P|| = ||P(x_0)||$ for some $x_0 \in B_X$. It is clear that $P(T^X : Y)$ is a closed subspace of $C_b(B_X : Y)$. For the scalar-valued case we denote the former spaces simply by $P({}^n X)$ or $C_b(M)$. When A is a subspace of $C_b(M:Y)$, a subset Γ of M is said to be a norming set for A if $||f|| = \sup{||f(t)|| : t \in \Gamma}$ for each $f \in A$. It is easy to see that if $E \subset B_X$ is a norming set for $P({}^n X)$, then it is also a norming set for $P({}^n X : Y)$ for every Banach space Y .

An element $x \in B_X$ is said to be a *strongly exposed point* for B_X if there is a linear functional $f \in B_{X^*}$ such that $f(x) = 1$ and whenever there is a sequence ${x_n}_{n=1}^{\infty}$ in B_X satisfying $\lim_{n \to \infty}$ Re $f(x_n) = 1$, we get $\lim_{n \to \infty}$ $||x_n - x|| = 0$. A set

 ${x_{\alpha}}_{\alpha}$ of points on S_X is called *uniformly strongly exposed* (u.s.e.) if there are a function $\delta(\epsilon)$ with $\delta(\epsilon) > 0$ for every $\epsilon > 0$, and a set $\{f_\alpha\}_\alpha$ of elements of norm 1 in X^* such that for every α , $f_{\alpha}(x_{\alpha}) = 1$, and for any x,

$$
||x|| \le 1
$$
 and Re $f_{\alpha}(x) \ge 1 - \delta(\epsilon)$ imply $||x - x_{\alpha}|| \le \epsilon$.

In this case we say that $\{f_{\alpha}\}\$ uniformly strongly exposes $\{x_{\alpha}\}\$.

A nonzero function $f \in C_b(M : Y)$ is said to be a *strong peak function* at t if whenever there is a sequence $\{t_n\}_n$ in M with $\lim_n ||f(t_n)|| = ||f||$, we get $\lim_{n} t_n = t$. Such a point t is said to be a *strong peak point* of f. When A is a subspace of $C_b(M : Y)$, we set $\rho A = \{t : t \text{ is a strong peak point of some } f \in A\}.$

§2. Main results

Theorem 2.1. Let X and Y be Banach spaces and $n \in \mathbb{N}$. Suppose that a set E of u.s.e. points on S_X is a norming subset of $P({}^n X)$. Then the set of all normattaining elements is dense in $P(^{n}X:Y)$.

Proof. Suppose that a set E of u.s.e. points on S_X is a norming subset of $P(^nX)$. Let $P \in P({}^n X : Y)$, $||P|| = 1$, and $0 < \epsilon < 1/3$ be given. We first choose a decreasing sequence $\{\epsilon_k\}$ of positive numbers so that

(2.1)
$$
4\sum_{i=1}^{\infty} \epsilon_i < \epsilon < \frac{1}{3}
$$
, $4\sum_{i=k+1}^{\infty} \epsilon_i < \epsilon_k^2$, $\epsilon_k < \frac{1}{10k}$, $k = 1, 2, ...$

Using induction, we next choose sequences $\{P_k\}_{k=1}^{\infty}$ in $\mathcal{P}(^n X : Y)$, $\{x_k\}_{k=1}^{\infty}$ in E and ${x_k^*}_{k=1}^{\infty}$ in S_{X^*} so that

$$
(2.2) \t\t P_1 = P,
$$

(2.3)
$$
||P_k(x_k)|| \ge ||P_k|| - \epsilon_k^2
$$
 and $||x_k|| = 1$, $x_k^*(x_k) = 1$,

where $\{x_k^*\}$ uniformly strongly exposes $\{x_k\}$,

(2.4)
$$
P_{k+1}(x) = P_k(x) + \epsilon_k (x_k^*(x))^n P_k(x_k) \quad (x \in X).
$$

Having chosen these sequences, we see that the following hold:

(2.5)
$$
||P_j - P_k|| \le \frac{4}{3} \sum_{i=j}^{k-1} \epsilon_i, \quad ||P_k|| \le \frac{4}{3}, \quad j < k,
$$

$$
(2.6) \t\t ||P_{k+1}|| \ge ||P_k|| + \epsilon_k ||P_k|| - \epsilon_k^2 - \epsilon_k^3,
$$

$$
(2.7) \qquad \|P_{k+1}\| \le \|P_k\| + \epsilon_k |x_k^*(x_l)|^n \|P_k\| + \epsilon_k^2 + 2 \cdot \frac{4}{3} \sum_{i=k+1}^{l-1} \epsilon_i, \quad k+1 < l.
$$

l−1

The assertion [\(2.5\)](#page-2-0) can be easily proved by induction and [\(2.6\)](#page-2-1) follows directly from (2.3) and (2.4) . To see (2.7) , for $k + 1 < l$ we have

$$
||P_{k+1}|| \le ||P_l|| + ||P_{k+1} - P_l|| \le ||P_l(x_l)|| + \epsilon_l^2 + \frac{4}{3} \sum_{i=k+1}^{l-1} \epsilon_i
$$

\n
$$
\le ||P_k(x_l)|| + \epsilon_k |x_k^*(x_l)|^n ||P_k|| + \epsilon_k^2 + 2 \cdot \frac{4}{3} \sum_{i=k+1}^{l-1} \epsilon_i
$$

\n
$$
\le ||P_k|| + \epsilon_k |x_k^*(x_l)|^n ||P_k|| + \epsilon_k^2 + 2 \cdot \frac{4}{3} \sum_{i=k+1}^{l-1} \epsilon_i.
$$

By [\(2.5\)](#page-2-0), the sequence $\{P_k\}$ converges in the norm topology to $Q \in P(^n X : Y)$ satisfying $||P - Q|| < \epsilon$.

By [\(2.6\)](#page-2-1) and [\(2.7\)](#page-2-4) we have, for every $l > k + 1$,

$$
\epsilon_k \|P_k\| - \epsilon_k^2 - \epsilon_k^3 \le \epsilon_k |x_k^*(x_l)|^n \|P_k\| + 2\epsilon_k^2,
$$

and hence $1 - 4\epsilon_k < |x_k^*(x_l)|^n$ since $||P_k|| \ge 1$ for each $k \ge 1$.

Since E is uniformly strongly exposed, $\{x_k\}$ has a norm convergent subsequence to some $x_0 \in S_X$ by Lemma 6 in [\[1\]](#page-10-4). Then we can see that $||Q(x_0)|| =$ $||Q||.$ \Box

Now we are going to generalize this result to a closed subspace of $C_b(M, Y)$ with strong peak points instead of u.s.e. points.

Theorem 2.2. Let (M, d) be a complete metric space, Y a Banach space and A a closed subspace of $C_b(M : Y)$. Assume that there exist a norming subset ${x_\alpha}_\alpha \subset M$ for A and a family ${\varphi_\alpha}_\alpha$ of functions in $C_b(M)$ such that each φ_α is a strong peak function at x_{α} . Assume also that A contains $\varphi_{\alpha}^{n} \otimes y$ for each $y \in Y$ and $n \geq 1$. Then the set of norm-attaining elements is dense in A.

Proof. We may assume that $\varphi_{\alpha}(x_{\alpha}) = 1$ for each α . Let $f \in A$ with $||f|| = 1$ and ϵ with $0 < \epsilon < 1/3$ be given. We choose a decreasing sequence $\{\epsilon_k\}$ of positive numbers so that

(2.8)
$$
2\sum_{i=1}^{\infty}\epsilon_i < \epsilon, \quad 2\sum_{i=k+1}^{\infty}\epsilon_i < \epsilon_k^2, \quad \epsilon_k < \frac{1}{10k}, \quad k = 1, 2, \ldots.
$$

We next choose inductively sequences $\{f_k\}_{k=1}^{\infty}$, $\{x_{\alpha_k}\}_{k=1}^{\infty}$ satisfying

 (2.9) $f_1 = f,$

(2.10)
$$
||f_k(x_{\alpha_k})|| \ge ||f_k|| - \epsilon_k^2,
$$

(2.11)
$$
f_{k+1}(x) = f_k(x) + \epsilon_k \tilde{\varphi}_{\alpha_k}(x) \cdot f_k(x_{\alpha_k}) \quad (x \in M),
$$

(2.12)
$$
|\tilde{\varphi}_{\alpha_k}(x)| > 1 - 1/k \text{ implies } d(x, x_{\alpha_k}) < 1/k,
$$

where $\tilde{\varphi}_{\alpha_j}$ is $\varphi_{\alpha_j}^{n_j}$ for some positive integer n_j . Having chosen these sequences, we verify the following:

(2.13)
$$
||f_j - f_k|| \le 2 \sum_{i=j}^{k-1} \epsilon_i, \quad ||f_k|| \le 4/3, \quad j < k, \ k = 2, 3, \dots,
$$

$$
(2.14) \t||f_{k+1}|| \ge ||f_k|| + \epsilon_k ||f_k|| - 2\epsilon_k^2, \t k = 1, 2, \ldots,
$$

$$
(2.15) \t\t ||f_k|| \ge ||f_j|| \ge 1, \t\t j < k, k = 2, 3, \ldots,
$$

(2.16) $|\tilde{\varphi}_{\alpha_j}(x_{\alpha_k})| > 1 - 1/j, \qquad j < k, \ k = 2, 3, \dots$

Assertion (2.13) is easy by using induction on k. By (2.10) and (2.11) ,

$$
||f_{k+1}|| \ge ||f_{k+1}(x_{\alpha_k})|| = ||f_k(x_{\alpha_k})(1 + \epsilon_k \tilde{\varphi}_{\alpha_k}(x_{\alpha_k}))||
$$

= $||f_k(x_{\alpha_k})||(1 + \epsilon_k) \ge (||f_k|| - \epsilon_k^2)(1 + \epsilon_k) \ge ||f_k|| + \epsilon_k ||f_k|| - 2\epsilon_k^2$,

so (2.14) is proved. Therefore (2.15) is an immediate consequence of (2.9) and [\(2.14\)](#page-4-3). For $j < k$, by the triangle inequality, [\(2.8\)](#page-3-0), [\(2.10\)](#page-4-1), [\(2.13\)](#page-4-0) and [\(2.15\)](#page-4-4), we have

$$
||f_{j+1}(x_{\alpha_k})|| \ge ||f_k(x_{\alpha_k})|| - ||f_k - f_{j+1}||
$$

\n
$$
\ge ||f_k|| - \epsilon_k^2 - 2 \sum_{i=j+1}^{k-1} \epsilon_i \ge ||f_{j+1}|| - 2\epsilon_j^2.
$$

Hence by [\(2.11\)](#page-4-2) and [\(2.14\)](#page-4-3),

$$
\epsilon_j |\tilde{\varphi}_{\alpha_j}(x_{\alpha_k})| \cdot ||f_j|| + ||f_j|| \ge ||f_{j+1}(x_{\alpha_k})|| \ge ||f_{j+1}|| - 2\epsilon_j^2
$$

$$
\ge ||f_j|| + \epsilon_j ||f_j|| - 4\epsilon_j^2,
$$

so that

$$
|\tilde{\varphi}_{\alpha_j}(x_{\alpha_k})| \ge 1 - 4\epsilon_j > 1 - 1/j,
$$

and this proves [\(2.16\)](#page-4-6). Let $\hat{f} \in A$ be the limit of $\{f_k\}$ in the norm topology. By [\(2.8\)](#page-3-0) and [\(2.13\)](#page-4-0), $\|\hat{f} - f\| = \lim_{n} \|f_n - f_1\| \leq 2 \sum_{i=1}^{\infty} \epsilon_i \leq \epsilon$. The relations [\(2.12\)](#page-4-7) and [\(2.16\)](#page-4-6) mean that the sequence $\{x_{\alpha_k}\}$ converges to some \tilde{x} , and by [\(2.10\)](#page-4-1), we have $\|\hat{f}\| = \lim_n \|f_n\| = \lim_n \|f_n(x_{\alpha_n})\| = \|\hat{f}(\tilde{x})\|$. Hence \hat{f} attains its norm. \Box

For complex Banach spaces X and Y , consider the following closed subspaces of $C_b(B_X:Y)$:

$$
A_b(B_X : Y) = \{ f \in C_b(B_X : Y) : f|_{B_X^{\circ}} \text{ is holomorphic} \},
$$

$$
A_u(B_X : Y) = \{ f \in A_b(B_X : Y) : f \text{ is uniformly continuous on } B_X \}.
$$

We denote by $A(B_X:Y)$ either $A_b(B_X:Y)$ or $A_u(B_X:Y)$ and write $A(B_X)$ in the scalar valued case.

Recall that a Banach space is said to be locally uniformly convex if for each $x \in B_X$ and for each sequence $\{x_n\}_n$ in B_X with $\lim_n ||x + x_n|| = 2$, we have $\lim_{n} ||x_n - x|| = 0$. Let A be the closed linear span of the constant 1 and X^* as a subspace of $C_b(B_X)$. Notice that if X is locally uniformly convex, then every element of S_X is a strong peak point for A, and clearly the set $\rho A(B_X:Y)$ of all strong peak points of $A(B_X : Y)$ is also S_X , hence a norming subset for $A(B_X : Y)$ for every complex Banach space Y. Indeed, if $x \in S_X$, choose $x^* \in S_{X^*}$ so that $x^*(x) = 1$. Set $f(y) = (x^*(y) + 1)/2$ for $y \in B_X$. Then $f \in A$ and $f(x) = 1$. If $\lim_{n} |f(x_n)| = 1$ for some sequence $\{x_n\}$ in B_X , then $\lim_{n} x^*(x_n) = 1$. Since $|x^*(x_n) + x^*(x)| \le ||x_n + x|| \le 2$ for every $n, ||x_n + x|| \to 2$ and $||x_n - x|| \to 0$ as $n \to \infty$. It is also clear that every strongly exposed point for B_X is a strong peak point for A.

Following [\[13,](#page-10-5) [15\]](#page-11-3), a point $x \in S_X$ is said to be a *complex extreme point* of B_X if for any nonzero $y \in X$, $\int_0^{2\pi} ||x + e^{i\theta}y||^2 \frac{d\theta}{2\pi} > 1$. A point $x \in S_X$ is called a strong complex extreme point of B_X if for each $\epsilon > 0$, there is $\delta > 0$ such that

$$
\inf \left\{ \int_0^{2\pi} \|x + e^{i\theta}y\|^2 \, \frac{d\theta}{2\pi} : y \in X, \|y\| \ge \epsilon \right\} \ge 1 + \delta.
$$

The set of all complex extreme points of B_X is denoted by $ext_{\mathbb{C}}(B_X)$, and a complex Banach space X is said to be *strictly complex convex* if $ext_C(B_X) = S_X$. When every point of S_X is a strong complex extreme point of B_X , the Banach space X is called *locally uniformly c-convex*.

It was shown in $[7]$ that if a Banach sequence space X is locally uniformly c-convex and order continuous, then $\rho A(B_X)$ is dense in S_X . Therefore, $\rho A(B_X)$ is a norming subset for $A(B_X : Y)$ for every complex Banach space Y. For the definition of a Banach sequence space and order continuity, see [\[7,](#page-10-6) [16,](#page-11-4) [21\]](#page-11-5). We also notice that if $E \subset B_X$ is a norming set for $A(B_X)$, then it is also a norming set for $A(B_X:Y)$ for every Banach space Y. By the remarks above, we get the following.

Corollary 2.1. Suppose that X and Y are complex Banach spaces and $\rho A(B_X)$ is a norming subset for $A(B_X : Y)$. Then the set of norm-attaining elements is

dense in $A(B_X:Y)$. In particular, if X is locally uniformly convex, or if it is a locally uniformly c-convex, order continuous Banach sequence space, then the set of norm-attaining elements is dense in $A(B_X:Y)$.

It is shown in [\[3\]](#page-10-7) that if X has the Radon–Nikodým property, then the set of norm-attaining elements is dense in $A(B_X : Y)$. However, the complex Banach space c_0 renormed by Day's norm is locally uniformly convex [\[11,](#page-10-8) [12\]](#page-10-9), but it does not have the Radon-Nikodým property. In addition, it is a locally uniformly cconvex and order continuous Banach sequence space.

It is also worth remarking that it is shown in [\[9\]](#page-10-10) that $\rho A(B_X)$ is a norming subset for $A(B_X)$ if X has the Radon–Nikodým property. Further, very recently, it has been shown in [\[18\]](#page-11-6) that the set of all strong peak functions is dense in $A(B_X:Y)$ if $\rho A(B_X)$ is a norming subset for $A(B_X)$.

Example 1. Let $\varphi : \mathbb{R} \to [0, \infty]$ be an even, convex continuous function vanishing only at zero and let $w = \{w(n)\}\$ be a nonincreasing sequence of positive real numbers satisfying $\sum_{n=1}^{\infty} w(n) = \infty$. For a sequence $x = \{x(n)\}_{n=1}^{\infty}$, x^* is the decreasing rearrangement of $|x| = \{ |x(n)| \}_{n=1}^{\infty}$.

An *Orlicz–Lorentz sequence space* $\lambda_{\varphi,w}$ consists of all sequences $x = \{x(n)\}\$ such that for some $\lambda > 0$,

$$
\varrho_{\varphi}(\lambda x) = \sum_{n=1}^{\infty} \varphi(\lambda x^*(n)) w(n) < \infty,
$$

and has the norm $||x|| = \inf{\lambda > 0 : \varrho_{\varphi}(x/\lambda) \leq 1}.$ Then $\lambda_{\varphi,w}$ is a Banach sequence space. We say that the function φ satisfies *condition* δ_2 ($\varphi \in \delta_2$) if there exist $K > 0$ and $u_0 > 0$ such that

$$
\varphi(2u) \le K\varphi(u) \quad \text{ for } u \in [0, u_0].
$$

If $\varphi \in \delta_2$, then $\lambda_{\varphi,w}$ is locally uniformly c-convex [\[7\]](#page-10-6) and order continuous [\[16\]](#page-11-4). Notice that if $\varphi(t) = |t|^p$ for $p \ge 1$ and $w = 1$, then $\lambda_{\varphi,w} = \ell_p$. A characterization of the local uniform convexity of an Orlicz–Lorentz function space is given in [\[16,](#page-11-4) [17\]](#page-11-7) and a characterization of the local uniform c-convexity of a complex function space is given in [\[19\]](#page-11-8).

We now extend the result of [\[5\]](#page-10-2) to the vector-valued case, that is, show that the set of all elements whose Aron–Berner extensions attain their norms is dense in $P(^{2}X:Y)$.

A continuous *n*-homogeneous polynomial $P \in P({}^n X : Y)$ has an extension $\overline{P} \in P(^{n}X^{**}, Y^{**})$ to the bidual X^{**} of X, which is called the Aron–Berner extension of P. In fact, \overline{P} is defined in the following way. Let X_1, \ldots, X_n be an arbitrary collection of Banach spaces and let $\mathcal{L}(^{n}(X_1 \times \cdots \times X_n))$ denote the space of bounded *n*-linear forms. Given $z_i \in X_i^{**}$, $1 \leq i \leq n$, define \overline{z}_i from $\mathcal{L}(^n(X_1 \times \cdots \times X_i \times X_{i+1}^{**} \times \cdots \times X_n^{**}))$ to $\mathcal{L}(^{n-1}(X_1 \times \cdots \times X_{i-1} \times X_{i+1}^{**} \times \cdots \times X_n^{**}))$ by

$$
\overline{z}_i(T)(x_1,\ldots,x_{i-1},x_{i+1}^{**},\ldots,x_n^{**})=\langle z_i,T(x_1,\ldots,x_{i-1},\cdot,x_{i+1}^{**},\ldots,x_n^{**})\rangle,
$$

where $T(x_1, \ldots, x_{i-1}, \ldots, x_{i+1}^{**}, \ldots, x_n^{**})$ is the linear functional on X_i defined by $\cdots \mapsto T(x_1,\ldots,x_{i-1},\ldots,x_{i+1}^{**},\ldots,x_n^{**})$ and $\langle z,x^*\rangle$ is the duality between X_i^{**} and X_i^* . The map \overline{z}_i is a bounded operator with norm $||z_i||$. Now, given $T \in$ $\mathcal{L}(n(X_1 \times \cdots \times X_n)),$ define the extended n-linear form $\overline{T} \in \mathcal{L}(n(X_1^{**} \times \cdots \times X_n^{**}))$ by

$$
\overline{T}(z_1,\ldots,z_n):=\overline{z}_1\circ\cdots\circ\overline{z}_n(T).
$$

For a vector-valued *n*-linear mapping $L \in \mathcal{L}^n(X_1 \times \cdots \times X_n), Y$, define

$$
\overline{L}(x_1^{**},\ldots,x_n^{**})(y^*) = \overline{y^* \circ L}(x_1^{**},\ldots,x_n^{**}),
$$

where $x_i^{**} \in X_i^{**}$, $1 \le i \le n$, and $y^* \in Y^*$. Then $\overline{L} \in \mathcal{L}(\binom{n}{X_1^{**}} \times \cdots \times X_n^{**})$, Y^{**}) has the same norm as L. Let $S \in \mathcal{L}_s({}^n X : Y)$ be the symmetric *n*-linear mapping corresponding to P . Then S can be extended to an *n*-linear mapping $\overline{S} \in \mathcal{L}(N^{**}, Y^{**})$ as described above. The restriction

$$
\overline{P}(z) = \overline{S}(z, \ldots, z)
$$

is called the Aron–Berner extension of P. Given $z \in X^{**}$ and $w \in Y^*$, we have

$$
\overline{P}(z)(w) = \overline{w \circ P}(z).
$$

Actually this equality is often used as the definition of the vector-valued Aron– Berner extension based upon the scalar-valued Aron–Berner extension. Davie and Gamelin [\[10,](#page-10-11) Theorem 8] proved that $||P|| = ||\overline{P}||$. It is also worth noting that \overline{S} is not symmetric in general.

Theorem 2.3. Let X and Y be Banach spaces. The subset of $P(^2X : Y)$ each of whose elements has the norm-attaining Aron–Berner extension is dense in $P(^{2}X:Y).$

Proof. Let $P \in \mathcal{P}(X : Y)$, $||P|| = 1$, and let S be the symmetric bilinear mapping corresponding to P. Let ϵ with $0 < \epsilon < 1/4$ be given. We first choose a decreasing sequence $\{\epsilon_k\}$ of positive numbers which satisfies the following conditions:

(2.17)
$$
8 \sum_{i=1}^{\infty} \epsilon_i < \epsilon < \frac{1}{4}, \quad 8 \sum_{i=k+1}^{\infty} \epsilon_i < \epsilon_k^2, \quad \epsilon_k < \frac{1}{10k}, \quad k = 1, 2, \dots
$$

Using induction, we next choose sequences $\{P_k\}_{k=1}^{\infty}$ in $P(^2X:Y)$, $\{x_k\}_{k=1}^{\infty}$ in S_X and $\{f_k\}_{k=1}^{\infty}$ in S_{Y^*} so that

$$
(2.18) \t P_1 = P, \t ||P|| = 1,
$$

(2.19)
$$
f_k(P_k(x_k)) = ||P_k(x_k)|| \ge ||P_k|| - \epsilon_k^2,
$$

(2.20)
$$
P_{k+1}(x) = P_k(x) + \epsilon_k (f_k(S_k(x_k, x)))^2 P_k(x_k) \quad (x \in X),
$$

where each S_k is the symmetric bilinear mapping corresponding to P_k . Having chosen these sequences, we see that the following hold:

(2.21)
$$
||P_j - P_k|| \le 4\left(\frac{5}{4}\right)^3 \sum_{i=j}^{k-1} \epsilon_i, \quad ||P_k|| \le \frac{5}{4}, \quad j < k,
$$

(2.22)
$$
||P_{k+1}|| \ge ||P_k|| + \epsilon_k ||P_k||^3 - 4\epsilon_k^2,
$$

$$
(2.23) \t\t\t ||P_{j+1}(x_k)|| > ||P_{j+1}|| - 2\epsilon_j^2, \t\t j < k,
$$

(2.24)
$$
|f_j(S_j(x_j, x_k))|^2 \geq ||P_j||^2 - 6\epsilon_j, \quad j < k.
$$

By [\(2.21\)](#page-8-0) and the polarization formula [\[14\]](#page-11-9), the sequences $\{P_k\}$ and $\{S_k\}$ converge in the norm topology to Q and T , say, respectively. Clearly T is the symmetric bilinear mapping corresponding to Q, and $||P - Q|| < \epsilon$.

Let $\eta > 0$ be given. Then there exists $j_0 \in \mathbb{N}$ such that

$$
||Q - P_j|| \le ||T - S_j|| < \eta
$$
 for all $j \ge j_0$,

hence $||P_j|| \geq ||Q|| - \eta$ for all $j \geq j_0$.

From

$$
||T - S_j|| \ge |f_j(T(x_j, x_k)) - f_j(S_j(x_j, x_k))|
$$

and (2.24) , we have

$$
|f_j(T(x_j, x_k))| \ge |f_j(S_j(x_j, x_k))| - ||T - S_j||
$$

$$
\ge \sqrt{||P_j||^2 - 6\epsilon_j} - \eta \ge \sqrt{(||Q|| - \eta)^2 - 6\epsilon_j} - \eta
$$

for all $k > j \geq j_0$. Let $z \in X^{**}$ be a weak-* limit point of the sequence $\{x_k\}$. Then for all $j \geq j_0$,

$$
\|\overline{T}(x_j, z)\| \ge \sqrt{(\|Q\| - \eta)^2 - 6\epsilon_j} - \eta.
$$

Hence $\|\overline{T}(z, z)\| \geq \|Q\| - 2\eta$. Since $\eta > 0$ is arbitrary, we have

$$
\|\overline{Q}(z)\| = \|\overline{T}(z, z)\| \ge \|Q\| = \|\overline{Q}\|.
$$

We finally investigate a version of Theorem 2 in [\[20\]](#page-11-1) related to complex convexity.

Theorem 2.4. Let X be a complex Banach space with property A .

- (1) If X is isomorphic to a strictly c-convex space, then B_X is the closed convex hull of its complex extreme points.
- (2) If X is isomorphic to a locally uniformly c-convex space, then B_X is the closed convex hull of its strong complex extreme points.

Proof. We prove only (2) . Let C be the closed convex hull of the strong complex extreme points of B_X . Suppose that $C \neq B_X$. Then there are $f \in X^*$ with $||f|| = 1$ and δ , $0 < \delta < 1$, such that $|f(x)| < 1-\delta$ for $x \in C$. Let $\|\cdot\|$ be a locally uniformly c-convex norm on X, equivalent to the given norm $\|\cdot\|$, such that $||x|| \leq ||x||$ for $x \in X$. Let Y be the space $X \oplus_2 \mathbb{C}$ with the norm $||(x, c)|| = (||x||^2 + |c|^2)^{1/2}$. Then Y is locally uniformly c-convex. Indeed, otherwise there exist $(x, c) \in S_{X \oplus_2 \mathbb{C}}$, $\epsilon > 0$ and a sequence $\{(x_n, c_n)\}\$ such that for every $n \geq 1, \| (x_n, c_n) \| \geq \epsilon$ and

$$
\lim_{n} \int_{0}^{2\pi} \| (x, c) + e^{i\theta} (x_n, c_n) \|^2 \frac{d\theta}{2\pi} = 1.
$$

Since the norm is plurisubharmonic,

$$
1 = ||x||^2 + |c|^2 \le \int_0^{2\pi} ||(x, c) + e^{i\theta}(x_n, c_n)||^2 \frac{d\theta}{2\pi}
$$

=
$$
\int_0^{2\pi} ||x + e^{i\theta}x_n||^2 \frac{d\theta}{2\pi} + \int_0^{2\pi} |c + e^{i\theta}c_n|^2 \frac{d\theta}{2\pi} \to 1.
$$

So

$$
\lim_{n \to \infty} \int_0^{2\pi} \|x + e^{i\theta} x_n\|^2 \frac{d\theta}{2\pi} = \|x\|^2 \quad \text{and} \quad \lim_{n \to \infty} \int_0^{2\pi} |c + e^{i\theta} c_n|^2 \frac{d\theta}{2\pi} = |c|^2.
$$

Since both $(X, \|\cdot\|)$ and $\mathbb C$ are locally uniformly c-convex, we get $\lim_{n} \|x_n\|$ $=\lim |c_n| = 0$, which contradicts $\inf_n ||(x_n, c_n)|| \geq \epsilon$.

Let V be the operator from X into Y defined by $Vx = (x, Mf(x))$, where $M > 2/\delta$. Then V is an (into) isomorphism and the same is true for every operator sufficiently close to V . We have

$$
||V|| \ge M
$$
, $||Vx|| \le (1 + (M-2)^2)^{1/2}$ for $x \in C$.

It follows that operators sufficiently close to V cannot attain their norm at a point belonging to C . To conclude the proof we only have to show that if T is an (into) isomorphism which attains its norm at a point x and if the range of T is locally uniformly c-convex, then x is a strong complex extreme point of B_X .

We may assume that $||Tx|| = ||T|| = 1$. If x is not a strong complex extreme point, then there are $\epsilon > 0$ and a sequence $\{y_n\} \subset X$ such that $||y_n|| \geq \epsilon$ for

every n and

$$
\lim_{n} \int_{0}^{2\pi} \|x + e^{i\theta} y_n\|^2 \frac{d\theta}{2\pi} = 1.
$$

Then

$$
1 \le \int_0^{2\pi} \|Tx + e^{i\theta}Ty_n\|^2 \frac{d\theta}{2\pi} \le \int_0^{2\pi} \|x + e^{i\theta}y_n\|^2 \frac{d\theta}{2\pi}
$$

shows that $\{Ty_n\}$ converges to 0, because the range of T is locally uniformly c-convex. Therefore, $\{y_n\}$ converges to 0, which is a contradiction. \Box

Acknowledgments

The first named author is supported by POSTECH BSRI research fund-2007. The second named author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2009-0069100).

References

- [1] M. D. Acosta, Denseness of numerical radius attaining operators: renorming and embedding results, Indiana Univ. Math. J. 40 (1991), 903–914. [Zbl 0725.47004](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0725.47004&format=complete) [MR 1129334](http://www.ams.org/mathscinet-getitem?mr=1129334)
- \Box , On multilinear mappings attaining their norms, Studia Math. 131 (1998), 155–165. [Zbl 0934.46048](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0934.46048&format=complete) [MR 1636344](http://www.ams.org/mathscinet-getitem?mr=1636344)
- [3] M. D. Acosta, J. Alaminos, D. García and M. Maestre, On holomorphic functions attaining their norms, J. Math. Anal. Appl. 297 (2004), 625–644. [Zbl 1086.46034](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1086.46034&format=complete) [MR 2088685](http://www.ams.org/mathscinet-getitem?mr=2088685)
- [4] M. D. Acosta, D. García and M. Maestre, A multilinear Lindenstrauss theorem, J. Funct. Anal. 235 (2006), 122–136. [Zbl 1101.46029](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1101.46029&format=complete) [MR 2216442](http://www.ams.org/mathscinet-getitem?mr=2216442)
- [5] R. Aron, D. García and M. Maestre, On norm-attaining polynomials, Publ. Res. Inst. Math. Sci. 39 (2003), 165–172. [Zbl 1035.46005](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1035.46005&format=complete) [MR 1935463](http://www.ams.org/mathscinet-getitem?mr=1935463)
- [6] E. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97–98. [Zbl 0098.07905](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0098.07905&format=complete) [MR 0123174](http://www.ams.org/mathscinet-getitem?mr=0123174)
- [7] Y. S. Choi, K. H. Han and H. J. Lee, Boundaries for algebras of holomorphic functions on Banach spaces, Illinois J. Math. 51 (2007), 883–896. [Zbl pre05316797](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:pre05316797&format=complete) [MR 2379728](http://www.ams.org/mathscinet-getitem?mr=2379728)
- [8] Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. 54 (1996), 135–147. [Zbl 0858.47005](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0858.47005&format=complete) [MR 1395073](http://www.ams.org/mathscinet-getitem?mr=1395073)
- [9] Y. S. Choi, H. J. Lee and H. G. Song, Bishop's theorem and differentiability of a subspace of $C_b(K)$, Israel J. Math., to appear.
- [10] A. M. Davie and T. W. Gamelin, A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), 351–356. [Zbl 0683.46037](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0683.46037&format=complete) [MR 0947313](http://www.ams.org/mathscinet-getitem?mr=0947313)
- [11] W. J. Davis, N. Ghoussoub and J. Lindenstrauss, A lattice renorming theorem and applications to vector-valued processes, Trans. Amer. Math. Soc. 263 (1981), 531–540. [Zbl 0479.46010](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0479.46010&format=complete) [MR 0594424](http://www.ams.org/mathscinet-getitem?mr=0594424)
- [12] M. Day, Normed linear spaces, 3rd ed., Ergeb. Math. Grenzgeb. 21, Springer, Berlin, 1973. [Zbl 0268.46013](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0268.46013&format=complete) [MR 0344849](http://www.ams.org/mathscinet-getitem?mr=0344849)
- [13] S. J. Dilworth, Complex convexity and the geometry of Banach spaces, Math. Proc. Cambridge Philos. Soc. 99 (1986), 495–506. [Zbl 0611.46026](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0611.46026&format=complete) [MR 0830363](http://www.ams.org/mathscinet-getitem?mr=0830363)
- [14] S. Dineen, Complex analysis on infinite-dimensional spaces, Springer, London, 1999. [Zbl 1034.46504](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1034.46504&format=complete) [MR 1705327](http://www.ams.org/mathscinet-getitem?mr=1705327)
- [15] P. N. Dowling, Z. Hu and D. Mupasiri, Complex convexity in Lebesgue–Bochner function spaces, Trans. Amer. Math. Soc. 348 (1996), 127–139. [Zbl 0845.46018](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0845.46018&format=complete) [MR 1327255](http://www.ams.org/mathscinet-getitem?mr=1327255)
- [16] P. Foralewski and P. Kolwicz, Local uniform rotundity in Calderón–Lozanovskiĭ spaces, J. Convex Anal. 14 (2007), 395–412. [Zbl 1159.46018](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1159.46018&format=complete) [MR 2326095](http://www.ams.org/mathscinet-getitem?mr=2326095)
- [17] H. Hudzik, A. Kamińska and M. Mastyło, On geometric properties of Orlicz–Lorentz spaces, Canad. Math. Bull. 40 (1997), 316–329. [Zbl 0903.46014](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0903.46014&format=complete) [MR 1464840](http://www.ams.org/mathscinet-getitem?mr=1464840)
- [18] J. Kim and H. J. Lee, Strong peak points and strongly norm attaining points with applications to denseness and polynomial numerical indices, J. Funct. Anal. 257 (2009), 931–947. [Zbl pre05586659](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:pre05586659&format=complete) [MR 2535458](http://www.ams.org/mathscinet-getitem?mr=2535458)
- [19] H. J. Lee, Randomized series and geometry of Banach spaces, Taiwanese J. Math., to appear.
- [20] J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139–148. [Zbl 0127.06704](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0127.06704&format=complete) [MR 0160094](http://www.ams.org/mathscinet-getitem?mr=0160094)
- [21] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Springer, 1979. [Zbl 0403.46022](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0403.46022&format=complete) [MR 0540367](http://www.ams.org/mathscinet-getitem?mr=0540367)
- [22] R. Payá and Y. Saleh, New sufficient conditions for the denseness of norm-attaining multilinear forms, Bull. London Math. Soc. 34 (2002), 212–218. [Zbl 1038.46008](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1038.46008&format=complete) [MR 1874249](http://www.ams.org/mathscinet-getitem?mr=1874249)
- [23] C. Stegall, Optimization and differentiation in Banach spaces, Linear Algebra Appl. 84 (1986), 191–211. [Zbl 0633.46042](http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0633.46042&format=complete) [MR 0872283](http://www.ams.org/mathscinet-getitem?mr=0872283)